0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL26708IRTZ

ISL26708IRTZ

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    WDFN8

  • 描述:

    IC ADC 8BIT SAR 8TDFN

  • 数据手册
  • 价格&库存
ISL26708IRTZ 数据手册
DATASHEET ISL26712, ISL26710, ISL26708 FN7999 Rev 3.00 September 5, 2012 12-Bit, 10-Bit and 8-Bit, 1MSPS SAR ADCs The ISL26712, ISL26710, ISL26708 are 12-bit, 10-bit and 8-bit, 1MSPS sampling SAR-type ADCs featuring excellent linearity over supply and temperature variations. The robust, fully-differential input offers high impedance to minimize errors due to leakage currents, and the specified measurement accuracy is maintained with input signals up to the supply rails. The reference accepts inputs from 0.1V to 2.2V for 3V operation and 0.1V to 3.5V for 5V operation, providing design flexibility in a wide variety of applications. The ISL26712/10/08 also features up to 8kV Human Body Model ESD survivability. The serial digital interface is SPI compatible and is easily interfaced to popular FPGAs and microcontrollers. Power dissipation is 8.5mW at a sampling rate of 1MSPS, and just 5µW between conversions utilizing Auto Power-Down mode (with a 5V supply), making the ISL26712/10/08 excellent solutions for remote industrial sensors and battery-powered instruments. The ISL26712/10/08 are available in an 8 Ld TDFN or an SOT23 package, and are specified for operation over the Industrial temperature range (–40°C to +85°C). Features • Differential Input • Simple SPI-compatible Serial Digital Interface • Guaranteed No Missing Codes • 1MHz Sampling Rate • 3V or 5V Operation • Low Operating Current - 1.25mA at 1MSPS with 3V Supplies - 1.70mA at 1MSPS with 5V Supplies • Power-down Current between Conversions: 1µA • Excellent Differential Non-Linearity • Low THD: -83dB (typ) • Pb-Free (RoHS Compliant) • Available in TDFN Package (3x3mm) • Available in SOT-23 Package Applications • Remote Data Acquisition • Battery Operated Systems • Industrial Process Control • Energy Measurement • Data Acquisition Systems • Pressure Sensors • Flow Controllers 1.0 0.8 VDD 0.6 0.4 AIN+ SAR LOGIC AIN– SERIAL INTERFACE SCLK SDATA CS DNL (LSB) DAC VREF 0.2 0.0 -0.2 DAC -0.4 VREF -0.6 GND -0.8 -1.0 0 1024 2048 3072 4096 CODE FIGURE 1. BLOCK DIAGRAM FN7999 Rev 3.00 September 5, 2012 FIGURE 2. ISL26712 DIFFERENTIAL LINEARITY ERROR vs CODE Page 1 of 21 ISL26712, ISL26710, ISL26708 Typical Connection Diagram +3V/5V SUPPLY VREF + VREF 0.1µF + 10µF VDD REF P-P AIN+ SCLK REF P-P AIN– SDATA GND CS µP/µC SERIAL INTERFACE Pin Configurations Pin Description ISL26712/10/08 (8 LD TDFN) TOP VIEW VREF ISL26712/10/08 PIN NAME PIN NUMBER (TDFN) PIN NUMBER (SOT-23) DESCRIPTION 1 8 VDD AIN+ 2 7 SCLK VDD 8 1 Supply voltage, +2.7V to 5.25V. AIN- 3 6 SDATA SCLK 7 2 4 5 CS Serial clock input. Controls digital I/O timing and clocks the conversion. SDATA 6 3 Digital conversion output. CS 5 4 Chip select input. Generally controls the start of a conversion though not always the sampling signal. GND 4 5 Ground AIN– 3 6 Negative analog input. AIN+ 2 7 Positive analog input. VREF 1 8 Reference voltage. GND ISL26712/10/08 (8 LD SOT-23) TOP VIEW VDD 1 8 VREF SCLK 2 7 AIN+ SDATA 3 6 AIN- CS 4 5 GND Pin-Compatible Family FN7999 Rev 3.00 September 5, 2012 PART NUMBER RESOLUTION (Bits) ISL26712 12 ISL26710 10 ISL26708 8 Page 2 of 21 ISL26712, ISL26710, ISL26708 Ordering Information PART NUMBER (Note 4) PART MARKING VDD RANGE (V) TEMP RANGE (°C) PACKAGE (Pb-free) PKG. DWG. # ISL26712IRTZ (Note 3) 6712 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26712IRTZ-T (Notes 1, 3) 6712 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26712IRTZ-T7A (Notes 1, 3) 6712 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26710IRTZ (Note 3) 6710 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26710IRTZ-T (Notes 1, 3) 6710 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26710IRTZ-T7A (Notes 1, 3) 6710 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26708IRTZ (Note 3) 6708 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26708IRTZ-T (Notes 1, 3) 6708 2.7 to 5.25 -40 to +85 8 Ld TDFN L8.3x3I ISL26712IHZ-T (Notes 1, 2) 6712 (Note 5) 2.7 to 5.25 -40 to +85 8 Ld SOT-23 P8.064 ISL26712IHZ-T7A (Notes 1, 2) 6712 (Note 5) 2.7 to 5.25 -40 to +85 8 Ld SOT-23 P8.064 ISL26710IHZ-T (Notes 1, 2) 6710 (Note 5) 2.7 to 5.25 -40 to +85 8 Ld SOT-23 P8.064 ISL26710IHZ-T7A (Notes 1, 2) 6710 (Note 5) 2.7 to 5.25 -40 to +85 8 Ld SOT-23 P8.064 ISL26708IHZ-T (Notes 1, 2) 6708 (Note 5) 2.7 to 5.25 -40 to +85 8 Ld SOT-23 P8.064 ISL26708IHZ-T7A (Notes 1, 2) 6708 (Note 5) 2.7 to 5.25 -40 to +85 8 Ld SOT-23 P8.064 NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pbfree products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 4. For Moisture Sensitivity Level (MSL), please see device information page fo ISL26712, ISL26710, ISL26708. For more information on MSL please see techbrief TB363. 5. The part marking is located on the bottom of the part. FN7999 Rev 3.00 September 5, 2012 Page 3 of 21 ISL26712, ISL26710, ISL26708 Table of Contents Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ADC Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Converter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACQUISITION TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power vs Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 15 17 17 17 17 17 17 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Signal-to-(Noise + Distortion) Ratio (SINAD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Harmonic Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak Harmonic or Spurious Noise (SFDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aperture Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aperture Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common-Mode Rejection Ratio (CMRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integral Nonlinearity (INL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Nonlinearity (DNL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zero-Code Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Track and Hold Acquisition Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Rejection Ratio (PSRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 Application Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Grounding and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Small Outline Transistor Plastic Packages (SOT23-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 P8.064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 L8.3x3I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 FN7999 Rev 3.00 September 5, 2012 Page 4 of 21 ISL26712, ISL26710, ISL26708 Absolute Maximum Ratings Thermal Information Any Pin to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V Analog Input to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD + 0.3V Digital I/O to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD + 0.3V Digital Input Voltage to GND . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD + 0.3V Maximum Current In to Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA ESD Rating Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 8kV Machine Model (Tested per JESD22-A115B) . . . . . . . . . . . . . . . . . 400V Charged Device Model (Tested per JESD22-C101E) TDFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0kV SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5kV Latch Up (Tested per JESD78C; Class 2, Level A) . . . . . . . . . . . . . . . 100mA Thermal Resistance (Typical) JA (°C/W) JC (°C/W) 8 Ld TDFN Package (Notes 6, 8) . . . . . . . . . 41 6 8 Ld SOT-23 Package (Notes 7, 9). . . . . . . . 135 99 Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 6. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech Brief TB379. 7. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 8. For JC, the “case temp” location is the center of the exposed metal pad on the package underside. 9. For JC, the “case temp” location is taken at the package top center. Electrical Specifications VDD = +3.0V to +3.6V, FSCLK = 18MHz, FS = 1MSPS, VREF = 2.0V; VDD = +4.75V to +5.25V, FSCLK = 18MHz, FS = 1MSPS, VREF = 2.5V; VCM = VREF, unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. ISL26712 SYMBOL PARAMETER ISL26710 MIN (Note 10) TYP FIN = 100kHz VDD = +4.75V to +5.25V 70.0 71.4 61.0 61.6 49.0 49.8 dB FIN = 100kHz VDD = +3.0V to +3.6V 68.5 70.5 60.7 61.5 49.0 49.8 dB TEST CONDITIONS MAX MIN (Note 10) (Note 10) ISL26708 TYP MAX MIN (Note 10) (Note 10) TYP MAX (Note 10) UNITS DYNAMIC PERFORMANCE SINAD Signal-to (Noise + Distortion) Ratio THD Total Harmonic Distortion FIN = 100kHz VDD = +4.75V to +5.25V -84 -76 -82 -74 -75 -60 dB FIN = 100kHz VDD = +3.0V to +3.6V -84 -74 -82 -72 -73 -60 dB -87 -76 -82 -76 -68 -60 dB FIN = 100kHz VDD = +3.0V to +3.6V -85 -74 -82 -74 -68 -60 dB 2nd and 3rd order, FIN = 90kHz, 110kHz -89 -83 -81 dB SFDR Spurious Free Dynamic FIN = 100kHz VDD = +4.75V to +5.25V Range IMD Intermodulation Distortion tpd Aperture Delay 1 1 1 ns tpd Aperture Jitter 15 15 15 ps 15 15 15 MHz 3dB Full Power Bandwidth @ –3dB DC ACCURACY N Resolution 12 INL Integral Nonlinearity -1 ±0.4 1 -0.5 ±0.1 0.5 -0.2 ±0.03 0.2 LSB DNL Differential Nonlinearity Guaranteed no missing codes -0.95 ±0.3 0.95 -0.5 ±0.1 0.5 -0.2 ±0.03 0.2 LSB -6 ±0.2 6 -2.5 ±0.2 2.5 -1.25 ±0.03 1.25 LSB OFFSET Zero-Code Error FN7999 Rev 3.00 September 5, 2012 Zero Volt Differential Input 10 8 Bits Page 5 of 21 ISL26712, ISL26710, ISL26708 Electrical Specifications VDD = +3.0V to +3.6V, FSCLK = 18MHz, FS = 1MSPS, VREF = 2.0V; VDD = +4.75V to +5.25V, FSCLK = 18MHz, FS = 1MSPS, VREF = 2.5V; VCM = VREF, unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) ISL26712 SYMBOL GAIN PARAMETER Positive Gain Error TEST CONDITIONS ± REF input range Negative Gain Error ISL26710 MAX MIN (Note 10) (Note 10) ISL26708 MIN (Note 10) TYP -2 ±0.1 2 -1 ±0.1 1 -0.75 ±0.04 0.75 LSB -2 ±0.1 2 -1 ±0.1 1 -0.75 ±0.04 0.75 LSB TYP MAX MIN (Note 10) (Note 10) TYP MAX (Note 10) UNITS ANALOG INPUT (Note 11) |AIN| Full-Scale Input Span 2 x VREF (AIN+) – (AIN–) (AIN+) – (AIN–) (AIN+) – (AIN–) V VCM ±VREF/2 VCM ±VREF/2 VCM ±VREF/2 V VCM± VREF/2 VCM± VREF/2 VCM± VREF/2 V AIN+, Absolute Input Voltage Range AIN–, AIN+ VCM = VREF AIN– ILEAK Input DC Leakage Current CVIN Input Capacitance -1 1 Track/Hold mode -1 13/5 1 -1 1 µA 13/5 13/5 pF REFERENCE INPUT VREF VREF Input Voltage Range VDD = 3V (1% tolerance for specified performance) 2.0 2.0 2.0 V VDD = 5V (1% tolerance for specified performance) 2.5 2.5 2.5 V ILEAK DC Leakage Current CREF -1 1 VREF Input Capacitance Track/Hold mode -1 21/18.5 1 -1 21/18.5 1 µA 21/18.5 pF LOGIC INPUTS VIH Input High Voltage VIL Input Low Voltage 2.4 2.4 0.8 ILEAK Input Leakage Current CIN 2.4 -1 1 Input Capacitance V 0.8 -1 10 1 -1 10 0.8 V 1 µA 10 pF LOGIC OUTPUTS VOH Output High Voltage ISOURCE = 200µA VOL Output Low Voltage ISINK = 200µA IOZ Floating-State Output Current COUT Floating-State Output Capacitance VDD - 0.3 VDD - 0.3 VDD - 0.3 0.4 -1 1 0.4 -1 10 1 -1 10 Output Coding V 0.4 V 1 µA 10 pF Two’s Complement CONVERSION RATE tCONV Conversion Time FSCLK = 18MHz 888 888 888 ns tACQ Acquisition Time FSCLK = 18MHz 200 200 200 ns Fmax Throughput Rate 1000 1000 1000 kSPS POWER REQUIREMENTS VDD Positive Supply Voltage Range FN7999 Rev 3.00 September 5, 2012 2.7 3.6 2.7 3.6 2.7 3.6 V 4.75 5.25 4.75 5.25 4.75 5.25 V Page 6 of 21 ISL26712, ISL26710, ISL26708 Electrical Specifications VDD = +3.0V to +3.6V, FSCLK = 18MHz, FS = 1MSPS, VREF = 2.0V; VDD = +4.75V to +5.25V, FSCLK = 18MHz, FS = 1MSPS, VREF = 2.5V; VCM = VREF, unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) ISL26712 SYMBOL IDD PARAMETER TEST CONDITIONS MIN (Note 10) TYP ISL26710 MAX MIN (Note 10) (Note 10) TYP ISL26708 MAX MIN (Note 10) (Note 10) TYP MAX (Note 10) UNITS Positive Supply Input Current Static Dynamic 1 1 1 µA 3V 1250 1250 1250 µA 5V 1700 1700 1700 µA VDD = 3V 3 3 3 µW VDD = 5V 5 5 5 µW VDD = 3V, fsmpl = 1MSPS 3.75 3.75 3.75 mW VDD = 5V, fsmpl = 1MSPS 8.50 8.50 8.50 mW Power Dissipation Static Mode Dynamic NOTES: 10. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 11. The absolute voltage applied to each analog input must be between GND and VDD to guarantee datasheet performance. Timing Specifications VDD = 3.0V to 3.6V, fSCLK = 18MHz, fS = 1MSPS, VREF = 2.0V; VDD = 4.75V to 5.25V, fSCLK = 18MHz, fS = 1MSPS, VREF = 2.5V; VCM = VREF unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +85°C. PARAMETER (Note 12) SYMBOL TEST CONDITIONS MIN (Note 10) MAX (Note 10) UNITS 18 MHz fSCLK Clock Frequency tSCLK Clock Period tACQ Acquisition Time (Note 13) tCONV Conversion Time tCSW CS Pulse Width 10 ns tCSS CS Falling Edge to SCLK Falling Edge Setup Time 10 ns tCDV CS Falling Edge to SDATA Valid 20 ns tCLKDV SCLK Falling Edge to SDATA Valid 40 ns tSDH SCLK Falling Edge to SDATA Hold tSW SCLK Pulse Width tDISABLE tQUIET CSB Rising Edge to SDATA Disable Time (Note 14) 0.01 TYP 55 ns ns 888 10 Extrapolated back to true bus relinquish Quiet Time Before Sample ns ns 0.4 x tSCLK 0.6 x tSCLK ns 10 35 ns 60 ns NOTES: 12. Limits established by characterization and are not production tested. 13. See “ACQUISITION TIME” on page 17. 14. During characterization, tDISABLE is measured from the release point with a 10pF load (see Figure 4). FN7999 Rev 3.00 September 5, 2012 Page 7 of 21 ISL26712, ISL26710, ISL26708 tCSW tCONV tCSS 1 3 2 4 tCDV 12 BIT SDATA 5 6 7 8 tCLKDV 0 0 0 0 D11 9 10 11 12 13 14 15 D10 D9 D8 16 tACQ tSW tDISABLE D7 D6 D5 D4 D3 D2 D1 HI-Z D0 tQUIET tACQ 10 BIT SDATA 0 0 0 0 D9 D8 D7 D6 D5 D4 D3 D2 D1 HI-Z D0 tACQ 8 BIT SDATA 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 HI-Z FIGURE 3. SERIAL INTERFACE TIMING DIAGRAM VDD RL 2.85k OUTPUT PIN CL 10pF FIGURE 4. EQUIVALENT LOAD CIRCUIT FN7999 Rev 3.00 September 5, 2012 Page 8 of 21 ISL26712, ISL26710, ISL26708 Typical Performance Characteristics 0 75 8192-POINT FFT fSAMPLE = 1MSPS fIN = 95.2kHz SINAD = 72.0dB THD = -91dB SFDR = 93dB 5.25V -20 4.75V 3.6V 2.7V -40 AMPLITUDE (dBFS) SINAD (dBc) 70 65 60 -60 -80 -100 -120 55 10 100 INPUT FREQUENCY (kHz) -10 0.8 -20 0.6 -30 0.4 -40 0.2 DNL (LSB) 1.0 -50 -60 -0.4 -0.6 -90 -0.8 1k -1.0 10k 0 1024 FIGURE 7. CMRR vs FREQUENCY FOR VDD = 5V 500 2048 3072 4096 FIGURE 8. TYPICAL DNL FOR THE ISL26712 FOR VDD = 5V 1.0 250mVP-P SINE WAVE ON VDD NO DECOUPLING ON VDD 0.8 0.6 0.4 INL (LSB) -40 PSRR (dB) 400 CODE FREQUENCY (Hz) -20 300 -0.2 -80 0 200 0.0 -70 100k 100 FIGURE 6. ISL26712 DYNAMIC PERFORMANCE WITH VDD = 5V 0 -100 10k 0 FREQUENCY (kHz) FIGURE 5. ISL26712 SINAD vs ANALOG INPUT FREQUENCY FOR VARIOUS SUPPLY VOLTAGES CMRR (dB) -140 1k -60 -80 0.2 0.0 -0.2 -0.4 -0.6 -100 -0.8 -120 0 100 200 300 400 500 600 700 800 900 1000 FREQUENCY (kHz) FIGURE 9. PSRR vs SUPPLY RIPPLE FREQUENCY WITHOUT SUPPLY DECOUPLING FN7999 Rev 3.00 September 5, 2012 -1.0 0 1024 2048 3072 4096 CODE FIGURE 10. TYPICAL INL FOR THE ISL26712 FOR VDD = 5V Page 9 of 21 ISL26712, ISL26710, ISL26708 Typical Performance Characteristics (Continued) 3.0 2.5 2.5 2.0 1.5 1.0 POS DNL 0.5 0.5 NEG INL 0.0 -0.5 NEG DNL 0.0 -1.0 -0.5 -1.0 POS INL 1.0 1.5 INL (LSB) DNL (LSB) 2.0 -1.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -2.0 3.5 0.0 0.5 1.0 FIGURE 11. CHANGE IN DNL vs VREF FOR THE ISL26712 FOR VDD = 5V 2.0 5 ZERO CODE ERROR (LSB) 6 DNL (LSB) 1.5 POS DNL 0.5 0.0 NEG DNL -0.5 2.5 4 3 2 3V VDD 1 0 5V VDD -1 -2 -1.0 0.0 0.5 1.0 1.5 2.0 0.0 2.5 0.5 1.0 1.5 VREF (V) 12.0 4 11.5 3 11.0 3.0 3.5 ENOB (BITS) 1 0 NEG INL 5V VDD 3V VDD 10.5 POS INL -1 2.5 FIGURE 14. CHANGE IN OFFSET ERROR vs REFERENCE VOLTAGE FOR VDD = 5V AND 3V FOR THE ISL26712 5 2 2.0 VREF (V) FIGURE 13. CHANGE IN DNL vs VREF FOR THE ISL26712 FOR VDD = 3V INL (LSB) 2.0 FIGURE 12. CHANGE IN INL vs VREF FOR THE ISL26712 FOR VDD = 3V 2.5 1.0 1.5 VREF (V) VREF (V) 10.0 9.5 9.0 -2 8.5 -3 8.0 -4 7.5 7.0 -5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VREF (V) FIGURE 15. CHANGE IN INL vs VREF FOR THE ISL26712 FOR VDD = 5V FN7999 Rev 3.00 September 5, 2012 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VREF (V) FIGURE 16. CHANGE IN ENOB vs REFERENCE VOLTAGE FOR VDD = 5V AND 3V FOR THE ISL26712 Page 10 of 21 ISL26712, ISL26710, ISL26708 Typical Performance Characteristics (Continued) 0.5 70k 0.4 60k 65,516 CODES 50k 0.3 0.2 0.1 DNL (LSB) HITS 40k 30k 0 -0.1 -0.2 20k -0.3 10k 10 CODES 0 2044 2045 2046 -0.4 10 CODES 2047 2048 -0.5 2049 0 2050 256 512 FIGURE 17. HISTOGRAM OF 10,000 CONVERSIONS OF A DC INPUT FOR THE ISL26712 WITH VDD = 5V 0 1024 FIGURE 18. TYPICAL DNL FOR THE ISL26710 FOR VDD = 5V 0.5 8192-POINT FFT fSAMPLE = 1MSPS fIN = 95.2kHz SINAD = 61.6dB THD = -75dB SFDR = 81dB -20 -40 0.4 0.3 0.2 INL (LSB) AMPLITUDE (dBFS) 768 CODE CODE -60 -80 0.1 0 -0.1 -0.2 -100 -0.3 -120 -0.4 -140 -0.5 0 100 200 300 400 500 0 512 256 FREQUENCY (kHz) CODE FIGURE 20. TYPICAL INL FOR THE ISL26710 FOR VDD = 5V 0.25 0.25 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 INL (LSB) DNL (LSB) FIGURE 19. ISL26710 DYNAMIC PERFORMANCE WITH VDD = 5V 0.00 -0.05 0.00 -0.05 -0.10 -0.10 -0.15 -0.15 -0.20 -0.20 -0.25 0 32 64 96 128 160 192 224 CODE FIGURE 21. TYPICAL DNL FOR THE ISL26708 FOR VDD = 5V FN7999 Rev 3.00 September 5, 2012 1024 768 256 -0.25 0 32 64 96 128 160 192 224 CODE FIGURE 22. TYPICAL INL FOR THE ISL26708 FOR VDD = 5V Page 11 of 21 256 ISL26712, ISL26710, ISL26708 Typical Performance Characteristics (Continued) 0 8192-POINT FFT fSAMPLE = 1MSPS fIN = 95.2kHz SINAD = 49.8dB THD = -76dB SFDR = 67dB AMPLITUDE (dBFS) -20 -40 -60 -80 -100 -120 -140 0 100 200 300 400 500 FREQUENCY (kHz) FIGURE 23. ISL26708 DYNAMIC PERFORMANCE WITH VDD = 5V FN7999 Rev 3.00 September 5, 2012 Page 12 of 21 ISL26712, ISL26710, ISL26708 Functional Description 011...111 DAC AIN– ACQ ACQ CONV 000...001 000...000 111...111 100...010 100...001 100...000 –VREF + ½LSB ACQ CONV +VREF +VREF – 1½LSB – 1LSB FIGURE 25. IDEAL TRANSFER CHARACTERISTICS Analog Input The ISL26712/10/08 feature a fully differential input with a nominal full-scale range equal to twice the applied VREF voltage. Each input swings VREF VP-P, 180° out-of-phase from one another for a total differential input of 2*VREF (refer to Figure 26). VREF(P-P) AIN+ VREF(P-P) AIN– SAR LOGIC VCM CS VREF 0V ANALOG INPUT AIN+ – (AIN–) CS DAC CONV AIN+ 011...110 ADC CODE The ISL26712/10/08 are based on a successive approximation register (SAR) architecture utilizing capacitive charge redistribution digital-to-analog converters (DACs). Figure 24 shows a simplified representation of the converter. During the acquisition phase (ACQ), the differential input is stored on the sampling capacitors (CS). The comparator is in a balanced state since the switch across its inputs is closed. The signal is fully acquired after tACQ has elapsed and the switches then transition to the conversion phase (CONV) so the stored voltage may be converted to digital format. The comparator will become unbalanced when the differential switch opens and the input switches transition (assuming that the stored voltage is not exactly at mid-scale). The comparator output reflects whether the stored voltage is above or below mid-scale, which sets the value of the MSB. The SAR logic then forces the capacitive DACs to adjust up or down by one quarter of full-scale by switching in binarily weighted capacitors. Again, the comparator output reflects whether the stored voltage is above or below the new value, setting the value of the next lowest bit. This process repeats until all 12 bits have been resolved. 1LSB = 2•VREF/4096 FIGURE 26. DIFFERENTIAL INPUT SIGNALING FIGURE 24. SAR ADC ARCHITECTURAL BLOCK DIAGRAM An external clock must be applied to the SCLK pin to generate a conversion result. The allowable frequency range for SCLK is 10kHz to 18MHz (556SPS to 1MSPS). Serial output data is transmitted on the falling edge of SCLK. The receiving device (FPGA, DSP or Microcontroller) may latch the data on the rising edge of SCLK to maximize set-up and hold times. A stable, low-noise reference voltage must be applied to the VREF pin to set the full-scale input range and common-mode voltage. See “Voltage Reference Input” on page 14 for more details. ADC Transfer Function The output coding for the ISL26712/10/08 is twos complement. The first code transition occurs at successive LSB values (i.e., 1 LSB, 2 LSB, and so on). The LSB size of the ISL26712 is 2*VREF/4096, while the LSB size of the ISL26710 is 2*VREF/1024 and the ISL26708 is 2*VREF/512. The ideal transfer characteristic of the ISL26712/10/08 is shown in Figure 25. FN7999 Rev 3.00 September 5, 2012 Differential signaling offers several benefits over a single-ended input, such as: • Doubling of the full-scale input range (and therefore the dynamic range) • Improved even order harmonic distortion • Better noise immunity due to common mode rejection Figure 27 shows the relationship between the reference voltage and the full-scale input range for two different values of VREF. Note that there is a trade-off between VREF and the allowable common mode input voltage (VCM). The full-scale input range is proportional to VREF; therefore the VCM range must be limited for larger values of VREF in order to keep the absolute maximum and minimum voltages on the AIN+ and AIN– pins within specification. Figures 28 and 29 illustrate this relationship for 5V and 3V operation, respectively. The dashed lines show the theoretical VCM range based solely on keeping the AIN+ and AIN– pins within the supply rails. Additional restrictions are imposed due to the required headroom of the input circuitry, resulting in practical limits shown by the shaded area. Page 13 of 21 ISL26712, ISL26710, ISL26708 Voltage Reference Input V An external low-noise reference voltage must be applied to the VREF pin to set the full-scale input range of the converter. The reference input accepts voltages ranging from 0.1V to 2.2V for 3V operation and 0.1V to 3.5V for 5V operation. The device is specified with a reference voltage of 2.5V for 5V operation and 2.0V for 3V operation. 5.0 AIN– 4.0 AIN+ 2.0VP-P 3.0 VCM 2.0 1.0 t VREF = 2V V 5.0 Figure 31 illustrates the ISL21010 voltage reference being used with these ADCs. The ISL21010 series voltage references have higher noise and drift than the ISL26090 devices, but they consume very low operating current and are excellent for battery-powered applications. AIN– 4.0 AIN+ 2.5VP-P Figures 30 and 31 illustrate possible voltage reference options for the ISL267440/ISL26750A or ISL267817. Figure 30 uses the precision ISL21090 voltage reference which exhibits exceptionally low drift and low noise. The ISL21090 must use a power supply greater than 4.7V. The VREF input pin of the ISL267XX devices uses very low current, so the decoupling capacitor can be small (0.1µF). VCM 3.0 2.0 1.0 t VREF = 2.5V FIGURE 27. RELATIONSHIP BETWEEN VREF AND FULL-SCALE RANGE VCM 5.0 4.0 4.25V 3.25V 3.0 2.0 1.75V 1.0 VREF 0.5 1.0 1.5 2.0 2.5 3.0 3.5 FIGURE 28. RELATIONSHIP BETWEEN VREF AND VCM FOR VDD = 5V VCM 3.0 2.5 2.0V 2.0 1.5 1.0V 1.0 0.5 VREF 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 FIGURE 29. RELATIONSHIP BETWEEN VREF AND VCM FOR VDD = 3V FN7999 Rev 3.00 September 5, 2012 Page 14 of 21 ISL26712, ISL26710, ISL26708 5V + BULK 0.1µF 0.1µF 1 DNC DNC 8 2 VIN DNC 7 3 COMP VOUT 6 4 GND 5 TRIM ISL267440 ISL267450A 2.5V VDD VREF 0.1µF ISL21090 FIGURE 30. PRECISION VOLTAGE REFERENCE FOR +5V SUPPLY +2.7V TO +3.6V OR +5V + VIN 1 VOUT 2 GND 3 BULK 0.1µF 0.1µF VDD ISL267817 VREF 1.25, 2.048 OR 2.5V ISL21010 0.1µF FIGURE 31. VOLTAGE REFERENCE FOR +2.7V TO +3.6V, OR FOR +5V SUPPLY Converter Operation The ISL26712, ISL26710 and ISL26708 are designed to minimize power consumption by only powering up the SAR comparator during conversion time. When the converter is in track mode (its sample capacitors are tracking the input signal) the SAR comparator is powered down. The state of the converter is dictated by the logic state of CS. When CS is high the SAR comparator is powered down while the sampling capacitor array is tracking the input. When CS transitions low, the capacitor array immediately captures the analog signal that is being tracked. After CS is taken low, the SCLK pin is toggled 16 times. For the first 3 clocks, the comparator is powered up and auto-zeroed, then the SAR decision process is begun. This process uses 12 SCLK cycles for the 12-bit ISL26712. Each SAR decision is presented to the SDATA output on the next clock cycle after the SAR decision is performed. The SAR process (12 bits) is completed on SCLK cycle 15. At this point in time, the SAR comparator is powered down and the capacitor array is placed back into Track mode. The last SAR comparator decision is output from SDATA on the 16th SCLK cycle. When the last data bit is output from SDATA the output switches to a logic 0 until CS is taken high, at which time, the SDATA output enters a High-Z state. The ISL26710 and ISL26708 will take fewer clock cycles for their SAR decisions and will output fewer data bits. The extra bits following the output of the LSB will be logic zeroes. Figures 32, 33, and 34 illustrate the system timing for the 12-, 10- and 8-bit converters respectively. FN7999 Rev 3.00 September 5, 2012 Page 15 of 21 ISL26712, ISL26710, ISL26708 FIGURE 32. ISL26712 SYSTEM TIMING FIGURE 33. ISL26710 SYSTEM TIMING FIGURE 34. ISL26708 SYSTEM TIMING FN7999 Rev 3.00 September 5, 2012 Page 16 of 21 ISL26712, ISL26710, ISL26708 SHORT CYCLING In cases where a lower resolution conversion is acceptable, CS can be pulled high before all SCLK falling edges have elapsed. This is referred to as short cycling, and it can be used to further optimize power consumption. In this mode a lower resolution result will be output, but the ADC will enter static mode sooner and exhibit a lower average power consumption than if the complete conversion cycle were carried out. The minimum acquisition time (tACQ) requirement of 200ns must be met for the next conversion to be valid. POWER-ON RESET When power is first applied, the ISL26712/10/08 performs a power-on reset that requires approximately 2.5ms to execute. After this is complete, a single dummy conversion must be executed (by taking CS low) in order to initialize the switched capacitor track and hold. The dummy conversion cycle will take 1µs with an 18MHz SCLK. Once the dummy cycle is complete, the ADC mode will be determined by the state of CS. Regular conversions can be started immediately after this dummy cycle is completed and time has been allowed for proper acquisition. ACQUISITION TIME To achieve the maximum sample rate (1 MSps) in the ISL26712 device, the maximum acquisition time is 200ns. For slower conversion rates, or for conversions performed using a slower SCLK value than 18MHz, the minimum acquisition time is 200ns. This same minimum applies to the ISL26710 and ISL26708. This minimum acquisition time applies to all the devices if short cycling is utilized. POWER vs THROUGHPUT RATE The ISL26712/10/08 provide reduced power consumption at lower conversion rates by automatically switching into a low-power mode after completing a conversion. The average power consumption of the ADC decreases at lower throughput rates. Figure 35 shows the typical power consumption over a wide range of throughput rates. 100 POWER (mW) 10 The serial interface is designed around using 16 SCLK cycles to perform an autozero on the SAR comparator and additional SCLK cycles for SAR comparator decisions (12 SLCKs in the 12-bit device, 10 SCLKs in the 10-bit device, and 8 SCLKs in the 8-bit device). If short cycling is not used, all converter throughput cycles take 16 SCLKs. The SDATA output goes low after the last conversion decision has been presented to the SDATA output, as shown in Figures 32, 33, and 34. Data Format Output data is encoded in two’s complement format as shown in Table 1. The voltage levels in the table are idealized and don’t account for any gain/offset errors or noise. TABLE 1. OUTPUT CODES - DIFFERENTIAL Input Voltage Two’s Complement (12-bit) >(VFS-1.5 LSB) 7FF VFS-1.5 LSB 7FF ... 7FE -0.5 LSB 000 … FFF -VFS +0.5 LSB 801 … 800 NOTE: VFS in the table above equals the voltage between AIN+ and AIN-. Differential full scale is equal to 2* VREF. Terminology Signal-to-(Noise + Distortion) Ratio (SINAD) This is the measured ratio of signal-to-(noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency (fs/2), excluding DC. The ratio is dependent on the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal-to-(noise + distortion) ratio for an ideal N-bit converter with a sine wave input is given by Equation 1: Signal-to-(Noise + Distortion) =  6.02 N + 1.76 dB VDD = 5V (EQ. 1) Thus, for a 12-bit converter this is 74dB, and for a 10-bit this is 62dB. 1 Total Harmonic Distortion 0.01 0 Total harmonic distortion (THD) is the ratio of the rms sum of harmonics to the fundamental. For the ISL26712/10/08, it is defined as Equation 2: VDD = 3V 0.1 50 100 150 200 250 300 350 THROUGHPUT (Ksps) FIGURE 35. POWER CONSUMPTION vs THROUGHPUT RATE Serial Digital Interface Conversion data is accessed with an SPI-compatible serial interface. The interface consists of the serial clock (SCLK), serial data output (SDATA), and chip select (CS). FN7999 Rev 3.00 September 5, 2012 V 22 + V 32 + V 42 + V 52 + V 62 THD  dB  = 20 log ----------------------------------------------------------------------V 12 (EQ. 2) where V1 is the rms amplitude of the fundamental and V2, V3, V4, V5, and V6 are the rms amplitudes of the second to the sixth harmonics. Peak Harmonic or Spurious Noise (SFDR) Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to fS/2 and excluding DC) to the rms value of the Page 17 of 21 ISL26712, ISL26710, ISL26708 fundamental. Also referred to as Spurious Free Dynamic Range (SFDR). Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it will be a noise peak. Positive Gain Error Intermodulation Distortion Negative Gain Error With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities will create distortion products at sum and difference frequencies of mfa ± nfb where m and n = 0, 1, 2 or 3. Intermodulation distortion terms are those for which neither m nor n are equal to zero. For example, the second order terms include (fa + fb) and (fa – fb), while the third order terms include (2fa + fb), (2fa – fb), (fa + 2fb), and (fa –2fb). This is the deviation of the first code transition (100...000 to 100...001) from the ideal AIN+ – AIN– (i.e., – REF + 1 LSB), after the zero code error has been adjusted out. The ISL26712/10/08 is tested using the CCIF standard, where two input frequencies near the top end of the input bandwidth are used. In this case, the second order terms are usually distanced in frequency from the original sine waves, while the third order terms are usually at a frequency close to the input frequencies. As a result, the second and third order terms are specified separately. The calculation of the intermodulation distortion is as per the THD specification, where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the sum of the fundamentals expressed in dBs. Aperture Delay This is the amount of time from the leading edge of the sampling clock until the ADC actually takes the sample. Aperture Jitter This is the sample-to-sample variation in the effective point in time at which the actual sample is taken. Full Power Bandwidth The full power bandwidth of an ADC is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3dB for a full-scale input. Common-Mode Rejection Ratio (CMRR) The common-mode rejection ratio is defined as the ratio of the power in the ADC output at full-scale frequency, f, to the power of a 250mVP-P sine wave applied to the common-mode voltage of AIN+ and AIN– of frequency fs shown in Equation 3: CMRR  dB  = 10 log  Pfl  Pfs  (EQ. 3) This is the deviation of the last code transition (011...110 to 011...111) from the ideal AIN+ – AIN– (i.e., +REF – 1 LSB), after the zero code error has been adjusted out. Track and Hold Acquisition Time The track and hold acquisition time is the minimum time required for the track and hold amplifier to remain in track mode for its output to reach and settle to within 0.5 LSB of the applied input signal. Power Supply Rejection Ratio (PSRR) The power supply rejection ratio is defined as the ratio of the power in the ADC output at full-scale frequency, f, to ADC VDD supply of frequency fS. The frequency of this input varies from 1kHz to 1MHz as shown by Equation 4. PSRR  dB  = 10 log  Pf  Pfs  (EQ. 4) Pf is the power at frequency f in the ADC output; Pfs is the power at frequency fs in the ADC output. Application Hints Grounding and Layout The printed circuit board that houses the ISL26712/10/08 should be designed so that the analog and digital sections are separated and confined to certain areas of the board. This facilitates the use of ground planes that can be easily separated. A minimum etch technique is generally best for ground planes since it gives the best shielding. Digital and analog ground planes should be joined in only one place, and the connection should be a star ground point established as close to the GND pin on the ISL26712/10/08 as possible. Avoid running digital lines under the device, as this will couple noise onto the die. The analog ground plane should be allowed to run under the ISL26712/10/08 to avoid noise coupling. The power supply lines to the device should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Differential Nonlinearity (DNL) Fast switching signals, such as clocks, should be shielded with digital ground to avoid radiating noise to other sections of the board, and clock signals should never run near the analog inputs. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feed-through the board. A microstrip technique is by far the best but is not always possible with a double-sided board. This is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC. In this technique, the component side of the board is dedicated to ground planes, while signals are placed on the solder side. Zero-Code Error Good decoupling is also important. All analog supplies should be decoupled with μF tantalum capacitors in parallel with 0.1μF capacitors to GND. To achieve the best from these decoupling components, they must be placed as close as possible to the device. Pfl is the power at frequency f in the ADC output; Pfs is the power at frequency fs in the ADC output. Integral Nonlinearity (INL) This is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. This is the deviation of the midscale code transition (111...111 to 000...000) from the ideal AIN+ – AIN– (i.e., 0 LSB). FN7999 Rev 3.00 September 5, 2012 Page 18 of 21 ISL26712, ISL26710, ISL26708 Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision. DATE REVISION CHANGE March 14, 2012 FN7999.0 Initial Release. May 30, 2012 FN7999.1 Page 3, Ordering Information: removed “Coming Soon” from all SOT 23 parts. June 20, 2012 FN7999.2 Updated Figure 25, “IDEAL TRANSFER CHARACTERISTICS,” on page 13. Updated Table 1 on page 17. August 22, 2012 FN7999.3 Bolded applicable MIN MAX specs in “Electrical Specifications” and “Timing Specifications” tables. Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL26712,ISL26710, ISL26708 To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff FITs are available from our website at: http://rel.intersil.com/reports/search.php © Copyright Intersil Americas LLC 2012. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN7999 Rev 3.00 September 5, 2012 Page 19 of 21 ISL26712, ISL26710, ISL26708 Small Outline Transistor Plastic Packages (SOT23-8) P8.064 0.20 (0.008) M C VIEW C 8 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE CL 8 7 INCHES e b 6 5 CL CL E 1 2 3 E1 4 e1 C D CL A A2 A1 SEATING PLANE -C- 0.10 (0.004) MIN MAX MIN MAX A 0.036 0.057 0.90 1.45 - 0.000 0.0059 0.00 0.15 - A2 0.036 0.051 0.90 1.30 - b 0.009 0.015 0.22 0.38 - b1 0.009 0.013 0.22 0.33 c 0.003 0.009 0.08 0.22 6 c1 0.003 0.008 0.08 0.20 6 D 0.111 0.118 2.80 3.00 3 E 0.103 0.118 2.60 3.00 - E1 0.060 0.067 1.50 1.70 3 e 0.0256 Ref 0.65 Ref - e1 0.0768 Ref 1.95 Ref - 0.014 0.022 0.35 0.024 Ref. 0.60 Ref. L2 0.010 Ref. 0.25 Ref. N 8 8 5 WITH R 0.004 - 0.10 PLATING b1 R1 0.004 0.010 0.10 0.25  0o 8o 0o 8o c1 4 0.55 L1 b c NOTES A1 L C MILLIMETERS SYMBOL Rev. 2 9/03 NOTES: BASE METAL 1. Dimensioning and tolerance per ASME Y14.5M-1994. 2. Package conforms to EIAJ SC-74 and JEDEC MO178BA. 4X 1 3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate burrs. 4. Footlength L measured at reference to gauge plane. R1 5. “N” is the number of terminal positions. R GAUGE PLANE SEATING PLANE L C L1  6. These Dimensions apply to the flat section of the lead between 0.08mm and 0.15mm from the lead tip. 7. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only L2 4X 1 VIEW C FN7999 Rev 3.00 September 5, 2012 Page 20 of 21 ISL26712, ISL26710, ISL26708 Package Outline Drawing L8.3x3I 8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 1 6/09 2X 1.950 3.00 B 0.15 8 5 3.00 (4X) 6X 0.65 A 1.64 +0.10/ - 0.15 6 PIN 1 INDEX AREA 4 8X 0.30 8X 0.400 ± 0.10 TOP VIEW 6 PIN #1 INDEX AREA 1 4 0.10 M C A B 2.38 +0.10/ - 0.15 BOTTOM VIEW SEE DETAIL "X" ( 2.38 ) ( 1.95) 0.10 C Max 0.80 C 0.08 C SIDE VIEW ( 8X 0.60) (1.64) ( 2.80 ) PIN 1 C 0 . 2 REF 5 (6x 0.65) 0 . 00 MIN. 0 . 05 MAX. ( 8 X 0.30) DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature. 6. FN7999 Rev 3.00 September 5, 2012 The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. Page 21 of 21
ISL26708IRTZ 价格&库存

很抱歉,暂时无法提供与“ISL26708IRTZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货