9ZXL15x0D/9ZXL19x0D/
9ZXL1951D
Datasheet
15 to 19-Output Buffers for
PCIe Gen1–5 and UPI
Description
Features
The 9ZXL15x0D/9ZXL19x0D/9ZXL1951D devices comprise a
family of 2nd-generation enhanced performance buffers for PCIe
and CPU applications. The family meets all published QPI/UPI,
DB2000Q and PCIe Gen1–5 jitter specifications. Devices are
either 15 or 19 outputs. The devices function as both fanout (FOB)
and zero-delay (ZDB) buffers. All devices meet DB2000Q and
DB1900Z jitter and skew requirements.
▪ LP-HCSL outputs eliminate up to 4 resistors per output pair
▪ 9 selectable SMBus addresses
▪ Selectable PLL bandwidths minimizes jitter peaking in
cascaded PLL topologies
▪ Hardware/SMBus control of ZDB and FOB modes allow
change without power cycle
▪
▪
▪
▪
▪
▪
▪
Key Specifications
▪ ZDB Mode phase jitter:
• PCIe Gen5 CC < 22fs RMS (Low Bandwidth)
• QPI/UPI 11.4GB/s < 120fs RMS (Low Bandwidth)
• IF-UPI additive jitter < 130fs RMS (Low Bandwidth)
▪ Fanout Buffer Mode additive phase jitter:
•
•
•
•
PCIe Gen5 CC < 24fs RMS
DB2000Q additive jitter < 39fs RMS
QPI/UPI 11.4GB/s < 40fs RMS
IF-UPI additive jitter < 70fs RMS
▪ Cycle-to-cycle jitter: < 50ps
▪ Output-to-output skew: < 50ps
8 OE# pins support PCIe CLKREQ# functionality (9ZXL1951)
Spread spectrum compatible
100MHz and 133.33MHz ZDB mode (9ZXL15x0, 9ZXL19x0)
100MHz ZDB mode (9ZXL1951)
1–400MHz FOB mode (all devices)
-40°C to +85°C operating temperature range
Package information: see Ordering Information table
PCIe Clocking Architectures
▪ Common Clocked (CC)
▪ Independent Reference (IR) with and without spread spectrum
Typical Applications
▪
▪
▪
▪
▪
Outputs
▪ 15 or 19 Low-power HCSL (LP-HCSL) output pairs
Servers
nVME Storage
Networking
Accelerators
Industrial
Block Diagram
9ZXL15x0, 9ZXL19x0 only
VDDR
VDDIO
VDDA
VDDO
9ZXL1951 only
FBOUT_NC#
FBOUT_NC
PLL
DIF_IN#
DIFn#
DIFn
DIF_IN
9ZXL15x0, 9ZXL19x0 only
^ 100M_133M#
^ SADR[1:0]_tri
9ZXL1951 has
pull-down on
these pins
SMBCLK
SMBus
Engine
15 or 19
outputs
Factory
Configuration
SMBDAT
DIF0#
^v HIBW_BYPM-LOBW#
9ZXL1951 does
not have pull-up
on this pin
^ CKPWRGD_PD#
DIF0
Control Logic
^ OE[5:12]#
9ZXL1951 only
9ZXL15x0, 9ZXL19x0 only
GNDA
EPAD/GND
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
Pins with ^v prefix have internal 120kohm pull-up/pull-down (biased to VDD/2)
©2020 Renesas Electronics Corporation
1
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9ZXL15x0D Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9ZXL19x0D Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
9ZXL1951D Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9ZXL15x0D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9ZXL19x0D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9ZXL1951D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
©2020 Renesas Electronics Corporation
2
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Pin Assignments
9ZXL15x0D Pin Assignment
DIF10#
DIF10
VDDIO
DIF11
GND
DIF12
DIF11#
DIF12#
VDD
GND
DIF13
DIF14
DIF13#
VDDIO
DIF14#
GND
Figure 1. Pin Assignment for 9 × 9 mm 64-VFQFPN Package – Top View
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VDDA
GNDA
^100M _133M#
^vHIBW_BYPM_LOBW#
^CKPWRGD_PD#
GNDR
VDDR
DIF_IN
DIF_IN#
^SADR0_tri
SMBDAT
SMBCLK
^SADR1_tri
FBOUT_NC#
FBOUT_NC
GND
1
2
3
4
5
6
7
8
9
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
9ZXL1530
9ZXL1550
EPAD is Pin 65
10
11
12
13
14
15
16
VDDIO
GND
DIF9#
DIF9
DIF8#
DIF8
GND
VDD
DIF7#
DIF7
DIF6#
DIF6
VDDIO
GND
DIF5#
DIF5
VDDIO
GND
DIF4#
DIF3#
DIF4
VDD
DIF3
GND
DIF2
DIF2#
DIF1#
GND
DIF1
DIF0#
VDDIO
DIF0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
9 x 9 mm 64-VFQFPN
Notes: Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
Pins with ^v prefix have internal 120kohm pull-up/pull-down (biased to VDD/2)
©2020 Renesas Electronics Corporation
3
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
9ZXL19x0D Pin Assignment
DIF13
DIF13#
VDDIO
GND
DIF14
DIF14#
DIF15
DIF15#
GND
VDD
DIF16
DIF16#
DIF17
DIF17#
VDDIO
GND
DIF18
DIF18#
Figure 2. Pin Assignment for 10 × 10 mm 72-VFQFPN Package – Top View
72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55
VDDA
GNDA
^100M_133M #
^vHIBW_BYPM _LOBW#
^CKPWRGD_PD#
GNDR
VDDR
DIF_IN
DIF_IN#
^SADR0_tri
SM BDAT
SM BCLK
^SADR1_tri
FBOUT_NC#
FBOUT_NC
GND
DIF0
DIF0#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
9ZXL1930
9ZXL1950
(EPAD should be connected to GND pin 73)
DIF12#
DIF12
VDDIO
GND
DIF11#
DIF11
DIF10#
DIF10
GND
VDD
DIF9#
DIF9
DIF8#
DIF8
VDDIO
GND
DIF7#
DIF7
DIF6#
DIF6
GND
VDDIO
DIF5#
DIF5
DIF4#
DIF4
VDD
GND
DIF3#
DIF3
DIF2#
DIF2
GND
VDDIO
DIF1#
DIF1
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
10 x 10 mm 72-VFQFPN
Notes: Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
Pins with ^v prefix have internal 120kohm pull-up/pull-down (biased to VDD/2)
©2020 Renesas Electronics Corporation
4
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
9ZXL1951D Pin Assignment
Figure 3. Pin Assignment for 6 × 6 mm 80-GQFN Package – Top View
1
2
3
4
5
6
7
8
9
10
11
12
A
DIF16#
DIF16
DIF15#
DIF15
DIF14#
DIF14
NC
DIF13#
DIF13
DIF12#
DIF12
DIF11#
A
B
DIF17
VDDO3.3
NC
NC
VDDA3.3
NC
v SADR0_tri
v SADR1_tri
^OE12#
VDDO3.3
DIF11
B
C
DIF17#
NC
^OE11#
DIF10#
C
D
DIF18
NC
NC
DIF10
D
E
DIF18#
NC
^OE10#
NC
E
F
NC
FBOUT_NC#
NC
DIF9#
F
G
DIF_IN
FBOUT_NC
^OE9#
DIF9
G
H
DIF_IN#
VDDR3.3
DIF8#
H
J
DIF0
NC
^OE8#
DIF8
J
K
DIF0#
NC
^OE7#
DIF7#
K
L
DIF1
VDDO3.3
NC
SMBDAT
SMBCLK
NC
NC
^OE5#
NC
^OE6#
VDDO3.3
DIF7
L
M
DIF1#
DIF2
DIF2#
DIF3
DIF3#
NC
DIF4
DIF4#
DIF5
DIF5#
DIF6
DIF6#
M
1
2
3
4
5
6
7
8
9
10
11
12
^v HIBW_BYP
M_LOBW#
9ZXL1951D
6 x 6 x 0.5 mm
80-GQFN Package
Top View
EPAD is GND
CKPWRGD_
PD#
©2020 Renesas Electronics Corporation
5
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Pin Descriptions
Table 1. Pin Descriptions for 9ZXL15x0D/9ZXL19x0D
Name
^100M_133M#
9ZXL19x0
Pin No.
9ZXL15x0
Pin No.
Latched 3.3V Input to select operating frequency. This pin has an internal pull-up resistor.
In
See Functionality at Power-Up (ZDB Mode) table for definition.
3
3
Type
Description
^CKPWRGD_PD#
Input
Input notifies device to sample latched inputs and start up on first high assertion.
Low enters Power Down Mode, subsequent high assertions exit Power Down
Mode. This pin has internal pull-up resistor.
5
5
^SADR0_tri
Input
SMBus address bit. This is a tri-level input that works in conjunction with other
SADR pins, if present, to decode SMBus Addresses. It has an internal pull-up
resistor. See the SMBus Addressing table.
10
10
^SADR1_tri
Input
SMBus address bit. This is a tri-level input that works in conjunction with other
SADR pins, if present, to decode SMBus Addresses. It has an internal pull-up
resistor. See the SMBus Addressing table.
13
13
4
4
Tri-level input to select High BW, Bypass or Low BW mode. This pin is biased to
^vHIBW_BYPM_LO Latched
VDD/2 (Bypass mode) with internal pull-up/pull down resistors. See PLL
BW#
In
Operating Mode table for details.
DIF_IN
Input
HCSL true input.
8
8
DIF_IN#
Input
HCSL complementary input.
9
9
DIF0
Output
Differential true clock output.
17
17
DIF0#
Output
Differential complementary clock output.
18
18
DIF1
Output
Differential true clock output.
19
21
DIF1#
Output
Differential complementary clock output.
20
22
DIF10
Output
Differential true clock output.
47
49
DIF10#
Output
Differential complementary clock output.
48
50
DIF11
Output
Differential true clock output.
49
53
DIF11#
Output
Differential complementary clock output.
50
54
DIF12
Output
Differential true clock output.
53
55
DIF12#
Output
Differential complementary clock output.
54
56
DIF13
Output
Differential true clock output.
55
59
DIF13#
Output
Differential complementary clock output.
56
60
DIF14
Output
Differential true clock output.
59
61
DIF14#
Output
Differential complementary clock output.
60
62
DIF15
Output
Differential true clock output.
61
—
DIF15#
Output
Differential complementary clock output.
62
—
DIF16
Output
Differential true clock output.
65
—
DIF16#
Output
Differential complementary clock output.
66
—
DIF17
Output
Differential true clock output.
67
—
DIF17#
Output
Differential complementary clock output.
68
—
DIF18
Output
Differential true clock output.
71
—
©2020 Renesas Electronics Corporation
6
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 1. Pin Descriptions for 9ZXL15x0D/9ZXL19x0D (Cont.)
9ZXL19x0
Pin No.
9ZXL15x0
Pin No.
Differential complementary clock output.
72
—
Output
Differential true clock output.
23
23
DIF2#
Output
Differential complementary clock output.
24
24
DIF3
Output
Differential true clock output.
25
27
DIF3#
Output
Differential complementary clock output.
26
28
DIF4
Output
Differential true clock output.
29
29
DIF4#
Output
Differential complementary clock output.
30
30
DIF5
Output
Differential true clock output.
31
33
DIF5#
Output
Differential complementary clock output.
32
34
DIF6
Output
Differential true clock output.
35
37
DIF6#
Output
Differential complementary clock output.
36
38
DIF7
Output
Differential true clock output.
37
39
DIF7#
Output
Differential complementary clock output.
38
40
DIF8
Output
Differential true clock output.
41
43
DIF8#
Output
Differential complementary clock output.
42
44
DIF9
Output
Differential true clock output.
43
45
DIF9#
Output
Differential complementary clock output.
44
46
epad
GND
Connect EPAD to ground.
73
65
FBOUT_NC
Output
True half of differential feedback output. This pin should NOT be connected to
anything outside the chip. It exists to provide delay path matching to get 0
propagation delay.
15
15
FBOUT_NC#
Output
Complementary half of differential feedback output. This pin should NOT be
connected to anything outside the chip. It exists to provide delay path matching to
get 0 propagation delay.
14
14
GND
GND
Ground pin.
GNDA
GND
Ground pin for the PLL core.
2
2
GNDR
GND
Analog ground pin for the differential input (receiver).
6
6
SMBCLK
Input
Clock pin of SMBUS circuitry.
12
12
SMBDAT
I/O
Data pin of SMBUS circuitry.
11
11
VDD
Power
Power supply, nominally 3.3V.
28,45,64
26,41,58
VDDA
Power
Power supply for PLL core.
1
1
VDDIO
Power
Power supply for differential outputs.
VDDR
Power
Power supply for differential input clock (receiver). This VDD should be treated as
an analog power rail and filtered appropriately. Nominally 3.3V.
Name
Type
DIF18#
Output
DIF2
Description
©2020 Renesas Electronics Corporation
16,22,27,34, 16,20,25,32,
39,46,51,58, 35,42,47,52,
63,70
57,64
21,33,40,52, 19,31,26,48,
57,69
51,63
7
7
7
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 2. Pin Descriptions for 9ZXL1951D
Name
Type
Description
^OE10#
Input
Active low input for enabling output 10. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
E11
^OE11#
Input
Active low input for enabling output 11. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
C11
^OE12#
Input
Active low input for enabling output 12. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
B10
^OE5#
Input
Active low input for enabling output 5. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
L8
^OE6#
Input
Active low input for enabling output 6. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
L10
^OE7#
Input
Active low input for enabling output 7. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
K11
^OE8#
Input
Active low input for enabling output 8. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
J11
^OE9#
Input
Active low input for enabling output 9. This pin has an internal pull-up resistor.
1 = disable output, 0 = enable output.
G11
Tri-level input to select High BW, Bypass or Low BW mode. This pin is biased to VDD/2
^vHIBW_BYPM_LO Latched
(Bypass Mode) with internal pull-up/pull down resistors. See PLL Operating Mode table for
BW#
In
details.
Pin Number
B9
CKPWRGD_PD#
Input
3.3V input notifies device to sample latched inputs and start up on first high assertion, or exit
Power Down Mode on subsequent assertions. Low enters Power Down Mode.
H11
DIF_IN
Input
HCSL true input.
G1
DIF_IN#
Input
HCSL complementary input.
H1
DIF0
Output
Differential true clock output.
J1
DIF0#
Output
Differential complementary clock output.
K1
DIF1
Output
Differential true clock output.
L1
DIF1#
Output
Differential complementary clock output.
M1
DIF10
Output
Differential true clock output.
D12
DIF10#
Output
Differential complementary clock output.
C12
DIF11
Output
Differential true clock output.
B12
DIF11#
Output
Differential complementary clock output.
A12
DIF12
Output
Differential true clock output.
A11
DIF12#
Output
Differential complementary clock output.
A10
DIF13
Output
Differential true clock output.
A9
DIF13#
Output
Differential complementary clock output.
A8
DIF14
Output
Differential true clock output.
A6
DIF14#
Output
Differential complementary clock output.
A5
DIF15
Output
Differential true clock output.
A4
©2020 Renesas Electronics Corporation
8
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 2. Pin Descriptions for 9ZXL1951D (Cont.)
Name
Type
Description
DIF15#
Output
Differential complementary clock output.
A3
DIF16
Output
Differential true clock output.
A2
DIF16#
Output
Differential complementary clock output.
A1
DIF17
Output
Differential true clock output.
B1
DIF17#
Output
Differential complementary clock output.
C1
DIF18
Output
Differential true clock output.
D1
DIF18#
Output
Differential complementary clock output.
E1
DIF2
Output
Differential true clock output.
M2
DIF2#
Output
Differential complementary clock output.
M3
DIF3
Output
Differential true clock output.
M4
DIF3#
Output
Differential complementary clock output.
M5
DIF4
Output
Differential true clock output.
M7
DIF4#
Output
Differential complementary clock output.
M8
DIF5
Output
Differential true clock output.
M9
DIF5#
Output
Differential complementary clock output.
M10
DIF6
Output
Differential true clock output.
M11
DIF6#
Output
Differential complementary clock output.
M12
DIF7
Output
Differential true clock output.
L12
DIF7#
Output
Differential complementary clock output.
K12
DIF8
Output
Differential true clock output.
J12
DIF8#
Output
Differential complementary clock output.
H12
DIF9
Output
Differential true clock output.
G12
DIF9#
Output
Differential complementary clock output.
F12
EPAD
GND
Connect epad to ground.
ZZ
FBOUT_NC
Output
True half of differential feedback output. This pin should NOT be connected to anything outside
the chip. It exists to provide delay path matching to get 0 propagation delay.
G2
FBOUT_NC#
Output
Complementary half of differential feedback output. This pin should NOT be connected to
anything outside the chip. It exists to provide delay path matching to get 0 propagation delay.
F2
NC
—
No connection.
A7
NC
—
No connection.
B3
NC
—
No connection.
B4
NC
—
No connection.
B6
NC
—
No connection.
C2
NC
—
No connection.
D2
NC
—
No connection.
D11
NC
—
No connection.
E2
NC
—
No connection.
E12
©2020 Renesas Electronics Corporation
9
Pin Number
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 2. Pin Descriptions for 9ZXL1951D (Cont.)
Name
Type
Description
NC
—
No connection.
F1
NC
—
No connection.
F11
NC
—
No connection.
J2
NC
—
No connection.
K2
NC
—
No connection.
L3
NC
—
No connection.
L6
NC
—
No connection.
L7
NC
—
No connection.
L9
NC
—
No connection.
M6
SMBCLK
Input
Clock pin of SMBUS circuitry.
L5
SMBDAT
I/O
Data pin of SMBUS circuitry.
L4
VDDA3.3
Power
3.3V power for the PLL core.
B5
VDDO3.3
Power
Power supply for outputs. Nominally 3.3V.
B2
VDDO3.3
Power
Power supply for outputs. Nominally 3.3V.
B11
VDDO3.3
Power
Power supply for outputs. Nominally 3.3V.
L2
VDDO3.3
Power
Power supply for outputs. Nominally 3.3V.
L11
VDDR3.3
Power
Power supply for differential input clock (receiver). This VDD should be treated as an analog
power rail and filtered appropriately. Nominally 3.3V.
H2
vSADR0_tri
Input
SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if
present, to decode SMBus Addresses. It has an internal pull-down resistor. See the SMBus
Addressing table.
B7
vSADR1_tri
Input
SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if
present, to decode SMBus Addresses. It has an internal pull-down resistor. See the SMBus
Addressing table.
B8
©2020 Renesas Electronics Corporation
10
Pin Number
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Absolute Maximum Ratings
Stresses above the ratings listed below can cause permanent damage to the 9ZXL15x0D/9ZXL19x0D/9ZXL1951D. These ratings, which
are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any
other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended
operating temperature range.
Table 3. Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
VDDx
Input Low Voltage
VIL
Input High Voltage
VIH
Except for SMBus interface.
Input High Voltage, SMBus
VIHSMB
SMBus clock and data pins.
Storage Temperature
Ts
Junction Temperature
Tj
Input ESD Protection
ESD prot
1
2
3
Conditions
Minimum
Typical
Maximum
Units
Notes
3.9
V
1,2
V
1
VDD + 0.5
V
1,3
3.9
V
1
150
°C
1
125
°C
1
V
1
GND - 0.5
-65
Human Body Model.
2500
Guaranteed by design and characterization, not 100% tested in production.
Operation under these conditions is neither implied nor guaranteed.
Not to exceed 3.9V.
Thermal Characteristics
Table 4. Thermal Characteristics
Parameter
9ZXL19x0
Thermal
Resistance
9ZXL15x0
Thermal
Resistance
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
19
°C/W
1
θJb
Junction to base.
0.5
°C/W
1
θJA0
Junction to air, still air.
30
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
23
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
20
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
19
°C/W
1
θJC
Junction to case.
14
°C/W
1
θJb
Junction to base.
1
°C/W
1
θJA0
Junction to air, still air.
28
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
21
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
19
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
18
°C/W
1
©2020 Renesas Electronics Corporation
NLG72
NLG64
11
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 4. Thermal Characteristics (Cont.)
Parameter
9ZXL1951
Thermal
Resistance
1
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
44
°C/W
1
θJb
Junction to base.
2
°C/W
1
θJA0
Junction to air, still air.
33
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
29
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
28
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
27
°C/W
1
NHG80
EPAD soldered to board.
Electrical Characteristics
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Table 5. SMBus Parameters
Parameter
Symbol
SMBus Input Low Voltage
VILSMB
SMBus Input High Voltage
VIHSMB
SMBus Output Low Voltage
VOLSMB
At I PULLUP.
SMBus Sink Current
IPULLUP
At V OL.
Nominal Bus Voltage
VDDSMB
SCLK/SDATA Rise Time
tRSMB
SCLK/SDATA Fall Time
tFSMB
SMBus Operating Frequency
1
2
3
4
5
Conditions
Minimum
2.1
Typical
Maximum
Units
0.8
V
VDDSMB
V
0.4
V
4
Notes
mA
2.7
3.6
V
1
(Max VIL - 0.15V) to (Min VIH + 0.15V).
1000
ns
1
(Min VIH + 0.15V) to (Max VIL - 0.15V).
300
ns
1
400
kHz
5
fSMBMAX SMBus operating frequency.
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
DIF_IN input.
The differential input clock must be running for the SMBus to be active.
Table 6. DIF_IN Clock Input Parameters
Parameter
Input Crossover Voltage – DIF_IN
1
2
Symbol
Conditions
VCROSS Crossover voltage.
Minimum Typical Maximum Units
150
900
Notes
mV
1
mV
1
1,2
Differential value.
300
dv/dt
Measured differentially.
0.4
8
V/ns
Input Leakage Current
IIN
VIN = VDD , VIN = GND.
-5
5
μA
Input Duty Cycle
dtin
Measurement from differential waveform.
45
55
%
1
Input Jitter – Cycle to Cycle
JDIFIn
Differential measurement.
0
125
ps
1
Input Swing – DIF_IN
VSWING
Input Slew Rate – DIF_IN
Guaranteed by design and characterization, not 100% tested in production.
Slew rate measured through ±75mV window centered around differential zero.
©2020 Renesas Electronics Corporation
12
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 7. Input/Supply/Common Parameters
Parameter
Symbol
Supply Voltage
VDDx
Supply voltage for core and analog.
3.135
3.3
3.465
V
Output Supply Voltage
VDDIO
Supply voltage for DIF outputs, if present.
0.95
1.05
3.465
V
Ambient Operating
Temperature
TAMB
Industrial range (TIND).
-40
25
85
°C
Input High Voltage
VIH
Single-ended inputs, except SMBus, tri-level inputs.
2
VDD + 0.3
V
Input Low Voltage
VIL
Single-ended inputs, except SMBus, tri-level inputs.
GND - 0.3
0.8
V
Input High Voltage
VIH
Tri-level inputs.
2.2
VDD + 0.3
V
Input Mid Voltage
VIM
Tri-level inputs.
1.2
1.8
V
Input Low Voltage
VIL
Tri-level inputs.
GND - 0.3
0.8
V
IIN
Single-ended inputs, VIN = GND, VIN = VDD.
-5
5
μA
IINP
Single-ended inputs.
VIN = 0 V; inputs with internal pull-up resistors.
VIN = VDD; inputs with internal pull-down resistors.
-50
50
μA
Fibyp
VDD = 3.3 V, Bypass Mode.
1
400
MHz
Fipll
VDD = 3.3 V, 100MHz PLL Mode.
98.5
100.00
102.5
MHz
Fipll
VDD = 3.3 V, 133.33MHz PLL Mode.
132
133.33
135
MHz
ppm Error Contribution
ppm
ppm error contributed to input clock.
Pin Inductance
Lpin
Input Current
Input Frequency
CIN
Capacitance
Conditions
Logic inputs, except DIF_IN.
CINDIF_IN DIF_IN differential clock inputs.
Minimum Typical Maximum Units Notes
VDD/2
0
5
6
ppm
7
nH
1
1.5
5
pF
1
1.5
2.7
pF
1,4
6
pF
1
1.8
ms
1,2
33
kHz
10
clocks
1,2,3
300
μs
1,3
COUT
Output pin capacitance.
Clk Stabilization
TSTAB
From VDD power-up and after input clock stabilization
or deassertion of PD# to 1st clock.
Input SS Modulation
Frequency PCIe
fMODINPCIe
Allowable frequency for PCIe applications (Triangular
modulation).
30
OE# Latency
tLATOE#
DIF start after OE# assertion.
DIF stop after OE# deassertion.
4
Tdrive_PD#
tDRVPD
DIF output enable after PD# deassertion.
Tfall
tF
Fall time of control inputs.
5
ns
2
Trise
tR
Rise time of control inputs.
5
ns
2
1
2
3
4
5
6
1
5
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
DIF_IN input.
Not present on 9ZXL1951D.
9ZXL15x0 and 9ZXL19x0 only.
©2020 Renesas Electronics Corporation
13
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 8. Current Consumption – 9ZXL1951D
Parameter
Symbol
Conditions
Operating Supply
Current
IDDVDDA/R
PLL Mode, all outputs 100MHz, C L = 2pF; Zo = 85Ω.
45
55
mA
All outputs 100MHz, CL = 2pF; Zo = 85Ω.
171
200
mA
All differential pairs low-low.
1
2
mA
IDDVDDA/RPD All differential pairs low-low.
4
6
mA
Power Down Current
1
IDDVDD
IDDVDDPD
Minimum Typical Maximum Units Notes
1
In Bypass Mode (PLL of) IDDVDDA/R is 12mA.
Table 9. Current Consumption – 9ZXL19x0D
Parameter
Symbol
Typical
Maximum
Units
Notes
VDDA + VDDR pins, all outputs at 100MHz,
CL = 2pF; Zo = 85Ω.
54
65
mA
1
IDDO
VDDIO pins, all outputs at 100MHz,
CL = 2pF; Zo = 85Ω.
136
169
mA
IDDx
All other VDD pins, all outputs at 100MHz,
CL = 2pF; Zo = 85Ω.
28
38
mA
VDDA + VDDR pins, all outputs Low/Low.
4
5
mA
IDDA+R
Operating Supply
Current
IDDA+R
Power Down Current
1
Conditions
Minimum
IDDO
VDDIO pins, all outputs Low/Low.
0.04
0.1
mA
IDDx
All other VDD pins, all outputs Low/Low.
0.4
1
mA
Typical
Maximum
Units
Notes
VDDA + VDDR pins, all outputs at 100MHz,
CL = 2pF; Zo = 85Ω.
54
65
mA
1
IDDO
VDDIO pins, all outputs at 100MHz,
CL = 2pF; Zo = 85Ω.
77
92
mA
IDDx
All other VDD pins, all outputs at 100MHz,
CL = 2pF; Zo = 85Ω.
27
34
mA
VDDA + VDDR pins, all outputs Low/Low.
4
5
mA
In Bypass Mode (PLL of) IDDVDDA/R is 12mA.
Table 10. Current Consumption – 9ZXL15x0D
Parameter
Symbol
IDDA+R
Operating Supply
Current
Power Down
Current
1
IDDA+R
Conditions
Minimum
IDDO
VDDIO pins, all outputs Low/Low.
0.04
0.1
mA
IDDx
All other VDD pins, all outputs Low/Low.
0.46
0.6
mA
In Bypass Mode (PLL of) IDDVDDA/R is 12mA.
©2020 Renesas Electronics Corporation
14
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 11. Skew and Differential Jitter Parameters
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
CLK_IN, DIF[x:0]
tSPO_PLL
Input-to-output skew in PLL Mode at 100MHz,
nominal temperature and voltage.
-100
-21.3
CLK_IN, DIF[x:0]
tPD_BYP
Input-to-output skew in Bypass Mode at 100MHz,
nominal temperature and voltage.
2.2
CLK_IN, DIF[x:0]
tDSPO_PLL
Input-to-output skew variation in PLL Mode at
100MHz, across voltage and temperature.
-50
Input-to-output skew variation in Bypass Mode at
100MHz, across voltage and temperature.
TAMB = -0°C to +70°C.
Input-to-output skew variation in Bypass Mode at
100MHz, across voltage and temperature,
TAMB = -40°C to +85°C.
CLK_IN, DIF[x:0]
tDSPO_BYP
Conditions
Minimum Typical Maximum
Units
Notes
100
ps
1,2,4,5,
8
2.7
3.5
ns
1,2,3,5,
7
0
50
ps
1,2,3,5,
7
-250
250
ps
1,2,3,5,
7
-350
350
ps
1,2,3,5,
7
ps
1,2,3,5,
7
(RMS)
CLK_IN, DIF[x:0]
tDTE
Random differential tracking error between two 9ZX
devices in High BW Mode.
3
5
CLK_IN, DIF[x:0]
tDSSTE
Random differential spread spectrum tracking error
between two 9ZX devices in High BW Mode.
23
50
ps
1,2,3,5,
7
DIF[x:0]
tSKEW_ALL
50
ps
1,2,3,7
Output-to-output skew across all outputs, common to
PLL and Bypass Mode, at 100MHz.
PLL Jitter Peaking
jpeak-hibw LOBW#_BYPASS_HIBW = 1.
0
1.3
2.5
dB
6,7
PLL Jitter Peaking
jpeak-lobw LOBW#_BYPASS_HIBW = 0.
0
1.3
2
dB
6,7
PLL Bandwidth
pllHIBW
LOBW#_BYPASS_HIBW = 1.
2
2.6
4
MHz
7,8
PLL Bandwidth
pllLOBW
LOBW#_BYPASS_HIBW = 0.
0.7
1.0
1.4
MHz
7,8
Duty Cycle
tDC
Measured differentially, PLL Mode.
45
50.3
55
%
1
Duty Cycle Distortion
tDCD
Measured differentially, Bypass Mode at 100MHz.
-1
0
1
%
1,9
Jitter, Cycle to Cycle
tjcyc-cyc
PLL Mode.
14
50
ps
1,10
Additive jitter in Bypass Mode.
0.1
5
ps
1,10
1
2
3
4
5
6
6
7
8
9
Measured into fixed 2pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
All Bypass Mode input-to-output specs refer to the timing between an input edge and the specific output edge created by it.
This parameter is deterministic for a given device.
Measured with scope averaging on to find mean value.
“t” is the period of the input clock.
Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
Guaranteed by design and characterization, not 100% tested in production.
Measured at 3db down or half power point.
Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in Bypass Mode.
10
Measured from differential waveform.
©2020 Renesas Electronics Corporation
15
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 12. LP-HCSL Outputs
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Conditions
Slew Rate
dV/dt
Scope averaging on.
Slew Rate Matching
ΔdV/dt
Single-ended measurement.
Maximum Voltage
Vmax
Minimum Voltage
Vmin
Measurement on single-ended
signal using absolute value
(scope averaging off).
Typical
Maximum
2
2.6
4
1–4
V/ns
1,2,3
7.1
20
20
%
1,4,7
700
778
900
660–1150
-125
-21
50
-300–150
250
389
550
250–550
mV
1,5,7
24
75
140
mV
1,6,7
Crossing Voltage (abs) Vcross_abs Scope averaging off.
Crossing Voltage (var)
1
2
Scope averaging off.
mV
Notes
7,8
7,8
Guaranteed by design and characterization, not 100% tested in production.
Measured from differential waveform.
3 Slew
4
Δ-Vcross
Specification
Units
Limit
Minimum
rate is measured through the Vswing voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average
cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use
for the edge rate calculations.
5 Vcross
6
7
8
is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock
rising and Clock# falling).
The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed.
The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.
At default SMBus settings.
Includes previously separate values of +300mV overshoot and -300mV of undershoot.
Table 13. PCIe Phase Jitter Parameters
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Minimum Typical Maximum
Limits
Units
Notes
PCIe Gen 1 (2.5 GT/s)
2.6
6.8
86
ps (p-p)
1,2
PCIe Gen 2 Hi Band (5.0 GT/s)
0.09
0.16
3
ps (RMS)
1,2
PCIe Gen 2 Lo Band (5.0 GT/s)
0.08
0.12
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen 3 (8.0 GT/s)
0.05
0.07
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen 4 (16.0 GT/s)
0.05
0.07
0.5
ps (RMS) 1,2,3,4
tjphPCIeG5-CC
PCIe Gen 5 (32.0 GT/s)
0.018
0.022
0.15
ps (RMS) 1,2,3,5
tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s)
8.71
8.73
ps (RMS)
1,2,6
tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s)
0.81
0.83
ps (RMS)
1,2,6
tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s)
0.329
0.335
ps (RMS)
1,2,6
tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s)
0.222
0.235
ps (RMS)
1,2,6
tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s)
0.084
0.091
ps (RMS)
1,2,6
tjphPCIeG1-CC
PCIe Phase Jitter, Low
Bandwidth ZDB Mode
(Common Clocked
Architecture)
PCIe Phase Jitter, Low
Bandwidth ZDB Mode
(SRIS Architecture)
tjphPCIeG2-CC
©2020 Renesas Electronics Corporation
Conditions
16
N/A
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 13. PCIe Phase Jitter Parameters (Cont.)
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Minimum Typical Maximum
Limits
Units
Notes
PCIe Gen 1 (2.5 GT/s)
5.4
6.9
86
ps (p-p)
1,2
PCIe Gen 2 Hi Band (5.0 GT/s)
0.19
0.25
3
ps (RMS)
1,2
PCIe Gen 2 Lo Band (5.0 GT/s)
0.09
0.13
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen 3 (8.0 GT/s)
0.10
0.13
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen 4 (16.0 GT/s)
0.10
0.13
0.5
ps (RMS) 1,2,3,4
tjphPCIeG5-CC
PCIe Gen 5 (32.0 GT/s)
0.032
0.042
0.15
ps (RMS) 1,2,3,5
tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s)
8.61
8.63
ps (RMS)
1,2,6
tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s)
0.88
0.96
ps (RMS)
1,2,6
tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s)
0.354
0.375
ps (RMS)
1,2,6
tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s)
0.271
0.305
ps (RMS)
1,2,6
tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s)
0.097
0.109
ps (RMS)
1,2,6
tjphPCIeG1-CC
PCIe Phase Jitter, High
Bandwidth ZDB Mode
(Common Clocked
Architecture)
PCIe Phase Jitter, High
Bandwidth ZDB Mode
(SRIS Architecture)
tjphPCIeG2-CC
Conditions
N/A
1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section
2
3
4
5
6
of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise is
removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide
specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be
twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An
additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be
made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A
“rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS
if the clock chip is near the clock input.
©2020 Renesas Electronics Corporation
17
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 14. Additive PCIe Phase Jitter for Fanout Buffer Mode
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
tjphPCIeG1-CC
Conditions
Minimum Typical Maximum Limits
Notes
1.3
1.9
86
ps (p-p)
1,2
PCIe Gen 2 Hi Band (5.0 GT/s)
0.089
0.126
3
ps (RMS)
1,2
PCIe Gen 2 Lo Band (5.0 GT/s)
0.023
0.034
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen 3 (8.0 GT/s)
0.044
0.062
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen 4 (16.0 GT/s)
0.044
0.062
0.5
ps (RMS) 1,2,3,4
tjphPCIeG5-CC
PCIe Gen 5 (32.0 GT/s)
0.017
0.024
0.15
ps (RMS) 1,2,3,5
0.127
0.181
ps (RMS)
1,2,6
Additive PCIe Phase Jitter, tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s)
Fanout Buffer Mode7
tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s)
(SRIS Architecture)
tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s)
0.112
0.159
ps (RMS)
1,2,6
0.029
0.042
ps (RMS)
1,2,6
0.031
0.043
ps (RMS)
1,2,6
tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s)
0.027
0.038
ps (RMS)
1,2,6
Additive PCIe Phase Jitter,
Fanout Buffer Mode7
(Common Clocked
Architecture)
tjphPCIeG2-CC
PCIe Gen 1 (2.5 GT/s)
Units
tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s)
N/A
1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section
2
3
4
5
6
7
of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results
for each data rate are summarized in this table. Equipment noise is removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide
specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be
twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An
additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be
made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A
“rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS
if the clock chip is near the clock input.
Additive jitter for RMS values is calculated by solving for “b” where b = √(c2 - a2) and “a” is rms input jitter and “c” is rms output jitter.
©2020 Renesas Electronics Corporation
18
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 15. Filtered Phase Jitter Parameters – QPI/UPI, IF-UPI and DB2000Q
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Phase Jitter,
ZDB Mode
Conditions
Minimum Typical Maximum
Specification
Limits
Units
Notes
QPI and UPI
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)
0.16
0.37
0.5
ps (RMS)
1,2
QPI and UPI
(100MHz, 8.0Gb/s, 12UI)
0.10
0.15
0.3
ps (RMS)
1,2
QPI and UPI
(100MHz, ≤11.4Gb/s, 12UI)
0.08
0.12
0.2
ps (RMS)
1,2
QPI and UPI
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)
0.03
0.05
QPI and UPI
(100MHz, 8.0Gb/s, 12UI)
0.03
0.05
QPI and UPI
(100MHz, ≤11.4Gb/s, 12UI)
0.02
0.04
IF-UPI, Lo-BW ZDB Mode
0.10
0.13
1
ps (RMS) 1,4,5
IF-UPI, Hi-BW ZDB Mode
0.17
0.20
1
ps (RMS) 1,4,5
IF-UPI, Fanout Mode
0.06
0.07
1
ps (RMS)
1,4
DB2000Q, Fanout Mode
28
39
80
fs (RMS)
1,4,5
Symbol
tjphQPI_UPI
tjphQPI_UPI
Additive
Phase Jitter,
Fanout Mode
tjphIF-UPI
tjphDB2000Q
1
2
3
ps (RMS) 1,2,3
N/A
ps (RMS) 1,2,3
ps (RMS) 1,2,3
Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details.
Calculated from Intel-supplied clock jitter tool.
For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter.
4 Calculated from phase noise analyzer with Intel-specified brick-wall filter applied. This is an additive jitter specification regardless of buffer operating
5
mode.
The IF-UPI specification is an additive specification, regardless of the buffer operating mode. The enhanced 9ZXL devices meet this specification
in all operating modes.
Table 16. Phase Jitter Parameters – 12kHz to 20MHz
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Conditions
12kHz–20MHz
Additive Phase Jitter,
Fanout Buffer Mode
tjph12k-20MFOB
Fanout Buffer Mode,
SSC OFF, 100MHz
1
2
3
Minimum
Typical
Maximum
Specification
Limits
98
125
N/A
Units
Notes
fs (RMS) 1,2,3
Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details.
12kHz to 20MHz brick wall filter.
For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter.
©2020 Renesas Electronics Corporation
19
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Power Management
Table 17. Power Management
CKPWRGD_PD#
DIF_IN
SMBus EN bit
OE[5:12]# Pin
(9ZXL1951D only)
DIF[x]
PLL State
(in ZDB Mode)
0
X
X
X
Low/Low
Off
0
0
Low/Low
On
0
1
Low/Low
On
1
0
Running
On
1
1
Low/Low
On
1
Running
Table 18. Functionality at Power-Up (ZDB Mode)
100M_133M#
DIF_IN (MHz)
DIF[x]
1
100.00
DIF_IN
0
133.33
DIF_IN
Note: 9ZXL1951D is 100MHz only.
Table 19. PLL Operating Mode
HIBW_BYPM_LOBW#
Mode
PLL
Low
ZDB Lo BW
Running
Mid
Bypass
Off
High
ZDB Hi BW
Running
Note: See SMBus Byte 0, bits 7 and 6 for additional information.
©2020 Renesas Electronics Corporation
20
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Test Loads
Figure 4. Test Load for AC/DC Measurements
CL
CK+
CKIN+
Clock Source
L
CK+
Zo (differential)
DUT
CK-
Test
Points for High
Impedance
Probe
CKIN-
CK-
CL
Table 20. Parameters for AC/DC Measurements
Clock Source
Device Under Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
CL (pF)
SMA100B
9ZXLxx3x
27 External
85
25.4
2
SMA100B
9ZXLxx5x
Internal
85
25.4
2
Parameters Measured
AC/DC parameters
Figure 5. Test Load for Phase Jitter Measurements using Phase Noise Analyzer
PNA
Coax
Cables
L
CK+
CKIN+
Clock Source
CK+
Zo (differential)
DUT
CK-
CKIN-
Balun
0.1uF
CK-
50
SMA
Connectors
Table 21. Parameters for Phase Jitter Measurements using Phase Noise Analyzer
Clock Source
Device Under
Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
SMA100B
9ZXLxx3x
27 External
85
25.4
9FGV1006
9ZXLxx3x
27 External
85
25.4
SMA100B
9ZXLxx5x
Internal
85
25.4
9FGV1006
9ZXLxx5x
Internal
85
25.4
©2020 Renesas Electronics Corporation
21
CL (pF)
Notes
Parameters
Measured
Fanout Mode
N/A
ZDB Mode
Fanout Mode
PCIe, IF-UPI,
DB2000Q
ZDB Mode
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Figure 6. Test Load for Phase Jitter Measurements using Oscilloscope
Oscillocope
(≥ 20GS/s)
L
CK+
CKIN+
Clock Source
CK+
Zo (differential)
DUT
CK-
CKIN-
Coax
Cables
0.1uF
CK-
SMA
Connectors
50
50
Table 22. Parameters for Phase Jitter Measurements using Oscilloscope
Clock Source
Device Under
Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
SMA100B
9ZXLxx3x
27 External
85
25.4
9FGV1006
9ZXLxx3x
27 External
85
25.4
SMA100B
9ZXLxx5x
Internal
85
25.4
9FGV1006
9ZXLxx5x
Internal
85
25.4
©2020 Renesas Electronics Corporation
22
CL (pF)
Notes
Parameters
Measured
Fanout Mode
N/A
ZDB Mode
Fanout Mode
QPI/UPI
ZDB Mode
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
General SMBus Serial Interface Information
How to Write
How to Read
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
Controller (host) sends a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) sends the byte count = X
Renesas clock will acknowledge
Controller (host) starts sending Byte N–Byte N+X-1
Renesas clock will acknowledge each byte one at a time
Controller (host) sends a stop bit
Index Block Write Operation
Controller (Host)
T
▪ Controller (host) will need to acknowledge each byte
▪ Controller (host) will send a not acknowledge bit
▪ Controller (host) will send a stop bit
Renesas (Slave/Receiver)
starT bit
Slave Address
WR
Controller (host) will send a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) will send a separate start bit
Controller (host) sends the read address
Renesas clock will acknowledge
Renesas clock will send the data byte count = X
Renesas clock sends Byte N+X-1
Renesas clock sends Byte 0–Byte X (if X(H) was written to
Byte 8)
WRite
Index Block Read Operation
ACK
Controller (Host)
T
starT bit
Beginning Byte = N
ACK
Slave Address
Data Byte Count = X
ACK
WR
X Byte
O
O
WRite
ACK
Beginning Byte = N
ACK
Beginning Byte N
O
Renesas (Slave/Receiver)
ACK
RT
O
Repeat starT
Slave Address
O
RD
O
ReaD
ACK
Byte N + X - 1
ACK
P
Data Byte Count=X
stoP bit
ACK
Beginning Byte N
X Byte
ACK
O
O
O
O
O
O
Byte N + X - 1
©2020 Renesas Electronics Corporation
23
N
Not
P
stoP bit
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 23. SMBus Addressing
SADR[1:0]_tri
SMBus Address (Read/Write bit = 0)
00
D8
0M
DA
01
DE
M0
C2
MM
C4
M1
C6
10
CA
1M
CC
11
CE
Table 24. Byte 0: PLL Mode, Frequency Select and Output Enable Register 0
Byte 0
Bit7
Bit6
Control
Function
PLL Operating
Mode
Readback 1
PLL Operating
Mode
Readback 0
Type
R
R
Bit5
Bit4
Bit3
Bit2
Bit1
Frequency Select
Readback
Output Enable
RW
RW
Bit0
RW
R
Reserved
Reserved
0
00 = Low BW ZDB
Mode
01 = Bypass
(Fanout Buffer)
Output is
Disabled
(Low/Low)
Output is
Disabled
(Low/Low)
Output is
Disabled
(Low/Low)
1
10 = Reserved
11 = High BW ZDB
Mode
Output is
Enabled
Output is
Enabled
Output is
Enabled
9ZXL19x0
Name
PLL_Mode[1]
PLL_Mode[0]
DIF18_En
DIF17_En
DIF16_En
Reserved
Reserved
100M_133M#
9ZXL19x0
Default
Latch
Latch
1
1
1
0
0
Latch
9ZXL15x0
Name
PLL_Mode[1]
PLL_Mode[0]
Reserved
DIF14_En
DIF13_En
Reserved
Reserved
100M_133M#
9ZXL15x0
Default
Latch
Latch
0
1
1
0
0
Latch
9ZXL1951
Name
PLL_Mode[1]
PLL_Mode[0]
DIF18_En
DIF17_En
DIF16_En
Reserved
Reserved
Reserved
9ZXL1951
Default
Latch
Latch
1
1
1
0
0
0
©2020 Renesas Electronics Corporation
24
133MHz
100MHz
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 25. Byte 1: Output Control Register 1
Byte 1
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Control
Function
Output Enable
Type
RW
0
Disabled (Low/Low)
1
Output Enabled or Output controlled by OE# pin (DIF[5:12] on 9ZXL1951 only)
Bit1
Bit0
9ZXL19x0
Name
DIF7_en
DIF6_en
DIF5_en
DIF4_en
DIF3_en
DIF2_en
DIF1_en
DIF0_en
9ZXL19x0
Default
1
1
1
1
1
1
1
1
9ZXL15x0
Name
DIF5_En
Reserved
DIF4_En
DIF3_En
DIF2_En
DIF1_En
DIF0_En
Reserved
9ZXL15x0
Default
1
0
1
1
1
1
1
0
9ZXL1951
Name
DIF7_En
DIF6_En
DIF5_En
DIF4_En
DIF3_En
DIF2_En
DIF1_En
DIF0_En
9ZXL1951
Default
1
1
1
1
1
1
1
0
Bit4
Bit3
Bit2
Bit1
Bit0
Table 26. Byte 2: Output Control Register 2
Byte 2
Bit7
Bit6
Bit5
Control
Function
Output _enable
Type
RW
0
Low/Low
1
Output Enabled or Output controlled by OE# pin (DIF[5:12] on 9ZXL1951 only)
9ZXL19x0
Name
DIF15_En
DIF14_En
DIF13_En
DIF12_En
DIF11_En
DIF10_En
DIF9_En
DIF8_En
9ZXL19x0
Default
1
1
1
1
1
1
1
1
9ZXL15x0
Name
DIF5_En
Reserved
DIF4_En
DIF3_En
DIF2_En
DIF1_En
DIF0_En
Reserved
9ZXL15x0
Default
1
0
1
1
1
1
1
0
9ZXL1951
Name
DIF12_En
DIF11_En
DIF10_En
Reserved
DIF9_En
DIF8_En
DIF7_En
DIF6_En
9ZXL1951
Default
1
1
1
0
1
1
1
1
©2020 Renesas Electronics Corporation
25
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 27. Byte 3: Output Amplitude and PLL Software Control Register
Byte 3
Control
Function
Type
0
1
Bit7
Bit6
Bit5
Bit4
Global Differential Amplitude Control
RW
RW
RW
Bit3
Bit2
Bit1
Enable S/W control
of PLL BW
PLL Operating
Mode 1
PLL Operating
Mode 0
RW
RW
RW
Reserved
Hardware Latch
0.3V–1V 100mV/step Default = 0.8V (101)
SMBus Control
Bit0
Reserved
See definition of Byte 0, bits[7:6]
9ZXL19x0
Name
amp[2]
amp[1]
amp[0]
Reserved
PLL_SW_EN
PLL_Mode[1]
PLL_Mode[0]
Reserved
9ZXL19x0
Default
1
0
1
0
0
1
1
0
9ZXL15x0
Name
amp[2]
amp[1]
amp[0]
Reserved
PLL_SW_EN
PLL_Mode[1]
PLL_Mode[0]
Reserved
9ZXL15x0
Default
1
0
1
0
0
1
1
0
9ZXL1951
Name
Reserved
Reserved
PLL_SW_EN
PLL_Mode[1]
PLL_Mode[0]
Reserved
9ZXL1951
Default
0
0
0
1
1
0
0
0
Note: Setting bit 3 to '1' allows the user to override the Latch value from pin 4 via use of bits 2 and 1. Use the values from the PLL Operating Mode
Table. Note that Byte 0, Bits 7:6 will keep the value originally latched. A warm reset of the system will have to accomplished if the user changes
these bits.
Table 28. Byte 4: OE Pin Configuration Register A
Byte 4
Control
Function
Type
Bit7
Bit6
Bit5
OE12# Controls OE11# Controls OE10# Controls
DIF12
DIF11
DIF10
RW
RW
RW
Bit4
Bit3
Bit2
Bit1
Bit0
OE9#
Controls DIF9
OE8#
Controls DIF8
OE7#
Controls DIF7
OE6#
Controls DIF6
OE5#
Controls DIF5
RW
RW
RW
RW
RW
0
0
0
0
0
OE# pin does not control the output
1
OE# pin controls the output
9ZXL19x0
Name
Reserved
9ZXL19x0
Default
0
0
0
0
9ZXL15x0
Name
Reserved
9ZXL15x0
Default
0
0
0
0
0
0
0
0
9ZXL1951
Name
OE12#_CFGA
OE11#_CFGA
OE10#_CFGA
OE09#_CFGA
OE08#_CFGA
OE07#_CFGA
OE06#_CFGA
OE05#_CFGA
9ZXL1951
Default
1
1
1
1
1
1
1
1
©2020 Renesas Electronics Corporation
26
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 29. Byte 5: Revision and Vendor ID Register
Byte 5
Bit7
Bit6
Control
Function
Type
Bit5
Bit4
Bit3
Bit2
Revision ID
R
R
R
R
R
R
R
Revision ID
1
Bit0
Vendor ID
R
0
Bit1
IDT/Renesas = 0001
Name
RID 3
RID 2
RID 1
RID 0
VID 3
VID 2
VID 1
VID 0
9ZXL19x0
Default
0
1
0
0
0
0
0
1
9ZXL15x0
Default
0
1
0
0
0
0
0
1
9ZXL1951
Default
0
0
1
1
0
0
0
1
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
R
R
R
R
DevID 3
DevID 2
DevID 1
DevID 0
Bit2
Bit1
Bit0
Table 30. Byte 6: Device ID Register
Byte 6
Bit7
Bit6
Control
Function
Type
N/A
R
R
R
R
0
Device ID
1
Name
DevID 7 (MSB)
DevID 6
DevID 5
DevID 4
9ZXL19x0
0hC3
9ZXL15x0
0h9B
9ZXL1951
0hC4
Table 31. Byte 7: Byte Count Register
Byte 7
Bit7
Bit6
Bit5
Control
Function
Type
0
Bit4
Bit3
Writing to this register configures how many bytes will be read back on a block read.
Reserved
Reserved
Reserved
RW
RW
RW
RW
Default value is 8.
1
Name
Default
RW
0
0
©2020 Renesas Electronics Corporation
0
BC4
BC3
BC2
BC1
BC0
0
1
0
0
0
27
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Table 32. Byte 8: OE Pin Configuration Register B (9ZXL1951 only)
Byte 8
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Control
Function
OE12#
Controls DIF13
OE11#
Controls DIF14
OE10#
Controls DIF15
OE9#
Controls DIF0
OE8#
Controls DIF1
OE7#
Controls DIF2
OE6#
Controls DIF3
OE5#
Controls DIF4
Type
RW
RW
RW
RW
RW
RW
RW
RW
0
OE# pin does not control the output
1
OE# pin controls the output
9ZXL1951
Name
OE12#_CFGB
OE11#_CFGB
OE10#_CFGB
OE09#_CFGB
OE08#_CFGB
OE07#_CFGB
OE06#_CFGB
OE05#_CFGB
9ZXL1951
Default
0
0
0
0
0
0
0
0
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information
is the most current data available.
9ZXL15x0D:
www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-615-x-615-mm-nlg64p2
9ZXL19x0D:
www.idt.com/document/psc/72-vfqfpn-package-outline-drawing-100-x-100-x-090-mm-body-epad-595-x-595-mm-050mm-pitch-nlg72p1
9ZXL1951D:
www.idt.com/document/psc/nhg80-package-outline-600x600mm-body-050mm050mm-pitch-gqfn
Marking Diagrams
9ZXL15x0D
▪ Lines 1 and 2: truncated part number.
▪ Line 3: “LOT” denotes the lot number.
▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the
work week the part was assembled.
©2020 Renesas Electronics Corporation
28
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
9ZXL19x0D
▪ Lines 1 and 2: truncated part number.
▪ Line 3: “LOT” denotes the lot number.
▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the
work week the part was assembled.
9ZXL1951D
▪ Lines 1 and 2: part number.
▪ Line 3:
• “YYWW” is the last two digits of the year and the work week the part was assembled.
• “$” denotes the mark code.
▪ “LOT” denotes the lot number.
©2020 Renesas Electronics Corporation
29
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Ordering Information
Table 33. Ordering Information
Number of
Output
Orderable Part Number
Clock Outputs Impedance
33
15
85
33
19
85
19
85
Package
Temperature
9 × 9 × 0.5 mm
64-VFQFPN
-40°C to
+85°C
Part Number Suffix and Shipping Method
9ZXL1530DKILF
9ZXL1530DKILFT
9ZXL1550DKILF
None = Trays
9ZXL1550DKILFT
9ZXL1930DKILF
9ZXL1930DKILFT
9ZXL1950DKILF
9ZXL1950DKILFT
9ZXL1951DNHGI
9ZXL1951DNHGI8
10 × 10 × 0.5
mm
72-VFQFPN
-40°C to
+85°C
6 x 6 × 0.5 mm
80-GQFN
-40°C to
+85°C
“T” or “8” = Tape and Reel, Pin 1 Orientation:
EIA-481C
(see Table 34 for more details)
“D” is the device revision designator (will not correlate with the datasheet revision).
“LF” or “G” denotes Pb-free configuration, RoHS compliant.
“T” or “8” is the orderable suffix for Tape and Reel packaging.
Table 34. Pin 1 Orientation in Tape and Reel Packaging
Part Number Suffix
Pin 1 Orientation
Illustration
Correct Pin 1 ORIENTATION
T or 8
CARRIER TAPE TOPSIDE
(Round Sprocket Holes)
Quadrant 1 (EIA-481-C)
USER DIRECTION OF FEED
©2020 Renesas Electronics Corporation
30
August 25, 2020
9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet
Revision History
Revision Date
Description of Change
August 25, 2020
Updated PCIe Gen5 CC, DB2000Q, and QPI/UPI specifications in Key Specifications section on front page.
October 30, 2019
Updated default values of Byte 3, bits 1 and 2.
October 22, 2019
Combined 9ZXL1530D_1550D, 9ZXL1930D_1950D, and 9ZXL1951D datasheets into one single document.
February 14, 2019
Last revision date of the 9ZXL1530D_1550D datasheet.
April 24, 2019
Last revision date of the 9ZXL1930D_1950D datasheet.
February 26, 2019
Last revision date of the 9ZXL1951D datasheet.
©2020 Renesas Electronics Corporation
31
August 25, 2020
64-VFQFPN, Package Outline Drawing
9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm
NLG64P2, PSC-4147-02, Rev 01, Page 1
64-VFQFPN, Package Outline Drawing
9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm
NLG64P2, PSC-4147-02, Rev 01, Page 2
Package Revision History
Description
Date Created
Rev No.
Feb 21, 2018
Rev 01
New Format, Change QFN to VFQFPN, Added P2
Nov 3, 2015
Rev 00
Initial Release
72-VFQFPN, Package Outline Drawing
10.0 x 10.0 x 0.90 mm Body, Epad 5.95 x 5.95 mm 0.50mm Pitch
NLG72P1, PSC-4208-01, Rev 03, Page 1
© Integrated Device Technology, Inc.
72-VFQFPN, Package Outline Drawing
10.0 x 10.0 x 0.90 mm Body, Epad 5.95 x 5.95 mm 0.50mm Pitch
NLG72P1, PSC-4208-01, Rev 03, Page 2
Package Revision History
Date Created
© Integrated Device Technology, Inc.
Rev No.
Description
Sept 3, 2019
Rev 03
Update P1 Dimension from 5. 8 to 5.95 mm SQ
May 8, 2017
Rev 02
Change Package Code QFN to VFQFPN
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2021 Renesas Electronics Corporation. All rights reserved.