To all our customers
Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Renesas Technology Home Page: http://www.renesas.com
Renesas Technology Corp. Customer Support Dept. April 1, 2003
Cautions
Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
HM628512C Series
4 M SRAM (512-kword × 8-bit)
ADE-203-1212C (Z) Rev. 3.0 Aug. 5, 2002 Description
The Hitachi HM628512C is a 4-Mbit static RAM organized 512-kword × 8-bit. It realizes higher density, higher performance and low power consumption by employing CMOS process technology (6-transistor memory cell). The device, packaged in a 525-mil SOP (foot print pitch width) or 400-mil TSOP TYPE II or 600-mil plastic DIP, is available for high density mounting. The HM628512C is suitable for battery backup system.
Features
• Single 5 V supply • Access time: 55/70 ns (max) • Power dissipation Active: 10 mW/MHz (typ) Standby: 4 µW (typ) • Completely static memory. No clock or timing strobe required • Equal access and cycle times • Common data input and output: Three state output • Directly TTL compatible: All inputs and outputs • Battery backup operation
HM628512C Series
Ordering Information
Type No. HM628512CLP-7 HM628512CLP-5SL HM628512CLFP-7 HM628512CLFP-5SL HM628512CLTT-7 HM628512CLTT-5SL HM628512CLRR-7 HM628512CLRR-5SL Access time 70 ns 55 ns 70 ns 55 ns 70 ns 55 ns 70 ns 55 ns 400-mil 32-pin plastic TSOP II reverse (TTP-32DR) 400-mil 32-pin plastic TSOP II (TTP-32D) 525-mil 32-pin plastic SOP (FP-32D) Package 600-mil 32-pin plastic DIP (DP-32)
2
HM628512C Series
Pin Arrangement
32-pin DIP 32-pin SOP
A18 A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Top view) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 VCC A15 A17 WE A13 A8 A9 A11 OE A10 CS I/O7 I/O6 I/O5 I/O4 I/O3 A18 A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Top view)
32-pin TSOP
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 VCC A15 A17 WE A13 A8 A9 A11 OE A10 CS I/O7 I/O6 I/O5 I/O4 I/O3
32-pin TSOP (reverse)
VCC A15 A17 WE A13 A8 A9 A11 OE A10 CS I/O7 I/O6 I/O5 I/O4 I/O3 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 (Top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A18 A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 VSS
Pin Description
Pin name A0 to A18 I/O0 to I/O7 CS OE WE VCC VSS Function Address input Data input/output Chip select Output enable Write enable Power supply Ground
3
HM628512C Series
Block Diagram
LSB V CC V SS • • • • •
MSB
A11 A9 A8 A15 A18 A10 A13 A17 A16 A14 A12
Row Decoder
Memory Matrix 2,048 × 2,048
I/O0 Input Data Control I/O7
• •
Column I/O Column Decoder
• •
LSB A3 A2A1A0 A4 A5 A6 A7 MSB • • CS WE OE Timing Pulse Generator Read/Write Control
4
HM628512C Series
Function Table
WE × H H L L CS H L L L L OE × H L H L Mode Not selected Output disable Read Write Write VCC current I SB , I SB1 I CC I CC I CC I CC Dout pin High-Z High-Z Dout Din Din Ref. cycle — — Read cycle Write cycle (1) Write cycle (2)
Note: ×: H or L
Absolute Maximum Ratings
Parameter Power supply voltage Voltage on any pin relative to V SS Power dissipation Operating temperature Storage temperature Storage temperature under bias Symbol VCC VT PT Topr Tstg Tbias Value –0.5 to +7.0 –0.5* to V CC + 0.3* 1.0 –20 to +70 –55 to +125 –20 to +85
1 2
Unit V V W °C °C °C
Notes: 1. VT min: –3.0 V for pulse half-width ≤ 30 ns. 2. Maximum voltage is 7.0 V.
Recommended DC Operating Conditions (Ta = –20 to +70 °C)
Parameter Supply voltage Symbol VCC VSS Input high voltage Input low voltage Note: VIH VIL Min 4.5 0 2.2 –0.3
*1
Typ 5.0 0 — —
Max 5.5 0 VCC + 0.3 0.8
Unit V V V V
1. VIL min: –3.0 V for pulse half-width ≤ 30 ns.
5
HM628512C Series
DC Characteristics
Parameter Input leakage current Output leakage current Operating power supply current: DC Operating power supply current Symbol |ILI| |ILO | I CC Min — — — — Typ*1 Max — — 1.5 8 1 1 3 25 Unit µA µA mA mA Test conditions Vin = VSS to V CC CS = VIH or OE = VIH or WE = VIL, VI/O = VSS to V CC CS = VIL, others = VIH/VIL, I I/O = 0 mA Min cycle, duty = 100% CS = VIL, others = VIH/VIL I I/O = 0 mA Cycle time = 1 µs, duty = 100% I I/O = 0 mA, CS ≤ 0.2 V VIH ≥ V CC – 0.2 V, VIL ≤ 0.2 V CS = VIH Vin ≥ 0 V, CS ≥ V CC – 0.2 V
HM628512C-5 I CC1
HM628512C-7 I CC1 Operating power supply current I CC2
— —
7 2
25 5
mA mA
Standby power supply current: DC
I SB
— — —
0.1 0.8* 0.8* — —
2 3
0.5 20* 10* 0.4 —
2 3
mA µA µA V V
Standby power supply current (1): DC I SB1
Output low voltage Output high voltage
VOL VOH
— 2.4
I OL = 2.1 mA I OH = –1.0 mA
Notes: 1. Typical values are at VCC = 5.0 V, Ta = +25°C and specified loading, and not guaranteed. 2. This characteristics is guaranteed only for L version. 3. This characteristics is guaranteed only for L-SL version.
Capacitance (Ta = +25°C, f = 1 MHz)
Parameter Input capacitance*
1 1
Symbol Cin CI/O
Typ — —
Max 8 10*
2
Unit pF pF
Test conditions Vin = 0 V VI/O = 0 V
Input/output capacitance*
Notes: 1. This parameter is sampled and not 100% tested. 2. CI/O max = 12 pF only for HM628512CLP Series.
6
HM628512C Series
AC Characteristics (Ta = –20 to +70°C, VCC = 5 V ± 10%, unless otherwise noted.)
Test Conditions • • • • Input pulse levels: 0.8 V to 2.4 V Input rise and fall time: 5 ns Input and output timing reference levels: 1.5 V Output load: 1 TTL Gate + C L (100 pF) (HM628512C-7) 1 TTL Gate + C L (50 pF) (HM628512C-5) (Including scope & jig)
Read Cycle
HM628512C -5 Parameter Read cycle time Address access time Chip select access time Output enable to output valid Chip selection to output in low-Z Output enable to output in low-Z Chip deselection to output in high-Z Output disable to output in high-Z Output hold from address change Symbol t RC t AA t CO t OE t LZ t OLZ t HZ t OHZ t OH Min 55 — — — 10 5 0 0 10 Max — 55 55 25 — — 20 20 — -7 Min 70 — — — 10 5 0 0 10 Max — 70 70 35 — — 25 25 — Unit ns ns ns ns ns ns ns ns ns 2 2 1, 2 1, 2 Notes
7
HM628512C Series
Write Cycle
HM628512C -5 Parameter Write cycle time Chip selection to end of write Address setup time Address valid to end of write Write pulse width Write recovery time WE to output in high-Z Data to write time overlap Data hold from write time Output active from output in high-Z Output disable to output in high-Z Symbol t WC t CW t AS t AW t WP t WR t WHZ t DW t DH t OW t OHZ Min 55 50 0 50 40 0 0 25 0 5 0 Max — — — — — — 20 — — — 20 -7 Min 70 60 0 60 50 0 0 30 0 5 0 Max — — — — — — 25 — — — 25 Unit ns ns ns ns ns ns ns ns ns ns ns 2 1, 2, 7 3, 12 6 1, 2, 7 4 5 Notes
Notes: 1. t HZ , t OHZ and t WHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels. 2. This parameter is sampled and not 100% tested. 3. A write occurs during the overlap (tWP) of a low CS and a low WE. A write begins at the later transition of CS going low or WE going low. A write ends at the earlier transition of CS going high or WE going high. tWP is measured from the beginning of write to the end of write. 4. t CW is measured from CS going low to the end of write. 5. t AS is measured from the address valid to the beginning of write. 6. t WR is measured from the earlier of WE or CS going high to the end of write cycle. 7. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied. 8. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output remain in a high impedance state. 9. Dout is the same phase of the write data of this write cycle. 10. Dout is the read data of next address. 11. If CS is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them. 12. In the write cycle with OE low fixed, tWP must satisfy the following equation to avoid a problem of data bus contention. t WP ≥ tDW min + tWHZ max
8
HM628512C Series
Timing Waveforms
Read Timing Waveform (WE = VIH)
tRC
Address tAA tCO CS tLZ tOE tOLZ OE tOHZ tHZ
Dout
Valid Data tOH
9
HM628512C Series
Write Timing Waveform (1) (OE Clock)
tWC Address tAW OE tCW CS
*8
tWR
tAS WE tOHZ Dout
tWP
tDW Din Valid Data
tDH
10
HM628512C Series
Write Timing Waveform (2) (OE Low Fixed)
tWC Address tCW CS
*8
tWR
tAW tWP
WE
tAS tWHZ tOW
tOH
*9
*10
Dout tDW Din tDH
*11
Valid Data
11
HM628512C Series
Low VCC Data Retention Characteristics (Ta = –20 to +70 °C)
Parameter VCC for data retention Data retention current Symbol VDR I CCDR Min 2 — — Chip deselect to data retention time Operation recovery time t CDR tR 0 t RC*
5
Typ — 0.8*
4
Max — 20*
1
Unit V µA µA ns ns
Test conditions*3 CS ≥ V CC – 0.2 V, Vin ≥ 0 V VCC = 3.0 V, Vin ≥ 0 V CS ≥ V CC – 0.2 V
0.8*4 — —
10* 2 — —
See retention waveform
Notes: 1. For L-version and 10 µA (max.) at Ta = –20 to +40° C. 2. For L-SL-version and 3 µA (max.) at Ta = –20 to +40° C. 3. CS controls address buffer, WE buffer, OE buffer, and Din buffer. In data retention mode, Vin levels (address, WE, OE, I/O) can be in the high impedance state. 4. Typical values are at VCC = 3.0 V, Ta = +25°C and specified loading, and not guaranteed. 5. t RC = read cycle time.
Low V CC Data Retention Timing Waveform (CS Controlled)
tCDR VCC 4.5 V Data retention mode tR
2.2 V VDR CS 0V CS ≥ VCC – 0.2 V
12
HM628512C Series
Package Dimensions
HM628512CLP Series (DP-32)
As of January, 2002
Unit: mm
41.90 42.50 Max
32
17 13.4 13.7 Max
1 2.30 Max
5.08 Max
1.20
16 15.24
0.51 Min 2.54 Min
2.54 ± 0.25
0.48 ± 0.10
0.25 – 0.05 0˚ – 15˚
+ 0.11
Hitachi Code JEDEC JEITA Mass (reference value)
DP-32 — Conforms 5.1 g
13
HM628512C Series
Package Dimensions (cont.)
HM628512CLFP Series (FP-32D)
As of January, 2002
20.45 20.95 Max 32 17
Unit: mm
1 1.00 Max
16 3.00 Max *0.22 ± 0.05 0.20 ± 0.04 14.14 ± 0.30 1.42
11.30
1.27 *0.40 ± 0.08 0.38 ± 0.06
0.10 0.15 M
0.12 0.15 + 0.10 –
0˚ – 8˚ 0.80 ± 0.20
*Dimension including the plating thickness Base material dimension
Hitachi Code JEDEC JEITA Mass (reference value)
FP-32D Conforms — 1.3 g
14
HM628512C Series
Package Dimensions (cont.)
HM628512CLTT Series (TTP-32D)
As of January, 2002
20.95 21.35 Max 32 17
Unit: mm
1 *0.42 ± 0.08 0.40 ± 0.06 1.15 Max
1.27 0.21
M
16
10.16
0.80 11.76 ± 0.20 0˚ – 5˚ 0.50 ± 0.10
0.10
*0.17 ± 0.05 0.125 ± 0.04
0.13 ± 0.05
1.20 Max
*Dimension including the plating thickness Base material dimension
Hitachi Code JEDEC JEITA Mass (reference value)
TTP-32D Conforms — 0.51 g
15
HM628512C Series
Package Dimensions (cont.)
HM628512CLRR Series (TTP-32DR)
As of January, 2002
20.95 21.35 Max 1 16
Unit: mm
32 *0.42 ± 0.08 0.40 ± 0.06 1.15 Max
1.27 0.21
M
17
10.16
0.80 11.76 ± 0.20 0˚ – 5˚ 0.50 ± 0.10
0.10
*0.17 ± 0.05 0.125 ± 0.04
0.13 ± 0.05
1.20 Max
*Dimension including the plating thickness Base material dimension
Hitachi Code JEDEC JEITA Mass (reference value)
TTP-32DR Conforms — 0.51 g
16
HM628512C Series
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose,CA 95134 Tel: (408) 433-1990 Fax: (408) 433-0223 Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: (1628) 585000 Fax: (1628) 585200 Hitachi Europe GmbH Electronic Components Group Dornacher Strasse 3 D-85622 Feldkirchen Postfach 201,D-85619 Feldkirchen Germany Tel: (89) 9 9180-0 Fax: (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel : -6538-6533/6538-8577 Fax : -6538-6933/6538-3877 URL : http://semiconductor.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : -(2)-2718-3666 Fax : -(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : -2735-9218 Fax : -2730-0281 URL : http://semiconductor.hitachi.com.hk
Copyright C Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 6.0
17