DATASHEET
ISL28134
FN6957
Rev.6.02
Feb 22, 2022
5V Ultra Low Noise, Auto-Zero Rail-to-Rail Precision Op Amp
The ISL28134 is a single, auto-zeroing operational amplifier
optimized for single and dual supply operation from 2.25V to
6.0V and ±1.125V and ±3.0V. The ISL28134 uses auto-zeroing
circuitry to provide very low input offset voltage, drift and a
reduction of the 1/f noise corner below 0.1Hz. The ISL28134
achieves ultra low offset voltage, offset temperature drift, wide
gain bandwidth and rail-to-rail input/output swing while
minimizing power consumption.
The ISL28134 is ideal for amplifying the sensor signals of
analog front-ends that include pressure, temperature, medical,
strain gauge and inertial sensors down to the µV levels.
The ISL28134 can be used over standard amplifiers with high
stability across the industrial temperature range of -40°C to
+85°C and the full industrial temperature range of -40°C to
+125°C. The ISL28134 is available in an industry standard
pinout SOIC and SOT-23 packages.
Applications
Features
• Rail-to-rail inputs and outputs
- CMRR at VCM = 0.1V beyond VS . . . . . . . . . . . . 135dB, typ
- VOH and VOL . . . . . . . . . . . . . . . . . . . . . . .10mV from VS, typ
• No 1/f noise corner down to 0.1Hz
- Input noise voltage . . . . . . . . . . . . . . . . . 10nV/Hz at 1kHz
- 0.1Hz to 10Hz noise voltage. . . . . . . . . . . . . . . . . 250nVP-P
• Low offset voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5µV, Max
• Superb offset drift . . . . . . . . . . . . . . . . . . . . . . . 15nV/°C, Max
• Single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25V to 6.0V
• Dual supply . . . . . . . . . . . . . . . . . . . . . . . . . ±1.125V to ±3.0V
• Low ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675µA, typ
• Wide bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5MHz
• Operating temperature range
- Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
- Full industrial . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C
• Medical instrumentation
• Sensor gain amps
• Packaging
- Single: SOIC, SOT-23
• Precision low drift, low frequency ADC drivers
• Precision voltage reference buffers
• Thermopile, thermocouple, and other temperature sensors
front-end amplifiers
• Inertial sensors
• Process control systems
• Weight scales and strain gauge sensors
5V
50Ω
ISL22316
ISL26102
24-Bit
ADC
50k
50k
DCP
5V VREF
50Ω
ISL21010
ISL28134
NUMBER OF AMPLIFIERS
1600
ISL28134
1400
1200
Vs = ±2.5V
VCM = 0V
T = -40°C to +125°C
N = 2796
1000
800
600
400
200
0
-2.5 -2.0 -1.5 -1.0 -0.5
FIGURE 1. PRECISION WEIGH SCALE / STRAIN GAUGE
FN6957 Rev.6.02
Feb 22, 2022
0
0.5
1.0
1.5
2.0
2.5
FIGURE 2. VOS HISTOGRAM VS = 5V
Page 1 of 24
© 2011 Renesas Electronics
ISL28134
Pin Configurations
5 LD SOT-23
TOP VIEW
OUT 1
8 LD SOIC
TOP VIEW
5 V+
V- 2
IN+ 3
4 IN-
NC 1
8 NC
IN- 2
7 V+
IN+ 3
6 OUT
V- 4
5 NC
Pin Descriptions
ISL28134
(8 Ld SOIC)
ISL28134
(5 Ld SOT-23)
PIN
NAME
2
4
IN-
Inverting input
3
3
IN+
Non-inverting input
FUNCTION
EQUIVALENT CIRCUIT
(See Circuit 1)
V+
AM
IN+
IN-
AN
V-
OSC
Circuit 1
4
2
V-
6
1
OUT
Negative supply
Output
V+
OUT
VCircuit 2
7
5
V+
Positive supply
1, 5, 8
-
NC
No Connect
FN6957 Rev.6.02
Feb 22, 2022
Pin is floating. No connection made to IC.
Page 2 of 24
ISL28134
Ordering Information
PART NUMBER
(Notes 2, 3)
ISL28134IBZ
ISL28134IBZ-T13
PART
MARKING
28134
IBZ
PACKAGE DESCRIPTION
(RoHS Compliant)
PKG.
DWG. #
CARRIER TYPE
(Note 1)
TEMP RANGE
8 Ld SOIC
M8.15E
Tube
-40°C to +85°C
Reel, 2.5k
ISL28134IBZ-T7
Reel, 1k
ISL28134IBZ-T7A
ISL28134FHZ-T7
Reel, 250
BEEA (Note 4)
5 Ld SOT-23
P5.064A
ISL28134FHZ-T7A
Reel, 3k
-40°C to +125°C
Reel, 250
ISL28134ISENSEV1Z
Evaluation Board
ISL28134SOICEVAL1Z
Evaluation Board
NOTES:
1. See TB347 for details about reel specifications.
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus
anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J-STD-020.
3. For Moisture Sensitivity Level (MSL), see the ISL28134 device page. For more information about MSL, see TB363.
4. The part marking is located on the bottom of the part.
FN6957 Rev.6.02
Feb 22, 2022
Page 3 of 24
ISL28134
Absolute Maximum Ratings
Thermal Information
Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5V
Voltage VIN to GND. . . . . . . . . . . . . . . . . . . . . . . . (V- - 0.3V) to (V+ + 0.3V) V
Input Differential Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5V
Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA
Voltage VOUT to GND (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(V+) or (V-)
dv/dt Supply Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/µs
ESD Rating
Human Body Model (Tested per JED22-A114F) . . . . . . . . . . . . . . . . . 4kV
Machine Model (Tested per JED22-A115B) . . . . . . . . . . . . . . . . . . . 300V
Charged Device Model (Tested per JED22-C110D) . . . . . . . . . . . . . . 2kV
Latch-up (Passed Per JESD78B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C
Thermal Resistance (Typical)
JA (°C/W) JC (°C/W)
5 Ld SOT-23 (Notes 5, 6) . . . . . . . . . . . . . . .
225
116
8 Ld SOIC (Notes 5, 6) . . . . . . . . . . . . . . . . .
125
77.2
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493
Operating Conditions
Ambient Operating Temperature Range
Industrial Grade Package . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
Full Industrial Grade Package. . . . . . . . . . . . . . . . . . . . .-40°C to +125°C
Operating Voltage Range . . . . . . . . . . . . . . . . 2.25V (±1.125V) to 6V (±3V)
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
5. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See TB379 for details.
6. For JC, the “case temp” location is taken at the package top center.
Electrical Specifications
operating temperature range.
PARAMETER
VS = 5V, VCM = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply across the specified
DESCRIPTION
TEST CONDITIONS
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
-2.5
-0.2
2.5
µV
DC SPECIFICATIONS
VOS
Input Offset Voltage
TCVOS
Input Offset Voltage Temperature
Coefficient
IB
Input Bias Current
TCIB
IOS
TCIOS
Input Bias Current Temperature
Coefficient
PSRR
VS
FN6957 Rev.6.02
Feb 22, 2022
-3.4
-
3.4
µV
-4
-
4
µV
TA = -40°C to +125°C
-15
-0.5
15
nV/°C
-300
±120
300
pA
TA = -40°C to +85°C
-300
-
300
pA
TA = -40°C to +125°C
-550
-
550
pA
TA = -40°C to +85°C
-
±1.4
-
pA/°C
TA = -40°C to +125°C
-
±2
-
pA/°C
-600
±240
600
pA
TA = -40°C to +85°C
-600
-
600
pA
TA = -40°C to +125°C
-750
-
750
pA
-
±2.8
-
pA/°C
TA = -40°C to +125°C
-
±4
-
pA/°C
V+ = 5.0V, V- = 0V
Guaranteed by CMRR
-0.1
-
5.1
V
VCM = -0.1V to 5.1V
120
135
-
dB
VCM = -0.1V to 5.1V
115
-
-
dB
Input Offset Current
Input Offset Current Temperature Coefficient TA = -40°C to +85°C
Common Mode Input
Voltage Range
CMRR
TA = -40°C to +85°C
TA = -40°C to +125°C
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Supply Voltage (V+ to V-)
VS = 2.25V to 6.0V
120
135
-
dB
VS = 2.25V to 6.0V
120
-
-
dB
Guaranteed by PSRR
2.25
-
6.0
V
Page 4 of 24
ISL28134
Electrical Specifications
operating temperature range. (Continued)
PARAMETER
IS
ISC
VOH
VS = 5V, VCM = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply across the specified
DESCRIPTION
Supply Current Per Amplifier
TEST CONDITIONS
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
RL = OPEN
-
675
900
µA
RL = OPEN
TA = -40°C to +85°C
-
-
1075
µA
RL = OPEN
TA = -40°C to +125°C
-
-
1150
µA
Short Circuit Output Source Current
RL = Short to V-
-
65
-
mA
Short Circuit Output Sink Current
RL = Short to V+
-
-65
-
mA
Output Voltage Swing, HIGH
From VOUT to V+
RL = 10kΩto VCM
15
10
-
mV
RL = 10kΩto VCM
15
-
-
mV
-
10
15
mV
VOL
Output Voltage Swing, LOW
From V- to VOUT
RL = 10kΩto VCM
RL = 10kΩto VCM
-
-
15
mV
AOL
Open Loop Gain
RL = 1MΩ
-
174
-
dB
AC SPECIFICATIONS
CIN
eN
Input Capacitance
Input Noise Voltage
Differential
-
5.2
-
pF
Common Mode
-
5.6
-
pF
f = 0.1Hz to 10Hz
-
250
400
nVP-P
f = 10Hz
-
8
-
nV/Hz
f = 1kHz
-
10
-
nV/Hz
f = 1kHz
-
200
-
fA/Hz
IN
Input Noise Current
GBWP
Gain Bandwidth Product
-
3.5
-
MHz
EMIRR
EMI Rejection Ratio
AV = +1, VIN = 200mVp-p, VCM = 0V,
V+ = 2.5V, V- = -2.5V
-
75
-
dB
Positive Slew Rate
V+ = 5V, V- = 0V, VOUT = 1V to 3V, RL = 100kΩ,
CL = 3.7pF
-
1.5
-
V/µs
-
1.0
-
V/µs
V+ = 5V, V- = 0V, VOUT = 0.1VP-P, RF = 0Ω,
RL = 100kΩ, CL = 3.7pF
-
0.07
-
µs
-
0.17
-
µs
-
1.3
-
µs
-
2.0
-
µs
-
100
-
µs
-
3.1
-
µs
TRANSIENT RESPONSE
SR
Negative Slew Rate
tr, tf, Small Signal
Rise Time, tr 10% to 90%
Fall Time, tf 10% to 90%
tr, tf Large Signal
Rise Time, tr 10% to 90%
Fall Time, tf 10% to 90%
V+ = 5V, V- = 0V, VOUT = 2VP-P, RF = 0Ω,
RL = 100kΩ, CL = 3.7pF
ts
Settling Time to 0.1%, 2VP-P Step
trecover
Output Overload Recovery Time, Recovery AV = +2, RF = 10kΩ, RL = 100k, CL = 3.7pF
to 90% of Output Saturation
FN6957 Rev.6.02
Feb 22, 2022
AV = -1, RF = 1kΩ, CL = 3.7pF
Page 5 of 24
ISL28134
Electrical Specifications
operating temperature range.
PARAMETER
VS = 2.5V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the specified
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
-2.5
-0.2
2.5
µV
TA = -40°C to +85°C
-3.4
-
3.4
µV
TA = -40°C to +125°C
-4
-
4
µV
TA = -40°C to +125°C
-15
-0.5
15
nV/°C
-300
±120
300
pA
TA = -40°C to +85°C
-300
-
300
pA
DESCRIPTION
TEST CONDITIONS
DC SPECIFICATIONS
VOS
Input Offset Voltage
TCVOS
Input Offset Voltage Temperature
Coefficient
IB
Input Bias Current
TCIB
IOS
TCIOS
TA = -40°C to +125°C
-550
-
550
pA
TA = -40°C to +85°C
-
±1.4
-
pA/°C
TA = -40°C to +125°C
-
±2
-
pA/°C
-600
±240
600
pA
TA = -40°C to +85°C
-600
-
600
pA
TA = -40°C to +125°C
-750
-
750
pA
TA = -40°C to +85°C
-
±2.8
-
pA/°C
TA = -40°C to +125°C
-
±4
-
pA/°C
V+ = 2.5V, V- = 0V
Guaranteed by CMRR
-0.1
-
2.6
V
VCM = -0.1V to 2.6V
120
135
-
dB
VCM = -0.1V to 2.6V
115
-
-
dB
RL = OPEN
-
715
940
µA
RL = OPEN
TA = -40°C to +85°C
-
-
1115
µA
RL = OPEN
TA = -40°C to +125°C
-
-
1190
µA
Short Circuit Output Source Current
RL = Short to Ground
-
65
-
mA
Short Circuit Output Sink Current
RL = Short to V+
-
-65
-
mA
Output Voltage Swing, HIGH
From VOUT to V+
RL = 10kΩ to VCM
15
10
-
mV
RL = 10kΩ to VCM
15
-
-
mV
Output Voltage Swing, LOW
From V- to VOUT
RL = 10kΩ to VCM
-
10
15
mV
RL = 10kΩ to VCM
-
-
15
mV
Input Capacitance
Differential
-
5.2
-
pF
Common Mode
-
5.6
-
pF
f = 0.1Hz to 10Hz
-
250
400
nVP-P
f = 10Hz
-
8
-
nV/Hz
f = 1kHz
-
10
-
nV/Hz
f = 1kHz
-
200
-
fA/Hz
-
3.5
-
MHz
Input Bias Current Temperature
Coefficient
Input Offset Current
Input Offset Current Temperature
Coefficient
Common Mode Input
Voltage Range
CMRR
IS
ISC
VOH
VOL
Common Mode Rejection Ratio
Supply Current per Amplifier
AC SPECIFICATIONS
CIN
eN
Input Noise Voltage
IN
Input Noise Current
GBWP
Gain Bandwidth Product
FN6957 Rev.6.02
Feb 22, 2022
Page 6 of 24
ISL28134
Electrical Specifications
operating temperature range. (Continued)
PARAMETER
VS = 2.5V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the specified
DESCRIPTION
TEST CONDITIONS
MIN
(Note 7)
TYP
MAX
(Note 7)
UNITS
-
1.5
-
V/µs
-
1.0
-
V/µs
-
0.07
-
µs
-
0.17
-
µs
-
1.3
-
µs
-
2.0
-
µs
-
100
-
µs
-
1.5
-
µs
TRANSIENT RESPONSE
SR
Positive Slew Rate
V+ = 2.5V, V- = 0V, VOUT = 0.25V to 2.25V,
RL = 100kΩ, CL = 3.7pF
Negative Slew Rate
tr, tf, Small Signal
Rise Time, tr 10% to 90%
V+ = 2.5V, V- = 0V, VOUT = 0.1VP-P,
RF = 0Ω, RL = 100kΩ, CL = 3.7pF
Fall Time, tf 10% to 90%
tr, tf Large Signal
Rise Time, tr 10% to 90%
V+ = 2.5V, V- = 0V, VOUT = 2VP-P, RF = 0Ω,
RL = 100kΩ, CL = 3.7pF
Fall Time, tf 10% to 90%
ts
Settling Time to 0.1%, 2VP-P Step
trecover
Output Overload Recovery Time, Recovery AV = +2, RF = 10kΩ, RL = 100k,
to 90% of Output Saturation
CL = 3.7pF
AV = -1, RF = 1kΩ, CL = 3.7pF
NOTE:
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
TA = +25°C, VCM = 0V Unless otherwise specified.
2.0
2.0
1.5
1.5
1.0
1.0
OFFSET VOLTAGE (µV)
OFFSET VOLTAGE (µV)
Typical Performance Curves
0.5
0
-0.5
-1.0
VS = ±2.5V
-1.5
-20
0
-0.5
-1.0
10
70
40
TEMPERATURE (°C)
100
130
40
70
100
130
160
Vs = ±2.5V
VCM = 0V
T = -40°C to +125°C
N = 2796
140
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
10
FIGURE 4. VOS vs TEMPERATURE, VS = ±1.125V
1000
800
600
400
120
Vs = ±2.5V
VCM = 0V
T = -40°C to +125°C
N = 480
100
80
60
40
20
200
0
-20
TEMPERATURE (°C)
1600
1200
VCM = 0V
-2.0
-50
FIGURE 3. VOS vs TEMPERATURE, VS = ±2.5V
1400
VS = ±1.125V
-1.5
VCM = 0V
-2.0
-50
0.5
-2.5
-2.0 -1.5 -1.0 -0.5
0
0.5
1.0
1.5
VOS (µV)
FIGURE 5. VOS HISTOGRAM VS = 5V
FN6957 Rev.6.02
Feb 22, 2022
2.0
2.5
0
-10
-8
-6
-4
-2
0
2
4
6
8
10
TCVOS (nV/°C)
FIGURE 6. TCVOS HISTOGRAM VS = 5V
Page 7 of 24
ISL28134
Typical Performance Curves
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
120
1400
Vs = ±1.25V
VCM = 0V
T = -40°C to +125°C
N = 2325
1000
800
600
400
80
60
40
20
200
0
Vs = ±1.25V
VCM = 0V
T = -40°C to +125°C
N = 310
100
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
1200
-2.5
-2.0 -1.5
-1.0 -0.5
0
0.5
1.0
1.5
2.0
0
2.5
-10
-8
-6
-4
4
4
3
3
2
2
Vs = ±2.5V
0
-1
-2
Vs = ±1.125V
-3
6
8
10
0
-1
-2
-2.4
-1.6
-0.8
0
0.8
1.6
2.4
-4
1.0
3.2
1.5
2.0
2.5
3.0
3.5
SUPPLY VOLTAGE (V)
COMMON MODE VOLTAGE (V)
FIGURE 10. VOS vs SUPPLY VOLTAGE
600
500
400
IB+ Vs = ±2.5V
500
IB+ Vs = ±1.125V
INPUT OFFSET CURRENT (pA)
INPUT BIAS CURRENT (pA)
4
1
FIGURE 9. VOS vs VCM
200
100
0.00 IB- Vs = ±2.5V
IB- Vs = ±1.125V
-100
-200
-300
-400
-500
-3
2
-3
-4
-3.2
300
0
FIGURE 8. TCVOS HISTOGRAM VS = 2.5V
OFFSET VOLTAGE (µV)
OFFSET VOLTAGE (µV)
FIGURE 7. VOS HISTOGRAM VS = 2.5V
1
-2
TCVOS (nV/°C)
VOS (µV)
-2
-1
0
1
COMMON MODE VOLTAGE (V)
FIGURE 11. IB vs VCM
FN6957 Rev.6.02
Feb 22, 2022
2
3
400
300
Vs = ±2.5V
200
100
-100
Vs = ±1.125V
-200
-3
-2
-1
0
1
2
COMMON MODE VOLTAGE (V)
FIGURE 12. IOS vs VCM
Page 8 of 24
3
ISL28134
Typical Performance Curves
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
350
350
IB+
VS = ±2.5V
300
INPUT OFFSET CURRENT (pA)
INPUT BIAS CURRENT (pA)
300
250
IB+
VS = ±1.125V
200
150
IBVS = ±1.125V
100
IBVS = ±2.5V
50
0
-50
250
VS = ±2.5V
200
150
100
50
VS = ±1.125V
0
-50
-100
-100
-40
-20
0
20
40
60
80
100
120
-150
-40
140
-20
0
20
40
60
80
100
120
140
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 13. IB vs TEMPERATURE
FIGURE 14. IOS vs TEMPERATURE
160
1000
T = +125°C
CMRR/PSRR (dB)
SUPPLY CURRENT (µA)
PSRR
150
140
130
CMRR
120
PSRR
VS = ±1.125V TO ±3V
VCM = 0V
110
100
-40
-20
0
20
CMRR
VS =±2.5V
VCM = -2.6V TO +2.6V
40
60
80
100
120
900
800
T = +25°C
700
600
500
2.0
140
T = +85°C
T = -40°C
6.0
5.0
SUPPLY VOLTAGE (V)
FIGURE 15. CMRR and PSRR vs TEMPERATURE
FIGURE 16. SUPPLY CURRENT vs SUPPLY VOLTAGE
1000
1000
VS = ±2.5V
T = -40°C to +125°C
VS = ±2.5V
T = -40°C to +125°C
VOLTAGE FROM V- RAIL (mV)
VOLTAGE FROM V+ RAIL (mV)
4.0
3.0
TEMPERATURE (°C)
100
10
1
0.01
0.1
1.0
10
100
LOAD CURRENT (mA)
FIGURE 17. OUTPUT HIGH OVERHEAD VOLTAGE vs LOAD CURRENT
FN6957 Rev.6.02
Feb 22, 2022
100
10
1
0.01
0.1
1.0
10
100
LOAD CURRENT (mA)
FIGURE 18. OUTPUT LOW OVERHEAD VOLTAGE vs LOAD CURRENT
Page 9 of 24
ISL28134
Typical Performance Curves
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
1.0
1.0
RL = 1kΩ
VOLTAGE FROM V- RAIL (mV)
VOLTAGE FROM V+ RAIL (mV)
VS = ±2.5V
RL = OUT to GND
0.1
0.01
RL = 12.5kΩ
VS = ±2.5V
RL = OUT to GND
RL = 1kΩ
0.1
0.01
RL = 12.5kΩ
0.001
-40
-20
0
20
40
60
80
100
120
0.001
-40
140
-20
0
20
40
60
80
100
120
140
9
10
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 19. VOH vs TEMPERATURE
FIGURE 20. VOL vs TEMPERATURE
300
100
VOLTAGE (nV)
NOISE (nV√Hz)
200
10
100
0.00
-100
VS = ±2.5V
AV = 10,000
Rg = 10, Rf = 100k
-200
1
0.001
0.01
0.1
1
-300
10
0
1
2
3
4
7
8
140
1000
VS = ±2.5V
AV = 1
RS = 5MΩ
100
CIN+ =100pF
100
80
60
40
20
VS = ±2.5V
RL = 10MΩ
0
1
10
100
1000
10k
100k
FREQUENCY (Hz)
FIGURE 23. INPUT NOISE CURRENT DENSITY vs FREQUENCY
FN6957 Rev.6.02
Feb 22, 2022
PHASE
GAIN
120
GAIN (dB) / PHASE (°)
CIN+ = 0pF
CURRENT NOISE (fA/√Hz)
6
FIGURE 22. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz
FIGURE 21. INPUT NOISE VOLTAGE DENSITY vs FREQUENCY
10
0.1
5
TIME (s)
FREQUENCY (Hz)
-20
SIMULATION
0.1
1
10
100
1k
10k
100k
1M
10M 100M
FREQUENCY (Hz)
FIGURE 24. OPEN LOOP GAIN AND PHASE, RL = 10M
Page 10 of 24
ISL28134
Typical Performance Curves
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
90
140
PHASE
GAIN
80
70
60
100
50
80
GAIN (dB)
GAIN (dB) / PHASE (°)
120
60
40
40
30
20
10
0
20
0
VS = ±2.5V
-10
RL = 10kΩ
-20
SIMULATION
-20
0.1
1
10
AV = 10,000
Rg = 10, Rf = 100k
AV = 1000
Rg = 100, Rf = 100k
AV = 100
AV = 10
VS = ± 2.5V
CL = 3.7pF
RL = 100k
VOUT = 10mVP-P
Rg = 1k, Rf = 100k
Rg = 10k, Rf = 100k
AV = 1
Rg = OPEN, Rf = 0
-30
100
1k
10k
100k
1M
10M
-40
100M
10
100
1k
10k
100k
10M
1M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 25. OPEN LOOP GAIN AND PHASE, RL = 10k
FIGURE 26. FREQUENCY RESPONSE vs CLOSED LOOP GAIN
2
4
1
2
0
-2
GAIN (dB)
GAIN (dB)
RL > 10kΩ
0
1
RL > 10kΩ
-3
-4
-2
RL = 1kΩ
-4
RL = 1kΩ
-5
-6
VS = ± 1.25V
AV = 1V
CL = 3.7pF
VOUT = 10mVP-P
-6
-7
-8
10k
-8
100k
1M
-10
100k
10M
VS = ± 2.5V
AV = 1V
CL = 3.7pF
VOUT = 10mVP-P
1M
FREQUENCY (Hz)
FIGURE 27. GAIN vs FREQUENCY vs RL, VS = 2.5V
2
Rg = 100k, Rf = 100k
VS = ± 2.5V
AV = 2V
RL = 100k
VOUT = 10mVP-P
10
0
-2
Rg = 1k, Rf = 1k
0
GAIN (dB)
Rg = 10k, Rf = 10k
5
-4
1VP-P
500mVP-P
-6
-5
-10
100M
FIGURE 28. GAIN vs FREQUENCY vs RL, VS = 5.0V
15
NORMALIZED GAIN (dB)
10M
FREQUENCY (Hz)
-8
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
FIGURE 29. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES
Rf/Rg
FN6957 Rev.6.02
Feb 22, 2022
-10
10
250mVP-P
VS = ± 2.5V
AV = 1V
RL = OPEN
CL = 3.7pF
100
100mVP-P
10mVP-P
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
FIGURE 30. GAIN vs FREQUENCY vs VOUT
Page 11 of 24
ISL28134
Typical Performance Curves
12
2
824pF
VS = ± 2.5V
AV = 1V
RL = 100k
VOUT = 10mVP-P
10
8
±1.5V
1nF
-2
GAIN (dB)
104pF
4
2
51pF
0
±0.8V
-4
-6
VOUT = 10mVP-P
AV = 1V
RL = 100k
CL = 3.7pF
-2
-8
3.7pF
-4
-6
10k
100k
1M
10M
±3.0V
0
474pF
6
GAIN (dB)
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
-10
1M
100M
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 32. GAIN vs FREQUENCY vs SUPPLY VOLTAGE
FIGURE 31. GAIN vs FREQUENCY vs CL
120
EMIRR IN+ (dB)
100
80
60
40
20
0
10
100
1k
10k
FREQUENCY (MHz)
160
160
140
140
120
120
CMRR (dB)
CMRR (dB)
FIGURE 33. EMIRR AT IN+ PIN vs FREQUENCY
100
80
60
20
40
SIMULATION
1m
0.1
10
1k
100k
FREQUENCY (Hz)
FIGURE 34. CMRR vs FREQUENCY, VS = 5V
FN6957 Rev.6.02
Feb 22, 2022
80
60
VS = ±2.5V
VCM = 0V
40
100
10M
20
1m
VS = ±1.25V
VCM = 0V
SIMULATION
0.1
10
1k
100k
10M
FREQUENCY (Hz)
FIGURE 35. CMRR vs FREQUENCY, VS = 2.5V
Page 12 of 24
ISL28134
Typical Performance Curves
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
120
140
-PSRR
120
100
+PSRR
80
+PSRR
GAIN (dB)
GAIN (dB)
100
80
60
-PSRR
60
40
VS = ± 2.5VDC
AV = 1V
RL = 100k
VIN = 1VP-P
40
20
0
10
100
VS = ± 1.25VDC
AV = 1V
RL = 100k
VIN = 1VP-P
20
1k
10k
100k
1M
0
10
10M
100
1k
FREQUENCY (Hz)
4
4.5
3
4.0
2
3.5
1
3.0
0
VS = ±2.5V
AV = 1V
RL = 1MΩ
VIN = -3V TO 3V
-2
5
10
10M
2.5
2.0
OUTPUT
1.5
VS = 5VDC
AV = 1V
RL = 100k
VIN = 1V TO 4V
0.5
0
1M
INPUT
1.0
-3
-4
100k
FIGURE 37. PSRR vs FREQUENCY, VS = 2.5V
VOLTAGE (V)
VOLTAGE (V)
FIGURE 36. PSRR vs FREQUENCY, VS = 5V
-1
10k
FREQUENCY (Hz)
15
0.0
20
0
5
10
TIME (ms)
15
20
TIME (µs)
FIGURE 38. NO PHASE INVERSION
FIGURE 39. LARGE SIGNAL STEP RESPONSE (3V)
1.2
0.10
1.0
INPUT
VOLTAGE (V)
VOLTAGE (V)
0.08
0.8
0.6
OUTPUT
0.4
0
0
2
4
6
INPUT
0.02
VS = ±2.5VDC
AV = 1V
RL = 100k
VIN = 0V TO 0.1V
-0.02
8
TIME (µs)
FIGURE 40. LARGE SIGNAL STEP RESPONSE (1V)
FN6957 Rev.6.02
Feb 22, 2022
0.04
0
VS = 5VDC
AV = 1V
RL = 100k
VIN = 0.1V TO 1.1V
0.2
OUTPUT
0.06
10
-0.04
0
2
4
6
8
TIME (µs)
FIGURE 41. SMALL SIGNAL STEP RESPONSE (100mV)
Page 13 of 24
10
ISL28134
Typical Performance Curves
TA = +25°C, VCM = 0V Unless otherwise specified. (Continued)
55
60
50
55
- OS
45
40
35
+OS
30
25
VS = ±2.5V
AV = 1V
RL = 100k
VOUT = 100mVp-p
20
15
10
10
- OS
45
OVERSHOOT (%)
OVERSHOOT (%)
50
100
1000
LOAD CAPACITANCE (pF)
FIGURE 42. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE,
VS = ±2.5V
Applications Information
Functional Description
40
35
30
+OS
25
VS = ±1.25V
AV = 1V
RL = 100k
VOUT = 100mVp-p
20
15
10
10
100
1000
LOAD CAPACITANCE (pF)
FIGURE 43. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE,
VS = ±1.25V
0.01µF or larger high frequency decoupling capacitor is placed
across the power supply pins of the IC to maintain high performance
of the amplifier.
The ISL28134 is a single 5V rail-to-rail input/output amplifier
that operates on a single or dual supply. The ISL28134 uses a
proprietary auto-zeroing technique that combines a 3.5MHz main
amplifier with a very high open loop gain (174dB) offset-nulling
amplifier to achieve very low offset voltage and drift (0.2µV,
0.5nV/°C) while having a low supply current (675µA). The very low
1/f noise corner 100kΩ, the input referred noise voltage will be dominated by
the input current noise. Keep source input impedances under
10kΩ for optimum performance.
Page 14 of 24
ISL28134
IN+ and IN- Protection
TABLE 1.
PART
VOLTAGE NOISE AT
100Hz
0.1Hz TO 10Hz PEAK-TO-PEAK
VOLTAGE NOISE
Competitor A
22nV/√Hz
600nVP-P
Competitor B
16nV/√Hz
260nVP-P
Competitor C
90nV/√Hz
1500nVP-P
ISL28134
8nV/√Hz
250nVP-P
The ISL28134 is capable of driving the input terminals up to and
beyond the supply rails by about 0.5V. Back biased ESD diodes
from the input pins to the V+ and V- rails will conduct current
when the input signals go more than 0.5V beyond the rail (see
Figure 45). The ESD protection diodes must be current limited to
20mA or less to prevent damage of the IC. This current can be
reduced by placing a resistor in series with the IN+ and IN- inputs
in the event the input signals go beyond the rail.
High Source Impedance Applications
The input stage of auto-zero amplifiers do not behave like
conventional amplifier input stages. The ISL28134 uses switches
that continually sample the nulling amplifier input at 100kHz to
reduce the input offset to 1µV. The dynamic behavior of these
switches induces a charge injection current to the input terminals
of the amplifier. The charge injection current has a DC path to
ground through the resistances seen at the input terminals of the
amplifier. Higher input impedance cause an apparent shift in the
input bias current of the amplifier. Input impedances larger than
10kΩ begin to have significant increases in the bias currents. To
minimize the effect of impedance on input bias currents, an
input resistance of