0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HIP6602BCBZ-T

HIP6602BCBZ-T

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    SOIC14

  • 描述:

    IC GATE DRVR HALF-BRIDGE 14SOIC

  • 数据手册
  • 价格&库存
HIP6602BCBZ-T 数据手册
NOT RECOMMENDED FOR NEW DESIGNS INTERSIL RECOMMENDS: ISL6612, ISL6612A, ISL6613, ISL6613A, ISL6614, ISL6614A, ISL6622, ISL6625A HIP6602B DATASHEET Dual Channel Synchronous Rectified Buck MOSFET Driver The HIP6602B is a high frequency, two power channel MOSFET driver specifically designed to drive four power N-Channel MOSFETs in a synchronous rectified buck converter topology. This device is available in either a 14-lead SOIC or a 16-lead QFN package with a PAD to thermally enhance the package. These drivers combined with a HIP63xx or ISL65xx series of Multi-Phase Buck PWM controllers and MOSFETs form a complete core voltage regulator solution for advanced microprocessors. The HIP6602B drives both upper and lower gates over a range of 5V to 12V. This drive-voltage flexibility provides the advantage of optimizing applications involving trade-offs between switching losses and conduction losses. The output drivers in the HIP6602B have the capacity to efficiently switch power MOSFETs at high frequencies. Each driver is capable of driving a 3000pF load with a 30ns propagation delay and 50ns transition time. This device implements bootstrapping on the upper gates with a single external capacitor and resistor required for each power channel. This reduces implementation complexity and allows the use of higher performance, cost effective, N-Channel MOSFETs. Adaptive shoot-through protection is integrated to prevent both MOSFETs from conducting simultaneously. Ordering Information PART NUMBER HIP6602BCB HIP6602BCB-T HIP6602BCBZ (Note 1) HIP6602BCBZ-T (Note 1) HIP6602BCR HIP6602BCR-T HIP6602BCRZ (Note 1) HIP6602BCRZ-T (Note 1) HIP6602BCRZA (Note 1) TEMP. RANGE (°C) 0 to 85 Features • Drives Four N-Channel MOSFETs • Adaptive Shoot-Through Protection • Internal Bootstrap Devices • Supports High Switching Frequency - Fast Output Rise Time - Propagation Delay 30ns • Small 14-Lead SOIC Package • Smaller 16-Lead QFN Thermally Enhanced Package • 5V to 12V Gate-Drive Voltages for Optimal Efficiency • Three-State Input for Bridge Shutdown • Supply Undervoltage Protection • Pb-Free Plus Anneal Available (RoHS Compliant) • QFN Package: - Compliant to JEDEC PUB95 MO-220 QFN - Quad Flat No Leads - Package Outline - Near Chip Scale Package footprint, which improves PCB efficiency and has a thinner profile Applications PACKAGE 14 Ld SOIC PKG. DWG. # M14.15 14 Ld SOIC Tape and Reel 0 to 85 FN9076 Rev 6.00 December 3, 2015 14 Ld SOIC (Pb-Free) M14.15 • Core Voltage Supplies for Intel Pentium® III and AMD® AthlonTM Microprocessors. • High-Frequency, Low-Profile DC/DC Converters • High-Current, Low-Voltage DC/DC Converters 14 Ld SOIC Tape and Reel (Pb-Free) 0 to 85 16 Ld 5x5 QFN L16.5x5 16 Ld 5x5 QFN Tape and Reel 0 to 85 16 Ld 5x5 QFN (Pb-Free) L16.5x5 16 Ld 5x5 QFN Tape and Reel (Pb-Free) 0 to 85 16 Ld 5x5 QFN (Pb-Free) L16.5x5 HIP6602BCRZA-T (Note 1) 16 Ld 5x5 QFN Tape and Reel (Pb-Free) NOTE: 1. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. FN9076 Rev 6.00 December 3, 2015 Page 1 of 12 HIP6602B Pinouts 14 VCC PWM2 2 13 PHASE1 GND 3 12 UGATE1 LGATE1 4 11 BOOT1 PVCC 5 10 BOOT2 PGND 6 LGATE2 7 PHASE1 1 VCC PWM1 PWM1 HIP6602 (16 LD QFN) TOP VIEW PWM2 HIP6602B (SOIC) TOP VIEW 16 15 14 13 11 BOOT1 9 UGATE2 PVCC 3 10 BOOT2 8 PHASE2 PGND 4 9 NC 5 6 7 8 NC LG1 2 PHASE2 12 UG1 LG2 GND 1 UG2 Block Diagram PVCC BOOT1 UGATE1 VCC +5V SHOOTTHROUGH PROTECTION 10K PWM1 PHASE1 PVCC LGATE1 10K PGND CONTROL LOGIC +5V PGND PVCC BOOT2 10K UGATE2 PWM2 SHOOTTHROUGH PROTECTION 10K GND PHASE2 PVCC LGATE2 HIP6602B PGND PAD FN9076 Rev 6.00 December 3, 2015 For HIP6602BCR, the PAD on the bottom side of the package MUST be soldered to the PC board Page 2 of 12 HIP6602B Typical Application - 2 Channel Converter Using a HIP6302 and a HIP6602B Gate Driver +5V BOOT1 +12V FB +12V UGATE1 COMP VCC VCC VSEN PHASE1 ISEN1 PGOOD PWM1 DUAL DRIVER HIP6602B MAIN CONTROL HIP6302 VID PVCC +VCORE +5V/12V BOOT2 PWM2 PWM2 +12V UGATE2 PHASE2 ISEN2 FS/DIS LGATE1 PWM1 LGATE2 GND GND FN9076 Rev 6.00 December 3, 2015 PGND Page 3 of 12 HIP6602B Typical Application - 4 Channel Converter Using a HIP6303 and HIP6602B Gate Driver +12V BOOT1 +12V UGATE1 VCC PHASE1 LGATE1 +5V DUAL DRIVER HIP6602B +5V/12V BOOT2 COMP FB PVCC +12V VCC VSEN UGATE2 ISEN1 PGOOD PWM1 EN PWM2 MAIN ISEN2 CONTROL HIP6303 VID PHASE2 PWM1 PWM2 LGATE2 GND PGND +VCORE ISEN3 FS/DIS PWM3 PWM4 GND BOOT3 +12V +12V ISEN4 UGATE3 VCC PHASE3 LGATE3 DUAL DRIVER HIP6602B PVCC BOOT4 +5V/12V +12V UGATE4 PWM3 PHASE4 PWM4 LGATE4 GND FN9076 Rev 6.00 December 3, 2015 PGND Page 4 of 12 HIP6602B Absolute Maximum Ratings Operating Conditions Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15V Supply Voltage (PVCC) . . . . . . . . . . . . . . . . . . . . . . . . . VCC + 0.3V BOOT Voltage (VBOOT - VPHASE) . . . . . . . . . . . . . . . . . . . . . . .15V Input Voltage (VPWM) . . . . . . . . . . . . . . . . . . . . . . GND - 0.3V to 7V UGATE. . . . . . .VPHASE - 5V(400ns pulse width) to VBOOT + 0.3V LGATE . . . . . . . . . GND - 5V(400ns pulse width) to VPVCC + 0.3V PHASE. . . . . . . . . . . . . . . . . . GND -5V(400ns pulse width) to 15V ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . .3kV Machine Model (Per EIAJ ED-4701 Method C-111) . . . . . . . .200V Ambient Temperature Range. . . . . . . . . . . . . . . . . . . . . 0°C to 85°C Maximum Operating Junction Temperature. . . . . . . . . . . . . . . 125°C Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V 10% Supply Voltage Range PVCC . . . . . . . . . . . . . . . . . . . . . 5V to 12V Thermal Information JA (°C/W) JC (°C/W) Thermal Resistance SOIC Package (Note 2) . . . . . . . . . . . . 68 N/A QFN Package (Note 3). . . . . . . . . . . . . 36 6 Maximum Junction Temperature (Plastic Package) . . . . . . . . 150°C Maximum Storage Temperature Range . . . . . . . . . . . -65°C to 150°C Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300°C (SOIC - Lead Tips Only) For Recommended soldering conditions see Tech Brief TB389. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 2. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 3. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. JC, the “case temp” is measured at the center of the exposed metal pad on the package underside. See Tech Brief TB379. Electrical Specifications Recommended Operating Conditions, unless otherwise specified. PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS VCC SUPPLY CURRENT Bias Supply Current IVCC fPWM = 500kHz, VPVCC = 12V - 3.7 5.0 mA Power Supply Current IPVCC fPWM = 500kHz, VPVCC = 12V - 2.0 4.0 mA VCC Rising Threshold 9.7 9.95 10.4 V VCC Falling Threshold 7.3 7.6 8.0 V VPWM = 0 or 5V (See Block Diagram) - 500 - µA VPVCC = 12V - 3.6 - V POWER-ON RESET PWM INPUT Input Current IPWM PWM Rising Threshold PWM Falling Threshold VPVCC = 12V - 1.45 - V UGATE Rise Time TRUGATE VPVCC = VVCC = 12V, 3nF Load - 20 - ns LGATE Rise Time TRLGATE VPVCC = VVCC = 12V, 3nF Load - 50 - ns UGATE Fall Time TFUGATE VPVCC = VVCC = 12V, 3nF Load - 20 - ns LGATE Fall Time TFLGATE VPVCC = VVCC = 12V, 3nF Load - 20 - ns UGATE Turn-Off Propagation Delay TPDLUGATE VPVCC = VVCC = 12V, 3nF Load - 30 - ns LGATE Turn-Off Propagation Delay TPDLLGATE VPVCC = VVCC = 12V, 3nF Load - 20 - ns 1.4 - 3.6 V - 230 - ns Shutdown Window Shutdown Holdoff Time OUTPUT Upper Drive Source Impedance RUGATE Upper Drive Sink Impedance RUGATE Lower Drive Source Current ILGATE VVCC = 12V, VPVCC = 5V - 1.7 3.0  VVCC = VPVCC = 12V - 3.0 5.0  VVCC = 12V, VPVCC = 5V - 2.3 4.0  - 1.1 2.0  VVCC = 12V, VPVCC = 5V 400 580 - mA VVCC = VPVCC = 12V 500 730 - mA - 1.6 4.0  VVCC = VPVCC = 12V Lower Drive Sink Impedance FN9076 Rev 6.00 December 3, 2015 RLGATE VVCC = 12V, VPVCC = 5V or 12V Page 5 of 12 HIP6602B Functional Pin Descriptions PWM1 (Pin 1) and PWM2 (Pin 2), (Pins 15 and 16 QFN) The PWM signal is the control input for the driver. The PWM signal can enter three distinct states during operation, see the three-state PWM Input section under DESCRIPTION for further details. Connect this pin to the PWM output of the controller. GND (Pin 3), (Pin 1 QFN) Bias and reference ground. All signals are referenced to this node. LGATE1 (Pin 4) and LGATE2 (Pin 7), (Pins 2 and 6 QFN) Lower gate drive outputs. Connect to gates of the low-side power N-Channel MOSFETs. BOOT 2 (Pin 10) and BOOT 1 (Pin 11), (Pins 10 and 11 QFN) Floating bootstrap supply pins for the upper gate drivers. Connect a bootstrap capacitor between these pins and the corresponding PHASE pin. The bootstrap capacitor provides the charge to turn on the upper MOSFETs. A resistor in series with boot capacitor is required in certain applications to reduce ringing on the BOOT pin. See the Internal Bootstrap Device section under DESCRIPTION for guidance in choosing the appropriate resistor and capacitor value. VCC (Pin 14), (Pin 14 QFN) Connect this pin to a +12V bias supply. Place a high quality bypass capacitor from this pin to GND. To prevent forward biasing an internal diode, this pin should be more positive then PVCC during converter start-up PVCC (Pin 5), (Pin 3 QFN) Description This pin supplies the upper and lower gate drivers bias. Connect this pin from +12V down to +5V. Operation PGND (Pin 6), (Pin 4 QFN) This pin is the power ground return for the lower gate drivers. PHASE2 (Pin 8) and PHASE1 (Pin 13), (Pins 7 and 13 QFN) Connect these pins to the source of the upper MOSFETs and the drain of the lower MOSFETs. The PHASE voltage is monitored for adaptive shoot-through protection. These pins also provide a return path for the upper gate drive. UGATE2 (Pin 9) and UGATE1 (Pin 12), (Pins 9 and 12 QFN) Upper gate drive outputs. Connect to gate of high-side power N-Channel MOSFETs. Designed for versatility and speed, the HIP6602B two channel, dual MOSFET driver controls both high-side and low-side N-Channel FETs from two externally provided PWM signals. The upper and lower gates are held low until the driver is initialized. Once the VCC voltage surpasses the VCC Rising Threshold (See Electrical Specifications), the PWM signal takes control of gate transitions. A rising edge on PWM initiates the turn-off of the lower MOSFET (see Timing Diagram). After a short propagation delay [TPDLLGATE], the lower gate begins to fall. Typical fall times [TFLGATE] are provided in the Electrical Specifications section. Adaptive shoot-through circuitry monitors the LGATE voltage and determines the upper gate delay time [TPDHUGATE] based on how quickly the LGATE voltage drops below 2.2V. This prevents both the lower and upper MOSFETs from conducting simultaneously or shoot-through. Once this delay period is complete the upper gate drive begins to rise [TRUGATE] and the upper MOSFET turns on. Timing Diagram. PWM TPDHUGATE TPDLUGATE TRUGATE TFUGATE UGATE LGATE TRLGATE TFLGATE TPDLLGATE FN9076 Rev 6.00 December 3, 2015 TPDHLGATE Page 6 of 12 HIP6602B A falling transition on PWM indicates the turn-off of the upper MOSFET and the turn-on of the lower MOSFET. A short propagation delay [TPDLUGATE] is encountered before the upper gate begins to fall [TFUGATE]. Again, the adaptive shoot-through circuitry determines the lower gate delay time, TPDHLGATE. The PHASE voltage is monitored and the lower gate is allowed to rise after PHASE drops below 0.5V. The lower gate then rises [TRLGATE], turning on the lower MOSFET. Three-State PWM Input A unique feature of the HIP6602B drivers is the addition of a shutdown window to the PWM input. If the PWM signal enters and remains within the shutdown window for a set holdoff time, the output drivers are disabled and both MOSFET gates are pulled and held low. The shutdown state is removed when the PWM signal moves outside the shutdown window. Otherwise, the PWM rising and falling thresholds outlined in the Electrical Specifications determine when the lower and upper gates are enabled. Adaptive Shoot-Through Protection The drivers incorporate adaptive shoot-through protection to prevent upper and lower MOSFETs from conducting simultaneously and shorting the input supply. This is accomplished by ensuring the falling gate has turned off one MOSFET before the other is allowed to rise. During turn-off of the lower MOSFET, the LGATE voltage is monitored until it reaches a 2.2V threshold, at which time the UGATE is released to rise. Adaptive shoot-through circuitry monitors the PHASE voltage during UGATE turn-off. Once PHASE has dropped below a threshold of 0.5V, the LGATE is allowed to rise. If the PHASE does not drop below 0.5V within 250ns, LGATE is allowed to rise. This is done to generate the bootstrap refresh signal. PHASE continues to be monitored during the lower gate rise time. If the PHASE voltage exceeds the 0.5V threshold during this period and remains high for longer than 2µs, the LGATE transitions low. This is done to make the lower MOSFET emulate a diode. Both upper and lower gates are then held low until the next rising edge of the PWM signal. Power-On Reset (POR) Function During initial start-up, the VCC voltage rise is monitored and gate drives are held low until a typical VCC rising threshold of 9.95V is reached. Once the rising VCC threshold is exceeded, the PWM input signal takes control of the gate drives. If VCC drops below a typical VCC falling threshold of 7.6V during operation, then both gate drives are again held low. This condition persists until the VCC voltage exceeds the VCC rising threshold. Internal Bootstrap Device The HIP6602B features an internal bootstrap device. Simply adding an external capacitor across the BOOT and PHASE pins completes the bootstrap circuit. FN9076 Rev 6.00 December 3, 2015 The bootstrap capacitor must have a maximum voltage rating above PVCC + 5V. The bootstrap capacitor can be chosen from the following equation: Q GATE C BOOT  -----------------------V BOOT Where QGATE is the amount of gate charge required to fully charge the gate of the upper MOSFET. The VBOOT term is defined as the allowable droop in the rail of the upper drive. As an example, suppose a HUF76139 is chosen as the upper MOSFET. The gate charge, QGATE , from the data sheet is 65nC for a 10V upper gate drive. We will assume a 200mV droop in drive voltage over the PWM cycle. We find that a bootstrap capacitance of at least 0.325µF is required. The next larger standard value capacitance is 0.33µF. In applications which require down conversion from +12V or higher and PVCC is connected to a +12V source, a boot resistor in series with the boot capacitor is required. The increased power density of these designs tend to lead to increased ringing on the BOOT and PHASE nodes, due to faster switching of larger currents across given circuit parasitic elements. The addition of the boot resistor allows for tuning of the circuit until the peak ringing on BOOT is below 29V from BOOT to GND and 17V from BOOT to VCC. A boot resistor value of 5 typically meets this criteria. In some applications, a well tuned boot resistor reduces the ringing on the BOOT pin, but the PHASE to GND peak ringing exceeds 17V. A gate resistor placed in the UGATE trace between the controller and upper MOSFET gate is recommended to reduce the ringing on the PHASE node by slowing down the upper MOSFET turn-on. A gate resistor value between 2 to 10 typically reduces the PHASE to GND peak ringing below 17V. Gate Drive Voltage Versatility The HIP6602B provides the user flexibility in choosing the gate drive voltage. Simply applying a voltage from 5V up to 12V on PVCC will set both driver rail voltages. Power Dissipation Package power dissipation is mainly a function of the switching frequency and total gate charge of the selected MOSFETs. Calculating the power dissipation in the driver for a desired application is critical to ensuring safe operation. Exceeding the maximum allowable power dissipation level will push the IC beyond the maximum recommended operating junction temperature of 125°C. The maximum allowable IC power dissipation for the 14 lead SOIC package is approximately 1000mW. Improvements in thermal transfer may be gained by increasing the PC board copper area around the HIP6602B. Adding a ground pad under the IC to help transfer heat to the outer peripheral of the board will help. Also keeping the leads to the IC as wide as possible and widening this these leads as soon as possible to further enhance heat transfer will also help. Page 7 of 12 HIP6602B 3 (Q + Q ) + (Q + Q )] + I P = 1.05 x fSW x VPVCC [_ U2 L1 L2 DDQ x VCC 2 U1 where fsw is the switching frequency of the PWM signal. QU and QL is the upper and lower gate charge determined by MOSFET selection and any external capacitance added to the gate pins. The IDDQ VCC product is the quiescent power of the driver and is typically 40mW. The 1.05 term is a correction factor derived from the following characterization. The base circuit for characterizing the drivers for different loading profiles and frequencies is provided. CU and CL are the upper and lower gate load capacitors. Decoupling capacitors [0.15µF] are added to the PVCC and VCC pins. The bootstrap capacitor value in the test circuit is 0.01µF. The power dissipation approximation is a result of power transferred to and from the upper and lower gates. But, the internal bootstrap device also dissipates power on-chip during the refresh cycle. Expressing this power in terms of the upper MOSFET total gate charge is explained below. The bootstrap device conducts when the lower MOSFET or its body diode conducts and pulls the PHASE node toward GND. While the bootstrap device conducts, a current path is formed that refreshes the bootstrap capacitor. Since the upper gate is driving a MOSFET, the charge removed from the bootstrap capacitor is equivalent to the total gate charge of the MOSFET. Therefore, the refresh power required by the bootstrap capacitor is equivalent to the power used to charge the gate capacitance of the upper MOSFETs. P REFRESH = f SW Q V = f SW Q V LOSS PVCC U PVCC where QLOSS is the total charge removed from the bootstrap capacitors and provided to the upper gate loads. FN9076 Rev 6.00 December 3, 2015 In Figure 2, CU and CL values are the same and frequency is varied from 10kHz to 1.5MHz. PVCC and VCC are tied together to a +12V supply. Figure 3 shows the dissipation in the driver with 1nF loading on both gates and each individually. Figure 4 is the same as Figure 3 except the capacitance is increased to 3nF. The impact of loading on power dissipation is shown in Figure 5. Frequency is held constant while the gate capacitors are varied from 1nF to 5nF. VCC and PVCC are tied together and to a +12V supply. Figures 6, 7 and 8 show the same characterization for PVCC tied to +5V instead of +12V. The gate supply voltage, PVCC, within the HIP6602B sets both upper and lower gate driver supplies at the same 5V level for the last three curves. Test Circuit +5V OR +12V +12V +5V OR +12V 0.01µF PVCC BOOT1 2N7002 0.15µF UGATE1 CU PHASE1 VCC 0.15µF LGATE1 PWM1 PGND GND 2N7002 CL HIP6602B When designing the driver into an application, it is recommended that the following calculation be performed to ensure safe operation at the desired frequency for the selected MOSFETs. The total chip power dissipation is approximated as: 100k 0.01µF BOOT2 2N7002 UGATE2 PWM2 CU PHASE2 LGATE2 2N7002 CL 100k FIGURE 1. HIP6602B TEST CIRCUIT Page 8 of 12 HIP6602B Typical Performance Curves 1200 1200 CU = CL = 5nF CU = C L = 4nF 800 POWER (mW) PVCC = VCC = 12V 1000 CU = CL = 3nF PVCC = 12V VCC = 12V 600 CU = CL = 2nF 400 0 0 500 CL = 1nF, CU = 0nF 600 400 CU = 1nF, CL = 0nF CU = CL = 1nF 200 CU = CL = 1nF 800 POWER (mW) 1000 200 1000 0 1500 0 500 FREQUENCY (kHz) FIGURE 2. POWER DISSIPATION vs FREQUENCY FIGURE 3. 1nF LOADING PROFILE PVCC = VCC = 12V PVCC = VCC = 12V 1000 1000 500kHz CU = CL = 3nF 600 POWER (mW) 800 CU = 3nF, CL = 0nF CL = 3nF, CU = 0nF 400 800 600 200kHz 400 100kHz 200 200 0 0 500 1000 0 1500 FIGURE 4. 3nF LOADING PROFILE 1 2 3 4 5 FIGURE 5. POWER DISSIPATION vs LOADING 350 800 PVCC = 5V, VCC = 12V 700 PVCC = 5V, VCC = 12V CU = CL = 5nF 300 CU = CL = 4nF 600 CU = CL = 1nF CU = CL = 3nF 250 500 POWER (mW) POWER (mW) 10kHz 30kHz GATE CAPACITANCE (CU = CL ), (nF) FREQUENCY (kHz) 400 300 CU = CL =1nF 500 1000 FREQUENCY (kHz) 1500 2000 FIGURE 6. POWER DISSIPATION vs FREQUENCY, PVCC = 5V FN9076 Rev 6.00 December 3, 2015 150 CU = 1nF, CL = 0nF 50 100 0 CL = 1nF, CU = 0nF 200 100 CU = CL = 2nF 200 0 2000 1200 1200 POWER (mW) 1500 1000 FREQUENCY (kHz) 0 0 500 1000 FREQUENCY (kHz) 1500 2000 FIGURE 7. POWER DISSIPATION vs FREQUENCY, PVCC = 5V Page 9 of 12 HIP6602B Typical Performance Curves (Continued) 600 PVCC = 5V, VCC = 12V 500 POWER (mW) 2MHz 1.5MHz 1MHz 400 300 500kHz 200 100kHz 200kHz 100 0 30kHz 1 2 3 4 GATE CAPACITANCE (CU = CL), (nF) 5 FIGURE 8. POWER DISSIPATION vs LOADING, PVCC = 5V Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. DATE REVISION December 3, 2015 FN9076.6 CHANGE Added recommended replacement parts ISL6622 and ISL6625A. Added Rev History and About Intersil Verbiage. Updated POD M14.15 to most current version. Rev change as follows: Added land pattern and moved dimensions from table onto drawing. About Intersil Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support © Copyright Intersil Americas LLC 2002-2015. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN9076 Rev 6.00 December 3, 2015 Page 10 of 12 HIP6602B Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP) L16.5x5 16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VHHB ISSUE C) MILLIMETERS SYMBOL MIN NOMINAL MAX NOTES A 0.80 0.90 1.00 - A1 - - 0.05 - A2 - - 1.00 A3 b 0.28 D 0.33 9 0.40 5, 8 5.00 BSC D1 D2 9 0.20 REF - 4.75 BSC 2.55 2.70 9 2.85 7, 8 E 5.00 BSC - E1 4.75 BSC 9 E2 2.55 e 2.70 2.85 7, 8 0.80 BSC - k 0.25 - - - L 0.35 0.60 0.75 8 L1 - - 0.15 10 N 16 Nd 2 4 3 Ne 4 4 3 P - - 0.60 9  - - 12 9 Rev. 2 10/02 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P &  are present when Anvil singulation method is used and not present for saw singulation. 10. Depending on the method of lead termination at the edge of the package, a maximum 0.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than 0.3mm. FN9076 Rev 6.00 December 3, 2015 Page 11 of 12 HIP6602B Package Outline Drawing M14.15 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 1, 10/09 8.65 A 3 4 0.10 C A-B 2X 6 14 DETAIL"A" 8 0.22±0.03 D 6.0 3.9 4 0.10 C D 2X 0.20 C 2X 7 PIN NO.1 ID MARK 5 0.31-0.51 B 3 (0.35) x 45° 4° ± 4° 6 0.25 M C A-B D TOP VIEW 0.10 C 1.75 MAX H 1.25 MIN 0.25 GAUGE PLANE C SEATING PLANE 0.10 C 0.10-0.25 1.27 SIDE VIEW (1.27) DETAIL "A" (0.6) NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSEY14.5m-1994. 3. Datums A and B to be determined at Datum H. (5.40) 4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. 5. The pin #1 indentifier may be either a mold or mark feature. (1.50) 6. Does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm total in excess of lead width at maximum condition. 7. Reference to JEDEC MS-012-AB. TYPICAL RECOMMENDED LAND PATTERN FN9076 Rev 6.00 December 3, 2015 Page 12 of 12
HIP6602BCBZ-T 价格&库存

很抱歉,暂时无法提供与“HIP6602BCBZ-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货