4 to 12-Output Buffers for PCIe
Gen1–5 and UPI
9ZXL04x1E/9ZXL06x1E/
9ZXL08x1E/9ZXL12x1E
Datasheet
Description
Features
The 9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E family of
Zero-Delay/Fanout Buffers (ZDB, FOB) are 2nd-generation
enhanced performance buffers for PCIe and CPU applications.
The family meets all published QPI/UPI, DB2000Q and PCIe
Gen1–5 jitter specifications. Devices range from 4 to 12 outputs,
with each output having an OE# pin to support the PCIe
CLKREQ# function for low power states. All devices meet
DB2000Q, DB1200ZL and DB800ZL jitter and skew requirements.
▪ 4–12 Low-power HCSL (LP-HCSL) outputs
▪ Integrated terminations eliminate up to 4 resistors per output
pair
▪ Dedicated OE# pins support PCIe CLKREQ# function
▪ Up to 9 selectable SMBus addresses (9ZXL12)
▪ Selectable PLL bandwidths minimizes jitter peaking in
cascaded PLL topologies
▪
▪
▪
▪
▪
▪
▪
▪
PCIe Clocking Architectures
▪ Common Clocked (CC)
▪ Independent Reference (IR) with and without spread spectrum
(SRIS, SRNS)
Key Specifications
▪ Fanout Buffer Mode additive phase jitter:
•
•
•
•
PCIe Gen5 CC < 24s RMS
DB2000Q additive jitter < 40s RMS
QPI/UPI 11.4GB/s < 40fs RMS
IF-UPI additive jitter < 70fs RMS
▪ ZDB Mode phase jitter:
• PCIe Gen5 CC < 22fs RMS
• QPI/UPI 11.4GB/s < 120fs RMS
• IF-UPI additive jitter < 130fs RMS
▪ Cycle-to-cycle jitter < 50ps
▪ Output-to-output skew < 50 ps
Hardware/SMBus control of ZDB and FOB modes
Spread-spectrum compatible
1–400MHz FOB operation (all devices)
100MHz and 133.33MHz ZDB mode (9ZXL12, 9ZXL08)
100MHz ZDB mode (9ZXL06, 9ZXL04)
-40°C to +85°C operating temperature range (all devices)
-40°C to +105°C operating temperature range (9ZXL08)
Package information: see Ordering Information for details
Typical Applications
▪
▪
▪
▪
▪
Servers/High-performance Computing
nVME Storage
Networking
Accelerators
Industrial Control
Block Diagram
VDDR
VDDA
VDDIO (9ZXL12x1 only)
VDD
FBOUT_NC#
FBOUT_NC
PLL
DIF_IN#
DIFn#
DIF_IN
9ZXL12x1
9ZXL08x1
only
DIFn
^100M_133M#
9ZXL12x1 only
vSADR1_tri
9ZXL12x1
9ZXL0451
only
vSADR0_tri
SMBCLK
SMBDAT
SMBus
Engine
12, 8, 6, or 4
outputs
Factory
Configuration
DIF0#
^vHIBW_BYPM-LOBW#
^CKPWRGD_PD#
DIF0
Control Logic
vOE[n:0]#
Series resistors are integrated on 9ZXLxx51 devices
and external on 9ZXLxx31 devices
GNDA
©2020 Renesas Electronics Corporation
GND
1
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9ZXL0451E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9ZXL06x1E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
9ZXL08x1E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
9ZXL12x1E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9ZXL04x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9ZXL06x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9ZXL08x1 (industrial temperature range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9ZXL08x1 (extended temperature range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9ZXL12x1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
©2020 Renesas Electronics Corporation
2
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Pin Assignments
9ZXL0451E Pin Assignment
VDD
DIF3
vOE3#
VDD
DIF3#
VDDA
NC
^HIBW_BYPM_LOBW#
Figure 1. Pin Assignments for 5 × 5 mm 32-VFQFPN Package – Top View
32 31 30 29 28 27 26 25
^CKPWRGD_PD# 1
VDDR 2
DIF_IN 3
24 vOE2#
23 DIF2#
22 DIF2
9ZXL0451E
DIF_IN# 4
vSADR0_tri 5
SMBDAT 6
21 VDD
20 DIF1#
19 DIF1
connect EPAD to
ground
SM BCLK 7
FBOUT_NC# 8
18 vOE1#
17 NC
VDD
DIF0#
vOE0#
VDD
DIF0
NC
NC
FBOUT_NC
9 10 11 12 13 14 15 16
5 × 5mm, 32-VFQFPN, 0.5mm pitch
^ prefix indicates internal 120kOhm pull-up resistor
v prefix indicates internal 120kOhm pull-down resistor
©2020 Renesas Electronics Corporation
3
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
9ZXL06x1E Pin Assignment
VDD
vOE4#
DIF4
DIF4#
VDD
DIF5
DIF5#
vOE5#
VDD
NC
Figure 2. Pin Assignments for 5 × 5 mm 40-VFQFPN Package – Top View
40 39 38 37 36 35 34 33 32 31
VDDA 1
30 NC
^HIBW_BYPM_LOBW# 2
29 VDD
^CKPWRGD_PD# 3
28 vOE3#
9ZXL0631E
9ZXL0651E
GNDR 4
VDDR 5
DIF_IN 6
27 DIF3#
26 DIF3
25 VDD
pin 41 is EPAD,
connect to GND
DIF_IN# 7
24 DIF2#
SMBDAT 8
23 DIF2
SMBCLK 9
22 vOE2#
FBOUT_NC# 10
21 VDD
VDD
vOE1#
DIF1#
DIF1
VDD
DIF0#
DIF0
vOE0#
VDD
FBOUT_NC
11 12 13 14 15 16 17 18 19 20
5 × 5mm, 40-VFQFPN, 0.4mm pad pitch
Pins with ^ prefix have internal 120kOhm pull-up
Pins with v prefix have internal 120kOhm pull-down
©2020 Renesas Electronics Corporation
4
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
9ZXL08x1E Pin Assignment
vOE6#
VDD
DIF7
DIF7#
vOE7#
VDD
NC
VDDA
NC
NC
^100M_133M#
^HIBW_BYPM_LOBW#
Figure 3. Pin Assignments for 6 × 6 mm 48-VFQFPN Package – Top View
48 47 46 45 44 43 42 41 40 39 38 37
^CKPWRGD_PD# 1
36 DIF6#
GNDR 2
35 DIF6
VDDR 3
34 VDD
DIF_IN 4
33 DIF5#
9ZXL0831E
9ZXL0851E
DIF_IN# 5
SMBDAT 6
32 DIF5
31 vOE5#
EPAD is pin 49
Connect to GND
SMBCLK 7
FBOUT_NC# 8
30 vOE4#
29 DIF4#
FBOUT_NC 9
28 DIF4
VDD 10
27 VDD
vOE0# 11
26 DIF3#
NC 12
25 DIF3
vOE3#
vOE2#
DIF2#
DIF2
NC
VDD
vOE1#
DIF1#
DIF1
VDD
DIF0#
DIF0
13 14 15 16 17 18 19 20 21 22 23 24
6 × 6mm, 48-VFQFPN, 0.4mm pad pitch
Pins with ^ prefix have internal 120kOhm pull-up
Pins with v prefix have internal 120kOhm pull-down
©2020 Renesas Electronics Corporation
5
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
9ZXL12x1E Pin Assignment
VDDIO
DIF8
DIF8#
vOE8#
vOE9#
DIF9
DIF9#
VDDIO
VDD
GND
DIF10
DIF10#
vOE10#
vOE11#
DIF11
DIF11#
Figure 4. Pin Assignments for 9 × 9 mm 64-VFQFPN Package – Top View
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VDDA 1
48 GND
GNDA 2
47 DIF7#
NC 3
46 DIF7
^100M_133M# 4
45 vOE7#
^HIBW_BYPM_LOBW# 5
44 vOE6#
^CKPWRGD_PD# 6
43 DIF6#
GNDR 7
42 DIF6
9ZXL1231E
9ZXL1251E
VDDR 8
DIF_IN 9
41 GND
40 VDD
connect EPAD to ground
DIF_IN# 10
39 DIF5#
vSADR0_tri 11
38 DIF5
SMBDAT 12
37 vOE5#
SMBCLK 13
36 vOE4#
vSADR1_tri 14
35 DIF4#
FBOUT_NC# 15
34 DIF4
FBOUT_NC 16
33 GND
VDDIO
DIF3
DIF3#
vOE3#
vOE2#
DIF2#
DIF2
VDDIO
VDD
GND
DIF1#
DIF1
vOE1#
vOE0#
DIF0#
DIF0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
9 × 9mm 64-VFQFPN, 0.5mm pad pitch
Pins with ^ prefix have internal 120kOhm pull-up
Pins with v prefix have internal 120kOhm pull-down
©2020 Renesas Electronics Corporation
6
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Pin Descriptions
Table 1. Pin Descriptions
Name
Type
9ZXL12x1 9ZXL08x1
Pin No.
Pin No.
Description
9ZXL06x1
Pin No.
9ZXL04x1
Pin No.
3.3V Input to select operating frequency. This pin has an
^100M_133M# Latched In internal pull-up resistor. See Frequency Selection (PLL Mode)
for definition.
4
47
—
—
Input notifies device to sample latched inputs and start up on
first high assertion. Low enters Power Down Mode, subsequent
high assertions exit Power Down Mode. This pin has internal
pull-up resistor.
6
1
3
1
Tri-level input to select High BW, Bypass or Low BW Mode.
^HIBW_BYPM
Latched In This pin has an internal pull-up resistor. See PLL Operating
_LOBW#
Mode table for details.
5
48
2
32
DIF_IN
Input
HCSL true input.
9
4
6
3
DIF_IN#
Input
HCSL complementary input.
10
5
7
4
DIF0
Output
Differential true clock output.
17
13
14
13
DIF0#
Output
Differential complementary clock output.
18
14
15
14
DIF1
Output
Differential true clock output.
21
16
17
19
DIF1#
Output
Differential complementary clock output.
22
17
18
20
DIF10
Output
Differential true clock output.
59
—
—
—
DIF10#
Output
Differential complementary clock output.
60
—
—
—
DIF11
Output
Differential true clock output.
63
—
—
—
DIF11#
Output
Differential complementary clock output.
64
—
—
—
DIF2
Output
Differential true clock output.
26
21
23
22
DIF2#
Output
Differential complementary clock output.
27
22
24
23
DIF3
Output
Differential true clock output.
30
25
26
27
DIF3#
Output
Differential complementary clock output.
31
26
27
28
DIF4
Output
Differential true clock output.
34
28
33
n/a
DIF4#
Output
Differential complementary clock output.
35
29
34
n/a
DIF5
Output
Differential true clock output.
38
32
36
n/a
DIF5#
Output
Differential complementary clock output.
39
33
37
n/a
DIF6
Output
Differential true clock output.
42
35
—
—
DIF6#
Output
Differential complementary clock output.
43
36
—
—
DIF7
Output
Differential true clock output.
46
39
—
—
DIF7#
Output
Differential complementary clock output.
47
40
—
—
DIF8
Output
Differential true clock output.
50
—
—
—
DIF8#
Output
Differential complementary clock output.
51
—
—
—
DIF9
Output
Differential true clock output.
54
—
—
—
DIF9#
Output
Differential complementary clock output.
55
—
—
—
^CKPWRGD_
PD#
Input
©2020 Renesas Electronics Corporation
7
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 1. Pin Descriptions (Cont.)
Name
EPAD
Type
GND
9ZXL12x1 9ZXL08x1
Pin No.
Pin No.
Description
9ZXL06x1
Pin No.
9ZXL04x1
Pin No.
Connect epad to ground.
65
49
41
33
FBOUT_NC
Output
True half of differential feedback output. This pin should NOT
be connected to anything outside the chip. It exists to provide
delay path matching to get 0 propagation delay.
16
9
11
9
FBOUT_NC#
Output
Complementary half of differential feedback output. This pin
should NOT be connected to anything outside the chip. It exists
to provide delay path matching to get 0 propagation delay.
15
8
10
8
GND
GND
Ground pin.
23
49
41
33
GND
GND
Ground pin.
33
49
41
n/a
GND
GND
Ground pin.
41
49
—
—
GND
GND
Ground pin.
48
49
—
—
GND
GND
Ground pin.
58
—
—
—
GNDA
GND
Ground pin for the PLL core.
2
49
41
33
GNDR
GND
Analog ground pin for the differential input (receiver).
7
2
4
33
No connection.
3
12, 20,
43, 45, 46
30, 40
10, 11,
17, 30
NC
—
SMBCLK
Input
Clock pin of SMBUS circuitry.
13
7
9
7
SMBDAT
I/O
Data pin of SMBUS circuitry.
12
6
8
6
VDD
Power
Power supply, nominally 3.3V.
24
10, 15,
19, 27,
34, 38, 42
VDD
Power
Power supply, nominally 3.3V.
40
—
—
—
VDD
Power
Power supply, nominally 3.3V.
57
—
—
—
VDDA
Power
Power supply for PLL core.
1
44
1
31
VDDIO
Power
Power supply for differential outputs.
25
—
—
—
VDDIO
Power
Power supply for differential outputs.
32
—
—
—
VDDIO
Power
Power supply for differential outputs.
49
—
—
—
VDDIO
Power
Power supply for differential outputs.
56
—
—
—
VDDR
Power
Power supply for differential input clock (receiver). This VDD
should be treated as an analog power rail and filtered
appropriately. Nominally 3.3V.
8
3
5
2
vOE0#
Input
Active low input for enabling output 0. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
19
11
13
15
vOE1#
Input
Active low input for enabling output 1. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
20
18
19
18
vOE10#
Input
Active low input for enabling output 10. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
61
—
—
—
©2020 Renesas Electronics Corporation
8
12, 16, 20,
12, 16,
21, 25, 29,
21, 25, 29
31, 35, 39
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 1. Pin Descriptions (Cont.)
Name
vOE11#
vOE2#
vOE3#
vOE4#
vOE5#
vOE6#
vOE7#
vOE8#
vOE9#
vSADR0_tri
vSADR1_tri
9ZXL12x1 9ZXL08x1
Pin No.
Pin No.
9ZXL06x1
Pin No.
9ZXL04x1
Pin No.
—
—
—
28
23
22
24
Input
Active low input for enabling output 3. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
29
24
28
26
Input
Active low input for enabling output 4. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
36
30
32
—
Input
Active low input for enabling output 5. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
37
31
38
—
Input
Active low input for enabling output 6. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
44
37
—
—
Input
Active low input for enabling output 7. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
45
41
—
—
Input
Active low input for enabling output 8. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
52
n/a
—
—
Input
Active low input for enabling output 9. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
53
—
—
—
Input
SMBus address bit. This is a tri-level input that works in
conjunction with other SADR pins, if present, to decode SMBus
Addresses. It has an internal pull down resistor. See the
SMBus Addresses table.
11
—
—
5
Input
SMBus address bit. This is a tri-level input that works in
conjunction with other SADR pins, if present, to decode SMBus
Addresses. It has an internal pull down resistor. See the
SMBus Addresses table.
14
—
—
—
Type
Description
Input
Active low input for enabling output 11. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
62
Input
Active low input for enabling output 2. This pin has an internal
pull-down.
1 = disable output, 0 = enable output.
©2020 Renesas Electronics Corporation
9
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the
device. Functional operation of the 9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E at absolute maximum ratings is not implied.
Exposure to absolute maximum rating conditions may affect device reliability.
Table 2. Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
VDDX
Input Low Voltage
VIL
Input High Voltage
VIH
Except for SMBus interface
Input High Voltage, SMBus
VIHSMB
SMBus clock and data pins.
Storage Temperature
Ts
Junction Temperature
Tj
Input ESD Protection
ESD prot
1
2
3
Conditions
Minimum
Maximum
Units
Notes
3.9
V
1,2
V
1
VDD + 0.5
V
1,3
3.9
V
1
150
°C
1
125
°C
1
V
1
GND - 0.5
-65
Human Body Model.
2500
Guaranteed by design and characterization, not 100% tested in production.
Operation under these conditions is neither implied nor guaranteed.
Not to exceed 3.9V.
Thermal Characteristics
Table 3. Thermal Characteristics
Parameter
9ZXL04x1
Thermal
Resistance
9ZXL06x1
Thermal
Resistance
9ZXL08x1
Thermal
Resistance
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
32
°C/W
1
θJb
Junction to base.
2
°C/W
1
θJA0
Junction to air, still air.
44
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
37
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
32.5
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
30.9
°C/W
1
θJC
Junction to case.
32
°C/W
1
θJb
Junction to base.
2
°C/W
1
θJA0
Junction to air, still air.
44
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
37
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
33
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
31
°C/W
1
θJC
Junction to case.
19
°C/W
1
θJb
Junction to base.
0
°C/W
1
θJA0
Junction to air, still air.
30
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
23
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
20
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
19
°C/W
1
©2020 Renesas Electronics Corporation
NLG32
NDG40
NDG48
10
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 3. Thermal Characteristics (Cont.)
Parameter
Symbol
9ZXL12x1
Thermal
Resistance
1 EPAD
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
14
°C/W
1
θJb
Junction to base.
1
°C/W
1
θJA0
Junction to air, still air.
28
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
21
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
19
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
18
°C/W
1
NLG64
soldered to board.
Electrical Characteristics
TA = TAMB. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Table 4. SMBus Parameters
Parameter
Symbol
SMBus Input Low Voltage
VILSMB
SMBus Input High Voltage
VIHSMB
SMBus Output Low Voltage
VOLSMB
At IPULLUP.
SMBus Sink Current
IPULLUP
At VOL.
Nominal Bus Voltage
VDDSMB
SCLK/SDATA Rise Time
tRSMB
SCLK/SDATA Fall Time
SMBus Operating Frequency
1
2
3
4
5
Conditions
Minimum
Typical
2.1
Maximum
Units
0.8
V
VDDSMB
V
0.4
V
4
Notes
mA
2.7
3.6
V
(Max. VIL - 0.15V) to (Min. V IH + 0.15V).
1000
ns
1
tFSMB
(Min. VIH + 0.15V) to (Max. VIL - 0.15V).
300
ns
1
fSMB
SMBus operating frequency.
500
kHz
5
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
DIF_IN input.
The differential input clock must be running for the SMBus to be active.
Table 5. DIF_IN Clock Input Parameters
Parameter
Symbol
Input Crossover Voltage–DIF_IN
VCROSS
Crossover voltage.
150
Input Swing–DIF_IN
VSWING
Differential value.
300
Input Slew Rate–DIF_IN
dv/dt
Measured differentially.
0.4
Input Leakage Current
IIN
VIN = VDD , VIN = GND.
Input Duty Cycle
dtin
Input Jitter–Cycle to Cycle
JDIFIn
1
2
Conditions
Minimum
Typical
Maximum Units Notes
900
mV
1
mV
1
8
V/ns
1,2
-5
5
μA
Measurement from differential waveform.
45
55
%
1
Differential measurement.
0
125
ps
1
Guaranteed by design and characterization, not 100% tested in production.
Slew rate measured through ±75mV window centered around differential zero.
©2020 Renesas Electronics Corporation
11
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 6. Input/Supply/Common Parameters – Normal Operating Conditions
Parameter
Symbol
Conditions
Minimum
Typical
Supply Voltage
VDDX
Output Supply Voltage
VDDIO
Ambient Operating
Temperature
TAMB
Input High Voltage
VIH
Single-ended inputs, except SMBus, tri-level inputs.
Supply voltage for core and analog.
3.135
3.3
3.465
V
Supply voltage for DIF outputs, if present.
0.95
1.05
3.465
V
5
Extended Industrial range (TEXIND).
-40
25
105
°C
7
Industrial range (TIND).
-40
25
85
°C
VDD + 0.3
V
Input Low Voltage
VIL
Single-ended inputs, except SMBus, tri-level inputs. GND - 0.3
0.8
V
Input High Voltage
VIHtri
Tri-level inputs.
2.2
VDD + 0.3
V
Input Mid Voltage
VIMtri
Tri-level inputs.
1.2
1.8
V
Input Low Voltage
VILtri
Tri-level inputs.
GND - 0.3
0.8
V
2
VDD/2
Maximum Units Notes
IIN
Single-ended inputs, VIN = GND, VIN = VDD.
-5
5
μA
IINP
Single-ended inputs
VIN = 0 V; inputs with internal pull-up resistors.
VIN = VDD; inputs with internal pull-down resistors.
-50
50
μA
Fibyp
VDD = 3.3 V, Bypass Mode.
1
400
MHz
Fipll
VDD = 3.3 V, 100MHz PLL Mode.
98.5
100.00
102.5
MHz
Fipll
VDD = 3.3 V, 133.33MHz PLL Mode.
132
133.33
135
MHz
ppm Error Contribution
ppm
ppm error contributed to input clock.
Pin Inductance
Lpin
Input Current
Input Frequency
CIN
Capacitance
Logic inputs, except DIF_IN.
CINDIF_IN DIF_IN differential clock inputs.
COUT
Output pin capacitance.
CLK Stabilization
tSTAB
From VDD power-up and after input clock
stabilization or de-assertion of PD# to 1st clock.
Input SS Modulation
Frequency PCIe
fMODINPCIe
OE# Latency
1
2
3
4
5
6
7
0
6
ppm
7
nH
1
1.5
5
pF
1
1.5
2.7
pF
1,4
6
pF
1
1.8
ms
1,2
33
kHz
1
Allowable frequency for PCIe applications
(Triangular modulation).
30
tLATOE#
DIF start after OE# assertion.
DIF stop after OE# deassertion.
4
Tdrive_PD#
tDRVPD
DIF output enable after.
PD# de-assertion.
Fall Time
tF
Rise Time
tR
5
10
clocks 1,2,3
49
300
μs
1,3
Fall time of control inputs.
5
ns
2
Rise time of control inputs.
5
ns
2
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
DIF_IN input.
9ZXL12x1 only.
9ZXL12x1 and 9ZXL08x1 only.
Not all devices are available in this temperature range. See ordering information for details.
©2020 Renesas Electronics Corporation
12
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 7. LP-HCSL Outputs
Parameter
Symbol
Conditions
Minimum Typical Maximum
Slew Rate
dV/dt
Scope averaging on.
Slew Rate Matching
ΔdV/dt
Single-ended measurement.
Maximum Voltage
VMAX
Minimum Voltage
VMIN
Measurement on single ended signal
using absolute value. (Scope
averaging off).
2
Crossing Voltage (abs) Vcross_abs Scope averaging off.
Crossing Voltage (var)
1 Guaranteed
2
5
6
7
8
2.9
4
1–4
V/ns
1,2,3
7.1
20
20
%
1,4,7
700
792
850
660 – 1150
mV
7,8
-150
-35
150
-300
300
372
462
250 – 550
mV
1,5,7
15
50
140
mV
1,6,7
Scope averaging off.
7,8
by design and characterization, not 100% tested in production.
Measured from differential waveform.
3 Slew
4
Δ-Vcross
Specification
Units Notes
Limit
rate is measured through the Vswing voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75 mV window centered on the average
cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use
for the edge rate calculations.
Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock
rising and Clock# falling).
The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed.
The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.
At default SMBus settings.
Includes previously separate values of +300mV overshoot and -300mV of undershoot.
Table 8. Current Consumption – 9ZXL04x1
Parameter
Symbol
Operating Supply
Current
IDDA
Power Down Current
1
Conditions
Minimum Typical Maximum Units Notes
VDDA, ZDB Mode at 100MHz.
37
44
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins, any mode at 100MHz.
33
40
mA
IDDAPD
VDDA pin, CKPWRGD_PD# = 0.
3
5
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
IDD
1
Includes VDDR.
Table 9. Current Consumption – 9ZXL06x1
Parameter
Symbol
Operating Supply
Current
IDDA
Power Down Current
1
Conditions
Minimum Typical Maximum Units Notes
VDDA, PLL Mode at 100MHz.
37
45
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins at 100MHz.
41
50
mA
IDDAPD
VDDA, CKPWRGD_PD# = 0.
3
4
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
IDD
1
Includes VDDR.
©2020 Renesas Electronics Corporation
13
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 10. Current Consumption – 9ZXL08x1
Parameter
Symbol
Operating Supply
Current
IDDA
Power Down Current
1
Conditions
Minimum Typical Maximum Units Notes
VDDA, PLL Mode at 100MHz.
37
45
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins at 100MHz.
55
68
mA
IDDAPD
VDDA, CKPWRGD_PD# = 0.
3
4
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
IDD
1
Includes VDDR.
Table 11. Current Consumption – 9ZXL12x1
Parameter
Operating Supply
Current
Symbol
1
Minimum Typical Maximum Units Notes
VDDA, PLL Mode at 100MHz.
38
46
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins.
25
34
mA
VDDIO for LP-HCSL outputs, if applicable.
83
107
mA
IDDAPD
VDDA, CKPWRGD_PD# = 0.
3
4
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
IDDA
IDD
IDDIO
Power Down Current
Conditions
1
Includes VDDR.
Table 12. PCIe Phase Jitter
TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions.
Parameter
PCIe Phase Jitter, Low
Bandwidth ZDB Mode
(Common Clocked
Architecture)
PCIe Phase Jitter, Low
Bandwidth ZDB Mode
(SRIS Architecture)
Symbol
Conditions
Units
Notes
tjphPCIeG1-CC
PCIe Gen1 (2.5 GT/s)
2.6
6.8
86
ps (p-p)
1,2
PCIe Gen2 Hi Band (5.0 GT/s)
0.09
0.16
3
ps (RMS)
1,2
PCIe Gen2 Lo Band (5.0 GT/s)
0.08
0.12
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen3 (8.0 GT/s)
0.05
0.07
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen4 (16.0 GT/s)
0.05
0.07
0.5
ps (RMS)
1,2,3,4
tjphPCIeG5-CC
PCIe Gen5 (32.0 GT/s)
0.018
0.022
0.15
ps (RMS)
1,2,3,5
tjphPCIeG1-SRIS
PCIe Gen1 (2.5 GT/s)
8.71
8.73
ps (RMS)
1,2,6
tjphPCIeG2-SRIS
PCIe Gen2 (5.0 GT/s)
0.81
0.83
ps (RMS)
1,2,6
tjphPCIeG3-SRIS
PCIe Gen3 (8.0 GT/s)
0.329
0.335
ps (RMS)
1,2,6
tjphPCIeG4-SRIS
PCIe Gen4 (16.0 GT/s)
0.222
0.235
ps (RMS)
1,2,6
tjphPCIeG5-SRIS
PCIe Gen5 (32.0 GT/s)
0.084
0.091
ps (RMS)
1,2,6
tjphPCIeG2-CC
©2020 Renesas Electronics Corporation
Minimum
14
Typical
Maximum Limit
N/A
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 12. PCIe Phase Jitter (Cont.)
TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions.
Parameter
PCIe Phase Jitter,
High Bandwidth ZDB
Mode
(Common Clocked
Architecture)
PCIe Phase Jitter,
High Bandwidth ZDB
Mode
(SRIS Architecture)
1
2
3
4
5
6
Symbol
Conditions
Units
Notes
tjphPCIeG1-CC
PCIe Gen1 (2.5 GT/s)
5.4
6.9
86
ps (p-p)
1,2
PCIe Gen2 Hi Band (5.0 GT/s)
0.19
0.25
3
ps (RMS)
1,2
PCIe Gen2 Lo Band (5.0 GT/s)
0.09
0.13
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen3 (8.0 GT/s)
0.10
0.13
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen4 (16.0 GT/s)
0.10
0.13
0.5
ps (RMS)
1,2,3,4
tjphPCIeG5-CC
PCIe Gen5 (32.0 GT/s)
0.032
0.042
0.15
ps (RMS)
1,2,3,5
tjphPCIeG1-SRIS
PCIe Gen1 (2.5 GT/s)
8.61
8.63
ps (RMS)
1,2,6
tjphPCIeG2-SRIS
PCIe Gen2 (5.0 GT/s)
0.88
0.96
ps (RMS)
1,2,6
tjphPCIeG3-SRIS
PCIe Gen3 (8.0 GT/s)
0.354
0.375
ps (RMS)
1,2,6
tjphPCIeG4-SRIS
PCIe Gen4 (16.0 GT/s)
0.271
0.305
ps (RMS)
1,2,6
tjphPCIeG5-SRIS
PCIe Gen5 (32.0 GT/s)
0.097
0.109
ps (RMS)
1,2,6
tjphPCIeG2-CC
Minimum
Typical
Maximum Limit
N/A
The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads
section of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise
is removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide
specification limits, hence the N/A in the “Limit” column. In general, a clock operating in an SRIS system must be twice as good as a clock operating
in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value
for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel
simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be
either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input.
©2020 Renesas Electronics Corporation
15
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 13. Skew and Differential Jitter Parameters
Parameter
Symbol
Conditions
Minimum Typical Maximum Units
CLK_IN,
DIF[x:0]
tSPO_PLL
Input-to-output skew in PLL Mode at 100MHz, nominal
temperature and voltage.
CLK_IN,
DIF[x:0]
tPD_BYP
Input-to-output skew in Bypass Mode at 100MHz, nominal
temperature and voltage.
CLK_IN,
DIF[x:0]
tDSPO_PLL
Notes
-100
-21.3
100
ps
1,2,4,5,7
2
2.6
3
ns
1,2,3,5,7
Input-to-output skew variation in PLL Mode at 100MHz,
across voltage and temperature.
-50
0.0
50
ps
1,2,3,5,7
Input-to-output skew variation in Bypass Mode at 100MHz,
across voltage and temperature, TAMB = 0°C to +70°C.
-250
250
ps
1,2,3,5,7
Input-to-Output Skew variation in Bypass mode at 100MHz,
across voltage and temperature, TAMB = -40°C to +85°C.
-350
350
ps
1,2,3,5,7
CLK_IN,
DIF[x:0]
tDSPO_BYP
CLK_IN,
DIF[x:0]
tDTE
CLK_IN,
DIF[x:0]
tDSSTE
DIF[x:0]
tSKEW_ALL
Output-to-output skew across all outputs, common to PLL
and Bypass Mode, at 100MHz.
PLL Jitter
Peaking
jpeak-hibw
LOBW#_BYPASS_HIBW = 1.
0
PLL Jitter
Peaking
jpeak-lobw
LOBW#_BYPASS_HIBW = 0.
PLL Bandwidth
pllHIBW
PLL Bandwidth
pll LOBW
Duty Cycle
Random differential tracking error between two 9ZX devices
in Hi BW Mode.
3
5
Random differential spread spectrum tracking error
between two 9ZX devices in Hi BW Mode.
23
50
ps
1,2,3,5,7
50
ps
1,2,3,7
1.3
2.5
dB
6.7
0
1.3
2
dB
6.7
LOBW#_BYPASS_HIBW = 1.
2
2.6
4
MHz
7,8
LOBW#_BYPASS_HIBW = 0.
0.7
1.0
1.4
MHz
7,8
tDC
Measured differentially, PLL Mode.
45
50.3
55
%
1
Duty Cycle
Distortion
tDCD
Measured differentially, Bypass Mode at 100MHz.
-1
0
1
%
1,9
Jitter, Cycle to
Cycle
tjcyc-cyc
PLL Mode.
14
50
ps
1,10
Additive jitter in Bypass Mode.
0.1
5
ps
1,10
1
2
3
4
5
6
7
8
9
ps
1,2,3,5,7
(rms)
Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
This parameter is deterministic for a given device.
Measured with scope averaging on to find mean value.
Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
Guaranteed by design and characterization, not 100% tested in production.
Measured at 3db down or half power point.
Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
10
Measured from differential waveform.
©2020 Renesas Electronics Corporation
16
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 14. Additive PCIe Phase Jitter for Fanout Buffer Mode
TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions.
Parameter
Additive PCIe Phase
Jitter, Fanout Buffer
Mode7
(Common Clocked
Architecture)
Additive PCIe Phase
Jitter, Fanout Buffer
Mode7
(SRIS Architecture)
1
2
3
4
5
6
7
Symbol
Conditions
Units
Notes
tjphPCIeG1-CC
PCIe Gen1 (2.5 GT/s)
1.3
1.9
86
ps (p-p)
1,2
PCIe Gen2 Hi Band (5.0 GT/s)
0.089
0.126
3
ps (RMS)
1,2
PCIe Gen2 Lo Band (5.0 GT/s)
0.023
0.034
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen3 (8.0 GT/s)
0.044
0.062
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen4 (16.0 GT/s)
0.044
0.062
0.5
ps (RMS)
1,2,3,4
tjphPCIeG5-CC
PCIe Gen5 (32.0 GT/s)
0.017
0.024
0.15
ps (RMS)
1,2,3,5
tjphPCIeG1-SRIS
PCIe Gen1 (2.5 GT/s)
0.127
0.181
ps (RMS)
1,2,6
tjphPCIeG2-SRIS
PCIe Gen2 (5.0 GT/s)
0.112
0.159
ps (RMS)
1,2,6
tjphPCIeG3-SRIS
PCIe Gen3 (8.0 GT/s)
0.029
0.042
ps (RMS)
1,2,6
tjphPCIeG4-SRIS
PCIe Gen4 (16.0 GT/s)
0.031
0.043
ps (RMS)
1,2,6
tjphPCIeG5-SRIS
PCIe Gen5 (32.0 GT/s)
0.027
0.038
ps (RMS)
1,2,6
tjphPCIeG2-CC
Minimum
Typical
Maximum Limit
N/A
The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads
section of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst
case results for each data rate are summarized in this table. If oscilloscope data is used, equipment noise is removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide
specification limits, hence the N/A in the “Limit” column. In general, a clock operating in an SRIS system must be twice as good as a clock operating
in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value
for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel
simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be
either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input.
Additive jitter for RMS values is calculated by solving for “b” where b = √(c2 - a2) and where “a” is rms input jitter and “c” is rms output jitter.
©2020 Renesas Electronics Corporation
17
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 15. Filtered Phase Jitter Parameters – QPI/UPI, IF-UPI and DB2000Q
Parameter
Phase Jitter, ZDB Mode
Conditions
Minimum Typical Maximum
Specification
Limit
Units
Notes
QPI and UPI
(100MHz or 133MHz, 4.8Gb/s,
6.4Gb/s 12UI)
0.16
0.37
0.5
ps (rms)
1,2
QPI and UPI
(100MHz, 8.0Gb/s, 12UI)
0.10
0.15
0.3
ps (rms)
1,2
QPI and UPI
(100MHz, ≤11.4Gb/s, 12UI)
0.08
0.12
0.2
ps (rms)
1,2
QPI and UPI
(100MHz or 133MHz, 4.8Gb/s,
6.4Gb/s 12UI)
0.03
0.05
ps (rms)
1,2,3
QPI and UPI
(100MHz, 8.0Gb/s, 12UI)
0.03
0.05
ps (rms)
1,2,3
QPI and UPI
(100MHz, ≤11.4Gb/s, 12UI)
0.02
0.04
ps (rms)
1,2,3
IF-UPI, Lo-BW ZDB Mode
0.10
0.13
1
ps (rms)
1,4,5
IF-UPI, Hi-BW ZDB Mode
0.17
0.20
1
ps (rms)
1,4,5
IF-UPI, Fanout Mode
0.06
0.07
1
ps (rms)
1,4
DB2000Q, Fanout Mode
28
39
80
fs (rms)
1,4,5
Symbol
tjphQPI_UPI
tjphQPI_UPI
Additive Phase Jitter,
Fanout Mode
tjphIF-UPI
tjphDB2000Q
1
Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details
2 Calculated
3
N/A
from Intel-supplied Clock Jitter Tool.
For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2) and where “a” is rms input jitter and “c” is rms output jitter.
4 Calculated from phase noise analyzer with Intel-specified brick-wall filter applied. This is an additive jitter specification regardless of buffer operating
mode.
5 The
IF-UPI specification is an additive specification, regardless of the buffer operating mode. The enhanced 9ZXL devices meet this specification
in all operating modes.
Table 16. Phase Jitter Parameters – 12kHz to 20MHz
Parameter
Symbol
Conditions
Minimum Typical Maximum
Specification
Limit
12k–20M Additive Phase
Jitter, Fanout Buffer Mode
tjph12k-20MFOB
Fanout Buffer Mode,
SSC OFF, 100MHz
98
N/A
1 Applies
2 12kHz
3
125
Units
Notes
fs (rms) 1,2,3
to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details
to 20MHz brick wall filter.
For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2) and where “a” is rms input jitter and “c” is rms output jitter.
©2020 Renesas Electronics Corporation
18
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Power Management
Table 17. Power Management
CKPWRGD_PD#
DIF_IN
SMBus EN bit
OE[x]# Pin
DIF[x]
PLL State (in ZDB Mode)
0
X
X
X
Low/Low
OFF
0
0
Low/Low
ON
0
1
Low/Low
ON
1
0
Running
ON
1
1
Low/Low
ON
1
Running
Table 18. Frequency Selection (PLL Mode)
100M_133M#
DIF_IN MHz
DIF[x]
1
100.00
DIF_IN
0
133.33
DIF_IN
Note: 9ZXL12x1 and 9ZXL08x1 only. 9ZXL06x1 and 9ZXL0451 are 100MHz only.
Table 19. PLL Operating Mode
HiBW_BypM_LoBW#
Mode
PLL
Low
PLL Lo BW
Running
Mid
Bypass
Off
High
PLL Hi BW
Running
Note: See SMBus Byte 0, bits 7 and 6 for additional information.
©2020 Renesas Electronics Corporation
19
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Test Loads
Figure 5. Test Load for AC/DC Measurements
CL
CKIN+
CK+
L
CK+
Zo (differential)
DUT
Clock Source
CK-
CKIN-
Test
Points for High
Impedance
Probe
CK-
CL
Table 20. Parameters for AC/DC Measurements
Clock Source
Device Under Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
CL (pF)
SMA100B
9ZXLxx3x
27 External
85
25.4
2
SMA100B
9ZXLxx5x
Internal
85
25.4
2
Figure 6. Test Load for Phase Jitter Measurements using Phase Noise Analyzer
PNA
Coax
Cables
L
CK+
CKIN+
CK+
Zo (differential)
DUT
Clock Source
CKIN-
CK-
Balun
0.1uF
CK-
50
SMA
Connectors
Table 21. Parameters for Phase Jitter Measurements using Phase Noise Analyzer
Clock Source
Device Under Test (DUT)
Rs (Ω)
Differential
Zo (Ω)
L (cm)
CL (pF)
Notes
SMA100B
9ZXLxx3x
27 External
85
25.4
N/A
Fanout Mode
9FGV1006
9ZXLxx3x
27 External
85
25.4
N/A
ZDB Mode
SMA100B
9ZXLxx5x
Internal
85
25.4
N/A
Fanout Mode
9FGV1006
9ZXLxx5x
Internal
85
25.4
N/A
ZDB Mode
©2020 Renesas Electronics Corporation
20
Parameters
Measured
PCIe, IF-UPI,
DB2000Q
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Figure 7. Test Load for Phase Jitter Measurements using Oscilloscope
Oscillocope
(≥ 20GS/s)
L
CK+
CKIN+
CK+
Zo (differential)
DUT
Clock Source
CKIN-
CK-
Coax
Cables
0.1uF
CK-
50
SMA
Connectors
50
Table 22. Parameters for Phase Jitter Measurements using Oscilloscope
Clock Source
Device Under Test (DUT)
Rs (Ω)
Differential
Zo (Ω)
L (cm)
CL (pF)
Notes
SMA100B
9ZXLxx3x
27 External
85
25.4
N/A
Fanout Mode
9FGV1006
9ZXLxx3x
27 External
85
25.4
N/A
ZDB Mode
SMA100B
9ZXLxx5x
Internal
85
25.4
N/A
Fanout Mode
9FGV1006
9ZXLxx5x
Internal
85
25.4
N/A
ZDB Mode
©2020 Renesas Electronics Corporation
21
Parameters
Measured
QPI/UPI
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
General SMBus Serial Interface Information
How to Write
How to Read
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
Controller (host) sends a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) sends the byte count = X
Renesas clock will acknowledge
Controller (host) starts sending Byte N through Byte N+X-1
Renesas clock will acknowledge each byte one at a time
Controller (host) sends a stop bit
Index Block Write Operation
Controller (Host)
Renesas (Slave/Receiver)
Controller (host) will send a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) will send a separate start bit
Controller (host) sends the read address
Renesas clock will acknowledge
Renesas clock will send the data byte count = X
Renesas clock sends Byte N+X-1
Renesas clock sends Byte 0 through Byte X (if X(H) was
written to Byte 8)
▪ Controller (host) will need to acknowledge each byte
▪ Controller (host) will send a not acknowledge bit
▪ Controller (host) will send a stop bit
T
starT bit
Slave Address
WR
WRite
Index Block Read Operation
ACK
Beginning Byte = N
ACK
Controller (Host)
starT bit
Slave Address
WR
WRite
ACK
Beginning Byte = N
ACK
Data Byte Count = X
Beginning Byte N
X Byte
O
O
O
Renesas
T
ACK
ACK
O
O
O
RT
RD
Byte N + X - 1
Repeat starT
Slave Address
ReaD
ACK
ACK
P
stoP bit
Data Byte Count = X
ACK
Note: Address is latched on SADR pin.
Beginning Byte N
O
O
O
X Byte
ACK
O
O
O
Byte N + X - 1
N
P
©2020 Renesas Electronics Corporation
22
Not acknowledge
stoP bit
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 23. SMBus Addresses
Pin
SMBus Address
SADR1_tri
SADR0_tri
9ZXL12x1
9ZXL08x1
9ZXL06x1
9ZXL04x1
0
0
D8
D8
D8
D8
0
M
DA
N/A
N/A
DA
0
1
DE
N/A
N/A
DE
M
0
C2
N/A
N/A
N/A
M
M
C4
N/A
N/A
N/A
M
1
C6
N/A
N/A
N/A
1
0
CA
N/A
N/A
N/A
1
M
CC
N/A
N/A
N/A
1
1
CE
N/A
N/A
N/A
Note: 9ZXL08x1 and 9ZXL06x1 do not have SMBus address select pins. Their address is D8.
Table 24. Byte 0: PLL Mode, and Frequency Select Register
Byte 0
Bit7
Bit6
Bit5
Bit4
Bit3
Control
PLL Operating
PLL Operating
Function Mode Readback 1 Mode Readback 0
Type
R
R
0
00 = Low BW ZDB
Mode
01 = Bypass
(Fanout Buffer)
1
10 = Reserved
Name
Default
Bit2
Enable software PLL Operating
control of PLL BW
Mode 1
Bit1
Bit0
PLL Operating
Mode 0
Frequency
Select Readback
RW
RW
RW
R
HW Latch
00 = Low BW
ZDB Mode
01 = Bypass
(Fanout Buffer)
133MHz
11 = High BW
ZDB Mode
SMBus Control
10 = Reserved
11 = High BW
ZDB Mode
100MHz
PLL Rdbk[1]
PLL Rdbk[0]
PLL_SW_EN
PLL Mode[1]
PLL Mode[0]
100M_133M#
Latch
Latch
0
1
1
Latch
Reserved Reserved
0
0
Note: Setting bit 3 to '1' allows the user to override the latch value from pin 5 via use of bits 2 and 1. A warm system reset is required if the
user changes these bits. Bit 0 defaults to 1 on the 9ZXL0451 and 9ZXL06x1 devices.
©2020 Renesas Electronics Corporation
23
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 25. Byte 1: Output Control Register 1
Byte 1
Bit7
Bit6
Bit5
Bit4
Bit3
Control
Function
Output Enable
Type
RW
0
Low/Low
1
OE# Pin Control
Bit2
Bit1
Bit0
9ZXL12x1
Name
DIF7_en
DIF6_en
DIF5_en
DIF4_en
DIF3_en
DIF2_en
DIF1_en
DIF0_en
9ZXL12x1
Default
1
1
1
1
1
1
1
1
9ZXL08x1
Name
DIF5_en
DIF4_en
DIF3_en
DIF2_en
Reserved
DIF1_en
DIF0_en
Reserved
9ZXL08x1
Default
1
1
1
1
0
1
1
0
9ZXL06x1
Name
Reserved
DIF3_en
DIF2_en
Reserved
Reserved
DIF1_en
DIF0_en
Reserved
9ZXL06x1
Default
0
1
1
0
0
1
1
0
9ZXL0451
Name
Reserved
DIF2_en
DIF1_en
Reserved
Reserved
DIF0_en
Reserved
Reserved
9ZXL0451
Default
0
1
1
0
0
1
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
Table 26. Byte 2: Output Control Register 2
Byte 2
Bit7
Bit6
Bit5
Control
Function
Output _enable
Type
RW
0
Low/Low
1
OE# Pin Control
9ZXL12x1
Name
Reserved
Reserved
Reserved
Reserved
DIF11_en
DIF10_en
DIF9_en
DIF8_en
9ZXL12x1
Default
0
0
0
0
1
1
1
1
9ZXL08x1
Name
Reserved
Reserved
Reserved
Reserved
Reserved
DIF7_en
Reserved
DIF6_en
9ZXL08x1
Default
0
0
0
0
0
1
0
1
9ZXL06x1
Name
Reserved
Reserved
Reserved
Reserved
Reserved
DIF5_en
DIF4_en
Reserved
©2020 Renesas Electronics Corporation
24
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 26. Byte 2: Output Control Register 2 (Cont.)
Byte 2
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
9ZXL06x1
Default
0
0
0
0
0
1
1
0
9ZXL0451
Name
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
DIF3_en
Reserved
9ZXL0451
Default
0
0
0
0
0
0
1
0
Bit4
Bit3
Bit2
Bit1
Bit0
R
R
Bytes 3 and 4 are Reserved
Table 27. Byte 5: Revision and Vendor ID Register
Byte 5
Bit7
Bit6
Control
Function
Type
Bit5
Revision ID
R
Vendor ID
R
0
R
R
R
E rev = 0010
1
R
0001 = IDT/Renesas
Name
RID3
RID2
RID1
RID0
VID3
VID2
VID1
VID0
Default
0
1
0
0
0
0
0
1
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
R
R
R
R
DevID 3
DevID 2
DevID 1
DevID 0
Table 28. Byte 6: Device ID Register
Byte 6
Bit7
Bit6
Control
Function
Type
N/A
R
R
R
R
0
Device ID
1
Name
DevID 7
DevID 6
DevID 5
DevID 4
9ZXL1231E
0hE7
9ZXL1251E
0hF7
9ZXL0831E
0hE5
9ZXL0851E
0hF5
9ZXL0631E
0hE3
9ZXL0651E
0hF3
9ZXL0451E
0hF3
©2020 Renesas Electronics Corporation
25
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 29. Byte 7: Byte Count Register
Byte 7
Bit7
Bit6
Bit5
Control
Function
Type
0
Bit4
Bit3
Bit2
Bit1
Bit0
Writing to this register configures how many bytes will be read back on a block read.
Reserved
Reserved
Reserved
RW
RW
RW
RW
Default value is 8.
1
Name
Default
RW
0
0
0
BC4
BC3
BC2
BC1
BC0
0
1
0
0
0
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information
is the most current data available.
9ZXL04x1:
www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1
9ZXL06x1:
www.idt.com/document/psc/ndndg40-package-outline-50-x-50-mm-bodyepad-350mm-sq-040-mm-pitch-qfn
9ZXL08x1:
www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-42-x-42-mm-040mm-pitch-ndg48p2
9ZXL12x1:
www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-615-x-615-mm-nlg64p2
Marking Diagrams
9ZXL04x1
▪ Lines 1 and 2: truncated part number.
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was
assembled.
▪ Line 4: “COO” denotes country of origin.
▪ Line 5: “LOT” denotes the lot number.
©2020 Renesas Electronics Corporation
26
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
9ZXL06x1
▪ Lines 1 and 2: truncated part number
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was
assembled.
▪ Line 4: “COO” denotes country of origin.
▪ Line 5: “LOT” denotes the lot number.
9ZXL08x1 (industrial temperature range)
▪ Lines 1 and 2: truncated part number
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was
assembled.
▪ Line 4: “COO” denotes country of origin.
▪ Line 5: “LOT” denotes the lot number.
©2020 Renesas Electronics Corporation
27
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
9ZXL08x1 (extended temperature range)
▪ Lines 1 and 2: truncated part number (“K” denotes -40°C to +105°C)
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was
assembled.
▪ Line 4: “COO” denotes country of origin.
▪ Line 5: “LOT” denotes the lot number.
9ZXL12x1
▪ Lines 1 and 2: truncated part number
▪ Line 3: “LOT” denotes the lot number.
▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the
work week the part was assembled.
©2020 Renesas Electronics Corporation
28
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Ordering Information
Table 30. Ordering Information
Number of
Output
Orderable Part Number
Clock Outputs Impedance
4
85Ω
33Ω
6
85Ω
9ZXL0451EKILF
9ZXL0451EKILFT
9ZXL0631EKILFT
9ZXL0651EKILF
9ZXL0831EKILFT
9ZXL0831EKKLF
9ZXL0851EKILF
85Ω
-40° to +85°C
5 × 5 mm
32-VFQFPN
-40° to +85°C
5 × 5 mm
40-VFQFPN
Part Number Suffix and Shipping Method
9ZXL0651EKILFT
9ZXL0831EKKLFT
8
Package
9ZXL0631EKILF
9ZXL0831EKILF
33Ω
Temperature
9ZXL0851EKILFT
9ZXL0851EKKLF
9ZXL0851EKKLFT
None = Trays
-40° to +85°C
-40° to +105°C
-40° to +85°C
“T” = Tape and Reel, Pin 1 Orientation: EIA-481C
(see Table 31 for more details)
6 × 6 mm
48-VFQFPN
“/W” = Tape and Reel, Pin 1 Orientation: EIA-481D
(see Table 31 for more details)
“-1K/W” = 1K Tape and Reel Quantity, Pin 1
Orientation: EIA-481D
-40° to +105°C
9ZXL1231EKILF
33Ω
12
9ZXL1231EKILF/W
9ZXL1231EKILF-1K/W
9ZXL1231EKILFT
85Ω
-40° to +85°C
9 × 9 mm
64-VFQFPN
9ZXL1251EKILF
9ZXL1251EKILFT
“E” is the device revision designator (will not correlate with the datasheet revision).
“LF” denotes Pb-free configuration, RoHS compliant; “T” or “/W” is the orderable suffix for Tape and Reel packaging.
©2020 Renesas Electronics Corporation
29
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Table 31. Pin 1 Orientation in Tape and Reel Packaging
Part Number Suffix
Pin 1 Orientation
Illustration
Correct Pin 1 ORIENTATION
T
CARRIER TAPE TOPSIDE
(Round Sprocket Holes)
Quadrant 1 (EIA-481-C)
USER DIRECTION OF FEED
Correct Pin 1 ORIENTATION
/W
CARRIER TAPE TOPSIDE
(Round Sprocket Holes)
Quadrant 2 (EIA-481-D)
USER DIRECTION OF FEED
©2020 Renesas Electronics Corporation
30
August 25, 2020
9ZXL04x1E/9ZXL06x1E/9ZXL08x1E/9ZXL12x1E Datasheet
Revision History
Revision Date
Description of Change
August 25, 2020
Updated PCIe Gen5 CC, DB2000Q, and QPI/UPI specifications in Key Specifications section on front page.
February 13, 2020
Updated Byte 1, bit7 and bit5 for 9ZXL0451 default.
January 31, 2020
Typo correction - swapped VMIN and VMAX symbol designators in LP-HCSL Outputs table.
October 22, 2019
Combined 9ZXL04x1E, 9ZXL06x1E, 9ZXL08x1E, and 9ZXL12x1E datasheets into a single document.
April 4, 2019
Last revision date of the 9ZXL0451E datasheet.
November 30, 2018
Last revision date of the 9ZXL0631E_0651E datasheet.
November 30, 2018
Last revision date of the 9ZXL0831E_0851E datasheet.
November 30, 2018
Last revision date of the 9ZXL1231E_1251E datasheet.
©2020 Renesas Electronics Corporation
31
August 25, 2020
32-VFQFPN, Package Outline Drawing
5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm.
NLG32P1, PSC-4171-01, Rev 02, Page 1
32-VFQFPN, Package Outline Drawing
5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm.
NLG32P1, PSC-4171-01, Rev 02, Page 2
Package Revision History
Description
Date Created
Rev No.
April 12, 2018
Rev 02
New Format
Feb 8, 2016
Rev 01
Added "k: Value
48-VFQFPN Package Outline Drawing
6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch
NDG48P2, PSC-4212-02, Rev 03, Page 1
© Renesas Electronics Corporation
48-VFQFPN Package Outline Drawing
6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch
NDG48P2, PSC-4212-02, Rev 03, Page 2
Package Revision History
© Renesas Electronics Corporation
Description
Date Created
Rev No.
July 24, 2018
Rev 02 New Format Change QFN to VFQFPN, Recalculate Land Pattern
Feb 25, 2020
Rev 03 Tolerance Format Change
64-VFQFPN, Package Outline Drawing
9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm
NLG64P2, PSC-4147-02, Rev 01, Page 1
64-VFQFPN, Package Outline Drawing
9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm
NLG64P2, PSC-4147-02, Rev 01, Page 2
Package Revision History
Description
Date Created
Rev No.
Feb 21, 2018
Rev 01
New Format, Change QFN to VFQFPN, Added P2
Nov 3, 2015
Rev 00
Initial Release
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.