DATASHEET
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple
Input Channels
The ISL26310, ISL26311, ISL26312, ISL26313, ISL26314,
ISL26315 and ISL26319 family of sampling SAR-type ADCs
feature excellent linearity over supply and temperature variations,
and offer versions with 1-, 2-, 4- and 8-channel single-ended
inputs, and 1-, 2- and 4-channel differential inputs. A proprietary
input multiplexer and combination buffer amplifier reduces the
input drive requirements, resulting in lower cost and reduced
board space. Specified measurement accuracy is maintained
with input signals up to VDD.
Members of the ISL26310, ISL26311, ISL26312, ISL26313,
ISL26314, ISL26315 and ISL26319 family of Low-Power ADCs
offer pinout intercompatibility, differing only in the analog inputs,
to support quick replication of proven layouts across multiple
design platforms.
The serial digital interface is SPI compatible and is easily
interfaced to popular FPGAs and microcontrollers. Power
consumption is limited to 11mW at a sampling rate of 125kSPS,
and an operating current of just 8µA typical between conversions,
when configured for Auto Power-down mode.
The ISL26310, ISL26311, ISL26312, ISL26313, ISL26314,
ISL26315, ISL26319 feature up to 5kV Human Body Model ESD
survivability and are available in the popular SOIC and TSSOP
packages. Performance is specified for operation over the full
industrial temperature range (-40°C to +125°C).
VDD
Features
• Pin-compatible family allows easy design upgrades
• Excellent differential non-linearity (0.7LSB max)
• Low THD: -86dB (typ)
• Simple SPI-compatible serial digital interface
• Low 2.2mA operating current
• Power-down current between conversions 8µA (typ)
• +5.25V to +2.7V supply
• Excellent ESD survivability: 5kV HBM, 350V MM, 2kV CDM
Applications
• Industrial process control
• Energy measurement
• Multichannel data acquisition systems
• Pressure sensors
• Flow controllers
VREF
BUFFER
ANALOG INPUTS
DIFFERENTIAL/
SINGLE-ENDED
MUX
FN7549
Rev 3.00
August 18, 2015
CNV
ADC
SPI
SCLK
SDO
SDI
OSC
POR
GND
FIGURE 1. FUNCTIONAL BLOCK DIAGRAM
FN7549 Rev 3.00
August 18, 2015
Page 1 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Application Block Diagram
I2 C Bus
RTC
ANALOG SIGNAL INPUT MODULEs
Pressure/Strain Gage Sensor
VREF
RS-485
Precision
Amps
Gain
Amplifiers
DCP
+V
Precision
Amps
Precision
Amps
-V
-V
RTC
VREF
POWER
Voltage
Supervisor &
Sequencers
V
Temperature Sensor
LDO’s
DCP
System
Power
Thermistor
+V
Precision
Amps
-V
Thermocouple
+V
Precision
Amps
Active
Filters
V
Precision
Amps
Filters
-V
ISO-Thermal
Block
LDO
Switching
Controller
Switching
Regulators
-V
+V Active
-V
Core &
I/O Power
Switching
Regulator
+V
Precision
Amps
Master
μC
RS-485
μC
ADC
M
U
X
Active
Filters
+V
VREF
RS-232
MUX and ADC
Actuators
+V
Motors
Control loops
Buffer, Filters,
Span Drivers
+V
Precision
Amps
Precision
Amps
-V
-V
M
U
X
+V
High Voltage Input Rail ~24V
DAC
VREF
ANALOG SIGNAL OUTPUT MODULE
Flow Sensor
Single Ended
Controller
-V
Loop Supply
Gain
Amplifiers
Differential
Pressure
Transducer
w/ ¥
Extractor
+V
Iout
4 -20mA
Vin
Active
Filters
Isolator
+V
Precision
Amps
Precision
Amps
-V
-V
Isolated Power
Pin-Compatible Family
RESOLUTION
(Bits)
SPEED
(kHz)
ANALOG
INPUT
INPUT
CHANNELS
ISL26310
12
125
Differential
1
ISL26311
12
125
Single-Ended
1
ISL26312
12
125
Differential
2
ISL26313
12
125
Single-Ended
2
ISL26314
12
125
Differential
4
ISL26315
12
125
Single-Ended
4
ISL26319
12
125
Single-Ended
8
ISL26320
12
250
Differential
1
ISL26321
12
250
Single-Ended
1
ISL26322
12
250
Differential
2
ISL26323
12
250
Single-Ended
2
ISL26324
12
250
Differential
4
ISL26325
12
250
Single-Ended
4
ISL26329
12
250
Single-Ended
8
MODEL
FN7549 Rev 3.00
August 18, 2015
Page 2 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Ordering Information
DESCRIPTION
PART NUMBER
(Notes 1, 2, 3)
INPUT
CHANNEL
RESOLUTION SPEED INPUT
PART
S
(Bits)
(kHz) (SE/DIFF)
MARKING
TEMP. RANGE
PACKAGE
(°C)
(RoHS Compliant)
PKG
DWG #
ISL26310FBZ (No longer available,
recommended replacement: ISL26320FBZ)
26310 FBZ
12
125
Diff
1
-40 to +125
8 Ld SOIC
M8.15
ISL26311FBZ (No longer available,
recommended replacement: ISL26321FBZ)
26311 FBZ
12
125
SE
1
-40 to +125
8 Ld SOIC
M8.15
ISL26312FVZ
26312 FVZ
12
125
Diff
2
-40 to +125
16 Ld TSSOP
M16.173
ISL26313FBZ
26313 FBZ
12
125
SE
2
-40 to +125
8 Ld SOIC
M8.15
ISL26314FVZ
26314 FVZ
12
125
Diff
4
-40 to +125
16 Ld TSSOP
M16.173
ISL26315FVZ
26315 FVZ
12
125
SE
4
-40 to +125
16 Ld TSSOP
M16.173
ISL26319FVZ
26319 FVZ
12
125
SE
8
-40 to +125
16 Ld TSSOP
M16.173
NOTES:
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315,
ISL26319. For more information on MSL please see techbrief TB363.
FN7549 Rev 3.00
August 18, 2015
Page 3 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Pin Configurations
ISL26311
(8 LD SOIC)
TOP VIEW
ISL26310
(8 LD SOIC)
TOP VIEW
1
VDD
GND
2
AIN+
3
4 LO
NO
AIN-
ER
NG
AV
A
E
BL
IL A
OR
SU
O
PP
ED
RT 8 CNV
VDD
1
7
SCLK
GND
2
6
SDO
VREF
3
5
AIN0
SDI
4 L
NO
GE
ON
R
AV
A
E
BL
IL A
OR
SU
O
PP
ED
RT 8
CNV
7
SCLK
6
SDO
5
SDI
ISL26313
(8 LD SOIC)
TOP VIEW
VDD
1
8
CNV
GND
2
7
SCLK
AIN0
3
6
SDO
AIN1
4
5
SDI
ISL26314
(16 LD TSSOP)
TOP VIEW
ISL26312
(16 LD TSSOP)
TOP VIEW
VDD
1
16
CNV
VDD
1
16
CNV
GND
2
15
SC LK
GND
2
15
SCLK
VR EF
3
14
SD O
VREF
3
14
SDO
GND
4
13
SD I
GND
4
13
SDI
A IN 0+
5
12
NC
AIN0+
5
12
AIN3+
A IN 0-
6
11
NC
AIN0-
6
11
AIN3-
A IN 1+
7
10
NC
AIN1+
7
10
AIN2+
A IN 1-
8
9
NC
AIN1-
8
9
AIN2-
ISL26319
(16 LD TSSOP)
TOP VIEW
ISL26315
(16 LD TSSOP)
TOP VIEW
VDD
1
16
CNV
VDD
1
16
CNV
G ND
2
15
SCLK
GND
2
15
SCLK
VREF
3
14
SDO
VREF
3
14
SDO
G ND
4
13
SDI
GND
4
13
SDI
AIN0
5
12
AIN3
AIN0
5
12
AIN7
NC
6
11
NC
AIN1
6
11
AIN6
AIN1
7
10
AIN2
AIN2
7
10
AIN5
NC
8
9
NC
AIN3
8
9
AIN4
FN7549 Rev 3.00
August 18, 2015
Page 4 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Pin Descriptions
PIN NUMBER
PIN NAME ISL26310 ISL26311
ISL26312
ISL26313 ISL26314 ISL26315 ISL26319
DESCRIPTION
VDD
1
1
1
1
1
1
1
GND
2
2
2, 4
2
2, 4
2, 4
2, 4
VREF
-
3
3
-
3
3
3
Reference Voltage Input
AIN0+
-
-
5
-
5
-
-
Differential Analog Input, Positive
AIN0-
-
-
6
-
6
-
-
Differential Analog Input, Negative
AIN1+
-
-
7
-
7
-
-
Differential Analog Input, Positive
AIN1-
-
-
8
-
8
-
-
Differential Analog Input, Negative
AIN2+
-
-
-
-
10
-
-
Differential Analog Input, Positive
AIN2-
-
-
-
-
9
-
-
Differential Analog Input, Negative
AIN3+
-
-
-
-
12
-
-
Differential Analog Input, Positive
AIN3-
-
-
-
-
11
-
-
Differential Analog Input, Negative
AIN0
-
4
-
3
-
5
5
Single-Ended Analog Input
AIN1
-
-
-
4
-
7
6
Single-Ended Analog Input
AIN2
-
-
-
-
-
10
7
Single-Ended Analog Input
AIN3
-
-
-
-
-
12
8
Single-Ended Analog Input
AIN4
-
-
-
-
-
-
9
Single-Ended Analog Input
AIN5
-
-
-
-
-
-
10
Single-Ended Analog Input
AIN6
-
-
-
-
-
-
11
Single-Ended Analog Input
AIN7
-
-
-
-
-
-
12
Single-Ended Analog Input
SDI
5
5
13
5
13
13
13
Serial Interface Data Input
SDO
6
6
14
6
14
14
14
Serial Interface Data Output
SCLK
7
7
15
7
15
15
15
Serial Interface Clock Input
CNV
8
8
16
8
16
16
16
Conversion Control Input
NC
-
-
9, 10, 11, 12
-
-
6, 8, 9, 11
-
No Connect
AIN+
3
-
-
-
-
-
-
Differential Analog Input, Positive
AIN-
4
-
-
-
-
-
-
Differential Analog Input, Negative
FN7549 Rev 3.00
August 18, 2015
Positive Supply Voltage
Ground
Page 5 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Absolute Maximum Ratings
Thermal Information
AIN+, AIN-, VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND - 0.3 to VDD + 0.3V
Digital Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND - 0.3 to VDD + 0.3V
VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 6V
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND - 0.3 to + 0.3V
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . .5000V
Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . . 350V
Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . 2000V
Latch-up (Tested per JESD-78B; Class 2, Level A). . . . . . . . . . . . . . . . . . . . . . . 100mA
Thermal Resistance (Typical)
JA (°C/W) JC (°C/W)
8 Ld SOIC (Notes 4, 5) . . . . . . . . . . . . . . . . .
98
48
16 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .
92
29
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mW
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to +5.25V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For JC, the “case temp” location is taken at the package top center.
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, VCM = VDD/2, SCLK = 20MHz and TA = -40°C to +125°C (typical performance
at +25°C), unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C.
SYMBOL
PARAMETER
TEST LEVEL OR NOTES
MIN
(Note 6)
TYP
MAX
(Note 6)
UNITS
ANALOG INPUTS
Number of Input Channels
Input Voltage Range
Common Mode Input Voltage Range
ISL26310, ISL26311
1
ISL26312, ISL26313
2
ISL26314, ISL26315
4
ISL26319
8
Differential Inputs (AINX+ - AINX-) is
-VREF (Min) and +VREF (Max)
0
VREF
V
AINX, Single-Ended Inputs
0
VREF
V
VREF/2 + 0.2
V
Differential Inputs
VREF/2 – 0.2
Average Input Current
CIN
Input Capacitance
Channel-Channel Crosstalk
fIN = 50kHz
VIN = FS, other channels = 0V
VREF/2
2.5
µA
4
pF
-86
dB
VOLTAGE REFERENCE
VREFEX
External Reference Input Voltage Range
IREFIN
CREFIN
2
2.5
VDD
V
Average Input Current
100
120
µA
Effective Input Capacitance
10
pF
DC ACCURACY
DNL
INL
Resolution (No Missing Codes)
12
Bits
Differential Nonlinearity Error
-0.7
+0.7
LSB
Integral Nonlinearity Error
-0.7
+0.7
LSB
Gain Error
-6
6
LSB
Gain Error Matching
-2
2
LSB
Offset Error
-6
6
LSB
Offset Error Matching
-2
2
LSB
FN7549 Rev 3.00
August 18, 2015
Page 6 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, VCM = VDD/2, SCLK = 20MHz and TA = -40°C to +125°C (typical performance
at +25°C), unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)
SYMBOL
PSRR
PARAMETER
TEST LEVEL OR NOTES
MIN
(Note 6)
Power Supply Rejection Ratio
TYP
MAX
(Note 6)
UNITS
70
dB
DYNAMIC PERFORMANCE
SNR
Signal-to-Noise
Notes: VIN = FS - 0.1dB, fIN = 10kHz
Differential Inputs
73.4
dB
Single-Ended Inputs
73.4
dB
SINAD
Signal-to-Noise + Distortion
Notes: VIN = FS - 0.1dB, fIN = 10kHz
Differential Inputs
73.1
dB
Single-Ended Inputs
73.1
dB
THD
Total Harmonic Distortion
Notes: VIN = FS - 0.1dB, fIN = 10kHz
Differential Inputs
-86
dB
Single-Ended Inputs
-86
dB
Spurious-free Dynamic Range
Notes: VIN = FS - 0.1dB
fIN = 20kHz
96
dB
SFDR
BW
-3dB Input Bandwidth
2.5
MHz
tAD
Sampling Aperture Delay
12
ns
tjit
Sampling Aperture Jitter
25
ps
POWER SUPPLY REQUIREMENTS
VDD
Supply Voltage
IDD
Supply Current
PD
Power Consumption
IPD
Istby
2.7
5.25
V
2.2
3
mA
Normal Operation
11
15
mW
Power-down Current
Auto Power-Down Mode
8
50
µA
Standby Mode Current
Auto Sleep Mode
0.4
mA
DIGITAL INPUTS
VIH
0.7 VDD
V
0.2 VDD
VIL
VOH
IOH = -1mA
VOL
IOL = 1mA
IIH, IIL
Input Leakage Current
VDD-0.4
V
V
-100
Serial Clock Frequency
0.2 VDD
V
100
nA
20
MHz
TIMING SPECIFICATIONS (Note 7)
tSCLK
SCLK Period (in RAC Mode)
50
tSCLK
SCLK Period (in RSC, RDC Modes)
50
tDATA
Safe Data Transfer Time After Conversion
State Begins
tCSB_SCLK CSB Falling Low to SCLK Rising Edge
ns
200
ns
3.2
µs
40
ns
tSDI_SU
SDI Setup Time with Respect to Positive
Edge of SCLK
10
ns
tSDI_H
SDI Hold Time with Respect to Positive
Edge of SCLK
10
ns
tSDO_V
SDOUT Valid Time with Respect to
Negative Edge of SCLK
tSDOZ_D
SDOUT to High Impedance State After CNV (Note 8)
Rising Edge (or last SCLK falling edge)
25
85
ns
ns
tACQ
Acquisition Time when Fully Powered Up
800
ns
tACQ
Acquisition Time in Auto Sleep Mode
2.1
µs
FN7549 Rev 3.00
August 18, 2015
Page 7 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Electrical Specifications VREF = VDD V, VDD = 2.7V to 5V, VCM = VDD/2, SCLK = 20MHz and TA = -40°C to +125°C (typical performance
at +25°C), unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)
SYMBOL
tACQ
PARAMETER
TEST LEVEL OR NOTES
MIN
(Note 6)
TYP
MAX
(Note 6)
UNITS
Acquisition time in Auto Power-Down
Mode
150
µs
tSCLKH
SCLK High Time
20
ns
tSCLKL
SCLK Low Time
20
ns
tCNV
CNV Pulse Width
100
ns
NOTES:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
7. The device may become nonresponsive if the minimum acquisition times are not met in their respective modes, requiring a power cycle to restore
normal operation.
8. Transition time to high impedance state is dominated by RC loading on the SDOUT pin. Specified value is measured using equivalent loading shown
in Figure 2.
VDD
RL
2k
OUTPUT PIN
CL
10pF
FIGURE 2. EQUIVALENT LOAD CIRCUIT FOR DIGITAL OUTPUT TESTING
FN7549 Rev 3.00
August 18, 2015
Page 8 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Typical Performance Characteristics
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
INL (LSBs)
DNL (LSBs)
TA = +25°C, VDD = 5V, VREF = 5V, fSAMPLE = 125kHz, fSCLK = 20MHz, unless otherwise specified.
0
-0.1
0
-0.1
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
-0.5
-2000
-1000
0
1000
-0.5
-2000
2000
-1000
0
FIGURE 3. DIFFERENTIAL NONLINEARITY (DNL) vs CODE
1.0
0.8
POSITIVE DNL
0.6
0.6
0.4
0.4
0.2
0.2
INL
DNL
0.8
0.0
-0.2
-0.4
-0.4
-0.6
POSITIVE INL
0.0
-0.2
-0.6
NEGATIVE DNL
-0.8
-20
0
20
40
60
80
100
NEGATIVE INL
-0.8
-1.0
-40
120
-20
0
20
TEMPERATURE (°C)
0.0
80
100
120
2.7V
-0.1
1.5
-0.2
1.0
OFFSET ERROR (LSB)
GAIN ERROR (LSB)
60
FIGURE 6. INL DISTRIBUTION vs TEMPERATURE
2.0
0.5
2.7V
3.3V
-0.5
-1.0
-20
0
20
5.25V
-0.4
3.3V
5.0V
5.25V
-0.5
-0.6
-0.7
40
60
-0.9
80
100
120
TEMPERATURE (°C)
FIGURE 7. GAIN ERROR vs SUPPLY VOLTAGE AND TEMPERATURE
FN7549 Rev 3.00
August 18, 2015
-0.3
-0.8
5.0V
-1.5
-2.0
-40
40
TEMPERATURE (°C)
FIGURE 5. DNL DISTRIBUTION vs TEMPERATURE
0.0
2000
FIGURE 4. INTEGRAL NONLINEARITY (INL) vs CODE
1.0
-1.0
-40
1000
CODE
CODE
-1.0
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (°C)
FIGURE 8. OFFSET ERROR vs SUPPLY VOLTAGE AND TEMPERATURE
Page 9 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Typical Performance Characteristics
TA = +25°C, VDD = 5V, VREF = 5V, fSAMPLE = 125kHz, fSCLK = 20MHz, unless otherwise specified. (Continued)
25
4.0
3.5
SUPPLY CURRENT (mA)
APERTURE DELAY (ns)
20
15
10
5
3.0
5.25V
5.0V
2.5
2.0
1.5
1.0
3.3V
2.7V
0.5
0
2.7
3.2
3.7
4.2
4.7
0.0
-40
5.2
-20
0
SUPPLY VOLTAGE
FIGURE 9. APERTURE DELAY vs SUPPLY VOLTAGE
20
40
60
TEMPERATURE (°C)
80
100
120
FIGURE 10. SUPPLY CURRENT vs VOLTAGE AND TEMPERATURE
2.5
50
45
SHUTDOWN CURRENT (µA)
SUPPLY CURRENT (mA)
2.0
1.5
NORMAL MODE
AUTO POWER DOWN MODE
1.0
AUTO SLEEP MODE
0.5
40
35
5.25V
30
25
5.0V
20
15
3.3V
10
5
0.0
100
1k
10k
SAMPLE RATE (Sps)
0
-40
100k
FIGURE 11. SUPPLY CURRENT vs SAMPLING RATE (VDD = 5V)
-20
0
20
40
60
TEMPERATURE (°C)
80
100
120
FIGURE 12. SHUTDOWN CURRENTS vs VOLTAGE AND TEMPERATURE
-80
75
5.25V
5.0V
74
-82
73
-84
THD (dB)
SNR/SINAD (dB)
2.7V
72
5.25V
5.0V
-86
3.3V
2.7V
-88
71
70
-40
2.7V
-20
0
20
40
60
TEMPERATURE (°C)
80
100
120
FIGURE 13. SNR AND SINAD vs SUPPLY VOLTAGE AND TEMPERATURE
FN7549 Rev 3.00
August 18, 2015
-90
-40
-20
0
20
40
60
TEMPERATURE (°C)
80
3.3V
100
FIGURE 14. THD vs SUPPLY VOLTAGE AND TEMPERATURE
Page 10 of 23
120
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Typical Performance Characteristics
TA = +25°C, VDD = 5V, VREF = 5V, fSAMPLE = 125kHz, fSCLK = 20MHz, unless otherwise specified. (Continued)
0
75
-10
SNR
-20
-30
SINAD
THD (dB)
SNR/SINAD (dB)
70
65
-40
-50
-60
-70
60
-80
-90
55
100
1k
10k
100k
INPUT FREQUENCY (Hz)
-100
100
1M
1k
FIGURE 15. SNR AND SINAD vs INPUT FREQUENCY
1M
FIGURE 16. THD vs INPUT FREQUENCY
70,000
0
SNR: 72.93dB
SINAD: 72.71dB
THD: -85.84dB
SFDR: 96.16dBc
ENOB: 11.79
-20
-40
60,000
65,536
CODES
50,000
-60
HITS
AMPLITUDE (dB)
10k
100k
INPUT FREQUENCY (Hz)
-80
40,000
30,000
-100
20,000
-120
10,000
-140
-160
0
10
20
30
40
FREQUENCY (kHz)
50
FIGURE 17. SINGLE-TONE FFT
FN7549 Rev 3.00
August 18, 2015
60
70
0
0
CODES
-3
-2
-1
0
CODES
0
1
2
3
CODE
FIGURE 18. SHORTED INPUT HISTOGRAM
Page 11 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Circuit Description
The ISL26310, ISL26311, ISL26312, ISL26313, ISL26314,
ISL26315 and ISL26319 families are of 12-bit ADCs are
low-power Successive Approximation-type (SAR) ADCs with 1-,
2-, 4-, or 8-channels and a choice of single-ended or differential
inputs. The high-impedance buffered input simplifies interfacing
to sensors and external circuitry.
The entire ISL26310, ISL26311, ISL26312, ISL26313, ISL26314,
ISL26315 and ISL26319 families are follows the same base
pinout and differs only in the analog input pins, allowing the user
to replicate the basic board layout across multiple platforms with
a minimum redesign effort.
The simple serial digital interface is compatible with popular
FPGAs and microcontrollers and allows direct conversion control
by the CNV pin.
Functional Description
The ISL26310, ISL26311, ISL26312, ISL26313, ISL26314,
ISL26315 and ISL26319 devices are SAR (Successive
Approximation Register) analog-to-digital converters that use
capacitor-based charge redistribution as their conversion
method.
These devices include an on-chip power-on reset (POR) circuit to
initialize the internal digital logic when power is applied. An
on-chip oscillator provides the master clock for the conversion
logic. The CNV signal controls when the converter enters into its
signal acquisition time (CNV = 0), and when it begins the
conversion sequence after the signal has been captured
(CNV = 1). The converters include a configuration register that
can be accessed via the serial port. The configuration register
has various bits to indicate which channel (where applicable) is
selected, to activate the auto-power-down feature where the ADC
is shut down between conversions, or to output the configuration
register contents along with the data conversion word whenever
a conversion word is read from the serial port. The serial port
Buffer
ACQ
CNV
VREF
The ISL26311, ISL26313, ISL26315, and ISL26319 feature
single-ended inputs with output coding in binary format
(see Table 2). The size of one LSB in these devices is VREF/4096.
Figure 22 illustrates the ideal transfer function for these devices.
DAC
CNV
CS
ACQ
VCM
ACQ
COMPARATOR
CNV
ACQ
AIN
CNV
SAR
LOGIC
CS
Buffer
ACQ
CNV
FIGURE 19. ARCHITECTURAL BLOCK DIAGRAM, DIFFERENTIAL INPUT
FN7549 Rev 3.00
August 18, 2015
The ISL26310, ISL26312, and the ISL26314 feature differential
inputs with output data coding in two's complement format
(see Table 1). The size of one LSB in these devices is
(2*VREF)/4096. Figure 21 illustrates the ideal transfer function for
these devices.
CS
ACQ
CNV
VCM
ACQ
CNV
COMPARATOR
SAR
LOGIC
CS
DAC
ACQ
AIN–
ADC Transfer Function
VREF
DAC
CNV
AIN+
Figures 19 and 20 illustrate simplified representations of the
converter analog section for differential and single-ended inputs,
respectively. During the acquisition phase (CNV = 0) the input
signal is presented to the Cs samples capacitors. To properly
sample the signal, the CNV signal must remain low for the
specified time. When CNV is taken high (CNV = 1), the switches
that connect the sampling capacitors to the input are opened
and the control logic begins the successive approximation
sequence to convert the captured signal into a digital word. The
conversion sequence timing is determined by the on-chip
oscillator.
DAC
VREF
supports three different modes of reading the conversion data.
These will be discussed later in this data sheet.
FIGURE 20. ARCHITECTURAL BLOCK DIAGRAM, SINGLE-ENDED
Page 12 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
011...111
1LSB = 2•V REF/4096
111...110
000...001
ADC CODE
ADC CODE
1LSB = V REF/4096
111...111
011...110
000...000
111...111
100...010
100...001
100...000
011...111
000...010
100...001
000...001
100...000
000...000
–V REF
+ ½LSB
0V
+V REF +V REF
– 1½LSB – 1LSB
ANALOG INPUT
FIGURE 21. IDEAL TRANSFER CHARACTERISTICS, DIFFERENTIAL INPUT
FIGURE 22. IDEAL TRANSFER CHARACTERISTICS, SINGLE-ENDED INPUT
Analog Inputs
V
Some members of the ISL26310, ISL26311, ISL26312, ISL26313,
ISL26314, ISL26315 and ISL26319 family feature a fully
differential input with a nominal full-scale range equal to twice
the applied VREF voltage. Those devices with differential inputs
have a nominal full scale range equal to twice the applied VREF
voltage. Each input swings VREF volts (peak-to-peak), 180°
out-of-phase from one another for a total differential input of
2*VREF (refer to Figures 23 and 24).
VREF (P-P)
5.0
4.0
AIN–
3.0
VREF (P-P)
2.5Vp-p
AIN+
2.0
ALLOWABLE VCM RANGE
1.0
t
AIN+
VREF = 2.5V
V
ISL2631X/32X
VCM
FS = +V REF – 1LSB
0 = +½LSB
ANALOG INPUT
AIN+ – (AIN–)
AIN-
5.0
AIN–
5Vp-p
AIN+
4.0
FIGURE 23. DIFFERENTIAL INPUT SIGNALING
VCM
3.0
Differential signaling offers several benefits over a single-ended
input, such as:
• Doubling of the full-scale input range (and therefore the
dynamic range)
• Improved even order harmonic distortion
• Better noise immunity due to common mode rejection
Figure 24 shows the relationship between the reference voltage
and the full-scale differential input range for two different values
of VREF. Note that the common-mode input voltage must be
maintained within ±200mV of VREF/2 for differential inputs.
ALLOWABLE VCM RANGE
2.0
1.0
t
VREF = 5V
FIGURE 24. RELATIONSHIP BETWEEN VREF AND FULL-SCALE
RANGE FOR DIFFERENTIAL INPUTS
Those devices with singled-ended inputs have a ground-referenced
peak-to-peak input voltage span equal to the reference voltage.
FN7549 Rev 3.00
August 18, 2015
Page 13 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
Voltage Reference Input
V
5.0
4.0
3.0
2.5Vp-p
AIN
2.0
1.0
t
VREF = 2.5V
V
5Vp-p
5.0
An external reference voltage must be supplied to the VREF pin to
set the full-scale input range of the converter. The VREF input on
these devices can accept voltages ranging from 2V (nominal) to
VDD, however, they are specified with VREF at a voltage of 5V with
VDD at 5V. Note that exceeding VDD by more than 100mV can
forward bias the ESD protection diodes and degrade measurement
accuracy due to leakage current. A lower value voltage reference
must be used if the device is operated with VDD at voltages lower
than 5V. If the VREF pin is tied to the VDD pin, the VREF pin should be
decoupled with a local 1µF ceramic capacitor as described in a later
paragraph.
Figures 27 and 28 illustrate possible voltage reference options
for these ADCs. Figure 27 uses the precision ISL21090 voltage
reference, which exhibits exceptionally low drift and low noise.
The ISL21090 must be powered from a supply greater than 4.7V.
AIN
4.0
Figure 28 illustrates the ISL21010 voltage reference used with
these ADCs. The ISL21010 series voltage references have higher
noise and drift than the ISL21090 devices, but operate at lower
supply voltages. Therefore, these devices can readily be used
when these SAR ADCs operate with VDD at voltages less than 5V.
3.0
2.0
1.0
t
VREF = 5V
FIGURE 25. RELATIONSHIP BETWEEN VREF AND FULL-SCALE
RANGE FOR SINGLE-ENDED INPUTS
Input Multiplexer
The input of the multiplexer connects the selected analog input
pins to the ADC input. A proprietary sampling circuit significantly
reduces the input drive requirements, resulting in lower overall
cost and board space in addition to improved performance. Note
that the input capacitance is only 2-3pF during the Sampling
phase, changing to 40pF during the Settling phase, resulting in
an average input current of 2.5µA and an effective input
capacitance of only 4pF (see Figure 26).
AC
ERROR
INPUT VOLTAGE
TOTAL
DC
ERROR ERROR
SETTLING ERROR AND NOISE
OFFSET ERROR
The outputs of ISL21090 or the ISL21010 devices should be
decoupled with a 1µF ceramic capacitor. A 1µF, 6.3 V, X7R, 0603
(1608 metric) MLCC type capacitor is recommended for its high
frequency performance. The trace length from the VREF pin to
this capacitor and the voltage reference output should be as
short as possible.
The ISL26310 and ISL26313 devices (packaged in 8 pin SOIC
packages) derive their voltage reference from the VDD pin. To
achieve best performance, the VDD pin of these devices should
be bypassed with the 1µF ceramic capacitor mentioned above.
Power-Down/Standby Modes
In order to reduce power consumption between conversions, a
number of user-selectable modes can be utilized by setting the
appropriate bits in the Configuration Register.
Auto Power-down (PD0 = 0) reduces power consumption by
shutting down all portions of the device except the oscillator and
digital interface after completion of a conversion. There is a short
recovery period after CNV is asserted Low (150µs with external
reference).
In Auto Sleep mode (PD1 = 1), the device will automatically enter
the low-power Sleep mode at the end of the current conversion.
Recovery from this mode involves only 2.1µs and may offer an
alternative to Power-down mode in some applications.
SAMPLING PHASE
Output Data Format
SETTLING PHASE
FIGURE 26. INPUT SAMPLING OPERATION
The converter output word is delivered in two’s complement
format in differential input mode, and straight binary in
single-ended input mode of operation respectively, all MSB-first.
Input exceeding the specified full-scale voltage results in a clipped
output which will not return to in-range values until after the input
signal has returned to the specified allowable voltage range.
Data must be read prior to the completion of the current
conversion to avoid conflict and loss of data, due to overwriting of
the new conversion data into the output register.
FN7549 Rev 3.00
August 18, 2015
Page 14 of 23
ISL26310, ISL26311, ISL26312, ISL26313, ISL26314, ISL26315, ISL26319
5V
+
BULK
0.1µF
0.1µF
1 DNC
DNC
8
2 VIN
DNC
7
3 COMP VOUT
6
4 GND
5
TRIM
ISL2631X
ISL2632X
2.5V
VDD
VREF
1µF (SEE VOLTAGE REFERENCE INPUT)
ISL21090
FIGURE 27. PRECISION VOLTAGE REFERENCE FOR +5V SUPPLY
+2.7V TO +3.6V
OR +5V
+
VIN
1
VOUT
2
GND
3
BULK
0.1µF
0.1µF
ISL2631X VDD
ISL2632X
VREF
1.25, 2.048 OR 2.5V
1µF (SEE VOLTAGE REFERENCE INPUT)
ISL21010
FIGURE 28. VOLTAGE REFERENCE FOR +2.7V TO +3.6V, OR FOR +5V SUPPLY
+2.7V TO +5V
BULK
1µF (SEE VOLTAGE REFERENCE INPUT)
ISL26310
ISL26313
VDD
FIGURE 29. VOLTAGE REFERENCE FOR ISL26310/313 IS DERIVED FROM VDD
TABLE 1. OUTPUT CODES - DIFFERENTIAL
INPUT VOLTAGE
TWO’S COMPLEMENT (12-bit)
>(VFS - 1.5 LSB)
7FF
VFS - 1.5 LSB
7FF
...
7FE
-0.5 LSB
-VFS +0.5 LSB
000
…
FFF
801
…
800
NOTE: VFS in the table above equals the voltage between AIN+ and AIN-.
Differential full scale is equal to 2* VREF.
FN7549 Rev 3.00
August 18, 2015
TABLE 2. OUTPUT CODES - SINGLE-ENDED
INPUT VOLTAGE
BINARY (12-bit)
>AIN - 1.5 LSB
FFF
AIN - 1.5 LSB
FFF
…
FFE
0.5 LSB
001
…
000