0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AT25XE161D-UUN-T

AT25XE161D-UUN-T

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    XFBGA8

  • 描述:

    IC FLASH 16MBIT SPI/QUAD 8WLCSP

  • 数据手册
  • 价格&库存
AT25XE161D-UUN-T 数据手册
AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Features                          Datasheet DS-AT25XE161D-158 Voltage Range: 1.65 V - 3.6 V 4 Mbit (2M x 2) Flash Memory Flexible 256-byte page erase architecture Serial Peripheral Interface (SPI) compatible  Supports SPI modes 0 and 3  Supports SPI single mode operation (1-1-1)  Supports dual output operation (1-1-2)  Supports quad output operation (1-1-4)  Supports quad XiP operation (1-4-4 and 0-4-4) 133 MHz maximum operating frequency  Clock-to-output of 8 ns Flexible, optimized erase architecture for code + data storage applications  Uniform 256-Byte page erase  Uniform 4-KByte block erase  Uniform 32-KByte block erase  Uniform 64-KByte block erase  Full chip erase Flexible non-volatile block protection 1 x 128-byte factory-programmed unique identifier 3 x 128-byte, One Time Programmable (OTP) security registers Flexible programming  Byte/Page program (1 to 256 Bytes)  Single command page buffer direct Read-Modify-Write (page write with inclusive erase)  Flexible 256-byte SRAM page buffer operation  Sequential program mode capability Erase program suspend resume Software controlled Reset and Terminate commands Hardware reset option (via /HOLD pin) JEDEC hardware reset Low battery detect circuit Active interrupt device status capability Non-volatile status register configuration option JEDEC standard manufacturer and device ID read methodology Serial Flash Discoverable Parameters (SFDP) version 1.6 Low power dissipation:  30 µA standby current (typical)  8.2 µA Deep Power-Down (DPD) current (typical)  7 nA Ultra Deep Power Down (UDPD) current (typical)  8.6 mA active read current (1-1-1 — 108 MHz)  9.2 mA program current  10.2 mA erase current User configurable and auto I/O pin drive levels Endurance  100,000 program/erase cycles Data Retention  20 years -40 oC to +85 oC operation Industry standard green (Pb/Halide-free/RoHS Compliant) Package Options  8-lead SOIC (150-mil)  8-lead SOIC (208-mil)  8-pad Ultra-thin DFN (2 x 3 x 0.6 mm)  8-ball WLCSP (3 x 2 x 3 ball matrix)  Die/Wafer — Contact Dialog Semiconductor for more information Revision H 10 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Contents Features .................................................................................................................................................................................... 1 Contents.................................................................................................................................................................................... 2 Figures ...................................................................................................................................................................................... 8 Tables ........................................................................................................................................................................................ 9 1 Product Overview ............................................................................................................................................................... 10 2 Block Diagram .................................................................................................................................................................... 11 3 Package Pinouts ................................................................................................................................................................ 12 4 Device Operation ................................................................................................................................................................ 15 4.1 Data Transfer Modes ............................................................................................................................................... 15 4.2 Standard SPI Operation ........................................................................................................................................... 15 4.2.1 Command Only, No Address or Data (1-0-0) ............................................................................................. 16 4.2.2 Command and Address Only, No Data (1-1-0) .......................................................................................... 16 4.2.3 Command and Data Only, No Address (1-0-1) .......................................................................................... 17 4.2.4 Command, Address, and Data (1-1-1) ....................................................................................................... 18 4.3 Dual Output Operation (1-1-2) ................................................................................................................................. 19 4.4 Quad Output Operation (1-1-4) ................................................................................................................................ 20 4.5 Quad I/O Operation (1-4-4) ...................................................................................................................................... 22 4.6 XiP Mode Operation................................................................................................................................................. 23 4.6.1 Initial Transfer and XiP Mode Detection (M[5:4]) ....................................................................................... 23 4.6.2 Subsequent Transfers ................................................................................................................................ 24 4.6.3 Set Burst with Wrap ................................................................................................................................... 25 4.7 Memory Architecture ................................................................................................................................................ 25 4.8 Memory Protection ................................................................................................................................................... 28 4.8.1 Standard Memory Protection ..................................................................................................................... 28 4.8.2 Individual Block Lock and Unlock............................................................................................................... 31 4.8.3 Global Block Lock and Unlock ................................................................................................................... 31 4.8.4 Reading the State of the Lock Bits ............................................................................................................. 31 4.9 Power-Down Considerations ................................................................................................................................... 32 4.9.1 Entering Power-Down Mode ...................................................................................................................... 32 4.9.2 Exiting Power-Down Mode ......................................................................................................................... 32 4.9.3 Reset During Program and Erase Commands........................................................................................... 33 4.10 Erase/Program Suspend Considerations and Nested Operations......................................................................... 34 4.10.1 Nested Operations ................................................................................................................................... 34 4.10.2 Program and Erase Errors ....................................................................................................................... 36 4.10.3 Suspending and Terminating a Program or Erase Operation .................................................................. 37 4.10.4 Terminating a Non-Volatile Register Operation in Progress .................................................................... 39 4.11 OTP Security Register Lock................................................................................................................................... 39 4.12 Standard JEDEC Hardware Reset......................................................................................................................... 40 4.13 Chip Select Restrictions ......................................................................................................................................... 40 4.14 Active Status Interrupt............................................................................................................................................ 41 4.15 Low Battery Detect................................................................................................................................................. 41 4.16 Read-Modify-Write ................................................................................................................................................. 42 4.17 HOLD / RESET Function ....................................................................................................................................... 42 5 Status Registers ................................................................................................................................................................. 43 5.1 Register Structure and Updates............................................................................................................................... 43 5.2 Register Accesses ................................................................................................................................................... 43 5.2.1 Direct and Indirect Addressing ................................................................................................................... 44 5.2.2 Volatile and Non-Volatile Register Accesses ............................................................................................. 44 5.3 Status Register 1 ..................................................................................................................................................... 44 5.4 Status Register 2 ..................................................................................................................................................... 46 5.5 Status Register 3 ..................................................................................................................................................... 48 5.6 Status Register 4 ..................................................................................................................................................... 49 5.7 Status Register 5 .................................................................................................................................................... 50 5.8 Status Register 6 ..................................................................................................................................................... 51 Datasheet DS-AT25XE161D-158 Revision H 10 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 6 Commands and Addressing .............................................................................................................................................. 52 6.1 Read Array (03h, 0Bh) ............................................................................................................................................. 56 6.1.1 Transfer Format ......................................................................................................................................... 56 6.1.2 Transfer Sequence..................................................................................................................................... 56 6.2 Dual Output Read Array (3Bh) ................................................................................................................................. 56 6.2.1 Transfer Format ......................................................................................................................................... 56 6.2.2 Transfer Sequence..................................................................................................................................... 56 6.3 Quad Output Read Array (6Bh) ............................................................................................................................... 57 6.3.1 Transfer Format ......................................................................................................................................... 57 6.3.2 Transfer Sequence..................................................................................................................................... 57 6.4 XiP Mode Read (EBh), XiP Mode Read with Double-word Aligned Address (E7h)................................................. 58 6.4.1 Transfer Format ......................................................................................................................................... 58 6.4.2 Mode Bits ................................................................................................................................................... 58 6.4.3 Transfer Sequence — Initial Transfer ........................................................................................................ 58 6.4.4 Transfer Sequence — Subsequent Transfers............................................................................................ 59 6.4.5 Programmable Number of Dummy Clocks................................................................................................. 59 6.5 Page Erase (81h/DBh) ............................................................................................................................................. 61 6.5.1 Command Prerequisites............................................................................................................................. 61 6.5.2 Transfer Format ......................................................................................................................................... 61 6.5.3 Transfer Sequence..................................................................................................................................... 61 6.5.4 Active Status Interrupt ................................................................................................................................ 62 6.5.5 Command Status ....................................................................................................................................... 62 6.5.6 Programming Restrictions .......................................................................................................................... 62 6.5.7 Error Reporting........................................................................................................................................... 62 6.6 Block Erase (20h, 52h, D8h) .................................................................................................................................... 62 6.6.1 Command Prerequisites............................................................................................................................. 62 6.6.2 Transfer Format ......................................................................................................................................... 63 6.6.3 Transfer Sequence..................................................................................................................................... 63 6.6.4 Erase Operation ......................................................................................................................................... 63 6.6.5 Command Status ....................................................................................................................................... 63 6.6.6 Active Status Interrupt ................................................................................................................................ 63 6.6.7 Programming Restrictions .......................................................................................................................... 63 6.6.8 Error Reporting........................................................................................................................................... 63 6.7 Chip Erase (60h, C7h) ............................................................................................................................................. 64 6.7.1 Command Prerequisites............................................................................................................................. 64 6.7.2 Transfer Format ......................................................................................................................................... 64 6.7.3 Transfer Sequence..................................................................................................................................... 64 6.7.4 Device Status ............................................................................................................................................. 64 6.7.5 Active Status Interrupt ................................................................................................................................ 64 6.7.6 Programming Restrictions .......................................................................................................................... 64 6.7.7 Error Reporting........................................................................................................................................... 65 6.8 Byte/Page Program (02h) ........................................................................................................................................ 65 6.8.1 Command Prerequisites............................................................................................................................. 65 6.8.2 Transfer Format ......................................................................................................................................... 65 6.8.3 Transfer Sequence..................................................................................................................................... 65 6.8.4 Device Status ............................................................................................................................................. 65 6.8.5 Active Status Interrupt ................................................................................................................................ 65 6.8.6 Programming Restrictions .......................................................................................................................... 66 6.8.7 Error Reporting........................................................................................................................................... 66 6.9 Sequential Program Mode (ADh/AFh) ..................................................................................................................... 66 6.9.1 Command Prerequisites............................................................................................................................. 66 6.9.2 Transfer Format ......................................................................................................................................... 67 6.9.3 Transfer Sequence — Initial Transfer ........................................................................................................ 67 6.9.4 Transfer Sequence — Subsequent Transfers............................................................................................ 67 6.9.5 Program Status .......................................................................................................................................... 67 6.9.6 Commands Allowed and Not Allowed in Sequential Program Mode.......................................................... 67 6.9.7 Programming Restrictions .......................................................................................................................... 69 Datasheet DS-AT25XE161D-158 Revision H 11 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 6.9.8 Error Reporting........................................................................................................................................... 6.10 Dual Output Byte/Page Program (A2h).................................................................................................................. 6.10.1 Command Prerequisites........................................................................................................................... 6.10.2 Transfer Format ....................................................................................................................................... 6.10.3 Transfer Sequence................................................................................................................................... 6.10.4 Program Status ........................................................................................................................................ 6.10.5 Active Status Interrupt .............................................................................................................................. 6.10.6 Programming Restrictions ........................................................................................................................ 6.10.7 Error Reporting......................................................................................................................................... 6.11 Quad Output Page Program (32h) ......................................................................................................................... 6.11.1 Command Prerequisites........................................................................................................................... 6.11.2 Transfer Format ....................................................................................................................................... 6.11.3 Transfer Sequence................................................................................................................................... 6.11.4 Programming Restrictions ........................................................................................................................ 6.11.5 Error Reporting......................................................................................................................................... 6.12 Program/Erase Suspend (75h/B0h) ....................................................................................................................... 6.12.1 Transfer Format ....................................................................................................................................... 6.12.2 Transfer Sequence................................................................................................................................... 6.12.3 Command Behavior During a Program/Erase Operation ......................................................................... 6.12.4 Device Status ........................................................................................................................................... 6.12.5 Programming Restrictions ........................................................................................................................ 6.13 Program/Erase Resume (7Ah/D0h) ....................................................................................................................... 6.13.1 Command Prerequisites........................................................................................................................... 6.13.2 Transfer Format ....................................................................................................................................... 6.13.3 Transfer Sequence................................................................................................................................... 6.13.4 Command Behavior ................................................................................................................................. 6.13.5 Programming Restrictions ........................................................................................................................ 6.14 Set Burst Wrap (77h) ............................................................................................................................................. 6.14.1 Transfer Format ....................................................................................................................................... 6.14.2 Transfer Sequence................................................................................................................................... 6.14.3 Wrap Bits.................................................................................................................................................. 6.14.4 Programming Restrictions ........................................................................................................................ 6.15 Buffer Read (D4h) .................................................................................................................................................. 6.15.1 Transfer Format ....................................................................................................................................... 6.15.2 Transfer Sequence................................................................................................................................... 6.16 Buffer Write (84h)................................................................................................................................................... 6.16.1 Command Prerequisites........................................................................................................................... 6.16.2 Transfer Format ....................................................................................................................................... 6.16.3 Transfer Sequence................................................................................................................................... 6.16.4 Writing Buffer Entries ............................................................................................................................... 6.16.5 Writing the Buffer Entries to Flash Memory ............................................................................................. 6.16.6 Programming Restrictions ........................................................................................................................ 6.17 Buffer to Main Memory Page Program without Erase (88h) .................................................................................. 6.17.1 Command Prerequisites........................................................................................................................... 6.17.2 Transfer Format ....................................................................................................................................... 6.17.3 Transfer Sequence................................................................................................................................... 6.17.4 Device Status ........................................................................................................................................... 6.17.5 Protected Memory .................................................................................................................................... 6.17.6 Programming Restrictions ........................................................................................................................ 6.17.7 Error Reporting......................................................................................................................................... 6.18 Write Enable (06h) ................................................................................................................................................. 6.18.1 Transfer Format ....................................................................................................................................... 6.18.2 Transfer Sequence................................................................................................................................... 6.18.3 Programming Restrictions ........................................................................................................................ Datasheet DS-AT25XE161D-158 Revision H 12 69 69 70 70 70 70 70 71 71 71 71 71 72 72 72 72 73 73 73 74 75 75 75 76 76 76 76 76 77 77 78 78 78 78 78 79 79 79 79 79 79 79 80 80 80 80 80 80 80 81 81 81 81 81 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 6.19 Write Disable (04h) ................................................................................................................................................ 6.19.1 Transfer Format ....................................................................................................................................... 6.19.2 Transfer Sequence................................................................................................................................... 6.19.3 Programming Restrictions ........................................................................................................................ 6.20 Volatile Status Register Write Enable (50h)........................................................................................................... 6.20.1 Transfer Format ....................................................................................................................................... 6.20.2 Transfer Sequence................................................................................................................................... 6.20.3 Programming Restrictions ........................................................................................................................ 6.21 Individual Block Lock (36h) .................................................................................................................................... 6.21.1 Command Prerequisites........................................................................................................................... 6.21.2 Transfer Format ....................................................................................................................................... 6.21.3 Transfer Sequence................................................................................................................................... 6.21.4 Programming Restrictions ........................................................................................................................ 6.22 Individual Block Unlock (39h)................................................................................................................................. 6.22.1 Command Prerequisites........................................................................................................................... 6.22.2 Transfer Format ....................................................................................................................................... 6.22.3 Transfer Sequence................................................................................................................................... 6.22.4 Programming Restrictions ........................................................................................................................ 6.23 Read Block Lock (3Ch/3Dh) .................................................................................................................................. 6.23.1 Command Prerequisites........................................................................................................................... 6.23.2 Transfer Format ....................................................................................................................................... 6.23.3 Transfer Sequence................................................................................................................................... 6.23.4 Programming Restrictions ........................................................................................................................ 6.24 Global Block Lock (7Eh) ........................................................................................................................................ 6.24.1 Command Prerequisites........................................................................................................................... 6.24.2 Transfer Format ....................................................................................................................................... 6.24.3 Transfer Sequence................................................................................................................................... 6.24.4 Programming Restrictions ........................................................................................................................ 6.25 Global Block Unlock (98h) ..................................................................................................................................... 6.25.1 Command Prerequisites........................................................................................................................... 6.25.2 Transfer Format ....................................................................................................................................... 6.25.3 Transfer Sequence................................................................................................................................... 6.25.4 Programming Restrictions ........................................................................................................................ 6.26 Program Security Register (9Bh) ........................................................................................................................... 6.26.1 Command Prerequisites........................................................................................................................... 6.26.2 OTP Security Register Layout.................................................................................................................. 6.26.3 Transfer Format ....................................................................................................................................... 6.26.4 Transfer Sequence................................................................................................................................... 6.26.5 Addressing the OTP Security Registers................................................................................................... 6.26.6 Programming Status ................................................................................................................................ 6.26.7 Locking OTP Registers 1 - 3 .................................................................................................................... 6.26.8 Verifying the Locked Status of a Security Register .................................................................................. 6.26.9 Programming Restrictions ........................................................................................................................ 6.27 Read OTP Security Register (4Bh) ........................................................................................................................ 6.27.1 Transfer Format ....................................................................................................................................... 6.27.2 Transfer Sequence — Single Register..................................................................................................... 6.27.3 Transfer Sequence — All Registers ......................................................................................................... 6.28 Read Status Registers 1 - 3 (05h, 35h, 15h) ......................................................................................................... 6.28.1 Transfer Format ....................................................................................................................................... 6.28.2 Transfer Sequence................................................................................................................................... 6.29 Read Status Registers (65h).................................................................................................................................. 6.29.1 Transfer Format ....................................................................................................................................... 6.29.2 Transfer Sequence................................................................................................................................... 6.29.3 Reading a Single Status Register ............................................................................................................ 6.29.4 Continuous Read of All Status Registers ................................................................................................. 6.29.5 Transfer Diagram ..................................................................................................................................... 6.29.6 Programming Restrictions ........................................................................................................................ Datasheet DS-AT25XE161D-158 Revision H 13 82 82 82 82 83 83 83 83 83 83 83 83 84 84 84 84 84 84 85 85 85 85 85 86 86 86 86 86 87 87 87 87 87 88 88 88 88 88 89 89 89 90 90 91 91 91 91 91 91 92 92 92 92 93 93 93 93 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 6.30 Write Status Registers 1 - 3 — Direct (01h, 31h, 11h)........................................................................................... 94 6.30.1 Command Prerequisites........................................................................................................................... 94 6.30.2 Transfer Format ....................................................................................................................................... 94 6.30.3 Transfer Sequence................................................................................................................................... 94 6.30.4 Programming Restrictions ........................................................................................................................ 94 6.31 Write Status Registers — Indirect (71h)................................................................................................................. 95 6.31.1 Command Prerequisites........................................................................................................................... 95 6.31.2 Transfer Format ....................................................................................................................................... 95 6.31.3 Transfer Sequence................................................................................................................................... 95 6.31.4 Writing to a Status Register ..................................................................................................................... 95 6.31.5 Transfer Diagram ..................................................................................................................................... 96 6.31.6 Programming Restrictions ........................................................................................................................ 96 6.32 Status Register Lock (6Fh) .................................................................................................................................... 97 6.32.1 Command Prerequisites........................................................................................................................... 97 6.32.2 Transfer Format ....................................................................................................................................... 97 6.32.3 Transfer Sequence................................................................................................................................... 97 6.32.4 Transfer Diagram ..................................................................................................................................... 97 6.32.5 Programming Restrictions ........................................................................................................................ 97 6.33 Deep Power-Down (B9h) ....................................................................................................................................... 98 6.33.1 Transfer Format ....................................................................................................................................... 98 6.33.2 Transfer Sequence................................................................................................................................... 98 6.33.3 Programming Restrictions ........................................................................................................................ 98 6.34 Resume from Ultra-Deep Power-Down / Deep Power-Down with Device ID (ABh) .............................................. 99 6.34.1 Command Options ................................................................................................................................... 99 6.34.2 Transfer Format — Resume from Deep Power-Down ............................................................................. 99 6.34.3 Transfer Format — Resume from Deep Power-Down and Obtain Device ID .......................................... 99 6.34.4 Transfer Sequence — Resume from Deep Power-Down ........................................................................ 99 6.34.5 Transfer Sequence — Resume from Deep Power-Down and Obtain Device ID ..................................... 99 6.34.6 Transfer Sequence — Resume from Ultra-Deep Power-Down.............................................................. 100 6.34.7 Programming Restrictions ...................................................................................................................... 100 6.35 Ultra-Deep Power-Down (79h)............................................................................................................................. 101 6.35.1 Transfer Format ..................................................................................................................................... 101 6.35.2 Transfer Sequence................................................................................................................................. 101 6.35.3 Programming Restrictions ...................................................................................................................... 101 6.36 Enable Reset (66h) and Reset Device (99h) ....................................................................................................... 102 6.36.1 Transfer Format ..................................................................................................................................... 102 6.36.2 Transfer Sequence................................................................................................................................. 102 6.36.3 Programming Restrictions ...................................................................................................................... 102 6.37 Terminate (F0h) ................................................................................................................................................... 103 6.37.1 Command Prerequisites......................................................................................................................... 103 6.37.2 Transfer Format ..................................................................................................................................... 103 6.37.3 Transfer Sequence................................................................................................................................. 103 6.37.4 Programming Restrictions ...................................................................................................................... 103 6.38 Read Manufacturer/Device ID (90h) .................................................................................................................... 104 6.38.1 Transfer Format ..................................................................................................................................... 104 6.38.2 Transfer Sequence................................................................................................................................. 104 6.39 Quad Read Manufacturer/Device ID (94h) .......................................................................................................... 105 6.39.1 Transfer Format ..................................................................................................................................... 105 6.39.2 Transfer Sequence................................................................................................................................. 105 6.40 Read JEDEC ID (9Fh) ......................................................................................................................................... 105 6.40.1 Transfer Format ..................................................................................................................................... 105 6.40.2 Transfer Sequence................................................................................................................................. 105 6.40.3 Transfer Diagram ................................................................................................................................... 106 6.41 Active Status Interrupt (25h) ................................................................................................................................ 108 6.41.1 Transfer Format ..................................................................................................................................... 108 6.41.2 Transfer Sequence................................................................................................................................. 108 6.41.3 Programming Restrictions ...................................................................................................................... 108 Datasheet DS-AT25XE161D-158 Revision H 14 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 6.42 Single Command Read-Modify-Write — EEPROM Emulation (0Ah)................................................................... 109 6.42.1 Command Prerequisites......................................................................................................................... 109 6.42.2 Transfer Format ..................................................................................................................................... 109 6.42.3 Transfer Sequence................................................................................................................................. 109 6.42.4 Programming Restrictions ...................................................................................................................... 109 6.42.5 Error Reporting....................................................................................................................................... 109 6.43 Low Battery Detect (EFh)..................................................................................................................................... 110 6.43.1 Transfer Format ..................................................................................................................................... 110 6.43.2 Transfer Sequence................................................................................................................................. 110 6.44 Serial Flash Discoverable Parameters (5Ah) ....................................................................................................... 111 6.44.1 Transfer Format ..................................................................................................................................... 111 6.44.2 Transfer Sequence................................................................................................................................. 111 6.44.3 Programming Restrictions ...................................................................................................................... 111 6.44.4 SFDP Organization ................................................................................................................................ 111 7 Electrical Specifications .................................................................................................................................................. 112 7.1 Absolute Maximum Ratings ................................................................................................................................... 112 7.2 DC and AC Operating Range ................................................................................................................................ 112 7.3 DC Characteristics ................................................................................................................................................. 112 7.4 AC Clock Characteristics ....................................................................................................................................... 113 7.5 AC Characteristics – All Other Parameters............................................................................................................ 113 7.6 Program and Erase Characteristics ....................................................................................................................... 114 7.7 Power-On Timing ................................................................................................................................................... 115 7.8 AC Timing Diagrams .............................................................................................................................................. 116 8 Ordering Information ....................................................................................................................................................... 118 8.1 Ordering Code Detail ........................................................................................................................................... 118 9 Packaging Information ..................................................................................................................................................... 119 9.1 8S1 — JEDEC SOIC ............................................................................................................................................. 120 9.2 8S2 — 8-lead EIAJ SOIC....................................................................................................................................... 121 9.3 8MA3 – 2 x 3 UDFN ............................................................................................................................................... 122 9.4 8-WLCSP — 8-ball 3 x 2 x 3 WLCSP .................................................................................................................... 123 10 Glossary .......................................................................................................................................................................... 124 11 Revision History ............................................................................................................................................................. 125 Datasheet DS-AT25XE161D-158 Revision H 15 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Figures Figure 1: Block Diagram.......................................................................................................................................................... 11 Figure 2: Memory Package Types .......................................................................................................................................... 12 Figure 3: SPI Transfer — Command Only .............................................................................................................................. 16 Figure 4: SPI Transfer — Command and Address Only ......................................................................................................... 16 Figure 5: SPI Transfer — Command and Data Only — Read Operation................................................................................ 17 Figure 6: SPI Transfer — Command and Data Only — Write Operation ................................................................................ 17 Figure 7: SPI Transfer — Command, Address, and Data — Read Operation with No Dummy Bytes.................................... 18 Figure 8: SPI Transfer — Command, Address, and Data — Read Operation with Dummy Bytes ......................................... 18 Figure 9: SPI Transfer — Command, Address, and Data — Write Operation ........................................................................ 19 Figure 10: Dual Output Read — 1-pin Command, 1-Pin Address, and 2-Pin Data................................................................. 19 Figure 11: Dual Output Write — 1-pin Command, 1-Pin Address, and 2-Pin Data................................................................. 20 Figure 12: Quad Output Transfer — 1-Pin Command, 1-Pin Address, and 4-Pin Data — Read Operation ........................... 20 Figure 13: Quad Output Transfer — 1-Pin Command, 1-Pin Address, and 4-Pin Data — Write Operation ........................... 21 Figure 14: Quad I/O Transfer — 1-Pin Command, 4-Pin Address, and 4-Pin Data — Read Operation ................................. 22 Figure 15: XiP Transfer — 1-Pin Command, 4-Pin Address, and 4-Pin Data — Initial Read (M[5:4] = 2’b10) ....................... 23 Figure 16: XiP Transfer — No Command, 4-Pin Address, and 4-Pin Data — Subsequent Reads (M[5:4] = 2’b10) .............. 24 Figure 17: XiP Transfer — 1-Pin Command, 4-Pin Address, and 4-Pin Data — Write Operation .......................................... 25 Figure 18: Flow Diagram of Nested Operations Example ....................................................................................................... 35 Figure 19: Issuing a Terminate Command Before the Suspend Command has Completed .................................................. 38 Figure 20: Allowing Enough Time for the Suspend Operation to Complete............................................................................ 38 Figure 21: OTP Security Register Program and Lock ............................................................................................................. 39 Figure 22: JEDEC Standard Hardware Reset......................................................................................................................... 40 Figure 23: AT25XE161D Register Structure ........................................................................................................................... 43 Figure 24: Status Register Read Operation Showing 8-bit Address Field .............................................................................. 93 Figure 25: Status Register Write Operation Showing 8-bit Address Field............................................................................... 96 Figure 26: Status Register Lock Operation with Two Verification Bytes ................................................................................. 97 Figure 27: Entering Deep Power-Down State ......................................................................................................................... 98 Figure 28: Resume from Deep Power-Down or Ultra-Deep Power-Down ............................................................................ 100 Figure 29: Entering Ultra-Deep Power-Down State .............................................................................................................. 101 Figure 30: Enable Reset and Reset Command Sequence (SPI Mode) ................................................................................ 102 Figure 31: Read JEDEC ID ................................................................................................................................................... 107 Figure 32: Active Status Interrupt.......................................................................................................................................... 108 Figure 33: AC Timing During Device Power Up .................................................................................................................... 115 Figure 34: AC Power-On Timing After a Brown-Out ............................................................................................................. 116 Figure 35: Serial Input Timing ............................................................................................................................................... 116 Figure 36: Serial Output Timing ............................................................................................................................................ 116 Figure 37: WP Timing for Write Status Register Command.................................................................................................. 117 Figure 38: HOLD Timing – Serial Input ................................................................................................................................. 117 Figure 39: HOLD Timing – Serial Output .............................................................................................................................. 117 Datasheet DS-AT25XE161D-158 Revision H 10 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Tables Table 1: Pin Descriptions .........................................................................................................................................................13 Table 2: Bus Transfer Types ....................................................................................................................................................15 Table 3: Device Block Memory Map — Block Erase Address Ranges ....................................................................................26 Table 4: AT25XE161D Device Block Memory Map — Page Erase and Page Program ..........................................................27 Table 5: AT25XE161D Device Block Protection Map — CMPRT = 0, WPS = 0......................................................................29 Table 6: AT25XE161D Device Block Protection Map — CMPRT = 1, WPS = 0......................................................................30 Table 7: Entering DPD or UDPD Mode ....................................................................................................................................32 Table 8: Exiting DPD or UDPD Mode.......................................................................................................................................32 Table 9: Resetting the Device During a Program or Erase Operation .....................................................................................34 Table 10: Encoding of Erase/Program Suspend Operations ...................................................................................................34 Table 11: Command Errors and Their Effect on the EE and PE Bits .......................................................................................36 Table 12: Indirect Addressing of Status Registers ...................................................................................................................44 Table 13: Status Register 1 Format .........................................................................................................................................45 Table 14: Status Register 2 Format .........................................................................................................................................46 Table 15: Status Register Protection During Normal Operation...............................................................................................47 Table 16: Status Register Protection During Reset..................................................................................................................47 Table 17: Status Register 3 Format .........................................................................................................................................48 Table 18: Status Register 4 Format .........................................................................................................................................49 Table 19: Status Register 5 Format .........................................................................................................................................50 Table 20: Status Register 6 Format .........................................................................................................................................51 Table 21: Command Listing .....................................................................................................................................................52 Table 22: Frequency and Number of Dummy Clocks Based on Command Type in Non-Wrap Mode (default) ......................60 Table 23: Frequency and Number of Dummy Clocks Based on Command Type in Wrap Mode (77h)...................................61 Table 24: Command Behavior During Sequential Programming Mode ...................................................................................68 Table 25: Command Behavior During Program/Erase or Program/Erase Suspend Operations..............................................73 Table 26: Encoding of Burst Wrap Bits ....................................................................................................................................78 Table 27: OTP Security Register 0 Bit Assignments................................................................................................................88 Table 28: OTP Security Register 1 Bit Assignments................................................................................................................88 Table 29: OTP Security Register 2 Bit Assignments................................................................................................................88 Table 30: OTP Security Register 3 Bit Assignments................................................................................................................88 Table 31: OTP Register Access Map .......................................................................................................................................89 Table 32: Indirect Addressing of the Status Registers .............................................................................................................92 Table 33: Indirect Status Register Read Sequence .................................................................................................................93 Table 34: Indirect Addressing of the Status Registers .............................................................................................................95 Table 35: Indirect Status Register Write Sequence .................................................................................................................96 Table 36: Options for Exiting DPD and UDPD Modes .............................................................................................................99 Table 37: Manufacturer and Device ID Details.......................................................................................................................106 Table 38: Device ID Part 4 Variants — EDI String Value.......................................................................................................106 Table 39: Power On Timing Requirements ............................................................................................................................115 Table 40: Valid Ordering Code Table.....................................................................................................................................118 Datasheet DS-AT25XE161D-158 Revision H 10 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 1 Product Overview The AT25XE161D is a serial interface Flash memory device designed for use in a wide variety of high-volume consumer and connected applications. It is optimized for low-energy applications and can be operated using modern Lithium battery technologies over a wide input voltage range of 1.65 V - 3.6 V. The AT25XE161D is ideally suited for systems in which program code is shadowed from Flash memory into embedded or external RAM (code shadow) for execution, and where small amounts of data are stored and updated locally in the Flash memory. The erase block sizes of the AT25XE161D have been optimized to meet the needs of today's code and data storage applications. The device supports 256-byte page erase, as well as 4 kiloByte (kB), 32 kB, and 64 kB block erase operations and a full-chip erase. By optimizing the size of the erase blocks, the memory space can be used much more efficiently. The device also includes an active interrupt allowing the host to sleep during lengthy programming or erase operations, allowing the memory device to wake the MCU when completed, and optimized energy consumption and class-leading 7nA ultra-deep power-down modes. The device contains four specialized 128-byte One-Time Programmable (OTP) security registers that can be used to store a unique device ID and locked key storage. Specifically designed for use in a wide variety of systems, the AT25XE161D supports read, program, and erase operations. No separate voltage is required for programming and erasing. Throughout this document, the term Multi-I/O is used generically to refer to all of the multiple I/O modes, including dual, quad, and XiP. Datasheet DS-AT25XE161D-158 Revision H 10 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 2 Block Diagram Figure 1 shows a block diagram of the AT25XE161D device. The Interface Control Logic block connects to external device through a set of pins. The state of these pins is distributed Interface Control Logic block to other blocks as necessary. The design also contains a 16 Mbit serial Flash memory array, a 256-byte SRAM buffer, and an I/O Interface Unit that operates depending on the type of data transfer mode. Serial Flash Memory Array CS 256-byte SRAM Buffer SCK SI (I/O0) SO (I/O1) Interface Control Logic WP (I/O2) SPI HOLD/RESET (I/O3) Dual Quad Figure 1: Block Diagram Datasheet DS-AT25XE161D-158 Revision H 11 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 3 Package Pinouts Figure 2 show the package pinouts for the following devices. Note that the Die Wafer Scale option is not shown. CS 1 8 VCC HOLD/RESET (I/O3) SO (I/O1) 2 7 HOLD/RESET (I/O3) 6 SCK WP (I/O2) 3 6 SCK 5 SI (I/O0) GND 4 5 SI (I/O0) CS 1 8 VCC SO (I/O1) 2 7 WP (I/O2) 3 GND 4 8S1 8-lead SOIC Package (0.150”) 8MA3 8-pad Ultra-Thin DFN Package 8S2 8-lead EIAJ SOIC Package (0.208”) 2 x 3 x 0.6 mm (Top View) (Top View) VCC CS A3 GND A1 SO B2 HOLD C3 SI C1 WP D2 SCK E3 E1 8-ball WLCSP Package 3 x 2 x 3 ball matrix (bottom view) Figure 2: Memory Package Types Datasheet DS-AT25XE161D-158 Revision H 12 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 1: Pin Descriptions Asserted State Type CS CHIP SELECT: Asserting the CS pin selects the device. When the CS pin is deasserted, the device is be deselected and normally be placed in standby mode (not Deep Power-Down mode), and the SO pin is in a high-impedance state. When the device is deselected, data are not accepted on the SI pin. A high-to-low transition on the CS pin is required to start an operation, and a lowto-high transition is required to end an operation. When ending an internally selftimed operation such as a program or erase cycle, the device does not enter the standby mode until the completion of the operation. Low Input SCK SERIAL CLOCK: This pin provides a clock to the device and controls the flow of data to and from the device. Command, address, and input data present on the SI pin is always latched in on the rising edge of SCK, while output data on the SO pin is always clocked out on the falling edge of SCK. - Input SI (I/O0) SERIAL INPUT: The SI pin shifts data into the device. The SI pin is used for all data input including command and address sequences. Data on the SI pin is always latched in on the rising edge of SCK. With the Multi I/O Read commands, the SI pin becomes an output pin (I/O0) in conjunction with other pins to allow either two or four bits of data on (I/O1:0 or I/O3:0) to be clocked out on every falling edge of SCK. Data present on the SI pin is ignored whenever the device is deselected (CS is deasserted and the device is in the reset condition). - Input/ Output SO (I/O1) SERIAL OUTPUT: The SO pin shifts data out from the device. Data on the SO pin is always clocked out on the falling edge of SCK. With the Multi I/O Read commands, the SO pin remains an output pin (I/O1) in conjunction with other pins to allow either two or four bits of data on (I/O1:0 or I/O3:0) to be clocked out on every falling edge of SCK. The SO pin is in a high-impedance state whenever the device is deselected (CS is deasserted and the device is in the reset condition). - Input/ Output WP (I/O2) WRITE PROTECT: The WP pin controls the hardware locking feature of the device. When set, this bit prevents the Status Register from being written. This bit is used in conjunction with other Status Register bits (CMPRT, BPSIZE, TB, and BP[2:0]) to provide hardware protection of the memory array. The WP pin is internally pulled-high and can be left floating if hardware controlled protection is not used. However, it is recommended that the WP pin also be externally connected to VCC whenever possible. When the QE bit in Status Register 2 is set, enabling quad mode (Output or I/O), the WP pin becomes bidirectional and functions as the IO2 pin used to transmit address and/or data, depending on the transfer mode. Low Input/ Output Symbol Name and Function Datasheet DS-AT25XE161D-158 Revision H 13 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 1: Pin Descriptions (Continued) Asserted State Type HOLD / RESET (I/O3) HOLD / RESET: The HOLD pin temporarily pauses serial communication without deselecting or resetting the device. While the HOLD pin is asserted, transitions on the SCK pin and data on the SI pin are ignored and the SO pin is placed in a high-impedance state. The CS pin must be asserted, and the SCK pin must be in the low state in order for a Hold condition to start. A Hold condition pauses serial communication only and does not have an effect on internally self-timed operations such as a program or erase cycle. With the Quad Output Byte/Page Program command, the HOLD pin becomes an input pin (I/O3) and, along with other pins, allows four bits (on I/O3-0) of data to be clocked in on every rising edge of SCK. With the Quad-Output Read commands, the HOLD Pin becomes an output pin (I/O3) in conjunction with other pins to allow four bits of data on (I/O33-0) to be clocked in on every falling edge of SCK. To maintain consistency with the SPI nomenclature, the HOLD (I/O3) pin is referenced as the HOLD pin unless specifically addressing the Quad Output mode in which case it is referenced as I/O3. The HOLD pin is internally pulled-high and can be left floating if the Hold function is not used. However, it is recommended that the HOLD pin also be externally connected to VCC whenever possible. When the QE bit in the Status register is cleared, the IO3 pin can be configured either as a HOLD pin or as a RESET pin depending on the state of the HOLD/ RESET bit 7 in Status Register 3. Note that when the QE bit is set, the HOLD or RESET function is not available because this pin transfers data. Low Input/ Output VCC DEVICE POWER SUPPLY: The VCC pin supplies the source voltage to the device. Operations at invalid VCC voltages can produce spurious results; do not attempt this. - Power GND GROUND: The ground reference for the power supply. Connect GND to the system ground. - Power Symbol Name and Function Datasheet DS-AT25XE161D-158 Revision H 14 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4 Device Operation This section describes the various data transfer modes supported by the device, as well as other system operations. 4.1 DATA TRANSFER MODES The JEDEC specification uses a numerical system to indicate the type of transfer for a given command. The nomenclature for this system is defined as (x-y-z) to indicate the number of active pins used for the command (x), address (y), and data (z). For an example, a designation of 1-1-2 indicates that one pin (SI) transfers the command, one pin (SI) is for the address, and two pins (SI and SO) are for data. The AT25XE161D supports the following transfer types. Table 2: Bus Transfer Types Transfer Type Transfer Name Command Pin(s) Used for Command Address Pin(s) Used for Address Data Pin(s) Used for Data 1-0-0 SPI Yes SI No -- No -- 1-1-0 SPI Yes SI Yes SI No -- 1-0-1 SPI Yes SI No -- Yes SI (write) SO (read) 1-1-1 SPI Yes SI Yes SI Yes SI (write) SO (read) 1-1-2 Dual Output Yes SI Yes SI Yes SI, SO 1-1-4 Quad Output Yes SI Yes SI Yes SI, SO, WP, HOLD 1-4-4 Quad I/O Yes SI Yes SI, SO, WP, HOLD Yes SI, SO, WP, HOLD 0-4-4 XiP No -- Yes SI, SO, WP, HOLD Yes SI, SO, WP, HOLD As shown in the table above, the AT25XE161D supports the following transfer formats, which are described in the following subsections.      Standard SPI Operation Dual Output Operation Quad Output Operation Quad I/O Operation XiP Operation 4.2 STANDARD SPI OPERATION Standard SPI transfers are divided into three elements; command, address, and data. SPI mode support the following four transfer types, as described in Table 2.     Command only, no address or data (1-0-0) Command and address only, no data (1-1-0) Command and data only, no address (1-0-1) Command, address, and data (1-1-1) For standard SPI transfers, command and address are always transferred on the SI pin. For write operations, data is also transferred on the SI pin. For read operations, data is transferred on the SO pin. The AT25XE161D supports the two most common SPI modes, 0 and 3, meaning that data is always latched on the rising edge of SCK and always output on the falling edge of SCK. Datasheet DS-AT25XE161D-158 Revision H 15 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.2.1 Command Only, No Address or Data (1-0-0) The following diagram shows a command-only transfer. In this type of transfer no address or data are required. An example is the Chip Erase (60h/C7h) command. A 1-0-0 transfer type is shown in Figure 3. &6         6&. &200$1' 6, & & & & & & & & 06% +,*+,03('$1&( 62 Figure 3: SPI Transfer — Command Only 4.2.2 Command and Address Only, No Data (1-1-0) The following diagram shows a transfer with command and address only. In this type of transfer no data is required. An example is the Block Erase (20h) command, where the address indicates the location of the block to be erased. The 1-1-0 transfer type is shown in Figure 4. &6                    6&. &200$1' 6, & & & & & & 06% 62 $''5(66%,76$$ & & $ $ $ $ $ $ $ $ $ $ $ $ 06% +,*+,03('$1&( Figure 4: SPI Transfer — Command and Address Only Datasheet DS-AT25XE161D-158 Revision H 16 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.2.3 Command and Data Only, No Address (1-0-1) The following diagram shows a transfer with command and data only. In this type of transfer no address is required. An example is the Status Register Read (05h/35h/15h) and Status Register Write (01h/31h/11h) commands, where the command itself indicates the location of the register. The 1-0-1 transfer type for a read operation is shown in Figure 5. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SCK COMMAND SI C C C C C C C C MSB DATA OUT 1 SO HIGH-IMPEDANCE D D D D D DATA OUT 1 D D D MSB D D D D D D MSB D D D D MSB Figure 5: SPI Transfer — Command and Data Only — Read Operation The 1-0-1 transfer type for a write operation is shown in Figure 6. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK COMMAND SI C C C C C C DATA IN C MSB SO C D D D D D D D D MSB HIGH-IMPEDANCE Figure 6: SPI Transfer — Command and Data Only — Write Operation Datasheet DS-AT25XE161D-158 Revision H 17 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.2.4 Command, Address, and Data (1-1-1) The following diagram shows a command, address, and data transfer. In this type of transfer the command and address are followed by one or more data types, depending on the command type. Note that this type of transfer can contain one or more dummy bytes between the end of the address and the beginning of the data output depending on the type of command. See Table 21 for more information. The 1-1-1 transfer type for a read operation without dummy bytes is shown in Figure 7. An example is the Read Array (03h) command. &6                          6&. &200$1' 6, & & & & & & $''5(66%,76$$ & & 06% $ $ $ $ $ $ $ $ $ 06% '$7$287 +,*+,03('$1&( 62 ' ' ' ' ' ' ' ' 06% ' ' 06% Figure 7: SPI Transfer — Command, Address, and Data — Read Operation with No Dummy Bytes The 1-1-1 transfer type for a read operation with dummy bytes is shown in Figure 8. An example is the Fast Read Array (0Bh) command. Note that eight dummy clocks are shown in the figure below for illustration purposes only. More than eight clocks may be required, depending on the type of operation and operating frequency. &6                                  6&. &200$1' 6, & & & & & & 06% $''5(66%,76$$ & & $ $ $ $ $ $ $ '800< $ $ 06% ; ; ; ; ; ; ; ; 06% '$7$287 62 +,*+,03('$1&( ' ' ' ' ' ' ' ' 06% ' ' 06% Figure 8: SPI Transfer — Command, Address, and Data — Read Operation with Dummy Bytes The 1-1-1 transfer type for a write operation is shown in Figure 9. An example is the Byte/Page Program (02h) command. Datasheet DS-AT25XE161D-158 Revision H 18 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support &6                         6&. &200$1' 6, & & & & & $''5(66%,76$$ & & & 06% $ $ $ $ $ $ $ '$7$,1 $ $ 06% ' ' ' ' ' ' ' ' 06% +,*+,03('$1&( 62 Figure 9: SPI Transfer — Command, Address, and Data — Write Operation 4.3 DUAL OUTPUT OPERATION (1-1-2) The AT25XE161D supports the Dual Output (1-1-2) transfer type which enhances overall throughput over the standard SPI mode. This mode transfer command and address on the SI pin like in SPI mode, but the data is transferred on to the SI and SO pins. This means that only half the number of clocks are required to transfer the data. A Dual Output read operation is shown in Figure 10. An example of this operation is a Dual Output Read (3Bh). Note that this type of transfer can contain one or more dummy bytes between the end of the address and the beginning of the data output depending on the type of command and the operating frequency. See Table 21 for more information. A Dual Output 1-1-2 read operation is shown in Figure 10.  0 1 2 3 4 5 6 7 8  9 10 11 12         29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48                   D๠ D๞ D๜ D๚   D๠ D๞ D๜ D๚ D๠ D๞ MSB     D๡ D๟ D๝ D๛ D๡ D๟ D๝ D๛ D๡ D๟ Figure 10: Dual Output Read — 1-pin Command, 1-Pin Address, and 2-Pin Data Datasheet DS-AT25XE161D-158 Revision H 19 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support A Dual Output (1-1-2) write operation is shown in Figure 11. An example of this operation is a Dual Output Byte/Page Program (A2h).         " !            !                                        " !   Figure 11: Dual Output Write — 1-pin Command, 1-Pin Address, and 2-Pin Data 4.4 QUAD OUTPUT OPERATION (1-1-4) The AT25XE161D supports the Quad Output mode which enhances overall throughput over the standard SPI and dual operation modes by increasing the data transfer rate. In this mode, data is transferred on four pins; SI, SO, WP, and HOLD. This means that only 1/4th the number of clocks are required to transfer the data relative to standard SPI mode. This is known as a 1-1-4 transfer which is defined as follows:  1-pin command, 1-pin address, and 4-pin data (1-1-4) In Quad Output mode the command (C) and address (A) are driven to the memory device on the SI (IO0) pin. During write operations, the SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3) pins switched to inputs and the data is driven on all four pins, allowing four data bits to be transferred on every clock. During read operations, once the command and address are transferred on the SI (IO0) pin, the SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3) pins switched to outputs and the data is driven on all four pins, allowing four data bits to be transferred on every clock. A 1-1-4 Quad Output read operation is shown in Figure 12. An example of this operation is a Quad Output Read (6Bh). Note that this type of transfer can contain one or more dummy bytes between the end of the address and the beginning of the data output depending on the type of command and the operating frequency. See Table 21 for more information. CS 0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 SCK COMMAND I/O0 C C C C C C Address Bits A23-A0 C C A A A A A A A DATA OUT 1 DUMMY A A X X X X X X X X DATA OUT 2 DATA OUT 3 DATA OUT 4 DATA OUT 5 D4 D0 D4 D0 D4 D0 D4 D0 D4 D0 (SI) High-Impedance I/O1 D5 D1 D5 D1 D5 D1 D5 D1 D5 D1 (SO) High-Impedance I/O2 D6 D2 D6 D2 D6 D2 D6 D2 D6 D2 (WP) High-Impedance I/O3 D7 D3 D7 D3 D7 D3 D7 D3 D7 D3 MSB (HOLD) MSB MSB MSB MSB Figure 12: Quad Output Transfer — 1-Pin Command, 1-Pin Address, and 4-Pin Data — Read Operation Datasheet DS-AT25XE161D-158 Revision H 20 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support A 1-1-4 Quad Output write operation is shown in Figure 13. An example of this operation is a Quad Output Byte/Page Program (32h). CS 0 1 2 3 4 5 6 7 8 9 10 11 12 29 30 31 32 33 34 35 36 37 38 39 40 41 SCK COMMAND I/O0 C C C C C C DATA IN 1 Address Bits A23-A0 C C A A A A A A A A A DATA IN 2 DATA IN 3 DATA IN 4 DATA IN 5 D4 D0 D4 D0 D4 D0 D4 D0 D4 D0 (SI) I/O1 High-Impedance D5 D1 D5 D1 D5 D1 D5 D1 D5 D1 (SO) I/O2 High-Impedance D6 D2 D6 D2 D6 D2 D6 D2 D6 D2 (WP) I/O3 High-Impedance D7 D3 D7 D3 D7 D3 D7 D3 D7 D3 MSB (HOLD) MSB MSB MSB MSB Figure 13: Quad Output Transfer — 1-Pin Command, 1-Pin Address, and 4-Pin Data — Write Operation Datasheet DS-AT25XE161D-158 Revision H 21 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.5 QUAD I/O OPERATION (1-4-4) The AT25XE161D supports the Quad I/O mode which enhances overall throughput over the standard SPI and dual operation modes by increasing the data transfer rate. In this mode, address and data are transferred on four pins; SI, SO, WP, and HOLD. This means that only 1/4th the number of clocks are required to transfer the address and data relative to standard SPI mode. This is known as a 1-4-4 transfer which is defined as follows: 1-pin command, 4-pin address, and 4-pin data (1-4-4). In Quad I/O mode the command (C) is driven to the memory device on the SI (IO0) pin. During write operations, the SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3) pins switched to inputs and the address and data are driven on all four pins, allowing four bits to be transferred on every clock. During read operations, once the command is transferred on the SI (IO0) pin, address is transferred on the SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3) pins, allowing a 24-bit address to be transferred in only six clocks. Once the address transfer is complete, these pins are switched to outputs and the data is driven on all four pins, allowing four data bits to be transferred on every clock. Note that mode bits M[7:0] must not be in high-Z (tri-state) mode. For optimal performance it is recommended to drive a value of 55h or FFh on these bits when not in XiP mode. A 1-4-4 Quad I/O read operation is shown in Figure 14. An example of this operation is a Manufacturer/Device ID Read (94h). Note that this type of transfer can contain one or more dummy bytes between the end of the address and the beginning of the data output depending on the type of command and the operating frequency. See Table 21 for more information. Command High-Impedance High-Impedance High-Impedance Figure 14: Quad I/O Transfer — 1-Pin Command, 4-Pin Address, and 4-Pin Data — Read Operation Datasheet DS-AT25XE161D-158 Revision H 22 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.6 XIP MODE OPERATION The XiP mode is similar to the Quad I/O mode in that both the address and data are transferred on all four pins, SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3). Using all four pins to transfer address and data allows XiP mode to reduce the overall number of clocks required to complete the operation, thereby streamlining code execution. The XiP mode is enabled by setting bit 2 (QE) of status register 1, and bit 3 (XiP) of status register 4. The QE bit enables Quad I/O mode, allowing address and data to be transferred on all four pins. Setting the XiP bit enables continuous read mode, allowing subsequent transfers to occur without driving the command each time. Continuous read mode is controlled by mode bits M[5:4] as explained below. Therefore, the initial EBh or E7h command requires the command to be driven, but for subsequent transfers the command is not required. The XiP mode is only used for the following commands:     EBh: XiP mode initial read (1-4-4) EBh: XiP mode subsequent reads (0-4-4) E7h: XiP mode initial read with Doubleword Aligned (DWA) address (1-4-4) E7h: XiP mode subsequent reads with DWA address (0-4-4) As shown above, the only difference between the EBh and E7h commands is that the E7h command is performed only on a double-word-aligned address boundary. The EBh command does not have this restriction. Note that mode bits M[7:0] must not be in high-Z (tri-state) mode. For optimal performance it is recommended to drive a value of 55h or FFh on these bits when not in XiP mode. The Set Burst with Wrap (77h) command does not access the memory directly, but rather is used in conjunction with the EBh and E7h commands to select 8-, 16-, 32-, or 64-Byte sections within a 256-byte page. The user selects the size by programming the wrap bits as part of the 77h command. See the table in Section 6.14, Set Burst Wrap (77h) for more information. When the EBh/E7h command is driven onto the bus, the associated data immediately following the address contains eight mode bits, known as M[7:0]. Of these bits, M[5:4] are decoded and used by hardware to determine if the device is in XiP continuous read mode. If the value on M[5:4] equals 2’b10, the device is placed into XiP mode to allow for continuous read operations to occur, meaning that for subsequent operations the command field is not required. Each time a subsequent transfer is made, it contains only the address and mode bits. 4.6.1 Initial Transfer and XiP Mode Detection (M[5:4]) The initial XiP transfer follows the 1-4-4 format, where the EBh or E7h command is transferred on the SI (IO0) pin, and address and data are transferred on the SI (IO0), SO (IO1), WP (IO2), and HOLD (IO3) pins. Because all four pins are used, the address requires only six clocks to transfer. The initial 1-4-4 XiP mode transfer is shown in Figure 15. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 SCK COMMAND I/O0 A23-A16 A15-A8 A7-A0 M7-M0 DUMMY DATA OUT 1 DATA OUT 2 C A20 A16 A12 A8 A4 A0 M4 M0 D 4 D0 D4 D0 I/O1 A21 A17 A13 A9 A5 A1 M5 M1 D5 D1 D5 D1 I/O2 A22 A18 A14 A10 A6 A2 M6 M2 D6 D2 D6 D 2 A23 A19 A15 A11 A7 A3 M7 M3 D7 D3 D7 D3 (SI) C C C C C C C MSB (SO) (WP) I/O3 (HOLD) Figure 15: XiP Transfer — 1-Pin Command, 4-Pin Address, and 4-Pin Data — Initial Read (M[5:4] = 2’b10) Datasheet DS-AT25XE161D-158 Revision H 23 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.6.2 Subsequent Transfers Once XiP mode is detected, subsequent operations do not require the command to be transferred. After the data stream starts, the user can deassert the CS pin. Once CS is deasserted, data output is suspended. Once CS is again driven low, only the address and M[7:0] mode data are required because the device is already in XiP mode. Each time a new operation is transferred on the bus, hardware decodes the M[7:0] bits. As long as M[5:4] have a value of 2’b10, the device is in XiP mode and it is not necessary to transfer the command. Once M[5:4] ≠ 2’b10 (any value other than 2’b10), the operation completes and the device exits XiP mode. A subsequent 0-4-4 XiP mode transfer is shown in Figure 16. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 SCK A23-A16 A15-A8 I/O 0 A7-A0 M7-M0 DUMMY DATA OUT 1 DATA OUT 2 A20 A16 A12 A8 A4 A0 M4 M0 D 4 D0 D4 D0 I/O 1 A21 A17 A13 A9 A5 A1 M5 M1 D5 D1 D5 D1 I/O 2 A22 A18 A14 A10 A6 A2 M6 M2 D6 D2 D6 D 2 A23 A19 A15 A11 A7 A3 M7 M3 D7 D3 D7 D3 (SI) (SO) (WP) I/O 3 (HOLD) Figure 16: XiP Transfer — No Command, 4-Pin Address, and 4-Pin Data — Subsequent Reads (M[5:4] = 2’b10) Datasheet DS-AT25XE161D-158 Revision H 24 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.6.3 Set Burst with Wrap As mentioned above, the Set Burst with Wrap (77h) command is used in conjunction with the EBh and E7h commands to select specific sections within a 256-byte page. When this command is transferred, the data field contains 8 wrap bits. Bits 6:4 of this field determine the wrap length, which can be between 8 and 64 bytes. See Section 6.14, Set Burst Wrap (77h) for more information. Note that when the device receives the EBh/E7h command with M[5:4] = 2’b10, then the device enters XiP mode. While in the XiP (0-4-4) mode (see Subsequent Transfers subsection above) the only command that the device can execute are EBh (or E7h). This is mandatory since the command field for subsequent transfers does not exist. During normal operation, the user sends the 77h command before entering XiP mode. If the user wants to issue a 77h command after XiP mode has been entered (to change the wrap length/properties), they must exit the XiP mode by sending a 0-4-4 command with M[5:4] ≠ 2’b10). This exits XiP mode. Then the user can issue the 77h command. The 77h command is a 1-4-4 XiP mode transfer as shown in Figure 17. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK DON’T CARE COMMAND I/O0 DON’T CARE DON”T CARE WRAP BIT X X X X X X W4 X I/O1 X X X X X X W5 X I/O2 X X X X X X W6 X X X X X X X (SI) C C C C C C C C MSB (SO) (WP) I/O3 (HOLD) X X Figure 17: XiP Transfer — 1-Pin Command, 4-Pin Address, and 4-Pin Data — Write Operation See Section 6.14, Set Burst Wrap (77h) for more information. 4.7 MEMORY ARCHITECTURE The memory array of the AT25XE161D memory array is divided into three levels of granularity comprising of blocks and pages;     64 kB blocks 32 kB blocks 4 kB blocks 256 byte pages The size of the erase blocks is optimized for both code and data storage applications, allowing both code and data segments to reside in their own erase regions. details each level and the number of pages per block. The program operations to the memory array can be done at the full page level or at the byte level (a variable number of bytes). Erase operations can be performed at the chip, block, or page level. Table 3 Datasheet DS-AT25XE161D-158 Revision H 25 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 3: Device Block Memory Map — Block Erase Address Ranges 64 kB Block Erase (D8h) 32 kB Block Erase (52h) 4 kB Block Erase (20h) 4 kB (B511) 1 32 kB (block 63) 64 kB (block 31) 32 kB (block 62) 64 kB (block 30) to 64 kB (block 1) 32 kB (block 61) to 32 kB (block 2) 32 kB (block 1) 64 kB (block 0 32 kB (block 0) Block Address Range 1FF000h - 1FFFFFh 4 kB (B510) 1FE000h - 1FEFFFh 4 kB (B509) 1FD000h - 1FDFFFh 4 kB (B508) 1FC000h - 1FCFFFh 4 kB (B507) 1FB000h - 1FBFFFh 4 kB (B506) 1FA000h - 1FAFFFh 4 kB (B505) 1F9000h - 1F9FFFh 4 kB (B504) 1F8000h - 1F8FFFh 4 kB (B503) 1F7000h - 1F7FFFh 4 kB (B502) 1F6000h - 1F6FFFh 4 kB (B501) 1F5000h - 1F5FFFh 4 kB (B500) 1F4000h - 1F4FFFh 4 kB (B499) 1F3000h - 1F3FFFh 4 kB (B498) 1F2000h - 1F2FFFh 4 kB (B497) 1F1000h - 1F1FFFh 4 kB (B496) 4 kB (B495) to 4 kB (B16) 4 kB (B15) 1F0000h - 1F0FFFh to 010000h - 010FFFh 00F000h - 00FFFFh 4 kB (B14) 00E000h - 00EFFFh 4 kB (B13) 00D000h - 00DFFFh 4 kB (B12) 00C000h - 00CFFFh 4 kB (B11) 00B000h - 00BFFFh 4 kB (B10) 00A000h - 00AFFFh 4 kB (B9) 009000h - 009FFFh 4 kB (B8) 008000h - 008FFFh 4 kB (B7) 007000h - 007FFFh 4 kB (B6) 006000h - 006FFFh 4 kB (B5) 005000h - 005FFFh 4 kB (B4) 004000h - 004FFFh 4 kB (B3) 003000h - 003FFFh 4 kB (B2) 002000h - 002FFFh 4 kB (B1) 001000h - 001FFFh 4 kB (B0) 000000h - 000FFFh 1EF000h - 1EFFFFh 1. B = block. Datasheet DS-AT25XE161D-158 Revision H 26 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support shows how one 4 kB block maps to sixteen 256 byte pages. The very top and bottom 4 Kbyte blocks of the address space are shown. Table 4 Table 4: AT25XE161D Device Block Memory Map — Page Erase and Page Program 4 kB Blocks 4 kB (B511) 1 256 Byte Page Erase 256 Bytes 1 - 256 Byte Page Program 1FFF00h - 1FFFFFh 4 kB (B510) 256 Bytes 1FFE00h - 1FFEFFh 4 kB (B509) 256 Bytes 1FFD00h - 1FFDFFh 4 kB (B508) 256 Bytes 1FFC00h - 1FFCFFh 4 kB (B507) 256 Bytes 1FFB00h - 1FFBFFh 4 kB (B506) 256 Bytes 1FFA00h - 1FFAFFh 4 kB (B505) 256 Bytes 1FF900h - 1FF9FFh 4 kB (B504) 256 Bytes 1FF800h - 1FF8FFh 4 kB (B503) 256 Bytes 1FF700h - 1FF7FFh 4 kB (B502) 256 Bytes 1FF600h - 1FF6FFh 4 kB (B501) 256 Bytes 1FF500h - 1FF5FFh 4 kB (B500) 256 Bytes 1FF400h - 1FF4FFh 4 kB (B499) 256 Bytes 1FF300h - 1FF3FFh 4 kB (B498) 256 Bytes 1FF200h - 1FF2FFh 4 kB (B497) 256 Bytes 1FF100h - 1FF1FFh 256 Bytes . . . 256 Bytes 1FF000h - 1FF0FFh . . . 000F00h - 000FFFh 4 kB (B14) 256 Bytes 000E00h - 000EFFh 4 kB (B13) 256 Bytes 000D00h - 000DFFh 4 kB (B12) 256 Bytes 000C00h - 000CFFh 4 kB (B11) 256 Bytes 000B00h - 000BFFh 4 kB (B10) 256 Bytes 000A00h - 000AFFh 4 kB (B9) 256 Bytes 000900h - 0009FFh 4 kB (B8) 256 Bytes 000800h - 0008FFh 4 kB (B7) 256 Bytes 000700h - 0007FFh 4 kB (B6) 256 Bytes 000600h - 0006FFh 4 kB (B5) 256 Bytes 000500h - 0005FFh 4 kB (B4) 256 Bytes 000400h - 0004FFh 4 kB (B3) 256 Bytes 000300h - 0003FFh 4 kB (B2) 256 Bytes 000200h - 0002FFh 4 kB (B1) 256 Bytes 000100h - 0001FFh 4 kB (B0) 256 Bytes 000000h - 0000FFh 4 kB (B496) 4kB (B494) to 4kB (B16) 4 kB (B15) . . . 1. B = Block Datasheet DS-AT25XE161D-158 Revision H 27 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.8 MEMORY PROTECTION The AT25XE161D device incorporates a robust memory protection scheme that allows memory locations to be protected down to the 4 kB block level. The device provides the ability to globally lock all blocks in one operation, or to lock individual blocks on a per-block basis. 4.8.1 Standard Memory Protection The standard memory protection scheme is invoked by clearing bit 2 (WPS) of Status register 3. When this bit is cleared, the AT25XE161D uses a combination of the following register fields to set the memory protection scheme:     CMPRT: When this bit is set, unprotected areas of memory become protected, and protected areas of memory become unprotected. For example, when CMPRT = 0, a top 64 kB block can be protected while the rest of the array is not; when CMP = 1, the same 64 kB block becomes unprotected while the rest of the array becomes read-only. See bit 6 of Section 5.4, Status Register 2 for more information. BPSIZE: This bit works in conjunction with bits 4:2 (BP[2:0]) in Status register 1 to determine the size of the blocks to be protected. Block sizes of 4 kB and 64 kB can be protected depending on the state of this bit. See bit 6 of Section 5.3, Status Register 1 for more information. TB: This bit indicates if the protection is from the bottom up of the top down of the memory. See bit 5 of Section 5.3, Status Register 1 for more information. BP[2:0]: This field can be programmed to protect all of the memory array, none of the memory array, or a portion of the memory array. When that portion of the memory if protected, it is protected from the program and erase commands. See bit 4:2 of Section 5.3, Status Register 1 for more information. The protection scheme differs based on the setting of the CMPRT bit described above. Table 5 shows the relationship between the BPSIZE, BP[2:0], and TB bits when CMPRT = 0. The right-most column shows the protected address range. All addresses not shown are unprotected. Datasheet DS-AT25XE161D-158 Revision H 28 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 5: AT25XE161D Device Block Protection Map — CMPRT = 0, WPS = 0 CMPRT BPSIZE TB BP[2:0] Protected Address Range 0 0 0 3'b000 NONE 0 0 0 3'b001 1F0000 - 1FFFFF 0 0 0 3'b010 1E0000 - 1FFFFF 0 0 0 3'b011 1C0000 - 1FFFFF 0 0 0 3'b100 180000 - 1FFFFF 0 0 0 3'b101 100000 - 1FFFFF 0 0 0 3'b110 000000 - 1FFFFF 0 0 0 3'b111 000000 - 1FFFFF 0 0 1 3'b000 NONE 0 0 1 3'b001 000000 - 00FFFF 0 0 1 3'b010 000000 - 01FFFF 0 0 1 3'b011 000000 - 03FFFF 0 0 1 3'b100 000000 - 07FFFF 0 0 1 3'b101 000000 - 0FFFFF 0 0 1 3'b110 000000 - 1FFFFF 0 0 1 3'b111 000000 - 1FFFFF 0 1 0 3'b000 NONE 0 1 0 3'b001 1FF000 - 1FFFFF 0 1 0 3'b010 1FE000 - 1FFFFF 0 1 0 3'b011 1FC000 - 1FFFFF 0 1 0 3'b100 1F8000 - 1FFFFF 0 1 0 3'b101 1F8000 - 1FFFFF 0 1 0 3'b110 000000 - 1FFFFF 0 1 0 3'b111 000000 - 1FFFFF 0 1 1 3'b000 NONE 0 1 1 3'b001 000000 - 000FFF 0 1 1 3'b010 000000 - 001FFF 0 1 1 3'b011 000000 - 003FFF 0 1 1 3'b100 000000 - 007FFF 0 1 1 3'b101 000000 - 007FFF 0 1 1 3'b110 000000 - 1FFFFF 0 1 1 3'b111 000000 - 1FFFFF Datasheet DS-AT25XE161D-158 Revision H 29 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 6 shows the relationship between the BPSIZE, BP[2:0], and TB bits when CMPRT = 1. Table 6: AT25XE161D Device Block Protection Map — CMPRT = 1, WPS = 0 CMPRT BPSIZE TB BP[2:0] Protected Address Range 1 0 0 3'b000 000000 - 1FFFFF 1 0 0 3'b001 000000 - 1EFFFF 1 0 0 3'b010 000000 - 1DFFFF 1 0 0 3'b011 000000 - 1BFFFF 1 0 0 3'b100 000000 - 17FFFF 1 0 0 3'b101 000000 - 0FFFFF 1 0 0 3'b110 NONE 1 0 0 3'b111 NONE 1 0 1 3'b000 000000 - 1FFFFF 1 0 1 3'b001 010000 - 1FFFFF 1 0 1 3'b010 020000 - 1FFFFF 1 0 1 3'b011 040000 - 1FFFFF 1 0 1 3'b100 080000 - 1FFFFF 1 0 1 3'b101 100000 - 1FFFFF 1 0 1 3'b110 NONE 1 0 1 3'b111 NONE 1 1 0 3'b000 000000 - 1FFFFF 1 1 0 3'b001 000000 - 1FEFFF12 1 1 0 3'b010 000000 - 1FDFFF(1) (2) 1 1 0 3'b011 000000 - 1FBFFF(1) (2) 1 1 0 3'b100 000000 - 1F7FFF(2) 1 1 0 3'b101 000000 - 1F7FFF(2) 1 1 0 3'b110 NONE 1 1 0 3'b111 NONE 1 1 1 3'b000 000000 - 1FFFFF 1 1 1 3'b001 001000 - 1FFFFF34 1 1 1 3'b010 002000 - 1FFFFF(3) (4) 1 1 1 3'b011 004000 - 1FFFFF(3) (4) 1 1 1 3'b100 008000 - 1FFFFF(4) 1 1 1 3'b101 008000 - 1FFFFF(4) 1 1 1 3'b110 NONE 1 1 1 3'b111 NONE 1 When the 32 kB Erase command is used, the protected region is 0x00_0000 - 0x1F_7FFF. 2 When the 64 kB Erase command is used, the protected region is 0x00_0000 - 0x1E_FFFF. 3 When the 32 kB Erase command is used, the protected region is 0x00_8000 - 0x1F_FFFF. 4 When the 64 kB Erase command is used, the protected region is 0x01_0000 - 0x1F_FFFF. Datasheet DS-AT25XE161D-158 Revision H 30 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.8.2 Individual Block Lock and Unlock In addition to the standard protection scheme described in the previous subsection, the AT25XE161D device also provides the ability to lock individual memory locations. Protection of memory locations can be applied individually using the Individual Block Lock (36h) command and the Individual Block Unlock (39h) command. Note that in the AT25XE161D device all lock bits are set by default, making all memory locations protected. The user must execute a series of one or more Individual Block Unlock (39h) commands to unlock the desired memory locations. The individual memory protection scheme is invoked by setting bit 2 (WPS) of status register 3. When this bit is set, the AT25XE161D uses the Individual Block Lock (36h) command that provides the address of the 4 kB or 64 kB block to be locked. See Table 17 for more information on the WPS bit. Table 3 above shows the address ranges for each 4 kB block corresponding to the top and bottom 64 kB blocks of the memory map. The appropriate 24-bit address is driven on the SI pin after the 36h command. After decoding the command, hardware reads the address and sets the appropriate lock bit for that 4 kB block. Note that the ability to lock 4 kB blocks only applies to the top and bottom 64 kB blocks of the map. This corresponds to blocks 0 and 31. For 64 kB blocks 1 - 30, the blocks can only be locked on the 64 kB boundary (1 lock bit per 64 kB). This equates to a total of 62 lock bits;    16 bits, one per 4 kB sub-block in the top 64 kB block 16 bits, one per 4 kB sub-block in the bottom 64 kB block 30 bits, one each for 64 kB blocks 1 - 30 See Section 6.21, Individual Block Lock (36h) and Section 6.22, Individual Block Unlock (39h) for more information. 4.8.3 Global Block Lock and Unlock In addition to individual block protection of memory locations as described in the previous subsection, the AT25XE161D also allows for the blocks to be locked and unlocked globally using the Global Block Lock (7Eh) and the Global Block Unlock (98h) commands. Note that in the AT25XE161D device all lock bits are set by default, making all memory locations protected. The user must execute a Global Unlock Block command to unlock the memory locations. See Section 6.24, Global Block Lock (7Eh) and Section 6.25, Global Block Unlock (98h) for more information. 4.8.4 Reading the State of the Lock Bits In addition to globally or individually locking and unlocking selected memory blocks as described above, the AT25XE161D device allows the user to poll any block in memory to determine if it has been locked. This is done by executing either the 3Ch or 3Dh command, along with the 24-bit address. Both of these command perform the exact same operation and can be used interchangeably. Once this information is decoded, hardware fetches the 8-bit lock field from the requested location and outputs this information onto the SO pin. The most significant bit (MSB) of the value is transferred first, and the least significant bit (LSB) is transferred last. If the LSB is 1, the corresponding block is locked and no erase or program operation can be executed to that block. If the LSB is 0, the block or section is unlocked and program/erase operations are allowed. See Section 6.23, Read Block Lock (3Ch/ 3Dh) for more information. Datasheet DS-AT25XE161D-158 Revision H 31 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.9 POWER-DOWN CONSIDERATIONS The AT25XE161D device supports the Deep Power-Down (B9h) and Ultra-Deep Power-Down (79h/B9h) modes. Also, bit 7 (PDM) of Status register 4 (SR4) can be used to select either of these modes using the B9h command. The 79h command is provided for backward compatibility. There are three ways to enter power-down mode: 1. Set the PDM bit in SR4 (logic 1) and execute the B9h command to place the device into Deep Power-Down (DPD) mode. In this mode it is possible to execute the Resume from Deep Power-Down (ABh) command or Enable Reset (66h) and Reset Device (99h) commands in order to exit DPD mode. The content of SRAM buffer is preserved in this case. The device could also be reset by JEDEC reset, hardware reset, or power-on-reset in order to exit DPD mode. The exit from DPD mode time is defined by the tRDPD timing parameter in Section 7.5. Also see Section 4.9.2, below. Note that in the AT25XE161D device, simply deasserting CS as in other devices does not exit DPD mode. 2. Clear the PDM bit in SR4 (logic 0) and execute the B9h command to place the device into Ultra-Deep Power-Down (UDPD) mode. To exit this mode, it is necessary to execute the Resume from Ultra-Deep Power-Down (ABh) command or a JEDEC reset, hardware reset, or power-on-reset to initiate an internal reset of the device. The contents of the SRAM buffer are NOT preserved. The resume from UDPD mode recovery time is defined by the tRUDPD timing parameter in Section 7.5. Also see Section 4.9.2, below. Note that in the AT25XE161D device, simply deasserting CS as in other devices does NOT exit UDPD mode. 3. Execute the 79h command to place the device into Ultra-Deep Power-Down (UDPD) mode. If this command is used, the state of the PDM bit in SR4 is ignored. This mode allows for software backward compatibility. A device reset is required to exit UPDP mode. In this mode it is necessary to execute the Resume from Ultra-Deep Power-Down (ABh) command or a JEDEC reset, hardware reset or power-on-reset to initiate an internal reset of the device. The contents of the SRAM buffer are NOT preserved. The exit from UDPD mode recovery time is defined by the tRUDPD timing parameter in Section 7.5. Also see Section 4.9.2, below for more information on exiting power-down mode. 4.9.1 Entering Power-Down Mode The conditions for entering DPD or UDPD mode are shown in the Table 7. The PDM column indicates the state of the Power-Down Mode bit in Status Register 4. Table 7: Entering DPD or UDPD Mode Power-Down Mode SRAM Contents Power-Down Exit Recovery Time 1 Deep Power-Down Retained Short 0 Ultra-Deep Power-Down Lost Long x Ultra-Deep Power-Down Lost Long Command PDM bit B9h B9h 79h 4.9.2 Exiting Power-Down Mode The following methods can be used to exit DPD or UDPD mode. Table 8: Exiting DPD or UDPD Mode Command PDM bit PowerDown Mode B9h 1 DPD ABh2 Y Y Y UDPD ABh3 Y Y UDPD ABh(3) Y Y B9h 79h 0 x Exit Com- Power On mand Reset JEDEC Reset Hardware 66h/99h Reset Pin1 Command Terminate (F0h) Status After Exit Y N Idle Y N N Idle Y N N Idle 1 Hardware reset function must be enabled by software before entering the Power-Down mode. See bit 7 of Status Register 3. 2 Executing the ABh command in DPD mode returns the device to an idle state. The SRAM contents are retained. 3 Executing the ABh command in UDPD mode causes the device to initiate an internal reset sequence. The SRAM contents are undefined. Datasheet DS-AT25XE161D-158 Revision H 32 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support ABh Command Executing the ABh command while in the Deep Power-Down (DPD) mode causes the device to exit DPD and return back to an idle state. This command does not reset the device and no data is lost. Executing the ABh command while in the Ultra-Deep Power-Down (UDPD) mode causes the device to perform an internal reset. In this case the SRAM contents are undefined. Device Resets In addition to the ABh command described above, performing a Power On Reset (POR), a JEDEC reset, or asserting the hardware reset pin (RESET) also causes the device to exit DPD or UDPD mode. If the device is reset in any of these three ways, the SRAM contents are undefined. Enable Reset (66h) / Reset (99h) Command As shown in Table 8, the 66h/99h reset command is accepted in DPD mode. In this case the SRAM contents are retained. The device does not exit UDPD mode, regardless of whether the device entered UDPD mode using the B9h command or the 79h command. To exit UDPD mode, the device must be reset as described in the previous subsections. Terminate Command (F0h) The Terminate (F0) command does not cause exit from DPD or UDPD modes. To exit DPD or UDPD mode still requires either the ABh command, or resetting the device as described in the previous subsections. 4.9.3 Reset During Program and Erase Commands The AT25XE161D device supports the following program and erase operations. Program operations include:        Byte/Page Program (02h) Sequential Program (AFh/ADh) Dual Output Byte/Page Program (A2h) Quad Output Byte/Page Program (32h) Read-Modify-Write (0Ah) Main Memory Page Program Without Erase (88h) Program Security Register (9Bh) Erase operations include:      Page Erase (81h/DBh) 4 kB Block Erase (20h) 32 kB Block Erase (52h) 64 kB Block Erase (D8h) Chip Erase (60h/C7h) These commands are affected when resetting the device as shown in Table 9. In this table, a ‘Y’ entry indicates that the device is reset when that type of reset occurs during the corresponding command. A ‘N’ entry indicates that the operation is terminated, but the device is not reset. For example, when the F0h command is executed during a program or erase operation, the operation is halted, but the device is not reset. Datasheet DS-AT25XE161D-158 Revision H 33 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 9: Resetting the Device During a Program or Erase Operation Command Type Power-On Reset JEDEC Reset Hardware Reset Pin 66h/99h Command Terminate (F0h) Program Y Y Y Y N Erase Y Y Y Y N 4.10 ERASE/PROGRAM SUSPEND CONSIDERATIONS AND NESTED OPERATIONS The AT25XE161D device provides three status register bits to manage program and erase suspend operations.  SUSP — Status Register 2, bit 7. The SUSP bit is set by hardware and indicates that the program or erase operation has been suspended. ES — Status Register 5, bit 3. The ES bit is set by hardware whenever an erase operation is suspended.  PS — Status Register 5, bit 2. The PS bit is set by hardware whenever a program operation is suspended.  These three bits work in conjunction to define the state of a suspend operation, as shown in Table 10. In this table, the SUSP is a logical OR of the ES and PS bits. When either the ES or PS bit is set, the SUSP bit is set. When both of the ES and PS bits are cleared, the SUSP bit is cleared. These bits relate to the flow diagram in Figure 18 below as follows: when the erase operation is suspended, hardware sets the ES bit. When the program operation is suspended, hardware sets the PS bit. Once the program operation is complete, hardware clears the PS bit. Finally, when the erase operation is completed, hardware clears the ES bit. Table 10: Encoding of Erase/Program Suspend Operations SUSP ES PS Status 0 0 0 No suspend operation in progress. 1 0 1 Program suspend operation in progress. 1 1 0 Erase suspend operation in progress. 1 1 1 Nested erase/program suspend operation in progress. 4.10.1 Nested Operations The AT25XE161D device supports nested erase and program suspend operations. An erase operation can be suspended and a program operation started. This operation can then also be suspended and another operation commenced, such as a read. After the read operation is complete, the program operation can be resumed. Once the program operation is completed, the erase operation can be resumed. Nested operations adhere to the following constraints:   Suspending an erase operation followed by a program operation is supported Suspending a program operation followed by an erase operation is NOT supported The erase operation must be suspended first, followed by suspension of the program operation. Figure 18 shows an example of a flow diagram of a nested operation. Datasheet DS-AT25XE161D-158 Revision H 34 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support E xe c u te D 8 h 6 4 kB B lo ck E ra se E xe cu te th e D 8 h co m m a n d to in itia te a 6 4 kB e ra se o p e ra tio n . E xe cu te 7 5 h 6 4 kB B lo ck E ra s e S u s p e n d E xe cu te th e 7 5 h c o m m a n d to su s p e n d th e 6 4 kB b lo ck e ra s e o p e ra tio n . E xe cu te 0 2 h B y te /P a g e P ro g ra m E xe cu te th e 0 2 h c o m m a n d to in itia te a b y te /p a g e p ro g ra m o p e ra tio n . E xe cu te 7 5 h B yte /P a g e P ro g ra m S u sp e n d E xe cu te th e 7 5 h c o m m a n d to su s p e n d th e b yte /p a g e p ro g ra m o p e ra tio n . E xe cu te 0 3 h R e a d A rra y O p e ra tio n E xe cu te th e 0 3 h co m m a n d to in itia te a re a d a rra y o p e ra tio n . C h e ck to se e if th e re a d a rra y o p e ra tio n is c o m p le te . T h e s u s p e n d e d p a g e p ro g ra m o p e ra tio n c a n n o t b e re s u m e d u n til th e 0 3 h co m m a n d h a s co m p le te d . N Is 0 3 h D o n e ? Y O n ce th e 0 3 h re a d a rra y c o m m a n d h a s co m p le te d , th e su s p e n d e d p ro g ra m o p e ra tio n ca n b e re s u m e d u sin g th e 7 A h co m m a n d . E x e cu te 7 A h P ro g ra m R e s u m e O p e ra tio n C h e ck to se e if th e b y te /p a g e p ro g ra m o p e ra tio n is co m p le te . T h e s u s p e n d e d 6 4 kB e ra se o p e ra tio n c a n n o t b e re su m e d u n til th e 0 2 h co m m a n d h a s co m p le te d . N Is P ro g ra m O p D one? Y O n ce th e 0 2 h b yte /p a g e p ro g ra m co m m a n d h a s co m p le te d , th e su sp e n d e d e ra se o p e ra tio n c a n b e re s u m e d u sin g th e 7 A h co m m a n d . E x e cu te 7 A h E ra se R e su m e O p e ra tio n C h e ck to se e if th e 6 4 k B e ra se o p e ra tio n is co m p le te . N Is E ra s e O p D one? Y N e s te d O p e ra tio n C o m p le te Figure 18: Flow Diagram of Nested Operations Example Datasheet DS-AT25XE161D-158 Revision H 35 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.10.2 Program and Erase Errors The AT25XE161D device provides two Status register bits to indicate program and erase errors.   EE — Status Register 4, bit 4. The EE bit is set by hardware whenever an error occurs during an erase operation. PE — Status Register 4, bit 5. The PE bit is set by hardware whenever an error occurs during a program operation. When a new program or erase command is accepted by the device, hardware clears the EE or PE bits, depending on the command. The device clears the EE bit when a new Block Erase or Chip Erase command is accepted. The device clears the PE bit when a new Byte/Page Program, Buffer to M-M P-P without Erase Sequential Programming, Program OTP Security Register, Write Status Register or Status Register Lock command is accepted. If an error is detected during the command execution, then the EE or PE flag is set. These flags hold their contents even if the program/erase operation is suspended. Note that the Resume command does not change the state of the EE and PE bits. If a Terminate command is issued while the device is busy (executing program/erase), then the PE or EE flag is set. The PE and EE bits are volatile, meaning that any reset operation clears these bits. The ABh command exits Deep Power-Down (DPD) or Ultra-Deep Power-Down (UDPD) mode. If the device is in DPD mode and the user issues the ABh command, then the device exits DPD mode but does not change the state of the PE and EE bits. However, if the ABh command is executed and the device exits from UDPD mode, then the device initiates a reset, which causes both the PE and EE bits to be cleared. When an error occurs during a given command, the EE and PE bits are set as shown in Table 11. Note that for any of the commands where a ‘Yes’ appears in the EE or PE columns, when a new command is issued, the EE or PE bit is cleared. Therefore, when the bit is set initially due to an error being detected, it is incumbent on software to detect when these bits are set and take the necessary steps to determine the exact error. Table 11: Command Errors and Their Effect on the EE and PE Bits Command Name Command Code Sets the EE Bit Sets the PE Bit Read Array 03h, 3Bh, 6Bh, EBh, E7h No No Buffer Read D4h No No Block Erase 81h, DBh, 20h, 52h, D8h Yes No Chip Erase 60h, C7h Yes No Buffer Write 84h No No 02h, A2h, 32h No Yes Buffer to M-M P-P without Erase 88h No Yes Read-Modify-Write 0Ah No Yes Sequential Programming ADh, AFh No Yes Program/Erase Suspend B0h, 75h No No Program/Erase Resume Byte/Page Program D0h, 7Ah No No Write Enable 06h No No Write Disable 04h No No Volatile Write Enable 50h No No Individual Block Lock 36h No No Individual Block Unlock 39h No No Global Block Lock 7Eh No No Global Block Unlock 98h No No 3Ch, 3Dh No No 9Bh No Yes Read Block Lock Status Program OTP Security Register Datasheet DS-AT25XE161D-158 Revision H 36 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 11: Command Errors and Their Effect on the EE and PE Bits (Continued) Command Name Command Code Sets the EE Bit Sets the PE Bit 4Bh No No 05h, 35h, 15h No No 65h No No 01h, 31h, 11h No Yes Write Status Registers (indirect) 71h No Yes Status Register Lock 6Fh No Yes Active Interrupt 25h No No Terminate F0h Enable Reset 66h No No Reset Device 99h Cleared on POR Cleared on POR 9Fh, 90h, 94h No No Deep Power-Down B9h No No Resume from Deep Power-Down ABh No No Resume from Ultra-Deep Power-Down ABh Cleared on POR Cleared on POR Ultra-Deep Power-Down 79h No No Read SFDP 5Ah No No Set Burst with Wrap 77h No No Low Battery Detect EFh No No Read OTP Security Register Read Status Registers (direct) Read Status Registers (indirect) Write Status Registers (direct) Read Mfg ID and Device ID Yes Yes (if Erase command is terminat- (if Program command is termied) nated) 4.10.3 Suspending and Terminating a Program or Erase Operation Program Operation A self-timed program operation can be suspended using the Suspend (75h) command and terminated using the Terminate (F0h) command. The device responds to either of these commands by initiating a sequence which completes some internal suboperations, brings the internal voltage supplies to their quiescent state, saves the intermediate address counters and states, and sets either the PS (Program Suspend) bit in Status register 4 in the case of a Suspend command, or the PE (Program Error) bit in status register 5 in case of the Terminate command. When the user issues the Suspend command the device requires a period of time equal to tSUS before the BUSY flag goes low and the PS flag goes high. Similarly, when the user issues the Terminate command the device requires a period of time equal to tSWTERM before the BUSY flag goes low and the PE flag goes high. If the user issues the Suspend command, and then issues the Terminate command before the device has completed the internal suspend operation, the device honors the Terminate command and sets the PE flag. The PS flags is not set, and the BUSY flag is cleared. At this point the self-timed command that was terminated cannot be resumed, and the region of the memory that was being programmed/erased is left in an intermediate state. Erase Operation A self-timed erase operation can be suspended using the Suspend (75h) command and terminated using the Terminate (F0h) command. The device responds to either of these commands by initiating a sequence which completes some internal suboperations, brings the internal voltage supplies to their quiescent state, saves the intermediate address counters and states, and sets either the ES (Erase Suspend) bit in status register 4 in the case of a Suspend command, or the EE (Erase Error) bit in status register 5 in case of the Terminate command. Datasheet DS-AT25XE161D-158 Revision H 37 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support When the user issues the Suspend command the device requires a period of time equal to tSUS before the BUSY flag goes low and the PE flag goes high. Similarly, when the user issues the Terminate command the device requires a period of time equal to tSWTERM before the BUSY flag goes low and the EE flag goes high. If the user issues the Suspend command, and then issues the Terminate command before the device has completed the internal suspend operation, the device honors the Terminate command and sets the EE flag. The ES flags is not set, and the BUSY flag is cleared. At this point the self-timed command that was terminated cannot be resumed, and the region of the memory that was being programmed/erased is left in an intermediate state. This concept is shown in Figure 19. BUSY CSB Command Suspend Stop Terminate EE/PE ES/PS Figure 19: Issuing a Terminate Command Before the Suspend Command has Completed Terminate After Suspend If the time between the Suspend command and the Terminate command is large enough, then the device can finish the internal suspend operation before the Terminate command is received. In this case, the device clears the BUSY bit in Status register 1, and the ES/PS flags in Status register 5 are set. Now when the device receives the Terminate command, it is ignored by the hardware. This concept is shown in Figure 20. BUSY CSB Command Suspend Stop Terminate EE/PE ES/PS Figure 20: Allowing Enough Time for the Suspend Operation to Complete If the user wishes to perform another program operation, they must check the status of both the PS and PE flags in Status registers 4 and 5, respectively, to determine the next action. If the PS bit is cleared and the PE bit is set, the user can issue a new Program command. Note that previous Program command that was terminated leaves that region of memory in an intermediate state, and it is recommended to erase this region of memory before attempting to program it. If the ES/PS bit is set, then the user cannot issue another Program/Erase command. The user must first issue a Resume command to re-start the suspended program/erase operation, then either allow it to run to completion or terminate it using the Terminate command. The user can now issue a new Program/Erase command. Datasheet DS-AT25XE161D-158 Revision H 38 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.10.4 Terminating a Non-Volatile Register Operation in Progress The Terminate (F0h) command, the Software Reset command (66h + 99h), the hardware reset (RESET on IO3) pin, and the JEDEC Reset are ways to terminate any on-going internal self-timed program/erase operation (and in some cases reset the device). However, abruptly terminating the Status Register Write, Status Register Lock, or OTP Security Register Program command is not desirable because this can leave these non-volatile registers in an indeterminate state. Therefore when the device is busy executing the Status Register Write, the Status Register Lock or the OTP Security Register Program command, then the Terminate command is ignored. The software reset, hardware reset, and JEDEC reset actions are delayed until after the internal self-timed operations are completed; once the internal operation is completed, the device is reset. See Section 4.12 for more information on how to perform a JEDEC hardware reset. 4.11 OTP SECURITY REGISTER LOCK The AT25XE161D device supports four 128-byte OTP security registers. One register is programmed by Dialog Semiconductor at the factory and is always locked. The other three OTP registers can be programmed by the user and become locked whenever any bit in the most significant byte of that register is written. In response to this write operation, hardware writes bits 5:3 (SL3:SL1) of Status register 2 to indicate that the corresponding register has been locked. Software can read this field to determine which registers have been locked. Each byte of each register can be written using address bits 8:0 that are driven with the Program OTP Security register command (9Bh). See Table 31 in Section 6.26, Program Security Register (9Bh) for an exact encoding of these address bits. This concept is shown in Figure 21. In this figure, A[8:7] are used to select between the four OTP Security registers, and A[6:0] are used to select one of the 128 bytes within that register. A value of 7’b1111111 on A[6:0] indicates an access to the MSB of that register as shown below. Software programs any bit in the most significant byte of OTP Security register 3. Software programs any bit in the most significant byte of OTP Security register 2. Software programs any bit in the most significant byte of OTP Security register 1. A[8:0] = 111111111 A[8:0] = 101111111 A[8:0] = 011111111 Byte number 511 510:385 OTP Register 3 User-Defined Byte number 384 383 Hardware sets bit 4 of SR2 Hardware sets bit 5 of SR2 No programming allowed. OTP register 0 is programmed by Adesto at the factory. The value in this register can be read by executing the 4Bh command. Byte number 382:257 256 255 OTP Register 2 User-Defined 254:129 Byte number 128 OTP Register 1 User-Defined 127 126:1 0 OTP Register 0 Factory Programmed by Adesto Hardware sets bit 3 of SR2 SL3 SL2 SL1 7 5 4 3 Status Register 2 0 Figure 21: OTP Security Register Program and Lock Datasheet DS-AT25XE161D-158 Revision H 39 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.12 STANDARD JEDEC HARDWARE RESET The JEDEC hardware reset sequence does not use the SCK pin. The SCK pin must be held low (mode 0) or high (mode 3) through the entire reset sequence. This prevents any confusion with a command, as no command bits are transferred. A reset is commanded when the data on the SI pin is 0101 on four consecutive positive edges of the CS pin with no edge on the SCK pin throughout. This is a sequence where 1. CS is driven active low to select the device. 2. Clock (SCK) remains stable in either a high or low state. 3. SI is driven low by the bus master, simultaneously with CS going active low. No SPI bus slave drives SI during CS low before a transition of SCK. 4. CS is driven inactive. The slave captures the state of SI on the rising edge of CS. The above steps are repeated 4 times, each time alternating the state of SI. After the fourth CS pulse, the slave triggers its internal reset. SI is low on the first CS, high on the second, low on the third, high on the fourth. This provides a value of 5h, unlike random noise. Any activity on SCK during this time halts the sequence, and a Reset is not generated. After a JEDEC hardware reset while the device is in Ultra-Deep Power-Down (UDPD) mode, the SRAM buffer resets to an undefined value. Hardware resets all volatile status registers, including the block protection bits, to their default values. After a JEDEC hardware reset while the device is in any other mode than UDPD mode, the SRAM buffer keeps the values it had prior to Reset, with the following exception: If the reset sequence is initiated during an update of the SRAM buffer, the contents of the SRAM buffer can be corrupted. Hardware resets all volatile status registers, including the block protection bits, reset to their default values. All non-volatile status registers keep the value they had prior to reset, with the following exception: If the reset sequence is initiated during a write to a non-volatile status register, the value of that register can be corrupted. The device reverts to standard SPI mode after JEDEC hardware reset. Figure 22 shows the timing for the JEDEC hardware reset operation. tCH CS tCL Mode 3 SCK Mode 0 SI SO High-Impedance tRST Internal Reset Figure 22: JEDEC Standard Hardware Reset 4.13 CHIP SELECT RESTRICTIONS The CS pin starts and ends operations in the device. Once the CS pin is asserted and the operation begins, it can only be deasserted on a byte boundary. If the CS pin is deasserted on a non-byte boundary, the operation is ignored. For example, when executing the ABh command to exit power-down mode, only the command is required. No address and data are required to perform this operation. Therefore, only eight clocks are required to transfer the command. If the CS pin is raised Datasheet DS-AT25XE161D-158 Revision H 40 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support after the 8th clock (most significant bit of the command is transferred), hardware performs the operation. If the CS pin is raised after the 9th or 10th clock (not a byte boundary), the operation is ignored and no ABh command is executed. Similarly, if the ABh command fetches the device ID. Once the CS pin is asserted, 40 clock cycles are required: 8 clocks for the command, 24 dummy clocks, and 8 clocks to shift out the device ID. If the CS pin is raised after the 40th clock, hardware transfers the ID information, exits power-down mode, and completes the operation. However, if the CS pin is raised on the 41st of 42nd clock (not a byte boundary), the ID information is still returned as that occurred in clocks 32 - 40, but the device does not exit power-down mode. 4.14 ACTIVE STATUS INTERRUPT When a program or erase operation is in progress, there are two ways to determine when the operation has finished.   Repeatedly poll bit 0 (RDY/BSY) of Status register 1 looking for a high to low transition. Once the program or erase operation begins, execute the Active Status Interrupt (25h) command, and watch for a high to low transition on the SO pin. For example, assume a Byte/Page Program (02h) operation is initiated and 256 bytes are transferred into the buffer. Once the CS pin is deasserted, indicating the completion of the 02h command, hardware sets the RDY/BSY bit and starts moving the data to memory. Executing the 25h command causes hardware to drive the state of the RDY/BSY bit onto the SO pin. This allows external logic to monitor the state of the SO pin for a high to low transition. When the Active Status Interrupt (25h) command is used, the SO pin can be connected to an external interrupt controller. The controller recognizes the high to low transition and takes the appropriate action. This command is an alternative to the polling of the RDY/BSY bit in Status register 1 and uses less overhead than continually executing the 05h command to read the contents of Status register 1. 4.15 LOW BATTERY DETECT The AT25XE081D device includes a Low Battery Detect (EFh) command that can be used to probe the battery and determine its status. The low battery detect function is programmable. Software uses Status register (SR6) to program parameters such as what voltage level constitutes a low battery, and how much load is applied to the battery to determine the amount of charge left. Another field sets the amount of time the desired load is applied to the battery. Status register 6 is used in the following manner to determine the low battery status. For the exact programmable values for these registers fields, see Section 5.4, Status Register 2. 1. Program the LBVL field (bits 5:3) of SR6 to set the low battery detect level. When a test is performed, the device does not indicate a low voltage level until that level falls below the value programmed into this field. Values range from 1.8V to 3.2V in 200 mV increments. 2. Program the LBLD field (bits 2:1) of SR6 to indicate the amount of load applied to the battery for testing purposes. The amount of load applied ranges from 0 μA to 10 mA. 3. Program the LBD field (bit 0) to indicate the amount of time the load selected by the LBLD field is applied to the battery. Values of 100 μs and 1 ms are supported. 4. Execute the Low Battery Detect (EFh) command. This operation sets bits 7:6 (LBST) of SR6 to a value of 2’b01, indicating that a low battery detect operation is in progress. 5. Software can poll bits 7:6 of SR6 to determine whether the test has completed. As long as the value of these bits is 2’b01 the battery test is in progress. Alternatively, the active status interrupt (25h) command can be used to determine when the test has completed. See the previous subsection for more information on the active status interrupt command. 6. Once the operation is complete, bits 7:6 of SR6 indicate the result of the test. If the field contains a value of 2’b10, the voltage of the battery is greater than the threshold set by the LBVL field. A value of 2’b11 indicates the voltage of the battery is less than the threshold set by the LBVL field. Bits 7:6 of SR6 can be reset by hardware when certain internal conditions are met. The user can reset this field by executing a Terminate command (F0h). See Section 6.43, Low Battery Detect (EFh) for more information. Datasheet DS-AT25XE161D-158 Revision H 41 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 4.16 READ-MODIFY-WRITE The AT25XE161D device incorporates a completely self-contained Read-Modify-Write (R-M-W) operation (command 0Ah) that can be used to reprogram any number of sequential bytes in a page in the main memory array without affecting the rest of the bytes in the same page. This command allows the device to easily emulate an EEPROM by providing a method to modify a single byte or more in the main memory in a single operation, without pre-erasing the memory or any external RAM buffers. The main advantage of this command is that it allows a memory location to be erased and reprogrammed in one operation. The device also incorporates an intelligent erase and programming algorithm that can detect when a byte location fails to erase or program properly. If an erase or program error arises, hardware indicates this condition by setting bit 5:4 (EE and PE) in Status register 4. See Section 5.6, Status Register 4 for more information on these bits. See Section 6.42, Single Command ReadModify-Write — EEPROM Emulation (0Ah) for more information on the 0Ah command. 4.17 HOLD / RESET FUNCTION The AT25XE161D device provides a configurable HOLD/RESET pin. This pin can be configured to operate as either a HOLD pin, or as a device RESET pin, by programming bit 7 (HOLD/RESET) of Status register 3. When this bit is cleared, the HOLD/RESET pin functions as an active low HOLD pin. When this bit is set, the HOLD/RESET pin functions as a active low device RESET pin. The HOLD/RESET function is only valid in the SPI and dual modes of operation. When bit 1 (QE) of Status register 2 is set, indicating the device is in one of the quad modes (quad output or I/O) the HOLD/RESET functions are not available and the pin functions as the I/O3 data pin. When configured as a RESET pin, no commands are accepted while the pin is low and the device is in reset. Configuring the pin for the HOLD function allows an operation to be paused, then resumed when the HOLD pin is deasserted. Once the HOLD pin is asserted (with CS low), the HOLD function takes effect on the next falling edge of SCK. Conversely, once the HOLD pin is deasserted, the HOLD function is removed on the next falling edge of SCK. Note that the CS pin must be low for the entire time in which the HOLD operation is in progress. The HOLD function can be used in situations where the clock and data signals of the AT25XE081D device are shared with other external agents, allowing the device to share the bus with other high priority events such as interrupts or other events that need immediate attention. Once the condition is resolved, the HOLD pin can be deasserted, allowing the operation to resume. During the time the HOLD pin is asserted, the Serial Output (SO) pin is forced to the high impedance state. The state of the Serial Input (SI) and Serial Clock (SCK) pins are ignored. Note that the CS pin must be low for the entire time in which the HOLD operation is in progress. Datasheet DS-AT25XE161D-158 Revision H 42 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5 Status Registers The device contains six Status registers (SR) described in the following subsections. The Status registers can be read to determine the device's ready/busy status, as well as the status of many other functions such as hardware locking and software protection. 5.1 REGISTER STRUCTURE AND UPDATES In the AT25XE161D device there are two sets of Status registers. One set is implemented in hardware and is accessed as Status registers 1 - 6. These are known as volatile registers as their data is lost during a device reset. Also, the device keeps a copy of the Status registers in memory. These are known as non-volatile registers because they are stored in the Flash and are not affected by a device reset. On power up, the non-volatile contents of the memory are copied to the Status registers. See Section 5.2.2 for more information on volatile and non-volatile register types. The AT25XE161D provides two methods for updating the Status Registers. When the Write to Status Register command is preceded by the Volatile Status Register Write Enable (50h) command, only the flip-flops holding the Status register bits are updated; the non-volatile memory dedicated to the Status registers is not updated. When the Write to Status Register command is preceded with a Write Enable (06h) command, then both the flip-flops holding the Status register bits and the non-volatile memory dedicated to the Status registers are updated. This concept is shown in Figure 23. The main difference between these two commands is the time required to execute them. Accesses to memory are much slower by default. So for the 50h command, the write is to the volatile Status registers only which is very fast. For the 06h command, the write is to non-volatile memory which is much slower. 50h Status Registers 06h Power-Up Memory Figure 23: AT25XE161D Register Structure 5.2 REGISTER ACCESSES This section describes the various ways to access the AT25XE161D Status registers. The AT25XE161D incorporates six Status registers. Each of these registers can be written or read using both the direct and indirect addressing methods as described in Section 5.2.1. Also, the device supports both volatile and non-volatile registers as described in Section 5.2.2. Datasheet DS-AT25XE161D-158 Revision H 43 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5.2.1 Direct and Indirect Addressing The AT25XE161D device supports both direct and indirect addressing for accessing the Status registers. The indirect addressing method can be used for all six Status registers, and the direct addressing for the first three Status registers. This means that Status registers 4 - 6 can only be accessed using the indirect addressing method. These registers have been accessed using the direct addressing method, where every register has a specific command used to access it and perform read or write operations. An example of these commands is as follows:       05h: Read Status Register 1 35h: Read Status Register 2 15h: Read Status Register 3 01h: Write Status Register 1 31h: Write Status Register 2 11h: Write Status Register 3 The above commands have been retained to provide backward compatibility with existing software. Also to the direct method, the AT25XE161D device also provides an indirect method. In the indirect method, a single command (65h) executes a read operation on all of the Status registers. Another command (71h) executes a write operation on all of the Status registers. Once the command is provided, an 8-bit address field determines which register to access. The encoding of the address field is shown in Table 12. Table 12: Indirect Addressing of Status Registers Command 65h 71h Address 01h 02h 03h 04h 05h 06h 01h 02h 03h 04h 05h 06h Action Read Status Register 1 Read Status Register 2 Read Status Register 3 Read Status Register 4 Read Status Register 5 Read Status Register 6 Write Status Register 1 Write Status Register 2 Write Status Register 3 Write Status Register 4 Write Status Register 5 Write Status Register 6 Note that by using the indirect address method, an address width of 8 bits indicates that up to 256 registers can be accessed, allowing for future expansion without requiring additional commands or associated hardware complexity. 5.2.2 Volatile and Non-Volatile Register Accesses As shown in Figure 23, the AT25XE161D device supports both volatile and non-volatile register accesses. Volatile register accesses are to the Status registers implemented in hardware. Non-volatile register accesses are to the Status registers stored in memory. During power-up, the contents of the registers in memory are copied to the hardware Status registers. As shown in Figure 23, the 50h command writes only to the volatile register set, whereas the 06h command writes to both the volatile and non-volatile register sets. 5.3 STATUS REGISTER 1 Table 13 shows the bit assignments for Status register 1. Datasheet DS-AT25XE161D-158 Revision H 44 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 13: Status Register 1 Format Bit # Acronym Name SRP0 Status Register Protect 0 7 6 BPSIZE 5 TB 4:2 BP2:0 1 0 WEL RDY/BSY Datasheet DS-AT25XE161D-158 Block Protect Size Top/Bottom Block Protect Write Enable Latch Status Ready/Busy Status Type R/W R/W R/W R/W R R Default Description 0 SRP0 works with the SRP1 bit in Status Register 1 and the WP pin to control write protection. Types of protection include software protection, hardware protection, one-time programmable (OTP) protection, and power supply lock-down protection. See Table 15 for an encoding of these bits. 0 BPSIZE controls the size of the blocks protected by the Block Protect Bits (BP2, BP1, BP0 in bits 4:2 of this register). Its encoding is: 0: 64 kB block size 1: 4 kB block size The blocks can be protected from the bottom up, or from the top down, as described in the TB bit of this register. 0 TB controls the direction of the blocks to be protected by the Block Protect Bits (BP2, BP1, BP0 in bits 4:2 of this register). Its encoding is: 0: Protect from bottom up 1: Protect from top down The size of the protected blocks can also be selected, as described in the BPSIZE bit of this register. 000 The Block Protect field provides write protection control and status. These bits are set using the Write Status register 1 (01h) command. This field can be programmed to protect all, none, or a portion of the memory array. When that portion of the memory is selected, it is protected from the Program and Erase commands as described in the Memory Protection table. The default is 3’b000 for this field, indicating that none of the memory array is protected. 0 WEL gives the current status of the internal Write Enable Latch. When WEL is logic “0,” the device does not accept any program, erase, memory protection, or Write Status Register commands. WEL defaults to logic “0” after a device power-up or reset. Its encoding is: 0: Device is not write enabled (default). 1: Device is write enabled. If WEL is “1,”, it is not reset to a logic “0” if an operation aborts due to an incomplete or unrecognized command being clocked into the device before the CS pin is deasserted. To reset the WEL bit when an operation aborts prematurely, the entire command for a program, erase, memory protection, or Write Status Register command must have been clocked into the device. When the Write Enable (06h) command is executed, the WEL bit is set. Conversely, when the Volatile Status Register Write Enable (50h) command is executed, the WEL bit is not set. 0 RDY/BSY determines if an internal operation, such as a program or erase, is in progress. To poll the RDY/BSY bit to detect the completion of a program or erase cycle, new Status Register data must be continually clocked out of the device until the state of the RDY/BSY bit changes from a logic “1” to a logic “0”. Its encoding is: 0: Device is ready. 1: Device is busy with an internal operation. Revision H 45 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5.4 STATUS REGISTER 2 The following table shows the bit assignments for Status register 2. Table 14: Status Register 2 Format Bit # Acronym 7 6 SUSP CMPRT Name Suspend Status Complement Protect Type R R/W Default Description 0 SUSP is set by hardware and indicates that the program or erase operation has been suspended. This bit is set after software executes an Erase/Program Suspend (75h) command. Hardware clears this bit when it detects any of the following conditions: Erase/Program Resume (7Ah) command, Hardware Reset, JEDEC Hardware Reset, 66h / 99h Reset command 0 CMPRT is used with BPSIZE, TB, and BP2:BP0 bits to provide additional memory array protection. Its encoding is: 0: Current protection mechanism is unchanged 1: Current protection mechanism is reversed When set, unprotected areas of memory become protected, and protected areas of memory become unprotected. For example, when CMPRT = 0, a top 64 kB block can be protected, while the rest of the array is not; when CMP = 1, the same 64 kB block becomes unprotected, the rest of the array is then read-only. SL3:SL1 gives the One-Time-Program (OTP) lock status of Security Registers 1 - 3. This field determines which of these Security Registers have been locked. Note that Security register 0 is always locked as the value is programmed at the factory. The default state of SL[3:1] is 0: all registers are unlocked. Each bit corresponds to a Status register, as follows: SL3 (bit 5): Security register 3 SL2 (bit 4): Security register 2 SL1 (bit 3): Security register 1 Each bit is set by hardware when the most significant byte of the corresponding Security Register (the 128th byte) is programmed. For example, when the MSB of Security register 1 is set, bit 3 (SL1) of this field is set. Conversely, when the MSB of Security register 3 is set, bit 5 (SL3) of this field is set. Each time a bit is set, it indicates that the corresponding 128-Byte Security Register has become read-only permanently. 5:3 SL3:SL1 Security Lock 3:1 R 000 2 R Reserved R 0 Reserved. 0 QE enables Quad SPI and XiP operation.Its encoding is: 0: QE mode is disabled 1: QE mode is enabled When QE is logic 0, the WP and HOLD / RESET pins are enabled. When QE is logic 1, the WP and HOLD / RESET pins function as the IO2 and IO3 pins, respectively, and the WP and HOLD / RESET pins functions are disabled. This bit only pertains to the following commands: 6Bh: Quad Output Read EBh: XiP Mode Read E7h: Quad I/O Read with Double-word Aligned Address 32h: Quad Output Program 77h: Set Burst with Wrap 94h: Quad I/O Manufacturer/Device ID 0 SRP1 works with the SRP0 bit in Status Register 0 and the WP pin to control write protection. Types of protection include software protection, hardware protection, one-time programmable (OTP) protection, and reset lock-down protection. See Table 15 for an encoding of these bits. 1 0 QE Quad Enable SRP1 Status Register Protect 1 Datasheet DS-AT25XE161D-158 R/W R/W Revision H 46 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support Table 15 shows the operation of the SRP[1:0] volatile Status register bits during normal operation. Table 15: Status Register Protection During Normal Operation SRP1 SRP0 SRLOCK WP Type of Protection When both the SRP0 and SRP1 bits are 0, the Status registers can be written by executing a Write Status Register command (01h, 31h, 11h, 71h) and setting the WEL bit of this register. Note that the WP pin has no meaning during this type of operation. When the SRP[1:0] bits are 0, 1 respectively, and the WP pin is low, the registers are hardware protected and cannot be written to. When the SRP[1:0] bits are 0, 1 respectively, and the WP pin is high, the registers are not hardware protected and can be written to by executing a Write Status Register command (01h, 31h, 11h, 71h) and setting the WEL bit of this register. When the SRP[1:0] bits are 1, 0 respectively, the Status registers are write protected and cannot be written until the device is reset (caused by a power-cycle, hardware reset, or software reset). After reset, hardware changes the state of the volatile SRP[1:0] bits to 0,0 as shown in Table 16. When the SRP[1:0] bits are 1,1 respectively, and the SRLOCK bit is 0, the Status registers are write protected and cannot be written until the device is reset (caused by a power-cycle, hardware reset or software reset). After reset, hardware changes the state of the volatile SRP[1:0] bits to 0,1 as shown in Table 16. When the SRP[1:0] bits are 1,1 respectively, and the SRLOCK bit is 1, the Status registers are permanently write protected. Software Protected (protection is controlled by the CMPRT, BPSIZE, TB, BP[2:0], or WPS bits) 0 0 x x 0 1 x 0 0 1 x 1 1 0 x x Reset Lockdown 1 1 0 x Reset Lockdown 1 1 1 x OTP Table 16 Description Hardware Protected (protection is controlled by the WP pin) Hardware Unprotected (protection is controlled by the CMPRT, BPSIZE, TB, BP[2:0], or WPS bits) shows the behavior of the SRP1 and SPR0 bits after a reset condition. Table 16: Status Register Protection During Reset Non-Volatile Memory Bits SRP1 SRP0 SRLOCK 0 0 x 0 1 x 1 0 x 1 1 0 1 1 1 Datasheet DS-AT25XE161D-158 Type of Protection Software Protected Hardware Protected Reset Lockdown Reset Lockdown One-Time Program (OTP) Volatile Register Bits Description The reset operation maintains the volatile SRP1 and SRP0 at 0,0. The reset operation maintains the volatile SRP1 and SRP0 at 0,1. The reset operation changes the volatile SRP1 and SRP0 bits to 0,0. The reset operation changes the volatile SRP1 and SRP0 bits to 0,1. The reset operation maintains the volatile SRP1 and SRP0 at 1,1. This makes the Status registers permanently write protected. Revision H 47 SRP1 SRP0 0 0 0 1 0 0 0 1 1 1 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5.5 STATUS REGISTER 3 Table 17 shows the bit assignments for Status register 3. Table 17: Status Register 3 Format Bit # 7 1 Acronym HOLD/ RESET Name HOLD or RESET Function Type R/W Default Description 0 Dialog Semiconductor provides a variety of packages for the AT25XE161D, as shown in Section 3. Each of these packages provides a dedicated HOLD / RESET pin that can be configured as a RESET pin, or as a HOLD pin, depending on the programming of this bit. Its encoding is: 0: HOLD function is enabled 1: RESET function is enabled Note that this pin can only be configured as HOLD or RESET when the QE bit (see bit 1 of Status register 2) is cleared (logic 0). If the QE bit is set, the pin functions as a dedicated data pin and the HOLD / RESET functionality is disabled. Drive level. The DRV1 and DRV0 bits are used to determine the output driver strength during read operations. The driver strength is automatically adjusted with VCC level. The driver strength is encoded as following: 00: Reserved 01: 100% (increase 1.66X at low VCC) 10: 66% (increase 2X at low VCC) 11: 33% (increase 3X at low VCC) 6:5 DRV1:0 Drive Level R/W 011 4:3 R Reserved R 0 Reserved 2 WPS Write Protection Select R/W 0 The WPS bit selects the Write Protect scheme. Its encoding is: 0: The AT25XE161D uses a combination of CMPRT, BPSIZE, TB, and BP[2:0] bits in Status register 1 to protect a specific area of the memory array. 1: The AT25XE161D uses the individual block locks to protect any individual block. The default value for all individual block lock bits is 1 upon device power on or after reset. When this bit is set, software uses the Block Lock (36h) and Block Unlock (39h) commands to lock and unlock blocks of memory. For more information on this functionality, see Section 4.8, Memory Protection. 1:0 R Reserved R 0 Reserved. Default driver strength was used for device test and characterization.To achieve optimal performance, it is recommended to adjust driver strength setting to match the user system load under application-specific environmental conditions. Datasheet DS-AT25XE161D-158 Revision H 48 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5.6 STATUS REGISTER 4 The following table shows the bit assignments for Status register 4. Table 18: Status Register 4 Format Bit # Acronym 7 PDM Name PowerDown Mode Type R/W Default Description 0 This bit is used in conjunction with the Deep Power-Down command (B9h) to place the device into either Deep Power-Down mode, or Ultra-Deep Power-Down mode. Its encoding is: 0: Execution of the B9h command invokes Ultra-Deep PowerDown mode. This is the same as executing the UDPD command 79h. In this mode the SRAM buffer contents are not preserved. 1: Execution of the B9h command invokes Deep Power-Down mode. In this mode the SRAM buffer contents are preserved. In both modes, the ABh command is required to exit the corresponding Power-Down mode. Simply toggling the CS pin does not result in exiting from Power-Down mode. For more information see Section 4.9, Power-Down Considerations. 6 SPM Sequential Program Mode Status R 0 The SPM bit indicates whether the device is in the Byte/Page Program mode or the Sequential Program Mode. The default state after power-up or device reset is the Byte/Page Program mode. Its encoding is: 0: Byte/Page Programming Mode (default) 1: Sequential Programming Mode entered If software sets this bit to 1, the address is only required for the first transfer of the sequential operation. Therefore, on the first transfer, command, address, and data are required. If there are subsequent operations, the address is not required. Software must only supply the command and data (on a write). 5 PE Program Error R 0 This bit is set by hardware whenever an error occurs during a program operation. 4 EE Erase Error R 0 This bit is set by hardware whenever an error occurs during an erase operation. 0 This bit determines whether a command is required each time a read operation is executed using the E7h or EBh (Quad Read) commands. Its encoding is: 0: XiP mode (continuous read mode) is disabled 1: XiP mode (continuous read mode) is enabled If this bit is set and either the E7h or EBh commands are executed, the command is only required for the first access (1-4-4). In this case, the command is transferred on the SI pin, and the address and data are transferred on the SI (I/O0), SO (I/O1), WP (I/O2), and HOLD (I/O3) pins. Subsequent accesses require only address and data (0-4-4). Note that if either this bit or the QE bit (see bit 1 of Status register 2) is 0, the device can never be placed into 0-4-4 mode, and a command is required for each access. 001 This 3-bit field maps to the W6:W4 bits of the Set Burst Wrap command (77h) to determine the burst wrap status and the wrap length. See Section 6.14 for more information on the Set Burst Wrap command. XiP XiP Mode Select BWS[2:0] Burst Wrap Settings 3 2:0 Datasheet DS-AT25XE161D-158 R/W R Revision H 49 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5.7 STATUS REGISTER 5 The following table shows the bit assignments for Status register 5. Table 19: Status Register 5 Format Bit # Acronym Name Type Default Description 7 SRLOCK Status Register Lock R 0 Hardware sets this bit when the user executes the Status Register Lock (6Fh) command, immediately followed by two verification bytes, 4Dh and 67h. Once this action occurs, the Status registers can be permanently locked. 6:4 DC[2:0] Dummy Clocks R/W 000 This field indicates the number of dummy clocks to be inserted between the address and data transactions for the EBh and E7h commands. Note that the dummy clocks include the 2 clocks required to clock in the M[7:0] bits. 000: 2 clocks 001: 4 clocks 010: 6 clocks 011: 8 clocks 100: 10 clocks. 101 - 111: Reserved 3 ES Erase Suspend R 0 This bit is set by hardware whenever an erase operation is suspended. 2 PS Program Suspend R 0 This bit is set by hardware whenever a program operation is suspended. 0 The TERE bit enables or disables the Terminate command. Its encoding is: 0: Terminate command is disabled 1: Terminate command is enabled When the TERE bit is cleared (the default state after powerup), the Terminate command is disabled and any attempts to reset the device using the Terminate command are ignored. When the TERE bit is set, the Terminate command is enabled. The TERE bit retains its state as long as power is applied to the device. Once set, the TERE bit remains in that state until it is modified using the Write Status Register Byte 5 command or until the device has been power cycled. 0 Setting the DWA bit indicates that the devices adheres to double-word aligned addressing. This bit is only used when the EBh (XiP DWA Read) command is executed and is encoded as follows: 0: Double-word addressing is disabled 1: Double-word addressing is enabled When this bit is set, the lower 2 bits of address are ignored and assumed to be 00. 1 0 TERE DWA Datasheet DS-AT25XE161D-158 Terminate Enable Doubleword Aligned R/W R/W Revision H 50 2021-Aug-5 © 2021 Dialog Semiconductor AT25XE161D Datasheet 16-Mbit, 1.65 V - 3.6 V Range SPI Serial Flash Memory with Multi-I/O Support 5.8 STATUS REGISTER 6 The following table shows the bit assignments for Status register 6. Table 20: Status Register 6 Format Bit # 7:6 5:3 2:1 0 Acronym LBS LBVL LBLD LBD Datasheet DS-AT25XE161D-158 Name Low Battery Status Low Battery Voltage Level Low Battery Load Load Battery Delay Type R R/W R/W R/W Default Description 0 This 2-bit field indicates the state of the low battery test. The status is reported when the Battery Status command (EFh) is executed. This field is encoded as follows: 00: No test in progress. Normal operation. 01: Battery test in progress. 10: Battery test complete. Result is >Vth 11: Battery test complete. Result is
AT25XE161D-UUN-T 价格&库存

很抱歉,暂时无法提供与“AT25XE161D-UUN-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货