0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL4260EIR-T

ISL4260EIR-T

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    QFN32

  • 描述:

    IC TRANSCEIVER FULL 3/2 32QFN

  • 数据手册
  • 价格&库存
ISL4260EIR-T 数据手册
Datasheet ISL4260E QFN Packaged, ±15kV ESD Protected, +3V to +5.5V, 150nA, 250kbps, RS-232 Transmitters/Receivers with Separate Logic Supply Features The ISL4260E contains 3.0V to 5.5V powered RS-232 transmitters/receivers that meet ElA/TIA-232 and V.28/V.24 specifications, even at VCC = 3.0V. Targeted applications are PDAs, Palmtops, and cell phones where the low operational power consumption and even lower standby power consumption is critical. Efficient on-chip charge pumps coupled with a manual powerdown function reduces the standby supply current to a 150nA trickle. The 5mm x 5mm Quad Flat No-Lead (QFN) packaging and the use of small, low value capacitors ensure board space savings. Data rates greater than 250kbps are ensured at worst case load conditions. • ESD protection for RS-232 I/O pins to ±15kV (IEC61000) The ISL4260E features a VL pin that adjusts the logic pin output levels (see Pin Descriptions) and input thresholds to values compatible with the VCC powering the external logic (for example, a UART). • Receiver hysteresis for improved noise immunity The single pin powerdown function (SHDN = 0) disables all the receiver and transmitter outputs while shutting down the charge pump to minimize supply current drain. Table 1 summarizes the features of the ISL4260E. Application Note AN9863 summarizes the features of each device comprising the 3V RS-232 family. Related Literature • Available in near chip scale QFN (5mmx5mm) package • VL pin for compatibility with mixed voltage systems • Single SHDN pin disables transmitters and receivers • Meets EIA/TIA-232 and V.28/V.24 specifications at 3V • On-chip charge pumps require only four external 0.1µF capacitors • Very low supply current: 300µA • Guaranteed minimum data rate: 250kbps • Wide power supply range: Single +3V to +5.5V • Low supply current in powerdown state: 150nA • Pb-free (RoHS compliant) Applications • Any system requiring RS-232 communication ports For a full list of related documents, visit our website: ○ Battery powered, hand-held, and portable equipment • ISL4260E device page ○ Laptop computers, notebooks, and Palmtops ○ Digital cameras ○ PDAs and PDA cradles ○ Cellular/mobile phones Table 1. Summary of Features Part Number No. Of Tx. No. Of Rx. Data Rate (kbps) Rx. Enable Function? VL Logic Supply Pin? Manual Powerdown? Automatic Powerdown Function? ISL4260E 3 2 250 No Yes Yes No FN6035 Rev.3.00 May.20.19 Page 1 of 19 ISL4260E Contents 1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 1.2 1.3 1.4 2. Typical Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 4 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 2.2 2.3 2.4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 6 3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4. Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 4.1.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 5. Charge Pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charge Pump Abs Max Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Powerdown Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software Controlled (Manual) Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VL Logic Supply Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter Outputs when Exiting Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interconnection with 3V and 5V Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 11 12 12 12 12 13 13 13 13 14 14 ±15kV ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 5.2 5.3 5.4 Human Body Model (HBM) Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEC61000-4-2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Air-Gap Discharge Test Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contact Discharge Test Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 15 6. Die Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FN6035 Rev.3.00 May.20.19 Page 2 of 19 ISL4260E 1. 1.1 1. Overview Overview Typical Operating Circuit +3.3V to +5V C1 0.1µF + C2 0.1µF + T1IN T2IN TTL/CMOS Logic Levels + 0.1µF T3IN R1OUT R2OUT Logic VCC 0.1µF 29 31 2 3 27 C1+ VCC 30 V+ C1C2+ 4 V- C2- + T1 5 23 T2 6 22 T3 10 C4 0.1µF T1OUT T2OUT 21 T3OUT R1 13 19 5kΩ R2 12 18 5kΩ 15 + + C3 0.1µF RS-232 Levels R1IN R2IN VL GND SHDN 28 VCC 26 1.2 Ordering Information Part Number (Notes 2, 3) Part Marking Temp. Range (°C) Tape and Reel (Units) (Note 1) Package (RoHS Compliant) Pkg. Dwg. #. ISL4260EIRZ ISL4260 EIRZ -40 to +85 - 32 Ld QFN L32.5x5B ISL4260EIRZ-T ISL4260 EIRZ -40 to +85 6k 32 Ld QFN L32.5x5B Notes: 1. See TB347 for details about reel specifications. 2. These Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and matte tin termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), see the ISL4260E device page. For more information about MSL, see TB363. FN6035 Rev.3.00 May.20.19 Page 3 of 19 ISL4260E 1.3 1. Overview Pin Configuration 1.4 28 NC 29 GND 30 VCC V+ 31 SHDN C1- 32 C1+ NC 32 LD QFN Top View 27 26 25 NC 1 24 NC C2+ 2 23 T1OUT C2- 3 22 T2OUT V- 4 21 T3OUT PD 19 R1IN NC 7 18 R2IN NC 8 17 NC 11 12 13 14 NC 10 NC 9 15 16 NC 6 VL T2IN R1OUT NC R2OUT 20 NC 5 T3IN T1IN Pin Descriptions Pin Function VCC System power supply input (3.0V to 5.5V). V+ Internally generated positive transmitter supply (+5.5V). V- Internally generated negative transmitter supply (-5.5V). GND Ground connection. This is also the potential of the thermal pad (PD). C1+ External capacitor (voltage doubler) is connected to this lead. C1- External capacitor (voltage doubler) is connected to this lead. C2+ External capacitor (voltage inverter) is connected to this lead. C2- External capacitor (voltage inverter) is connected to this lead. TIN TTL/CMOS compatible transmitter Inputs. The switching point is a function of the VL voltage. TOUT RIN ROUT VL SHDN 15kV ESD protected, RS-232 level (nominally ±5.5V) transmitter outputs. 15kV ESD protected, RS-232 compatible receiver inputs. TTL/CMOS level receiver outputs. Swings between GND and VL. Logic-Level Supply. All TTL/CMOS inputs and outputs are powered by this supply. Active low TTL/CMOS input to tri-state receiver and transmitter outputs and to shut down the onboard power supply to place the device in low power mode. The switching point is a function of the VL voltage. NC No connection PD Exposed thermal pad. Connect to GND. FN6035 Rev.3.00 May.20.19 Page 4 of 19 ISL4260E 2. 2. Specifications Specifications 2.1 Absolute Maximum Ratings Minimum Maximum Unit VCC to Ground Parameter -0.3 6 V VL to Ground -0.3 7 V V+ to Ground -0.3 7 V V- to Ground +0.3 -7 V 14 V 6 V ±25 V ±13.2 V VL + 0.3 V V+ to VInput Voltages TIN, SHDN -0.3 RIN Output Voltages TOUT -0.3 ROUT Short-Circuit Duration TOUT ESD Rating Continuous - See ESD Performance - CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty. 2.2 Thermal Information Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 30 2.2 32 Ld QFN Package (Notes 4, 5) Notes: 4. θJA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379 and TB389. 5. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.. Parameter Minimum Maximum Junction Temperature Maximum Storage Temperature Range -65 Pb-Free Reflow Profile 2.3 Maximum Unit +150 °C +150 °C see TB493 Recommended Operating Conditions Parameter Temperature Range FN6035 Rev.3.00 May.20.19 Minimum Maximum Unit -40 +85 °C Page 5 of 19 ISL4260E 2.4 2. Specifications Electrical Specifications Test Conditions: VCC = 3V to 5.5V, C1 - C4 = 0.1µF, VL = VCC; unless otherwise specified. Typicals are at TA = 25°C, VCC = VL = 3.3V Parameter Test Conditions Temp (°C) Min (Note 7) Typ Max (Note 7) Unit DC Characteristics Supply Current, Powerdown SHDN = GND, all inputs at VCC or GND 25 - 0.15 1 µA Supply Current All outputs unloaded, SHDN = VCC, VCC = 3.15V 25 - 0.3 1 mA TIN, SHDN VL = 3.3V or 5V Full - - 0.8 V VL = 2.5V Full - - 0.6 V VL = 5V Full 2.4 - - V VL = 3.3V Full 2.0 - - V VL = 2.5V Full 1.4 - - V VL = 1.8V 25 - 0.9 - V 25 - 0.5 - V TIN, SHDN Full - ±0.01 ±1 µA Output Leakage Current VCC = 0V or 3V to 5.5V, SHDN = GND Full - ±0.05 ±10 µA Output Voltage Low IOUT = 1.6mA Full - - 0.4 V Output Voltage High IOUT = -1.0mA Full VL - 0.6 VL - 0.1 - V Full -25 - 25 V VL = 5.0V 25 0.8 1.5 - V VL = 3.3V 25 0.6 1.2 - V VL = 5.0V 25 - 1.8 2.4 V VL = 3.3V 25 - 1.5 2.4 V Input Hysteresis 25 - 0.5 - V Input Resistance 25 3 5 7 kΩ Logic and Transmitter Inputs Input Logic Threshold Low Input Logic Threshold High TIN, SHDN Transmitter Input Hysteresis Input Leakage Current Receiver Outputs Receiver Inputs Input Voltage Range Input Threshold Low Input Threshold High Transmitter Outputs Output Voltage Swing All transmitter outputs loaded with 3kΩ to ground Full ±5.0 ±5.4 - V Output Resistance VCC = V+ = V- = 0V, transmitter output = ±2V Full 300 10M - W Output Short-Circuit Current Shorted to GND Full - - ±60 mA Output Leakage Current VOUT = ±12V, VCC = 0V or 3V to 5.5V, SHDN = GND Full - - ±25 µA Maximum Data Rate RL = 3kΩCL = 1000pF, one transmitter switching Full 250 500 - kbps Receiver Propagation Delay Receiver input to receiver output, CL = 150pF tPHL 25 - 0.15 - µs tPLH 25 - 0.15 - µs Receiver Output Enable Time 25 - 200 - ns Receiver Output Disable Time 25 - 200 - ns Transmitter Output Enable Time From SHDN rising edge to TOUT = ±3.7V 25 - 100 - µs Transmitter Skew tPHL - tPLH (Note 6) 25 - 100 - ns Receiver Skew tPHL - tPLH 25 - 50 - ns Timing Characteristics FN6035 Rev.3.00 May.20.19 Page 6 of 19 ISL4260E 2. Specifications Test Conditions: VCC = 3V to 5.5V, C1 - C4 = 0.1µF, VL = VCC; unless otherwise specified. Typicals are at TA = 25°C, VCC = VL = 3.3V Parameter Transition Region Slew Rate Temp (°C) Min (Note 7) Typ Max (Note 7) Unit CL = 150pF to 1000pF 25 6 18 30 V/µs CL = 150pF to 2500pF 25 4 13 30 V/µs Human Body Model 25 - ±15 - kV IEC61000-4-2 Air Gap Discharge 25 - ±15 - kV IEC61000-4-2 Contact Discharge 25 - ±8 - kV Test Conditions RL = 3kΩto 7kΩ measured from 3V to -3V or -3V to 3V, VCC = 3.3V ESD Performance RS-232 Pins (TOUT, RIN) Note: 6. Transmitter skew is measured at the transmitter zero crossing points. 7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. FN6035 Rev.3.00 May.20.19 Page 7 of 19 ISL4260E 3. 3. Typical Performance Curves Typical Performance Curves VCC = 3.3V, TA = 25°C 30 VOUT+ 4.0 25 2.0 Slew Rate (V/µs) Transmitter Output Voltage (V) 6.0 1 Transmitter at 250kbps Other Transmitters at 30kbps 0 -2.0 -6.0 0 1000 2000 3000 4000 +Slew 15 -Slew 10 VOUT - -4.0 20 5 5000 0 1000 3000 4000 5000 Figure 2. Slew Rate vs Load Capacitance Figure 1. Transmitter Output Voltage vs Load Capacitance 45 3.5 40 No Load All Outputs Static 3.0 250kbps 35 Supply Current (mA) Supply Current (mA) 2000 Load Capacitance (pF) Load Capacitance (pF) 30 120kbps 25 20 2.5 2.0 1.5 1.0 20kbps 15 0.5 10 0 1000 2000 3000 4000 5000 Load Capacitance (pF) Figure 3. Supply Current vs Load Capacitance When Transmitting Data FN6035 Rev.3.00 May.20.19 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Supply Voltage (V) Figure 4. Supply Current vs Supply Voltage Page 8 of 19 ISL4260E 3. Typical Performance Curves VCC = 3.3V, TA = 25°C (Continued) 10m 1m No Load All Outputs Static VCC = 3.3V 100µ IL (A) 10µ VL ≤ VCC VL > VCC 1µ 100n 10n 1n 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 VL (V) Figure 5. VL Supply CurrenT vs VL Voltage FN6035 Rev.3.00 May.20.19 Page 9 of 19 ISL4260E 4. 4. Application Information Application Information The ISL4260E operates from a single +3V to +5.5V supply, ensures a 250kbps minimum data rate, requires only four small external 0.1µF capacitors, features low power consumption, and meets all ElA RS-232C and V.28 specifications. 4.1 Charge Pump The ISL4260E uses regulated on-chip dual charge pumps as voltage doublers, and voltage inverters to generate ±5.5V transmitter supplies from a VCC supply as low as 3.0V. These voltages allow the ISL4260E to maintain RS-232 compliant output levels over the ±10% tolerance range of 3.3V powered systems. The efficient on-chip power supplies require only four small, external 0.1µF capacitors for the voltage doubler and inverter functions over the full VCC range; other capacitor combinations can be used as shown in Table 6 on page 13. The charge pumps operate discontinuously (turning off as soon as the V+ and V- supplies are pumped up to the nominal values) and provide significant power savings. 4.1.1 Charge Pump Abs Max Ratings The ISL4270E is fully characterized for 3.0V to 3.6V operation and at critical points for 4.5V to 5.5V operation. Furthermore, load conditions were favorable using static logic states only. The specified maximum values for V+ and V- are +7V and -7V, respectively. These limits apply for VCC values set to 3.0V and 3.6V (see Table 2). For VCC values set to 4.5V and 5.5V, the maximum values for V+ and V- can approach +9V and -7V, respectively (Table 3 on page 11). The breakdown characteristics for V+ and Vwere measured with ±13V. Table 2. V+ and V- Values for VCC = 3.0V to 3.6V C1 (μF) C2, C3, C4 (μF) Load T1IN (Logic State) 0.1 0.1 Open H 3kΩ // 1000pF 0.047 0.33 Open 3kΩ // 1000pF 1 1 Open 3kΩ // 1000pF FN6035 Rev.3.00 May.20.19 V+ (V) V- (V) VCC = 3.0V VCC = 3.6V VCC = 3.0V VCC = 3.6V 5.80 6.56 -5.60 -5.88 L 5.80 6.56 -5.60 -5.88 2.4kbps 5.80 6.56 -5.60 -5.88 H 5.88 6.60 -5.56 -5.92 L 5.76 6.36 -5.56 -5.76 2.4kbps 6.00 6.64 -5.64 -5.96 H 5.68 6.00 -5.60 -5.60 L 5.68 6.00 -5.60 -5.60 2.4kbps 5.68 6.00 -5.60 -5.60 H 5.76 6.08 -5.64 -5.64 L 5.68 6.04 -5.60 -5.60 2.4kbps 5.84 6.16 -5.64 -5.72 H 5.88 6.24 -5.60 -5.60 L 5.88 6.28 -5.60 -5.64 2.4kbps 5.80 6.20 -5.60 -5.60 H 5.88 6.44 -5.64 -5.72 L 5.88 6.04 -5.64 -5.64 2.4kbps 5.92 6.40 -5.64 -5.64 Page 10 of 19 ISL4260E 4. Application Information Table 3. V+ and V- Values for VCC = 4.5V to 5.5V C1 (μF) C2, C3, C4 (μF) Load T1IN (Logic State) 0.1 0.1 Open H 7.44 8.48 -6.16 -6.40 L 7.44 8.48 -6.16 -6.44 2.4kbps 7.44 8.48 -6.17 -6.44 H 7.76 8.88 -6.36 -6.72 3kΩ // 1000pF 0.047 0.33 Open 3kΩ // 1000pF 1 1 Open 3kΩ // 1000pF V+ (V) VCC = 4.5V V- (V) VCC = 5.5V VCC = 4.5V VCC = 5.5V L 7.08 8.00 -5.76 -5.76 2.4kbps 7.76 8.84 -6.40 -6.64 H 6.44 6.88 -5.80 -5.88 L 6.48 6.88 -5.84 -5.88 2.4kbps 6.44 6.88 -5.80 -5.88 H 6.64 7.28 -5.92 -6.04 L 6.24 6.60 -5.52 -5.52 2.4kbps 6.72 7.16 -5.92 -5.96 H 6.84 7.60 -5.76 -5.76 L 6.88 7.60 -5.76 -5.76 2.4kbps 6.92 7.56 -5.72 -5.76 H 7.28 8.16 -5.80 -5.92 L 6.44 6.84 -5.64 -6.84 2.4kbps 7.08 7.76 -5.80 -5.80 The resulting new maximum voltages at V+ and V- are listed in Table 4. Table 4. 4.2 New Measured Withstanding Voltages V+, V- to Ground ±13V V+ to V- 20V Transmitters The transmitters are proprietary, low dropout, inverting drivers that translate TTL/CMOS inputs to EIA/TIA-232 output levels. These transmitters are coupled with the on-chip ±5.5V supplies to deliver true RS-232 levels across a wide range of single supply system voltages. All transmitter outputs disable and assume a high impedance state when the device enters the powerdown mode (see Table 5). The outputs can be driven to ±12V when disabled. All devices guarantee a 250kbps data rate for full load conditions (3kΩ and 1000pF), VCC ≥ 3.0V, with one transmitter operating at full speed. Under more typical conditions of VCC ≥ 3.3V, RL = 3kΩ, and CL = 250pF, one transmitter easily operates at 1.25Mbps. The transmitter input threshold is set by the voltage applied to the VL pin. Transmitter inputs float if they are unconnected (there are no pull-up resistors), and may cause ICC increases. Connect unused inputs to GND for the best performance. Table 5. Powerdown Truth Table SHDN Input Transmitter Outputs Receiver Outputs L High-Z High-Z Manual Powerdown H Active Active Normal Operation FN6035 Rev.3.00 May.20.19 Mode Of Operation Page 11 of 19 ISL4260E 4.3 4. Application Information Receivers The ISL4260E contains standard inverting receivers that convert RS-232 signals to CMOS output levels and accept inputs up to ±25V while presenting the required 3kΩ to 7kΩ input impedance (see Figure 6 on page 12) even if the power is off (VCC = 0V). The receivers’ Schmitt trigger input stage uses hysteresis to increase noise immunity and decrease errors due to slow input signal transitions. Receiver outputs swing from GND to VL, and tristate in powerdown. VL RXOUT RXIN -25V ≤ VRIN ≤ +25V GND ≤ VROUT ≤ VL 5kΩ GND Figure 6. Receiver Connections 4.4 Low Power Operation The ISL4260E requires a nominal supply current of 0.3mA, even at VCC = 5.5V during normal operation (not in powerdown mode). This supply current is considerably less than the 11mA current required by comparable 5V RS-232 devices, which allows you to reduce system power by replacing the old style device with the ISL4260E in new designs. 4.5 Powerdown Functionality The already low current requirement drops significantly when the device enters powerdown mode. In powerdown, supply current drops to 150nA because the on-chip charge pump turns off (V+ collapses to VCC, V- collapses to GND), and the transmitter and receiver outputs tri-state. This micro-power mode makes the ISL4260E ideal for battery powered and portable applications. 4.6 Software Controlled (Manual) Powerdown The ISL4260E can be forced into its low power, standby state with a simple shutdown (SHDN) pin (see Figure 7). Driving SHDN high enables normal operation. Driving SHDN low forces the IC into its powerdown state. The time required to exit powerdown and resume transmission is less than 100µs. Connect SHDN to VCC if the powerdown function is not needed. SHDN Power Management Logic I/O Chip Power Supply VL ISL4260E VCC CPU I/O UART Figure 7. Connections for Manual Powerdown FN6035 Rev.3.00 May.20.19 Page 12 of 19 ISL4260E 4.7 4. Application Information VL Logic Supply Input Unlike other RS-232 interface devices where the CMOS outputs swing between 0 and VCC, the ISL4260E features a separate logic supply input (VL; 1.8V to 5V, regardless of VCC) that sets VOH for the receiver outputs. Connecting VL to a host logic supply lower than VCC prevents the ISL4260E outputs from forward biasing the input diodes of a logic device powered by that lower supply. Connecting VL to a logic supply greater than VCC ensures that the receiver output levels are compatible even with the CMOS input VIH of AC, HC, and CD4000 devices. Note: The VL supply current increases to 100µA with VL = 5V and VCC = 3.3V (see Figure 5). VL also powers the transmitter and logic inputs and sets their switching thresholds to levels compatible with the logic supply. The VLseparate logic supply pin allows a great deal of flexibility in interfacing to systems with different logic supplies. If logic translation is not required, connect VL to the ISL4260E VCC. 4.8 Capacitor Selection The ISL4260E charge pumps require only 0.1µF capacitors for the full operational voltage range. Table 6 lists other acceptable capacitor values for various supply voltage ranges. Do not use values smaller than those listed in Table 6. Increasing the capacitor values (by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. Table 6. Required Capacitor Values VCC (V) C1 (µF) C2, C3, C4 (µF) 3.0 to 3.6 0.1 0.1 4.5 to 5.5 0.047 0.33 3.0 to 5.5 0.22 1 When using minimum required capacitor values, make sure that capacitor values do not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor’s equivalent series resistance (ESR) usually rises at low temperatures and it influences the amount of ripple on V+ and V-. 4.9 Power Supply Decoupling In most circumstances a 0.1µF bypass capacitor is adequate. In applications that are particularly sensitive to power supply noise, decouple VCC to ground with a capacitor of the same value as the charge-pump capacitor C1. Connect the bypass capacitor as close as possible to the IC. 4.10 Transmitter Outputs when Exiting Powerdown Figure 8 shows the response of two transmitter outputs when exiting powerdown mode. As the two transmitter outputs activate, they properly go to opposite RS-232 levels with no glitching, ringing, or undesirable transients. Each transmitter is loaded with 3kΩin parallel with 2500pF. Note: The transmitters enable only when the magnitude of the supplies exceeds approximately 3V. 5V/Div SHDN T1 2V/Div T2 VCC = +3.3V C1 - C4 = 0.1µF Time (20µs/Div) Figure 8. Transmitter Outputs When Exiting Powerdown FN6035 Rev.3.00 May.20.19 Page 13 of 19 ISL4260E 4.11 4. Application Information High Data Rates The ISL4260E maintains the RS-232 ±5V minimum transmitter output voltages even at high data rates. Figure 9 shows a transmitter loopback test circuit, and Figure 10 shows the loopback test result at 120kbps. For this test, all transmitters were simultaneously driving RS-232 loads in parallel with 1000pF at 120kbps. Figure 11 shows the loopback results for a single transmitter driving 1000pF and an RS-232 load at 250kbps. The static transmitters were also loaded with an RS-232 receiver. VCC + 0.1µF + C1 C1+ VCC VL V+ C1+ C2 ISL4260E V- C2+ C2TIN + C3 C4 + TOUT 1000pF RIN ROUT 5k VCC SHDN Figure 9. Transmitter Loopback Test Circuit 5V/Div 5V/Div T1IN T1IN T1OUT T1OUT R1OUT R1OUT VCC = +3.3V C1 - C4 = 0.1µF VCC = +3.3V C1 - C4 = 0.1µF 5µs/Div Figure 10. Loopback Test at 120kbps 4.12 2µs/Div Figure 11. Loopback Test at 250kbps Interconnection with 3V and 5V Logic Standard 3.3V powered RS-232 devices interface well with 3V and 5V powered TTL compatible logic families (such as ACT and HCT), but the logic outputs (for example, ROUTS) fail to reach the VIH level of 5V powered CMOS families like HC, AC, and CD4000. The ISL4260E VL supply pin solves this problem. By connecting VL to the same supply (1.8V to 5V) powering the logic device, the ISL4260E logic outputs swing from GND to the logic VCC. FN6035 Rev.3.00 May.20.19 Page 14 of 19 ISL4260E 5. 5. ±15kV ESD Protection ±15kV ESD Protection All pins on the 3V interface devices include ESD protection structures, but the ISL4260E incorporates advanced structures that allow the RS-232 pins (transmitter outputs and receiver inputs) to survive ESD events up to ±15kV. The RS-232 pins are particularly vulnerable to ESD damage because they typically connect to an exposed port on the exterior of the finished product. Touching the port pins or connecting a cable can cause an ESD event that might destroy unprotected ICs. The ESD structures protect the device whether or not it is powered up, protect without allowing any latchup mechanism to activate, and do not interfere with RS-232 signals as large as ±25V. 5.1 Human Body Model (HBM) Testing The Human Body Model (HBM) test method emulates the ESD event delivered to an IC during human handling. The tester delivers the charge through a 1.5kΩ current limiting resistor, so the test is less severe than the IEC61000 test, which uses a 330Ω limiting resistor. The HBM method determines an IC’s ability to withstand the ESD transients typically present during handling and manufacturing. Due to the random nature of these events, each pin is tested with respect to all other pins. The RS-232 pins on “E” family devices can withstand HBM ESD events to ±15kV. 5.2 IEC61000-4-2 Testing The IEC61000 test method applies to finished equipment, rather than to an individual IC. Therefore, the pins most likely to suffer an ESD event are those that are exposed to the outside world (the RS-232 pins in this case), and the IC is tested in its typical application configuration (power applied) rather than testing each pin-to-pin combination. The lower current limiting resistor coupled with the larger charge storage capacitor yields a test that is much more severe than the HBM test. The extra ESD protection built into this device’s RS-232 pins allows the design of equipment meeting level 4 criteria without the need for additional board level protection on the RS-232 port. 5.3 Air-Gap Discharge Test Method For this test method, a charged probe tip moves toward the IC pin until the voltage arcs to it. The current waveform delivered to the IC pin depends on factors such as approach speed, humidity, and temperature, so it is difficult to obtain repeatable results. The “E” device RS-232 pins withstand ±15kV air-gap discharges. 5.4 Contact Discharge Test Method During the contact discharge test, the probe contacts the tested pin before the probe tip is energized and eliminates the variables associated with the air-gap discharge. The result is a more repeatable and predictable test, but equipment limits prevent testing devices at voltages higher than ±8kV. All “E” family devices survive ±8kV contact discharges on the RS-232 pins. FN6035 Rev.3.00 May.20.19 Page 15 of 19 ISL4260E 6. 6. Die Characteristics Die Characteristics Substrate and QFN Thermal Pad Potential (Powered Up) GND Transistor Count 422 Process Si Gate CMOS FN6035 Rev.3.00 May.20.19 Page 16 of 19 ISL4260E 7. 7. Revision History Revision History Rev. Date 3.00 May.20.19 FN6035 Rev.3.00 May.20.19 Description Added related literature section on page 1. Updated ordering information table on page 2. Changed Note 1 and added Note 3. Added ISL4260EIRZ-T. Added tape and reel information and notes 1, 2, and 3. Added Charge Pump Abs Max Ratings section starting on page 10. Applied new template. Added revision history. Updated disclaimer. Page 17 of 19 ISL4260E 8. 8. Package Outline Drawing Package Outline Drawing For the most recent package outline drawing, see L32.5x5B. L32.5x5B 32 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 3, 5/10 4X 3.5 5.00 28X 0.50 A B 6 PIN 1 INDEX AREA 6 PIN #1 INDEX AREA 32 25 1 5.00 24 3 .30 ± 0 . 15 17 (4X) 8 0.15 9 16 + 0.07 32X 0.40 ± 0.10 TOP VIEW 0.10 M C A B 4 32X 0.23 - 0.05 BOTTOM VIEW SEE DETAIL "X" 0.10 C 0 . 90 ± 0.1 C BASE PLANE SEATING PLANE 0.08 C ( 4. 80 TYP ) ( ( 28X 0 . 5 ) SIDE VIEW 3. 30 ) (32X 0 . 23 ) C 0 . 2 REF 5 ( 32X 0 . 60) 0 . 00 MIN. 0 . 05 MAX. DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. FN6035 Rev.3.00 May.20.19 Page 18 of 19 1RWLFH  'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV DQGDSSOLFDWLRQH[DPSOHV
ISL4260EIR-T 价格&库存

很抱歉,暂时无法提供与“ISL4260EIR-T”相匹配的价格&库存,您可以联系我们找货

免费人工找货