0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
9ZXL1950DKILFT

9ZXL1950DKILFT

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-72

  • 描述:

    DB1900ZL OEM DERIV "LITE"

  • 数据手册
  • 价格&库存
9ZXL1950DKILFT 数据手册
9ZXL15x0D/9ZXL19x0D/ 9ZXL1951D Datasheet 15 to 19-Output Buffers for PCIe Gen1–5 and UPI Description Features The 9ZXL15x0D/9ZXL19x0D/9ZXL1951D devices comprise a family of 2nd-generation enhanced performance buffers for PCIe and CPU applications. The family meets all published QPI/UPI, DB2000Q and PCIe Gen1–5 jitter specifications. Devices are either 15 or 19 outputs. The devices function as both fanout (FOB) and zero-delay (ZDB) buffers. All devices meet DB2000Q and DB1900Z jitter and skew requirements. ▪ LP-HCSL outputs eliminate up to 4 resistors per output pair ▪ 9 selectable SMBus addresses ▪ Selectable PLL bandwidths minimizes jitter peaking in cascaded PLL topologies ▪ Hardware/SMBus control of ZDB and FOB modes allow change without power cycle ▪ ▪ ▪ ▪ ▪ ▪ ▪ Key Specifications ▪ ZDB Mode phase jitter: • PCIe Gen5 CC < 22fs RMS (Low Bandwidth) • QPI/UPI 11.4GB/s < 120fs RMS (Low Bandwidth) • IF-UPI additive jitter < 130fs RMS (Low Bandwidth) ▪ Fanout Buffer Mode additive phase jitter: • • • • PCIe Gen5 CC < 24fs RMS DB2000Q additive jitter < 39fs RMS QPI/UPI 11.4GB/s < 40fs RMS IF-UPI additive jitter < 70fs RMS ▪ Cycle-to-cycle jitter: < 50ps ▪ Output-to-output skew: < 50ps 8 OE# pins support PCIe CLKREQ# functionality (9ZXL1951) Spread spectrum compatible 100MHz and 133.33MHz ZDB mode (9ZXL15x0, 9ZXL19x0) 100MHz ZDB mode (9ZXL1951) 1–400MHz FOB mode (all devices) -40°C to +85°C operating temperature range Package information: see Ordering Information table PCIe Clocking Architectures ▪ Common Clocked (CC) ▪ Independent Reference (IR) with and without spread spectrum Typical Applications ▪ ▪ ▪ ▪ ▪ Outputs ▪ 15 or 19 Low-power HCSL (LP-HCSL) output pairs Servers nVME Storage Networking Accelerators Industrial Block Diagram 9ZXL15x0, 9ZXL19x0 only VDDR VDDIO VDDA VDDO 9ZXL1951 only FBOUT_NC# FBOUT_NC PLL DIF_IN# DIFn# DIFn DIF_IN 9ZXL15x0, 9ZXL19x0 only ^ 100M_133M# ^ SADR[1:0]_tri 9ZXL1951 has pull-down on these pins SMBCLK SMBus Engine 15 or 19 outputs Factory Configuration SMBDAT DIF0# ^v HIBW_BYPM-LOBW# 9ZXL1951 does not have pull-up on this pin ^ CKPWRGD_PD# DIF0 Control Logic ^ OE[5:12]# 9ZXL1951 only 9ZXL15x0, 9ZXL19x0 only GNDA EPAD/GND Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down Pins with ^v prefix have internal 120kohm pull-up/pull-down (biased to VDD/2) ©2020 Renesas Electronics Corporation 1 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9ZXL15x0D Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9ZXL19x0D Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9ZXL1951D Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9ZXL15x0D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9ZXL19x0D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9ZXL1951D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ©2020 Renesas Electronics Corporation 2 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Pin Assignments 9ZXL15x0D Pin Assignment DIF10# DIF10 VDDIO DIF11 GND DIF12 DIF11# DIF12# VDD GND DIF13 DIF14 DIF13# VDDIO DIF14# GND Figure 1. Pin Assignment for 9 × 9 mm 64-VFQFPN Package – Top View 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VDDA GNDA ^100M _133M# ^vHIBW_BYPM_LOBW# ^CKPWRGD_PD# GNDR VDDR DIF_IN DIF_IN# ^SADR0_tri SMBDAT SMBCLK ^SADR1_tri FBOUT_NC# FBOUT_NC GND 1 2 3 4 5 6 7 8 9 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 9ZXL1530 9ZXL1550 EPAD is Pin 65 10 11 12 13 14 15 16 VDDIO GND DIF9# DIF9 DIF8# DIF8 GND VDD DIF7# DIF7 DIF6# DIF6 VDDIO GND DIF5# DIF5 VDDIO GND DIF4# DIF3# DIF4 VDD DIF3 GND DIF2 DIF2# DIF1# GND DIF1 DIF0# VDDIO DIF0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 9 x 9 mm 64-VFQFPN Notes: Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down Pins with ^v prefix have internal 120kohm pull-up/pull-down (biased to VDD/2) ©2020 Renesas Electronics Corporation 3 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet 9ZXL19x0D Pin Assignment DIF13 DIF13# VDDIO GND DIF14 DIF14# DIF15 DIF15# GND VDD DIF16 DIF16# DIF17 DIF17# VDDIO GND DIF18 DIF18# Figure 2. Pin Assignment for 10 × 10 mm 72-VFQFPN Package – Top View 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 VDDA GNDA ^100M_133M # ^vHIBW_BYPM _LOBW# ^CKPWRGD_PD# GNDR VDDR DIF_IN DIF_IN# ^SADR0_tri SM BDAT SM BCLK ^SADR1_tri FBOUT_NC# FBOUT_NC GND DIF0 DIF0# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 9ZXL1930 9ZXL1950 (EPAD should be connected to GND pin 73) DIF12# DIF12 VDDIO GND DIF11# DIF11 DIF10# DIF10 GND VDD DIF9# DIF9 DIF8# DIF8 VDDIO GND DIF7# DIF7 DIF6# DIF6 GND VDDIO DIF5# DIF5 DIF4# DIF4 VDD GND DIF3# DIF3 DIF2# DIF2 GND VDDIO DIF1# DIF1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 10 x 10 mm 72-VFQFPN Notes: Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down Pins with ^v prefix have internal 120kohm pull-up/pull-down (biased to VDD/2) ©2020 Renesas Electronics Corporation 4 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet 9ZXL1951D Pin Assignment Figure 3. Pin Assignment for 6 × 6 mm 80-GQFN Package – Top View 1 2 3 4 5 6 7 8 9 10 11 12 A DIF16# DIF16 DIF15# DIF15 DIF14# DIF14 NC DIF13# DIF13 DIF12# DIF12 DIF11# A B DIF17 VDDO3.3 NC NC VDDA3.3 NC v SADR0_tri v SADR1_tri ^OE12# VDDO3.3 DIF11 B C DIF17# NC ^OE11# DIF10# C D DIF18 NC NC DIF10 D E DIF18# NC ^OE10# NC E F NC FBOUT_NC# NC DIF9# F G DIF_IN FBOUT_NC ^OE9# DIF9 G H DIF_IN# VDDR3.3 DIF8# H J DIF0 NC ^OE8# DIF8 J K DIF0# NC ^OE7# DIF7# K L DIF1 VDDO3.3 NC SMBDAT SMBCLK NC NC ^OE5# NC ^OE6# VDDO3.3 DIF7 L M DIF1# DIF2 DIF2# DIF3 DIF3# NC DIF4 DIF4# DIF5 DIF5# DIF6 DIF6# M 1 2 3 4 5 6 7 8 9 10 11 12 ^v HIBW_BYP M_LOBW# 9ZXL1951D 6 x 6 x 0.5 mm 80-GQFN Package Top View EPAD is GND CKPWRGD_ PD# ©2020 Renesas Electronics Corporation 5 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Pin Descriptions Table 1. Pin Descriptions for 9ZXL15x0D/9ZXL19x0D Name ^100M_133M# 9ZXL19x0 Pin No. 9ZXL15x0 Pin No. Latched 3.3V Input to select operating frequency. This pin has an internal pull-up resistor. In See Functionality at Power-Up (ZDB Mode) table for definition. 3 3 Type Description ^CKPWRGD_PD# Input Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor. 5 5 ^SADR0_tri Input SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-up resistor. See the SMBus Addressing table. 10 10 ^SADR1_tri Input SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-up resistor. See the SMBus Addressing table. 13 13 4 4 Tri-level input to select High BW, Bypass or Low BW mode. This pin is biased to ^vHIBW_BYPM_LO Latched VDD/2 (Bypass mode) with internal pull-up/pull down resistors. See PLL BW# In Operating Mode table for details. DIF_IN Input HCSL true input. 8 8 DIF_IN# Input HCSL complementary input. 9 9 DIF0 Output Differential true clock output. 17 17 DIF0# Output Differential complementary clock output. 18 18 DIF1 Output Differential true clock output. 19 21 DIF1# Output Differential complementary clock output. 20 22 DIF10 Output Differential true clock output. 47 49 DIF10# Output Differential complementary clock output. 48 50 DIF11 Output Differential true clock output. 49 53 DIF11# Output Differential complementary clock output. 50 54 DIF12 Output Differential true clock output. 53 55 DIF12# Output Differential complementary clock output. 54 56 DIF13 Output Differential true clock output. 55 59 DIF13# Output Differential complementary clock output. 56 60 DIF14 Output Differential true clock output. 59 61 DIF14# Output Differential complementary clock output. 60 62 DIF15 Output Differential true clock output. 61 — DIF15# Output Differential complementary clock output. 62 — DIF16 Output Differential true clock output. 65 — DIF16# Output Differential complementary clock output. 66 — DIF17 Output Differential true clock output. 67 — DIF17# Output Differential complementary clock output. 68 — DIF18 Output Differential true clock output. 71 — ©2020 Renesas Electronics Corporation 6 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 1. Pin Descriptions for 9ZXL15x0D/9ZXL19x0D (Cont.) 9ZXL19x0 Pin No. 9ZXL15x0 Pin No. Differential complementary clock output. 72 — Output Differential true clock output. 23 23 DIF2# Output Differential complementary clock output. 24 24 DIF3 Output Differential true clock output. 25 27 DIF3# Output Differential complementary clock output. 26 28 DIF4 Output Differential true clock output. 29 29 DIF4# Output Differential complementary clock output. 30 30 DIF5 Output Differential true clock output. 31 33 DIF5# Output Differential complementary clock output. 32 34 DIF6 Output Differential true clock output. 35 37 DIF6# Output Differential complementary clock output. 36 38 DIF7 Output Differential true clock output. 37 39 DIF7# Output Differential complementary clock output. 38 40 DIF8 Output Differential true clock output. 41 43 DIF8# Output Differential complementary clock output. 42 44 DIF9 Output Differential true clock output. 43 45 DIF9# Output Differential complementary clock output. 44 46 epad GND Connect EPAD to ground. 73 65 FBOUT_NC Output True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay. 15 15 FBOUT_NC# Output Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay. 14 14 GND GND Ground pin. GNDA GND Ground pin for the PLL core. 2 2 GNDR GND Analog ground pin for the differential input (receiver). 6 6 SMBCLK Input Clock pin of SMBUS circuitry. 12 12 SMBDAT I/O Data pin of SMBUS circuitry. 11 11 VDD Power Power supply, nominally 3.3V. 28,45,64 26,41,58 VDDA Power Power supply for PLL core. 1 1 VDDIO Power Power supply for differential outputs. VDDR Power Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately. Nominally 3.3V. Name Type DIF18# Output DIF2 Description ©2020 Renesas Electronics Corporation 16,22,27,34, 16,20,25,32, 39,46,51,58, 35,42,47,52, 63,70 57,64 21,33,40,52, 19,31,26,48, 57,69 51,63 7 7 7 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 2. Pin Descriptions for 9ZXL1951D Name Type Description ^OE10# Input Active low input for enabling output 10. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. E11 ^OE11# Input Active low input for enabling output 11. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. C11 ^OE12# Input Active low input for enabling output 12. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. B10 ^OE5# Input Active low input for enabling output 5. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. L8 ^OE6# Input Active low input for enabling output 6. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. L10 ^OE7# Input Active low input for enabling output 7. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. K11 ^OE8# Input Active low input for enabling output 8. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. J11 ^OE9# Input Active low input for enabling output 9. This pin has an internal pull-up resistor. 1 = disable output, 0 = enable output. G11 Tri-level input to select High BW, Bypass or Low BW mode. This pin is biased to VDD/2 ^vHIBW_BYPM_LO Latched (Bypass Mode) with internal pull-up/pull down resistors. See PLL Operating Mode table for BW# In details. Pin Number B9 CKPWRGD_PD# Input 3.3V input notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode. H11 DIF_IN Input HCSL true input. G1 DIF_IN# Input HCSL complementary input. H1 DIF0 Output Differential true clock output. J1 DIF0# Output Differential complementary clock output. K1 DIF1 Output Differential true clock output. L1 DIF1# Output Differential complementary clock output. M1 DIF10 Output Differential true clock output. D12 DIF10# Output Differential complementary clock output. C12 DIF11 Output Differential true clock output. B12 DIF11# Output Differential complementary clock output. A12 DIF12 Output Differential true clock output. A11 DIF12# Output Differential complementary clock output. A10 DIF13 Output Differential true clock output. A9 DIF13# Output Differential complementary clock output. A8 DIF14 Output Differential true clock output. A6 DIF14# Output Differential complementary clock output. A5 DIF15 Output Differential true clock output. A4 ©2020 Renesas Electronics Corporation 8 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 2. Pin Descriptions for 9ZXL1951D (Cont.) Name Type Description DIF15# Output Differential complementary clock output. A3 DIF16 Output Differential true clock output. A2 DIF16# Output Differential complementary clock output. A1 DIF17 Output Differential true clock output. B1 DIF17# Output Differential complementary clock output. C1 DIF18 Output Differential true clock output. D1 DIF18# Output Differential complementary clock output. E1 DIF2 Output Differential true clock output. M2 DIF2# Output Differential complementary clock output. M3 DIF3 Output Differential true clock output. M4 DIF3# Output Differential complementary clock output. M5 DIF4 Output Differential true clock output. M7 DIF4# Output Differential complementary clock output. M8 DIF5 Output Differential true clock output. M9 DIF5# Output Differential complementary clock output. M10 DIF6 Output Differential true clock output. M11 DIF6# Output Differential complementary clock output. M12 DIF7 Output Differential true clock output. L12 DIF7# Output Differential complementary clock output. K12 DIF8 Output Differential true clock output. J12 DIF8# Output Differential complementary clock output. H12 DIF9 Output Differential true clock output. G12 DIF9# Output Differential complementary clock output. F12 EPAD GND Connect epad to ground. ZZ FBOUT_NC Output True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay. G2 FBOUT_NC# Output Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay. F2 NC — No connection. A7 NC — No connection. B3 NC — No connection. B4 NC — No connection. B6 NC — No connection. C2 NC — No connection. D2 NC — No connection. D11 NC — No connection. E2 NC — No connection. E12 ©2020 Renesas Electronics Corporation 9 Pin Number August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 2. Pin Descriptions for 9ZXL1951D (Cont.) Name Type Description NC — No connection. F1 NC — No connection. F11 NC — No connection. J2 NC — No connection. K2 NC — No connection. L3 NC — No connection. L6 NC — No connection. L7 NC — No connection. L9 NC — No connection. M6 SMBCLK Input Clock pin of SMBUS circuitry. L5 SMBDAT I/O Data pin of SMBUS circuitry. L4 VDDA3.3 Power 3.3V power for the PLL core. B5 VDDO3.3 Power Power supply for outputs. Nominally 3.3V. B2 VDDO3.3 Power Power supply for outputs. Nominally 3.3V. B11 VDDO3.3 Power Power supply for outputs. Nominally 3.3V. L2 VDDO3.3 Power Power supply for outputs. Nominally 3.3V. L11 VDDR3.3 Power Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately. Nominally 3.3V. H2 vSADR0_tri Input SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-down resistor. See the SMBus Addressing table. B7 vSADR1_tri Input SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-down resistor. See the SMBus Addressing table. B8 ©2020 Renesas Electronics Corporation 10 Pin Number August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Absolute Maximum Ratings Stresses above the ratings listed below can cause permanent damage to the 9ZXL15x0D/9ZXL19x0D/9ZXL1951D. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. Table 3. Absolute Maximum Ratings Parameter Symbol Supply Voltage VDDx Input Low Voltage VIL Input High Voltage VIH Except for SMBus interface. Input High Voltage, SMBus VIHSMB SMBus clock and data pins. Storage Temperature Ts Junction Temperature Tj Input ESD Protection ESD prot 1 2 3 Conditions Minimum Typical Maximum Units Notes 3.9 V 1,2 V 1 VDD + 0.5 V 1,3 3.9 V 1 150 °C 1 125 °C 1 V 1 GND - 0.5 -65 Human Body Model. 2500 Guaranteed by design and characterization, not 100% tested in production. Operation under these conditions is neither implied nor guaranteed. Not to exceed 3.9V. Thermal Characteristics Table 4. Thermal Characteristics Parameter 9ZXL19x0 Thermal Resistance 9ZXL15x0 Thermal Resistance Symbol Conditions Package Typical Values Units Notes θJC Junction to case. 19 °C/W 1 θJb Junction to base. 0.5 °C/W 1 θJA0 Junction to air, still air. 30 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 23 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 20 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 19 °C/W 1 θJC Junction to case. 14 °C/W 1 θJb Junction to base. 1 °C/W 1 θJA0 Junction to air, still air. 28 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 21 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 19 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 18 °C/W 1 ©2020 Renesas Electronics Corporation NLG72 NLG64 11 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 4. Thermal Characteristics (Cont.) Parameter 9ZXL1951 Thermal Resistance 1 Symbol Conditions Package Typical Values Units Notes θJC Junction to case. 44 °C/W 1 θJb Junction to base. 2 °C/W 1 θJA0 Junction to air, still air. 33 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 29 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 28 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 27 °C/W 1 NHG80 EPAD soldered to board. Electrical Characteristics TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Table 5. SMBus Parameters Parameter Symbol SMBus Input Low Voltage VILSMB SMBus Input High Voltage VIHSMB SMBus Output Low Voltage VOLSMB At I PULLUP. SMBus Sink Current IPULLUP At V OL. Nominal Bus Voltage VDDSMB SCLK/SDATA Rise Time tRSMB SCLK/SDATA Fall Time tFSMB SMBus Operating Frequency 1 2 3 4 5 Conditions Minimum 2.1 Typical Maximum Units 0.8 V VDDSMB V 0.4 V 4 Notes mA 2.7 3.6 V 1 (Max VIL - 0.15V) to (Min VIH + 0.15V). 1000 ns 1 (Min VIH + 0.15V) to (Max VIL - 0.15V). 300 ns 1 400 kHz 5 fSMBMAX SMBus operating frequency. Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. Time from deassertion until outputs are > 200mV. DIF_IN input. The differential input clock must be running for the SMBus to be active. Table 6. DIF_IN Clock Input Parameters Parameter Input Crossover Voltage – DIF_IN 1 2 Symbol Conditions VCROSS Crossover voltage. Minimum Typical Maximum Units 150 900 Notes mV 1 mV 1 1,2 Differential value. 300 dv/dt Measured differentially. 0.4 8 V/ns Input Leakage Current IIN VIN = VDD , VIN = GND. -5 5 μA Input Duty Cycle dtin Measurement from differential waveform. 45 55 % 1 Input Jitter – Cycle to Cycle JDIFIn Differential measurement. 0 125 ps 1 Input Swing – DIF_IN VSWING Input Slew Rate – DIF_IN Guaranteed by design and characterization, not 100% tested in production. Slew rate measured through ±75mV window centered around differential zero. ©2020 Renesas Electronics Corporation 12 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 7. Input/Supply/Common Parameters Parameter Symbol Supply Voltage VDDx Supply voltage for core and analog. 3.135 3.3 3.465 V Output Supply Voltage VDDIO Supply voltage for DIF outputs, if present. 0.95 1.05 3.465 V Ambient Operating Temperature TAMB Industrial range (TIND). -40 25 85 °C Input High Voltage VIH Single-ended inputs, except SMBus, tri-level inputs. 2 VDD + 0.3 V Input Low Voltage VIL Single-ended inputs, except SMBus, tri-level inputs. GND - 0.3 0.8 V Input High Voltage VIH Tri-level inputs. 2.2 VDD + 0.3 V Input Mid Voltage VIM Tri-level inputs. 1.2 1.8 V Input Low Voltage VIL Tri-level inputs. GND - 0.3 0.8 V IIN Single-ended inputs, VIN = GND, VIN = VDD. -5 5 μA IINP Single-ended inputs. VIN = 0 V; inputs with internal pull-up resistors. VIN = VDD; inputs with internal pull-down resistors. -50 50 μA Fibyp VDD = 3.3 V, Bypass Mode. 1 400 MHz Fipll VDD = 3.3 V, 100MHz PLL Mode. 98.5 100.00 102.5 MHz Fipll VDD = 3.3 V, 133.33MHz PLL Mode. 132 133.33 135 MHz ppm Error Contribution ppm ppm error contributed to input clock. Pin Inductance Lpin Input Current Input Frequency CIN Capacitance Conditions Logic inputs, except DIF_IN. CINDIF_IN DIF_IN differential clock inputs. Minimum Typical Maximum Units Notes VDD/2 0 5 6 ppm 7 nH 1 1.5 5 pF 1 1.5 2.7 pF 1,4 6 pF 1 1.8 ms 1,2 33 kHz 10 clocks 1,2,3 300 μs 1,3 COUT Output pin capacitance. Clk Stabilization TSTAB From VDD power-up and after input clock stabilization or deassertion of PD# to 1st clock. Input SS Modulation Frequency PCIe fMODINPCIe Allowable frequency for PCIe applications (Triangular modulation). 30 OE# Latency tLATOE# DIF start after OE# assertion. DIF stop after OE# deassertion. 4 Tdrive_PD# tDRVPD DIF output enable after PD# deassertion. Tfall tF Fall time of control inputs. 5 ns 2 Trise tR Rise time of control inputs. 5 ns 2 1 2 3 4 5 6 1 5 Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. Time from deassertion until outputs are > 200mV. DIF_IN input. Not present on 9ZXL1951D. 9ZXL15x0 and 9ZXL19x0 only. ©2020 Renesas Electronics Corporation 13 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 8. Current Consumption – 9ZXL1951D Parameter Symbol Conditions Operating Supply Current IDDVDDA/R PLL Mode, all outputs 100MHz, C L = 2pF; Zo = 85Ω. 45 55 mA All outputs 100MHz, CL = 2pF; Zo = 85Ω. 171 200 mA All differential pairs low-low. 1 2 mA IDDVDDA/RPD All differential pairs low-low. 4 6 mA Power Down Current 1 IDDVDD IDDVDDPD Minimum Typical Maximum Units Notes 1 In Bypass Mode (PLL of) IDDVDDA/R is 12mA. Table 9. Current Consumption – 9ZXL19x0D Parameter Symbol Typical Maximum Units Notes VDDA + VDDR pins, all outputs at 100MHz, CL = 2pF; Zo = 85Ω. 54 65 mA 1 IDDO VDDIO pins, all outputs at 100MHz, CL = 2pF; Zo = 85Ω. 136 169 mA IDDx All other VDD pins, all outputs at 100MHz, CL = 2pF; Zo = 85Ω. 28 38 mA VDDA + VDDR pins, all outputs Low/Low. 4 5 mA IDDA+R Operating Supply Current IDDA+R Power Down Current 1 Conditions Minimum IDDO VDDIO pins, all outputs Low/Low. 0.04 0.1 mA IDDx All other VDD pins, all outputs Low/Low. 0.4 1 mA Typical Maximum Units Notes VDDA + VDDR pins, all outputs at 100MHz, CL = 2pF; Zo = 85Ω. 54 65 mA 1 IDDO VDDIO pins, all outputs at 100MHz, CL = 2pF; Zo = 85Ω. 77 92 mA IDDx All other VDD pins, all outputs at 100MHz, CL = 2pF; Zo = 85Ω. 27 34 mA VDDA + VDDR pins, all outputs Low/Low. 4 5 mA In Bypass Mode (PLL of) IDDVDDA/R is 12mA. Table 10. Current Consumption – 9ZXL15x0D Parameter Symbol IDDA+R Operating Supply Current Power Down Current 1 IDDA+R Conditions Minimum IDDO VDDIO pins, all outputs Low/Low. 0.04 0.1 mA IDDx All other VDD pins, all outputs Low/Low. 0.46 0.6 mA In Bypass Mode (PLL of) IDDVDDA/R is 12mA. ©2020 Renesas Electronics Corporation 14 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 11. Skew and Differential Jitter Parameters TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol CLK_IN, DIF[x:0] tSPO_PLL Input-to-output skew in PLL Mode at 100MHz, nominal temperature and voltage. -100 -21.3 CLK_IN, DIF[x:0] tPD_BYP Input-to-output skew in Bypass Mode at 100MHz, nominal temperature and voltage. 2.2 CLK_IN, DIF[x:0] tDSPO_PLL Input-to-output skew variation in PLL Mode at 100MHz, across voltage and temperature. -50 Input-to-output skew variation in Bypass Mode at 100MHz, across voltage and temperature. TAMB = -0°C to +70°C. Input-to-output skew variation in Bypass Mode at 100MHz, across voltage and temperature, TAMB = -40°C to +85°C. CLK_IN, DIF[x:0] tDSPO_BYP Conditions Minimum Typical Maximum Units Notes 100 ps 1,2,4,5, 8 2.7 3.5 ns 1,2,3,5, 7 0 50 ps 1,2,3,5, 7 -250 250 ps 1,2,3,5, 7 -350 350 ps 1,2,3,5, 7 ps 1,2,3,5, 7 (RMS) CLK_IN, DIF[x:0] tDTE Random differential tracking error between two 9ZX devices in High BW Mode. 3 5 CLK_IN, DIF[x:0] tDSSTE Random differential spread spectrum tracking error between two 9ZX devices in High BW Mode. 23 50 ps 1,2,3,5, 7 DIF[x:0] tSKEW_ALL 50 ps 1,2,3,7 Output-to-output skew across all outputs, common to PLL and Bypass Mode, at 100MHz. PLL Jitter Peaking jpeak-hibw LOBW#_BYPASS_HIBW = 1. 0 1.3 2.5 dB 6,7 PLL Jitter Peaking jpeak-lobw LOBW#_BYPASS_HIBW = 0. 0 1.3 2 dB 6,7 PLL Bandwidth pllHIBW LOBW#_BYPASS_HIBW = 1. 2 2.6 4 MHz 7,8 PLL Bandwidth pllLOBW LOBW#_BYPASS_HIBW = 0. 0.7 1.0 1.4 MHz 7,8 Duty Cycle tDC Measured differentially, PLL Mode. 45 50.3 55 % 1 Duty Cycle Distortion tDCD Measured differentially, Bypass Mode at 100MHz. -1 0 1 % 1,9 Jitter, Cycle to Cycle tjcyc-cyc PLL Mode. 14 50 ps 1,10 Additive jitter in Bypass Mode. 0.1 5 ps 1,10 1 2 3 4 5 6 6 7 8 9 Measured into fixed 2pF load cap. Input to output skew is measured at the first output edge following the corresponding input. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present. All Bypass Mode input-to-output specs refer to the timing between an input edge and the specific output edge created by it. This parameter is deterministic for a given device. Measured with scope averaging on to find mean value. “t” is the period of the input clock. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking. Guaranteed by design and characterization, not 100% tested in production. Measured at 3db down or half power point. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in Bypass Mode. 10 Measured from differential waveform. ©2020 Renesas Electronics Corporation 15 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 12. LP-HCSL Outputs TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Conditions Slew Rate dV/dt Scope averaging on. Slew Rate Matching ΔdV/dt Single-ended measurement. Maximum Voltage Vmax Minimum Voltage Vmin Measurement on single-ended signal using absolute value (scope averaging off). Typical Maximum 2 2.6 4 1–4 V/ns 1,2,3 7.1 20 20 % 1,4,7 700 778 900 660–1150 -125 -21 50 -300–150 250 389 550 250–550 mV 1,5,7 24 75 140 mV 1,6,7 Crossing Voltage (abs) Vcross_abs Scope averaging off. Crossing Voltage (var) 1 2 Scope averaging off. mV Notes 7,8 7,8 Guaranteed by design and characterization, not 100% tested in production. Measured from differential waveform. 3 Slew 4 Δ-Vcross Specification Units Limit Minimum rate is measured through the Vswing voltage range centered around differential 0V. This results in a ±150mV window around differential 0V. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. 5 Vcross 6 7 8 is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling). The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute. At default SMBus settings. Includes previously separate values of +300mV overshoot and -300mV of undershoot. Table 13. PCIe Phase Jitter Parameters TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Minimum Typical Maximum Limits Units Notes PCIe Gen 1 (2.5 GT/s) 2.6 6.8 86 ps (p-p) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) 0.09 0.16 3 ps (RMS) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) 0.08 0.12 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) 0.05 0.07 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) 0.05 0.07 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) 0.018 0.022 0.15 ps (RMS) 1,2,3,5 tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) 8.71 8.73 ps (RMS) 1,2,6 tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) 0.81 0.83 ps (RMS) 1,2,6 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) 0.329 0.335 ps (RMS) 1,2,6 tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) 0.222 0.235 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) 0.084 0.091 ps (RMS) 1,2,6 tjphPCIeG1-CC PCIe Phase Jitter, Low Bandwidth ZDB Mode (Common Clocked Architecture) PCIe Phase Jitter, Low Bandwidth ZDB Mode (SRIS Architecture) tjphPCIeG2-CC ©2020 Renesas Electronics Corporation Conditions 16 N/A August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 13. PCIe Phase Jitter Parameters (Cont.) TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Minimum Typical Maximum Limits Units Notes PCIe Gen 1 (2.5 GT/s) 5.4 6.9 86 ps (p-p) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) 0.19 0.25 3 ps (RMS) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) 0.09 0.13 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) 0.10 0.13 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) 0.10 0.13 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) 0.032 0.042 0.15 ps (RMS) 1,2,3,5 tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) 8.61 8.63 ps (RMS) 1,2,6 tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) 0.88 0.96 ps (RMS) 1,2,6 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) 0.354 0.375 ps (RMS) 1,2,6 tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) 0.271 0.305 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) 0.097 0.109 ps (RMS) 1,2,6 tjphPCIeG1-CC PCIe Phase Jitter, High Bandwidth ZDB Mode (Common Clocked Architecture) PCIe Phase Jitter, High Bandwidth ZDB Mode (SRIS Architecture) tjphPCIeG2-CC Conditions N/A 1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section 2 3 4 5 6 of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all results. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input. ©2020 Renesas Electronics Corporation 17 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 14. Additive PCIe Phase Jitter for Fanout Buffer Mode TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol tjphPCIeG1-CC Conditions Minimum Typical Maximum Limits Notes 1.3 1.9 86 ps (p-p) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) 0.089 0.126 3 ps (RMS) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) 0.023 0.034 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) 0.044 0.062 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) 0.044 0.062 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) 0.017 0.024 0.15 ps (RMS) 1,2,3,5 0.127 0.181 ps (RMS) 1,2,6 Additive PCIe Phase Jitter, tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) Fanout Buffer Mode7 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) (SRIS Architecture) tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) 0.112 0.159 ps (RMS) 1,2,6 0.029 0.042 ps (RMS) 1,2,6 0.031 0.043 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) 0.027 0.038 ps (RMS) 1,2,6 Additive PCIe Phase Jitter, Fanout Buffer Mode7 (Common Clocked Architecture) tjphPCIeG2-CC PCIe Gen 1 (2.5 GT/s) Units tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) N/A 1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section 2 3 4 5 6 7 of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all results. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input. Additive jitter for RMS values is calculated by solving for “b” where b = √(c2 - a2) and “a” is rms input jitter and “c” is rms output jitter. ©2020 Renesas Electronics Corporation 18 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 15. Filtered Phase Jitter Parameters – QPI/UPI, IF-UPI and DB2000Q TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Phase Jitter, ZDB Mode Conditions Minimum Typical Maximum Specification Limits Units Notes QPI and UPI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI) 0.16 0.37 0.5 ps (RMS) 1,2 QPI and UPI (100MHz, 8.0Gb/s, 12UI) 0.10 0.15 0.3 ps (RMS) 1,2 QPI and UPI (100MHz, ≤11.4Gb/s, 12UI) 0.08 0.12 0.2 ps (RMS) 1,2 QPI and UPI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI) 0.03 0.05 QPI and UPI (100MHz, 8.0Gb/s, 12UI) 0.03 0.05 QPI and UPI (100MHz, ≤11.4Gb/s, 12UI) 0.02 0.04 IF-UPI, Lo-BW ZDB Mode 0.10 0.13 1 ps (RMS) 1,4,5 IF-UPI, Hi-BW ZDB Mode 0.17 0.20 1 ps (RMS) 1,4,5 IF-UPI, Fanout Mode 0.06 0.07 1 ps (RMS) 1,4 DB2000Q, Fanout Mode 28 39 80 fs (RMS) 1,4,5 Symbol tjphQPI_UPI tjphQPI_UPI Additive Phase Jitter, Fanout Mode tjphIF-UPI tjphDB2000Q 1 2 3 ps (RMS) 1,2,3 N/A ps (RMS) 1,2,3 ps (RMS) 1,2,3 Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. Calculated from Intel-supplied clock jitter tool. For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter. 4 Calculated from phase noise analyzer with Intel-specified brick-wall filter applied. This is an additive jitter specification regardless of buffer operating 5 mode. The IF-UPI specification is an additive specification, regardless of the buffer operating mode. The enhanced 9ZXL devices meet this specification in all operating modes. Table 16. Phase Jitter Parameters – 12kHz to 20MHz TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Conditions 12kHz–20MHz Additive Phase Jitter, Fanout Buffer Mode tjph12k-20MFOB Fanout Buffer Mode, SSC OFF, 100MHz 1 2 3 Minimum Typical Maximum Specification Limits 98 125 N/A Units Notes fs (RMS) 1,2,3 Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. 12kHz to 20MHz brick wall filter. For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter. ©2020 Renesas Electronics Corporation 19 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Power Management Table 17. Power Management CKPWRGD_PD# DIF_IN SMBus EN bit OE[5:12]# Pin (9ZXL1951D only) DIF[x] PLL State (in ZDB Mode) 0 X X X Low/Low Off 0 0 Low/Low On 0 1 Low/Low On 1 0 Running On 1 1 Low/Low On 1 Running Table 18. Functionality at Power-Up (ZDB Mode) 100M_133M# DIF_IN (MHz) DIF[x] 1 100.00 DIF_IN 0 133.33 DIF_IN Note: 9ZXL1951D is 100MHz only. Table 19. PLL Operating Mode HIBW_BYPM_LOBW# Mode PLL Low ZDB Lo BW Running Mid Bypass Off High ZDB Hi BW Running Note: See SMBus Byte 0, bits 7 and 6 for additional information. ©2020 Renesas Electronics Corporation 20 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Test Loads Figure 4. Test Load for AC/DC Measurements CL CK+ CKIN+ Clock Source L CK+ Zo (differential) DUT CK- Test Points for High Impedance Probe CKIN- CK- CL Table 20. Parameters for AC/DC Measurements Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) CL (pF) SMA100B 9ZXLxx3x 27 External 85 25.4 2 SMA100B 9ZXLxx5x Internal 85 25.4 2 Parameters Measured AC/DC parameters Figure 5. Test Load for Phase Jitter Measurements using Phase Noise Analyzer PNA Coax Cables L CK+ CKIN+ Clock Source CK+ Zo (differential) DUT CK- CKIN- Balun 0.1uF CK- 50 SMA Connectors Table 21. Parameters for Phase Jitter Measurements using Phase Noise Analyzer Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) SMA100B 9ZXLxx3x 27 External 85 25.4 9FGV1006 9ZXLxx3x 27 External 85 25.4 SMA100B 9ZXLxx5x Internal 85 25.4 9FGV1006 9ZXLxx5x Internal 85 25.4 ©2020 Renesas Electronics Corporation 21 CL (pF) Notes Parameters Measured Fanout Mode N/A ZDB Mode Fanout Mode PCIe, IF-UPI, DB2000Q ZDB Mode August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Figure 6. Test Load for Phase Jitter Measurements using Oscilloscope Oscillocope (≥ 20GS/s) L CK+ CKIN+ Clock Source CK+ Zo (differential) DUT CK- CKIN- Coax Cables 0.1uF CK- SMA Connectors 50 50 Table 22. Parameters for Phase Jitter Measurements using Oscilloscope Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) SMA100B 9ZXLxx3x 27 External 85 25.4 9FGV1006 9ZXLxx3x 27 External 85 25.4 SMA100B 9ZXLxx5x Internal 85 25.4 9FGV1006 9ZXLxx5x Internal 85 25.4 ©2020 Renesas Electronics Corporation 22 CL (pF) Notes Parameters Measured Fanout Mode N/A ZDB Mode Fanout Mode QPI/UPI ZDB Mode August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet General SMBus Serial Interface Information How to Write How to Read ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Controller (host) sends a start bit Controller (host) sends the write address Renesas clock will acknowledge Controller (host) sends the beginning byte location = N Renesas clock will acknowledge Controller (host) sends the byte count = X Renesas clock will acknowledge Controller (host) starts sending Byte N–Byte N+X-1 Renesas clock will acknowledge each byte one at a time Controller (host) sends a stop bit Index Block Write Operation Controller (Host) T ▪ Controller (host) will need to acknowledge each byte ▪ Controller (host) will send a not acknowledge bit ▪ Controller (host) will send a stop bit Renesas (Slave/Receiver) starT bit Slave Address WR Controller (host) will send a start bit Controller (host) sends the write address Renesas clock will acknowledge Controller (host) sends the beginning byte location = N Renesas clock will acknowledge Controller (host) will send a separate start bit Controller (host) sends the read address Renesas clock will acknowledge Renesas clock will send the data byte count = X Renesas clock sends Byte N+X-1 Renesas clock sends Byte 0–Byte X (if X(H) was written to Byte 8) WRite Index Block Read Operation ACK Controller (Host) T starT bit Beginning Byte = N ACK Slave Address Data Byte Count = X ACK WR X Byte O O WRite ACK Beginning Byte = N ACK Beginning Byte N O Renesas (Slave/Receiver) ACK RT O Repeat starT Slave Address O RD O ReaD ACK Byte N + X - 1 ACK P Data Byte Count=X stoP bit ACK Beginning Byte N X Byte ACK O O O O O O Byte N + X - 1 ©2020 Renesas Electronics Corporation 23 N Not P stoP bit August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 23. SMBus Addressing SADR[1:0]_tri SMBus Address (Read/Write bit = 0) 00 D8 0M DA 01 DE M0 C2 MM C4 M1 C6 10 CA 1M CC 11 CE Table 24. Byte 0: PLL Mode, Frequency Select and Output Enable Register 0 Byte 0 Bit7 Bit6 Control Function PLL Operating Mode Readback 1 PLL Operating Mode Readback 0 Type R R Bit5 Bit4 Bit3 Bit2 Bit1 Frequency Select Readback Output Enable RW RW Bit0 RW R Reserved Reserved 0 00 = Low BW ZDB Mode 01 = Bypass (Fanout Buffer) Output is Disabled (Low/Low) Output is Disabled (Low/Low) Output is Disabled (Low/Low) 1 10 = Reserved 11 = High BW ZDB Mode Output is Enabled Output is Enabled Output is Enabled 9ZXL19x0 Name PLL_Mode[1] PLL_Mode[0] DIF18_En DIF17_En DIF16_En Reserved Reserved 100M_133M# 9ZXL19x0 Default Latch Latch 1 1 1 0 0 Latch 9ZXL15x0 Name PLL_Mode[1] PLL_Mode[0] Reserved DIF14_En DIF13_En Reserved Reserved 100M_133M# 9ZXL15x0 Default Latch Latch 0 1 1 0 0 Latch 9ZXL1951 Name PLL_Mode[1] PLL_Mode[0] DIF18_En DIF17_En DIF16_En Reserved Reserved Reserved 9ZXL1951 Default Latch Latch 1 1 1 0 0 0 ©2020 Renesas Electronics Corporation 24 133MHz 100MHz August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 25. Byte 1: Output Control Register 1 Byte 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Control Function Output Enable Type RW 0 Disabled (Low/Low) 1 Output Enabled or Output controlled by OE# pin (DIF[5:12] on 9ZXL1951 only) Bit1 Bit0 9ZXL19x0 Name DIF7_en DIF6_en DIF5_en DIF4_en DIF3_en DIF2_en DIF1_en DIF0_en 9ZXL19x0 Default 1 1 1 1 1 1 1 1 9ZXL15x0 Name DIF5_En Reserved DIF4_En DIF3_En DIF2_En DIF1_En DIF0_En Reserved 9ZXL15x0 Default 1 0 1 1 1 1 1 0 9ZXL1951 Name DIF7_En DIF6_En DIF5_En DIF4_En DIF3_En DIF2_En DIF1_En DIF0_En 9ZXL1951 Default 1 1 1 1 1 1 1 0 Bit4 Bit3 Bit2 Bit1 Bit0 Table 26. Byte 2: Output Control Register 2 Byte 2 Bit7 Bit6 Bit5 Control Function Output _enable Type RW 0 Low/Low 1 Output Enabled or Output controlled by OE# pin (DIF[5:12] on 9ZXL1951 only) 9ZXL19x0 Name DIF15_En DIF14_En DIF13_En DIF12_En DIF11_En DIF10_En DIF9_En DIF8_En 9ZXL19x0 Default 1 1 1 1 1 1 1 1 9ZXL15x0 Name DIF5_En Reserved DIF4_En DIF3_En DIF2_En DIF1_En DIF0_En Reserved 9ZXL15x0 Default 1 0 1 1 1 1 1 0 9ZXL1951 Name DIF12_En DIF11_En DIF10_En Reserved DIF9_En DIF8_En DIF7_En DIF6_En 9ZXL1951 Default 1 1 1 0 1 1 1 1 ©2020 Renesas Electronics Corporation 25 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 27. Byte 3: Output Amplitude and PLL Software Control Register Byte 3 Control Function Type 0 1 Bit7 Bit6 Bit5 Bit4 Global Differential Amplitude Control RW RW RW Bit3 Bit2 Bit1 Enable S/W control of PLL BW PLL Operating Mode 1 PLL Operating Mode 0 RW RW RW Reserved Hardware Latch 0.3V–1V 100mV/step Default = 0.8V (101) SMBus Control Bit0 Reserved See definition of Byte 0, bits[7:6] 9ZXL19x0 Name amp[2] amp[1] amp[0] Reserved PLL_SW_EN PLL_Mode[1] PLL_Mode[0] Reserved 9ZXL19x0 Default 1 0 1 0 0 1 1 0 9ZXL15x0 Name amp[2] amp[1] amp[0] Reserved PLL_SW_EN PLL_Mode[1] PLL_Mode[0] Reserved 9ZXL15x0 Default 1 0 1 0 0 1 1 0 9ZXL1951 Name Reserved Reserved PLL_SW_EN PLL_Mode[1] PLL_Mode[0] Reserved 9ZXL1951 Default 0 0 0 1 1 0 0 0 Note: Setting bit 3 to '1' allows the user to override the Latch value from pin 4 via use of bits 2 and 1. Use the values from the PLL Operating Mode Table. Note that Byte 0, Bits 7:6 will keep the value originally latched. A warm reset of the system will have to accomplished if the user changes these bits. Table 28. Byte 4: OE Pin Configuration Register A Byte 4 Control Function Type Bit7 Bit6 Bit5 OE12# Controls OE11# Controls OE10# Controls DIF12 DIF11 DIF10 RW RW RW Bit4 Bit3 Bit2 Bit1 Bit0 OE9# Controls DIF9 OE8# Controls DIF8 OE7# Controls DIF7 OE6# Controls DIF6 OE5# Controls DIF5 RW RW RW RW RW 0 0 0 0 0 OE# pin does not control the output 1 OE# pin controls the output 9ZXL19x0 Name Reserved 9ZXL19x0 Default 0 0 0 0 9ZXL15x0 Name Reserved 9ZXL15x0 Default 0 0 0 0 0 0 0 0 9ZXL1951 Name OE12#_CFGA OE11#_CFGA OE10#_CFGA OE09#_CFGA OE08#_CFGA OE07#_CFGA OE06#_CFGA OE05#_CFGA 9ZXL1951 Default 1 1 1 1 1 1 1 1 ©2020 Renesas Electronics Corporation 26 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 29. Byte 5: Revision and Vendor ID Register Byte 5 Bit7 Bit6 Control Function Type Bit5 Bit4 Bit3 Bit2 Revision ID R R R R R R R Revision ID 1 Bit0 Vendor ID R 0 Bit1 IDT/Renesas = 0001 Name RID 3 RID 2 RID 1 RID 0 VID 3 VID 2 VID 1 VID 0 9ZXL19x0 Default 0 1 0 0 0 0 0 1 9ZXL15x0 Default 0 1 0 0 0 0 0 1 9ZXL1951 Default 0 0 1 1 0 0 0 1 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R R R R DevID 3 DevID 2 DevID 1 DevID 0 Bit2 Bit1 Bit0 Table 30. Byte 6: Device ID Register Byte 6 Bit7 Bit6 Control Function Type N/A R R R R 0 Device ID 1 Name DevID 7 (MSB) DevID 6 DevID 5 DevID 4 9ZXL19x0 0hC3 9ZXL15x0 0h9B 9ZXL1951 0hC4 Table 31. Byte 7: Byte Count Register Byte 7 Bit7 Bit6 Bit5 Control Function Type 0 Bit4 Bit3 Writing to this register configures how many bytes will be read back on a block read. Reserved Reserved Reserved RW RW RW RW Default value is 8. 1 Name Default RW 0 0 ©2020 Renesas Electronics Corporation 0 BC4 BC3 BC2 BC1 BC0 0 1 0 0 0 27 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Table 32. Byte 8: OE Pin Configuration Register B (9ZXL1951 only) Byte 8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function OE12# Controls DIF13 OE11# Controls DIF14 OE10# Controls DIF15 OE9# Controls DIF0 OE8# Controls DIF1 OE7# Controls DIF2 OE6# Controls DIF3 OE5# Controls DIF4 Type RW RW RW RW RW RW RW RW 0 OE# pin does not control the output 1 OE# pin controls the output 9ZXL1951 Name OE12#_CFGB OE11#_CFGB OE10#_CFGB OE09#_CFGB OE08#_CFGB OE07#_CFGB OE06#_CFGB OE05#_CFGB 9ZXL1951 Default 0 0 0 0 0 0 0 0 Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. 9ZXL15x0D: www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-615-x-615-mm-nlg64p2 9ZXL19x0D: www.idt.com/document/psc/72-vfqfpn-package-outline-drawing-100-x-100-x-090-mm-body-epad-595-x-595-mm-050mm-pitch-nlg72p1 9ZXL1951D: www.idt.com/document/psc/nhg80-package-outline-600x600mm-body-050mm050mm-pitch-gqfn Marking Diagrams 9ZXL15x0D ▪ Lines 1 and 2: truncated part number. ▪ Line 3: “LOT” denotes the lot number. ▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the work week the part was assembled. ©2020 Renesas Electronics Corporation 28 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet 9ZXL19x0D ▪ Lines 1 and 2: truncated part number. ▪ Line 3: “LOT” denotes the lot number. ▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the work week the part was assembled. 9ZXL1951D ▪ Lines 1 and 2: part number. ▪ Line 3: • “YYWW” is the last two digits of the year and the work week the part was assembled. • “$” denotes the mark code. ▪ “LOT” denotes the lot number. ©2020 Renesas Electronics Corporation 29 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Ordering Information Table 33. Ordering Information Number of Output Orderable Part Number Clock Outputs Impedance 33 15 85 33 19 85 19 85 Package Temperature 9 × 9 × 0.5 mm 64-VFQFPN -40°C to +85°C Part Number Suffix and Shipping Method 9ZXL1530DKILF 9ZXL1530DKILFT 9ZXL1550DKILF None = Trays 9ZXL1550DKILFT 9ZXL1930DKILF 9ZXL1930DKILFT 9ZXL1950DKILF 9ZXL1950DKILFT 9ZXL1951DNHGI 9ZXL1951DNHGI8 10 × 10 × 0.5 mm 72-VFQFPN -40°C to +85°C 6 x 6 × 0.5 mm 80-GQFN -40°C to +85°C “T” or “8” = Tape and Reel, Pin 1 Orientation: EIA-481C (see Table 34 for more details) “D” is the device revision designator (will not correlate with the datasheet revision). “LF” or “G” denotes Pb-free configuration, RoHS compliant. “T” or “8” is the orderable suffix for Tape and Reel packaging. Table 34. Pin 1 Orientation in Tape and Reel Packaging Part Number Suffix Pin 1 Orientation Illustration Correct Pin 1 ORIENTATION T or 8 CARRIER TAPE TOPSIDE (Round Sprocket Holes) Quadrant 1 (EIA-481-C) USER DIRECTION OF FEED ©2020 Renesas Electronics Corporation 30 August 25, 2020 9ZXL15x0D/9ZXL19x0D/9ZXL1951D Datasheet Revision History Revision Date Description of Change August 25, 2020 Updated PCIe Gen5 CC, DB2000Q, and QPI/UPI specifications in Key Specifications section on front page. October 30, 2019 Updated default values of Byte 3, bits 1 and 2. October 22, 2019 Combined 9ZXL1530D_1550D, 9ZXL1930D_1950D, and 9ZXL1951D datasheets into one single document. February 14, 2019 Last revision date of the 9ZXL1530D_1550D datasheet. April 24, 2019 Last revision date of the 9ZXL1930D_1950D datasheet. February 26, 2019 Last revision date of the 9ZXL1951D datasheet. ©2020 Renesas Electronics Corporation 31 August 25, 2020 64-VFQFPN, Package Outline Drawing 9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm NLG64P2, PSC-4147-02, Rev 01, Page 1 64-VFQFPN, Package Outline Drawing 9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm NLG64P2, PSC-4147-02, Rev 01, Page 2 Package Revision History Description Date Created Rev No. Feb 21, 2018 Rev 01 New Format, Change QFN to VFQFPN, Added P2 Nov 3, 2015 Rev 00 Initial Release 72-VFQFPN, Package Outline Drawing 10.0 x 10.0 x 0.90 mm Body, Epad 5.95 x 5.95 mm 0.50mm Pitch NLG72P1, PSC-4208-01, Rev 03, Page 1 © Integrated Device Technology, Inc. 72-VFQFPN, Package Outline Drawing 10.0 x 10.0 x 0.90 mm Body, Epad 5.95 x 5.95 mm 0.50mm Pitch NLG72P1, PSC-4208-01, Rev 03, Page 2 Package Revision History Date Created © Integrated Device Technology, Inc. Rev No. Description Sept 3, 2019 Rev 03 Update P1 Dimension from 5. 8 to 5.95 mm SQ May 8, 2017 Rev 02 Change Package Code QFN to VFQFPN IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2021 Renesas Electronics Corporation. All rights reserved.
9ZXL1950DKILFT 价格&库存

很抱歉,暂时无法提供与“9ZXL1950DKILFT”相匹配的价格&库存,您可以联系我们找货

免费人工找货