0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL28006FHADJZ-T7

ISL28006FHADJZ-T7

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    SOT23-6

  • 描述:

    IC CURR SENSE 1 CIRCUIT SOT23-6

  • 数据手册
  • 价格&库存
ISL28006FHADJZ-T7 数据手册
DATASHEET ISL28006 FN6548 Rev 6.00 November 22, 2013 Micropower, Rail to Rail Input Current Sense Amplifier with Voltage Output The ISL28006 is a micropower, uni-directional high-side and low-side current sense amplifier featuring a proprietary rail-to-rail input current sensing amplifier. The ISL28006 is ideal for high-side current sense applications where the sense voltage is usually much higher than the amplifier supply voltage. The device can be used to sense voltages as high as 28V when operating from a supply voltage as low as 2.7V. The micropower ISL28006 consumes only 50µA of supply current when operating from a 2.7V to 28V supply. The ISL28006 features a common-mode input voltage range from 0V to 28V. The proprietary architecture extends the input voltage sensing range down to 0V, making it an excellent choice for low-side ground sensing applications. The benefit of this architecture is that a high degree of total output accuracy is maintained over the entire 0V to 28V common mode input voltage range. The ISL28006 is available in fixed (100V/V, 50V/V, 20V/V and Adjustable) gains in the space saving 5 Ld SOT-23 package and the 6 Ld SOT-23 package for the adjustable gain part. The parts operate over the extended temperature range from -40°C to +125°C. Features • Low Power Consumption. . . . . . . . . . . . . . . . . . . . . . 50µA, Typ • Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 28V • Wide Common Mode Input. . . . . . . . . . . . . . . . . . . . 0V to 28V • Gain Versions - ISL28006-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/V - ISL28006-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50V/V - ISL28006-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/V - ISL28006-ADJ . . . . . . . . . . . . . . . . ADJ (Min Gain = 20V/V) • Operating Temperature Range . . . . . . . . . . . . -40°C to +125°C • Packages. . . . . . . . . . . . . . . . . . . . . .5 Ld SOT-23, 6 Ld SOT-23 Applications • Power Management/Monitors • Power Distribution and Safety • DC/DC, AC/DC Converters • Battery Management/Charging • Automotive Power Distribution Related Literature • See AN1532 for “ISL28006 Evaluation Board User’s Guide” SENSE RSENSE SENSE +5VDC RSENSE +12VDC OUTPUT +5VDC ISL28006 + - ISENSE +12VDC 0.6 +5VDC OUTPUT 0.2 +5VDC ISL28006 + ISENSE +5VDC SENSE +1.0VDC MULTIPLE OUTPUT POWER SUPPLY RSENSE +5VDC ISL28006 + +1.0VDC OUTPUT ISENSE +1.0VDC FIGURE 1. TYPICAL APPLICATION FN6548 Rev 6.00 November 22, 2013 -40°C +25°C +125°C GAIN 100 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 GND +100°C 0.4 ACCURACY (%) +12VDC 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 2. GAIN ACCURACY vs VRS+ = 0V TO 28V Page 1 of 26 ISL28006 Block Diagram VCC I = 2.86µA VSENSE VSENSE HIGH-SIDE AND LOW-SIDE SENSING RS+ R1 VCC I = 2.86µA gmHI HIGH-SIDE AND LOW-SIDE SENSING RS+ R1 RS- gmHI RSR2 R2 + 1.35V + OUT - 1.35V Rf VCC Rf VCC IMIRROR R3 OUT - gmLO IMIRROR Rg R5 FB R3 Rg R5 gmLO VSENSE VSENSE R4 R4 GND GND FIXED GAIN PARTS ADJUSTABLE GAIN PART Pin Configurations ISL28006-ADJ (6 LD SOT-23) TOP VIEW ISL28006-100, 50, 20 (5 LD SOT-23) TOP VIEW GND 1 OUT 2 FB 1 5 RSFIXED GAIN VCC 3 6 GND ADJ. GAIN OUT 2 VCC 3 4 RS+ 5 RS4 RS+ Pin Descriptions ISL28006-100, 50, 20 (5 LD SOT-23) ISL28006-ADJ (6 LD SOT-23) PIN NAME 1 6 GND 1 FB 2 2 OUT Amplifier Output 3 3 VCC Positive Power Supply 4 4 RS+ Sense Voltage Non-inverting Input 5 5 RS- Sense Voltage Inverting Input DESCRIPTION Power Ground Input Pin for External Resistors FB VCC RS- CAPACITIVELY COUPLED ESD CLAMP OUT RS+ GND FN6548 Rev 6.00 November 22, 2013 Page 2 of 26 ISL28006 Ordering Information PART NUMBER (Notes 1, 2, 3) PART MARKING GAIN PACKAGE Tape & Reel (Pb-Free) PKG. DWG. # ISL28006FH100Z-T7 100V/V BDJA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH100Z-T7A 100V/V BDJA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH50Z-T7 50V/V BDHA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH50Z-T7A 50V/V BDHA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH20Z-T7 20V/V BDGA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FH20Z-T7A 20V/V BDGA (Note 4) 5 Ld SOT-23 P5.064A ISL28006FHADJZ-T7 ADJ BDFA (Note 4) 6 Ld SOT-23 P6.064 ISL28006FHADJZ-T7A ADJ BDFA (Note 4) 6 Ld SOT-23 P6.064 ISL28006FH-100EVAL1Z 100V/V Evaluation Board ISL28006FH-50EVAL1Z 50V/V Evaluation Board ISL28006FH-20EVAL1Z 20V/V Evaluation Board ISL28006FH-ADJEVAL1Z Adjustable Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28006. For more information on MSL please see techbrief TB363. 4. The part marking is located on the bottom of the part. FN6548 Rev 6.00 November 22, 2013 Page 3 of 26 ISL28006 Absolute Maximum Ratings Thermal Information Max Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28V Max Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Max Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±0.5V Max Input Voltage (RS+, RS-, FB) . . . . . . . . . . . . . . . . . . . GND - 0.5V to 30V Max Input Current for Input Voltage 2V, VSENSE = 5mV VRS+ > 2V, VSENSE = 5mV TYP MAX (Note 7) UNIT 50 59 µA 62 µA 62 µA 63 µA 62 µA 63 µA 28 V 50 ADJ Gain = 21 Rf = 100kΩ, Rg = 5kΩ VRS+ > 2V, VSENSE = 5mV Supply Voltage Guaranteed by PSRR 2.7 50 Gain = 100 Pulse on RS+ pin, VOUT = 8VP-P (Figure 75) 0.58 0.76 V/µs Gain = 50 Pulse on RS+ pin, VOUT = 8VP-P (Figure 75) 0.58 0.67 V/µs Gain = 20 Pulse on RS+ pin, VOUT = 3.5VP-P (Figure 75) 0.50 0.67 V/µs ADJ Gain = 21 Rf = 100kΩ, Rg = 5kΩ Pulse on RS+ pin, VOUT = 3.5VP-P (Figure 75) 0.50 0.67 V/µs Gain = 100 VRS+ = 12V, 0.1V, VSENSE = 100mV 110 kHz Gain = 50 VRS+ = 12V, 0.1V, VSENSE = 100mV 160 kHz Gain = 20 VRS+ = 12V, 0.1V, VSENSE = 100mV 180 kHz ADJ, Gain = 101 (Figure 65) VRS+ = 12V, 0.1V, VSENSE = 100mV, Rf = 100kΩ, Rg = 1kΩ 40 kHz ADJ, Gain = 51 (Figure 65) VRS+ = 12V, VSENSE = 100mV, Rf = 100kΩ, Rg = 2kΩ 78 kHz VRS+ = 0.1V, VSENSE = 100mV, Rf = 100kΩ, Rg = 2kΩ 122 kHz ADJ, Gain = 21 (Figure 65) VRS+ = 12V, VSENSE = 100mV, Rf = 100kΩ, Rg = 5kΩ 131 kHz VRS+ = 0.1V, VSENSE = 100mV, Rf = 100kΩ, Rg = 5kΩ 237 kHz Output Settling Time to 1% of Final Value VCC = VRS+ = 12V, VOUT = 10V step, VSENSE > 7mV 15 µs VCC = VRS+ = 0.2V, VOUT = 10V step, VSENSE > 7mV 20 µs Capacitive-Load Stability No sustained oscillations 300 pF Power-Up Time to 1% of Final Value VCC = VRS+ = 12V, VSENSE = 100mV 15 µs VCC = 12V, VRS+ = 0.2V, VSENSE = 100mV 50 µs VCC = VRS+ = 12V, VSENSE = 100mV, overdrive 10 µs Saturation Recovery Time NOTES: 7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 8. DEFINITION OF TERMS: • VSENSEA = VSENSE @ 100mV • VSENSEB = VSENSE @ 20mV • VOUTA = VOUT @ VSENSEA = 100mV • VOUTB = VOUT @ VSENSEB = 20mV  V OUT A – V OUT B  • G = GAIN =  ------------------------------------------------------  V SENSE A – V SENSE B V OUT A 9. VOS is extrapolated from the gain measurement. V OS = V SENSE A – ----------------G  G MEASURED – G EXPECTED 10. % Gain Accuracy = GA =  ---------------------------------------------------------------------  100 G EXPECTED    VOUT MEASURED – VOUT EXPECTED 11. Output Accuracy % VOA =  -------------------------------------------------------------------------------------------  100, where VOUT = VSENSE X GAIN and VSENSE = 100mV VOUT EXPECTED   FN6548 Rev 6.00 November 22, 2013 Page 6 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. VRS+ 2.0 1.4 VTH(L-H) = 1.52V 1.2 0.8 VOUT (G = 100) 0.6 0.4 0.2 1.2 0 0 0.2 0.4 0.6 0.8 1.0 1.2 TIME (ms) 1.4 1.6 1.8 2.0 FIGURE 3. HIGH-SIDE and LOW-SIDE THRESHOLD VOLTAGE VRS+(L-H) and VRS+(H-L), VSENSE = 10mV 6 4 G100, VOUT = 2V G50, VOUT = 1V G20, VOUT = 400mV 0.4 0 8 RL = 1MΩ VCC = 12V 0.8 G100, VOUT = 1V G50, VOUT = 500mV G20, VOUT = 200mV 10 VOUT (G = 100) 1.6 VTH(H-L) = 1.23V 1.0 VRS+ (V) VOLTS (V) 12 2.4 VRS+ 1.6 0 0.2 0.4 0.6 0.8 1.0 1.2 TIME (ms) 2 1.4 1.6 GAIN 100 10 10 8 8 VOUT (V) VOUT (V) 0 2.0 12 GAIN 100 6 6 4 4 2 2 0 10 20 30 40 50 60 70 80 90 0 100 0 10 20 30 TIME (µs) FIGURE 5. LARGE SIGNAL TRANSIENT RESPONSE VRS+ = 0.2V, VSENSE = 100mV GAIN 100 18 VSENSE = 20mV, 100mV 16 14 VOS (µV) 12 10 8 6 4 2 0 -250 -200 -150 -100 -50 VOS (µV) 0 50 100 FIGURE 7. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 FN6548 Rev 6.00 November 22, 2013 40 50 60 TIME (µs) 70 80 90 100 FIGURE 6. LARGE SIGNAL TRANSIENT RESPONSE VRS+ = 12V, VSENSE = 100mV 20 UNITS 1.8 FIGURE 4. VOUT vs VRS+, VSENSE = 20mV TRANSIENT RESPONSE 12 0 VOUT (V) 1.8 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 100 VSENSE = 20mV, 100mV +125°C +100°C -40°C 0 2 4 6 8 +25°C 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 8. VOS vs VRS+ Page 7 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 250 GAIN 100 VSENSE = 20mV, 100mV +125°C +100°C 200 150 +100°C +25°C 100 VOS (µV) VOS (µV) 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 +25°C -40°C 50 0 -50 -40°C -100 +125°C -150 GAIN 100 VSENSE = 2mV, 20mV -200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -250 2 2.0 4 6 8 VRS+ (V) FIGURE 9. VOS vs VRS+ 3000 +100°C FIGURE 10. VOS vs VCC, VRS+= 12V 0.6 GAIN 100 VSENSE = 2mV, 20mV +25°C 2000 +100°C 0.4 -40°C ACCURACY (%) -40°C +125°C 0 -1000 0 -0.2 -0.4 -0.6 -0.8 -1.0 -2000 GAIN 100 VSENSE = 20mV, 100mV -1.2 -3000 2 4 6 8 -1.4 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 11. VOS vs VCC, VRS+ = 0.1V 0.6 +100°C 0 ACCURACY (%) ACCURACY (%) 0.2 -0.2 -0.4 -40°C -0.6 +125°C -0.8 -1.0 GAIN 100 VSENSE = 20mV, 100mV -1.2 0 0.2 0.4 0.6 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 FIGURE 13. GAIN ACCURACY vs VRS+ = 0V TO 2V FN6548 Rev 6.00 November 22, 2013 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 12. GAIN ACCURACY vs VRS+ = 0V TO 28V +25°C 0.4 -1.4 +25°C +125°C 0.2 1000 VOS (µV) 10 12 14 16 18 20 22 24 26 28 VCC (V) 2.0 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5 +100°C +25°C -40°C +125°C GAIN 100 VSENSE = 2mV, 20mV 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 14. GAIN ACCURACY vs VCC, VRS+ = 12V Page 8 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.2 0 0.1 ACCURACY (%) -2 +25°C -4 -40°C +100°C -6 -8 +125°C -10 -12 -14 -16 GAIN 100 VSENSE = 2mV, 20mV -18 -20 2 4 6 8 VOA PERCENT ACCURACY (%) 2 GAIN 100 0.0 -0.1 -0.2 -0.3 -40°C -0.4 +125°C -0.5 -0.6 +100°C -0.7 -0.8 -0.9 +25°C -1.0 1µ 10 12 14 16 18 20 22 24 26 28 10µ 100µ IOUT(A) VCC (V) FIGURE 15. GAIN ACCURACY vs VCC, VRS+ = 0.1V 40 35 GAIN 100 20 GAIN 100 VSENSE = 20mV, 100mV VRS+ = 12V 0 15 VOS (µV) GAIN (dB) 25 VRS+= 100mV 5 -5 VCC = 12V -15 V SENSE = 100mV AV = 100 -25 RL = 1MΩ -35 10 100 VRS+ = 12V -20 -40 -60 -80 1k 10k FREQUENCY (Hz) 100k -100 -50 1M FIGURE 17. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P 180 100pF 1000pF 30 25 50 75 TEMPERATURE (°C) 100 125 PHASE (°) 10nF 0 VCC = 5V VRS- = 3V AV = 100 VOUT = 400mVP-P -40 1.E+03 1.E+04 -20 -60 -180 1.E+06 FIGURE 19. CAPACITIVE LOAD DRIVE GAIN vs FREQUENCY 10nF 20 -140 FREQUENCY (Hz) FN6548 Rev 6.00 November 22, 2013 60 -100 1.E+05 NO CL 4.7nF 100 NO CL 10 100pF 1000pF 140 4.7nF 20 GAIN (dB) 0 220 40 -30 -25 FIGURE 18. VOS (µV) vs TEMPERATURE 50 -20 10m FIGURE 16. NORMALIZED VOA vs IOUT 45 -10 1m VCC = 5V VRS- = 3V AV = 100 VOUT = 400mVP-P -220 1.E+03 1.E+04 1.E+05 1.E+06 FREQUENCY (Hz) FIGURE 20. CAPACITIVE LOAD DRIVE PHASE vs FREQUENCY Page 9 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.30 0.25 0.20 GAIN 100 VRS+ = 12V -0.6 VOUT ERROR (%) GAIN ACCURACY (%) -0.5 GAIN 100 VSENSE = 20mV, 100mV VRS+ = 12V 0.15 0.10 0.05 0 -0.7 -0.8 -0.9 -0.05 -0.10 -50 -25 0 25 50 75 100 -1 -50 125 -25 0 TEMPERATURE (°C) FIGURE 21. GAIN ACCURACY (%) vs TEMPERATURE GAIN 50 18 VSENSE = 20mV, 100mV 16 12 VOS (µV) UNITS 14 10 8 6 4 2 -250 -200 -150 -100 -50 VOS (µV) 0 50 100 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 +125°C -40°C 0 2 4 6 8 +25°C 10 12 14 16 18 20 22 24 26 28 FIGURE 24. VOS vs VRS+ 250 GAIN 50 VSENSE = 2mV, 0mV 200 150 +100°C +100°C 100 VOS (µV) VOS (µV) +100°C VRS+ (V) GAIN 50 VSENSE = 20mV, 100mV +125°C 125 GAIN 50 VSENSE = 20mV, 100mV FIGURE 23. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 100 FIGURE 22. VOUT ERROR (%) vs TEMPERATURE 20 0 25 50 75 TEMPERATURE (°C) +25°C -40°C 50 +125°C 0 -50 +25°C -100 -150 -40°C -200 0 0.2 0.4 0.6 0.8 1.0 1.2 VRS+ (V) FIGURE 25. VOS vs VRS+ FN6548 Rev 6.00 November 22, 2013 1.4 1.6 1.8 2.0 -250 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 26. VOS vs VCC, VRS+ = 12V Page 10 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 3000 +100°C 0.6 +25°C 0.4 2000 ACCURACY (%) VOS (µV) 1000 -40°C +125°C 0 -1000 GAIN 50 VSENSE = 2mV, 0mV 2 4 6 8 0.4 +25°C 0 ACCURACY (%) ACCURACY (%) -0.8 -0.2 -0.4 +100°C -0.6 -0.8 -1.0 -40°C +125°C -1.2 0 0.2 0.4 0.6 GAIN 50 VSENSE = 20mV, 100mV 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 FIGURE 29. GAIN ACCURACY vs VRS+ = 0V TO 2V 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 0 0.1 +25°C -40°C +100°C -6 -8 -10 -12 +125°C -14 -16 GAIN 50 VSENSE = 2mV, 20mV -18 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 31. GAIN ACCURACY vs VCC, LOW-SIDE FN6548 Rev 6.00 November 22, 2013 VOA PERCENT ACCURACY (%) 0.2 -4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) +100°C +25°C -40°C +125°C GAIN 50 VSENSE = 2mV, 20mV 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 30. GAIN ACCURACY vs VCC, HIGH-SIDE 2 -2 GAIN 50 VSENSE = 20mV, 100mV FIGURE 28. GAIN ACCURACY vs VRS+ = 0V TO 28V 0.2 ACCURACY (%) +125°C -0.6 -1.4 10 12 14 16 18 20 22 24 26 28 VCC (V) 0.6 -20 +100°C -0.4 -1.2 FIGURE 27. VOS vs VCC, VRS+ = VRS+ = 0.1V -1.4 0 -0.2 -1.0 -2000 -3000 -40°C +25°C 0.2 GAIN 50 0.0 -0.1 -0.2 -0.3 -40°C -0.4 -0.5 +125°C -0.6 -0.7 +100°C -0.8 -0.9 -1.0 1µ +25°C 10µ 100µ IOUT(A) 1m 10m FIGURE 32. NORMALIZED VOA vs IOUT Page 11 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) -70 GAIN 50 35 -90 25 -110 15 VOS (µV) GAIN (dB) 45 VRS+= 100mV 5 -5 VRS+ = 12V VCC = 12V -15 V SENSE = 100mV -25 AV = 50 RL = 1MΩ -35 10 100 GAIN 50 VSENSE = 20mV, 100mV VRS+ = 12V -130 -150 -170 -190 -210 1k 10k FREQUENCY (Hz) 100k -230 -50 1M FIGURE 33. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P 220 40 180 1000pF 0 -10 -20 -30 10nF VCC = 5V -60 -180 1.E+05 10nF -20 -140 1.E+04 VCC = 5V VRS- = 3V AV = 50 VOUT = 400mVP-P -220 1.E+03 1.E+06 1.E+04 FREQUENCY (Hz) 0.10 GAIN 50 0.08 VRS+ = 12V 0.06 VOUT ERROR (%) GAIN ACCURACY (%) 0.16 1.E+06 FIGURE 36. CAPACITIVE LOAD DRIVE PHASE vs FREQUENCY GAIN 50 VSENSE = 20mV, 100mV VRS+ = 12V 0.17 1.E+05 FREQUENCY (Hz) FIGURE 35. CAPACITIVE LOAD DRIVE GAIN vs FREQUENCY 0.18 100pF 20 -100 VRS- = 3V AV = 50 VOUT = 400mVP-P -40 1.E+03 125 NO CL 60 NO CL 10 100 4.7nF 100 PHASE (°) GAIN (dB) 20 25 50 75 TEMPERATURE (°C) 1000pF 140 100pF 4.7nF 0 FIGURE 34. VOS (µV) vs TEMPERATURE 50 30 -25 0.15 0.14 0.13 0.12 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 0.11 0.1 -50 -0.10 -25 0 25 50 75 100 TEMPERATURE (°C) FIGURE 37. GAIN ACCURACY (%) vs TEMPERATURE FN6548 Rev 6.00 November 22, 2013 125 -0.12 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 38. V OUT ERROR (%) vs TEMPERATURE Page 12 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 30 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 20 VSENSE = 20mV, 100mV 25 VOS (µV) UNITS 20 15 10 5 0 -250 -200 -150 -100 -50 0 VOS (µV) 50 100 150 GAIN 20 VSENSE = 20mV, 100mV 0 2 4 GAIN 20 VSENSE = 2mV, 20mV 150 100 +25°C -40°C +100°C 50 0 +25°C -50 -40°C -100 +125°C -150 -200 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 -250 2 2 FIGURE 41. VOS vs VRS+ 3000 +100°C 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) +25°C FIGURE 42. VOS vs VCC, VRS+ = 12V 0.6 GAIN 20 VSENSE = 2mV, 20mV 0.4 2000 +125°C 0 -1000 ACCURACY (%) -40°C -40°C +25°C 0.2 1000 VOS (µV) 10 12 14 16 18 20 22 24 26 28 200 VRS+ (V) 0 -0.2 +125°C -0.4 +100°C -0.6 -0.8 -1.0 -2000 GAIN 20 VSENSE = 20mV, 100mV -1.2 -3000 +25°C 250 GAIN 20 VSENSE = 20mV, 100mV +125°C -40°C FIGURE 40. VOS vs VRS+ VOS (µV) VOS (µV) +100°C 8 +100°C VRS+ (V) FIGURE 39. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 6 +125°C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 43. VOS vs VCC, VRS+ = 0.1V FN6548 Rev 6.00 November 22, 2013 -1.4 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 44. GAIN ACCURACY vs VRS+ = 0V TO 28V Page 13 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.6 GAIN 20 VSENSE = 20mV, 100mV 0.4 +25°C 0 ACCURACY (%) ACCURACY (%) 0.2 -0.2 -0.4 -0.6 +100°C -40°C -0.8 -1.0 -1.2 -1.4 +125°C 0 0.2 0.4 0.6 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 FIGURE 45. GAIN ACCURACY vs VRS+ = 0V TO 2V 0.2 0 0.1 VOA PERCENT ACCURACY (%) 2 -4 +25°C +100°C -6 -40°C -8 -10 -12 +125°C -14 -16 GAIN 20 VSENSE = 2mV, 20mV -18 -20 2 4 6 8 GAIN 20 VSENSE = 2mV, 20mV +100°C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) GAIN 20 0.0 -0.1 -0.2 +25°C -0.3 -0.4 +125°C -0.5 -0.6 +100°C -0.7 -0.8 -40°C -0.9 10µ VCC (V) FIGURE 47. GAIN ACCURACY vs VCC, LOW-SIDE 100µ IOUT(A) 1m 10m FIGURE 48. NORMALIZED VOA vs IOUT -20 GAIN 20 35 GAIN 20 VSENSE = 20mV, 100mV VRS+ = 12V -40 25 -60 15 VOS (µV) GAIN (dB) -40°C +125°C -1.0 1µ 10 12 14 16 18 20 22 24 26 28 45 +25°C FIGURE 46. GAIN ACCURACY vs VCC, HIGH-SIDE -2 ACCURACY (%) 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 VRS+ = 100mV 5 -5 VCC = 12V -15 V SENSE = 100mV A = 20 -25 V RL = 1MΩ -35 10 100 VRS+ = 12V -100 -120 1k 10k FREQUENCY (Hz) 100k FIGURE 49. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P FN6548 Rev 6.00 November 22, 2013 -80 1M -140 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 50. VOS (µV) vs TEMPERATURE Page 14 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 40 220 1000pF 180 30 4.7nF 100 NO CL 10 10nF 0 -10 -20 VCC = 5V VRS- = 3V -30 AV = 20 VOUT = 400mVP-P -40 1.E+03 1.E+04 1.E+05 10nF 20 -20 -60 -100 VCC = 5V V = 3V -140 RSAV = 20 -180 V OUT = 400mVP-P -220 1.E+03 1.E+04 1.E+06 FREQUENCY (Hz) 0.31 0.3150 0.310 0.305 0.27 0.25 0.23 0.21 0.300 0.19 0.295 0.17 0.290 -50 -25 0 25 50 75 100 GAIN 20 VRS+ = 12V 0.29 VOUT ERROR (%) GAIN ACCURACY (%) 0.320 0.15 -50 125 -25 0 TEMPERATURE (°C) UNITS VOS (µV) 80 120 160 200 FIGURE 55. VOS (µV) DISTRIBUTION AT +25°C, VRS+ = 12V, QUANTITY: 100 FN6548 Rev 6.00 November 22, 2013 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 54. VOUT ERROR (%) vs TEMPERATURE FIGURE 53. GAIN ACCURACY (%) vs TEMPERATURE 26 GAIN 101 ADJ 24 Rf = 100k, Rg = 1k 22 VSENSE = 20mV, 100mV 20 18 16 14 12 10 8 6 4 2 0 -200 -160 -120 -80 -40 0 40 VOS (µV) 1.E+06 FIGURE 52. CAPACITIVE LOAD DRIVE PHASE VS FREQUENCY GAIN 20 VSENSE = 20mV, 100mV VRS+ = 12V 0.325 1.E+05 FREQUENCY (Hz) FIGURE 51. CAPACITIVE LOAD DRIVE GAIN VS FREQUENCY 0.330 NO CL 4.7nF 60 PHASE (°) GAIN (dB) 20 100pF 1000pF 140 100pF 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV +125°C +100°C -40°C 0 2 4 6 8 +25°C 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 56. VOS vs VRS+ Page 15 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 250 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV 150 +125°C 100 +25°C -40°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV 200 VOS (µV) VOS (µV) 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 -200 -400 +100°C 50 +25°C 0 -50 -100 +100°C -40°C -150 -200 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 +125°C -250 2 2.0 4 6 8 VRS+ (V) FIGURE 57. VOS vs VRS+ +100°C 2000 +25°C FIGURE 58. VOS vs VCC, HIGH-SIDE 1000 VOS (µV) 0.6 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV -40°C +125°C 0 0.4 -1000 +125°C +100°C 0.2 ACCURACY (%) 3000 10 12 14 16 18 20 22 24 26 28 VCC (V) GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV 0 -0.2 +25°C -0.4 -40°C -0.6 -0.8 -1.0 -2000 -1.2 -3000 2 4 6 8 -1.4 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 59. VOS vs VCC, LOW-SIDE 0.6 0 +100°C +125°C ACCURACY (%) ACCURACY (%) 0.2 -0.2 -0.4 -0.6 +25°C -40°C -0.8 -1.0 -1.2 -1.4 0 0.2 0.4 0.6 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 FIGURE 61. GAIN ACCURACY vs VRS+ = 0V TO 2V FN6548 Rev 6.00 November 22, 2013 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VRS+ (V) FIGURE 60. GAIN ACCURACY vs VRS+ = 0V TO 28V GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 20mV, 100mV 0.4 0 2.0 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -40°C +100°C +25°C GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV +125°C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 VCC (V) FIGURE 62. GAIN ACCURACY vs VCC, VRS+ = 12V Page 16 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 0.2 0.0 2 ACCURACY (%) -2 +100°C +25°C -40°C -4 -6 -8 +125°C -10 -12 -14 GAIN 101 ADJ Rf = 100k, Rg = 1k VSENSE = 2mV, 20mV -16 -18 -20 2 4 6 8 VOA PERCENT ACCURACY (%) 0 10 12 14 16 18 20 22 24 26 28 +25°C -0.2 -40°C -0.4 -0.6 GAIN 101 ADJ R = 100k -0.8 Rf = 1k g -1.0 0.2 0.0 -0.2 -0.4 -0.6 GAIN 21 ADJ -0.8 Rf = 100k R = 5k -1.0 g 1µ 10µ +100°C +125°C +25°C -40°C +100°C +125°C 100µ IOUT(A) VCC (V) FIGURE 63. GAIN ACCURACY vs VCC, VRS+ = 0.1V 45 GAIN (dB) 30 VRS+ = 0.1V GAIN = 21 VRS+ = 12V GAIN = 21 0 -50 GAIN = 21 -100 -150 GAIN = 101 -200 -250 -300 -350 -50 1M FIGURE 65. GAIN vs FREQUENCY VRS+ = 100mV/12V, VSENSE = 100mV, VOUT = 50mVP-P -25 0 25 50 75 TEMPERATURE (°C) 100 125 FIGURE 66. VOS (µV) vs TEMPERATURE 0.6 0.40 0.35 0.5 GAIN = 101 0.30 VOUT ERROR (%) GAIN ACCURACY (%) GAIN = 21, 101 Rf = 100k Rg = 1k, 5k RL = 1MΩ 50 10 GAIN = 21, 51, 101 Rf = 100k 5 Rg = 1k, 2k, 5k VRS+ = 12V GAIN = 51 RL = 1MΩ 0 100 1k 10k 100k FREQUENCY (Hz) 0.25 0.20 0.15 VRS+ = 12V 100 VRS+ = 12V GAIN = 51 VCC = 12V 15 VSENSE = 100mV VSENSE = 20mV, 100mV 150 VRS+ = 0.1V GAIN = 101 25 20 200 VOS (µV) 35 10m FIGURE 64. NORMALIZED VOA vs IOUT VRS+ = 12V GAIN = 101 40 1m VSENSE = 20mV, 100mV VRS+ = 12V 0.10 GAIN = 21, 101 Rf = 100k 0.05 Rg = 1k, 5k RL = 1MΩ 0 -50 -25 0 GAIN = 21 25 50 75 100 TEMPERATURE (°C) FIGURE 67. GAIN ACCURACY (%) vs TEMPERATURE FN6548 Rev 6.00 November 22, 2013 125 0.4 GAIN = 101 0.3 0.2 0.1 VSENSE = 20mV, 100mV VRS+ = 12V 0 GAIN = 21, 101 Rf = 100k -0.1 Rg = 1k, 5k RL = 1MΩ -0.2 -50 -25 0 GAIN = 21 25 50 75 100 125 TEMPERATURE (°C) FIGURE 68. VOUT ERROR (%) vs TEMPERATURE Page 17 of 26 ISL28006 Typical Performance Curves VCC = 12V, RL = 1MΩ, unless otherwise specified. (Continued) 20 10 15 IRS+ INPUT BIAS CURRENT (µA) INPUT BIAS CURRENT (µA) 15 5 0 VCC = 12V VRS- = 0V AV = 20 RL = 1M -5 -10 -15 0 IRS+ 50 100 150 200 VCC = 12V VRS- = 12V AV = 20 RL = 1M 5 0 IRS+ -5 -10 250 IRS+ 10 0 50 100 150 200 250 DIFFERENTIAL VOLTAGE RS+ TO RS- (mV) DIFFERENTIAL VOLTAGE RS+ TO RS- (mV) FIGURE 69. LOW SIDE CURRENT SENSING INPUT BIAS CURRENTS FIGURE 70. HIGH SIDE CURRENT SENSING INPUT BIAS CURRENTS Test Circuits and Waveforms VCC VR1 ICC + + VRS+ VSENSE RS+ + VSENSE VRS+ GND - 1MΩ RS+ + OUT RS- VCC R1 RL - - VOUT R2 OUT RSGND 1MΩ RL VOUT VR2 FIGURE 71. ICC, VOS, VOA, CMRR, PSRR, GAIN ACCURACY FIGURE 72. INPUT BIAS CURRENT, LEAKAGE CURRENT VCC RS+ SIGNAL GENERATOR OUT RS+ RS- VRS+ VRS- GND 1MΩ VCC VSENSE VRS+ RL VOUT OUT RSGND 1MΩ RL VOUT PULSE GENERATOR FIGURE 73. ts, SATURATION RECOVERY TIME FIGURE 74. GAIN vs FREQUENCY VCC RS+ OUT RS- VRS+ GND 1MΩ RL VOUT PULSE GENERATOR FIGURE 75. SLEW RATE FN6548 Rev 6.00 November 22, 2013 Page 18 of 26 ISL28006 Applications Information gain resistors to set the gain of the output. For the fixed gain amps the only external component needed is a current sense resistor (typically 0.001Ω to 0.01Ω, 1W to 2W). Functional Description The ISL28006-20, ISL28006-50 and ISL28006-100 are single supply, uni-directional current sense amplifiers with fixed gains of 20V/V, 50V/V and 100V/V respectively. The ISL28006-ADJ is single supply, uni-directional current sense amplifier with an adjustable gain via external resistors (see Figure 80). The ISL28006-ADJ is stable for gains of 20 and higher. The transfer function for the fixed gain parts is given in Equation 1. The ISL28006 is a 2-stage amplifier. Figure 76 shows the active circuitry for high-side current sense applications where the sense voltage is between 1.35V to 28V. Figure 77 shows the active circuitry for ground sense applications where the sense voltage is between 0V to 1.35V. RF  V OUT =  1 + -------  I S R S + V OS  R  G The first stage is a bi-level trans-conductance amp and level translator. The gm stage converts the low voltage drop (VSENSE) sensed across an external milli-ohm sense resistor, to a current (@ gm = 21.3µA/V). The trans-conductance amplifier forces a current through R1 resulting to a voltage drop across R1 that is equal to the sense voltage (VSENSE). The current through R1 is mirrored across R5 creating a ground-referenced voltage at the input of the second amplifier equal to VSENSE. The second stage is responsible for the overall gain and frequency response performance of the device. The fixed gains (20, 50, 100) are set with internal resistors Rf and Rg. The variable gain (ADJ) has an additional FB pin and uses external V OUT = GAIN   I S R S + V OS  (EQ. 1) The transfer function for the adjustable gain part is given in Equation 2. (EQ. 2) Where ISRS is the product of the load current and the sense resistor and is equal to VSENSE. When the sensed input voltage is >1.35V, the gmHI amplifier path is selected and the input gm stage derives its ~2.86µA supply current from the input source through the RS+ terminal. When the sense voltage at RS+ drops below the 1.35V threshold, the gmLO amplifier is enabled for Low Side current sensing. The gmLO input bias current reverses, flowing out of the RS- pin. Since the gmLO amplifier is sensing voltage around ground, it cannot source current to R5. A current mirror referenced off Vcc supplies the current to the second stage for generating a ground referenced output voltage. See Figures 69 and 70 for typical input bias currents for High and Low side current sensing. VCC OPTIONAL FILTER CAPACITOR I = 2.86µA VSENSE IS RS+ + RS R1 VSENSE gmHI HIGH-SIDE SENSING VRS+ = 2V TO 28V - VCC = 2V to 28V RSR2 + OPTIONAL TRANSIENT PROTECTION OUT - 1.35V Rf IMIRROR R3 gmLO ‘VSENSE Rg R5 LOAD R4 GND FIGURE 76. HIGH-SIDE CURRENT DETECTION FN6548 Rev 6.00 November 22, 2013 Page 19 of 26 ISL28006 VCC = 2V TO 28V VCC OPTIONAL FILTER CAPACITOR I = 2.86µA VSENSE IS RS+ + - RS R1 VSENSE LOW-SIDE SENSING VRS+= 0V TO 28V gmHI RSR2 LOAD + OPTIONAL TRANSIENT PROTECTION 1.35V R3 VCC IMIRROR gmLO R5 OUT Rf Rg VSENSE R4 GND FIGURE 77. LOW-SIDE CURRENT DETECTION FN6548 Rev 6.00 November 22, 2013 Page 20 of 26 ISL28006 Hysteretic Comparator The input trans-conductance amps are under control of a hysteretic comparator operating from the incoming source voltage on the RS+ pin (Figure 78). The comparator monitors the voltage on RS+ and switches the sense amplifier from the low-side gm amp to the high-side gm amplifier whenever the input voltage at RS+ increases above the 1.35V threshold. Conversely, a decreasing voltage on the RS+ pin, causes the hysteric comparator to switch from the high-side gm amp to the low-side gm amp as the voltage decreases below 1.35V. It is that low-side sense gm amplifier that gives the ISL28006 the proprietary ability to sense current all the way to 0V. Negative voltages on the RS+ or RS- are beyond the sensing voltage range of this amplifier. 0.5 0.4 ACCURACY (%) 0.3 0.2 0.1 0 -0.1 -0.2 -0.3   R P  I RS-  =  100  130nA  = 13V  (EQ. 3) Switching applications can generate voltage spikes that can overdrive the amplifier input and drive the output of the amplifier into the rails, resulting in a long overload recover time. Capacitors CM and CD filter the common mode and differential voltage spikes. Error Sources There are 3 dominant error sources: gain error, input offset voltage error and Kelvin voltage error (see Figure 79). The gain error is dominated by the internal resistance matching tolerances. The remaining errors appear as sense voltage errors at the input to the amplifier. They are VOS of the amplifier and Kelvin voltage errors. If the transient protection resistor is added, an additional VOS error can result from the IxR voltage due to input bias current. The limiting resistor should only be added to the RS- input, due to the high-side gm amplifier (gmHI) sinking several micro amps of current through the RS+ pin. Layout Guidelines -0.4 -0.5 value of 100Ω will provide protection for a 2V transient with the maximum of 20mA flowing through the input while adding only an additional 13µV (worse case over-temperature) of VOS. Refer to Equation 3: 0 0.2 0.4 0.6 0.8 1.0 1.2 VRS+ (V) 1.4 1.6 1.8 2.0 The Kelvin Connected Sense Resistor FIGURE 78. GAIN ACCURACY vs VRS+ = 0V TO 2V Typical Application Circuit Figure 80 shows the basic application circuit and optional protection components for switched-load applications. For applications where the load and the power source is permanently connected, only an external sense resistor is needed. For applications where fast transients are caused by hot plugging the source or load, external protection components may be needed. The external current limiting resistor (RP) in Figure 80 may be required to limit the peak current through the internal ESD diodes to
ISL28006FHADJZ-T7 价格&库存

很抱歉,暂时无法提供与“ISL28006FHADJZ-T7”相匹配的价格&库存,您可以联系我们找货

免费人工找货