0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL24021IRT065Z

ISL24021IRT065Z

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    WDFN8

  • 描述:

    IC OPAMP VFB 1 CIRCUIT 8TDFN

  • 数据手册
  • 价格&库存
ISL24021IRT065Z 数据手册
DATASHEET ISL24021 FN6637 Rev 1.00 October 18, 2011 1A Rail-to-Rail Input-Output Operational Amplifier The ISL24021 is a high output current, high voltage, rail-to-rail voltage feedback amplifier. The ISL24021 is capable of ±1A peak output short circuit current. The amplifier exhibits beyond the rail input capability, rail-to-rail output capability and is unity gain stable. Features The operating supply voltage range is from 4.5V to 19V maximum and the ISL24021 can be configured for single or dual supply operation. The ISL24021 has the ability to quickly source and sink large peak currents up to ±1A and to drive large continuous currents of ±300mA. • 18V/µs Slew Rate The ISL24021 features fast slewing and settling times. Also, the device provides common mode input capability beyond the supply rails, and rail-to-rail output capability. This enables the amplifier to offer maximum dynamic range at any supply voltage. These features make the ISL24021 an ideal solution as a VCOM driver in TFT-LCD panel applications. Other applications may include battery power and portable devices, and especially where low power consumption is important. • Beyond the Rails Input Capability The ISL24021 is available in a 8 Ld 3mmx3mm TDFN package featuring a standard operational amplifier pinout with a lead pitch of 0.65mm. The device utilizes a thermally enhanced package and has a built-in thermal protection circuit. It is specified for operation over an ambient temperature range of -40°C to +85°C. INN 2 INP 3 VSS 4 • 2.0mA Supply Current • 25MHz -3dB Bandwidth • ±300mA Continuous Output Current • Unity-Gain Stable • Rail-to-Rail Output Swing • Built-in Thermal Protection • -40°C to +85°C Ambient Temperature Range • Pb-Free (RoHS Compliant) Applications • TFT-LCD Panels • VCOM Driver • Video Processing • Audio Processing • Test Equipment ISL24021 (8 LD TDFN) TOP VIEW THERMAL PAD • 4.5V to 19V Maximum Supply Voltage Range • Active Filters Pin Configuration NC 1 • ±1A Output Short Circuit Current • Battery-Powered Applications • Portable Equipment 8 NC 7 VDD 6 OUT 5 NC THERMAL PAD IS ELECTRICALLY ISOLATED, OR CONNECTED TO VSS Ordering Information PACKAGE Tape & Reel PKG. PART (Pb-Free) DWG. # MARKING PART NUMBER (Notes 1, 2, 3) LEAD PITCH (mm) ISL24021IRT065Z-T7A 0.65 P021 8 Ld TDFN L8.3x3K ISL24021IRT065Z-T13 0.65 P021 8 Ld TDFN L8.3x3K NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pbfree material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pbfree requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL24021. For more information on MSL please see techbrief TB363. FN6637 Rev 1.00 October 18, 2011 Page 1 of 13 ISL24021 Absolute Maximum Ratings (TA = +25°C) Thermal Information Supply Voltage Range (VDD -VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8V Input Voltage Range (INN, INP). . . . . . . . . . . . . . . . . VSS - 0.5V, VDD + 0.5V Input Differential Voltage (INP - INN) . . . . . . . . . .(VDD + 0.5V) - (VSS - 0.5V) ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7500V Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500V Thermal Resistance (Typical) JA (°C/W) JC (°C/W) 8 Ld TDFN Package (Notes 4, 5). . . . . . . . . 50 17 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Figure 28 Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For JC, the "case temp" location is the center of the ceramic on the package underside. Electrical Specifications PARAMETER VDD = 5V, VSS = -5V, RL = 1k to 0V, TA = +25°C, Unless Otherwise Specified. DESCRIPTION CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT 19 V 2.8 mA POWER SUPPLY PERFORMANCE VDD - VSS Supply Voltage Range 4.5 IS Supply Current No load PSRR Power Supply Rejection Ratio VS is moved from ±2.25V to ±9.5V 2.1 60 80 dB INPUT CHARACTERISTICS VOS Input Offset Voltage TCVOS Average Offset Voltage Drift (Note 7) ILEAK Input Leakage Current VCM = 0V 1.4 VCM = 0V 2 15 1 mV µV/°C 10 nA RIN Input Resistance 1 G CIN Input Capacitance 2 pF CMIR Common-Mode Input Range VSS0.5 VDD+ 0.5 V CMRR Common-Mode Rejection Ratio For VIN from -5.5V to 5.5V 50 70 dB AVOL Open-Loop Gain -4.5V VOUT 4.5V 75 100 dB VDD0.15 VDD0.025 V OUTPUT CHARACTERISTICS VOH Output Swing High IL= 5mA, VIN = VDD VOL Output Swing Low IL= -5mA,VIN = VSS ISC Short-Circuit Current ±1.0 A IOUT Continuous Output Current (Note 10) ±300 mA 18 V/µs VSS+ 0.025 VSS+ 0.15 V DYNAMIC PERFORMANCE Slew Rate (Note 8) -4.0V VOUT 4.0V tS Settling to 0.1% (Note 9) AV = +1, VO = 2V step 80 ns BW -3dB Bandwidth AV = +1, RL = 1kCL= 8pF 25 MHz PM Phase Margin RL = 1kCL= 8pF 44 ° SR THERMAL PERFORMANCE TTS Thermal Shutdown Temperature Die temperature at which the device will shutdown until it cools by TTSH °C +165 °C TTSH Thermal Shutdown Hysteresis Die temperature below TTS °C when the device will become operational after shutdown 15 °C FN6637 Rev 1.00 October 18, 2011 Page 2 of 13 ISL24021 . Electrical Specifications PARAMETER VDD = 5V, VSS = GND = 0V, RL = 1kto 2.5V, TA = +25°C, Unless Otherwise Specified. DESCRIPTION CONDITION MIN (Note 6) TYP MAX (Note 6) UNIT 19 V 2.8 mA POWER SUPPLY PERFORMANCE VDD - VSS Supply Voltage Range 4.5 IS Supply Current No load PSRR Power Supply Rejection Ratio VS is moved from +4.5V to +19V 2.0 60 80 dB INPUT CHARACTERISTICS VOS Input Offset Voltage VCM = 2.5V 1.4 15 TCVOS Average Offset Voltage Drift (Note 7) ILEAK Input Leakage Current RIN Input Resistance 1 G CIN Input Capacitance 2 pF CMIR Common-Mode Input Range CMRR Common-Mode Rejection Ratio For VIN from -0.5V to 5.5V 45 70 dB AVOL Open-Loop Gain 0.5V VOUT 4.5V 70 100 dB VDD0.15 VDD0.025 V 1 VCM = 2.5V mV µV/°C 2 10 VSS0.5 VDD+ 0.5 nA V OUTPUT CHARACTERISTICS VOH Output Swing High IL= 5mA, VIN = VDD VOL Output Swing Low IL= -5mA,VIN = VSS ISC Short-Circuit Current ±0.5 A IOUT Continuous Output Current (Note 10) ±300 mA VSS+ 0.025 VSS+ 0.15 V DYNAMIC PERFORMANCE SR Slew Rate (Note 8) 1V VOUT 4V 15 V/µs tS Settling to 0.1% (Note 9) AV = +1, VO = 2V step 80 ns BW -3dB Bandwidth AV = +1, RL = 1kCL= 8pF 22 MHz PM Phase Margin RL = 1kCL= 8pF 46 ° THERMAL PERFORMANCE TTS Thermal Shutdown Temperature Die temperature at which the device will shutdown until it cools by TTSH °C +165 °C TTSH Thermal Shutdown Hysteresis Die temperature below TTS °C when the device will become operational after shutdown 15 °C Electrical Specifications PARAMETER VDD = 15V, VSS = GND = 0V, RL = 1k to 7.5V, TA = +25°C, Unless Otherwise Specified. DESCRIPTION CONDITION MIN (Note 6) TYP MAX (Note 6) UNIT 19 V 2.8 mA POWER SUPPLY PERFORMANCE VDD - VSS Supply Voltage Range 4.5 IS Supply Current No load PSRR Power Supply Rejection Ratio VS is moved from +4.5V to +19V 2.2 60 80 dB INPUT CHARACTERISTICS VOS Input Offset Voltage TCVOS Average Offset Voltage Drift (Note 7) FN6637 Rev 1.00 October 18, 2011 VCM = 7.5V 1.4 1 15 mV µV/°C Page 3 of 13 ISL24021 Electrical Specifications PARAMETER VDD = 15V, VSS = GND = 0V, RL = 1k to 7.5V, TA = +25°C, Unless Otherwise Specified. (Continued) DESCRIPTION CONDITION MIN (Note 6) VCM = 7.5V TYP MAX (Note 6) UNIT 2 10 nA ILEAK Input Leakage Current RIN Input Resistance 1 G CIN Input Capacitance 2 pF CMIR Common-Mode Input Range CMRR Common-Mode Rejection Ratio For VIN from -0.5V to 15.5V 50 70 dB AVOL Open-Loop Gain 0.5V VOUT 14.5V 75 95 dB VDD 0.4 V VDD 0.025 V IL= -100mA,VIN = VSS VSS + 0.4 V IL= -7.5mA,VIN = VSS VSS + 0.025 VSS0.5 VDD+ 0.5 V OUTPUT CHARACTERISTICS VOH Output Swing High IL= 100mA, VIN = VDD IL= 7.5mA, VIN = VDD Output Swing Low VOL VDD 0.15 VSS + 0.15 V ISC Short-Circuit Current ±1.0 A IOUT Continuous Output Current (Note 10) ±300 mA DYNAMIC PERFORMANCE SR Slew Rate (Note 8) 1V VOUT 14V 19 V/µs tS Settling to 0.1% (Note 9) AV = +1, VO = 2V step 80 ns BW -3dB Bandwidth AV = +1, RL = 1kCL= 8pF 27 MHz PM Phase Margin RL = 1kCL= 8pF 42 ° THERMAL PERFORMANCE TTS Thermal Shutdown Temperature Die temperature at which the device will shutdown until it cools by TTSH °C +165 °C TTSH Thermal Shutdown Hysteresis Die temperature below TTS °C when the device will become operational after shutdown 15 °C NOTES: 6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7. Measured over the -40°C to +85°C ambient operating temperature range. 8. Typical slew rate is an average of the slew rates measured on the rising (20% to 80%) and the falling (80% to 20%) edges of the output signal. 9. Settling time measured from [Full Scale - (0.1%*StepSize)] on the rising edge to when the output is bounded within ±0.1% of full scale. 10. Continuous output current with a typical of ±300mA. Care should be taken to ensure the maximum package power dissipation is not exceeded, refer to “Power Dissipation” on page 10. Pin Descriptions PIN NUMBER PIN NAME 1, 5, 8 NC 2 INN PIN TYPE PIN FUNCTION No Connection Analog Input Amplifier negative input 3 INP Analog Input Amplifier positive input 4 VSS Analog Power Negative power supply (connect to GND for single supply operation) 6 OUT Analog Output Amplifier output 7 VDD Analog Power Positive power supply FN6637 Rev 1.00 October 18, 2011 Page 4 of 13 ISL24021 Typical Performance Curves 1.0 450 VS = ±5V 400 TA = +25°C TYPICAL PRODUCTION DISTRIBUTION INPUT OFFSET VOLTAGE (mV) NUMBER OF DEVICES 500 350 300 250 200 150 100 50 0 -6 -4 -2 0 2 4 VS = ±5V 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -50 6 0 50 TEMPERATURE (°C) INPUT OFFSET VOLTAGE (mV) FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION 4.972 1.5 OUTPUT HIGH VOLTAGE (V) INPUT LEAKAGE CURRENT (nA) VS = ±5V AV = 1 RL = 1k VS = ±5V 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -50 0 50 100 4.970 4.968 4.966 4.964 4.962 4.960 -50 150 0 50 100 150 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 3. INPUT LEAKAGE CURRENT vs TEMPERATURE FIGURE 4. OUTPUT HIGH VOLTAGE vs TEMPERATURE 120 -4.980 VS = ±5V VS = ±5V AV = 1 RL = 1k OPEN LOOP GAIN (dB) OUTPUT LOW VOLTAGE (V) 150 FIGURE 2. INPUT OFFSET VOLTAGE vs TEMPERATURE 2.0 -4.982 100 -4.984 -4.986 -4.988 -4.990 -4.992 -50 0 50 100 TEMPERATURE (°C) FIGURE 5. OUTPUT LOW VOLTAGE vs TEMPERATURE FN6637 Rev 1.00 October 18, 2011 150 110 100 90 80 70 -50 0 50 100 TEMPERATURE (°C) FIGURE 6. OPEN-LOOP GAIN vs TEMPERATURE Page 5 of 13 150 ISL24021 Typical Performance Curves (Continued) 100 100 VS = ±5V VS = ±5V 90 90 CMRR (dB) PSRR (dB) 95 85 80 70 60 75 70 80 -50 0 50 TEMPERATURE (°C) 100 50 -50 150 0 50 TEMPERATURE (°C) 100 FIGURE 8. CMRR vs TEMPERATURE FIGURE 7. PSRR vs TEMPERATURE 22 2.6 VS = ±5V SUPPLY CURRENT (mA) SLEW RATE (V/µs) VS = ±5V AV = 2 20 18 16 14 -50 0 50 100 2.4 2.2 2.0 1.8 1.6 -50 150 0 TEMPERATURE (°C) 150 4.0 TA = +25°C TA = +25°C 3.5 SUPPLY CURRENT (mA) 120 GAIN (dB) 100 FIGURE 10. SUPPLY CURRENT vs TEMPERATURE 140 100 80 60 RL = OPEN 3.0 2.5 2.0 1.5 1.0 0.5 8 12 SUPPLY VOLTAGE (V) 16 FIGURE 11. OPEN-LOOP GAIN vs SUPPLY VOLTAGE FN6637 Rev 1.00 October 18, 2011 50 TEMPERATURE (°C) FIGURE 9. SLEW RATE vs TEMPERATURE 40 4 150 20 4 8 12 16 20 SUPPLY VOLTAGE (V) FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE Page 6 of 13 ISL24021 Typical Performance Curves (Continued) 4 10 VS = ±5V 3 AV = 1 1k 0 -1 AV = 1 47pF 0 -2 -6 150 -4 -8 -5 100k 1M 10M FREQUENCY (Hz) -10 100k 100M 4 VS = ±5V 3 AV = 1 1M 10M FREQUENCY (Hz) 100M FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS CL FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS RL 120 180 100 160 GAIN (dB) 80 2 0 GAIN (dB) 1 0.1% -1 140 60 120 40 100 20 80 0 60 PHASE (°) -2 -20 -3 -40 20 -4 VS = ±5V -60 -80 10 TA = +25°C 0 -5 50 60 70 80 90 SETTLING TIME (ns) 100 110 40 10 VS = ±5V 0 RL = 1k -10 -40 -50 -60 100k 1M 10M -20 100M VS = ±5V RL = 1k -30 PSRR- -40 -50 -60 -70 -70 -80 -90 100 10k -20 PSRR (dB) -30 1k FIGURE 16. OPEN LOOP GAIN AND PHASE -10 -20 100 FREQUENCY (Hz) FIGURE 15. STEP SIZE vs SETTLING TIME CMRR (dB) 10pF 100pF -4 -3 STEP SIZE (V) 6 2 -2 5 VS = ±5V 4 560 1 GAIN (dB) GAIN (dB) 2 8 PHASE(°) 5 PSRR+ -80 1k 10k 100k 1M FREQUENCY (Hz) FIGURE 17. CMRR vs FREQUENCY FN6637 Rev 1.00 October 18, 2011 10M 100M -90 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M FIGURE 18. PSRR vs FREQUENCY Page 7 of 13 ISL24021 Typical Performance Curves (Continued) VS = ±5V VOLTAGE NOISE (nV/Hz) 1000 AV = 1 100 10 6V STEP 200ns/DIV 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 100M FIGURE 20. LARGE SIGNAL TRANSIENT RESPONSE FIGURE 19. INPUT VOLTAGE NOISE SPECTRAL DENSITY VS = ±5V AV = 1 INN VDD INP 200mV STEP 200ns/DIV ISL24021 4.7µF 0.1µF VSS 4.7µF OUT RL 0.1µF CL THERMAL PAD CONNECTED TO VSS FIGURE 21. SMALL SIGNAL TRANSIENT RESPONSE FN6637 Rev 1.00 October 18, 2011 FIGURE 22. TEST CIRCUIT Page 8 of 13 ISL24021 Applications Information VS = ±2.5V, TA = +25°C, AV = 1, VIN = 6VP-P Product Description 1V 10µs The ISL24021 is a high output current, high voltage, rail-to-rail voltage feedback amplifier. The ISL24021 is capable of ±1A peak output short circuit current. The amplifier exhibits beyond the rail input capability, rail-to-rail output capability and is unity gain stable. Other features include fast slew rate and settling time which is important in many applications, such as TFT-LCD panels. Operating Voltage, Input and Output Capability 1V FIGURE 23. OPERATION WITH BEYOND-THE-RAILS INPUT . VS = ±5V, TA = +25°C, AV = 1, VIN = 10VP-P 5V 10µs The input common mode voltage range extends 0.5V beyond the supply rails. For this range, the ISL24021 amplifier is immune to phase reversal. If the common mode input voltage exceeds the supply voltage by more than 0.5V, electrostatic protection diodes in the input stage of the device begin to conduct. It is suggested to not overdrive the inputs. Figure 23 shows the input voltage driven beyond the supply rails and the device output swinging between the supply rails. The output swings of the ISL24021 typically extend to within 25mV of positive and negative supply rails with load currents of ±5mA. Decreasing load currents will extend the output voltage range even closer to the supply rails. Figure 24 shows the input and output waveforms for the device in a unity-gain configuration. Operation is from ±5V supply with a 1k load connected to GND. The input is a 10VP-P sinusoid and the output voltage is approximately 9.95VP-P. Refer to the “Electrical Specifications” tables beginning on page 2 for specific device parameters. Parameter variations with operating voltage, loading and/or temperature are shown in the “Typical Performance Curves” on page 5. INPUT The ISL24021 can operate on a single supply or dual supply configuration. The ISL24021 operating voltage ranges from a minimum of 4.5V to a maximum of 19V. This range allows for a standard 5V (or ±2.5V) supply voltage to dip to -10%, or a standard 18V (or ±9V) to rise by +5.5% without affecting performance or reliability. 5V OUTPUT The ISL24021 is available in a 8 Ld 3mmx3mm TDFN package featuring a standard operational amplifier pinout and a lead pitch of 0.65mm. The device utilizes a thermally enhanced package and has a built-in thermal protection circuit. It is specified for operation over an ambient temperature range of -40°C to +85°C. FIGURE 24. OPERATION WITH RAIL-TO-RAIL INPUT AND OUTPUT Output Current Limit The ISL24021 is capable of ±1A peak output short circuit current. The device will limit the current to ±1A. Maximum reliability is maintained if the output continuous current never exceeds ±300mA. This limit is set by the characteristics of the internal metal interconnects. See “Power Dissipation” on page 10 for detailed information about ensuring device operation with temperature and load conditions. Driving Capacitive Loads As load capacitance increases, the -3dB bandwidth will decrease and peaking can occur. Depending on the application, it may be necessary to reduce peaking and to improve device stability. To improve device stability a snubber circuit or a series resistor may be added to the output of the ISL24021. A snubber is a shunt load consisting of a resistor in series with a capacitor, see Figure 25. An optimized snubber can improve the phase margin and the stability of the ISL24021. The advantage of a snubber circuit is that it does not draw any DC load current or reduce the gain. Another method to reduce peaking is to add a series output resistor (typically between 1 to 10; see Figure 26). Depending on the capacitive loading, a small value resistor may be the most appropriate choice to minimize any reduction in gain. FN6637 Rev 1.00 October 18, 2011 Page 9 of 13 ISL24021 Power Dissipation . INN VDD INP ISL24021 4.7µF 0.1µF VSS OUT RSNUBBER 4.7µF 0.1µF The ISL24021 has a built-in thermal protection, which automatically shuts the output OFF (high impedance) when the die temperature reaches +165°C. This ensures safe operation and prevents internal damage to the device. When the die cools by +15°C the output will automatically turn ON. ZL THERMAL PAD CONNECTED TO VSS With a 300mA maximum continuous output drive capability, it is possible to exceed the rated +150°C maximum junction temperature. It is important to calculate the maximum power dissipation of the ISL24021 for the application. Proper load conditions will ensure that the ISL24021 junction temperature stays within a safe operating region. CSNUBBER FIGURE 25. OUTPUT SNUBBER CIRCUIT . The maximum power dissipation allowed in a package is determined according to Equation 1: INN VDD INP 4.7µF 0.1µF ISL24021 T JMAX – T AMAX P DMAX = --------------------------------------- JA (EQ. 1) where: VSS OUT RSERIES 4.7µF 0.1µF • TAMAX = Maximum ambient temperature ZL THERMAL PAD CONNECTED TO VSS • JA = Thermal resistance of the package • PDMAX = Maximum power dissipation in the package FIGURE 26. OUTPUT SERIES RESISTOR CIRCUIT Typical Application Circuit A typical application of the ISL24021 is as a TFT-LCD VCOM driver (see Figure 27). A VCOM driver maintains the backplane common voltage of a TFT-LCD panel. Maintaining the VCOM voltage at a steady level is critical to panel performance. The ability of the ISL24021 to source/sink large peak short circuit currents make it ideal as a VCOM driver. The ±1A short circuit current capability combined with a large bandwidth and fast settling time give the ISL24021 ideal VCOM driver characteristics, and make it a great choice for TFT-LCD applications. V DD = 15V VCOM CALIBRATOR / RESISTOR LADDER ISL24021 INN INP 0.1µF TFT-LCD + OUT V SS THERMAL PAD CONNECTED TO V SS PANEL CAPACITANCE + C STORAGE Sourcing: P DMAX = V S  I S +  V DD – V OUT   I LOAD  (EQ. 2) Sinking: (EQ. 3) P DMAX = V S  I S +  V OUT – V SS   I LOAD  • VS = Total supply voltage range (VDD - VSS) • VDD = Positive supply voltage • VSS = Negative supply voltage • VOUT = Output voltage • ILOAD = Load current NOTE: C STORAGE WILL VARY DEPENDING ON THE APPLICATION FIGURE 27. TYPICAL APPLICATION CIRCUIT: TFT-LCD VCOM FN6637 Rev 1.00 October 18, 2011 The actual maximum power dissipation of the IC is the total quiescent supply current, times the total power supply voltage, plus the power dissipation in the IC caused by the loading condition. • IS = Device supply current 4.7µF - 0.1µF • TJMAX = Maximum junction temperature Device overheating can be avoided by calculating the minimum resistive load condition, RLOAD, resulting in the highest power dissipation. To find RLOAD, set the two PDMAX equations equal to each other and solve for VOUT/ILOAD. Reference the package power dissipation curve, Figure 28, for further information. Page 10 of 13 ISL24021 Printed Circuit Board Layout JEDEC JESD51-7 HIGH EFFECTIVE THERMAL CONDUCTIVITY (4-LAYER) TEST BOARD - TDFN EXPOSED DIEPAD SOLDERED TO PCB PER JESD51-5 3.0 As with any high-frequency device, good printed circuit board layout is necessary for optimum performance. For the ISL24021 low impedance analog power and ground planes are recommended, and trace lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. For optimal thermal and operating performance the ISL24021 thermal pad should always be connected to the lowest potential, VSS. POWER DISSIPATION (W) 2.5W 2.5 TDFN8 2.0 JA = +50 (°C/W) 1.5 1.0 0.5 0 0 25 50 75 100 125 AMBIENT TEMP (°C) 150 For normal single supply operation (the VSS pin is connected to GND) a 4.7µF capacitor should be placed from VDD to GND, then a parallel 0.1µF capacitor should be connected as close to the amplifier as possible. For dual supply operation the same bypassing techniques should be utilized by connecting capacitors from each supply to GND. FIGURE 28. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE FN6637 Rev 1.00 October 18, 2011 Page 11 of 13 ISL24021 Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision. DATE REVISION CHANGE 9/14/2011 FN6637.1 Updated Ordering Information by Removing bulk part ISL24021IRT065Z, added T7A part, PKG DWG# changed from L8.3x3A to L8.3x3K, added MSL Note Changed Human Body Model from "3000V" to "7500V" Added to Abs Max Rating - Charged Device Model Updated Tja Note to Non direct attached at High Thermal conductivity Added to Thermal Information Tjc "17" and respective note. Electrical Spec Table - Updated Note from: Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. To: Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. Changed POD L8.3x3A to L8.3x3K. 06/03/2009 FN6637.0 Initial Release Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL24021 To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff FITs are available from our website at: http://rel.intersil.com/reports/search.php © Copyright Intersil Americas LLC 2009-2011. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6637 Rev 1.00 October 18, 2011 Page 12 of 13 ISL24021 Package Outline Drawing L8.3x3K 8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 7/11 2X 1.95 3.00 6X 0.65 A B 1 PIN #1 INDEX AREA 3.00 6 6 PIN 1 INDEX AREA (4X) 1.50 ±0.10 0.15 8 TOP VIEW 8X 0.25 ±0.05 0.40 ± 0.05 4 0.10 M C A B 2.30 ±0.10 BOTTOM VIEW SEE DETAIL "X" C 0.10 C 0.75 ±0.05 0 . 203 REF 5 C 0 . 02 NOM. 0 . 05 MAX. 0.08 C SIDE VIEW DETAIL "X" ( 2.30) ( 1.95) NOTES: ( 8X 0.50) 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured (1.50) ( 2.90 ) between 0.15mm and 0.20mm from the terminal tip. PIN 1 5. Tiebar shown (if present) is a non-functional feature. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be (6x 0.65) ( 8 X 0.25) either a mold or mark feature. TYPICAL RECOMMENDED LAND PATTERN 7. FN6637 Rev 1.00 October 18, 2011 Compliant to JEDEC MO-229 WEEC-2 except for the foot length. Page 13 of 13
ISL24021IRT065Z 价格&库存

很抱歉,暂时无法提供与“ISL24021IRT065Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货