0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL9112IRT7Z

ISL9112IRT7Z

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    TDFN12_3X3MM_EP

  • 描述:

    IC BUCK BOOST 5.0V 1.2A 12TDFN

  • 数据手册
  • 价格&库存
ISL9112IRT7Z 数据手册
DATASHEET ISL9110, ISL9112 FN7649 Rev.3.00 Jul 26, 2018 1.2A High Efficiency Buck-Boost Regulators Features The ISL9110 and ISL9112 are highly-integrated buck-boost switching regulators that accept input voltages either above or below the regulated output voltage. Unlike other Buck-Boost regulators, these regulators automatically transition between operating modes without significant output disturbance. • Accepts input voltages above or below regulated output voltage • Automatic and seamless transitions between Buck and Boost modes Both parts are capable of delivering up to 1.2A output current, and provide excellent efficiency due to their fully synchronous 4-switch architecture. No-load quiescent current of only 35µA also optimizes efficiency under light-load conditions. Forced PWM and/or synchronization to an external clock may also be selected for noise sensitive applications. • Input voltage range: 1.8V to 5.5V • Output current: Up to 1.2A • High efficiency: Up to 95% • 35µA quiescent current maximizes light-load efficiency • 2.5MHz switching frequency minimizes external component size The ISL9110 is designed for standalone applications and supports 3.3V and 5V fixed output voltages or variable output voltages with an external resistor divider. Output voltages as low as 1V, or as high as 5.2V are supported using an external resistor divider. • Selectable Forced PWM mode and external synchronization • I2C Interface (ISL9112) • Fully protected for overcurrent, over-temperature, and undervoltage The ISL9112 supports a broader set of programmable features that may be accessed using an I2C bus interface. With a programmable output voltage range of 1.9V to 5V, the ISL9112 is ideal for applications requiring dynamically changing supply voltages. A programmable slew rate can be selected to provide smooth transitions between output voltage settings. • Small 3mmx3mm TDFN Package Applications • Regulated 3.3V from a single Li-ion battery • Smart phones and tablet computers The ISL9110 and ISL9112 require only a single inductor and very few external components. Power supply solution size is minimized by a tiny 3mmx3mm package and a 2.5MHz switching frequency, which further reduces the size of external components. • Handheld devices • Point-of-load regulators Related Literature For a full list of related documents, visit our website • ISL9110, ISL9112 product pages VIN = 1.8V TO 5.5V 6 10 9 8 7 PVIN 95 LX1 L1 2.2µH LX2 VIN VOUT MODE 1 EN BAT FB PG 12 VOUT = 3.3V/1A C2 10µF EFFICIENCY (%) 5 C1 10µF STATUS OUTPUTS 100 ISL9110IRTNZ 90 VIN = 5V 85 80 VIN = 3V VIN = 2.5V 75 GND 11 PGND 3 VOUT = 3.3V 70 0.01 0.05 0.25 IOUT (A) FIGURE 2. EFFICIENCY FIGURE 1. TYPICAL APPLICATION FN7649 Rev.3.00 Jul 26, 2018 Page 1 of 21 1.25 ISL9110, ISL9112 Table of Contents Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Analog Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I2C Interface Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Supply and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . POR Sequence and Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG Status Output (ISL9110 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BAT Status Output (ISL9110 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultrasonic Mode (ISL9112 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Buck-Boost Conversion Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation With VIN Close to VOUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Slew Rate Control (ISL9112 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register Description (ISL9112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Serial Interface (ISL9112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protocol Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 15 16 16 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Programming, Adj. Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feed-Forward Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Adjustable Version FB Pin Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PVIN and VOUT Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The TDFN Package Requires Additional PCB Layout Rules for the Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General PowerPAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 17 17 17 17 18 18 18 18 18 19 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 FN7649 Rev.3.00 Jul 26, 2018 Page 2 of 21 ISL9110, ISL9112 Block Diagram LX1 4 5 EN 9 VIN 6 BAT 8 GATE DRIVERS AND ANTISHOOT THRU EN VREF THERMAL SHUTDOWN MODE/SYNC 10 SCL 7 3 PGND 7 PG VOUT CLAMP PWM CONTROL CURRENT DETECT EN 2 I C SDA VOUT EN EN PVIN MONITOR 1 SOFT DISCHARGE REVERSE CURRENT PVIN LX2 2 8 VOUT MONITOR EN EN 12 FB EN OSC REF ERROR AMP VOLTAGE PROG. 11 GND Pin Configurations ISL9110 (12 LD TDFN) TOP VIEW LX2 2 LX1 4 PIN # ISL9110 ISL9112 VOUT VOUT 2 LX2 LX2 9 EN 3 PGND PGND 8 BAT 4 LX1 LX1 Inductor connection, input side. 5 PVIN PVIN Power input. Range: 1.8V to 5.5V. Connect a 10µF capacitor to PGND. 6 VIN VIN Supply input. Range: 1.8V to 5.5V. 7 PG - Open-drain output. Provides output power-good status. - SCL BAT - - SDA 9 EN EN 10 MODE / SYNC 11 GND GND 12 FB FB PAD PAD PAD 11 GND ISL9110 PAD PVIN 5 VIN 6 10 MODE/SYNC 7 PG ISL9112 (12 LD TDFN) TOP VIEW VOUT 1 12 FB LX2 2 PGND 3 LX1 4 11 GND ISL9112 PAD 8 10 MODE/SYNC 9 EN PVIN 5 8 SDA VIN 6 7 SCL FN7649 Rev.3.00 Jul 26, 2018 DESCRIPTION 1 12 FB VOUT 1 PGND 3 Pin Descriptions Buck/boost output. Connect a 10µF capacitor to PGND. Inductor connection, output side. Power ground for high switching current. Logic input, I2C clock. Open drain output. Provides input-power-good status. Logic I/O, open drain, I2C data. Logic input, drive high to enable device. MODE / Logic input, high for auto PFM mode. Low for SYNC forced PWM operation. External clock sync input. Range: 2.75MHz to 3.25MHz. Analog ground pin. Voltage feedback pin. Exposed pad; connect to PGND. Page 3 of 21 ISL9110, ISL9112 Ordering Information PART NUMBER (Notes 2, 3, 4) PART MARKING VOUT (V) HICCUP MODE TEMP RANGE (°C) TAPE AND REEL (UNITS) (Note 1) PKG. DWG. # PACKAGE ISL9110IRTNZ GASA 3.3 Enabled -40 to +85 - 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRTNZ-T GASA 3.3 Enabled -40 to +85 6k 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRTNZ-T7A GASA 3.3 Enabled -40 to +85 250 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRT7Z GATA 5.0 Enabled -40 to +85 - 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRT7Z-T GATA 5.0 Enabled -40 to +85 6k 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRT7Z-T7A GATA 5.0 Enabled -40 to +85 250 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRTAZ GAUA ADJ. Enabled -40 to +85 - 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRTAZ-T GAUA ADJ. Enabled -40 to +85 6k 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110IRTAZ-T7A GAUA ADJ. Enabled -40 to +85 250 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9112IRTNZ GAVA 3.3 Enabled -40 to +85 - 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9112IRTNZ-T GAVA 3.3 Enabled -40 to +85 6k 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9112IRTNZ-T7A GAVA 3.3 Enabled -40 to +85 250 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9112IRT7Z GAWA 5.0 Enabled -40 to +85 - 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9112IRT7Z-T GAWA 5.0 Enabled -40 to +85 6k 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9112IRT7Z-T7A GAWA 5.0 Enabled -40 to +85 250 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110BIRTAZ GBAF ADJ. Disabled -40 to +85 - 12 Ld Exposed Pad 3x3 TDFN L12.3x3C ISL9110BIRTAZ-T GBAF ADJ. Disabled -40 to +85 6k 12 Ld Exposed Pad 3x3 TDFN L12.3x3C NOTES: 1. Refer to TB347 for details about reel specifications. 2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), see the ISL9110, ISL9112 product information pages. For more information about MSL, see TB363. 4. The ISL9110 and ISL9112 can be special ordered with any output voltage between 1.9V and 5.0V in 100mV steps. FN7649 Rev.3.00 Jul 26, 2018 Page 4 of 21 ISL9110, ISL9112 Absolute Maximum Ratings Thermal Information PVIN, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V LX1, LX2 (Note 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V FB (Adjustable version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V FB (Fixed VOUT versions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V GND, PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V ESD Rating Human Body Model (Tested per JESD22-A114E) . . . . . . . . . . . . . . . . 3kV Machine Model (Tested per JESD22-A115-A) . . . . . . . . . . . . . . . . . 250V Latch-Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA Thermal Resistance (Typical) JA (°C/W) JC (°C/W) 12 Ld TDFN Package (Notes 5, 6) . . . . . . . 42 5.5 Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+125°C Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493 Recommended Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 5.5V Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 1.2A CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 5. JA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379 6. For JC, the “case temp” location is the center of the exposed metal pad on the package underside. 7. LX1 and LX2 pins can withstand switching transients of -1.5V for 100ns, and 7V for 20ms. Analog Specifications VVIN = VPVIN = VEN = 3.6V, VOUT = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX (Note 8) (Note 9) (Note 8) UNIT POWER SUPPLY Input Voltage Range VIN Undervoltage Lockout Threshold VIN VUVLO 1.8 Rising Falling VIN Supply Current IVIN PFM mode, no external load on Vout (Note 10) VIN Supply Current, Shutdown ISD EN = GND, VIN = 3.6V 1.725 1.550 5.5 V 1.775 V 1.650 V 35 60 µA 0.05 1.0 µA OUTPUT VOLTAGE REGULATION Output Voltage Range VOUT Output Voltage Accuracy ISL9110IRTAZ, IOUT = 100mA 1.00 5.20 V ISL9112, IOUT = 100mA 1.90 5.00 V VIN = 3.7V, VOUT = 3.3V, IOUT = 0mA, PWM mode -2 +2 % VIN = 3.7V, VOUT = 3.3V, IOUT = 1mA, PFM mode -3 +4 % 0.81 V 1 µA FB Pin Voltage Regulation VFB For adjustable output version FB Pin Bias Current IFB For adjustable output version 0.79 0.80 Line Regulation, PWM Mode VOUT / VIN IOUT = 500mA, VOUT = 3.3V, MODE = GND, VIN step from 2.3V to 5.5V ±0.005 mV/mV Load Regulation, PWM Mode VOUT / IOUT VIN = 3.7V, VOUT = 3.3V, MODE = GND, IOUT step from 0mA to 500mA ±0.005 mV/mA Line Regulation, PFM Mode VOUT / VI IOUT = 100mA, VOUT = 3.3V, MODE = VIN, VIN step from 2.3V to 5.5V ±12.5 mV/V Load Regulation, PFM Mode VOUT / IOUT VIN=3.7V, VOUT = 3.3V, MODE = VIN, IOUT step from 0mA to 100mA ±0.4 mV/mA Output Voltage Clamp VCLAMP Output Voltage Clamp Hysteresis Rising, VIN = 3.6V 5.25 VIN = 3.6V 5.95 400 V mV DC/DC SWITCHING SPECIFICATIONS Oscillator Frequency FN7649 Rev.3.00 Jul 26, 2018 fSW 2.25 2.50 2.75 MHz Page 5 of 21 ISL9110, ISL9112 Analog Specifications VVIN = VPVIN = VEN = 3.6V, VOUT = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) PARAMETER Minimum On Time SYMBOL TEST CONDITIONS MIN TYP MAX (Note 8) (Note 9) (Note 8) UNIT 80 ns tONMIN LX1 Pin Leakage Current IPFETLEAK -1 1 µA LX2 Pin Leakage Current INFETLEAK -1 1 µA SOFT-START and SOFT DISCHARGE Soft-Start Time VOUT Soft-Discharge ON-Resistance tSS Time from when EN signal asserts to when output voltage ramp starts. 1 ms Time from when output voltage ramp starts to when output voltage reaches 95% of its nominal value with device operating in Buck mode. VIN = 4V, VOUT = 3.3V, IO = 200mA 1 ms Time from when output voltage ramp starts to when output voltage reaches 95% of its nominal value with device operating in Boost mode. VIN = 2V, VOUT = 3.3V, IO = 200mA 2 ms Ω RDISCHG VIN = 3.6V, EN < VIL 120 RDSON_P VIN = 3.6V, IO = 200mA 0.12 0.17 Ω VIN = 2.5V, IO = 200mA 0.15 0.23 Ω VIN = 3.6V, IO = 200mA 0.10 0.15 Ω VIN = 2.5V, IO = 200mA 0.13 0.23 Ω 2.4 2.8 A POWER MOSFET P-Channel MOSFET ON-Resistance N-Channel MOSFET ON-Resistance P-Channel MOSFET Peak Current Limit RDSON_N IPK_LMT VIN = 3.6V 2.0 PFM/PWM TRANSITION Load Current Threshold, PFM to PWM VIN = 3.6V, VOUT = 3.3V 200 mA Load Current Threshold, PWM to PFM VIN = 3.6V, VOUT = 3.3V 75 mA External Synchronization Frequency Range 2.75 3.25 MHz Thermal Shutdown 155 °C Thermal Shutdown Hysteresis 30 °C BATTERY MONITOR AND POWER GOOD COMPARATORS Battery Monitor Voltage Threshold VTBMON Battery Monitor Voltage Hysteresis VHBMON 100 mV tBMON 25 µs PG Delay Time (Rising) 1 ms PG Delay Time (Falling) 20 µs Battery Monitor Debounce Time Minimum Supply Voltage for Valid PG Signal 1.85 EN = VIN 2.0 2.15 V 1.2 V PG Range - Lower (Rising) PGRNGLR Percentage of programmed voltage 90 % PG Range - Lower (Falling) PGRNGLF Percentage of programmed voltage 87 % PG Range - Upper (Rising) PGRNGUR Percentage of programmed voltage 112 % PG Range - Upper (Falling) PGRNGUF Percentage of programmed voltage 110 % Compliance Voltage - PG, BAT FN7649 Rev.3.00 Jul 26, 2018 VIN = 3.6V, ISINK = 1µ 0.3 Page 6 of 21 V ISL9110, ISL9112 Analog Specifications VVIN = VPVIN = VEN = 3.6V, VOUT = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX (Note 8) (Note 9) (Note 8) UNIT 0.05 µA LOGIC INPUTS Input Leakage ILEAK Input HIGH Voltage VIH Input LOW Voltage VIL I2C Interface Timing Specification PARAMETER SYMBOL 1 V 1.4 0.4 V For SCL, and SDA pins, unless otherwise noted. TEST CONDITIONS (Note 11) MIN (Note 8) TYP MAX (Note 9) (Note 8) UNIT Pin Capacitance Cpin 15 pF SCL Frequency fSCL 400 kHz Pulse Width Suppression Time at SDA and SCL Inputs tsp Any pulse narrower than the max spec is suppressed 50 ns SCL Falling Edge to SDA Output Data Valid tAA SCL falling edge crossing VIL, until SDA exits the VIL to VIH window 900 ns Time the Bus Must be Free Before the Start of a New Transmission tBUF SDA crossing VIH during a STOP condition, to SDA crossing VIH during the following START condition 1300 ns Clock LOW Time tLOW Measured at the VIL crossings 1300 ns Clock HIGH Time tHIGH Measured at the VIH crossings 600 ns START Condition Set-Up Time tSU:STA SCL rising edge to SDA falling edge; both crossing VIH 600 ns START Condition Hold Time tHD:STA From SDA falling edge crossing VIL to SCL falling edge crossing VIH 600 ns Input Data Set-Up Time tSU:DAT From SDA exiting the VIL to VIH window, to SCL rising edge crossing VIL 100 ns Input Data Hold Time tHD:DAT From SCL rising edge crossing VIH to SDA entering the VIL to VIH window 0 ns STOP Condition Set-Up Time tSU:STO From SCL rising edge crossing VIH, to SDA rising edge crossing VIL 600 ns STOP Condition Hold Time for Read, or Volatile Only Write tHD:STO From SDA rising edge to SCL falling edge; both crossing VIH 1300 ns 0 ns Output Data Hold Time tDH From SCL falling edge crossing VIL, until SDA enters the VIL to VIH window SDA and SCL Rise Time tR From VIL to VIH 20 + 0.1 x Cb 250 ns SDA and SCL Fall Time tF From VIH to VIL 20 + 0.1 x Cb 250 ns Capacitive Loading of SDA or SCL Cb Total on-chip and off-chip 10 400 pF SDA and SCL Bus Pull-Up Resistor Off-Chip Rpu Maximum is determined by tR and tF For Cb = 400pF, max is about 2kΩ~2.5kΩ For Cb = 40pF, max is about 15kΩ~20kΩ 1 kΩ NOTES: 8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. 9. Typical values are for TA = +25°C and VIN = 3.6V. 10. Quiescent current measurements are taken when the output is not switching. 11. ISL9112 only. Limits established by characterization and are not production tested. FN7649 Rev.3.00 Jul 26, 2018 Page 7 of 21 ISL9110, ISL9112 Typical Performance Curves 100 100 VIN = 4V VIN = 3V 95 VIN = 4.5V EFFICIENCY (%) EFFICIENCY (%) 95 90 85 VIN = 2V 80 75 VIN = 5V 90 VIN = 5V VIN = 4V 85 80 VIN = 2V VIN = 3V VIN = 2.5V 75 VIN = 2.5V VOUT = 2.0V 70 0.01 VIN = 4.5V 0.05 0.25 VOUT = 3.3V 70 0.01 1.25 0.05 FIGURE 3. EFFICIENCY vs OUTPUT CURRENT, VOUT = 2V 100 2.5 VOUT = 2V 2.0 VIN = 4.5V 85 80 IOUT (A) EFFICIENCY (%) 95 90 VIN = 2V VIN = 2.5V VOUT = 4.0V 70 0.01 0.05 0.25 VOUT = 3.3V 1.5 1.0 VOUT = 5V VIN = 3V 0.5 75 0.0 1.5 1.25 2.0 2.5 FIGURE 5. EFFICIENCY vs OUTPUT CURRENT, VOUT = 4V 4.0 4.5 5.0 5.5 60 QUIESCENT CURRENT (µA) QUIESCENT CURRENT (mA) 3.5 FIGURE 6. MAXIMUM OUTPUT CURRENT vs INPUT VOLTAGE 9 8 +85°C +25°C 6 5 3.0 VIN (V) IOUT (A) 7 1.25 FIGURE 4. EFFICIENCY vs OUTPUT CURRENT, VOUT = 3.3V VIN = 4V VIN = 5V 0.25 IOUT (A) IOUT (A) 0°C -40°C VOUT = 3.3V 4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VIN (V) FIGURE 7. PWM MODE QUIESCENT CURRENT, VOUT = 3.3V, NO LOAD FN7649 Rev.3.00 Jul 26, 2018 55 50 +85°C +25°C 45 40 35 0°C -40°C VOUT = 3.3V 30 1.5 2.5 3.5 4.5 VIN (V) FIGURE 8. PFM MODE QUIESCENT CURRENT, VOUT = 3.3V, NO LOAD Page 8 of 21 5.5 ISL9110, ISL9112 Typical Performance Curves (Continued) VIN = 4.5V 2.5V VOUT = 3.3V IOUT = 500mA LX1 5V/DIV VIN = 2.5V 4.5V VOUT = 3.3V IOUT = 500mA LX1 5V/DIV LX2 5V/DIV LX2 5V/DIV VOUT 50mV/DIV VOUT 50mV/DIV INDUCTOR CURRENT 0.5A/DIV INDUCTOR CURRENT 0.5A/DIV 400µs/DIV 400µs/DIV FIGURE 9. STEADY STATE TRANSITION FROM BUCK TO BOOST FIGURE 10. STEADY STATE TRANSITION FROM BOOST TO BUCK LX1 2V/DIV VOUT 50mV/DIV LX2 2V/DIV VIN 2V/DIV VOUT 50mV/DIV INDUCTOR CURRENT 0.5A/DIV VIN = 4.5V  2.5V  4.5V VOUT = 3.3V IOUT = 400mA VIN = 3.6V VOUT = 3.3V IOUT = 0.6A 50µs/DIV 400ns/DIV FIGURE 11. STEADY STATE VIN NEAR VOUT FIGURE 12. INPUT TRANSIENT LX1 5V/DIV LX1 5V/DIV LX2 5V/DIV LX2 5V/DIV VOUT 0.1V/DIV VOUT 0.1V/DIV INDUCTOR CURRENT 0.5A/DIV VIN = 2V VOUT = 3.3V IOUT = 0A TO 0.4A 100µs/DIV FIGURE 13. TRANSIENT LOAD RESPONSE FN7649 Rev.3.00 Jul 26, 2018 INDUCTOR CURRENT 0.5A/DIV VIN = 3.6V VOUT = 3.3V IOUT = 0A TO 1A 100µs/DIV FIGURE 14. TRANSIENT LOAD RESPONSE Page 9 of 21 ISL9110, ISL9112 Typical Performance Curves (Continued) LX1 2V/DIV LX1 5V/DIV LX2 2V/DIV LX2 5V/DIV VOUT 10mV/DIV VOUT 10mV/DIV INDUCTOR CURRENT 0.5A/DIV VIN = 2.5V VOUT = 3.3V IOUT = 500mA INDUCTOR CURRENT 0.5A/DIV VIN = 4.5V VOUT = 3.3V IOUT = 1A 400ns/DIV 400ns/DIV FIGURE 16. SWITCHING WAVEFORMS, BUCK MODE 0.25 0.25 0.20 0.20 +40°C 0.15 rDS(ON) (Ω) rDS(ON) (Ω) FIGURE 15. SWITCHING WAVEFORMS, BOOST MODE +85°C 0.10 0.00 1.5 2.0 2.5 +85°C 0.15 0.10 -40°C 0°C -40°C 0.05 +40°C 0.05 0°C 3.0 3.5 4.0 4.5 5.0 0.00 1.5 5.5 2.0 2.5 VIN (V) 0.805 3.285 VOUT (V) VREF (V) 3.290 0.800 3.275 0.790 -40 I = 0.4A (PWM) 3.270 OUT 1.5 2.5 40 60 80 TEMPERATURE (°C) FIGURE 19. VREF vs TEMPERATURE, TA = -40°C TO +85°C FN7649 Rev.3.00 Jul 26, 2018 4.5 5.0 5.5 100 NO LOAD (PFM) IOUT = 0.1A (PFM) 3.280 0.795 20 4.0 FIGURE 18. PFET RDS(ON) vs INPUT VOLTAGE 0.810 0 3.5 VIN (V) FIGURE 17. NFET RDS(ON) vs INPUT VOLTAGE -20 3.0 IOUT = 0.8A (PWM) IOUT = 1.2A (PWM) 3.5 4.5 VIN (V) FIGURE 20. OUTPUT VOLTAGE vs V IN VOLTAGE (VOUT = 3.3V) Page 10 of 21 5.5 ISL9110, ISL9112 Typical Performance Curves (Continued) VIN = 4V VOUT = 3.3V LX1 I = 200mA 2V/DIV OUT LX1 2V/DIV LX2 2V/DIV LX2 2V/DIV VOUT 2V/DIV VOUT 2V/DIV EN 2V/DIV VIN = 2V VOUT = 3.3V IOUT = 200mA EN 2V/DIV 400µs/DIV 400µs/DIV FIGURE 21. SOFT-START, VIN = 4V, VOUT = 3.3V FIGURE 22. SOFT-START, V IN = 2V, VOUT = 3.3V 3.315 3.310 3.310 LOAD CURRENT FALLING 3.300 VOUT (V) VOUT (V) 3.305 3.305 3.300 3.295 3.285 3.285 3.280 0.0 LOAD CURRENT RISING 3.290 LOAD CURRENT RISING 3.290 3.295 0.1 0.2 0.3 0.4 0.5 LOAD CURRENT FALLING 3.280 0.0 0.1 0.2 IOUT (mA) 0.3 0.4 FIGURE 23. OUTPUT VOLTAGE vs LOAD CURRENT (VIN = 2.5V, VOUT = 3.3V, AUTO PFM/PWM MODE) VIN = 3.7V VOUT = 3.3V FIGURE 24. OUTPUT VOLTAGE vs LOAD CURRENT (VIN = 4.5V, VOUT = 3.3V, AUTO PFM/PWM MODE) SCL 2V/DIV SDA 2V/DIV EN 1V/DIV VOUT 1V/DIV VOUT 200mV/DIV 4ms/DIV FIGURE 25. OUTPUT SOFT-DISCHARGE FN7649 Rev.3.00 Jul 26, 2018 0.5 IOUT (mA) VIN = 5V VOUT = 3.0V  4.0V 3.0V SLEWRATE = 0b111 1ms/DIV FIGURE 26. DIGITAL SLEW OPERATION (ISL9112) Page 11 of 21 ISL9110, ISL9112 Functional Description Functional Overview Refer to the “Block Diagram” on page 3. The ISL9110 and ISL9112 implement a complete buck boost switching regulator, with PWM controller, internal switches, references, protection circuitry, and control inputs. The PWM controller automatically switches between Buck and Boost modes as necessary to maintain a steady output voltage, with changing input voltages and dynamic external loads. The ISL9110 provides output power-good and input power-good open-drain status outputs on Pins 7 and 8. In the ISL9112, these pins are used for an I2C interface, allowing programmable output voltage and access to the ultrasonic mode and slew rate limit control bits. Internal Supply and References Referring to the “Block Diagram” on page 3, the ISL9110 and ISL9112 provide two power input pins. The PVIN pin supplies input power to the DC/DC converter, while the VIN pin provides operating voltage source required for stable VREF generation. Separate ground pins (GND and PGND) are provided to avoid problems caused by ground shift due to the high switching currents. Enable Input A master enable pin EN allows the device to be enabled. Driving EN low invokes a power-down mode, where most internal device functions, including input and output power good detection, are disabled. Soft Discharge When the device is disabled by driving EN low, an internal resistor between VOUT and GND is activated. This internal resistor has typical 120Ω resistance. POR Sequence and Soft-Start Bringing the EN pin high allows the device to power-up. A number of events occur during the start-up sequence. The internal voltage reference powers up, and stabilizes. The device then starts operating. There is a typical 1ms delay between assertion of the EN pin and the start of switching regulator soft-start ramp. The soft-start feature minimizes output voltage overshoot and input inrush currents. During soft-start, the reference voltage is ramped to provide a ramping VOUT voltage. While output voltage is lower than approximately 20% of the target output voltage, switching frequency is reduced to a fraction of the normal switching frequency to aid in producing low duty cycles necessary to avoid input inrush current spikes. When the output voltage exceeds 20% of the target voltage, switching frequency is increased to its nominal value. When the target output voltage is higher than the input voltage, there is a transition from Buck mode to Boost mode during the soft-start sequence. At the time of this transition, the ramp rate of the reference voltage is decreased, such that the output voltage slew rate is decreased. This provides a slower output voltage slew rate. FN7649 Rev.3.00 Jul 26, 2018 The VOUT ramp time is not constant for all operating conditions. Soft-start into Boost mode takes longer than soft-start into Buck mode. The total soft-start time into Buck mode is typically 2ms, whereas the typical soft-start time into Boost mode is typically 3ms. Increasing the load current increases these typical soft-start times. Overcurrent Protection When the current in the P-channel MOSFET is sensed to reach the current limit for 16 consecutive switching cycles, the internal protection circuit is triggered, and switching is stopped for approximately 20ms. The device then performs a soft-start cycle. If the external output overcurrent condition exists after the soft-start cycle, the device detects 16 consecutive switching cycles reaching the peak current threshold. The process repeats as long as the external overcurrent condition is present. This behavior is called ‘Hiccup mode’. Short-Circuit Protection The ISL9110 and ISL9112 provides short-circuit protection by monitoring the feedback voltage. When feedback voltage is sensed to be lower than a certain threshold, the PWM oscillator frequency is reduced in order to protect the device from damage. The P-channel MOSFET peak current limit remains active during this state. Undervoltage Lockout The Undervoltage Lockout (UVLO) feature prevents abnormal operation in the event that the supply voltage is too low to ensure proper operation. When the VIN voltage falls below the UVLO threshold, the regulator is disabled. PG Status Output (ISL9110 only) An open-drain output power-good signal is provided in the ISL9110. An internal window comparator detects when VOUT is significantly higher or lower than the target output voltage. The PG output is driven low when sensed VOUT voltage is outside of this ‘power-good’ window. When VOUT voltage is inside the ‘power-good’ window, the PG pin goes Hi-Z. The PG detection circuit detects this condition by monitoring voltage on the FB pin. Hysteresis is provided for the upper and lower PG thresholds to avoid oscillation of the PG output. BAT Status Output (ISL9110 only) The ISL9110 provides an open-drain input power-good status output. The BAT status pin is driven low when VIN rises above the VTBMON threshold. The BAT status output goes Hi-Z when VBAT falls below the VTBMON threshold. Hysteresis is provided for the VTBMON threshold to avoid oscillation of the BAT output. Ultrasonic Mode (ISL9112 only) The ISL9112 provides an ultrasonic mode that can be enabled through I2C control by setting the ULTRA bit in the control register. In ultrasonic mode, the PFM switching frequency is forced to be above the audio frequency range. This ultrasonic mode applies only to PFM mode operation. With the ULTRA bit set to ‘1’, PFM mode switching frequency is forced well above the audio frequency range (fSW becomes typically Page 12 of 21 ISL9110, ISL9112 60kHz). This mode of operation, however, reduces the efficiency at light load. With Switches B and D closed, output voltage increases as the inductor current ramps down. Thermal Shutdown In most operating conditions, there are multiple PFM pulses to charge up the output capacitor. These pulses continue until VOUT has achieved the upper threshold of the PFM hysteretic controller. Switching then stops, and remains stopped until VOUT decays to the lower threshold of the hysteretic PFM controller. A built-in thermal protection feature protects the ISL9110 and ISL9112 if the die temperature reaches +155°C (typical). At this die temperature, the regulator is completely shut down. The die temperature continues to be monitored in this thermal-shutdown mode. When the die temperature falls to +125°C (typical), the device resumes normal operation. When exiting thermal shutdown, the ISL9110 and ISL9112 execute their soft-start sequence. External Synchronization Operation With VIN Close to VOUT When the output voltage is close to the input voltage, the ISL9110 and ISL9112 rapidly and smoothly switches from Boost to Buck mode as needed to maintain the regulated output voltage. This behavior provides excellent efficiency and very low output voltage ripple. An external sync feature is provided. Applying a clock signal with a frequency between 2.75MHz and 3.25MHz at the MODE/SYNC input forces the ISL9110 and ISL9112 to synchronize to this external clock. The MODE/SYNC input supports standard logic levels. Output Voltage Programming Buck-Boost Conversion Topology In the adjustable output voltage version (ISL9110IRTAZ), an external resistor divider is required to program the output voltage. The FB pin has very low input leakage current, so it is possible to use large value resistors (for example, R1 = 1MΩ and R2 = 324kΩ) in the resistor divider connected to the FB input. The ISL9110 and ISL9112 operate in either Buck or Boost mode. When operating in conditions where VIN is close to VOUT, the ISL9110 alternates between Buck and Boost mode as necessary to provide a regulated output voltage. Figure 27 shows a simplified diagram of the internal switches and external inductor. L1 LX1 LX2 4 SWITCH A PVIN SWITCH D 1 SWITCH B The ISL9112 is available in a fixed output version only. The factory programmed output voltage can be changed using the I2C interface. Details about the ISL9112 programmable VOUT voltage can be found in “Register Description (ISL9112)” on page 14. Digital Slew Rate Control (ISL9112 only) 2 5 The ISL9110 is available in fixed and adjustable output voltage versions. To use the fixed output version, the VOUT pin must be connected directly to FB. VOUT SWITCH C FIGURE 27. BUCK BOOST TOPOLOGY When changing voltages using the I2C interface, the ISL9110 can be programmed to control the rate of voltage increase or decrease as it transitions from one voltage setting to the next. The default configuration disables this digital slew rate feature. To enable the slew rate feature, an I2C command is sent to the ISL9112, changing the value of the SLEWRATE bit field to a value other than 0b000. Details about the digital slew rate settings can be found in Table 1. PWM Operation In buck PWM mode, Switch D is continuously closed, and Switch C is continuously open. Switches A and B operate as a synchronous buck converter when in this mode. TABLE 1. REGISTER ADDRESS 0x01: SLEW RATE CONTROL BIT NAME TYPE RESET 2:0 SLEWRATE R/W 000 7:3 Reserved R/W 00000 In boost PWM mode, Switch A remains closed and Switch B remains open. Switches C and D operate as a synchronous boost converter when in this mode. PFM Operation During PFM operation in Buck mode, Switch D is continuously closed, and Switch C is continuously open. Switches A and B operate in discontinuous mode during PFM operation. During PFM operation in Boost mode, the ISL9110 and ISL9112 closes Switch A and Switch C to ramp up the current in the inductor. When inductor current reaches a certain threshold, the device turns off Switches A and C, then turns on Switches B and D. FN7649 Rev.3.00 Jul 26, 2018 DESCRIPTION Slew rate control (typ), expressed as µs per LSB change in DCDOUT value: 0b000 = 0µs/LSB 0b001 = 1.5µs/LSB 0b010 = 3.1µs/LSB 0b011 = 6.3µs/LSB 0b100 = 12.5µs/LSB 0b101 = 25µs/LSB 0b110 = 50µs/LSB 0b111 = 100µs /LSB Page 13 of 21 ISL9110, ISL9112 Register Description (ISL9112) TABLE 3. DCDOUT[4:0] VALUE vs OUTPUT VOLTAGE (Continued) The ISL9112 has a two I2C accessible control registers that are used to set output voltage, operating mode, and digital slew rate. These registers can be read and written to at any time that the ISL9112 is enabled. Attempts to communicate with the ISL9112 using its I2C interface when the ISL9112 is disabled (EN = Low) are not supported. DCDOUT[4:0] OUTPUT VOLTAGE (V) 0b01101 3.2 0b01110 3.3 0b01111 3.4 TABLE 2. REGISTER ADDRESS 0x00: VOLTAGE CONTROL 0b10000 3.5 0b10001 3.6 0b10010 3.7 0b10011 3.8 0b10100 3.9 0b10101 4.0 0b10110 4.1 0b10111 4.2 last programmed DCDOUT and ULTRA settings; or if no I2C communication has occurred since POR, the factory programmed default DCDOUT and ULTRA settings are used. 1: Device uses the I2C programmed DCDOUT and ULTRA settings. 0b11000 4.3 0b11001 4.4 0b11010 4.5 0b11011 4.6 0b11100 4.7 Bits DCDOUT[4:0] set the output voltage, as shown in Equation 1 and Table 3. The ISL9112 output voltage range is 1.9V to 5.0V. 0b11101 4.8 0b11110 4.9 (EQ. 1) 0b11111 5.0 BIT NAME TYPE RESET DESCRIPTION 4:0 DCDOUT R/W 00000 VOUT programming. See Table 3. 5 ULTRA R/W 6 Reserved R/W 7 I2CEN R/W 0 Ultrasonic mode select. Not applicable in forced PWM mode: 0: Ultrasonic feature disabled 1: Ultrasonic feature enabled 0 0 I2C programming enable bit: 0: Device ignores I2C command, and uses V OUT = 1.9V +  n  0.1V  where n = 0 to 31 The power-up output voltage is at 3.3V for ISL9112IRTNZ and 5V for ISL9112IRT7Z. To change to other voltages after power-up, first write the DCDOUT register to match the power-up voltage while keeping the I2CEN bit = 0, then set the I2CEN bit to 1 and set the new desired DCDOUT register value. TABLE 3. DCDOUT[4:0] VALUE vs OUTPUT VOLTAGE DCDOUT[4:0] OUTPUT VOLTAGE (V) 0b00000 1.9 0b00001 2.0 0b00010 2.1 0b00011 2.2 0b00100 2.3 0b00101 2.4 0b00110 2.5 0b00111 2.6 0b01000 2.7 0b01001 2.8 0b01010 2.9 0b01011 3.0 0b01100 3.1 FN7649 Rev.3.00 Jul 26, 2018 I2C Serial Interface (ISL9112) The ISL9112 supports a bi-directional bus oriented protocol. The protocol defines any device that sends data onto the bus as a transmitter and the receiving device as the receiver. The device controlling the transfer is the master and the device being controlled is the slave. The master always initiates data transfers and provides the clock for both transmit and receive operations. Therefore, the ISL9112 operates as a slave device in all applications. All communication over the I2C interface is conducted by sending the MSB of each byte of data first. Page 14 of 21 ISL9110, ISL9112 Protocol Conventions Data states on the SDA line can change only during SCL LOW periods. SDA state changes during SCL HIGH are reserved for indicating START and STOP conditions (see Figure 28). Upon power-up of the ISL9112, the SDA pin is in the input mode. All I2C interface operations must begin with a START condition, which is a HIGH to LOW transition of SDA while SCL is HIGH. The ISL9112 continuously monitors the SDA and SCL lines for the START condition and does not respond to any command until this condition is met (see Figure 28). A START condition is ignored during the power-up sequence and when EN input is low. All I2C interface operations must be terminated by a STOP condition, which is a LOW to HIGH transition of SDA while SCL is HIGH (see Figure 28). A STOP condition at the end of a write operation initiates the reconfiguration of the ISL9112’s voltage feedback loop as necessary to provide the programmed output voltage. The ISL9112 responds with an ACK after recognition of a START condition followed by a valid Identification Byte, and again after successful receipt of a Register Address Byte. The ISL9112 also responds with an ACK after receiving a Data Byte of a write operation. The master must respond with an ACK after receiving a Data Byte of a read operation. A valid Identification Byte contains 0b0011100 as the seven MSBs, corresponding to the ISL9112 I2C Slave Address. The LSB of the Identification byte is the Read/Write bit. Its value is “1” for a Read operation, and “0” for a Write operations (see Table 4). TABLE 4. IDENTIFICATION BYTE FORMAT 0 0 1 1 1 0 (MSB) 0 R/W (LSB) An Acknowledge (ACK) is a software convention used to indicate a successful data transfer. The transmitting device, either master or slave, releases the SDA bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDA line LOW to acknowledge the reception of the eight bits of data (see Figure 29). SCL SDA START DATA STABLE DATA CHANGE DATA STABLE STOP FIGURE 28. VALID DATA CHANGES, START AND STOP CONDITIONS SCL FROM MASTER 1 8 SDA OUTPUT FROM TRANSMITTER 9 HIGH IMPEDANCE HIGH IMPEDANCE SDA OUTPUT FROM RECEIVER START ACK FIGURE 29. ACKNOWLEDGE RESPONSE FROM RECEIVER FN7649 Rev.3.00 Jul 26, 2018 Page 15 of 21 ISL9110, ISL9112 Write Operation transmits the Register Address byte, and the ISL9112 responds with another ACK. A Write operation requires a START condition, followed by a valid Identification Byte (containing the Slave Address with the R/W bit set to 0), a valid Register Address Byte, a Data Byte, and a STOP condition. After each of the three bytes, the ISL9112 responds with an ACK. The master then sends a STOP to complete the command. The host generates a Repeat START condition, or a STOP condition followed by a START condition. It then transmits an Identification byte (containing the Slave Address with the R/W bit set to 1). The ISL9112 responds with an ACK, indicating it is ready to begin providing the requested data. The ISL9112 then transmits the data byte by asserting control of the SDA pin while the host generates clock pulses on the SCL pin. When transmission of the data byte is complete, the host generates a NACK condition followed by a STOP condition. This completes the I2C Read operation. STOP conditions that terminate write operations must be sent by the master after sending at least 1 full data byte and its associated ACK signal. If a STOP condition is issued in the middle of a data byte, or before 1 full data byte + ACK is sent, then the ISL9112 ignores the command, and does not change the output voltage or other settings. The ISL9112 register map supports only one register, at register address 0x00. Attempts to read other register addresses are not supported, and should not be attempted. Similarly, I2C block reads and writes are not supported by the ISL9112. The ISL9112 has only one register to read or write, therefore block reads and writes are not necessary. Read Operation A Read operation is shown in Figure 31. It consists of 4 bytes. The host generates a START condition, then transmits an Identification byte (containing the Slave Address with the R/W bit set to 0). The ISL9112 responds with an ACK. The host then IS L 9 1 1 2 I 2 C W R IT E P R O T O C O L 1 1 1 0 0 I2C S L A V E 7 -B IT A D D R E S S 0 SYSTEM HOST A 0 0 R /W 0 0 0 0 0 0 A R E G IS T E R A D D R ES S = 0x00 DATA BYTE WARN 0 A P IS L 9 1 1 2 A – ACKNOW LEDGE N – NOT ACKNOW LEDGE S – START P – STOP DCDV1 (5 B IT S ) ULTRA 0 I2C_EN S FIGURE 30. I2C REGISTER WRITE PROTOCOL ISL9112 I2 C READ PROTOCOL #1 S 0 0 1 1 1 0 0 0 A 0 0 0 0 0 0 0 0 A S 0 0 1 1 1 0 0 1 A DATA BYTE N SYSTEM HOST P WARN R/W ULTRA I2 C SLAVE 7-BIT ADDRESS REGISTER ADDRESS = 0x00 I2C_EN ISL9112 R/W I 2C SLAVE 7-BIT ADDRESS A – ACKNOWLEDGE N – NOT ACKNOWLEDGE S – START P – STOP DCDV1 (5 BITS) ISL9112 I2 C READ PROTOCOL #2 1 1 1 0 I2 C SLAVE 7-BIT ADDRESS 0 0 A R/W 0 0 0 0 0 0 0 REGISTER ADDRESS = 0x00 0 A P S 0 0 1 1 1 0 I2 C SLAVE 7-BIT ADDRESS 0 1 A R/W DATA BYTE WARN 0 ULTRA 0 I2C_EN S N P DCDV1 (5 BITS) FIGURE 31. I2C REGISTER READ PROTOCOL FN7649 Rev.3.00 Jul 26, 2018 Page 16 of 21 ISL9110, ISL9112 Applications Information V IN = 1.8V TO 5.5V Component Selection C1 10µF The ISL9112 and the fixed-output versions of the ISL9110 require only three external power components to implement the buck boost converter: an inductor, an input capacitor, and an output capacitor. C3 0.1µF 2 I C BUS ISL9112 5 6 10 9 8 7 PVIN V IN = 1.8V TO 5.5V C1 10µF C3 0.1µF STATUS OUTPUTS ISL9110 5 6 10 9 8 7 PVIN LX1 VIN MODE EN BAT PG LX2 VOUT 1 FB 12 L1 2.2µH R1 1M C4 56pF R2 324k V OUT = 3.3V/1A C2 10µF FB L1 2.2µH V OUT = 3.3V/1A C2 10µF 12 GND PGND 11 3 FIGURE 33. TYPICAL ISL9110IRTNZ APPLICATION Inductor Selection Use an inductor with high frequency core material (for example, ferrite core) to minimize core losses and provide good efficiency. The inductor must be able to handle the peak switching currents without saturating. A 2.2µH inductor with ≥2.4A saturation current rating is recommended. Select an inductor with low DCR to provide good efficiency. In applications where radiated noise must be minimized, a toroidal or shielded inductor can be used. TABLE 5. INDUCTOR VENDOR INFORMATION GND PGND 11 LX2 1 VOUT VIN MODE EN SDA SCL The adjustable ISL9110 versions require three additional components to program the output voltage. Two external resistors program the output voltage, and a small capacitor is added to improve stability and response. An optional input supply filtering capacitor (“C3” in Figure 32) can be used to reduce the supply noise on the VIN pin, which provides power to the internal reference. In most applications, this capacitor is not needed. LX1 3 MANUFACTURER FIGURE 32. TYPICAL ISL9110IRTAZ APPLICATION Output Voltage Programming, Adjustable Version SERIES WEBSITE Coilcraft LPS4018 www.coilcraft.com Murata LQH44P www.murata.com Taiyo Yuden NRS4018 NRS5012 www.t-yuden.com Sumida CDRH3D23/HP CDRH4D22/HP www.sumida.com Setting and controlling the output voltage of the ISL9110IRTAZ (adjustable output version) can be accomplished by selecting the external resistor values. Toko DEM3518C www.toko.co.jp Equation 2 can be used to derive the R1 and R2 resistor values: PVIN and VOUT Capacitor Selection R 1  V OUT = 0.8V   1 + ------- R 2  The input and output capacitors should be ceramic X5R type with low ESL and ESR. The recommended input capacitor value is 10µF. The recommended VOUT capacitor value is 10µF to 22µF. (EQ. 2) When designing a PCB, include a GND guard band around the feedback resistor network to reduce noise and improve accuracy and stability. Place the resistors R1 and R2 close to the FB pin. Feed-Forward Capacitor Selection A small capacitor in parallel with resistor R1 is required to provide the specified load and line regulation. The suggested value of this capacitor is 56pF for R1 = 1MΩ. An NPO type capacitor is recommended. TABLE 6. CAPACITOR VENDOR INFORMATION MANUFACTURER SERIES WEBSITE AVX X5R www.avx.com Murata X5R www.murata.com Taiyo Yuden X5R www.t-yuden.com TDK X5R www.tdk.com Non-Adjustable Version FB Pin Connection The fixed output versions of the ISL9110 and the I2C-adjustable ISL9112 do not require external resistors or a capacitor on the FB pin. Simply connect VOUT to FB, as shown in Figure 33. FN7649 Rev.3.00 Jul 26, 2018 Page 17 of 21 ISL9110, ISL9112 Application Example 1. Recommended PCB Layout An application using the fixed-output ISL9110IRTNZ is shown in Figure 34. This application requires only three external components. Correct PCB layout is critical for proper operation of the ISL9110. Place the input and output capacitors as close to the IC as possible. Keep the ground connections of the input and output capacitors as short as possible, and on the component layer to avoid problems that are caused by high switching currents flowing through PCB vias. V IN = 1.8V TO 5.5V ISL9110IRTNZ 5 C1 10µF 6 10 9 8 7 STATUS OUTPUTS PVIN LX1 VIN MODE EN BAT PG GND 11 L1 2.2µH LX2 1 VOUT FB V OUT = 3.3V/1A C2 10µF 12 PGND 3 FIGURE 34. TYPICAL ISL9110IRTNZ APPLICATION Application Example 2. An application requiring VOUT = 3.0V, using the adjustable-output ISL9110IRTAZ is shown in Figure 35. This application requires six external components. VIN = 1.8V TO 5.5V C1 10µF STATUS OUTPUTS ISL9110IRTAZ 5 PVIN 6 10 9 8 7 LX1 L1 2.2µH LX2 1 VOUT VIN MODE EN BAT PG FB R1 1M 12 R2 365k GND PGND 11 C4 56pF VOUT = 3.0V/1A C2 10µF The TDFN Package Requires Additional PCB Layout Rules for the Thermal Pad 3 FIGURE 35. TYPICAL ISL9110IRTAZ APPLICATION Application Example 3. An application requiring VOUT = 3.3V, using the I2C-controllable ISL9112IRTNZ is shown in Figure 36. This application requires three external components. Output voltage can be changed using I2C control. VIN = 1.8V TO 5.5V C1 10µF I2C BUS ISL9112IRTNZ 5 PVIN 6 10 9 8 7 VIN MODE EN SDA SCL LX1 LX2 1 VOUT FB 12 FIGURE 37. RECOMMENDED PCB LAYOUT L1 2.2µH VOUT = 3.3V/1A The thermal pad is electrically connected to the PGND supply. Its primary function is to provide heat sinking for the IC. However, because of the connection to PGND, the thermal pad must be tied to the GND supply to prevent unwanted current flow to the thermal pad. Maximum AC performance is achieved if the thermal pad is attached to a dedicated ground layer in a multi-layered PC board. The thermal pad requirements are proportional to power dissipation and ambient temperature. A dedicated layer eliminates the need for individual thermal pad area. When a dedicated layer is not possible, an isolated thermal pad on another layer should be used. Pad area requirements should be evaluated on a case by case basis. C2 10µF GND PGND 11 3 FIGURE 36. TYPICAL ISL9112IRTNZ APPLICATION FN7649 Rev.3.00 Jul 26, 2018 Page 18 of 21 ISL9110, ISL9112 General PowerPAD Design Considerations The following is an example of how to use vias to remove heat from the IC. Renesas recommends that the thermal pad area is filled with vias. Fill the thermal pad area with vias that are spaced three times their radius (typically), center-to-center, from each other. Keep the vias small but not so small that their inside diameter prevents solder wicking through the holes during reflow. It is important that the vias have a low thermal resistance for efficient heat transfer. Do not use “thermal relief” patterns to connect the vias to the ground plane. Instead use a solid connection with no gaps for improved thermal performance. FIGURE 38. PCB VIA PATTERN Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure you have the latest revision. DATE REVISION CHANGE Aug 3, 2018 FN7649.3 Updated Related Literature section. Moved TOC to page 2. Updated Ordering information table by adding tape and reel parts, adding unit column, removing evaluation board part numbers, and updating Note 1. In “Register Description (ISL9112)” on page 14 updated paragraph under Equation 1. Removed Products section. Updated POD L12.3x3C to the latest revision changes are as follows: Tiebar Note updated From: Tiebar shown (if present) is a non-functional feature. To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends). Updated Disclaimer. Jul 13, 2012 FN7649.2 Corrected Application Note titles in “” on page 1. On page 3, pin configuration diagrams, changed "MODE" to "MODE/SYNC". On page 4, added ISL9110BIRTAZ to ordering table. On page 4, added "Hiccup Mode" column in ordering table. On page 4, corrected Evaluation Board numbers. On page 13, corrected "EN/SYNC", to "MODE/SYNC" in “External Synchronization” August 30, 2011 FN7649.1 Page 4: Removed "ISL9110EVAL1Z" from “Ordering Information” table Added "ISL9110IRTAZ-EVAL1Z" to “Ordering Information” table Added "ISL9110IRTNZ-EVAL1Z" to “Ordering Information” table Added "ISL9110IRT7Z-EVAL1Z" to “Ordering Information” table Added "ISL9112IRT7Z-EVAL1Z" to “Ordering Information” table “Inductor Selection” on page 17: Corrected "A 10µH inductor.." to "A 2.2µH inductor.." June 16, 2011 FN7649 Rev.3.00 Jul 26, 2018 FN7649.0 Initial release. Page 19 of 21 ISL9110, ISL9112 Package Outline Drawing For the most recent package outline drawing, see L12.3x3C. L12.3x3C 12 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE (0.4mm PITCH) Rev 1, 4/15 3.00 6 PIN #1 INDEX AREA A B 6 PIN 1 INDEX AREA 3.00 0.40 (4X) 2.45±0.1 0.15 12x 0.20 0.10 M C A B 4 0.20 ±0.05 1.70±0.1 TOP VIEW 12x 0.40 BOTTOM VIEW PACKAGE OUTLINE SEE DETAIL "X" 0.10 C C BASE PLANE SEATING PLANE 0.08 C 0 . 75 (12 x0.20) SIDE VIEW 2.45 (10 x0.40) C 1.70 (12 x0.20) 0 . 2 REF 5 0 . 00 MIN. 0 . 05 MAX. (12 x0.40) TYPICAL RECOMMENDED LAND PATTERN DETAIL "X" NOTES: FN7649 Rev.3.00 Jul 26, 2018 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to ASME Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.25mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends). 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 indentifier may be either a mold or mark feature. Page 20 of 21 Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the you or third parties arising from such alteration, modification, copying or reverse engineering. product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. California Eastern Laboratories, Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A. Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338 © 2018 Renesas Electronics Corporation. All rights reserved. Colophon 7.1
ISL9112IRT7Z 价格&库存

很抱歉,暂时无法提供与“ISL9112IRT7Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货