0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R5F101FAA100FP#V0

R5F101FAA100FP#V0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

  • 描述:

    IC MCU 16BIT 16KB FLASH 44LQFP

  • 数据手册
  • 价格&库存
R5F101FAA100FP#V0 数据手册
Datasheet RL78/G13 R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 RENESAS MCU True Low Power Platform (as low as 66 µA/MHz, and 0.57 µA for RTC + LVD), 1.6 V to 5.5 V operation, 16 to 512 Kbyte Flash, 41 DMIPS at 32 MHz, for General Purpose Applications 1. OUTLINE 1.1 Features Ultra-low power consumption technology  VDD = single power supply voltage of 1.6 to 5.5 V  HALT mode  STOP mode  SNOOZE mode RL78 CPU core  CISC architecture with 3-stage pipeline  Minimum instruction execution time: Can be changed from high speed (0.03125 μs: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)  Address space: 1 MB  General-purpose registers: (8-bit register × 8) × 4 banks  On-chip RAM: 2 to 32 KB Code flash memory  Code flash memory: 16 to 512 KB  Block size: 1 KB  Prohibition of block erase and rewriting (security function)  On-chip debug function  Self-programming (with boot swap function/flash shield window function) Data Flash Memory  Data flash memory: 4 KB to 8 KB  Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.  Number of rewrites: 1,000,000 times (TYP.)  Voltage of rewrites: VDD = 1.8 to 5.5 V High-speed on-chip oscillator  Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz  High accuracy: +/- 1.0 % (VDD = 1.8 to 5.5 V, TA = -20 to +85°C) Operating ambient temperature  TA = -40 to +85°C (A: Consumer applications, D: Industrial applications )  TA = -40 to +105°C (G: Industrial applications) Power management and reset function  On-chip power-on-reset (POR) circuit  On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels) DMA (Direct Memory Access) controller  2/4 channels  Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks Multiplier and divider/multiply-accumulator  16 bits × 16 bits = 32 bits (Unsigned or signed)  32 bits ÷ 32 bits = 32 bits (Unsigned)  16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) Serial interface  CSI: 2 to 8 channels  UART/UART (LIN-bus supported): 2 to 4 channels  I2C/Simplified I2C communication: 2 to 8 channels Timer  16-bit timer: 8 to 16 channels  12-bit interval timer: 1 channel  Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)  Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator) A/D converter  8/10-bit resolution A/D converter (VDD = 1.6 to 5.5 V)  Analog input: 6 to 26 channels  Internal reference voltage (1.45 V) and temperature Note 1 sensor I/O port  I/O port: 16 to 120 (N-ch open drain I/O [withstand voltage of 6 V]: 0 to 4, N-ch open drain I/O [VDD withstand voltage Note 2/EVDD withstand voltage Note 3]: 5 to 25)  Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor  Different potential interface: Can connect to a 1.8/2.5/3 V device  On-chip key interrupt function  On-chip clock output/buzzer output controller Others  On-chip BCD (binary-coded decimal) correction circuit Notes 1. Can be selected only in HS (high-speed main) mode 2. Products with 20 to 52 pins 3. Products with 64 to 128 pins Remark R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 The functions mounted depend on the product. See 1.6 Outline of Functions. Page 1 of 196 RL78/G13 1. OUTLINE  ROM, RAM capacities Flash Data RAM RL78/G13 ROM flash 20 pins 24 pins 25 pins 30 pins 32 pins 36 pins 128 8 KB 12    R5F100AG R5F100BG R5F100CG KB  KB    R5F101AG R5F101BG R5F101CG 8 KB    R5F100AF R5F100BF R5F100CF    R5F101AF R5F101BF R5F101CF 96 8 KB KB  64 4 KB 4 KB R5F1006E R5F1007E R5F1008E R5F100AE R5F100BE R5F100CE KB  Note R5F1016E R5F1017E R5F1018E R5F101AE R5F101BE R5F101CE 48 4 KB 3 KB R5F1006D R5F1007D R5F1008D R5F100AD R5F100BD R5F100CD R5F1016D R5F1017D R5F1018D R5F101AD R5F101BD R5F101CD R5F1006C R5F1007C R5F1008C R5F100AC R5F100BC R5F100CC R5F1016C R5F1017C R5F1018C R5F101AC R5F101BC R5F101CC R5F1006A R5F1007A R5F1008A R5F100AA R5F100BA R5F100CA R5F1016A R5F1017A R5F1018A R5F101AA R5F101BA R5F101CA KB  Note 32 4 KB KB  16 4 KB KB  Flash Data ROM flash 512 8 KB KB  384 8 KB KB  256 8 KB  8 KB KB  128 8 KB KB  96 8 KB KB  64 4 KB RL78/G13 40 pins 44 pins 48 pins 52 pins 64 pins 80 pins 100 pins 128 pins  R5F100FL R5F100GL R5F100JL R5F100LL R5F100ML R5F100PL R5F100SL  R5F101FL R5F101GL R5F101JL R5F101LL R5F101ML R5F101PL R5F101SL  R5F100FK R5F100GK R5F100JK R5F100LK R5F100MK R5F100PK R5F100SK  R5F101FK R5F101GK R5F101JK R5F101LK R5F101MK R5F101PK R5F101SK  R5F100FJ R5F100GJ R5F100JJ R5F100LJ R5F100MJ R5F100PJ R5F100SJ R5F101FJ R5F101MJ 32 KB 24 KB 20 KB  R5F101GJ R5F101JJ R5F101LJ R5F101PJ R5F101SJ R5F100EH R5F100FH R5F100GH R5F100JH R5F100LH R5F100MH R5F100PH R5F100SH R5F101EH R5F101FH R5F101GH R5F101JH R5F101LH R5F101MH R5F101PH R5F101SH R5F100EG R5F100FG R5F100GG R5F100JG R5F100LG R5F100MG R5F100PG  R5F101EG R5F101FG R5F101GG R5F101JG R5F101LG R5F101MG R5F101PG  8 KB R5F100EF R5F100LF R5F100MF R5F100PF  R5F101EF R5F101FF R5F101GF R5F101JF R5F101LF R5F101MF R5F101PF  4 KB R5F100EE R5F100FE R5F100GE R5F100JE R5F100LE    R5F101FE 16 KB 12 KB R5F100FF R5F100GF R5F100JF Note  R5F101EE 4 KB 3 KB Note R5F100ED KB  32 4 KB KB  16 4 KB KB  Note RAM Note 192 48 2 KB Note KB KB 2 KB 2 KB 2 KB R5F101GE R5F101JE R5F101LE    R5F100FD R5F100GD R5F100JD R5F100LD    R5F101ED R5F101FD R5F101GD R5F101JD R5F101LD    R5F100EC R5F100FC R5F100GC R5F100JC R5F100LC    R5F101EC R5F101FC R5F101GC R5F101JC R5F101LC    R5F100EA R5F100FA R5F100GA      R5F101EA R5F101FA R5F101GA      The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L, M, P): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L, M, P, S): Start address F7F00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 2 of 196 RL78/G13 1. OUTLINE 1.2 List of Part Numbers Figure 1-1. Part Number, Memory Size, and Package of RL78/G13 Part No. R 5 F 1 0 0 L E A x x x F B #V0 Packaging specification #U0 #V0 #W0 #X0 : Tray (HWQFN,VFBGA,WFLGA) : Tray (LFQFP,LQFP,LSSOP) : Embossed Tape (HWQFN,VFBGA,WFLGA) : Embossed Tape (LFQFP, LQFP, LSSOP) Package type: SP: LSSOP, 0.65 mm pitch FP : LFQFP, 0.80 mm pitch FA : LFQFP, 0.65 mm pitch FB : LFQFP, 0.50 mm pitch NA : HWQFN, 0.50 mm pitch LA : WFLGA, 0.50 mm pitch Note 1 BG : VFBGA, 0.40 mm pitch Note 1 ROM number (Omitted with blank products) Fields of application: A : Consumer applications, operating ambient temperature : -40˚C to +85˚C D : Industrial applications, operating ambient temperature : -40˚C to +85˚C G : Industrial applications, operating ambient temperature : -40˚C to +105˚C ROM capacity: A : 16 KB C : 32 KB D : 48 KB E : 64 KB F : 96 KB G : 128 KB H : 192 KB J : 256 KB K : 384 KB Note 2 L : 512 KBNote 2 Pin count: 6 : 20-pin 7 : 24-pin 8 : 25-pin Note 1 A : 30-pin B : 32-pin C : 36-pin Note 1 E : 40-pin F : 44-pin G : 48-pin J : 52-pin L : 64-pin M : 80-pin P : 100-pin S : 128-pin Note 2 RL78/G13 group Note 2 Memory type: F : Flash memory Renesas MCU Renesas semiconductor product Notes 1. Products only for “A: Consumer applications (TA = 40 to +85°C)”, and "G: Industrial applications (TA = 40 to +105°C)" 2. Products only for “A: Consumer applications (TA = 40 to +85°C)”, and "D: Industrial applications (TA = 40 to +85°C)" R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 3 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (1/12) Pin Package count 20 pins 20-pin plastic LSSOP Data Fields of flash Application Note Mounted A Ordering Part Number R5F1006AASP#V0, R5F1006CASP#V0, R5F1006DASP#V0, (7.62 mm (300), 0.65 R5F1006EASP#V0 mm pitch) R5F1006AASP#X0, R5F1006CASP#X0, R5F1006DASP#X0, R5F1006EASP#X0 D R5F1006ADSP#V0, R5F1006CDSP#V0, R5F1006DDSP#V0, R5F1006EDSP#V0 R5F1006ADSP#X0, R5F1006CDSP#X0, R5F1006DDSP#X0, R5F1006EDSP#X0 G R5F1006AGSP#V0, R5F1006CGSP#V0, R5F1006DGSP#V0, R5F1006EGSP#V0 R5F1006AGSP#X0, R5F1006CGSP#X0, R5F1006DGSP#X0, R5F1006EGSP#X0 Not A mounted R5F1016AASP#V0, R5F1016CASP#V0, R5F1016DASP#V0, R5F1016EASP#V0 R5F1016AASP#X0, R5F1016CASP#X0, R5F1016DASP#X0, R5F1016EASP#X0 D R5F1016ADSP#V0, R5F1016CDSP#V0, R5F1016DDSP#V0, R5F1016EDSP#V0 R5F1016ADSP#X0, R5F1016CDSP#X0, R5F1016DDSP#X0, R5F1016EDSP#X0 24 pins 24-pin plastic Mounted A R5F1007AANA#U0, R5F1007CANA#U0, R5F1007DANA#U0, HWQFN (4  4mm, R5F1007EANA#U0 0.5 mm pitch) R5F1007AANA#W0, R5F1007CANA#W0, R5F1007DANA#W0, R5F1007EANA#W0 D R5F1007ADNA#U0, R5F1007CDNA#U0, R5F1007DDNA#U0, R5F1007EDNA#U0 R5F1007ADNA#W0, R5F1007CDNA#W0, R5F1007DDNA#W0, R5F1007EDNA#W0 G R5F1007AGNA#U0, R5F1007CGNA#U0, R5F1007DGNA#U0, R5F1007EGNA#U0 R5F1007AGNA#W0, R5F1007CGNA#W0, R5F1007DGNA#W0, R5F1007EGNA#W0 Not A mounted R5F1017AANA#U0, R5F1017CANA#U0, R5F1017DANA#U0, R5F1017EANA#U0 R5F1017AANA#W0, R5F1017CANA#W0, R5F1017DANA#W0, R5F1017EANA#W0 D R5F1017ADNA#U0, R5F1017CDNA#U0, R5F1017DDNA#U0, R5F1017EDNA#U0 R5F1017ADNA#W0, R5F1017CDNA#W0, R5F1017DDNA#W0, R5F1017EDNA#W0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 4 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (2/12) Pin count Package Data flash Fields of Application Ordering Part Number Note 25 pins 25-pin plastic WFLGA (3  3 mm, Mounted A 0.5 mm pitch) G Not A mounted 30 pins 30-pin plastic LSSOP Mounted A (7.62 mm (300), 0.65 mm pitch) D G Not A mounted D 32 pins 32-pin plastic HWQFN (5  5 mm, Mounted A 0.5 mm pitch) D G Not A mounted D Note R5F1008AALA#U0, R5F1008CALA#U0, R5F1008DALA#U0, R5F1008EALA#U0 R5F1008AALA#W0, R5F1008CALA#W0, R5F1008DALA#W0, R5F1008EALA#W0 R5F1008AGLA#U0, R5F1008CGLA#U0, R5F1008DGLA#U0, R5F1008EGLA#U0 R5F1008AGLA#W0, R5F1008CGLA#W0, R5F1008DGLA#W0, R5F1008EGLA#W0 R5F1018AALA#U0, R5F1018CALA#U0, R5F1018DALA#U0, R5F1018EALA#U0 R5F1018AALA#W0, R5F1018CALA#W0, R5F1018DALA#W0, R5F1018EALA#W0 R5F100AAASP#V0, R5F100ACASP#V0, R5F100ADASP#V0, R5F100AEASP#V0, R5F100AFASP#V0, R5F100AGASP#V0 R5F100AAASP#X0, R5F100ACASP#X0, R5F100ADASP#X0 R5F100AEASP#X0, R5F100AFASP#X0, R5F100AGASP#X0 R5F100AADSP#V0, R5F100ACDSP#V0, R5F100ADDSP#V0, R5F100AEDSP#V0, R5F100AFDSP#V0, R5F100AGDSP#V0 R5F100AADSP#X0, R5F100ACDSP#X0, R5F100ADDSP#X0, R5F100AEDSP#X0, R5F100AFDSP#X0, R5F100AGDSP#X0 R5F100AAGSP#V0, R5F100ACGSP#V0, R5F100ADGSP#V0,R5F100AEGSP#V0, R5F100AFGSP#V0, R5F100AGGSP#V0 R5F100AAGSP#X0, R5F100ACGSP#X0, R5F100ADGSP#X0,R5F100AEGSP#X0, R5F100AFGSP#X0, R5F100AGGSP#X0 R5F101AAASP#V0, R5F101ACASP#V0, R5F101ADASP#V0, R5F101AEASP#V0, R5F101AFASP#V0, R5F101AGASP#V0 R5F101AAASP#X0, R5F101ACASP#X0, R5F101ADASP#X0, R5F101AEASP#X0, R5F101AFASP#X0, R5F101AGASP#X0 R5F101AADSP#V0, R5F101ACDSP#V0, R5F101ADDSP#V0, R5F101AEDSP#V0, R5F101AFDSP#V0, R5F101AGDSP#V0 R5F101AADSP#X0, R5F101ACDSP#X0, R5F101ADDSP#X0, R5F101AEDSP#X0, R5F101AFDSP#X0, R5F101AGDSP#X0 R5F100BAANA#U0, R5F100BCANA#U0, R5F100BDANA#U0, R5F100BEANA#U0, R5F100BFANA#U0, R5F100BGANA#U0 R5F100BAANA#W0, R5F100BCANA#W0, R5F100BDANA#W0, R5F100BEANA#W0, R5F100BFANA#W0, R5F100BGANA#W0 R5F100BADNA#U0, R5F100BCDNA#U0, R5F100BDDNA#U0, R5F100BEDNA#U0, R5F100BFDNA#U0, R5F100BGDNA#U0 R5F100BADNA#W0, R5F100BCDNA#W0, R5F100BDDNA#W0, R5F100BEDNA#W0, R5F100BFDNA#W0, R5F100BGDNA#W0 R5F100BAGNA#U0, R5F100BCGNA#U0, R5F100BDGNA#U0, R5F100BEGNA#U0, R5F100BFGNA#U0, R5F100BGGNA#U0 R5F100BAGNA#W0, R5F100BCGNA#W0, R5F100BDGNA#W0, R5F100BEGNA#W0, R5F100BFGNA#W0, R5F100BGGNA#W0 R5F101BAANA#U0, R5F101BCANA#U0, R5F101BDANA#U0, R5F101BEANA#U0, R5F101BFANA#U0, R5F101BGANA#U0 R5F101BAANA#W0, R5F101BCANA#W0, R5F101BDANA#W0, R5F101BEANA#W0, R5F101BFANA#W0, R5F101BGANA#W0 R5F101BADNA#U0, R5F101BCDNA#U0, R5F101BDDNA#U0, R5F101BEDNA#U0, R5F101BFDNA#U0, R5F101BGDNA#U0 R5F101BADNA#W0, R5F101BCDNA#W0, R5F101BDDNA#W0, R5F101BEDNA#W0, R5F101BFDNA#W0, R5F101BGDNA#W0 For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 5 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (3/12) Pin Package Data flash count Ordering Part Number Fields of Application Note 36 pins 36-pin plastic WFLGA (4  4 mm, 0.5 mm Mounted A R5F100CAALA#U0, R5F100CCALA#U0, R5F100CDALA#U0, R5F100CEALA#U0, R5F100CFALA#U0, R5F100CGALA#U0 pitch) R5F100CAALA#W0, R5F100CCALA#W0, R5F100CDALA#W0, R5F100CEALA#W0, R5F100CFALA#W0, R5F100CGALA#W0 G R5F100CAGLA#U0, R5F100CCGLA#U0, R5F100CDGLA#U0, R5F100CEGLA#U0, R5F100CFGLA#U0, R5F100CGGLA#U0 R5F100CAGLA#W0, R5F100CCGLA#W0, R5F100CDGLA#W0, R5F100CEGLA#W0, R5F100CFGLA#W0, R5F100CGGLA#W0 Not A mounted R5F101CAALA#U0, R5F101CCALA#U0, R5F101CDALA#U0, R5F101CEALA#U0, R5F101CFALA#U0, R5F101CGALA#U0 R5F101CAALA#W0, R5F101CCALA#W0, R5F101CDALA#W0, R5F101CEALA#W0, R5F101CFALA#W0, R5F101CGALA#W0 40 pins 40-pin plastic HWQFN Mounted A R5F100EAANA#U0, R5F100ECANA#U0, R5F100EDANA#U0, (6  6 mm, 0.5 mm R5F100EEANA#U0, R5F100EFANA#U0, R5F100EGANA#U0, pitch) R5F100EHANA#U0 R5F100EAANA#W0, R5F100ECANA#W0, R5F100EDANA#W0, R5F100EEANA#W0, R5F100EFANA#W0, R5F100EGANA#W0, R5F100EHANA#W0 D R5F100EADNA#U0, R5F100ECDNA#U0, R5F100EDDNA#U0, R5F100EEDNA#U0, R5F100EFDNA#U0, R5F100EGDNA#U0, R5F100EHDNA#U0 R5F100EADNA#W0, R5F100ECDNA#W0, R5F100EDDNA#W0, R5F100EEDNA#W0, R5F100EFDNA#W0, R5F100EGDNA#W0, R5F100EHDNA#W0 G R5F100EAGNA#U0, R5F100ECGNA#U0, R5F100EDGNA#U0, R5F100EEGNA#U0, R5F100EFGNA#U0, R5F100EGGNA#U0, R5F100EHGNA#U0 R5F100EAGNA#W0, R5F100ECGNA#W0, R5F100EDGNA#W0, R5F100EEGNA#W0, R5F100EFGNA#W0, R5F100EGGNA#W0, R5F100EHGNA#W0 Not A mounted R5F101EAANA#U0, R5F101ECANA#U0, R5F101EDANA#U0, R5F101EEANA#U0, R5F101EFANA#U0, R5F101EGANA#U0, R5F101EHANA#U0 R5F101EAANA#W0, R5F101ECANA#W0, R5F101EDANA#W0, R5F101EEANA#W0, R5F101EFANA#W0, R5F101EGANA#W0, R5F101EHANA#W0 D R5F101EADNA#U0, R5F101ECDNA#U0, R5F101EDDNA#U0, R5F101EEDNA#U0, R5F101EFDNA#U0, R5F101EGDNA#U0, R5F101EHDNA#U0 R5F101EADNA#W0, R5F101ECDNA#W0, R5F101EDDNA#W0, R5F101EEDNA#W0, R5F101EFDNA#W0, R5F101EGDNA#W0, R5F101EHDNA#W0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 6 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (4/12) Pin Package Data flash count Ordering Part Number Fields of Application Note 44 pins 44-pin plastic LQFP Mounted A R5F100FAAFP#V0, R5F100FCAFP#V0, R5F100FDAFP#V0, (10  10 mm, 0.8 mm R5F100FEAFP#V0, R5F100FFAFP#V0, R5F100FGAFP#V0, pitch) R5F100FHAFP#V0, R5F100FJAFP#V0, R5F100FKAFP#V0, R5F100FLAFP#V0 R5F100FAAFP#X0, R5F100FCAFP#X0, R5F100FDAFP#X0, R5F100FEAFP#X0, R5F100FFAFP#X0, R5F100FGAFP#X0, R5F100FHAFP#X0, R5F100FJAFP#X0, R5F100FKAFP#X0, R5F100FLAFP#X0 D R5F100FADFP#V0, R5F100FCDFP#V0, R5F100FDDFP#V0, R5F100FEDFP#V0, R5F100FFDFP#V0, R5F100FGDFP#V0, R5F100FHDFP#V0, R5F100FJDFP#V0, R5F100FKDFP#V0, R5F100FLDFP#V0 R5F100FADFP#X0, R5F100FCDFP#X0, R5F100FDDFP#X0, R5F100FEDFP#X0, R5F100FFDFP#X0, R5F100FGDFP#X0, R5F100FHDFP#X0, R5F100FJDFP#X0, R5F100FKDFP#X0, R5F100FLDFP#X0 G R5F100FAGFP#V0, R5F100FCGFP#V0, R5F100FDGFP#V0, R5F100FEGFP#V0, R5F100FFGFP#V0, R5F100FGGFP#V0, R5F100FHGFP#V0, R5F100FJGFP#V0 R5F100FAGFP#X0, R5F100FCGFP#X0, R5F100FDGFP#X0, R5F100FEGFP#X0, R5F100FFGFP#X0, R5F100FGGFP#X0, R5F100FHGFP#X0, R5F100FJGFP#X0 Not A mounted R5F101FAAFP#V0, R5F101FCAFP#V0, R5F101FDAFP#V0, R5F101FEAFP#V0, R5F101FFAFP#V0, R5F101FGAFP#V0, R5F101FHAFP#V0, R5F101FJAFP#V0, R5F101FKAFP#V0, R5F101FLAFP#V0 R5F101FAAFP#X0, R5F101FCAFP#X0, R5F101FDAFP#X0, R5F101FEAFP#X0, R5F101FFAFP#X0, R5F101FGAFP#X0, R5F101FHAFP#X0, R5F101FJAFP#X0, R5F101FKAFP#X0, R5F101FLAFP#X0 D R5F101FADFP#V0, R5F101FCDFP#V0, R5F101FDDFP#V0, R5F101FEDFP#V0, R5F101FFDFP#V0, R5F101FGDFP#V0, R5F101FHDFP#V0, R5F101FJDFP#V0, R5F101FKDFP#V0, R5F101FLDFP#V0 R5F101FADFP#X0, R5F101FCDFP#X0, R5F101FDDFP#X0, R5F101FEDFP#X0, R5F101FFDFP#X0, R5F101FGDFP#X0, R5F101FHDFP#X0, R5F101FJDFP#X0, R5F101FKDFP#X0, R5F101FLDFP#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 7 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (5/12) Pin Package count Data Fields of flash Application Ordering Part Number Note 48 pins 48-pin plastic Mounted A R5F100GAAFB#V0, R5F100GCAFB#V0, R5F100GDAFB#V0, LFQFP (7  7 mm, R5F100GEAFB#V0, R5F100GFAFB#V0, R5F100GGAFB#V0, 0.5 mm pitch) R5F100GHAFB#V0, R5F100GJAFB#V0, R5F100GKAFB#V0, R5F100GLAFB#V0 R5F100GAAFB#X0, R5F100GCAFB#X0, R5F100GDAFB#X0, R5F100GEAFB#X0, R5F100GFAFB#X0, R5F100GGAFB#X0, R5F100GHAFB#X0, R5F100GJAFB#X0, R5F100GKAFB#X0, R5F100GLAFB#X0 D R5F100GADFB#V0, R5F100GCDFB#V0, R5F100GDDFB#V0, R5F100GEDFB#V0, R5F100GFDFB#V0, R5F100GGDFB#V0, R5F100GHDFB#V0, R5F100GJDFB#V0, R5F100GKDFB#V0, R5F100GLDFB#V0 R5F100GADFB#X0, R5F100GCDFB#X0, R5F100GDDFB#X0, R5F100GEDFB#X0, R5F100GFDFB#X0, R5F100GGDFB#X0, R5F100GHDFB#X0, R5F100GJDFB#X0, R5F100GKDFB#X0, R5F100GLDFB#X0 G R5F100GAGFB#V0, R5F100GCGFB#V0, R5F100GDGFB#V0, R5F100GEGFB#V0, R5F100GFGFB#V0, R5F100GGGFB#V0, R5F100GHGFB#V0, R5F100GJGFB#V0 R5F100GAGFB#X0, R5F100GCGFB#X0, R5F100GDGFB#X0, R5F100GEGFB#X0, R5F100GFGFB#X0, R5F100GGGFB#X0, R5F100GHGFB#X0, R5F100GJGFB#X0 Not A mounted R5F101GAAFB#V0, R5F101GCAFB#V0, R5F101GDAFB#V0, R5F101GEAFB#V0, R5F101GFAFB#V0, R5F101GGAFB#V0, R5F101GHAFB#V0, R5F101GJAFB#V0, R5F101GKAFB#V0, R5F101GLAFB#V0 R5F101GAAFB#X0, R5F101GCAFB#X0, R5F101GDAFB#X0, R5F101GEAFB#X0, R5F101GFAFB#X0, R5F101GGAFB#X0, R5F101GHAFB#X0, R5F101GJAFB#X0, R5F101GKAFB#X0, R5F101GLAFB#X0 D R5F101GADFB#V0, R5F101GCDFB#V0, R5F101GDDFB#V0, R5F101GEDFB#V0, R5F101GFDFB#V0, R5F101GGDFB#V0, R5F101GHDFB#V0, R5F101GJDFB#V0, R5F101GKDFB#V0, R5F101GLDFB#V0 R5F101GADFB#X0, R5F101GCDFB#X0, R5F101GDDFB#X0, R5F101GEDFB#X0, R5F101GFDFB#X0, R5F101GGDFB#X0, R5F101GHDFB#X0, R5F101GJDFB#X0, R5F101GKDFB#X0, R5F101GLDFB#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 8 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (6/12) Pin count Package Data flash Ordering Part Number Fields of Application Note 48 pins 48-pin plastic Mounted A R5F100GAANA#U0, R5F100GCANA#U0, R5F100GDANA#U0, HWQFN (7  7 mm, R5F100GEANA#U0, R5F100GFANA#U0, R5F100GGANA#U0, 0.5 mm pitch) R5F100GHANA#U0, R5F100GJANA#U0, R5F100GKANA#U0, R5F100GLANA#U0 R5F100GAANA#W0, R5F100GCANA#W0, R5F100GDANA#W0, R5F100GEANA#W0, R5F100GFANA#W0, R5F100GGANA#W0, R5F100GHANA#W0, R5F100GJANA#W0, R5F100GKANA#W0, R5F100GLANA#W0 D R5F100GADNA#U0, R5F100GCDNA#U0, R5F100GDDNA#U0, R5F100GEDNA#U0, R5F100GFDNA#U0, R5F100GGDNA#U0, R5F100GHDNA#U0, R5F100GJDNA#U0, R5F100GKDNA#U0, R5F100GLDNA#U0 R5F100GADNA#W0, R5F100GCDNA#W0, R5F100GDDNA#W0, R5F100GEDNA#W0, R5F100GFDNA#W0, R5F100GGDNA#W0, R5F100GHDNA#W0, R5F100GJDNA#W0, R5F100GKDNA#W0, R5F100GLDNA#W0 G R5F100GAGNA#U0, R5F100GCGNA#U0, R5F100GDGNA#U0, R5F100GEGNA#U0, R5F100GFGNA#U0, R5F100GGGNA#U0, R5F100GHGNA#U0, R5F100GJGNA#U0 R5F100GAGNA#W0, R5F100GCGNA#W0, R5F100GDGNA#W0, R5F100GEGNA#W0, R5F100GFGNA#W0, R5F100GGGNA#W0, R5F100GHGNA#W0, R5F100GJGNA#W0 Not A mounted R5F101GAANA#U0, R5F101GCANA#U0, R5F101GDANA#U0, R5F101GEANA#U0, R5F101GFANA#U0, R5F101GGANA#U0, R5F101GHANA#U0, R5F101GJANA#U0, R5F101GKANA#U0, R5F101GLANA#U0 R5F101GAANA#W0, R5F101GCANA#W0, R5F101GDANA#W0, R5F101GEANA#W0, R5F101GFANA#W0, R5F101GGANA#W0, R5F101GHANA#W0, R5F101GJANA#W0, R5F101GKANA#W0, R5F101GLANA#W0 D R5F101GADNA#U0, R5F101GCDNA#U0, R5F101GDDNA#U0, R5F101GEDNA#U0, R5F101GFDNA#U0, R5F101GGDNA#U0, R5F101GHDNA#U0, R5F101GJDNA#U0, R5F101GKDNA#U0, R5F101GLDNA#U0 R5F101GADNA#W0, R5F101GCDNA#W0, R5F101GDDNA#W0, R5F101GEDNA#W0, R5F101GFDNA#W0, R5F101GGDNA#W0, R5F101GHDNA#W0, R5F101GJDNA#W0, R5F101GKDNA#W0, R5F101GLDNA#W0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 9 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (7/12) Pin Package count Data Fields of flash Application Ordering Part Number Note 52 pins 52-pin plastic Mounted A R5F100JCAFA#V0, R5F100JDAFA#V0, R5F100JEAFA#V0, LQFP (10  10 R5F100JFAFA#V0, R5F100JGAFA#V0, R5F100JHAFA#V0, mm, 0.65 mm R5F100JJAFA#V0, R5F100JKAFA#V0, R5F100JLAFA#V0 pitch) R5F100JCAFA#X0, R5F100JDAFA#X0, R5F100JEAFA#X0, R5F100JFAFA#X0, R5F100JGAFA#X0, R5F100JHAFA#X0, R5F100JJAFA#X0, R5F100JKAFA#X0, R5F100JLAFA#X0 D R5F100JCDFA#V0, R5F100JDDFA#V0, R5F100JEDFA#V0, R5F100JFDFA#V0, R5F100JGDFA#V0, R5F100JHDFA#V0, R5F100JJDFA#V0, R5F100JKDFA#V0, R5F100JLDFA#V0 R5F100JCDFA#X0, R5F100JDDFA#X0, R5F100JEDFA#X0, R5F100JFDFA#X0, R5F100JGDFA#X0, R5F100JHDFA#X0, R5F100JJDFA#X0, R5F100JKDFA#X0, R5F100JLDFA#X0 G R5F100JCGFA#V0, R5F100JDGFA#V0, R5F100JEGFA#V0, R5F100JFGFA#V0,R5F100JGGFA#V0, R5F100JHGFA#V0, R5F100JJGFA#V0 R5F100JCGFA#X0, R5F100JDGFA#X0, R5F100JEGFA#X0, R5F100JFGFA#X0,R5F100JGGFA#X0, R5F100JHGFA#X0, R5F100JJGFA#X0 Not A mounted R5F101JCAFA#V0, R5F101JDAFA#V0, R5F101JEAFA#V0, R5F101JFAFA#V0, R5F101JGAFA#V0, R5F101JHAFA#V0, R5F101JJAFA#V0, R5F101JKAFA#V0, R5F101JLAFA#V0 R5F101JCAFA#X0, R5F101JDAFA#X0, R5F101JEAFA#X0, R5F101JFAFA#X0, R5F101JGAFA#X0, R5F101JHAFA#X0, R5F101JJAFA#X0, R5F101JKAFA#X0, R5F101JLAFA#X0 D R5F101JCDFA#V0, R5F101JDDFA#V0, R5F101JEDFA#V0, R5F101JFDFA#V0, R5F101JGDFA#V0, R5F101JHDFA#V0, R5F101JJDFA#V0, R5F101JKDFA#V0, R5F101JLDFA#V0 R5F101JCDFA#X0, R5F101JDDFA#X0, R5F101JEDFA#X0, R5F101JFDFA#X0, R5F101JGDFA#X0, R5F101JHDFA#X0, R5F101JJDFA#X0, R5F101JKDFA#X0, R5F101JLDFA#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 10 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (8/12) Pin count Package Data flash Fields of Ordering Part Number Application Note 64 pins 64-pin plastic LQFP Mounted A R5F100LCAFA#V0, R5F100LDAFA#V0, (12  12 mm, 0.65 R5F100LEAFA#V0, R5F100LFAFA#V0, mm pitch) R5F100LGAFA#V0, R5F100LHAFA#V0, R5F100LJAFA#V0, R5F100LKAFA#V0, R5F100LLAFA#V0 R5F100LCAFA#X0, R5F100LDAFA#X0, R5F100LEAFA#X0, R5F100LFAFA#X0, D R5F100LGAFA#X0, R5F100LHAFA#X0, R5F100LJAFA#X0, R5F100LKAFA#X0, R5F100LLAFA#X0 R5F100LCDFA#V0, R5F100LDDFA#V0, R5F100LEDFA#V0, R5F100LFDFA#V0, R5F100LGDFA#V0, R5F100LHDFA#V0, R5F100LJDFA#V0, R5F100LKDFA#V0, R5F100LLDFA#V0 G R5F100LCDFA#X0, R5F100LDDFA#X0, R5F100LEDFA#X0, R5F100LFDFA#X0, R5F100LGDFA#X0, R5F100LHDFA#X0, R5F100LJDFA#X0, R5F100LKDFA#X0, R5F100LLDFA#X0 R5F100LCGFA#V0, R5F100LDGFA#V0, R5F100LEGFA#V0, R5F100LFGFA#V0 R5F100LCGFA#X0, R5F100LDGFA#X0, R5F100LEGFA#X0, R5F100LFGFA#X0 R5F100LGGFA#V0, R5F100LHGFA#V0, R5F100LJGFA#V0 R5F100LGGFA#X0, R5F100LHGFA#X0, R5F100LJGFA#X0 Not A mounted R5F101LCAFA#V0, R5F101LDAFA#V0, R5F101LEAFA#V0, R5F101LFAFA#V0, R5F101LGAFA#V0, R5F101LHAFA#V0, R5F101LJAFA#V0, R5F101LKAFA#V0, R5F101LLAFA#V0 R5F101LCAFA#X0, R5F101LDAFA#X0, R5F101LEAFA#X0, R5F101LFAFA#X0, D R5F101LGAFA#X0, R5F101LHAFA#X0, R5F101LJAFA#X0, R5F101LKAFA#X0, R5F101LLAFA#X0 R5F101LCDFA#V0, R5F101LDDFA#V0, R5F101LEDFA#V0, R5F101LFDFA#V0, R5F101LGDFA#V0, R5F101LHDFA#V0, R5F101LJDFA#V0, R5F101LKDFA#V0, R5F101LLDFA#V0 R5F101LCDFA#X0, R5F101LDDFA#X0, R5F101LEDFA#X0, R5F101LFDFA#X0, R5F101LGDFA#X0, R5F101LHDFA#X0, R5F101LJDFA#X0, R5F101LKDFA#X0, R5F101LLDFA#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 11 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (9/12) Pin count Package Data flash Fields of Ordering Part Number Application Note 64 pins 64-pin plastic Mounted A LFQFP (10  10 mm, 0.5 mm pitch) D G Not A mounted D 64-pin plastic Mounted A VFBGA (4  4 mm, 0.4 mm pitch) G Not mounted Note A R5F100LCAFB#V0, R5F100LDAFB#V0, R5F100LEAFB#V0, R5F100LFAFB#V0, R5F100LGAFB#V0, R5F100LHAFB#V0, R5F100LJAFB#V0, R5F100LKAFB#V0, R5F100LLAFB#V0 R5F100LCAFB#X0, R5F100LDAFB#X0, R5F100LEAFB#X0, R5F100LFAFB#X0, R5F100LGAFB#X0, R5F100LHAFB#X0, R5F100LJAFB#X0, R5F100LKAFB#X0, R5F100LLAFB#X0 R5F100LCDFB#V0, R5F100LDDFB#V0, R5F100LEDFB#V0, R5F100LFDFB#V0, R5F100LGDFB#V0, R5F100LHDFB#V0, R5F100LJDFB#V0, R5F100LKDFB#V0, R5F100LLDFB#V0 R5F100LCDFB#X0, R5F100LDDFB#X0, R5F100LEDFB#X0, R5F100LFDFB#X0, R5F100LGDFB#X0, R5F100LHDFB#X0, R5F100LJDFB#X0, R5F100LKDFB#X0, R5F100LLDFB#X0 R5F100LCGFB#V0, R5F100LDGFB#V0, R5F100LEGFB#V0, R5F100LFGFB#V0 R5F100LCGFB#X0, R5F100LDGFB#X0, R5F100LEGFB#X0, R5F100LFGFB#X0 R5F100LGGFB#V0, R5F100LHGFB#V0, R5F100LJGFB#V0 R5F100LGGFB#X0, R5F100LHGFB#X0, R5F100LJGFB#X0 R5F101LCAFB#V0, R5F101LDAFB#V0, R5F101LEAFB#V0, R5F101LFAFB#V0, R5F101LGAFB#V0, R5F101LHAFB#V0, R5F101LJAFB#V0, R5F101LKAFB#V0, R5F101LLAFB#V0 R5F101LCAFB#X0, R5F101LDAFB#X0, R5F101LEAFB#X0, R5F101LFAFB#X0, R5F101LGAFB#X0, R5F101LHAFB#X0, R5F101LJAFB#X0, R5F101LKAFB#X0, R5F101LLAFB#X0 R5F101LCDFB#V0, R5F101LDDFB#V0, R5F101LEDFB#V0, R5F101LFDFB#V0, R5F101LGDFB#V0, R5F101LHDFB#V0, R5F101LJDFB#V0, R5F101LKDFB#V0, R5F101LLDFB#V0 R5F101LCDFB#X0, R5F101LDDFB#X0, R5F101LEDFB#X0, R5F101LFDFB#X0, R5F101LGDFB#X0, R5F101LHDFB#X0, R5F101LJDFB#X0, R5F101LKDFB#X0, R5F101LLDFB#X0 R5F100LCABG#U0, R5F100LDABG#U0, R5F100LEABG#U0, R5F100LFABG#U0, R5F100LGABG#U0, R5F100LHABG#U0, R5F100LJABG#U0 R5F100LCABG#W0, R5F100LDABG#W0, R5F100LEABG#W0, R5F100LFABG#W0, R5F100LGABG#W0, R5F100LHABG#W0, R5F100LJABG#W0 R5F100LCGBG#U0, R5F100LDGBG#U0, R5F100LEGBG#U0, R5F100LFGBG#U0, R5F100LGGBG#U0, R5F100LHGBG#U0, R5F100LJGBG#U0 R5F100LCGBG#W0, R5F100LDGBG#W0, R5F100LEGBG#W0, R5F100LFGBG#W0, R5F100LGGBG#W0, R5F100LHGBG#W0, R5F100LJGBG#W0 R5F101LCABG#U0, R5F101LDABG#U0, R5F101LEABG#U0, R5F101LFABG#U0, R5F101LGABG#U0, R5F101LHABG#U0, R5F101LJABG#U0 R5F101LCABG#W0, R5F101LDABG#W0, R5F101LEABG#W0, R5F101LFABG#W0, R5F101LGABG#W0, R5F101LHABG#W0, R5F101LJABG#W0 For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 12 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (10/12) Pin count Package Data flash Ordering Part Number Fields of Application Note 80 pins 80-pin plastic LQFP Mounted A R5F100MFAFA#V0, R5F100MGAFA#V0, R5F100MHAFA#V0, (14  14 mm, 0.65 R5F100MJAFA#V0, R5F100MKAFA#V0, R5F100MLAFA#V0 mm pitch) R5F100MFAFA#X0, R5F100MGAFA#X0, R5F100MHAFA#X0, R5F100MJAFA#X0, R5F100MKAFA#X0, R5F100MLAFA#X0 D R5F100MFDFA#V0, R5F100MGDFA#V0, R5F100MHDFA#V0, R5F100MJDFA#V0, R5F100MKDFA#V0, R5F100MLDFA#V0 R5F100MFDFA#X0, R5F100MGDFA#X0, R5F100MHDFA#X0, R5F100MJDFA#X0, R5F100MKDFA#X0, R5F100MLDFA#X0 G R5F100MFGFA#V0, R5F100MGGFA#V0, R5F100MHGFA#V0, R5F100MJGFA#V0 R5F100MFGFA#X0, R5F100MGGFA#X0, R5F100MHGFA#X0, R5F100MJGFA#X0 Not A mounted R5F101MFAFA#V0, R5F101MGAFA#V0, R5F101MHAFA#V0, R5F101MJAFA#V0, R5F101MKAFA#V0, R5F101MLAFA#V0 R5F101MFAFA#X0, R5F101MGAFA#X0, R5F101MHAFA#X0, R5F101MJAFA#X0, R5F101MKAFA#X0, R5F101MLAFA#X0 D R5F101MFDFA#V0, R5F101MGDFA#V0, R5F101MHDFA#V0, R5F101MJDFA#V0, R5F101MKDFA#V0, R5F101MLDFA#V0 R5F101MFDFA#X0, R5F101MGDFA#X0, R5F101MHDFA#X0, R5F101MJDFA#X0, R5F101MKDFA#X0, R5F101MLDFA#X0 80-pin plastic Mounted A R5F100MFAFB#V0, R5F100MGAFB#V0, R5F100MHAFB#V0, LFQFP (12  12 R5F100MJAFB#V0, R5F100MKAFB#V0, R5F100MLAFB#V0 mm, 0.5 mm pitch) R5F100MFAFB#X0, R5F100MGAFB#X0, R5F100MHAFB#X0, R5F100MJAFB#X0, R5F100MKAFB#X0, R5F100MLAFB#X0 D R5F100MFDFB#V0, R5F100MGDFB#V0, R5F100MHDFB#V0, R5F100MJDFB#V0, R5F100MKDFB#V0, R5F100MLDFB#V0 R5F100MFDFB#X0, R5F100MGDFB#X0, R5F100MHDFB#X0, R5F100MJDFB#X0, R5F100MKDFB#X0, R5F100MLDFB#X0 G R5F100MFGFB#V0, R5F100MGGFB#V0, R5F100MHGFB#V0, R5F100MJGFB#V0 R5F100MFGFB#X0, R5F100MGGFB#X0, R5F100MHGFB#X0, R5F100MJGFB#X0 Not A mounted R5F101MFAFB#V0, R5F101MGAFB#V0, R5F101MHAFB#V0, R5F101MJAFB#V0, R5F101MKAFB#V0, R5F101MLAFB#V0 R5F101MFAFB#X0, R5F101MGAFB#X0, R5F101MHAFB#X0, R5F101MJAFB#X0, R5F101MKAFB#X0, R5F101MLAFB#X0 D R5F101MFDFB#V0, R5F101MGDFB#V0, R5F101MHDFB#V0, R5F101MJDFB#V0, R5F101MKDFB#V0, R5F101MLDFB#V0 R5F101MFDFB#X0, R5F101MGDFB#X0, R5F101MHDFB#X0, R5F101MJDFB#X0, R5F101MKDFB#X0, R5F101MLDFB#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 13 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (11/12) Pin count Package Data flash Ordering Part Number Fields of Application Note 100 pins 100-pin plastic Mounted A R5F100PFAFB#V0, R5F100PGAFB#V0, R5F100PHAFB#V0, LFQFP (14  14 R5F100PJAFB#V0, R5F100PKAFB#V0, R5F100PLAFB#V0 mm, 0.5 mm pitch) R5F100PFAFB#X0, R5F100PGAFB#X0, R5F100PHAFB#X0, R5F100PJAFB#X0, R5F100PKAFB#X0, R5F100PLAFB#X0 D R5F100PFDFB#V0, R5F100PGDFB#V0, R5F100PHDFB#V0, R5F100PJDFB#V0, R5F100PKDFB#V0, R5F100PLDFB#V0 R5F100PFDFB#X0, R5F100PGDFB#X0, R5F100PHDFB#X0, R5F100PJDFB#X0, R5F100PKDFB#X0, R5F100PLDFB#X0 G R5F100PFGFB#V0, R5F100PGGFB#V0, R5F100PHGFB#V0, R5F100PJGFB#V0 R5F100PFGFB#X0, R5F100PGGFB#X0, R5F100PHGFB#X0, R5F100PJGFB#X0 Not A mounted R5F101PFAFB#V0, R5F101PGAFB#V0, R5F101PHAFB#V0, R5F101PJAFB#V0, R5F101PKAFB#V0, R5F101PLAFB#V0 R5F101PFAFB#X0, R5F101PGAFB#X0, R5F101PHAFB#X0, R5F101PJAFB#X0, R5F101PKAFB#X0, R5F101PLAFB#X0 D R5F101PFDFB#V0, R5F101PGDFB#V0, R5F101PHDFB#V0, R5F101PJDFB#V0, R5F101PKDFB#V0, R5F101PLDFB#V0 R5F101PFDFB#X0, R5F101PGDFB#X0, R5F101PHDFB#X0, R5F101PJDFB#X0, R5F101PKDFB#X0, R5F101PLDFB#X0 100-pin plastic Mounted A R5F100PFAFA#V0, R5F100PGAFA#V0, R5F100PHAFA#V0, LQFP (14  20 mm, R5F100PJAFA#V0, R5F100PKAFA#V0, R5F100PLAFA#V0 0.65 mm pitch) R5F100PFAFA#X0, R5F100PGAFA#X0, R5F100PHAFA#X0, R5F100PJAFA#X0, R5F100PKAFA#X0, R5F100PLAFA#X0 D R5F100PFDFA#V0, R5F100PGDFA#V0, R5F100PHDFA#V0, R5F100PJDFA#V0, R5F100PKDFA#V0, R5F100PLDFA#V0 R5F100PFDFA#X0, R5F100PGDFA#X0, R5F100PHDFA#X0, R5F100PJDFA#X0, R5F100PKDFA#X0, R5F100PLDFA#X0 G R5F100PFGFA#V0, R5F100PGGFA#V0, R5F100PHGFA#V0, R5F100PJGFA#V0 R5F100PFGFA#X0, R5F100PGGFA#X0, R5F100PHGFA#X0, R5F100PJGFA#X0 Not A mounted R5F101PFAFA#V0, R5F101PGAFA#V0, R5F101PHAFA#V0, R5F101PJAFA#V0, R5F101PKAFA#V0, R5F101PLAFA#V0 R5F101PFAFA#X0, R5F101PGAFA#X0, R5F101PHAFA#X0, R5F101PJAFA#X0, R5F101PKAFA#X0, R5F101PLAFA#X0 D R5F101PFDFA#V0, R5F101PGDFA#V0, R5F101PHDFA#V0, R5F101PJDFA#V0, R5F101PKDFA#V0, R5F101PLDFA#V0 R5F101PFDFA#X0, R5F101PGDFA#X0, R5F101PHDFA#X0, R5F101PJDFA#X0, R5F101PKDFA#X0, R5F101PLDFA#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 14 of 196 RL78/G13 1. OUTLINE Table 1-1. List of Ordering Part Numbers (12/12) Pin count Package Data flash Fields of Ordering Part Number Application Note 128 pins 128-pin plastic LFQFP Mounted A R5F100SHAFB#V0, R5F100SJAFB#V0, (14  20 mm, 0.5 mm R5F100SKAFB#V0, R5F100SLAFB#V0 pitch) R5F100SHAFB#X0, R5F100SJAFB#X0, R5F100SKAFB#X0, R5F100SLAFB#X0 D R5F100SHDFB#V0, R5F100SJDFB#V0, R5F100SKDFB#V0, R5F100SLDFB#V0 R5F100SHDFB#X0, R5F100SJDFB#X0, R5F100SKDFB#X0, R5F100SLDFB#X0 Not A mounted R5F101SHAFB#V0, R5F101SJAFB#V0, R5F101SKAFB#V0, R5F101SLAFB#V0 R5F101SHAFB#X0, R5F101SJAFB#X0, R5F101SKAFB#X0, R5F101SLAFB#X0 D R5F101SHDFB#V0, R5F101SJDFB#V0, R5F101SKDFB#V0, R5F101SLDFB#V0 R5F101SHDFB#X0, R5F101SJDFB#X0, R5F101SKDFB#X0, R5F101SLDFB#X0 Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G13. Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 15 of 196 RL78/G13 1. OUTLINE 1.3 Pin Configuration (Top View) 1.3.1 20-pin products  20-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) 1 2 3 4 5 6 7 8 9 10 RL78/G13 (Top View) P01/ANI16/TO00/RxD1 P00/ANI17/TI00/TxD1 P40/TOOL0 RESET P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD 20 19 18 17 16 15 14 13 12 11 P20/ANI0/AVREFP P21/ANI1/AVREFM P22/ANI2 P147/ANI18 P10/SCK00/SCL00 P11/SI00/RxD0/TOOLRxD/SDA00 P12/SO00/TxD0/TOOLTxD P16/TI01/TO01/INTP5/SO11 P17/TI02/TO02/SI11/SDA11 P30/INTP3/SCK11/SCL11 Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remark For pin identification, see 1.4 Pin Identification. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 16 of 196 RL78/G13 1. OUTLINE 1.3.2 24-pin products P22/ANI2 P147/ANI18 P10/SCK00/SCL00 P11/SI00/RxD0/TOOLRxD/SDA00 P12/SO00/TxD0/TOOLTxD P16/TI01/TO01/INTP5  24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch) exposed die pad P21/ANI1/AVREFM P20/ANI0/AVREFP P01/ANI16/TO00/RxD1 P00/ANI17/TI00/TxD1 P40/TOOL0 RESET 18 17 16 15 14 13 19 12 20 11 RL78/G13 21 10 (Top View) 22 9 23 8 24 7 1 2 3 4 5 6 P17/TI02/TO02/SO11 P50/INTP1/SI11/SDA11 P30/INTP3/SCK11/SCL11 P31/TI03/TO03/INTP4/PCLBUZ0 P61/SDAA0 P60/SCLA0 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD INDEX MARK Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. 2. For pin identification, see 1.4 Pin Identification. It is recommended to connect an exposed die pad to Vss. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 17 of 196 RL78/G13 1. OUTLINE 1.3.3 25-pin products  25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch) Bottom View Top View 5 4 RL78/G13 (Top View) 3 2 1 A B C D E E D C B A INDEX MARK INDEX MARK A P40/TOOL0 B RESET 5 4 P122/X2/ EXCLK P137/INTP0 P121/X1 VDD 3 REGC VSS 2 P60/SCLA0 P61/SDAA0 1 A B C D E P01/ANI16/ TO00/RxD1 P22/ANI2 P147/ANI18 P00/ANI17/ TI00/TxD1 P21/ANI1/ AVREFM P10/SCK00/ SCL00 P20/ANI0/ AVREFP P12/SO00/ TxD0/ TOOLTxD P30/INTP3/ SCK11/SCL11 P17/TI02/ TO02/SO11 P11/SI00/ RxD0/ TOOLRxD/ SDA00 P50/INTP1/ SI11/SDA11 P31/TI03/ TO03/INTP4/ PCLBUZ0 P16/TI01/ TO01/INTP5 5 C D 4 3 2 P130 1 E Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remark For pin identification, see 1.4 Pin Identification. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 18 of 196 RL78/G13 1. OUTLINE 1.3.4 30-pin products  30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RL78/G13 (Top View) P20/ANI0/AV REFP P01/ANI16/TO00/RxD1 P00/ANI17/TI00/TxD1 P120/ANI19 P40/TOOL0 RESET P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD P60/SCLA0 P61/SDAA0 P31/TI03/TO03/INTP4/PCLBUZ0 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 P21/ANI1/AV REFM P22/ANI2 P23/ANI3 P147/ANI18 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(RXD0) P17/TI02/TO02/(TXD0) P51/INTP2/SO11 P50/INTP1/SI11/SDA11 P30/INTP3/SCK11/SCL11 Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 19 of 196 RL78/G13 1. OUTLINE 1.3.5 32-pin products P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(RXD0) P17/TI02/TO02/(TXD0)  32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch) exposed die pad P147/ANI18 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P01/ANI16/TO00/RxD1 P00/ANI17/TI00/TxD1 P120/ANI19 24 23 22 21 20 19 18 17 25 16 26 15 27 14 RL78/G13 28 13 (Top View) 29 12 30 11 31 10 32 9 1 2 3 4 5 6 7 8 P51/INTP2/SO11 P50/INTP1/SI11/SDA11 P30/INTP3/SCK11/SCL11 P70 P31/TI03/TO03/INTP4/PCLBUZ0 P62 P61/SDAA0 P60/SCLA0 P40/TOOL0 RESET P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD INDEX MARK Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. 3. It is recommended to connect an exposed die pad to Vss. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 20 of 196 RL78/G13 1. OUTLINE 1.3.6 36-pin products  36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch) Top View Bottom View 6 5 RL78/G13 (Top View) 4 3 2 1 A B C D E F F E D C B A INDEX MARK A P60/SCLA0 B VDD C P121/X1 D P122/X2/EXCLK E P137/INTP0 F P40/TOOL0 6 6 P62 P61/SDAA0 VSS REGC RESET P120/ANI19 5 5 P71/SI21/ SDA21 P14/RxD2/SI20/ SDA20/(SCLA0) /(TI03)/(TO03) P31/TI03/TO03/ INTP4/ PCLBUZ0 P00/TI00/TxD1 P50/INTP1/ SI11/SDA11 P70/SCK21/ SCL21 P15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02) P22/ANI2 P20/ANI0/ AVREFP P21/ANI1/ AVREFM P30/INTP3/ SCK11/SCL11 P16/TI01/TO01/ INTP5/(RxD0) P12/SO00/ TxD0/TOOLTxD /(TI05)/(TO05) P24/ANI4 P23/ANI3 P51/INTP2/ SO11 P17/TI02/TO02/ (TxD0) P13/TxD2/ SO20/(SDAA0)/ (TI04)/(TO04) P11/SI00/RxD0/ TOOLRxD/ SDA00/(TI06)/ (TO06) P10/SCK00/ SCL00/(TI07)/ (TO07) B C D P72/SO21 4 3 2 1 A P01/TO00/RxD1 4 3 2 P147/ANI18 P25/ANI5 1 E F Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 21 of 196 RL78/G13 1. OUTLINE 1.3.7 40-pin products P147/ANI18 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(RXD0) P17/TI02/TO02/(TXD0) P51/INTP2/SO11  40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch) P26/ANI6 P25/ANI5 P24/ANI4 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P01/TO00/RxD1 P00/TI00/TxD1 P120/ANI19 30 29 28 27 26 25 24 23 22 21 31 20 exposed die pad 32 19 33 18 34 17 RL78/G13 35 16 (Top View) 36 15 37 14 38 13 39 12 40 11 1 2 3 4 5 6 7 8 9 10 P50/INTP1/SI11/SDA11 P30/INTP3/RTC1HZ/SCK11/SCL11 P70/KR0/SCK21/SCL21 P71/KR1/SI21/SDA21 P72/KR2/SO21 P73/KR3 P31/TI03/TO03/INTP4/PCLBUZ0 P62 P61/SDAA0 P60/SCLA0 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD INDEX MARK Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. 3. It is recommended to connect an exposed die pad to Vss. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 22 of 196 RL78/G13 1. OUTLINE 1.3.8 44-pin products P147/ANI18 P146 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(RXD0) P17/TI02/TO02/(TXD0) P51/INTP2/SO11  44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch) 33 32 31 30 29 28 27 26 25 24 23 34 35 36 37 38 39 40 41 42 43 44 22 21 20 19 18 RL78/G13 17 (Top View) 16 15 14 13 12 1 2 3 4 5 6 7 8 9 10 11 P50/INTP1/SI11/SDA11 P30/INTP3/RTC1HZ/SCK11/SCL11 P70/KR0/SCK21/SCL21 P71/KR1/SI21/SDA21 P72/KR2/SO21 P73/KR3 P31/TI03/TO03/INTP4/PCLBUZ0 P63 P62 P61/SDAA0 P60/SCLA0 P41/TI07/TO07 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD P27/ANI7 P26/ANI6 P25/ANI5 P24/ANI4 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P01/TO00/RxD1 P00/TI00/TxD1 P120/ANI19 Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 23 of 196 RL78/G13 1. OUTLINE 1.3.9 48-pin products P140/PCLBUZ0/INTP6 P00/TI00/TxD1 P01/TO00/RxD1 P130 P20/ANI0/AVREFP P21/ANI1/AVREFM P22/ANI2 P23/ANI3 P24/ANI4 P25/ANI5 P26/ANI6 P27/ANI7  48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch) 36 35 34 33 32 31 30 29 28 27 26 25 24 37 23 38 22 39 21 40 20 41 RL78/G13 19 42 (Top View) 18 43 17 44 16 45 15 46 14 47 13 48 1 2 3 4 5 6 7 8 9 10 11 12 P147/ANI18 P146 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(RXD0) P17/TI02/TO02/(TXD0) P51/INTP2/SO11 P50/INTP1/SI11/SDA11 P60/SCLA0 P61/SDAA0 P62 P63 P31/TI03/TO03/INTP4/(PCLBUZ0) P75/KR5/INTP9/SCK01/SCL01 P74/KR4/INTP8/SI01/SDA01 P73/KR3/SO01 P72/KR2/SO21 P71/KR1/SI21/SDA21 P70/KR0/SCK21/SCL21 P30/INTP3/RTC1HZ/SCK11/SCL11 P120/ANI19 P41/TI07/TO07 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 24 of 196 RL78/G13 1. OUTLINE P140/PCLBUZ0/INTP6 P00/TI00/TxD1 P01/TO00/RxD1 P130 P20/ANI0/AVREFP P21/ANI1/AVREFM P22/ANI2 P23/ANI3 P24/ANI4 P25/ANI5 P26/ANI6 P27/ANI7  48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch) P120/ANI19 P41/TI07/TO07 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS VDD 36 35 34 33 32 31 30 29 28 27 26 25 37 24 38 23 exposed die pad 39 22 40 21 41 20 42 19 RL78/G13 43 18 (Top View) 44 17 45 16 46 15 47 14 48 13 1 2 3 4 5 6 7 8 9 10 11 12 P147/ANI18 P146 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(RXD0) P17/TI02/TO02/(TXD0) P51/INTP2/SO11 P50/INTP1/SI11/SDA11 P60/SCLA0 P61/SDAA0 P62 P63 P31/TI03/TO03/INTP4/(PCLBUZ0) P75/KR5/INTP9/SCK01/SCL01 P74/KR4/INTP8/SI01/SDA01 P73/KR3/SO01 P72/KR2/SO21 P71/KR1/SI21/SDA21 P70/KR0/SCK21/SCL21 P30/INTP3/RTC1HZ/SCK11/SCL11 INDEX MARK Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. 3. It is recommended to connect an exposed die pad to Vss. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 25 of 196 RL78/G13 1. OUTLINE 1.3.10 52-pin products P30/INTP3/RTC1HZ/SCK11/SCL11 P50/INTP1/SI11/SDA11 P51/INTP2/SO11 P17/TI02/TO02/(TXD0) P16/TI01/TO01/INTP5/(RXD0) P15/PCLBUZ1/SCK20/SCL20/(TI02)/(TO02) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P12/SO00/TxD0/TOOLTxD/(TI05)/(TO05) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P10/SCK00/SCL00/(TI07)/(TO07) P146 P147/ANI18  52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch) 39 38 37 36 35 34 33 32 31 30 29 28 27 P27/ANI7 40 26 P70/KR0/SCK21/SCL21 P26/ANI6 41 25 P71/KR1/SI21/SDA21 P25/ANI5 42 24 P72/KR2/SO21 P24/ANI4 43 23 P73/KR3/SO01 P23/ANI3 44 22 P74/KR4/INTP8/SI01/SDA01 21 P75/KR5/INTP9/SCK01/SCL01 20 P76/KR6/INTP10/(RXD2) 19 P77/KR7/INTP11/(TXD2) P22/ANI2 45 P21/ANI1/AVREFM 46 P20/ANI0/AVREFP 47 P130 48 18 P31/TI03/TO03/INTP4/(PCLBUZ0) P03/ANI16/RxD1 49 17 P63 P02/ANI17/TxD1 50 16 P62 P01/TO00 51 15 P61/SDAA0 P00/TI00 52 14 P60/SCLA0 P137/INTP0 VDD P124/XT2/EXCLKS VSS RESET REGC 8 9 10 11 12 13 P121/X1 6 7 P122/X2/EXCLK 5 P123/XT1 3 4 P40/TOOL0 2 P120/ANI19 P140/PCLBUZ0/INTP6 1 P41/TI07/TO07 RL78/G13 (Top View) Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 26 of 196 RL78/G13 1. OUTLINE 1.3.11 64-pin products  64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch) P147/ANI18 P146 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(INTP5)/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(SI00)/(RXD0) P17/TI02/TO02/(SO00)/(TXD0) P55/(PCLBUZ1)/(SCK00) P54 P53/(INTP11) P52/(INTP10) P51/INTP2/SO11 P50/INTP1/SI11/SDA11  64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P27/ANI7 P26/ANI6 P25/ANI5 P24/ANI4 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P130 P04/SCK10/SCL10 P03/ANI16/SI10/RxD1/SDA10 P02/ANI17/SO10/TxD1 P01/TO00 P00/TI00 P141/PCLBUZ1/INTP7 P140/PCLBUZ0/INTP6 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 RL78/G13 (Top View) P30/INTP3/RTC1HZ/SCK11/SCL11 P05/TI05/TO05 P06/TI06/TO06 P70/KR0/SCK21/SCL21 P71/KR1/SI21/SDA21 P72/KR2/SO21 P73/KR3/SO01 P74/KR4/INTP8/SI01/SDA01 P75/KR5/INTP9/SCK01/SCL01 P76/KR6/INTP10/(RXD2) P77/KR7/INTP11/(TXD2) P31/TI03/TO03/INTP4/(PCLBUZ0) P63 P62 P61/SDAA0 P60/SCLA0 6 7 8 9 10 11 12 13 14 15 16 P120/ANI19 P43 P42/TI04/TO04 P41/TI07/TO07 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS EVSS0 VDD EVDD0 1 2 3 4 5 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 Cautions 1. Make EVSS0 pin the same potential as VSS pin. 2. Make VDD pin the potential that is higher than EVDD0 pin. 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the VSS and EVSS0 pins to separate ground lines. 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 27 of 196 RL78/G13 1. OUTLINE  64-pin plastic VFBGA (4 × 4 mm, 0.4 mm pitch) Top View Bottom View 8 7 6 RL78/G13 (Top View) 5 4 3 2 1 A B C D E F G H H G F E D C B A Index mark Pin No. Name Pin No. Name Pin No. Name Pin No. Name A1 P05/TI05/TO05 C1 P51/INTP2/SO11 E1 P13/TxD2/SO20/ G1 (SDAA0)/(TI04)/(TO04) P146 A2 P30/INTP3/RTC1HZ /SCK11/SCL11 C2 P71/KR1/SI21/SDA21 E2 P14/RxD2/SI20/SDA20 G2 /(SCLA0)/(TI03)/(TO03) P25/ANI5 A3 P70/KR0/SCK21 /SCL21 C3 P74/KR4/INTP8/SI01 /SDA01 E3 P15/SCK20/SCL20/ (TI02)/(TO02) G3 P24/ANI4 A4 P75/KR5/INTP9 /SCK01/SCL01 C4 P52/(INTP10) E4 P16/TI01/TO01/INTP5 G4 /(SI00)/(RxD0) P22/ANI2 A5 P77/KR7/INTP11/ (TxD2) C5 P53/(INTP11) E5 P03/ANI16/SI10/RxD1 G5 /SDA10 P130 A6 P61/SDAA0 C6 P63 E6 P41/TI07/TO07 G6 P02/ANI17/SO10/TxD1 A7 P60/SCLA0 C7 VSS E7 RESET G7 P00/TI00 A8 EVDD0 C8 P121/X1 E8 P137/INTP0 G8 P124/XT2/EXCLKS B1 P50/INTP1/SI11 /SDA11 D1 P55/(PCLBUZ1)/ (SCK00) F1 P10/SCK00/SCL00/ (TI07)/(TO07) H1 P147/ANI18 B2 P72/KR2/SO21 D2 P06/TI06/TO06 F2 P11/SI00/RxD0 /TOOLRxD/SDA00/ (TI06)/(TO06) H2 P27/ANI7 B3 P73/KR3/SO01 D3 P17/TI02/TO02/ (SO00)/(TxD0) F3 P12/SO00/TxD0 /TOOLTxD/(INTP5)/ H3 P26/ANI6 (TI05)/(TO05) B4 P76/KR6/INTP10/ (RxD2) D4 P54 F4 P21/ANI1/AVREFM H4 P23/ANI3 B5 P31/TI03/TO03 /INTP4/(PCLBUZ0) D5 P42/TI04/TO04 F5 P04/SCK10/SCL10 H5 P20/ANI0/AVREFP B6 P62 D6 P40/TOOL0 F6 P43 H6 P141/PCLBUZ1/INTP7 B7 VDD D7 REGC F7 P01/TO00 H7 P140/PCLBUZ0/INTP6 B8 EVSS0 D8 P122/X2/EXCLK F8 P123/XT1 H8 P120/ANI19 Cautions 1. Make EVSS0 pin the same potential as VSS pin. 2. Make VDD pin the potential that is higher than EVDD0 pin. 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the VSS and EVSS0 pins to separate ground lines. 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 28 of 196 RL78/G13 1. OUTLINE 1.3.12 80-pin products  80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch) P153/ANI11 P100/ANI20 P147/ANI18 P146 P111/(INTP11) P110/(INTP10) P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(INTP5)/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(SI00)/(RXD0) P17/TI02/TO02/(SO00)/(TXD0) P55/(PCLBUZ1)/(SCK00) P54/SCK31/SCL31 P53/SI31/SDA31 P52/SO31 P51/INTP2/SO11 P50/INTP1/SI11/SDA11  80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch) 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P152/ANI10 P151/ANI9 P150/ANI8 P27/ANI7 P26/ANI6 P25/ANI5 P24/ANI4 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P130 P04/SCK10/SCL10 P03/ANI16/SI10/RxD1/SDA10 P02/ANI17/SO10/TxD1 P01/TO00 P00/TI00 P144/SO30/TxD3 P143/SI30/RxD3/SDA30 P142/SCK30/SCL30 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 RL78/G13 (Top View) 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 P30/INTP3/RTC1HZ/SCK11/SCL11 P05/TI05/TO05 P06/TI06/TO06 P70/KR0/SCK21/SCL21 P71/KR1/SI21/SDA21 P72/KR2/SO21 P73/KR3 P74/KR4/INTP8 P75/KR5/INTP9 P76/KR6/INTP10/(RXD2) P77/KR7/INTP11/(TXD2) P67/TI13/TO13 P66/TI12/TO12 P65/TI11/TO11 P64/TI10/TO10 P31/TI03/TO03/INTP4/(PCLBUZ0) P63/SDAA1 P62/SCLA1 P61/SDAA0 P60/SCLA0 P141/PCLBUZ1/INTP7 P140/PCLBUZ0/INTP6 P120/ANI19 P45/SO01 P44/SI01/SDA01 P43/SCK01/SCL01 P42/TI04/TO04 P41/TI07/TO07 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS EVSS0 VDD EVDD0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cautions 1. Make EVSS0 pin the same potential as VSS pin. 2. Make VDD pin the potential that is higher than EVDD0 pin. 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the VSS and EVSS0 pins to separate ground lines. 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 29 of 196 RL78/G13 1. OUTLINE 1.3.13 100-pin products P100/ANI20 P147/ANI18 P146/(INTP4) P111/(INTP11) P110/(INTP10) P101 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(INTP5)/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(SI00)/(RXD0) P17/TI02/TO02/(SO00)/(TXD0) P57/(INTP3) P56/(INTP1) P55/(PCLBUZ1)/(SCK00) P54/SCK31/SCL31 P53/SI31/SDA31 P52/SO31 P51/SO11 P50/SI11/SDA11 EVDD1 P30/INTP3/RTC1HZ/SCK11/SCL11 P87/(INTP9)  100-pin plastic LQFP (14 × 14 mm, 0.5 mm pitch) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 76 49 77 48 78 47 79 46 80 45 81 44 82 43 83 42 84 41 85 40 86 39 87 RL78/G13 38 88 (Top View) 37 89 36 90 35 91 34 92 33 93 32 94 31 95 30 96 29 97 28 98 27 99 26 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P86/(INTP8) P85/(INTP7) P84/(INTP6) P83 P82/(SO10)/(TXD1) P81/(SI10)/(RXD1)/(SDA10) P80/(SCK10)/(SCL10) EVSS1 P05 P06 P70/KR0/SCK21/SCL21 P71/KR1/SI21/SDA21 P72/KR2/SO21 P73/KR3 P74/KR4/INTP8 P75/KR5/INTP9 P76/KR6/INTP10/(RXD2) P77/KR7/INTP11/(TXD2) P67/TI13/TO13 P66/TI12/TO12 P65/TI11/TO11 P64/TI10/TO10 P31/TI03/TO03/INTP4/(PCLBUZ0) P63/SDAA1 P62/SCLA1 P142/SCK30/SCL30 P141/PCLBUZ1/INTP7 P140/PCLBUZ0/INTP6 P120/ANI19 P47/INTP2 P46/INTP1/TI05/TO05 P45/SO01 P44/SI01/SDA01 P43/SCK01/SCL01 P42/TI04/TO04 P41 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS EVSS0 VDD EVDD0 P60/SCLA0 P61/SDAA0 P156/ANI14 P155/ANI13 P154/ANI12 P153/ANI11 P152/ANI10 P151/ANI9 P150/ANI8 P27/ANI7 P26/ANI6 P25/ANI5 P24/ANI4 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P130 P102/TI06/TO06 P04/SCK10/SCL10 P03/ANI16/SI10/RxD1/SDA10 P02/ANI17/SO10/TxD1 P01/TO00 P00/TI00 P145/TI07/TO07 P144/SO30/TxD3 P143/SI30/RxD3/SDA30 Cautions 1. Make EVSS0, EVSS1 pins the same potential as VSS pin. 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1). 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the VSS, EVSS0 and EVSS1 pins to separate ground lines. 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 30 of 196 RL78/G13 1. OUTLINE P140/PCLBUZ0/INTP6 P141/PCLBUZ1/INTP7 P142/SCK30/SCL30 P143/SI30/RxD3/SDA30 P144/SO30/TxD3 P145/TI07/TO07 P00/TI00 P01/TO00 P02/ANI17/SO10/TxD1 P03/ANI16/SI10/RxD1/SDA10 P04/SCK10/SCL10 P102/TI06/TO06 P130 P20/ANI0/AVREFP P21/ANI1/AVREFM P22/ANI2 P23/ANI3 P24/ANI4 P25/ANI5 P26/ANI6 P27/ANI7 P150/ANI8 P151/ANI9 P152/ANI10 P153/ANI11 P154/ANI12 P155/ANI13 P156/ANI14 P100/ANI20 P147/ANI18  100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 81 49 82 48 83 47 84 46 85 45 86 44 87 43 88 42 89 41 90 RL78/G13 40 91 (Top View) 39 92 38 93 37 94 36 95 35 96 34 97 33 98 32 99 31 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 P146/(INTP4) P111/(INTP11) P110/(INTP10) P101 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(INTP5)/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(SI00)/(RXD0) P17/TI02/TO02/(SO00)/(TXD0) P57/(INTP3) P56/(INTP1) P55/(PCLBUZ1)/(SCK00) P54/SCK31/SCL31 P53/SI31/SDA31 P52/SO31 P51/SO11 P50/SI11/SDA11 P60/SCLA0 P61/SDAA0 P62/SCLA1 P63/SDAA1 P31/TI03/TO03/INTP4/(PCLBUZ0) P64/TI10/TO10 P65/TI11/TO11 P66/TI12/TO12 P67/TI13/TO13 P77/KR7/INTP11/(TXD2) P76/KR6/INTP10/(RXD2) P75/KR5/INTP9 P74/KR4/INTP8 P73/KR3 P72/KR2/SO21 P71/KR1/SI21/SDA21 P70/KR0/SCK21/SCL21 P06 P05 EVSS1 P80/(SCK10)/(SCL10) P81/(SI10)/(RXD1)/(SDA10) P82/(SO10)/(TXD1) P83 P84/(INTP6) P85/(INTP7) P86/(INTP8) P87/(INTP9) P30/INTP3/RTC1HZ/SCK11/SCL11 EVDD1 P120/ANI19 P47/INTP2 P46/INTP1/TI05/TO05 P45/SO01 P44/SI01/SDA01 P43/SCK01/SCL01 P42/TI04/TO04 P41 P40/TOOL0 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS EVSS0 VDD EVDD0 Cautions 1. Make EVSS0, EVSS1 pins the same potential as VSS pin. 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1). 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the VSS, EVSS0 and EVSS1 pins to separate ground lines. 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 31 of 196 RL78/G13 1. OUTLINE 1.3.14 128-pin products P100/ANI20 P147/ANI18 P146/(INTP4) P111/(INTP11) P110/(INTP10) P101 P117/ANI24 P116/ANI25 P115/ANI26 P114 P113 P112 P97/SO11 P96/SI11/SDA11 P95/SCK11/SCL11 P94 P93 P92 P91 P90 P10/SCK00/SCL00/(TI07)/(TO07) P11/SI00/RxD0/TOOLRxD/SDA00/(TI06)/(TO06) P12/SO00/TxD0/TOOLTxD/(INTP5)/(TI05)/(TO05) P13/TxD2/SO20/(SDAA0)/(TI04)/(TO04) P14/RxD2/SI20/SDA20/(SCLA0)/(TI03)/(TO03) P15/SCK20/SCL20/(TI02)/(TO02) P16/TI01/TO01/INTP5/(SI00)/(RXD0) P17/TI02/TO02/(SO00)/(TXD0) P57/(INTP3) P56/(INTP1) P55/(PCLBUZ1)/(SCK00) P54/SCK31/SCL31 P53/SI31/SDA31 P52/SO31 P51 P50 P30/INTP3/RTC1HZ P87/(INTP9)  128-pin plastic LFQFP (14 × 20 mm, 0.5 mm pitch) 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 103 64 104 63 105 62 106 61 107 60 108 59 109 58 110 57 111 56 112 55 113 54 114 53 RL78/G13 115 52 (Top View) 51 116 50 117 49 118 48 119 47 120 46 121 45 122 44 123 43 124 42 125 41 126 40 127 39 128 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 P86/(INTP8) P85/(INTP7) P84/(INTP6) P83 P82/(SO10)/(TXD1) P81/(SI10)/(RXD1)/(SDA10) P80/(SCK10)/(SCL10) EVDD1 EVSS1 P05 P06 P70/KR0/SCK21/SCL21 P71/KR1/SI21/SDA21 P72/KR2/SO21 P73/KR3 P74/KR4/INTP8 P75/KR5/INTP9 P76/KR6/INTP10/(RXD2) P77/KR7/INTP11/(TXD2) P67/TI13/TO13 P66/TI12/TO12 P65/TI11/TO11 P64/TI10/TO10 P31/TI03/TO03/INTP4/(PCLBUZ0) P63/SDAA1 P62/SCLA1 P142/SCK30/SCL30 P141/PCLBUZ1/INTP7 P140/PCLBUZ0/INTP6 P120/ANI19 P37/ANI21 P36/ANI22 P35/ANI23 P34 P33 P32 P106/TI17/TO17 P105/TI16/TO16 P104/TI15/TO15 P103/TI14/TO14 P47/INTP2 P46/INTP1/TI05/TO05 P45/SO01 P44/SI01/SDA01 P43/SCK01/SCL01 P42/TI04/TO04 P41 P40/TOOL0 P127 P126 P125 RESET P124/XT2/EXCLKS P123/XT1 P137/INTP0 P122/X2/EXCLK P121/X1 REGC VSS EVSS0 VDD EVDD0 P60/SCLA0 P61/SDAA0 P156/ANI14 P155/ANI13 P154/ANI12 P153/ANI11 P152/ANI10 P151/ANI9 P150/ANI8 P27/ANI7 P26/ANI6 P25/ANI5 P24/ANI4 P23/ANI3 P22/ANI2 P21/ANI1/AVREFM P20/ANI0/AVREFP P130 P102/TI06/TO06 P07 P04/SCK10/SCL10 P03/ANI16/SI10/RxD1/SDA10 P02/ANI17/SO10/TxD1 P01/TO00 P00/TI00 P145/TI07/TO07 P144/SO30/TxD3 P143/SI30/RxD3/SDA30 Cautions 1. Make EVSS0, EVSS1 pins the same potential as VSS pin. 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1). 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 F). Remarks 1. For pin identification, see 1.4 Pin Identification. 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the VSS, EVSS0 and EVSS1 pins to separate ground lines. 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 32 of 196 RL78/G13 1. OUTLINE 1.4 Pin Identification ANI0 to ANI14, REGC: Regulator capacitance ANI16 to ANI26: Analog input RESET: Reset AVREFM: A/D converter reference RTC1HZ: Real-time clock correction clock potential ( side) input AVREFP: (1 Hz) output A/D converter reference RxD0 to RxD3: potential (+ side) input SCK00, SCK01, SCK10, EVDD0, EVDD1: Power supply for port SCK11, SCK20, SCK21, EVSS0, EVSS1: Ground for port SCLA0, SCLA1: EXCLK: External clock input (Main SCLA0, SCLA1, SCL00, Receive data Serial clock input/output system clock) SCL01, SCL10, SCL11, External clock input SCL20,SCL21, SCL30, (Subsystem clock) SCL31: Interrupt request from SDAA0, SDAA1, SDA00, peripheral SDA01,SDA10, SDA11, KR0 to KR7: Key return SDA20,SDA21, SDA30, P00 to P07: Port 0 SDA31: P10 to P17: Port 1 SI00, SI01, SI10, SI11, P20 to P27: Port 2 SI20, SI21, SI30, SI31: P30 to P37: Port 3 SO00, SO01, SO10, P40 to P47: Port 4 SO11, SO20, SO21, P50 to P57: Port 5 SO30, SO31: P60 to P67: Port 6 TI00 to TI07, P70 to P77: Port 7 TI10 to TI17: P80 to P87: Port 8 TO00 to TO07, P90 to P97: Port 9 TO10 to TO17: Timer output P100 to P106: Port 10 TOOL0: Data input/output for tool P110 to P117: Port 11 TOOLRxD, TOOLTxD: Data input/output for external device P120 to P127: Port 12 TxD0 to TxD3: Transmit data P130, P137: Port 13 VDD: Power supply P140 to P147: Port 14 VSS: Ground P150 to P156: Port 15 X1, X2: Crystal oscillator (main system clock) XT1, XT2: Crystal oscillator (subsystem clock) EXCLKS: INTP0 to INTP11: PCLBUZ0, PCLBUZ1: Programmable clock Serial clock output Serial data input/output Serial data input Serial data output Timer input output/buzzer output R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 33 of 196 RL78/G13 1. OUTLINE 1.5 Block Diagram 1.5.1 20-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 5 P10 to P12, P16, P17 TI01/TO01/P16 ch1 PORT 2 3 P20 to P22 TI02/TO02/P17 ch2 PORT 3 P30 PORT 4 P40 ch3 ch4 PORT 12 ch5 ch6 ch7 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR RL78 CPU CORE P121, P122 PORT 13 P137 PORT 14 P147 CODE FLASH MEMORY DATA FLASH MEMORY 2 A/D CONVERTER 3 ANI0/P20 to ANI2/P22 3 ANI16/P01, ANI17/P00, ANI18/P147 AVREFP/P20 AVREFM/P21 12-BIT INTERVAL TIMER POWER ON RESET/ VOLTAGE DETECTOR REAL-TIME CLOCK POR/LVD CONTROL RAM SERIAL ARRAY UNIT0 (4ch) RxD0/P11 TxD0/P12 RESET CONTROL ON-CHIP DEBUG UART0 VDD RxD1/P01 TxD1/P00 SCK00/P10 SI00/P11 SO00/P12 VSS TOOLRxD/P11, TOOLTxD/P12 UART1 SYSTEM CONTROL HIGH-SPEED CSI00 SCK11/P30 SI11/P17 SO11/P16 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P17 IIC11 R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR ON-CHIP CRC OSCILLATOR VOLTAGE REGULATOR DIRECT MEMORY ACCESS CONTROL BCD ADJUSTMENT TOOL0/P40 RESET X1/P121 X2/EXCLK/P122 REGC INTP0/P137 INTERRUPT CONTROL INTP3/P30 INTP5/P16 Page 34 of 196 RL78/G13 1. OUTLINE 1.5.2 24-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 5 P10 to P12, P16, P17 TI01/TO01/P16 ch1 PORT 2 3 P20 to P22 TI02/TO02/P17 ch2 PORT 3 2 P30, P31 TI03/TO03/P31 ch3 PORT 4 P40 PORT 5 P50 ch4 ch5 ch6 ch7 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR 12-BIT INTERVAL TIMER RL78 CPU CORE PORT 6 2 P60, P61 PORT 12 2 P121, P122 PORT 13 P137 PORT 14 P147 CODE FLASH MEMORY DATA FLASH MEMORY A/D CONVERTER 3 ANI0/P20 to ANI2/P22 3 ANI16/P01, ANI17/P00, ANI18/P147 REAL-TIME CLOCK SERIAL ARRAY UNIT0 (4ch) RxD0/P11 TxD0/P12 UART0 RxD1/P01 TxD1/P00 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCK11/P30 SI11/P50 SO11/P17 CSI11 AVREFP/P20 AVREFM/P21 POWER ON RESET/ VOLTAGE DETECTOR RAM POR/LVD CONTROL RESET CONTROL VDD VSS TOOLRxD/P11, TOOLTxD/P12 TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL SERIAL INTERFACE IICA0 SDAA0/P61 SCLA0/P60 RESET X1/P121 HIGH-SPEED ON-CHIP X2/EXCLK/P122 OSCILLATOR SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P50 IIC11 BUZZER OUTPUT DIRECT MEMORY ACCESS CONTROL BCD ADJUSTMENT PCLBUZ0/P31 CLOCK OUTPUT CONTROL MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR VOLTAGE REGULATOR REGC INTP0/P137 CRC INTP1/P50 INTERRUPT CONTROL 2 INTP3/P30, INTP4/P31 INTP5/P16 R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 35 of 196 RL78/G13 1. OUTLINE 1.5.3 25-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 5 P10 to P12, P16, P17 TI01/TO01/P16 ch1 PORT 2 3 P20 to P22 TI02/TO02/P17 ch2 PORT 3 2 P30, P31 TI03/TO03/P31 ch3 PORT 4 P40 PORT 5 P50 ch4 ch5 ch6 ch7 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR 12-BIT INTERVAL TIMER RL78 CPU CORE PORT 6 2 P60, P61 PORT 12 2 P121, P122 PORT 13 P130 P137 PORT 14 P147 CODE FLASH MEMORY DATA FLASH MEMORY A/D CONVERTER 3 ANI0/P20 to ANI2/P22 3 ANI16/P01, ANI17/P00, ANI18/P147 AVREFP/P20 AVREFM/P21 REAL-TIME CLOCK SERIAL ARRAY UNIT0 (4ch) RxD0/P11 TxD0/P12 UART0 RxD1/P01 TxD1/P00 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCK11/P30 SI11/P50 SO11/P17 CSI11 POWER ON RESET/ VOLTAGE DETECTOR RAM POR/LVD CONTROL RESET CONTROL VDD SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P50 IIC11 VSS TOOLRxD/P11, TOOLTxD/P12 TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL SERIAL INTERFACE IICA0 SDAA0/P61 SCLA0/P60 RESET X1/P121 HIGH-SPEED ON-CHIP X2/EXCLK/P122 OSCILLATOR BUZZER OUTPUT PCLBUZ0/P31 CLOCK OUTPUT CONTROL DIRECT MEMORY ACCESS CONTROL BCD ADJUSTMENT MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR VOLTAGE REGULATOR REGC INTP0/P137 CRC INTP1/P50 INTERRUPT CONTROL 2 INTP3/P30, INTP4/P31 INTP5/P16 R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 36 of 196 RL78/G13 1. OUTLINE 1.5.4 30-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 4 P20 to P23 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 TI03/TO03/P31 (TI03/TO03/P14) P30, P31 ch3 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 (TI06/TO06/P11) ch6 (TI07/TO07/P10) RxD2/P14 ch7 PORT 4 LOW-SPEED ON-CHIP OSCILLATOR SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P01 TxD1/P00 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCK11/P30 SI11/P50 SO11/P51 CSI11 SCL00/P10 SDA00/P11 IIC00 PORT 6 2 P60, P61 P120 P121, P122 2 PORT 13 P137 PORT 14 P147 4 ANI0/P20 to ANI3/P23 RL78 CPU CORE A/D CONVERTER 4 ANI16/P01, ANI17/P00, ANI18/P147, ANI19/P120 AVREFP/P20 AVREFM/P21 DATA FLASH MEMORY POWER ON RESET/ VOLTAGE DETECTOR POR/LVD CONTROL RAM RESET CONTROL VDD VSS TOOLRxD/P11, TOOLTxD/P12 SDAA0/P61(SDAA0/P13) SERIAL INTERFACE IICA0 SCLA0/P60(SCLA0/P14) IIC11 BUZZER OUTPUT SERIAL ARRAY UNIT1 (2ch) UART2 LINSEL SCK20/P15 SI20/P14 SO20/P13 CSI20 SCL20/P15 SDA20/P14 IIC20 Remark P50, P51 CODE FLASH MEMORY 2 RxD2/P14 TxD2/P13 2 12-BIT INTERVAL TIMER REAL-TIME CLOCK SCL11/P30 SDA11/P50 PORT 5 PORT 12 WINDOW WATCHDOG TIMER P40 CLOCK OUTPUT CONTROL MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR DIRECT MEMORY ACCESS CONTROL BCD ADJUSTMENT PCLBUZ0/P31, PCLBUZ1/P15 TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL RESET X1/P121 HIGH-SPEED ON-CHIP OSCILLATOR X2/EXCLK/P122 VOLTAGE REGULATOR REGC CRC RxD2/P14 INTP0/P137 INTERRUPT CONTROL 2 2 INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 37 of 196 RL78/G13 1. OUTLINE 1.5.5 32-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 4 P20 to P23 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 P30, P31 TI03/TO03/P31 (TI03/TO03/P14) ch3 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 (TI06/TO06/P11) (TI07/TO07/P10) RxD2/P14 PORT 4 PORT 5 2 P50, P51 ch6 PORT 6 3 P60 to P62 ch7 PORT 7 PORT 12 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR 12-BIT INTERVAL TIMER REAL-TIME CLOCK CODE FLASH MEMORY RL78 CPU CORE RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P01 TxD1/P00 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P50 IIC11 PORT 14 P147 4 ANI0/P20 to ANI3/P23 4 ANI16/P01, ANI17/P00, ANI18/P147, ANI19/P120 AVREFP/P20 AVREFM/P21 POWER ON RESET/ VOLTAGE DETECTOR RAM POR/LVD CONTROL RESET CONTROL VSS TOOLRxD/P11, TOOLTxD/P12 TOOL0/P40 ON-CHIP DEBUG SDAA0/P61(SDAA0/P13) SERIAL INTERFACE IICA0 SCLA0/P60(SCLA0/P14) BUZZER OUTPUT 2 SERIAL ARRAY UNIT1 (2ch) CLOCK OUTPUT CONTROL LINSEL MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR SCK20/P15 SI20/P14 SO20/P13 CSI20 DIRECT MEMORY ACCESS CONTROL SCL20/P15 SDA20/P14 IIC20 BCD ADJUSTMENT Remark P120 P121, P122 2 P137 A/D CONVERTER VDD SCK11/P30 SI11/P50 SO11/P51 P70 PORT 13 DATA FLASH MEMORY SERIAL ARRAY UNIT0 (4ch) RxD2/P14 TxD2/P13 P40 UART2 PCLBUZ0/P31, PCLBUZ1/P15 CRC SYSTEM CONTROL RESET X1/P121 HIGH-SPEED ON-CHIP OSCILLATOR X2/EXCLK/P122 VOLTAGE REGULATOR REGC RxD2/P14 INTP0/P137 INTERRUPT CONTROL 2 2 INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 38 of 196 RL78/G13 1. OUTLINE 1.5.6 36-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 6 P20 to P25 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 TI03/TO03/P31 (TI03/TO03/P14) P30, P31 ch3 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 (TI06/TO06/P11) (TI07/TO07/P10) RxD2/P14 PORT 4 PORT 5 2 P50, P51 ch6 PORT 6 3 P60 to P62 ch7 PORT 7 3 P70 to P72 2 P121, P122 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR PORT 12 CODE FLASH MEMORY RL78 CPU CORE RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P01 TxD1/P00 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCK11/P30 SI11/P50 SO11/P51 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P50 IIC11 P137 PORT 14 P147 A/D CONVERTER POWER ON RESET/ VOLTAGE DETECTOR RAM VDD VSS TOOLRxD/P11, TOOLTxD/P12 SDAA0/P61(SDAA0/P13) MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR IIC21 SCLA0/P60(SCLA0/P14) 2 CSI20 SCL21/P70 SDA21/P71 ANI18/P147, ANI19/P120 POR/LVD CONTROL TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED ON-CHIP OSCILLATOR CLOCK OUTPUT CONTROL IIC20 2 BUZZER OUTPUT UART2 SCL20/P15 SDA20/P14 ANI0/P20 to ANI5/P25 RESET CONTROL LINSEL CSI21 6 AVREFP/P20 AVREFM/P21 SERIAL INTERFACE IICA0 SERIAL ARRAY UNIT1 (2ch) Remark PORT 13 DATA FLASH MEMORY SERIAL ARRAY UNIT0 (4ch) SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 P120 12-BIT INTERVAL TIMER REAL-TIME CLOCK RxD2/P14 TxD2/P13 P40 PCLBUZ0/P31, PCLBUZ1/P15 VOLTAGE REGULATOR REGC RxD2/P14 INTP0/P137 CRC INTERRUPT CONTROL 2 2 DIRECT MEMORY ACCESS CONTROL INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 BCD ADJUSTMENT Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 39 of 196 RL78/G13 1. OUTLINE 1.5.7 40-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 7 P20 to P26 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 P30, P31 TI03/TO03/P31 (TI03/TO03/P14) ch3 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 (TI06/TO06/P11) (TI07/TO07/P10) RxD2/P14 PORT 4 PORT 5 2 P50, P51 ch6 PORT 6 3 P60 to P62 ch7 PORT 7 4 P70 to P73 4 P121 to P124 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR RTC1HZ/P30 PORT 12 REAL-TIME CLOCK RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P01 TxD1/P00 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCK11/P30 SI11/P50 SO11/P51 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P50 IIC11 CODE FLASH MEMORY RL78 CPU CORE P137 PORT 14 P147 A/D CONVERTER KEY RETURN POWER ON RESET/ VOLTAGE DETECTOR VDD VSS TOOLRxD/P11, TOOLTxD/P12 SDAA0/P61(SDAA0/P13) MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR IIC21 ANI18/P147, ANI19/P120 KR0/P70 to KR3/P73 4 DIRECT MEMORY ACCESS CONTROL POR/LVD CONTROL RESET CONTROL TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL 2 CSI20 SCL21/P70 SDA21/P71 2 SCLA0/P60(SCLA0/P14) BUZZER OUTPUT CLOCK OUTPUT CONTROL IIC20 ANI0/P20 to ANI6/P26 RAM UART2 CSI21 7 AVREFP/P20 AVREFM/P21 LINSEL SCL20/P15 SDA20/P14 Remark PORT 13 DATA FLASH MEMORY SERIAL INTERFACE IICA0 SERIAL ARRAY UNIT1 (2ch) SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 P120 12-BIT INTERVAL TIMER SERIAL ARRAY UNIT0 (4ch) RxD2/P14 TxD2/P13 P40 PCLBUZ0/P31, PCLBUZ1/P15 CRC RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC RxD2/P14 INTP0/P137 INTERRUPT CONTROL 2 2 BCD ADJUSTMENT INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 40 of 196 RL78/G13 1. OUTLINE 1.5.8 44-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 8 P20 to P27 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 TI03/TO03/P31 (TI03/TO03/P14) P30, P31 ch3 PORT 4 2 P40, P41 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 PORT 5 2 P50, P51 (TI06/TO06/P11) TI07/TO07/P41 (TI07/TO07/P10) RxD2/P14 ch6 PORT 6 4 P60 to P63 ch7 PORT 7 4 P70 to P73 4 P121 to P124 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR RTC1HZ/P30 PORT 12 PORT 13 12-BIT INTERVAL TIMER REAL-TIME CLOCK CODE FLASH MEMORY RL78 CPU CORE TxD0/P12(TxD0/P17) RxD1/P01 TxD1/P00 SCK11/P30 SI11/P50 SO11/P51 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL11/P30 SDA11/P50 IIC11 P146, P147 8 ANI0/P20 to ANI7/P27 2 ANI18/P147, ANI19/P120 KEY RETURN POWER ON RESET/ VOLTAGE DETECTOR RESET CONTROL SDAA0/P61(SDAA0/P13) UART2 CSI20 MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR IIC20 SCL21/P70 SDA21/P71 IIC21 SYSTEM CONTROL 2 CLOCK OUTPUT CONTROL DIRECT MEMORY ACCESS CONTROL TOOL0/P40 ON-CHIP DEBUG SCLA0/P60(SCLA0/P14) BUZZER OUTPUT LINSEL SCL20/P15 SDA20/P14 POR/LVD CONTROL VSS TOOLRxD/P11, TOOLTxD/P12 SERIAL INTERFACE IICA0 CSI21 KR0/P70 to KR3/P73 4 RAM VDD SERIAL ARRAY UNIT1 (2ch) Remark 2 AVREFP/P20 AVREFM/P21 UART1 CSI00 SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 A/D CONVERTER P137 UART0 SCK00/P10 SI00/P11 SO00/P12 RxD2/P14 TxD2/P13 PORT 14 DATA FLASH MEMORY SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) P120 PCLBUZ0/P31, PCLBUZ1/P15 CRC RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC RxD2/P14 INTP0/P137 INTERRUPT CONTROL 2 2 BCD ADJUSTMENT INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 41 of 196 RL78/G13 1. OUTLINE 1.5.9 48-pin products TIMER ARRAY UNIT (8ch) PORT 0 2 P00, P01 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 8 P20 to P27 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 P30, P31 TI03/TO03/P31 (TI03/TO03/P14) ch3 PORT 4 2 P40, P41 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 PORT 5 2 P50, P51 (TI06/TO06/P11) ch6 PORT 6 4 P60 to P63 TI07/TO07/P41 (TI07/TO07/P10) RxD2/P14 ch7 PORT 7 6 P70 to P75 4 P121 to P124 PORT 12 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR RTC1HZ/P30 PORT 14 REAL-TIME CLOCK RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P01 TxD1/P00 UART1 DATA FLASH MEMORY 8 ANI0/P20 to ANI7/P27 A/D CONVERTER 2 ANI18/P147, ANI19/P120 AVREFP/P20 AVREFM/P21 KEY RETURN POWER ON RESET/ VOLTAGE DETECTOR CSI01 SCL00/P10 SDA00/P11 IIC00 SCL01/P75 SDA01/P74 IIC01 SCL11/P30 SDA11/P50 IIC11 VDD SERIAL ARRAY UNIT1 (2ch) UART2 LINSEL CSI20 CSI21 SCL20/P15 SDA20/P14 IIC20 SCL21/P70 SDA21/P71 IIC21 Remark P140, P146, P147 CODE FLASH MEMORY RL78 CPU CORE RAM CSI11 SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 3 KR0/P70 to KR5/P75 6 CSI00 SCK11/P30 SI11/P50 SO11/P51 RxD2/P14 TxD2/P13 P130 P137 PORT 13 12-BIT INTERVAL TIMER SERIAL ARRAY UNIT0 (4ch) SCK00/P10 SI00/P11 SO00/P12 SCK01/P75 SI01/P74 SO01/P73 P120 VSS TOOLRxD/P11, TOOLTxD/P12 POR/LVD CONTROL RESET CONTROL TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL SDAA0/P61(SDAA0/P13) SERIAL INTERFACE IICA0 SCLA0/P60(SCLA0/P14) BUZZER OUTPUT 2 CLOCK OUTPUT CONTROL MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR DIRECT MEMORY ACCESS CONTROL BCD ADJUSTMENT PCLBUZ0/P140 (PCLBUZ0/P31), PCLBUZ1/P15 RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC RxD2/P14 INTP0/P137 CRC 2 INTERRUPT CONTROL 2 INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 INTP6/P140 2 INTP8/P74, INTP9/P75 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 42 of 196 RL78/G13 1. OUTLINE 1.5.10 52-pin products TIMER ARRAY UNIT (8ch) PORT 0 4 P00 to P03 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 TI01/TO01/P16 ch1 PORT 2 8 P20 to P27 TI02/TO02/P17 (TI02/TO02/P15) ch2 PORT 3 2 P30, P31 TI03/TO03/P31 (TI03/TO03/P14) ch3 PORT 4 2 P40, P41 (TI04/TO04/P13) ch4 (TI05/TO05/P12) ch5 PORT 5 2 P50, P51 (TI06/TO06/P11) ch6 PORT 6 4 P60 to P63 TI07/TO07/P41 (TI07/TO07/P10) RxD2/P14 (RxD2/P76) ch7 PORT 7 8 P70 to P77 PORT 12 WINDOW WATCHDOG TIMER P120 4 P121 to P124 P130 P137 PORT 13 LOW-SPEED ON-CHIP OSCILLATOR RTC1HZ/P30 12-BIT INTERVAL TIMER REAL-TIME CLOCK SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P03 TxD1/P02 UART1 SCK00/P10 SI00/P11 SO00/P12 SCK01/P75 SI01/P74 SO01/P73 PORT 14 RL78 CPU CORE KEY RETURN 8 ANI16/P03, ANI17/P02, ANI18/P147, ANI19/P120 AVREFP/P20 AVREFM/P21 DATA FLASH MEMORY CSI00 POWER ON RESET/ VOLTAGE DETECTOR RAM CSI01 IIC00 SCL01/P75 SDA01/P74 IIC01 SYSTEM CONTROL SCL11/P30 SDA11/P50 IIC11 HIGH-SPEED KR0/P70 to KR7/P77 POR/LVD CONTROL RESET CONTROL VDD VSS TOOLRxD/P11, TOOLTxD/P12 TOOL0/P40 ON-CHIP DEBUG RESET X1/P121 X2/EXCLK/P122 XT1/P123 ON-CHIP SDAA0/P61(SDAA0/P13) SERIAL INTERFACE IICA0 SERIAL ARRAY UNIT1 (2ch) LINSEL SCLA0/P60(SCLA0/P14) BUZZER OUTPUT UART2 2 CLOCK OUTPUT CONTROL OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC PCLBUZ0/P140 (PCLBUZ0/P31), PCLBUZ1/P15 RxD2/P14 (RxD2/P76) INTP0/P137 2 CSI20 CSI21 SCL20/P15 SDA20/P14 IIC20 SCL21/P70 SDA21/P71 IIC21 Remark ANI0/P20 to ANI7/P27 4 SCL00/P10 SDA00/P11 SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 8 A/D CONVERTER CSI11 TxD2/P13(TxD2/P77) P140, P146, P147 CODE FLASH MEMORY SCK11/P30 SI11/P50 SO11/P51 RxD2/P14(RxD2/P76) 3 MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR DIRECT MEMORY ACCESS CONTROL CRC INTERRUPT CONTROL 2 INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16 INTP6/P140 4 INTP8/P74 to INTP11/P77 BCD ADJUSTMENT Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 43 of 196 RL78/G13 1. OUTLINE 1.5.11 64-pin products TIMER ARRAY UNIT (8ch) PORT 0 7 P00 to P06 TI00/P00 TO00/P01 ch0 PORT 1 8 P10 to P17 PORT 2 8 P20 to P27 PORT 3 2 P30, P31 PORT 4 4 P40 to P43 PORT 5 6 P50 to P55 ch6 PORT 6 4 P60 to P63 ch7 PORT 7 8 P70 to P77 4 P121 to P124 TI01/TO01/P16 ch1 TI02/TO02/P17 (TI02/TO02/P15) ch2 TI03/TO03/P31 (TI03/TO03/P14) ch3 TI04/TO04/P42 (TI04/TO04/P13) ch4 TI05/TO05/P05 (TI05/TO05/P12) ch5 TI06/TO06/P06 (TI06/TO06/P11) TI07/TO07/P41 (TI07/TO07/P10) RxD2/P14 (RxD2/P76) PORT 12 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR P130 P137 PORT 13 12-BIT INTERVAL TIMER PORT 14 REAL-TIME CLOCK RTC1HZ/P30 SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P03 TxD1/P02 UART1 SCK00/P10(SCK00/P55) SI00/P11(SI00/P16) SO00/P12(SO00/P17) SCK01/P75 SI01/P74 SO01/P73 4 P140, P141, P146, P147 8 ANI0/P20 to ANI7/P27 A/D CONVERTER 4 KEY RETURN 8 ANI16/P03, ANI17/P02, ANI18/P147, ANI19/P120 AVREFP/P20 AVREFM/P21 CODE FLASH MEMORY RL78 CPU CORE DATA FLASH MEMORY KR0/P70 to KR7/P77 CSI00 POWER ON RESET/ VOLTAGE DETECTOR CSI01 SCK10/P04 SI10/P03 SO10/P02 CSI10 SCK11/P30 SI11/P50 SO11/P51 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL01/P75 SDA01/P74 IIC01 POR/LVD CONTROL RAM RESET CONTROL TOOL0/P40 ON-CHIP DEBUG VDD, VSS, TOOLRxD/P11, EVDD0 EVSS0 TOOLTxD/P12 SYSTEM CONTROL RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP SCL10/P04 SDA10/P03 IIC10 SCL11/P30 SDA11/P50 IIC11 SERIAL INTERFACE IICA0 SDAA0/P61(SDAA0/P13) BUZZER OUTPUT PCLBUZ0/P140 (PCLBUZ0/P31), PCLBUZ1/P141 (PCLBUZ1/P55) RxD2/P14(RxD2/P76) TxD2/P13(TxD2/P77) SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 UART2 LINSEL CLOCK OUTPUT CONTROL MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR CSI20 DIRECT MEMORY ACCESS CONTROL OSCILLATOR XT2/EXCLKS/P124 SCLA0/P60(SCLA0/P14) 2 SERIAL ARRAY UNIT1 (2ch) Remark P120 VOLTAGE REGULATOR REGC RxD2/P14 (RxD2/P76) INTP0/P137 2 CRC 2 INTERRUPT CONTROL INTP5/P16(INTP5/P12) 2 INTP6/P140, INTP7/P141 2 INTP8/P74, INTP9/P75 2 INTP10/P76(INTP10/P52), INTP11/P77(INTP11/P53) CSI21 SCL20/P15 SDA20/P14 IIC20 SCL21/P70 SDA21/P71 IIC21 BCD ADJUSTMENT INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 44 of 196 RL78/G13 1. OUTLINE 1.5.12 80-pin products TIMER ARRAY UNIT0 (8ch) TIMER ARRAY UNIT1 (4ch) TI00/P00 TO00/P01 ch0 ch0 TI10/TO10/P64 PORT 0 7 P00 to P06 TI01/TO01/P16 ch1 ch1 TI11/TO11/P65 PORT 1 8 P10 to P17 TI02/TO02/P17 (TI02/TO02/P15) PORT 2 8 P20 to P27 PORT 3 2 P30, P31 PORT 4 6 P40 to P45 PORT 5 6 P50 to P55 PORT 6 8 P60 to P67 PORT 7 8 P70 to P77 ch2 ch2 TI12/TO12/P66 TI03/TO03/P31 (TI03/TO03/P14) ch3 ch3 TI13/TO13/P67 TI04/TO04/P42 (TI04/TO04/P13) ch4 TI05/TO05/P05 (TI05/TO05/P12) ch5 TI06/TO06/P06 (TI06/TO06/P11) TI07/TO07/P41 (TI07/TO07/P10) RxD2/P14 (RxD2/P76) ch6 ch7 SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P03 TxD1/P02 UART1 SCK00/P10(SCK00/P55) SI00/P11(SI00/P16) SO00/P12(SO00/P17) SCK01/P43 SI01/P44 SO01/P45 PORT 11 PORT 12 SCL00/P10 SDA00/P11 IIC00 SCL01/P43 SDA01/P44 IIC01 SCL10/P04 SDA10/P03 IIC10 SCL11/P30 SDA11/P50 IIC11 SERIAL ARRAY UNIT1 (4ch) CODE FLASH MEMORY RL78 CPU CORE DATA FLASH MEMORY P110, P111 2 VDD, VSS, TOOLRxD/P11, EVDD0 EVSS0 TOOLTxD/P12 UART3 SDAA1/P63 SCLA1/P62 CSI20 BUZZER OUTPUT CSI21 CLOCK OUTPUT CONTROL PCLBUZ0/P140 (PCLBUZ0/P31), PCLBUZ1/P141 (PCLBUZ1/P55) 2 SCK31/P54 SI31/P53 SO31/P52 CSI31 SCL20/P15 SDA20/P14 IIC20 P130 P137 PORT 14 7 P140 to P144, P146, P147 PORT 15 4 P150 to P153 KEY RETURN 8 KR0/P70 to KR7/P77 MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR POR/LVD CONTROL RESET CONTROL SDAA0/P61(SDAA0/P13) SCLA0/P60(SCLA0/P14) CSI30 P121 to P124 PORT 13 POWER ON RESET/ VOLTAGE DETECTOR SERIAL INTERFACE IICA1 LINSEL P120 4 RAM SERIAL INTERFACE IICA0 UART2 SCK30/P142 CRC TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC RxD2/P14 (RxD2/P76) INTP0/P137 DIRECT MEMORY ACCESS CONTROL 2 SCL21/P70 SDA21/P71 IIC21 SCL30/P142 SDA30/P143 IIC30 SCL31/P54 SDA31/P53 IIC31 BCD ADJUSTMENT 2 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR RTC1HZ/P30 Remark P100 PORT 10 CSI01 CSI11 SI30/P143 SO30/P144 A/D CONVERTER AVREFP/P20 AVREFM/P21 SCK11/P30 SI11/P50 SO11/P51 SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 ANI8/P150 to ANI11/P153 ANI16/P03, ANI17/P02, ANI18/P147, ANI19/P120, ANI20/P100 CSI00 CSI10 RxD3/P143 TxD3/P144 ANI0/P20 to ANI7/P27 4 5 SCK10/P04 SI10/P03 SO10/P02 RxD2/P14(RxD2/P76) TxD2/P13(TxD2/P77) 8 12-BIT INTERVAL TIMER REAL-TIME CLOCK INTERRUPT CONTROL INTP1/P50, INTP2/P51 INTP3/P30, INTP4/P31 INTP5/P16(INTP5/P12) 2 INTP6/P140, INTP7/P141 2 INTP8/P74, INTP9/P75 2 INTP10/P76(INTP10/P110), INTP11/P77(INTP11/P111) Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 45 of 196 RL78/G13 1. OUTLINE 1.5.13 100-pin products TIMER ARRAY UNIT0 (8ch) TIMER ARRAY UNIT1 (4ch) TI00/P00 TO00/P01 ch0 ch0 TI10/TO10/P64 PORT 0 7 P00 to P06 TI01/TO01/P16 ch1 ch1 TI11/TO11/P65 PORT 1 8 P10 to P17 TI02/TO02/P17 (TI02/TO02/P15) ch2 ch2 TI12/TO12/P66 PORT 2 8 P20 to P27 TI03/TO03/P31 (TI03/TO03/P14) ch3 ch3 TI13/TO13/P67 PORT 3 2 P30, P31 TI04/TO04/P42 (TI04/TO04/P13) ch4 TI05/TO05/P46 (TI05/TO05/P12) PORT 4 8 P40 to P47 ch5 PORT 5 8 P50 to P57 PORT 6 8 P60 to P67 PORT 7 8 P70 to P77 PORT 8 8 P80 to P87 PORT 10 3 P100 to P102 PORT 11 2 P110, P111 4 P121 to P124 TI06/TO06/P102 (TI06/TO06/P11) TI07/TO07/P145 (TI07/TO07/P10) RxD2/P14 (RxD2/P76) ch6 ch7 SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P03(RxD1/P81) TxD1/P02(TxD1/P82) UART1 SCK00/P10(SCK00/P55) SI00/P11(SI00/P16) SO00/P12(SO00/P17) SCK01/P43 SI01/P44 SO01/P45 7 ANI8/P150 to ANI14/P156 ANI16/P03, ANI17/P02, ANI18/P147, ANI19/P120, ANI20/P100 A/D CONVERTER CSI00 AVREFP/P20 AVREFM/P21 CSI01 PORT 12 CSI10 SCK11/P30 SI11/P50 SO11/P51 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL01/P43 SDA01/P44 IIC01 SCL10/P04(SCL10/P80) SDA10/P03(SDA10/P81) IIC10 SCL11/P30 SDA11/P50 IIC11 SERIAL ARRAY UNIT1 (4ch) UART2 RxD2/P14(RxD2/P76) TxD2/P13(TxD2/P77) LINSEL RxD3/P143 TxD3/P144 UART3 CSI20 CODE FLASH MEMORY RL78 CPU CORE DATA FLASH MEMORY P120 P130 P137 PORT 13 PORT 14 8 P140 to P147 PORT 15 7 P150 to P156 KEY RETURN 8 KR0/P70 to KR7/P77 RAM POWER ON RESET/ VOLTAGE DETECTOR VDD, VSS, TOOLRxD/P11, EVDD0, EVSS0, TOOLTxD/P12 EVDD1 EVSS1 SERIAL INTERFACE IICA0 SDAA0/P61(SDAA0/P13) SCLA0/P60(SCLA0/P14) SERIAL INTERFACE IICA1 SDAA1/P63 SCLA1/P62 BUZZER OUTPUT 2 CSI21 CLOCK OUTPUT CONTROL SCK30/P142 SI30/P143 SO30/P144 CSI30 MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR SCK31/P54 SI31/P53 SO31/P52 CSI31 DIRECT MEMORY ACCESS CONTROL SCL20/P15 SDA20/P14 IIC20 SCL21/P70 SDA21/P71 IIC21 SCL30/P142 SDA30/P143 IIC30 SCL31/P54 SDA31/P53 IIC31 PCLBUZ0/P140 (PCLBUZ0/P31), PCLBUZ1/P141 (PCLBUZ1/P55) CRC RESET CONTROL TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC 2 2 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR POR/LVD CONTROL RxD2/P14 (RxD2/P76) INTP0/P137 BCD ADJUSTMENT RTC1HZ/P30 Remark ANI0/P20 to ANI7/P27 5 SCK10/P04(SCK10/P80) SI10/P03(SI10/P81) SO10/P02(SO10/P82) SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 8 12-BIT INTERVAL TIMER INTERRUPT CONTROL INTP1/P46(INTP1/P56), INTP2/P47 INTP3/P30(INTP3/P57), INTP4/P31(INTP4/P146) INTP5/P16(INTP5/P12) 2 INTP6/P140(INTP6/P84), INTP7/P141(INTP7/P85) 2 INTP8/P74(INTP8/P86), INTP9/P75(INTP9/P87) 2 INTP10/P76(INTP10/P110), INTP11/P77(INTP11/P111) REAL-TIME CLOCK Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 46 of 196 RL78/G13 1. OUTLINE 1.5.14 128-pin products TIMER ARRAY UNIT0 (8ch) TIMER ARRAY UNIT1 (8ch) TI00/P00 TO00/P01 ch0 ch0 TI10/TO10/P64 PORT 0 8 P00 to P07 TI01/TO01/P16 ch1 ch1 TI11/TO11/P65 PORT 1 8 P10 to P17 TI02/TO02/P17 (TI02/TO02/P15) ch2 ch2 TI12/TO12/P66 PORT 2 8 P20 to P27 TI03/TO03/P31 (TI03/TO03/P14) ch3 ch3 TI13/TO13/P67 PORT 3 8 P30 to P37 TI04/TO04/P42 (TI04/TO04/P13) ch4 ch4 TI14/TO14/P103 TI05/TO05/P46 (TI05/TO05/P12) PORT 4 8 P40 to P47 ch5 ch5 TI15/TO15/P104 ch6 TI16/TO16/P105 PORT 5 8 ch6 P50 to P57 ch7 ch7 TI17/TO17/P106 PORT 6 8 P60 to P67 PORT 7 8 P70 to P77 PORT 8 8 P80 to P87 PORT 9 8 P90 to P97 PORT 10 7 P100 to P106 PORT 11 8 P110 to P117 TI06/TO06/P102 (TI06/TO06/P11) TI07/TO07/P145 (TI07/TO07/P10) RxD2/P14 (RxD2/P76) SERIAL ARRAY UNIT0 (4ch) RxD0/P11(RxD0/P16) TxD0/P12(TxD0/P17) UART0 RxD1/P03(RxD1/P81) TxD1/P02(TxD1/P82) UART1 SCK00/P10(SCK00/P55) SI00/P11(SI00/P16) SO00/P12(SO00/P17) SCK01/P43 SI01/P44 SO01/P45 CSI00 CSI10 SCK11/P95 SI11/P96 SO11/P97 CSI11 SCL00/P10 SDA00/P11 IIC00 SCL01/P43 SDA01/P44 IIC01 SCL10/P04(SCL10/P80) SDA10/P03(SDA10/P81) IIC10 SCL11/P95 SDA11/P96 IIC11 SERIAL ARRAY UNIT1 (4ch) RxD3/P143 TxD3/P144 SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 7 ANI8/P150 to ANI14/P156 ANI16/P03, ANI17/P02, ANI18/P147, ANI19/P120, ANI20/P100, ANI21/37, ANI22/P36, ANI23/P35, ANI24/P117, ANI25/P116, ANI26/P115 11 A/D CONVERTER UART2 AVREFP/P20 AVREFM/P21 CODE FLASH MEMORY RL78 CPU CORE DATA FLASH MEMORY 4 P120, P125 to P127 4 P121 to P124 P130 P137 PORT 13 PORT 14 8 P140 to P147 PORT 15 7 P150 to P156 KEY RETURN 8 POWER ON RESET/ VOLTAGE DETECTOR VDD, VSS, TOOLRxD/P11, EVDD0, EVSS0, TOOLTxD/P12 EVDD1 EVSS1 SERIAL INTERFACE IICA0 SDAA0/P61(SDAA0/P13) SCLA0/P60(SCLA0/P14) UART3 SERIAL INTERFACE IICA1 SDAA1/P63 SCLA1/P62 CSI20 BUZZER OUTPUT CSI21 CLOCK OUTPUT CONTROL PCLBUZ0/P140 (PCLBUZ0/P31), PCLBUZ1/P141 (PCLBUZ1/P55) LINSEL PORT 12 KR0/P70 to KR7/P77 RAM 2 SCK30/P142 SI30/P143 SO30/P144 CSI30 MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR SCK31/P54 SI31/P53 SO31/P52 CSI31 DIRECT MEMORY ACCESS CONTROL SCL20/P15 SDA20/P14 IIC20 SCL21/P70 SDA21/P71 IIC21 SCL30/P142 SDA30/P143 IIC30 SCL31/P54 SDA31/P53 IIC31 CRC RESET CONTROL TOOL0/P40 ON-CHIP DEBUG SYSTEM CONTROL RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED XT1/P123 ON-CHIP OSCILLATOR XT2/EXCLKS/P124 VOLTAGE REGULATOR REGC 2 2 WINDOW WATCHDOG TIMER LOW-SPEED ON-CHIP OSCILLATOR POR/LVD CONTROL RxD2/P14 (RxD2/P76) INTP0/P137 BCD ADJUSTMENT RTC1HZ/P30 Remark ANI0/P20 to ANI7/P27 CSI01 SCK10/P04(SCK10/P80) SI10/P03(SI10/P81) SO10/P02(SO10/P82) RxD2/P14(RxD2/P76) TxD2/P13(TxD2/P77) 8 12-BIT INTERVAL TIMER REAL-TIME CLOCK INTERRUPT CONTROL INTP1/P46 (INTP1/P56), INTP2/P47 INTP3/P30 (INTP3/P57), INTP4/P31 (INTP4/P146) INTP5/P16 (INTP5/P12) 2 INTP6/P140 (INTP6/P84), INTP7/P141 (INTP7/P85) 2 INTP8/P74 (INTP8/P86), INTP9/P75 (INTP9/P87) 2 INTP10/P76 (INTP10/P110), INTP11/P77 (INTP11/P111) Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G13 User’s Manual. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 47 of 196 RL78/G13 1. OUTLINE 1.6 Outline of Functions [20-pin, 24-pin, 25-pin, 30-pin, 32-pin, 36-pin products] Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H. (1/2) Item 20-pin 2 to 4  4 to 8 Note1 2 to 12 Note1 16 to 128 16 to 128  4 to 8 2 to 12 R5F101Cx  4 R5F100Cx Note1 36-pin R5F101Bx Main system clock 2 to 4 16 to 128 R5F100Bx Address space  4 16 to 64 32-pin R5F101Ax Note1 R5F100Ax 2 to 4 30-pin R5F1018x 4 RAM (KB) 16 to 64 R5F1008x  Data flash memory (KB) 25-pin R5F1017x 16 to 64 R5F1007x R5F1016x R5F1006x Code flash memory (KB) 24-pin  4 to 8 Note1 2 to 12 Note1 1 MB High-speed system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V) High-speed on-chip oscillator HS (High-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)  Subsystem clock Low-speed on-chip oscillator 15 kHz (TYP.) General-purpose registers (8-bit register  8)  4 banks Minimum instruction execution time 0.03125 s (High-speed on-chip oscillator: fIH = 32 MHz operation) 0.05 s (High-speed system clock: fMX = 20 MHz operation)     Instruction set I/O port Total CMOS I/O Timer Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits  8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 16 13 (N-ch O.D. I/O [VDD withstand voltage]: 5) 20 28 32 CMOS input 3 3 3 3 3 3   1    N-ch O.D. I/O (withstand voltage: 6 V)  2 2 2 3 3 16-bit timer 8 channels Watchdog timer 1 channel 1 channel 12-bit interval timer (IT) Timer output RTC output 2. 26 CMOS output Real-time clock (RTC) Notes 1. 21 15 15 21 22 26 (N-ch O.D. I/O (N-ch O.D. I/O (N-ch O.D. I/O (N-ch O.D. I/O (N-ch O.D. I/O [VDD withstand [VDD withstand [VDD withstand [VDD withstand [VDD withstand voltage]: 6) voltage]: 6) voltage]: 9) voltage]: 9) voltage]: 10) Note 2 1 channel 3 channels (PWM outputs: Note 3 ) 2 4 channels Note 3 (PWM outputs: 3 ) 4 channels (PWM outputs: 3 Note 3 8 channels (PWM outputs: 7 Note 3 ), ) Note 4  The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = 6 to 8, A to C): Start address FF300H R5F100xE, R5F101xE (x = 6 to 8, A to C): Start address FEF00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). Only the constant-period interrupt function when the low-speed on-chip oscillator clock (fIL) is selected R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 48 of 196 RL78/G13 1. OUTLINE 3. 4. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User’s Manual). When setting to PIOR = 1 (2/2) Item 20-pin 24-pin R5F101Cx R5F100Cx 2 36-pin R5F101Bx 1 32-pin R5F100Bx R5F101Ax R5F100Ax 1 30-pin R5F1018x R5F1008x R5F1017x R5F1007x R5F1016x R5F1006x  Clock output/buzzer output 25-pin 2 2  2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 8/10-bit resolution A/D converter 6 channels 6 channels 6 channels Serial interface [20-pin, 24-pin, 25-pin products] 8 channels 8 channels 8 channels  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2 [30-pin, 32-pin products]  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 1 channel/simplified I C: 1 channel/UART (UART supporting LIN-bus): 1 channel 2 [36-pin products]  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART (UART supporting LIN-bus): 1 channel 2  2 I C bus 1 channel 1 channel Multiplier and divider/multiplyaccumulator  16 bits  16 bits = 32 bits (Unsigned or signed)  32 bits  32 bits = 32 bits (Unsigned)  16 bits  16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 2 channels Vectored interrupt Internal sources External 1 channel 1 channel 23 24 24 27 27 27 3 5 5 6 6 6  Key interrupt 1 channel Reset        Power-on-reset circuit  Power-on-reset: 1.51 V (TYP.)  Power-down-reset: 1.50 V (TYP.) Voltage detector  Rising edge :  Falling edge : Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Note Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access 1.67 V to 4.06 V (14 stages) 1.63 V to 3.98 V (14 stages) On-chip debug function Provided Power supply voltage VDD = 1.6 to 5.5 V (TA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C) Operating ambient temperature TA = 40 to +85°C (A: Consumer applications, D: Industrial applications ) TA = 40 to +105°C (G: Industrial applications) Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 49 of 196 RL78/G13 1. OUTLINE [40-pin, 44-pin, 48-pin, 52-pin, 64-pin products] Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H. (1/2) Item 40-pin 2 to 32 32 to 512  4 to 8 Note1 2 to 32 Note1 Address space 1 MB Main system clock High-speed system clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V) High-speed on-chip oscillator HS (High-speed main) mode: HS (High-speed main) mode: LS (Low-speed main) mode: LV (Low-voltage main) mode: R5F101Lx Note1  R5F100Lx 2 to 32 16 to 512 4 to 8 64-pin R5F101Jx  R5F100Jx 2 to 16 16 to 512 4 to 8 52-pin R5F101Gx Note1 RAM (KB) R5F100Gx  4 to 8 48-pin R5F101Fx 16 to 192 Data flash memory (KB) R5F100Fx R5F101Ex R5F100Ex Code flash memory (KB) 44-pin 32 to 512  4 to 8 2 to 32 Note1 1 to 32 MHz (VDD = 2.7 to 5.5 V), 1 to 16 MHz (VDD = 2.4 to 5.5 V), 1 to 8 MHz (VDD = 1.8 to 5.5 V), 1 to 4 MHz (VDD = 1.6 to 5.5 V) Subsystem clock XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz Low-speed on-chip oscillator 15 kHz (TYP.) General-purpose registers (8-bit register  8)  4 banks Minimum instruction execution time 0.03125 s (High-speed on-chip oscillator: fIH = 32 MHz operation) 0.05 s (High-speed system clock: fMX = 20 MHz operation) 30.5 s (Subsystem clock: fSUB = 32.768 kHz operation)     Instruction set I/O port Total CMOS I/O CMOS input Timer Notes 1. Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits  8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 36 40 44 48 58 28 (N-ch O.D. I/O [VDD withstand voltage]: 10) 31 (N-ch O.D. I/O [VDD withstand voltage]: 10) 34 (N-ch O.D. I/O [VDD withstand voltage]: 11) 38 (N-ch O.D. I/O [VDD withstand voltage]: 13) 48 (N-ch O.D. I/O [VDD withstand voltage]: 15) 5 5 5 5 5 CMOS output   1 1 1 N-ch O.D. I/O (withstand voltage: 6 V) 3 4 4 4 4 16-bit timer 8 channels Watchdog timer 1 channel Real-time clock (RTC) 1 channel 12-bit interval timer (IT) 1 channel Timer output 4 channels (PWM Note 2 outputs: 3 ), 8 channels (PWM Note 2 Note 3 outputs: 7 ) RTC output 1 channel  1 Hz (subsystem clock: fSUB = 32.768 kHz) Note 2 5 channels (PWM outputs: 4 ), Note 2 Note 3 8 channels (PWM outputs: 7 ) 8 channels (PWM Note 2 outputs: 7 ) The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xD, R5F101xD (x = E to G, J, L): Start address FF300H R5F100xE, R5F101xE (x = E to G, J, L): Start address FEF00H R5F100xJ, R5F101xJ (x = F, G, J, L): Start address FAF00H R5F100xL, R5F101xL (x = F, G, J, L): Start address F7F00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 50 of 196 RL78/G13 1. OUTLINE 2. 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User’s Manual). When setting to PIOR = 1 (2/2) Item 40-pin 44-pin 52-pin R5F101Lx R5F100Lx 2 64-pin R5F101Jx 2 R5F100Jx R5F101Gx R5F100Gx R5F101Fx R5F100Fx R5F101Ex R5F100Ex 2 Clock output/buzzer output 48-pin 2 2  2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation)  256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation) 8/10-bit resolution A/D converter 9 channels 10 channels Serial interface [40-pin, 44-pin products] 10 channels 12 channels 12 channels  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART (UART supporting LIN-bus): 1 channel [48-pin, 52-pin products] 2  CSI: 2 channels/simplified I C: 2 channels/UART: 1 channel 2  CSI: 1 channel/simplified I C: 1 channel/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART (UART supporting LIN-bus): 1 channel [64-pin products] 2  CSI: 2 channels/simplified I C: 2 channels/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART (UART supporting LIN-bus): 1 channel 2 2 I C bus 1 channel 1 channel 1 channel Multiplier and divider/multiplyaccumulator  16 bits  16 bits = 32 bits (Unsigned or signed)  32 bits  32 bits = 32 bits (Unsigned)  16 bits  16 bits + 32 bits = 32 bits (Unsigned or signed) DMA controller 2 channels Vectored interrupt sources 1 channel 1 channel Internal 27 27 27 27 27 External 7 7 10 12 13 4 4 6 8 8 Key interrupt Reset        Power-on-reset circuit  Power-on-reset: 1.51 V (TYP.)  Power-down-reset: 1.50 V (TYP.) Voltage detector  Rising edge :  Falling edge : On-chip debug function Provided Power supply voltage VDD = 1.6 to 5.5 V (TA = -40 to +85°C) Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Note Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access 1.67 V to 4.06 V (14 stages) 1.63 V to 3.98 V (14 stages) VDD = 2.4 to 5.5 V (TA = -40 to +105°C) Operating ambient temperature Note TA = 40 to +85°C (A: Consumer applications, D: Industrial applications) TA = 40 to +105°C (G: Industrial applications) The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 51 of 196 RL78/G13 1. OUTLINE [80-pin, 100-pin, 128-pin products] Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H. (1/2) Item 80-pin R5F100Mx Code flash memory (KB) 100-pin R5F101Mx R5F100Px 96 to 512 Data flash memory (KB) RAM (KB) 8 to 32 R5F101Px R5F100Sx 96 to 512  8 128-pin  8 Note 1 8 to 32 16 to 32 1 MB Main system High-speed system clock clock X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V) HS (High-speed main) mode: HS (High-speed main) mode: LS (Low-speed main) mode: LV (Low-voltage main) mode:  8 Note 1 Address space High-speed on-chip oscillator R5F101Sx 192 to 512 Note 1 1 to 32 MHz (VDD = 2.7 to 5.5 V), 1 to 16 MHz (VDD = 2.4 to 5.5 V), 1 to 8 MHz (VDD = 1.8 to 5.5 V), 1 to 4 MHz (VDD = 1.6 to 5.5 V) Subsystem clock XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz Low-speed on-chip oscillator 15 kHz (TYP.) General-purpose register (8-bit register  8)  4 banks Minimum instruction execution time 0.03125 s (High-speed on-chip oscillator: fIH = 32 MHz operation) 0.05 s (High-speed system clock: fMX = 20 MHz operation) 30.5 s (Subsystem clock: fSUB = 32.768 kHz operation)     Instruction set I/O port Total 74 92 120 64 (N-ch O.D. I/O [EVDD withstand voltage]: 21) 82 (N-ch O.D. I/O [EVDD withstand voltage]: 24) 110 (N-ch O.D. I/O [EVDD withstand voltage]: 25) CMOS input 5 5 5 CMOS output 1 1 1 N-ch O.D. I/O (withstand voltage: 6 V) 4 4 4 12 channels 12 channels 16 channels CMOS I/O Timer Notes 1. Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits  8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 16-bit timer Watchdog timer 1 channel 1 channel 1 channel Real-time clock (RTC) 1 channel 1 channel 1 channel 12-bit interval timer (IT) 1 channel 1 channel 1 channel 12 channels Note 2 (PWM outputs: 10 ) Timer output 12 channels Note 2 ) (PWM outputs: 10 RTC output 1 channel  1 Hz (subsystem clock: fSUB = 32.768 kHz) 16 channels Note 2 (PWM outputs: 14 ) The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below. R5F100xJ, R5F101xJ (x = M, P): Start address FAF00H R5F100xL, R5F101xL (x = M, P, S): Start address F7F00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 52 of 196 RL78/G13 1. OUTLINE 2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/G13 User’s Manual). (2/2) Item 80-pin R5F100Mx 100-pin R5F101Mx Clock output/buzzer output R5F100Px R5F101Px 2 128-pin R5F100Sx 2 R5F101Sx 2  2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation)  256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation) 8/10-bit resolution A/D converter 17 channels 20 channels Serial interface [80-pin, 100-pin, 128-pin products] 26 channels  CSI: 2 channels/simplified I C: 2 channels/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART: 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART (UART supporting LIN-bus): 1 channel 2  CSI: 2 channels/simplified I C: 2 channels/UART: 1 channel 2 2 I C bus 2 channels 2 channels 2 channels Multiplier and divider/multiply-  16 bits  16 bits = 32 bits (Unsigned or signed) accumulator  32 bits  32 bits = 32 bits (Unsigned) DMA controller 4 channels  16 bits  16 bits + 32 bits = 32 bits (Unsigned or signed) Vectored Internal 37 37 41 interrupt sources External 13 13 13 8 8 8 Key interrupt  Reset by RESET pin Reset  Internal reset by watchdog timer  Internal reset by power-on-reset  Internal reset by voltage detector  Internal reset by illegal instruction execution Note  Internal reset by RAM parity error  Internal reset by illegal-memory access Power-on-reset circuit  Power-on-reset: 1.51 V (TYP.)  Power-down-reset: 1.50 V (TYP.) Voltage detector  Rising edge : 1.67 V to 4.06 V (14 stages)  Falling edge : 1.63 V to 3.98 V (14 stages) On-chip debug function Provided Power supply voltage VDD = 1.6 to 5.5 V (TA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C) Operating ambient temperature TA = 40 to +85°C (A: Consumer applications, D: Industrial applications ) TA = 40 to +105°C (G: Industrial applications) Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 53 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) This chapter describes the following electrical specifications. Target products A: Consumer applications TA = −40 to +85°C R5F100xxAxx, R5F101xxAxx D: Industrial applications TA = −40 to +85°C R5F100xxDxx, R5F101xxDxx G: Industrial applications when TA = −40 to +105°C products is used in the range of TA = −40 to +85°C R5F100xxGxx Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS. 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 54 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.1 Absolute Maximum Ratings Absolute Maximum Ratings (TA = 25C) (1/2) Parameter Supply voltage Symbols Ratings Unit VDD 0.5 to +6.5 V EVDD0, EVDD1 EVDD0 = EVDD1 0.5 to +6.5 V EVSS0, EVSS1 0.5 to +0.3 V REGC pin input voltage VIREGC Conditions EVSS0 = EVSS1 0.3 to +2.8 REGC V and 0.3 to VDD +0.3 Input voltage VI1 Note 1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, 0.3 to EVDD0 +0.3 P50 to P57, P64 to P67, P70 to P77, P80 to P87, and 0.3 to VDD +0.3 V Note 2 P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VI2 VI3 0.3 to +6.5 P60 to P63 (N-ch open-drain) 0.3 to VDD +0.3 P20 to P27, P121 to P124, P137, P150 to P156, V Note 2 V EXCLK, EXCLKS, RESET Output voltage VO1 0.3 to EVDD0 +0.3 P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, and 0.3 to VDD +0.3 V Note 2 P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Analog input voltage VO2 P20 to P27, P150 to P156 VAI1 ANI16 to ANI26 0.3 to VDD +0.3 Note 2 0.3 to EVDD0 +0.3 and 0.3 to AVREF(+) +0.3 VAI2 V V Notes 2, 3 0.3 to VDD +0.3 ANI0 to ANI14 and 0.3 to AVREF(+) +0.3 V Notes 2, 3 Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1  F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it. 2. Must be 6.5 V or lower. 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin. Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. 2. AVREF (+) : + side reference voltage of the A/D converter. 3. VSS : Reference voltage R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 55 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Absolute Maximum Ratings (TA = 25C) (2/2) Parameter Output current, high Symbols IOH1 Conditions Per pin P00 to P07, P10 to P17, Ratings Unit 40 mA 70 mA 100 mA 0.5 mA 2 mA 40 mA 70 mA 100 mA 1 mA 5 mA 40 to +85 C 65 to +150 C P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Total of all pins P00 to P04, P07, P32 to P37, 170 mA P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 IOH2 Per pin P20 to P27, P150 to P156 Total of all pins Output current, low IOL1 Per pin P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Total of all pins P00 to P04, P07, P32 to P37, 170 mA P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 IOL2 Per pin P20 to P27, P150 to P156 Total of all pins Operating ambient TA temperature Storage temperature In normal operation mode In flash memory programming mode Tstg Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 56 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.2 Oscillator Characteristics 2.2.1 X1, XT1 oscillator characteristics (TA = 40 to +85C, 1.6 V  VDD  5.5 V, VSS = 0 V) Parameter X1 clock oscillation Note frequency (fX) XT1 clock oscillation Resonator Conditions MIN. TYP. MAX. Unit Ceramic resonator/ 2.7 V  VDD  5.5 V 1.0 20.0 MHz crystal resonator 2.4 V  VDD  2.7 V 1.0 16.0 MHz 1.8 V  VDD  2.4 V 1.0 8.0 MHz 1.6 V  VDD  1.8 V 1.0 4.0 MHz 35 kHz Crystal resonator 32 32.768 Note frequency (fX) Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics. Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used. Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator. 2.2.2 On-chip oscillator characteristics (TA = 40 to +85C, 1.6 V  VDD  5.5 V, VSS = 0 V) Oscillators High-speed on-chip oscillator clock frequency Parameters Conditions MAX. Unit 1 32 MHz 1.8 V  VDD  5.5 V 1.0 +1.0 % 1.6 V  VDD < 1.8 V 5.0 +5.0 % 1.8 V  VDD  5.5 V 1.5 +1.5 % 1.6 V  VDD < 1.8 V 5.5 +5.5 % fIH MIN. TYP. Notes 1, 2 20 to +85 C High-speed on-chip oscillator clock frequency accuracy 40 to 20 C Low-speed on-chip oscillator 15 fIL kHz clock frequency Low-speed on-chip oscillator 15 +15 % clock frequency accuracy Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register. 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 57 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.3 DC Characteristics 2.3.1 Pin characteristics (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (1/5) Items Symbol Output current, Note 1 high IOH1 IOH2 Notes 1. Conditions MIN. TYP. MAX. Unit Per pin for P00 to P07, P10 to P17, 1.6 V  EVDD0  5.5 V P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 10.0 mA Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 Note 3 ) (When duty  70% 4.0 V  EVDD0  5.5 V 55.0 mA 2.7 V  EVDD0 < 4.0 V 10.0 mA 1.8 V  EVDD0 < 2.7 V 5.0 mA 1.6 V  EVDD0 < 1.8 V 2.5 mA Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 Note 3 ) (When duty  70% 4.0 V  EVDD0  5.5 V 80.0 mA 2.7 V  EVDD0 < 4.0 V 19.0 mA 1.8 V  EVDD0 < 2.7 V 10.0 mA 1.6 V  EVDD0 < 1.8 V 5.0 mA Total of all pins Note 3 ) (When duty  70% 1.6 V  EVDD0  5.5 V 135.0 mA Per pin for P20 to P27, P150 to P156 1.6 V  VDD  5.5 V Total of all pins Note 3 ) (When duty  70% 1.6 V  VDD  5.5 V Note 2 Note 4 0.1 Note 2 1.5 mA mA Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin. 2. However, do not exceed the total current value. 3. Specification under conditions where the duty factor  70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).  Total output current of pins = (IOH × 0.7)/(n × 0.01) Where n = 80% and IOH = 10.0 mA Total output current of pins = (10.0 × 0.7)/(80 × 0.01)  8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. 4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx, R5F100xxGxx) is 100 mA. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 58 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/5) Items Symbol Output current, Note 1 low IOL1 IOL2 Conditions TYP. MAX. Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 20.0 Note 2 Per pin for P60 to P63 15.0 Note 2 Unit mA mA Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 Note 3 ) (When duty  70% 4.0 V  EVDD0  5.5 V 70.0 2.7 V  EVDD0 < 4.0 V 15.0 mA 1.8 V  EVDD0 < 2.7 V 9.0 mA 1.6 V  EVDD0 < 1.8 V 4.5 mA Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 Note 3 ) (When duty  70% 4.0 V  EVDD0  5.5 V 80.0 mA 2.7 V  EVDD0 < 4.0 V 35.0 mA 1.8 V  EVDD0 < 2.7 V 20.0 mA 1.6 V  EVDD0 < 1.8 V 10.0 mA Total of all pins Note 3 ) (When duty  70% 150.0 mA Per pin for P20 to P27, P150 to P156 0.4 Total of all pins Note 3 ) (When duty  70% Notes 1. MIN. 1.6 V  VDD  5.5 V mA Note 2 5.0 mA mA Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVSS0, EVSS1 and VSS pin. 2. However, do not exceed the total current value. 3. Specification under conditions where the duty factor  70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).  Total output current of pins = (IOL × 0.7)/(n × 0.01) Where n = 80% and IOL = 10.0 mA Total output current of pins = (10.0 × 0.7)/(80 × 0.01)  8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 59 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (3/5) Items Input voltage, Symbol VIH1 Conditions MIN. P00 to P07, P10 to P17, P30 to P37, Normal input buffer TYP. MAX. Unit 0.8EVDD0 EVDD0 V 2.2 EVDD0 V 2.0 EVDD0 V 1.5 EVDD0 V 0.7VDD VDD V 0.7EVDD0 6.0 V 0.8VDD VDD V 0 0.2EVDD0 V 0 0.8 V 0 0.5 V 0 0.32 V P40 to P47, P50 to P57, P64 to P67, high P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VIH2 P01, P03, P04, P10, P11, TTL input buffer P13 to P17, P43, P44, P53 to P55, 4.0 V  EVDD0  5.5 V P80, P81, P142, P143 TTL input buffer 3.3 V  EVDD0  4.0 V TTL input buffer 1.6 V  EVDD0  3.3 V Input voltage, VIH3 P20 to P27, P150 to P156 VIH4 P60 to P63 VIH5 P121 to P124, P137, EXCLK, EXCLKS, RESET VIL1 P00 to P07, P10 to P17, P30 to P37, Normal input buffer P40 to P47, P50 to P57, P64 to P67, low P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VIL2 P01, P03, P04, P10, P11, TTL input buffer P13 to P17, P43, P44, P53 to P55, 4.0 V  EVDD0  5.5 V P80, P81, P142, P143 TTL input buffer 3.3 V  EVDD0  4.0 V TTL input buffer 1.6 V  EVDD0  3.3 V VIL3 P20 to P27, P150 to P156 0 0.3VDD V VIL4 P60 to P63 0 0.3EVDD0 V VIL5 P121 to P124, P137, EXCLK, EXCLKS, RESET 0 0.2VDD V Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EVDD0, even in the N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 60 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (4/5) Items Symbol Output voltage, VOH1 high Conditions MIN. P00 to P07, P10 to P17, P30 to 4.0 V  EVDD0  5.5 V, EVDD0  P37, P40 to P47, P50 to P57, P64 IOH1 = 10.0 mA to P67, P70 to P77, P80 to P87, 4.0 V  EVDD0  5.5 V, EVDD0  P90 to P97, P100 to P106, P110 to IOH1 = 3.0 mA P117, P120, P125 to P127, P130, P140 to P147 TYP. MAX. V 1.5 V 0.7 2.7 V  EVDD0  5.5 V, EVDD0  IOH1 = 2.0 mA V 0.6 1.8 V  EVDD0  5.5 V, EVDD0  IOH1 = 1.5 mA V 0.5 1.6 V  EVDD0 < 5.5 V, EVDD0  IOH1 = 1.0 mA VOH2 P20 to P27, P150 to P156 Unit V 0.5 1.6 V  VDD  5.5 V, VDD  0.5 V IOH2 = 100  A Output voltage, VOL1 low P00 to P07, P10 to P17, P30 to 4.0 V  EVDD0  5.5 V, P37, P40 to P47, P50 to P57, P64 IOL1 = 20 mA to P67, P70 to P77, P80 to P87, 4.0 V  EVDD0  5.5 V, P90 to P97, P100 to P106, P110 to IOL1 = 8.5 mA P117, P120, P125 to P127, P130, P140 to P147 2.7 V  EVDD0  5.5 V, 1.3 V 0.7 V 0.6 V 0.4 V 0.4 V 0.4 V 0.4 V 2.0 V 0.4 V 0.4 V 0.4 V 0.4 V IOL1 = 3.0 mA 2.7 V  EVDD0  5.5 V, IOL1 = 1.5 mA 1.8 V  EVDD0  5.5 V, IOL1 = 0.6 mA 1.6 V  EVDD0 < 5.5 V, IOL1 = 0.3 mA VOL2 P20 to P27, P150 to P156 1.6 V  VDD  5.5 V, IOL2 = 400  A VOL3 P60 to P63 4.0 V  EVDD0  5.5 V, IOL3 = 15.0 mA 4.0 V  EVDD0  5.5 V, IOL3 = 5.0 mA 2.7 V  EVDD0  5.5 V, IOL3 = 3.0 mA 1.8 V  EVDD0  5.5 V, IOL3 = 2.0 mA 1.6 V  EVDD0 < 5.5 V, IOL3 = 1.0 mA Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 61 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (5/5) Items Input leakage Symbol ILIH1 Conditions P00 to P07, P10 to P17, MIN. TYP. MAX. Unit VI = EVDD0 1 A VI = VDD 1 A 1 A 10 A VI = EVSS0 1 A VI = VSS 1 A 1 A 10 A 100 k P30 to P37, P40 to P47, current, high P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 ILIH2 P20 to P27, P137, P150 to P156, RESET ILIH3 P121 to P124 VI = VDD In input port or (X1, X2, XT1, XT2, EXCLK, external clock EXCLKS) input In resonator connection Input leakage ILIL1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, current, low P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 ILIL2 P20 to P27, P137, P150 to P156, RESET ILIL3 P121 to P124 VI = VSS In input port or (X1, X2, XT1, XT2, EXCLK, external clock EXCLKS) input In resonator connection On-chip pll-up RU P00 to P07, P10 to P17, VI = EVSS0, In input port 10 20 P30 to P37, P40 to P47, resistance P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 62 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.3.2 Supply current characteristics (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = 40 to +85C, 1.6 V  EVDD0  VDD  5.5 V, VSS = EVSS0 = 0 V) (1/2) Parameter Symbol IDD1 Supply Note 1 current Conditions Operating HS (highfIH = 32 MHz speed main) mode Note 5 mode fIH = 24 MHz fIH = 16 MHz Note 3 Note 3 LS (lowfIH = 8 MHz speed main) Note 5 mode Note 3 fIH = 4 MHz Note 3 LV (lowvoltage main) mode MIN. Note 3 TYP. MAX. Unit Basic operation VDD = 5.0 V 2.1 mA VDD = 3.0 V 2.1 mA Normal operation VDD = 5.0 V 4.6 7.0 mA VDD = 3.0 V 4.6 7.0 mA Normal operation VDD = 5.0 V 3.7 5.5 mA VDD = 3.0 V 3.7 5.5 mA Normal operation VDD = 5.0 V 2.7 4.0 mA VDD = 3.0 V 2.7 4.0 mA Normal operation VDD = 3.0 V 1.2 1.8 mA VDD = 2.0 V 1.2 1.8 mA Normal operation VDD = 3.0 V 1.2 1.7 mA VDD = 2.0 V 1.2 1.7 mA Normal operation Square wave input 3.0 4.6 mA Resonator connection 3.2 4.8 mA Normal operation Square wave input 3.0 4.6 mA Resonator connection 3.2 4.8 mA Normal operation Square wave input 1.9 2.7 mA Resonator connection 1.9 2.7 mA Normal operation Square wave input 1.9 2.7 mA Resonator connection 1.9 2.7 mA Normal operation Square wave input 1.1 1.7 mA Resonator connection 1.1 1.7 mA Normal operation Square wave input 1.1 1.7 mA Resonator connection 1.1 1.7 mA Normal operation Square wave input 4.1 4.9 A Resonator connection 4.2 5.0 A Normal operation Square wave input 4.1 4.9 A Resonator connection 4.2 5.0 A Normal operation Square wave input 4.2 5.5 A Resonator connection 4.3 5.6 A Normal operation Square wave input 4.3 6.3 A Resonator connection 4.4 6.4 A Normal operation Square wave input 4.6 7.7 A Resonator connection 4.7 7.8 A Note 5 Note 2 HS (highfMX = 20 MHz speed main) VDD = 5.0 V Note 5 mode , Note 2 fMX = 20 MHz , VDD = 3.0 V Note 2 fMX = 10 MHz , VDD = 5.0 V Note 2 fMX = 10 MHz , VDD = 3.0 V Note 2 LS (lowfMX = 8 MHz speed main) VDD = 3.0 V Note 5 mode , Note 2 fMX = 8 MHz , VDD = 2.0 V Subsystem clock operation fSUB = 32.768 kHz Note 4 TA = 40C fSUB = 32.768 kHz Note 4 TA = +25C fSUB = 32.768 kHz Note 4 TA = +50C fSUB = 32.768 kHz Note 4 TA = +70C fSUB = 32.768 kHz Note 4 TA = +85C (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 63 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. When high-speed on-chip oscillator and subsystem clock are stopped. 3. When high-speed system clock and subsystem clock are stopped. 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12bit interval timer, and watchdog timer. 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 64 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = 40 to +85C, 1.6 V  EVDD0  VDD  5.5 V, VSS = EVSS0 = 0 V) (2/2) Parameter Symbol Conditions Supply IDD2 HALT current Note 2 mode Note 1 HS (highspeed main) Note 7 mode LS (lowspeed main) Note 7 mode LV (lowvoltage main) mode MIN. fIH = 32 MHz Note 4 fIH = 24 MHz Note 4 fIH = 16 MHz Note 4 fIH = 8 MHz Note 4 fIH = 4 MHz Note 4 TYP. MAX. Unit VDD = 5.0 V 0.54 1.63 mA VDD = 3.0 V 0.54 1.63 mA VDD = 5.0 V 0.44 1.28 mA VDD = 3.0 V 0.44 1.28 mA VDD = 5.0 V 0.40 1.00 mA VDD = 3.0 V 0.40 1.00 mA VDD = 3.0 V 260 530 A VDD = 2.0 V 260 530 A VDD = 3.0 V 420 640 A VDD = 2.0 V 420 640 A Square wave input 0.28 1.00 mA Resonator connection 0.45 1.17 mA Square wave input 0.28 1.00 mA Resonator connection 0.45 1.17 mA Square wave input 0.19 0.60 mA Resonator connection 0.26 0.67 mA Square wave input 0.19 0.60 mA Note 7 HS (highspeed main) Note 7 mode Note 3 fMX = 20 MHz , VDD = 5.0 V Note 3 fMX = 20 MHz , VDD = 3.0 V Note 3 fMX = 10 MHz , VDD = 5.0 V Note 3 fMX = 10 MHz , VDD = 3.0 V Note 3 LS (low- fMX = 8 MHz speed main) VDD = 3.0 V mode , Note 7 Note 3 fMX = 8 MHz , VDD = 2.0 V A Resonator connection 145 380 A Square wave input 95 330 A Resonator connection 145 380 A Square wave input 0.25 0.57 A TA = 40C Resonator connection 0.44 0.76 A Note 5 Square wave input 0.30 0.57 A Resonator connection 0.49 0.76 A fSUB = 32.768 kHz Note 5 Square wave input 0.37 1.17 A TA = +50C Resonator connection 0.56 1.36 A fSUB = 32.768 kHz Square wave input 0.53 1.97 A TA = +70C Resonator connection 0.72 2.16 A fSUB = 32.768 kHz Square wave input 0.82 3.37 A TA = +85C Resonator connection 1.01 3.56 A TA = 40C 0.18 0.50 A TA = +25C 0.23 0.50 A TA = +50C 0.30 1.10 A TA = +70C 0.46 1.90 A TA = +85C 0.75 3.30 A fSUB = 32.768 kHz Note 5 mode mA 330 fSUB = 32.768 kHz Note 5 STOP 0.67 95 clock Note 5 TA = +25C IDD3 0.26 Subsystem operation Note 6 Resonator connection Square wave input Note 8 (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 65 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. During HALT instruction execution by flash memory. 3. When high-speed on-chip oscillator and subsystem clock are stopped. 4. When high-speed system clock and subsystem clock are stopped. 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode. Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 66 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (1/2) Parameter Symbol Supply current IDD1 Conditions Operating mode Note 1 HS (highspeed main) Note 5 mode fIH = 32 MHz Note 3 MIN. TYP. Basic operation VDD = 5.0 V VDD = 3.0 V 2.3 Normal operation VDD = 5.0 V 5.2 MAX. 2.3 Unit mA mA 8.5 mA VDD = 3.0 V 5.2 8.5 mA fIH = 24 MHz Note 3 Normal operation VDD = 5.0 V 4.1 6.6 mA VDD = 3.0 V 4.1 6.6 mA fIH = 16 MHz Note 3 Normal operation VDD = 5.0 V 3.0 4.7 mA VDD = 3.0 V 3.0 4.7 mA Normal operation VDD = 3.0 V 1.3 2.1 mA VDD = 2.0 V 1.3 2.1 mA Normal operation VDD = 3.0 V 1.3 1.8 mA VDD = 2.0 V 1.3 1.8 mA LS (lowspeed main) Note 5 mode fIH = 8 MHz LV (lowvoltage main) mode fIH = 4 MHz Note 3 Note 3 Note 5 HS (highspeed main) Note 5 mode Note 2 fMX = 20 MHz , Square wave input 3.4 5.5 mA Resonator connection 3.6 5.7 mA Normal operation Square wave input 3.4 5.5 mA Resonator connection 3.6 5.7 mA Note 2 Normal operation Square wave input 2.1 3.2 mA Resonator connection 2.1 3.2 mA Note 2 Normal operation Square wave input 2.1 3.2 mA Resonator connection 2.1 3.2 mA Normal operation Square wave input 1.2 2.0 mA Resonator connection 1.2 2.0 mA Normal operation Square wave input 1.2 2.0 mA Resonator connection 1.2 2.0 mA Normal operation Square wave input 4.8 5.9 A Resonator connection 4.9 6.0 A Normal operation Square wave input 4.9 5.9 A Resonator connection 5.0 6.0 A Normal operation Square wave input 5.0 7.6 A Resonator connection 5.1 7.7 A Normal operation Square wave input 5.2 9.3 A Resonator connection 5.3 9.4 A Normal operation Square wave input 5.7 13.3 A Resonator connection 5.8 13.4 A VDD = 5.0 V Note 2 fMX = 20 MHz , VDD = 3.0 V fMX = 10 MHz , VDD = 5.0 V fMX = 10 MHz , VDD = 3.0 V LS (lowspeed main) Note 5 mode Note 2 fMX = 8 MHz , VDD = 3.0 V Note 2 fMX = 8 MHz , VDD = 2.0 V Subsystem clock operation fSUB = 32.768 kHz Note 4 Normal operation TA = 40C fSUB = 32.768 kHz Note 4 TA = +25C fSUB = 32.768 kHz Note 4 TA = +50C fSUB = 32.768 kHz Note 4 TA = +70C fSUB = 32.768 kHz Note 4 TA = +85C (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 67 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. When high-speed on-chip oscillator and subsystem clock are stopped. 3. When high-speed system clock and subsystem clock are stopped. 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 68 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/2) Parameter Symbol Supply current IDD2 Note 2 Conditions HALT mode Note 1 HS (highspeed main) Note 7 mode MIN. fIH = 32 MHz Note 4 fIH = 24 MHz Note 4 fIH = 16 MHz Note 4 LS (lowspeed main) Note 7 mode fIH = 8 MHz LV (lowvoltage main) mode fIH = 4 MHz VDD = 5.0 V Note 4 Note 4 TYP. MAX. Unit 0.62 1.86 mA VDD = 3.0 V 0.62 1.86 mA VDD = 5.0 V 0.50 1.45 mA VDD = 3.0 V 0.50 1.45 mA VDD = 5.0 V 0.44 1.11 mA VDD = 3.0 V 0.44 1.11 mA VDD = 3.0 V 290 620 A VDD = 2.0 V 290 620 A VDD = 3.0 V 440 680 A VDD = 2.0 V 440 680 A Square wave input 0.31 1.08 mA Resonator connection 0.48 1.28 mA Square wave input 0.31 1.08 mA Resonator connection 0.48 1.28 mA Square wave input 0.21 0.63 mA Resonator connection 0.28 0.71 mA Note 7 HS (highspeed main) Note 7 mode Note 3 fMX = 20 MHz , VDD = 5.0 V Note 3 fMX = 20 MHz , VDD = 3.0 V Note 3 fMX = 10 MHz , VDD = 5.0 V Note 3 fMX = 10 MHz , VDD = 3.0 V LS (lowspeed main) Note 7 mode Note 3 fMX = 8 MHz , VDD = 3.0 V Note 3 fMX = 8 MHz , VDD = 2.0 V Subsystem clock operation fSUB = 32.768 kHz Note 5 TA = 40C fSUB = 32.768 kHz Note 5 TA = +25C mA 0.71 mA Square wave input 110 360 A Resonator connection 160 420 A Square wave input 110 360 A Resonator connection 160 420 A Square wave input 0.28 0.61 A Resonator connection 0.47 0.80 A Square wave input 0.34 0.61 A Resonator connection 0.53 0.80 A 0.41 2.30 A 0.60 2.49 A Square wave input 0.64 4.03 A Resonator connection 0.83 4.22 A Square wave input 1.09 8.04 A Resonator connection 1.28 8.23 A TA = 40C 0.19 0.52 A TA = +25C 0.25 0.52 A TA = +50C 0.32 2.21 A TA = +70C 0.55 3.94 A TA = +85C 1.00 7.95 A fSUB = 32.768 kHz Note 5 TA = +70C fSUB = 32.768 kHz TA = +85C STOP Note 8 mode 0.63 0.28 Square wave input Note 5 TA = +50C Note 6 0.21 Resonator connection Resonator connection fSUB = 32.768 kHz IDD3 Square wave input Note 5 (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 69 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The values below the MAX. column include the peripheral operation current . However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. During HALT instruction execution by flash memory. 3. When high-speed on-chip oscillator and subsystem clock are stopped. 4. When high-speed system clock and subsystem clock are stopped. 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode. Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 70 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (1/2) Parameter Symbol IDD1 Supply Note 1 current Conditions Operating HS (highfIH = 32 MHz speed main) mode Note 5 mode fIH = 24 MHz fIH = 16 MHz Note 3 Note 3 LS (lowfIH = 8 MHz speed main) Note 5 mode Note 3 LV (lowvoltage main) mode Note 3 fIH = 4 MHz MIN. Note 3 TYP. MAX. Unit Basic operation VDD = 5.0 V 2.6 mA VDD = 3.0 V 2.6 mA Normal operation VDD = 5.0 V 6.1 9.5 mA VDD = 3.0 V 6.1 9.5 mA Normal operation VDD = 5.0 V 4.8 7.4 mA VDD = 3.0 V 4.8 7.4 mA Normal operation VDD = 5.0 V 3.5 5.3 mA VDD = 3.0 V 3.5 5.3 mA Normal operation VDD = 3.0 V 1.5 2.3 mA VDD = 2.0 V 1.5 2.3 mA Normal operation VDD = 3.0 V 1.5 2.0 mA VDD = 2.0 V 1.5 2.0 mA Note 5 Note 2 HS (highfMX = 20 MHz speed main) VDD = 5.0 V Note 5 mode , Note 2 fMX = 20 MHz , VDD = 3.0 V Note 2 fMX = 10 MHz , VDD = 5.0 V Note 2 fMX = 10 MHz , VDD = 3.0 V Note 2 LS (lowfMX = 8 MHz speed main) VDD = 3.0 V Note 5 mode , Note 2 fMX = 8 MHz , VDD = 2.0 V Subsystem clock operation fSUB = 32.768 kHz Note 4 Normal operation Normal operation Note 4 Note 4 Note 4 Note 4 TA = +85C mA Square wave input 3.9 6.1 mA Resonator connection 4.1 6.3 mA 3.7 mA 2.5 3.7 mA Normal operation Square wave input 2.5 3.7 mA Resonator connection 2.5 3.7 mA Normal operation Square wave input 1.4 2.2 mA Resonator connection 1.4 2.2 mA Normal operation Square wave input 1.4 2.2 mA Resonator connection 1.4 2.2 mA Normal operation Square wave input 5.4 6.5 A Resonator connection 5.5 6.6 A Normal operation Square wave input 5.5 6.5 A Resonator connection 5.6 6.6 A Normal operation Square wave input 5.6 9.4 A Resonator connection 5.7 9.5 A Normal operation Square wave input 5.9 12.0 A Resonator connection 6.0 12.1 A Normal operation Square wave input 6.6 16.3 A Resonator connection 6.7 16.4 A TA = +70C fSUB = 32.768 kHz mA 6.3 2.5 TA = +50C fSUB = 32.768 kHz 6.1 4.1 Square wave input TA = +25C fSUB = 32.768 kHz 3.9 Resonator connection Normal operation TA = 40C fSUB = 32.768 kHz Square wave input Resonator connection (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 71 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. When high-speed on-chip oscillator and subsystem clock are stopped. 3. When high-speed system clock and subsystem clock are stopped. 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V @1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 72 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/2) Parameter Symbol Supply current IDD2 Note 2 Conditions HALT mode Note 1 HS (highspeed main) Note 7 mode MIN. fIH = 32 MHz Note 4 fIH = 24 MHz Note 4 fIH = 16 MHz Note 4 LS (lowspeed main) Note 7 mode fIH = 8 MHz LV (lowvoltage main) mode fIH = 4 MHz Note 4 Note 4 TYP. MAX. Unit VDD = 5.0 V 0.62 1.89 mA VDD = 3.0 V 0.62 1.89 mA VDD = 5.0 V 0.50 1.48 mA VDD = 3.0 V 0.50 1.48 mA VDD = 5.0 V 0.44 1.12 mA VDD = 3.0 V 0.44 1.12 mA VDD = 3.0 V 290 620 A VDD = 2.0 V 290 620 A VDD = 3.0 V 460 700 A VDD = 2.0 V 460 700 A Square wave input 0.31 1.14 mA Resonator connection 0.48 1.34 mA Square wave input 0.31 1.14 mA Resonator connection 0.48 1.34 mA Square wave input 0.21 0.68 mA Resonator connection 0.28 0.76 mA Square wave input 0.21 0.68 mA Resonator connection 0.28 0.76 mA Note 7 HS (highspeed main) Note 7 mode Note 3 fMX = 20 MHz , VDD = 5.0 V Note 3 fMX = 20 MHz , VDD = 3.0 V Note 3 fMX = 10 MHz , VDD = 5.0 V Note 3 fMX = 10 MHz , VDD = 3.0 V Square wave input 110 390 A Resonator connection 160 450 A Square wave input 110 390 A Resonator connection 160 450 A Square wave input 0.31 0.66 A Resonator connection 0.50 0.85 A Square wave input 0.38 0.66 A Resonator connection 0.57 0.85 A Square wave input 0.47 3.49 A Resonator connection 0.66 3.68 A Square wave input 0.80 6.10 A Resonator connection 0.99 6.29 A Square wave input 1.52 10.46 A Resonator connection 1.71 10.65 A TA = 40C 0.19 0.54 A TA = +25C 0.26 0.54 A TA = +50C 0.35 3.37 A TA = +70C 0.68 5.98 A TA = +85C 1.40 10.34 A LS (lowspeed main) Note 7 mode Note 3 fMX = 8 MHz , VDD = 3.0 V Note 3 fMX = 8 MHz , VDD = 2.0 V Subsystem clock operation fSUB = 32.768 kHz Note 5 TA = 40C fSUB = 32.768 kHz Note 5 TA = +25C fSUB = 32.768 kHz Note 5 TA = +50C fSUB = 32.768 kHz Note 5 TA = +70C fSUB = 32.768 kHz TA = +85C Note 6 IDD3 STOP Note 8 mode Note 5 (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 73 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The values below the MAX. column include the peripheral operation current . However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. During HALT instruction execution by flash memory. 3. When high-speed on-chip oscillator and subsystem clock are stopped. 4. When high-speed system clock and subsystem clock are stopped. 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V @1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode. Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 74 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (4) Peripheral Functions (Common to all products) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions MIN. TYP. MAX. Unit IFIL 0.20 A RTC operating IRTC 0.02 A current Notes 1, 2, 3 12-bit interval IIT 0.02 A 0.22 A Low-speed on- Note 1 chip oscillator operating current Notes 1, 2, 4 timer operating current Watchdog timer IWDT operating Notes 1, 2, 5 fIL = 15 kHz current Notes 1, 6 A/D converter operating current IADC A/D converter reference voltage current IADREF Temperature sensor operating current ITMPS LVD operating ILVI When conversion at maximum speed Normal mode, AVREFP = VDD = 5.0 V 1.3 1.7 mA Low voltage mode, AVREFP = VDD = 3.0 V 0.5 0.7 mA 75.0 A Note 1 75.0 A Notes 1, 7 0.08 A Note 1 current Self- IFSP Notes 1, 9 2.50 12.20 mA 2.50 12.20 mA 0.50 0.60 mA 1.20 1.44 mA 0.70 0.84 mA programming operating current BGO operating IBGO Notes 1, 8 current SNOOZE ISNOZ Note 1 ADC operation The mode is performed Note 10 operating The A/D conversion operations are current performed, Low voltage mode, AVREFP = VDD = 3.0 V CSI/UART operation Notes 1. Current flowing to VDD. 2. When high speed on-chip oscillator and high-speed system clock are stopped. 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 75 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode. 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation. 8. Current flowing only during data flash rewrite. 9. Current flowing only during self programming. 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode. Remarks 1. fIL: Low-speed on-chip oscillator clock frequency 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 3. fCLK: CPU/peripheral hardware clock frequency 4. Temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 76 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.4 AC Characteristics (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Items Instruction cycle (minimum instruction execution time) Symbol TCY Conditions MAX. Unit 2.7 V  VDD  5.5 V 0.03125 1 s 2.4 V  VDD < 2.7 V 0.0625 1 s 0.125 1 s 1.6 V  VDD  5.5 V 0.25 1 s 1.8 V  VDD  5.5 V 28.5 31.3 s 2.7 V  VDD  5.5 V 0.03125 1 s 2.4 V  VDD < 2.7 V 0.0625 1 s 0.125 1 s 0.25 1 s 2.7 V  VDD  5.5 V 1.0 20.0 MHz 2.4 V  VDD < 2.7 V 1.0 16.0 MHz 1.8 V  VDD < 2.4 V 1.0 8.0 MHz 1.6 V  VDD < 1.8 V 1.0 4.0 MHz 32 35 kHz Main HS (highsystem speed main) clock (fMAIN) mode operation MIN. LS (low-speed 1.8 V  VDD  5.5 V main) mode LV (lowvoltage main) mode Subsystem clock (fSUB) TYP. 30.5 operation In the self HS (highprogramming speed main) mode mode LS (low-speed 1.8 V  VDD  5.5 V main) mode LV (lowvoltage main) mode External system clock frequency fEX 1.8 V  VDD  5.5 V fEXS External system clock input tEXH, tEXL high-level width, low-level width 2.7 V  VDD  5.5 V 24 ns 2.4 V  VDD < 2.7 V 30 ns 1.8 V  VDD < 2.4 V 60 ns 1.6 V  VDD < 1.8 V 120 ns 13.7 s tEXHS, tEXLS TO00 to TO07, TO10 to TO17 output frequency PCLBUZ0, PCLBUZ1 output frequency fTO fPCL Note 1/fMCK+10 TI00 to TI07, TI10 to TI17 input tTIH, high-level width, low-level width tTIL ns 4.0 V  EVDD0  5.5 V 16 MHz 2.7 V  EVDD0 < 4.0 V 8 MHz 1.8 V  EVDD0 < 2.7 V 4 MHz 1.6 V  EVDD0 < 1.8 V 2 MHz LS (low-speed main) mode 1.8 V  EVDD0  5.5 V 4 MHz 1.6 V  EVDD0 < 1.8 V 2 MHz LV (low-voltage main) mode 1.6 V  EVDD0  5.5 V 2 MHz HS (high-speed main) mode 4.0 V  EVDD0  5.5 V 16 MHz 2.7 V  EVDD0 < 4.0 V 8 MHz 1.8 V  EVDD0 < 2.7 V 4 MHz 1.6 V  EVDD0 < 1.8 V 2 MHz LS (low-speed main) mode 1.8 V  EVDD0  5.5 V 4 MHz 1.6 V  EVDD0 < 1.8 V 2 MHz LV (low-voltage main) mode 1.8 V  EVDD0  5.5 V 4 MHz 1.6 V  EVDD0 < 1.8 V 2 MHz INTP0 1.6 V  VDD  5.5 V HS (high-speed main) mode 1 s 1.6 V  EVDD0  5.5 V 1 s 1.8 V  EVDD0  5.5 V 250 ns 1 s 10 s Interrupt input high-level width, low-level width tINTH, tINTL INTP1 to INTP11 Key interrupt input low-level width tKR KR0 to KR7 1.6 V  EVDD0 < 1.8 V RESET low-level width tRSL (Note and Remark are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 77 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Note The following conditions are required for low voltage interface when EVDD0 < VDD 1.8 V  EVDD0 < 2.7 V : MIN. 125 ns 1.6 V  EVDD0 < 1.8 V : MIN. 250 ns Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)) Minimum Instruction Execution Time during Main System Clock Operation TCY vs VDD (HS (high-speed main) mode) Cycle time TCY [µs] 10 1.0 When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected 0.1 0.0625 0.05 0.03125 0.01 0 1.0 2.0 3.0 2.4 2.7 4.0 5.0 5.5 6.0 Supply voltage VDD [V] R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 78 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 TCY vs VDD (LS (low-speed main) mode) Cycle time TCY [µs] 10 1.0 When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected 0.125 0.1 0.01 0 1.0 2.0 1.8 3.0 4.0 5.0 5.5 6.0 Supply voltage VDD [V] TCY vs VDD (LV (low-voltage main) mode) Cycle time TCY [µs] 10 1.0 When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected 0.25 0.1 0.01 0 1.0 2.0 1.6 1.8 3.0 4.0 5.0 5.5 6.0 Supply voltage VDD [V] R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 79 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 AC Timing Test Points VIH/VOH VIL/VOL VIH/VOH Test points VIL/VOL External System Clock Timing 1/fEX/ 1/fEXS tEXL/ tEXLS tEXH/ tEXHS EXCLK/EXCLKS TI/TO Timing tTIH tTIL TI00 to TI07, TI10 to TI17 1/fTO TO00 to TO07, TO10 to TO17 Interrupt Request Input Timing tINTL tINTH INTP0 to INTP11 Key Interrupt Input Timing tKR KR0 to KR7 RESET Input Timing tRSL RESET R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 80 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.5 Peripheral Functions Characteristics AC Timing Test Points VIH/VOH VIH/VOH Test points VIL/VOL VIL/VOL 2.5.1 Serial array unit (1) During communication at same potential (UART mode) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Transfer rate Symbol Note 1 Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. MIN. MIN. MAX. 2.4 V EVDD0  5.5 V fMCK/6 MAX. Unit MAX. fMCK/6 fMCK/6 bps 5.3 1.3 0.6 Mbps fMCK/6 fMCK/6 fMCK/6 bps 5.3 1.3 0.6 Mbps fMCK/6 fMCK/6 fMCK/6 bps Note 2 Note 2 5.3 1.3 0.6 Mbps fMCK/6 fMCK/6 bps 0.6 Mbps Note 2 Theoretical value of the maximum transfer rate fMCK = fCLK Note 3 1.8 V  EVDD0  5.5 V Note 2 Theoretical value of the maximum transfer rate fMCK = fCLK Note 3 1.7 V  EVDD0  5.5 V Theoretical value of the maximum transfer rate fMCK = fCLK Note 3 1.6 V  EVDD0  5.5 V  Note 2 Theoretical value of the  1.3 maximum transfer rate fMCK = fCLK Note 3 Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only. 2. The following conditions are required for low voltage interface when EVDD0 < VDD. 2.4 V  EVDD0 < 2.7 V : MAX. 2.6 Mbps 1.8 V  EVDD0 < 2.4 V : MAX. 1.3 Mbps 1.6 V  EVDD0 < 1.8 V : MAX. 0.6 Mbps 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 32 MHz (2.7 V  VDD  5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V  VDD  5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V  VDD  5.5 V) 16 MHz (2.4 V  VDD  5.5 V) Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 81 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 UART mode connection diagram (during communication at same potential) Rx TxDq User device RL78 microcontroller RxDq Tx UART mode bit width (during communication at same potential) (reference) 1/Transfer rate High-/Low-bit width Baud rate error tolerance TxDq RxDq Remarks 1. 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 82 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (TA = 40 to +85C, 2.7 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter SCKp cycle time Symbol tKCY1 SCKp high-/low-level tKH1, width tKL1 Conditions Note 1 SIp hold time (from SCKp) tKSI1 main) Mode main) Mode main) Mode MIN. MIN. MIN. MAX. MAX. MAX. tKCY1  2/fCLK 4.0 V  EVDD0  5.5 V 62.5 250 500 ns 2.7 V  EVDD0  5.5 V 83.3 250 500 ns tKCY1/2  tKCY1/2  tKCY1/2  ns 7 50 50 tKCY1/2  tKCY1/2  tKCY1/2  10 50 50 23 110 110 2.7 V  EVDD0  5.5 V 33 110 110 ns 2.7 V  EVDD0  5.5 V 10 10 10 ns 4.0 V  EVDD0  5.5 V 2.7 V  EVDD0  5.5 V SIp setup time (to SCKp) tSIK1 HS (high-speed LS (low-speed LV (low-voltage Unit 4.0 V  EVDD0  5.5 V ns ns Note 2 Delay time from SCKp to tKSO1 SOp output C = 20 pF Note 4 10 10 10 ns Note 3 Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. 2. This value is valid only when CSI00’s peripheral I/O redirect function is not used. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 83 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SCKp cycle time tKCY1 tKCY1  4/fCLK 2.7 V  EVDD0  5.5 MAX. MIN. MAX. MIN. Unit MAX. 125 500 1000 ns 250 500 1000 ns 500 500 1000 ns 1000 1000 1000 ns  1000 1000 ns tKCY1/2  tKCY1/2  tKCY1/2  ns 12 50 50 tKCY1/2  tKCY1/2  tKCY1/2  18 50 50 tKCY1/2  tKCY1/2  tKCY1/2  38 50 50 tKCY1/2  tKCY1/2  tKCY1/2  50 50 50 tKCY1/2  tKCY1/2  tKCY1/2  100 100 100  tKCY1/2  tKCY1/2  100 100 V 2.4 V  EVDD0  5.5 V 1.8 V  EVDD0  5.5 V 1.7 V  EVDD0  5.5 V 1.6 V  EVDD0  5.5 V SCKp high-/low-level tKH1, width 4.0 V  EVDD0  5.5 V tKL1 2.7 V  EVDD0  5.5 V 2.4 V  EVDD0  5.5 V 1.8 V  EVDD0  5.5 V 1.7 V  EVDD0  5.5 V 1.6 V  EVDD0  5.5 V SIp setup time tSIK1 (to SCKp) Note 1 SIp hold time (from SCKp) tKSI1 Note 2 Delay time from tKSO1 SCKp to SOp output Note 3 ns ns ns ns ns 4.0 V  EVDD0  5.5 V 44 110 110 ns 2.7 V  EVDD0  5.5 V 44 110 110 ns 2.4 V  EVDD0  5.5 V 75 110 110 ns 1.8 V  EVDD0  5.5 V 110 110 110 ns 1.7 V  EVDD0  5.5 V 220 220 220 ns 1.6 V  EVDD0  5.5 V  220 220 ns 1.7 V  EVDD0  5.5 V 19 19 19 ns 1.6 V  EVDD0  5.5 V  19 19 ns 1.7 V  EVDD0  5.5 V 25 25 25 ns  25 25 ns Note 4 C = 30 pF 1.6 V  EVDD0  5.5 V Note 4 C = 30 pF Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 84 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14) 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SCKp cycle time tKCY2 Note 5 MIN. MAX. 8/fMCK   ns fMCK  20 MHz 6/fMCK 6/fMCK 6/fMCK ns 2.7 V  EVDD0  5.5 16 MHz < fMCK 8/fMCK   ns V fMCK  16 MHz 6/fMCK 6/fMCK 6/fMCK ns 6/fMCK 6/fMCK 6/fMCK ns and 500 and and 500 500 6/fMCK 6/fMCK 6/fMCK and 750 and and 750 750 6/fMCK 6/fMCK 6/fMCK and and and 1500 1500 1500  6/fMCK 6/fMCK and and 1500 1500 tKCY2/2  tKCY2/2 tKCY2/2 7 7 7 tKCY2/2  tKCY2/2 tKCY2/2 8 8 8 tKCY2/2  tKCY2/2 tKCY2/2 18  18  18 tKCY2/2  tKCY2/2 tKCY2/2 66  66  66  tKCY2/2 tKCY2/2  66  66 1.6 V  EVDD0  5.5 V tKH2, MAX. 20 MHz < fMCK 1.7 V  EVDD0  5.5 V tKL2 MIN. main) Mode V 1.8 V  EVDD0  5.5 V level width main) Mode 4.0 V  EVDD0  5.5 2.4 V  EVDD0  5.5 V SCKp high-/low- MAX. LS (low-speed LV (low-voltage Unit 4.0 V  EVDD0  5.5 V 2.7 V  EVDD0  5.5 V 1.8 V  EVDD0  5.5 V 1.7 V  EVDD0  5.5 V 1.6 V  EVDD0  5.5 V ns ns ns ns ns ns ns ns (Notes, Caution, and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 85 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbo Conditions l HS (high-speed MIN. SIp setup time (to SCKp) tSIK2 LS (low-speed main) LV (low-voltage main) Unit main) Mode 2.7 V  EVDD0  5.5 V Note 1 MAX. 1/fMCK+2 Mode MIN. Mode MAX. MIN. MAX. 1/fMCK+30 1/fMCK+30 ns 1/fMCK+30 1/fMCK+30 ns 1/fMCK+40 1/fMCK+40 ns  1/fMCK+40 1/fMCK+40 ns 1/fMCK+3 1/fMCK+31 1/fMCK+31 ns 1/fMCK+ 1/fMCK+ 1/fMCK+ ns 250 250 250  1/fMCK+ 1/fMCK+ 250 250 0 1.8 V  EVDD0  5.5 V 1/fMCK+3 0 1.7 V  EVDD0  5.5 V 1/fMCK+4 0 1.6 V  EVDD0  5.5 V SIp hold time tKSI2 1.8 V  EVDD0  5.5 V (from SCKp) 1 Note 2 1.7 V  EVDD0  5.5 V 1.6 V  EVDD0  5.5 V Delay time tKSO2 from SCKp to SOp output C = 30 pF Note 4 Note 2.7 V  EVDD0  5.5 2/fMCK+ 2/fMCK+ 2/fMCK+ 44 110 110 2/fMCK+ 2/fMCK+ 2/fMCK+ 75 110 110 2/fMCK+ 2/fMCK+ 2/fMCK+ 110 110 110 2/fMCK+ 2/fMCK+ 2/fMCK+ 220 220 220  2/fMCK+ 2/fMCK+ 220 220 V 2.4 V  EVDD0  5.5 3 V 1.8 V  EVDD0  5.5 V 1.7 V  EVDD0  5.5 ns V 1.6 V  EVDD0  5.5 V ns ns ns ns ns Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. C is the load capacitance of the SOp output lines. 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 86 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 CSI mode connection diagram (during communication at same potential) SCK SCKp RL78 microcontroller SIp SO User device SOp SI CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) tKCY1, 2 tKL1, 2 tKH1, 2 SCKp tSIK1, 2 SIp tKSI1, 2 Input data tKSO1, 2 Output data SOp CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) tKCY1, 2 tKH1, 2 tKL1, 2 SCKp tSIK1, 2 SIp tKSI1, 2 Input data tKSO1, 2 SOp Remarks 1. 2. Output data p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 87 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 (5) During communication at same potential (simplified I C mode) (1/2) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode MIN. SCLr clock frequency fSCL 2.7 V  EVDD0  5.5 V, MAX. main) Mode MIN. MAX. Unit main) Mode MIN. MAX. 1000 400 400 Note 1 Note 1 Note 1 400 400 400 Note 1 Note 1 Note 1 300 300 300 Note 1 Note 1 Note 1 250 250 250 Note 1 Note 1 Note 1  250 250 Note 1 Note 1 kHz Cb = 50 pF, Rb = 2.7 k 1.8 V  EVDD0  5.5 V, kHz Cb = 100 pF, Rb = 3 k 1.8 V  EVDD0 < 2.7 V, kHz Cb = 100 pF, Rb = 5 k 1.7 V  EVDD0 < 1.8 V, kHz Cb = 100 pF, Rb = 5 k 1.6 V  EVDD0 < 1.8 V, kHz Cb = 100 pF, Rb = 5 k Hold time when SCLr = “L” tLOW 2.7 V  EVDD0  5.5 V, 475 1150 1150 ns 1150 1150 1150 ns 1550 1550 1550 ns 1850 1850 1850 ns  1850 1850 ns 475 1150 1150 ns 1150 1150 1150 ns 1550 1550 1550 ns 1850 1850 1850 ns  1850 1850 ns Cb = 50 pF, Rb = 2.7 k 1.8 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k 1.8 V  EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 k 1.7 V  EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 k 1.6 V  EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 k Hold time when SCLr = “H” tHIGH 2.7 V  EVDD0  5.5 V, Cb = 50 pF, Rb = 2.7 k 1.8 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k 1.8 V  EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 k 1.7 V  EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 k 1.6 V  EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 k (Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 88 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 (5) During communication at same potential (simplified I C mode) (2/2) (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode MIN. Data setup time (reception) tSU:DAT 2.7 V  EVDD0  5.5 V, MAX. MAX. MIN. 1/fMCK + 145 1/fMCK + 145 Note2 Note2 Note2 1/fMCK + 145 1/fMCK + 145 1/fMCK + 145 Note2 Note2 Note2 1/fMCK + 230 1/fMCK + 230 1/fMCK + 230 Note2 Note2 Note2 Cb = 100 pF, Rb = 5 k 1/fMCK + 290 1/fMCK + 290 1/fMCK + 290 Note2 Note2 Note2 1.6 V  EVDD0 < 1.8 V,  1/fMCK + 290 1/fMCK + 290 Note2 Note2 1.8 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k 1.8 V  EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 k 1.7 V  EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 k tHD:DAT MIN. 2.7 V  EVDD0  5.5 V, Unit main) Mode 1/fMCK + 85 Cb = 50 pF, Rb = 2.7 k Data hold time (transmission) main) Mode MAX. ns ns ns ns ns 0 305 0 305 0 305 ns 0 355 0 355 0 355 ns 0 405 0 405 0 405 ns 0 405 0 405 0 405 ns 0 405 0 405 ns Cb = 50 pF, Rb = 2.7 k 1.8 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k 1.8 V  EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 k 1.7 V  EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 k 1.6 V  EVDD0 < 1.8 V,  Cb = 100 pF, Rb = 5 k Notes 1. The value must also be equal to or less than fMCK/4. 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 89 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 Simplified I C mode mode connection diagram (during communication at same potential) VDD Rb SDA SDAr User device RL78 microcontroller SCLr SCL 2 Simplified I C mode serial transfer timing (during communication at same potential) 1/fSCL tLOW tHIGH SCLr SDAr tHD:DAT tSU:DAT Remarks 1. Rb[]:Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 90 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high- LS (low-speed LV (low- speed main) main) Mode voltage main) Mode MIN. Transfer Recep- 4.0 V  EVDD0  5.5 V, rate tion 2.7 V  Vb  4.0 V Theoretical value MAX. Unit Mode MIN. MAX. MIN. MAX. fMCK/6 fMCK/6 fMCK/6 Note 1 Note 1 Note 1 5.3 1.3 0.6 Mbps fMCK/6 fMCK/6 fMCK/6 bps Note 1 Note 1 Note 1 5.3 1.3 0.6 Mbps bps bps of the maximum transfer rate fMCK = fCLK Note 4 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V Theoretical value of the maximum transfer rate fMCK = fCLK Note 4 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Theoretical value fMCK/6 fMCK/6 fMCK/6 Notes 1 to 3 Notes 1, 2 Notes 1, 2 5.3 1.3 0.6 Mbps of the maximum transfer rate fMCK = fCLK Note 4 Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only. 2. Use it with EVDD0Vb. 3. The following conditions are required for low voltage interface when EVDD0 < VDD. 2.4 V  EVDD0 < 2.7 V : MAX. 2.6 Mbps 1.8 V  EVDD0 < 2.4 V : MAX. 1.3 Mbps 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 32 MHz (2.7 V  VDD  5.5 V) LS (low-speed main) mode: 8 MHz (1.8 V  VDD  5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V  VDD  5.5 V) 16 MHz (2.4 V  VDD  5.5 V) Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Vb[V]: Communication line voltage 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 91 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol HS (high- Conditions LS (low- speed main) speed main) Mode Mode LV (low- Unit voltage main) Mode MIN. MAX. MIN. MAX. MIN. MAX. Transfer rate Transmission 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V Note Note Note 1 1 1 Theoretical 2.8 2.8 2.8 value of the Note 2 Note 2 Note 2 Note Note Note 3 3 3 bps Mbps maximum transfer rate Cb = 50 pF, Rb = 1.4 k, Vb = 2.7 V 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V Theoretical 1.2 1.2 1.2 value of the Note 4 Note 4 Note 4 Notes Notes Notes 5, 6 5, 6 5, 6 Theoretical 0.43 0.43 0.43 value of the Note 7 Note 7 Note 7 bps Mbps maximum transfer rate Cb = 50 pF, Rb = 2.7 k, Vb = 2.3 V 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V bps Mbps maximum transfer rate Cb = 50 pF, Rb = 5.5 k, Vb = 1.6 V Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V  EVDD0  5.5 V and 2.7 V  Vb  4.0 V 1 Maximum transfer rate = {Cb × Rb × ln (1  Baud rate error (theoretical value) = 2.2 Vb )} × 3 [bps] 2.2 1  {Cb × Rb × ln (1  Vb )} Transfer rate  2 1 ( Transfer rate ) × Number of transferred bits × 100 [%] * This value is the theoretical value of the relative difference between the transmission and reception sides. 2. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 92 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V  EVDD0 < 4.0 V and 2.3 V  Vb  2.7 V 1 Maximum transfer rate = {Cb × Rb × ln (1  Baud rate error (theoretical value) = 2.0 Vb )} × 3 [bps] 2.0 1  {Cb × Rb × ln (1  Vb )} Transfer rate  2 1 ( Transfer rate ) × Number of transferred bits × 100 [%] * This value is the theoretical value of the relative difference between the transmission and reception sides. 4. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. 5. Use it with EVDD0  Vb. 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V  EVDD0 < 3.3 V and 1.6 V  Vb  2.0 V 1 Maximum transfer rate = {Cb × Rb × ln (1  Baud rate error (theoretical value) = 1.5 Vb )} × 3 [bps] 1.5 1  {Cb × Rb × ln (1  Vb )} Transfer rate  2 1 ( Transfer rate ) × Number of transferred bits × 100 [%] * This value is the theoretical value of the relative difference between the transmission and reception sides. 7. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. UART mode connection diagram (during communication at different potential) Vb Rb TxDq Rx User device RL78 microcontroller RxDq R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Tx Page 93 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 UART mode bit width (during communication at different potential) (reference) 1/Transfer rate Low-bit width High-bit width Baud rate error tolerance TxDq 1/Transfer rate High-/Low-bit width Baud rate error tolerance RxDq Remarks 1. Rb[]:Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 94 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2) (TA = 40 to +85C, 2.7 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SCKp cycle time tKCY1 tKCY1  2/fCLK 4.0 V  EVDD0  5.5 V, MAX. MIN. MAX. MIN. Unit MAX. 200 1150 1150 ns 300 1150 1150 ns tKCY1/2  tKCY1/2  tKCY1/2  ns 50 50 50 tKCY1/2  tKCY1/2  tKCY1/2  120 120 120 tKCY1/2  tKCY1/2  tKCY1/2  7 50 50 tKCY1/2  tKCY1/2  tKCY1/2  10 50 50 58 479 479 ns 121 479 479 ns 10 10 10 ns 10 10 10 ns 2.7 V  Vb  4.0 V, Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k SCKp high-level tKH1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, width Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, ns Cb = 20 pF, Rb = 2.7 k SCKp low-level tKL1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, width ns Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, ns Cb = 20 pF, Rb = 2.7 k SIp setup time (to SCKp) tSIK1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Note 1 Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k SIp hold time (from SCKp) tKSI1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Note 1 Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k Delay time from SCKp to SOp output tKSO1 4.0 V  EVDD0  5.5 V, 60 60 60 ns 130 130 130 ns 2.7 V  Vb  4.0 V, Note 1 Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k (Notes, Caution, and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 95 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2) (TA = 40 to +85C, 2.7 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SIp setup time (to SCKp) tSIK1 4.0 V  EVDD0  5.5 V, MAX. MIN. MAX. MIN. Unit MAX. 23 110 110 ns 33 110 110 ns 10 10 10 ns 10 10 10 ns 2.7 V  Vb  4.0 V, Note 2 Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k SIp hold time (from SCKp) tKSI1 Note 2 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k Delay time from SCKp tKSO1 4.0 V  EVDD0  5.5 V, to 2.7 V  Vb  4.0 V, SOp output 10 10 10 ns 10 10 10 ns Note 2 Cb = 20 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 20 pF, Rb = 2.7 k Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Rb[]:Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) 4. This value is valid only when CSI00’s peripheral I/O redirect function is not used. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 96 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SCKp cycle tKCY1 tKCY1  4/fCLK 4.0 V  EVDD0  5.5 V, MAX. MIN. MAX. MIN. Unit MAX. 300 1150 1150 ns 500 1150 1150 ns 1150 1150 1150 ns tKCY1/2  tKCY1/2  tKCY1/2  ns 75 75 75 tKCY1/2  tKCY1/2  tKCY1/2  170 170 170 tKCY1/2  tKCY1/2  tKCY1/2  458 458 458 tKCY1/2  tKCY1/2  tKCY1/2  12 50 50 tKCY1/2  tKCY1/2  tKCY1/2  18 50 50 tKCY1/2  tKCY1/2  tKCY1/2  50 50 50 2.7 V  Vb  4.0 V, time Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Note , Cb = 30 pF, Rb = 5.5 k SCKp high-level tKH1 width 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, ns Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Note , ns Cb = 30 pF, Rb = 5.5 k SCKp low-level width tKL1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, ns Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Note , ns Cb = 30 pF, Rb = 5.5 k Note Use it with EVDD0  Vb. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed two pages after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 97 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SIp setup time Note 1 (to SCKp) tSIK1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, MAX. MIN. MAX. MIN. Unit MAX. 81 479 479 ns 177 479 479 ns 479 479 479 ns 19 19 19 ns 19 19 19 ns 19 19 19 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, Note 2 , 1.6 V  Vb  2.0 V Cb = 30 pF, Rb = 5.5 k SIp hold time Note 1 (from SCKp) tKSI1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, Note 2 1.6 V  Vb  2.0 V , Cb = 30 pF, Rb = 5.5 k Delay time from SCKp tKSO1 to Note 1 SOp output 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, 100 100 100 ns 195 195 195 ns 483 483 483 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, Note 2 , 1.6 V  Vb  2.0 V Cb = 30 pF, Rb = 5.5 k Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. 2. Use it with EVDD0  Vb. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the page after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 98 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SIp setup time Note 1 (to SCKp) tSIK1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, MAX. MIN. MAX. MIN. Unit MAX. 44 110 110 ns 44 110 110 ns 110 110 110 ns 19 19 19 ns 19 19 19 ns 19 19 19 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, Note 2 , 1.6 V  Vb  2.0 V Cb = 30 pF, Rb = 5.5 k SIp hold time Note 1 (from SCKp) tKSI1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, Note 2 1.6 V  Vb  2.0 V , Cb = 30 pF, Rb = 5.5 k Delay time from SCKp tKSO1 to Note 1 SOp output 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, 25 25 25 ns 25 25 25 ns 25 25 25 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, Note 2 , 1.6 V  Vb  2.0 V Cb = 30 pF, Rb = 5.5 k Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 2. Use it with EVDD0  Vb. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 99 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 CSI mode connection diagram (during communication at different potential) Vb Rb Vb Rb SCKp SIp RL78 microcontroller SOp SCK SO User device SI Remarks 1. Rb[]:Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 100 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) tKCY1 tKL1 tKH1 SCKp tSIK1 SIp tKSI1 Input data tKSO1 SOp Output data CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) tKCY1 tKL1 tKH1 SCKp tSIK1 SIp tKSI1 Input data tKSO1 SOp Output data Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 101 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (1/2) Parameter Symbol Conditions HS (highspeed main) LS (low-speed LV (low-voltage Unit main) Mode main) Mode MIN. MIN. Mode MIN. SCKp cycle time Note 1 tKCY2 4.0 V  EVDD0  5.5 V, 24 MHz < fMCK 14/ 2.7 V  Vb  4.0 V fMCK 20 MHz < fMCK  24 MHz 12/ MAX. MAX. MAX.   ns   ns   ns 16/  ns ns fMCK 8 MHz < fMCK  20 MHz 10/ fMCK 4 MHz < fMCK  8 MHz 8/fMCK fMCK fMCK  4 MHz 6/fMCK 2.7 V  EVDD0 < 4.0 V, 24 MHz < fMCK 20/ 2.3 V  Vb  2.7 V fMCK 20 MHz < fMCK  24 MHz 16/ 10/ 10/ fMCK fMCK   ns   ns   ns   ns 16/  ns ns fMCK 16 MHz < fMCK  20 MHz 14/ fMCK 8 MHz < fMCK  16 MHz 12/ fMCK 4 MHz < fMCK  8 MHz 8/fMCK fMCK fMCK  4 MHz 10/ 10/ fMCK fMCK   ns   ns   ns   ns 16/ 16/  ns fMCK fMCK ns 6/fMCK 1.8 V  EVDD0 < 3.3 V, 24 MHz < fMCK 48/ 1.6 V  Vb  2.0 V fMCK 2 Note 20 MHz < fMCK  24 MHz 36/ fMCK 16 MHz < fMCK  20 MHz 32/ fMCK 8 MHz < fMCK  16 MHz 26/ fMCK 4 MHz < fMCK  8 MHz fMCK  4 MHz 10/ 10/ 10/ fMCK fMCK fMCK (Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 102 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/2) Parameter Symbol Conditions HS (highspeed main) LS (low-speed LV (low-voltage Unit main) Mode main) Mode MIN. MIN. Mode MIN. SCKp high-/low-level tKH2, 4.0 V  EVDD0  5.5 V, width tKL2 2.7 V  Vb  4.0 V tKCY2/2 tKCY2/2  12  50  50 tKCY2/2 tKCY2/2 tKCY2/2  18  50  50 tKCY2/2 tKCY2/2 tKCY2/2  50  50  50 4.0 V  EVDD0  5.5 V, 1/fMCK 1/fMCK 1/fMCK 2.7 V  Vb  4.0 V + 20 + 30 + 30 2.7 V  EVDD0 < 4.0 V, 1/fMCK 1/fMCK 1/fMCK 2.3 V  Vb  2.7 V + 20 + 30 + 30 1.8 V  EVDD0 < 3.3 V, 1/fMCK 1/fMCK 1/fMCK 1.6 V  Vb  2.0 V + 30 + 30 + 30 1/fMCK + 1/fMCK 1/fMCK 31 + 31 + 31 2.3 V  Vb  2.7 V 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V (to SCKp) tSIK2 Note 3 SIp hold time (from SCKp) Note 2 Note 2 tKSI2 Note 4 Delay time from tKSO2 SCKp to SOp output Note 5 MAX. tKCY2/2 2.7 V  EVDD0 < 4.0 V, SIp setup time MAX. MAX. ns ns ns ns ns ns ns 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 2/fMCK 2/fMCK 2/fMCK V, + 120 + 573 + 573 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 2/fMCK 2/fMCK 2/fMCK V, + 214 + 573 + 573 ns Cb = 30 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 2/fMCK 2/fMCK 2/fMCK 1.6 V  Vb  2.0 V + 573 + 573 + 573 Note 2 , ns Cb = 30 pF, Rb = 5.5 k Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps 2. Use it with EVDD0  Vb. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 103 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 CSI mode connection diagram (during communication at different potential) Vb Rb SCKp RL78 microcontroller SIp SOp SCK SO User device SI Remarks 1. Rb[]:Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 104 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) tKCY2 tKL2 tKH2 SCKp tSIK2 SIp tKSI2 Input data tKSO2 Output data SOp CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) tKCY2 tKL2 tKH2 SCKp tSIK2 SIp tKSI2 Input data tKSO2 SOp Output data Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 105 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I C mode) (1/2) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. SCLr clock frequency fSCL 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, MAX. MIN. MAX. MIN. Unit MAX. 1000 300 300 Note 1 Note 1 Note 1 1000 300 300 Note 1 Note 1 Note 1 400 300 300 Note 1 Note 1 Note 1 400 300 300 Note 1 Note 1 ote 1 300 300 300 Note 1 Note 1 Note 1 kHz Cb = 50 pF, Rb = 2.7 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, kHz Cb = 50 pF, Rb = 2.7 k 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, kHz Cb = 100 pF, Rb = 2.8 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, kHz Cb = 100 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Note 2 kHz , Cb = 100 pF, Rb = 5.5 k Hold time when SCLr = “L” tLOW 4.0 V  EVDD0  5.5 V, 475 1550 1550 ns 475 1550 1550 ns 1150 1550 1550 ns 1150 1550 1550 ns 1550 1550 1550 ns 245 610 610 ns 200 610 610 ns 675 610 610 ns 600 610 610 ns 610 610 610 ns 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Note 2 , Cb = 100 pF, Rb = 5.5 k Hold time when SCLr = “H” tHIGH 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 1.8 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Note 2 , Cb = 100 pF, Rb = 5.5 k R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 106 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I C mode) (2/2) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. Data setup time (reception) Data hold time (transmission) tSU:DAT tHD:DAT MAX. MIN. MAX. MIN. Unit MAX. 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 1/fMCK + Note 3 135 1/fMCK + 190 1/fMCK + 190 Note 3 Note 3 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 1/fMCK + Note 3 135 1/fMCK + 190 1/fMCK + 190 Note 3 Note 3 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 1/fMCK + Note 3 190 1/fMCK + 190 1/fMCK + 190 Note 3 Note 3 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 1/fMCK + Note 3 190 1/fMCK + 190 1/fMCK + 190 Note 3 Note 3 1.8 V  EVDD0 < 3.3 V, Note 2 , 1.6 V  Vb  2.0 V Cb = 100 pF, Rb = 5.5 k 1/fMCK + Note 3 190 1/fMCK + 190 1/fMCK + 190 Note 3 Note 3 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 0 305 0 305 0 305 ns 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 0 305 0 305 0 305 ns 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 0 355 0 355 0 355 ns 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 0 355 0 355 0 355 ns 1.8 V  EVDD0 < 3.3 V, Note 2 , 1.6 V  Vb  2.0 V Cb = 100 pF, Rb = 5.5 k 0 405 0 405 0 405 ns kHz kHz kHz kHz kHz Notes 1. The value must also be equal to or less than fMCK/4. 2. Use it with EVDD0  Vb. 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 107 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 Simplified I C mode connection diagram (during communication at different potential) Vb Vb Rb Rb SDA SDAr RL78 microcontroller User device SCLr SCL 2 Simplified I C mode serial transfer timing (during communication at different potential) 1/fSCL tLOW tHIGH SCLr SDAr tHD:DAT tSU:DAT Remarks 1. Rb[]:Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 108 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.5.2 Serial interface IICA 2 (1) I C standard mode (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter SCLA0 clock frequency Symbol fSCL Conditions Standard mode: fCLK  1 MHz HS (high-speed LS (low-speed LV (low-voltage Unit main) Mode main) Mode main) Mode MIN. MAX. MIN. MAX. MIN. MAX. 2.7 V  EVDD0  5.5 V 0 100 0 100 0 100 kHz 1.8 V  EVDD0  5.5 V 0 100 0 100 0 100 kHz 1.7 V  EVDD0  5.5 V 0 100 0 100 0 100 kHz 0 100 0 100 kHz 1.6 V  EVDD0  5.5 V Setup time of restart tSU:STA condition  2.7 V  EVDD0  5.5 V 4.7 4.7 4.7 s 1.8 V  EVDD0  5.5 V 4.7 4.7 4.7 s 1.7 V  EVDD0  5.5 V 4.7 4.7 4.7 s 4.7 4.7 s 1.6 V  EVDD0  5.5 V Hold time Note 1 tHD:STA  2.7 V  EVDD0  5.5 V 4.0 4.0 4.0 s 1.8 V  EVDD0  5.5 V 4.0 4.0 4.0 s 1.7 V  EVDD0  5.5 V 4.0 4.0 4.0 s 4.0 4.0 s 1.6 V  EVDD0  5.5 V  Hold time when SCLA0 = tLOW 2.7 V  EVDD0  5.5 V 4.7 4.7 4.7 s “L” 1.8 V  EVDD0  5.5 V 4.7 4.7 4.7 s 1.7 V  EVDD0  5.5 V 4.7 4.7 4.7 s 4.7 4.7 s 1.6 V  EVDD0  5.5 V  Hold time when SCLA0 = tHIGH 2.7 V  EVDD0  5.5 V 4.0 4.0 4.0 s “H” 1.8 V  EVDD0  5.5 V 4.0 4.0 4.0 s 1.7 V  EVDD0  5.5 V 4.0 4.0 4.0 s 4.0 4.0 s 1.6 V  EVDD0  5.5 V Data setup time tSU:DAT (reception)  2.7 V  EVDD0  5.5 V 250 250 250 ns 1.8 V  EVDD0  5.5 V 250 250 250 ns 1.7 V  EVDD0  5.5 V 250 250 250 ns 250 250 ns 1.6 V  EVDD0  5.5 V Data hold time tHD:DAT Note 2 (transmission)  tSU:STO condition tBUF 0 3.45 s 0 3.45 s 3.45 s 3.45 0 3.45 1.8 V  EVDD0  5.5 V 0 3.45 0 3.45 1.7 V  EVDD0  5.5 V 0 3.45 0 3.45 0 3.45 0  0 2.7 V  EVDD0  5.5 V 4.0 4.0 4.0 s 1.8 V  EVDD0  5.5 V 4.0 4.0 4.0 s 1.7 V  EVDD0  5.5 V 4.0 4.0 4.0 s 4.0 4.0 s 1.6 V  EVDD0  5.5 V Bus-free time s 0 1.6 V  EVDD0  5.5 V Setup time of stop 3.45 2.7 V  EVDD0  5.5 V  2.7 V  EVDD0  5.5 V 4.7 4.7 4.7 s 1.8 V  EVDD0  5.5 V 4.7 4.7 4.7 s 1.7 V  EVDD0  5.5 V 4.7 4.7 4.7 s 4.7 4.7 s 1.6 V  EVDD0  5.5 V  (Notes, Caution and Remark are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 109 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. 2. The first clock pulse is generated after this period when the start/restart condition is detected. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination. Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: Cb = 400 pF, Rb = 2.7 k R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 110 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 (2) I C fast mode (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter SCLA0 clock frequency Symbol fSCL Conditions Fast mode: fCLK  3.5 MHz Setup time of restart Hold time MAX. MIN. MAX. 0 400 0 400 0 400 kHz 0 400 0 400 0 400 kHz 0.6 0.6 s 2.7 V  EVDD0  5.5 V 0.6 0.6 0.6 s 1.8 V  EVDD0  5.5 V 0.6 0.6 0.6 s 2.7 V  EVDD0  5.5 V 1.3 1.3 1.3 s 1.8 V  EVDD0  5.5 V 1.3 1.3 1.3 s tHIGH 2.7 V  EVDD0  5.5 V 0.6 0.6 0.6 s 1.8 V  EVDD0  5.5 V 0.6 0.6 0.6 s tSU:DAT 2.7 V  EVDD0  5.5 V 100 100 100 s 1.8 V  EVDD0  5.5 V 100 100 100 s 2.7 V  EVDD0  5.5 V 0 0.9 0 0.9 0 0.9 s 1.8 V  EVDD0  5.5 V 0 0.9 0 0.9 0 0.9 s 2.7 V  EVDD0  5.5 V 0.6 0.6 0.6 s 1.8 V  EVDD0  5.5 V 0.6 0.6 0.6 s 2.7 V  EVDD0  5.5 V 1.3 1.3 1.3 s 1.8 V  EVDD0  5.5 V 1.3 1.3 1.3 s tLOW tHD:DAT tSU:STO condition Notes 1. 2. MIN. 0.6 Note 2 Bus-free time MAX. 1.8 V  EVDD0  5.5 V (transmission) Setup time of stop MIN. s (reception) Data hold time Unit 0.6 “H” Data setup time main) Mode 0.6 “L” Hold time when SCLA0 = LV (low-voltage main) Mode 0.6 tHD:STA Hold time when SCLA0 = 1.8 V  EVDD0  5.5 V LS (low-speed main) Mode 2.7 V  EVDD0  5.5 V tSU:STA condition Note 1 2.7 V  EVDD0  5.5 V HS (high-speed tBUF The first clock pulse is generated after this period when the start/restart condition is detected. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination. Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode: R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Cb = 320 pF, Rb = 1.1 k Page 111 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2 (3) I C fast mode plus (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions Fast mode plus: 2.7 V  EVDD0  5.5 V fCLK  10 MHz HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode MIN. MAX. 0 1000 MIN. MAX. MIN. Unit MAX.   kHz 0.26   s 2.7 V  EVDD0  5.5 V 0.26   s tLOW 2.7 V  EVDD0  5.5 V 0.5   s tHIGH 2.7 V  EVDD0  5.5 V 0.26   s tSU:DAT 2.7 V  EVDD0  5.5 V 50   s tHD:DAT 2.7 V  EVDD0  5.5 V 0   s tSU:STO 2.7 V  EVDD0  5.5 V 0.26   s tBUF 2.7 V  EVDD0  5.5 V 0.5   s SCLA0 clock frequency fSCL Setup time of restart tSU:STA 2.7 V  EVDD0  5.5 V tHD:STA condition Hold time Note 1 Hold time when SCLA0 = “L” Hold time when SCLA0 = “H” Data setup time (reception) Data hold time 0.45 Note 2 (transmission) Setup time of stop condition Bus-free time Notes 1. 2. The first clock pulse is generated after this period when the start/restart condition is detected. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination. Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: Cb = 120 pF, Rb = 1.1 k IICA serial transfer timing tLOW tR SCLAn tHD:DAT tHD:STA tHIGH tF tSU:STA tHD:STA tSU:STO tSU:DAT SDAAn tBUF Stop condition Start condition Restart condition Stop condition Remark n = 0, 1 R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 112 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.6 Analog Characteristics 2.6.1 A/D converter characteristics Classification of A/D converter characteristics Reference Voltage Reference voltage (+) = AVREFP Reference voltage (+) = VDD Reference voltage (+) = VBGR Input channel Reference voltage () = AVREFM Reference voltage () = VSS Reference voltage () = AVREFM ANI0 to ANI14 Refer to 2.6.1 (1). Refer to 2.6.1 (3). Refer to 2.6.1 (4). ANI16 to ANI26 Refer to 2.6.1 (2). Internal reference voltage Refer to 2.6.1 (1).  Temperature sensor output voltage (1) When reference voltage (+)= AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage (TA = 40 to +85C, 1.6 V  AVREFP  VDD  5.5 V, VSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage () = AVREFM = 0 V) Parameter Symbol Resolution Conditions MIN. RES Note 1 Overall error AINL Conversion time tCONV Notes 1, 2 Zero-scale error Full-scale error EZS Notes 1, 2 Integral linearity error EFS Note 1 Differential linearity error Analog input voltage ILE Note 1 DLE VAIN TYP. MAX. Unit 10 bit 1.2 3.5 LSB 1.2 7.0 LSB 8 10-bit resolution Note 3 AVREFP = VDD 1.8 V  AVREFP  5.5 V 10-bit resolution Target pin: ANI2 to ANI14 3.6 V  VDD  5.5 V 2.125 39 s 2.7 V  VDD  5.5 V 3.1875 39 s 1.6 V  AVREFP  5.5 V Note 4 1.8 V  VDD  5.5 V 17 39 s 1.6 V  VDD  5.5 V 57 95 s 10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode) 3.6 V  VDD  5.5 V 2.375 39 s 2.7 V  VDD  5.5 V 3.5625 39 s 2.4 V  VDD  5.5 V 17 39 s 10-bit resolution Note 3 AVREFP = VDD 1.8 V  AVREFP  5.5 V 0.25 %FSR 0.50 %FSR 10-bit resolution Note 3 AVREFP = VDD 1.8 V  AVREFP  5.5 V 0.25 %FSR 0.50 %FSR 10-bit resolution Note 3 AVREFP = VDD 1.8 V  AVREFP  5.5 V 2.5 LSB 5.0 LSB 10-bit resolution Note 3 AVREFP = VDD 1.8 V  AVREFP  5.5 V 1.5 LSB 2.0 LSB AVREFP V 1.6 V  AVREFP  5.5 V Note 4 1.6 V  AVREFP  5.5 V 1.6 V  AVREFP  5.5 V 1.6 V  AVREFP  5.5 V Note 4 Note 4 Note 4 ANI2 to ANI14 0 Note 5 Internal reference voltage (2.4 V  VDD  5.5 V, HS (high-speed main) mode) VBGR Temperature sensor output voltage (2.4 V  VDD  5.5 V, HS (high-speed main) mode) VTMPS25 Note 5 V V (Notes are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 113 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. When AVREFP < VDD, the MAX. values are as follows. Overall error: Add 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add 0.05%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add 0.5 LSB to the MAX. value when AVREFP = VDD. 4. Values when the conversion time is set to 57 s (min.) and 95 s (max.). 5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 114 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26 (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, 1.6 V  AVREFP  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage () = AVREFM = 0 V) Parameter Symbol Resolution Conditions MIN. RES Note 1 Overall error AINL TYP. MAX. Unit 10 bit 1.2 5.0 LSB 1.2 8.5 LSB 8 1.8 V  AVREFP  5.5 V 10-bit resolution EVDD0 = AVREFP = VDD Notes 3, 4 1.6 V  AVREFP  5.5 V Note 5 Conversion time tCONV 10-bit resolution 3.6 V  VDD  5.5 V 2.125 39 s Target ANI pin : ANI16 to 2.7 V  VDD  5.5 V 3.1875 39 s 1.8 V  VDD  5.5 V 17 39 s 1.6 V  VDD  5.5 V 57 95 s 0.35 %FSR 0.60 %FSR 0.35 %FSR 0.60 %FSR 3.5 LSB 6.0 LSB 2.0 LSB 2.5 LSB AVREFP V ANI26 Notes 1, 2 Zero-scale error EZS 10-bit resolution Notes 3, 4 EVDD0 = AVREFP = VDD 1.8 V  AVREFP  5.5 V 1.6 V  AVREFP  5.5 V Note 5 Full-scale error Notes 1, 2 EFS 10-bit resolution Notes 3, 4 EVDD0 = AVREFP = VDD 1.8 V  AVREFP  5.5 V 1.6 V  AVREFP  5.5 V Note 5 Integral linearity error Note ILE 1 1.8 V  AVREFP  5.5 V 10-bit resolution EVDD0 = AVREFP = VDD Notes 3, 4 1.6 V  AVREFP  5.5 V Note 5 Differential linearity error DLE Note 1 1.8 V  AVREFP  5.5 V 10-bit resolution EVDD0 = AVREFP = VDD Notes 3, 4 1.6 V  AVREFP  5.5 V Note 5 Analog input voltage VAIN ANI16 to ANI26 0 and EVDD0 Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. When AVREFP < VDD, the MAX. values are as follows. Overall error: Add 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add 0.05%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add 0.5 LSB to the MAX. value when AVREFP = VDD. 4. When AVREFP < EVDD0  VDD, the MAX. values are as follows. Overall error: Add 4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add 0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add 2.0 LSB to the MAX. value when AVREFP = VDD. 5. When the conversion time is set to 57 s (min.) and 95 s (max.). R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 115 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage () = VSS (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage (TA = 40 to +85C, 1.6 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V, Reference voltage (+) = VDD, Reference voltage () = VSS) Parameter Symbol Resolution Conditions RES Note 1 Overall error AINL MIN. TYP. 8 10-bit resolution MAX. Unit 10 bit 1.8 V  VDD  5.5 V 1.2 7.0 LSB 1.6 V  VDD  5.5 V 1.2 10.5 LSB Note 3 Conversion time tCONV Conversion time tCONV 3.6 V  VDD  5.5 V 2.125 39 s Target pin: ANI0 to ANI14, 2.7 V  VDD  5.5 V ANI16 to ANI26 1.8 V  VDD  5.5 V 3.1875 39 s 10-bit resolution 17 39 s 1.6 V  VDD  5.5 V 57 95 s 10-bit resolution 3.6 V  VDD  5.5 V 2.375 39 s Target pin: Internal 2.7 V  VDD  5.5 V 3.5625 39 s 2.4 V  VDD  5.5 V 17 39 s 1.8 V  VDD  5.5 V 0.60 %FSR 1.6 V  VDD  5.5 V 0.85 %FSR 1.8 V  VDD  5.5 V 0.60 %FSR 1.6 V  VDD  5.5 V 0.85 %FSR 1.8 V  VDD  5.5 V 4.0 LSB 1.6 V  VDD  5.5 V 6.5 LSB 1.8 V  VDD  5.5 V 2.0 LSB 1.6 V  VDD  5.5 V 2.5 LSB VDD V EVDD0 V reference voltage, and temperature sensor output voltage (HS (high-speed main) mode) Notes 1, 2 Zero-scale error EZS 10-bit resolution Note 3 Full-scale error Notes 1, 2 EFS 10-bit resolution Note 3 Integral linearity error Note 1 ILE 10-bit resolution Note 3 Differential linearity error Note 1 DLE 10-bit resolution Note 3 Analog input voltage VAIN ANI0 to ANI14 0 ANI16 to ANI26 0 Internal reference voltage VBGR Note 4 V (2.4 V  VDD  5.5 V, HS (high-speed main) mode) Temperature sensor output voltage VTMPS25 Note 4 V (2.4 V  VDD  5.5 V, HS (high-speed main) mode) Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. When the conversion time is set to 57 s (min.) and 95 s (max.). 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 116 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage () = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26 (TA = 40 to +85C, 2.4 V  VDD  5.5 V, 1.6 V  EVDD0 = EVDD1  VDD, VSS = EVSS0 = EVSS1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage () = AVREFM = 0 V Note 4, HS (high-speed main) mode) Parameter Symbol Resolution Conditions MIN. TYP. RES Conversion time Notes 1, 2 Zero-scale error Integral linearity error Note 1 Differential linearity error Note 1 Analog input voltage MAX. 8 Unit bit tCONV 8-bit resolution 2.4 V  VDD  5.5 V 39 s EZS 8-bit resolution 2.4 V  VDD  5.5 V 0.60 %FSR ILE 8-bit resolution 2.4 V  VDD  5.5 V 2.0 LSB DLE 8-bit resolution 2.4 V  VDD  5.5 V 1.0 LSB VAIN 17 0 VBGR Note 3 V Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics. 4. When reference voltage () = VSS, the MAX. values are as follows. Zero-scale error: Add 0.35%FSR to the MAX. value when reference voltage () = AVREFM. Integral linearity error: Add 0.5 LSB to the MAX. value when reference voltage () = AVREFM. Differential linearity error: Add 0.2 LSB to the MAX. value when reference voltage () = AVREFM. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 117 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.6.2 Temperature sensor/internal reference voltage characteristics (TA = 40 to +85C, 2.4 V  VDD  5.5 V, VSS = 0 V, HS (high-speed main) mode) Parameter Symbol Conditions MIN. Temperature sensor output voltage VTMPS25 Setting ADS register = 80H, TA = +25C Internal reference voltage VBGR Setting ADS register = 81H Temperature coefficient FVTMPS Temperature sensor that depends on the TYP. MAX. 1.05 1.38 1.45 Unit V 1.5 3.6 V mV/C temperature Operation stabilization wait time tAMP s 5 2.6.3 POR circuit characteristics (TA = 40 to +85C, VSS = 0 V) Parameter Detection voltage Minimum pulse width Note Symbol Conditions MIN. TYP. MAX. Unit VPOR Power supply rise time 1.47 1.51 1.55 V VPDR Power supply fall time 1.46 1.50 1.54 V TPW s 300 Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). TPW Supply voltage (VDD) VPOR VPDR or 0.7 V R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 118 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.6.4 LVD circuit characteristics LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = 40 to +85C, VPDR  VDD  5.5 V, VSS = 0 V) Parameter Detection Supply voltage level Symbol VLVD0 voltage VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7 VLVD8 VLVD9 VLVD10 VLVD11 VLVD12 VLVD13 Minimum pulse width Detection delay time R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 tLW Conditions MIN. TYP. MAX. Unit Power supply rise time 3.98 4.06 4.14 V Power supply fall time 3.90 3.98 4.06 V Power supply rise time 3.68 3.75 3.82 V Power supply fall time 3.60 3.67 3.74 V Power supply rise time 3.07 3.13 3.19 V Power supply fall time 3.00 3.06 3.12 V Power supply rise time 2.96 3.02 3.08 V Power supply fall time 2.90 2.96 3.02 V Power supply rise time 2.86 2.92 2.97 V Power supply fall time 2.80 2.86 2.91 V Power supply rise time 2.76 2.81 2.87 V Power supply fall time 2.70 2.75 2.81 V Power supply rise time 2.66 2.71 2.76 V Power supply fall time 2.60 2.65 2.70 V Power supply rise time 2.56 2.61 2.66 V Power supply fall time 2.50 2.55 2.60 V Power supply rise time 2.45 2.50 2.55 V Power supply fall time 2.40 2.45 2.50 V Power supply rise time 2.05 2.09 2.13 V Power supply fall time 2.00 2.04 2.08 V Power supply rise time 1.94 1.98 2.02 V Power supply fall time 1.90 1.94 1.98 V Power supply rise time 1.84 1.88 1.91 V Power supply fall time 1.80 1.84 1.87 V Power supply rise time 1.74 1.77 1.81 V Power supply fall time 1.70 1.73 1.77 V Power supply rise time 1.64 1.67 1.70 V Power supply fall time 1.60 1.63 1.66 V s 300 300 s Page 119 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 LVD Detection Voltage of Interrupt & Reset Mode (TA = 40 to +85C, VPDR  VDD  5.5 V, VSS = 0 V) Parameter Symbol Interrupt and reset VLVDA0 mode VLVDA1 Conditions MIN. TYP. MAX. Unit VPOC2, VPOC1, VPOC0 = 0, 0, 0, falling reset voltage 1.60 1.63 1.66 V LVIS1, LVIS0 = 1, 0 Rising release reset 1.74 1.77 1.81 V 1.70 1.73 1.77 V 1.84 1.88 1.91 V 1.80 1.84 1.87 V 2.86 2.92 2.97 V 2.80 2.86 2.91 V voltage Falling interrupt voltage VLVDA2 LVIS1, LVIS0 = 0, 1 Rising release reset voltage Falling interrupt voltage VLVDA3 LVIS1, LVIS0 = 0, 0 Rising release reset voltage Falling interrupt voltage VLVDB0 VPOC2, VPOC1, VPOC0 = 0, 0, 1, falling reset voltage 1.80 1.84 1.87 V VLVDB1 LVIS1, LVIS0 = 1, 0 Rising release reset voltage 1.94 1.98 2.02 V 1.90 1.94 1.98 V Falling interrupt voltage VLVDB2 LVIS1, LVIS0 = 0, 1 Rising release reset 2.05 2.09 2.13 V 2.00 2.04 2.08 V 3.07 3.13 3.19 V 3.00 3.06 3.12 V voltage Falling interrupt voltage VLVDB3 LVIS1, LVIS0 = 0, 0 Rising release reset voltage Falling interrupt voltage VLVDC0 VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage 2.40 2.45 2.50 V VLVDC1 LVIS1, LVIS0 = 1, 0 Rising release reset 2.56 2.61 2.66 V 2.50 2.55 2.60 V 2.66 2.71 2.76 V 2.60 2.65 2.70 V 3.68 3.75 3.82 V 3.60 3.67 3.74 V voltage Falling interrupt voltage VLVDC2 LVIS1, LVIS0 = 0, 1 Rising release reset voltage Falling interrupt voltage VLVDC3 LVIS1, LVIS0 = 0, 0 Rising release reset voltage Falling interrupt voltage VLVDD0 VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage 2.70 2.75 2.81 V VLVDD1 LVIS1, LVIS0 = 1, 0 Rising release reset 2.86 2.92 2.97 V 2.80 2.86 2.91 V 2.96 3.02 3.08 V 2.90 2.96 3.02 V voltage Falling interrupt voltage VLVDD2 LVIS1, LVIS0 = 0, 1 Rising release reset voltage Falling interrupt voltage VLVDD3 LVIS1, LVIS0 = 0, 0 Rising release reset voltage Falling interrupt voltage R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 3.98 4.06 4.14 V 3.90 3.98 4.06 V Page 120 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.6.5 Power supply voltage rising slope characteristics (TA = 40 to +85C, VSS = 0 V) Parameter Symbol Power supply voltage rising slope Caution Conditions MIN. TYP. SVDD MAX. Unit 54 V/ms Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics. 2.7 RAM Data Retention Characteristics (TA = 40 to +85C, VSS = 0 V) Parameter Data retention supply voltage Symbol Conditions VDDDR MIN. 1.46 Note TYP. MAX. Unit 5.5 V Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated. STOP mode Operation mode RAM data retention VDD VDDDR STOP instruction execution Standby release signal (interrupt request) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 121 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.8 Flash Memory Programming Characteristics (TA = 40 to +85C, 1.8 V  VDD  5.5 V, VSS = 0 V) Parameter CPU/peripheral hardware clock Symbol Conditions fCLK 1.8 V  VDD  5.5 V Cerwr Retained for 20 years MIN. TYP. 1 MAX. Unit 32 MHz frequency Number of code flash rewrites Notes 1, 2, 3 TA = 85C Number of data flash rewrites Retained for 1 years Notes 1, 2, 3 TA = 25C Retained for 5 years 1,000 Times 1,000,000 100,000 TA = 85C Retained for 20 years 10,000 TA = 85C Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite. 2. When using flash memory programmer and Renesas Electronics self programming library 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation. 2.9 Dedicated Flash Memory Programmer Communication (UART) (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Transfer rate R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Symbol Conditions During serial programming MIN. 115,200 TYP. MAX. Unit 1,000,000 bps Page 122 of 196 2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85C) RL78/G13 2.10 Timing of Entry to Flash Memory Programming Modes (TA = 40 to +85C, 1.8 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Time to complete the tSUINIT Conditions MIN. POR and LVD reset must be released before TYP. MAX. Unit 100 ms the external reset is released. communication for the initial setting after the external reset is released Time to release the external reset tSU POR and LVD reset must be released before 10  s 1 ms the external reset is released. after the TOOL0 pin is set to the low level Time to hold the TOOL0 pin at the low level after the external tHD POR and LVD reset must be released before the external reset is released. reset is released (excluding the processing time of the firmware to control the flash memory) RESET 723 μs + tHD processing time 1-byte data for setting mode TOOL0 tSU tSUINIT The low level is input to the TOOL0 pin. The external reset is released (POR and LVD reset must be released before the external reset is released.). The TOOL0 pin is set to the high level. Setting of the flash memory programming mode by UART reception and complete the baud rate setting. Remark tSUINIT: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tSU: Time to release the external reset after the TOOL0 pin is set to the low level tHD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 123 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) This chapter describes the following electrical specifications. Target products G: Industrial applications TA = 40 to +105°C R5F100xxGxx Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS. 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions for each product. 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85C to +105C. Derating is the systematic reduction of load for the sake of improved reliability. Remark When RL78/G13 is used in the range of TA = 40 to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS (TA = 40 to +85°C). There are following differences between the products "G: Industrial applications (TA = 40 to +105C)" and the products “A: Consumer applications, and D: Industrial applications”. Parameter Application A: Consumer applications, D: Industrial applications G: Industrial applications Operating ambient temperature TA = -40 to +85C TA = -40 to +105C Operating mode Operating voltage range HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V  VDD  5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  VDD  5.5 V@1 MHz to 4 MHz 1.8 V  VDD  5.5 V 1.0%@ TA = -20 to +85C 1.5%@ TA = -40 to -20C 1.6 V  VDD < 1.8 V 5.0%@ TA = -20 to +85C 5.5%@ TA = -40 to -20C UART CSI: fCLK/2 (supporting 16 Mbps), fCLK/4 2 Simplified I C communication Normal mode Fast mode Fast mode plus Rise detection voltage: 1.67 V to 4.06 V (14 levels) Fall detection voltage: 1.63 V to 3.98 V (14 levels) HS (high-speed main) mode only: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz High-speed on-chip oscillator clock accuracy Serial array unit IICA Voltage detector 2.4 V  VDD  5.5 V 2.0%@ TA = +85 to +105C 1.0%@ TA = -20 to +85C 1.5%@ TA = -40 to -20C UART CSI: fCLK/4 2 Simplified I C communication Normal mode Fast mode Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels) (Remark is listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 124 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 Remark The electrical characteristics of the products G: Industrial applications (TA = -40 to +105C) are different from those of the products “A: Consumer applications, and D: Industrial applications”. For details, refer to 3.1 to 3.10. 3.1 Absolute Maximum Ratings Absolute Maximum Ratings (TA = 25C) (1/2) Parameter Supply voltage Symbols Ratings Unit VDD 0.5 to +6.5 V EVDD0, EVDD1 EVDD0 = EVDD1 0.5 to +6.5 V EVSS0, EVSS1 0.5 to +0.3 V REGC pin input voltage VIREGC Conditions EVSS0 = EVSS1 0.3 to +2.8 REGC V and 0.3 to VDD +0.3 Input voltage VI1 Note 1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, 0.3 to EVDD0 +0.3 P50 to P57, P64 to P67, P70 to P77, P80 to P87, and 0.3 to VDD +0.3 V Note 2 P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VI2 VI3 0.3 to +6.5 P60 to P63 (N-ch open-drain) 0.3 to VDD +0.3 P20 to P27, P121 to P124, P137, P150 to P156, V Note 2 V EXCLK, EXCLKS, RESET Output voltage VO1 0.3 to EVDD0 +0.3 P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, and 0.3 to VDD +0.3 V Note 2 P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Analog input voltage VO2 P20 to P27, P150 to P156 VAI1 ANI16 to ANI26 0.3 to VDD +0.3 Note 2 0.3 to EVDD0 +0.3 V and 0.3 to AVREF(+) +0.3 VAI2 V Notes 2, 3 0.3 to VDD +0.3 ANI0 to ANI14 V and 0.3 to AVREF(+) +0.3 Notes 2, 3 Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1  F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it. 2. Must be 6.5 V or lower. 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin. Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. 2. AVREF (+) : + side reference voltage of the A/D converter. 3. VSS : Reference voltage R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 125 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 Absolute Maximum Ratings (TA = 25C) (2/2) Parameter Output current, high Symbols IOH1 Conditions Per pin P00 to P07, P10 to P17, Ratings Unit 40 mA 70 mA 100 mA P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Total of all pins P00 to P04, P07, P32 to P37, 170 mA P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 IOH2 Per pin P20 to P27, P150 to P156 Total of all pins Output current, low IOL1 Per pin P00 to P07, P10 to P17, 0.5 mA 2 mA 40 mA 70 mA 100 mA 1 mA 5 mA 40 to +105 C 65 to +150 C P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Total of all pins P00 to P04, P07, P32 to P37, 170 mA P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 IOL2 Per pin P20 to P27, P150 to P156 Total of all pins Operating ambient TA temperature Storage temperature In normal operation mode In flash memory programming mode Tstg Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 126 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.2 Oscillator Characteristics 3.2.1 X1, XT1 oscillator characteristics (TA = 40 to +105C, 2.4 V  VDD  5.5 V, VSS = 0 V) Parameter Resonator Conditions MIN. Ceramic resonator/ 2.7 V  VDD  5.5 V 1.0 frequency (fX) crystal resonator 2.4 V  VDD  2.7 V 1.0 XT1 clock oscillation Crystal resonator X1 clock oscillation Note 32 TYP. MAX. Unit 20.0 MHz 16.0 MHz 35 kHz 32.768 Note frequency (fX) Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics. Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used. Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator. 3.2.2 On-chip oscillator characteristics (TA = 40 to +105C, 2.4 V  VDD  5.5 V, VSS = 0 V) Oscillators High-speed on-chip oscillator clock frequency Parameters Conditions fIH MIN. TYP. MAX. Unit 1 32 MHz Notes 1, 2 High-speed on-chip oscillator 20 to +85 C 2.4 V  VDD  5.5 V 1.0 +1.0 % clock frequency accuracy 40 to 20 C 2.4 V  VDD  5.5 V 1.5 +1.5 % +85 to +105 C 2.4 V  VDD  5.5 V 2.0 +2.0 % Low-speed on-chip oscillator fIL 15 kHz clock frequency Low-speed on-chip oscillator 15 +15 % clock frequency accuracy Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register. 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 127 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.3 DC Characteristics 3.3.1 Pin characteristics (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (1/5) Items Symbol Output current, Note 1 high IOH1 Conditions Notes 1. TYP. Per pin for P00 to P07, P10 to P17, 2.4 V  EVDD0  5.5 V P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 MAX. -3.0 Note 2 Unit mA 4.0 V  EVDD0  5.5 V -30.0 mA 2.7 V  EVDD0 < 4.0 V 10.0 mA 2.4 V  EVDD0 < 2.7 V 5.0 mA Total of P05, P06, P10 to P17, P30, P31, 4.0 V  EVDD0  5.5 V P50 to P57, P64 to P67, P70 to P77, P80 2.7 V  EVDD0 < 4.0 V to P87, P90 to P97, P100, P101, P110 to 2.4 V  EVDD0 < 2.7 V P117, P146, P147 Note 3 ) (When duty  70% -30.0 mA Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 Note 3 ) (When duty  70% IOH2 MIN. Total of all pins Note 3 ) (When duty  70% 2.4 V  EVDD0  5.5 V Per pin for P20 to P27, P150 to P156 2,4 V  VDD  5.5 V Total of all pins Note 3 ) (When duty  70% 2.4 V  VDD  5.5 V 19.0 mA 10.0 mA -60.0 mA 0.1 Note 2 1.5 mA mA Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin. 2. Do not exceed the total current value. 3. Specification under conditions where the duty factor  70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).  Total output current of pins = (IOH × 0.7)/(n × 0.01) Where n = 80% and IOH = 10.0 mA Total output current of pins = (10.0 × 0.7)/(80 × 0.01)  8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 128 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/5) Items Symbol Output current, Note 1 low IOL1 Conditions MIN. TYP. 8.5 Per pin for P60 to P63 15.0 Note 2 Unit mA mA 4.0 V  EVDD0  5.5 V 40.0 2.7 V  EVDD0 < 4.0 V 15.0 mA 2.4 V  EVDD0 < 2.7 V 9.0 mA Total of P05, P06, P10 to P17, P30, 4.0 V  EVDD0  5.5 V P31, P50 to P57, P60 to P67, 2.7 V  EVDD0 < 4.0 V P70 to P77, P80 to P87, P90 to P97, 2,4 V  EVDD0 < 2.7 V P100, P101, P110 to P117, P146, P147 Note 3 ) (When duty  70% 40.0 mA 35.0 mA 20.0 mA 80.0 mA Total of all pins Note 3 ) (When duty  70% Per pin for P20 to P27, P150 to P156 Total of all pins Note 3 ) (When duty  70% Notes 1. Note 2 Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147 Total of P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 Note 3 ) (When duty  70% IOL2 MAX. 0.4 2,4 V  VDD  5.5 V Note 2 5.0 mA mA mA Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVSS0, EVSS1 and VSS pin. 2. Do not exceed the total current value. 3. Specification under conditions where the duty factor  70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).  Total output current of pins = (IOL × 0.7)/(n × 0.01) Where n = 80% and IOL = 10.0 mA Total output current of pins = (10.0 × 0.7)/(80 × 0.01)  8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 129 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (3/5) Items Input voltage, Symbol VIH1 Conditions MIN. P00 to P07, P10 to P17, P30 to P37, Normal input buffer TYP. MAX. Unit 0.8EVDD0 EVDD0 V 2.2 EVDD0 V 2.0 EVDD0 V 1.5 EVDD0 V 0.7VDD VDD V 0.7EVDD0 6.0 V 0.8VDD VDD V 0 0.2EVDD0 V 0 0.8 V 0 0.5 V 0 0.32 V P40 to P47, P50 to P57, P64 to P67, high P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VIH2 P01, P03, P04, P10, P11, TTL input buffer P13 to P17, P43, P44, P53 to P55, 4.0 V  EVDD0  5.5 V P80, P81, P142, P143 TTL input buffer 3.3 V  EVDD0  4.0 V TTL input buffer 2.4 V  EVDD0  3.3 V Input voltage, VIH3 P20 to P27, P150 to P156 VIH4 P60 to P63 VIH5 P121 to P124, P137, EXCLK, EXCLKS, RESET VIL1 P00 to P07, P10 to P17, P30 to P37, Normal input buffer P40 to P47, P50 to P57, P64 to P67, low P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 VIL2 P01, P03, P04, P10, P11, TTL input buffer P13 to P17, P43, P44, P53 to P55, 4.0 V  EVDD0  5.5 V P80, P81, P142, P143 TTL input buffer 3.3 V  EVDD0  4.0 V TTL input buffer 2.4 V  EVDD0  3.3 V VIL3 P20 to P27, P150 to P156 0 0.3VDD V VIL4 P60 to P63 0 0.3EVDD0 V VIL5 P121 to P124, P137, EXCLK, EXCLKS, RESET 0 0.2VDD V Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EVDD0, even in the N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 130 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (4/5) Items Symbol Output voltage, VOH1 high Conditions P00 to P07, P10 to P17, P30 to 4.0 V  EVDD0  5.5 V, EVDD0  P37, P40 to P47, P50 to P57, P64 IOH1 = 3.0 mA to P67, P70 to P77, P80 to P87, 2.7 V  EVDD0  5.5 V, EVDD0  P90 to P97, P100 to P106, P110 to IOH1 = 2.0 mA P117, P120, P125 to P127, P130, P140 to P147 Output voltage, MIN. V VOL1 P00 to P07, P10 to P17, P30 to 4.0 V  EVDD0  5.5 V, P37, P40 to P47, P50 to P57, P64 IOL1 = 8.5 mA to P67, P70 to P77, P80 to P87, 4.0 V  EVDD0  5.5 V, P90 to P97, P100 to P106, P110 to IOL1 = 3.0 mA 2.7 V  EVDD0  5.5 V, V 0.5 2.4 V  VDD  5.5 V, VDD  0.5 IOH2 = 100  A P140 to P147 V 2.4 V  EVDD0  5.5 V, EVDD0  IOH1 = 1.5 mA Unit 0.6 P20 to P27, P150 to P156 P117, P120, P125 to P127, P130, MAX. 0.7 VOH2 low TYP. V 0.7 V 0.6 V 0.4 V 0.4 V 0.4 V 2.0 V 0.4 V 0.4 V 0.4 V IOL1 = 1.5 mA 2.4 V  EVDD0  5.5 V, IOL1 = 0.6 mA VOL2 P20 to P27, P150 to P156 2.4 V  VDD  5.5 V, IOL2 = 400  A VOL3 P60 to P63 4.0 V  EVDD0  5.5 V, IOL3 = 15.0 mA 4.0 V  EVDD0  5.5 V, IOL3 = 5.0 mA 2.7 V  EVDD0  5.5 V, IOL3 = 3.0 mA 2.4 V  EVDD0  5.5 V, IOL3 = 2.0 mA Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 131 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (5/5) Items Input leakage Symbol ILIH1 Conditions P00 to P07, P10 to P17, MIN. TYP. MAX. Unit VI = EVDD0 1 A VI = VDD 1 A 1 A 10 A VI = EVSS0 1 A VI = VSS 1 A 1 A 10 A 100 k P30 to P37, P40 to P47, current, high P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 ILIH2 P20 to P27, P137, P150 to P156, RESET ILIH3 P121 to P124 VI = VDD In input port or (X1, X2, XT1, XT2, EXCLK, external clock EXCLKS) input In resonator connection Input leakage ILIL1 P00 to P07, P10 to P17, P30 to P37, P40 to P47, current, low P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 ILIL2 P20 to P27, P137, P150 to P156, RESET ILIL3 P121 to P124 VI = VSS In input port or (X1, X2, XT1, XT2, EXCLK, external clock EXCLKS) input In resonator connection On-chip pll-up RU P00 to P07, P10 to P17, VI = EVSS0, In input port 10 20 P30 to P37, P40 to P47, resistance P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147 Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 132 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.3.2 Supply current characteristics (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = 40 to +105C, 2.4 V  EVDD0  VDD  5.5 V, VSS = EVSS0 = 0 V) (1/2) Parameter Symbol Supply current Note 1 IDD1 Conditions Operating HS (highfIH = 32 MHz speed main) mode Note 5 mode fIH = 24 MHz fIH = 16 MHz MIN. Note 3 Note 3 Note 3 Note 2 HS (highfMX = 20 MHz speed main) VDD = 5.0 V Note 5 mode , Note 2 fMX = 20 MHz , VDD = 3.0 V Note 2 fMX = 10 MHz , VDD = 5.0 V Note 2 fMX = 10 MHz , VDD = 3.0 V Subsystem clock operation fSUB = 32.768 kHz Note 4 TA = 40C fSUB = 32.768 kHz Note 4 TA = +25C fSUB = 32.768 kHz Note 4 TA = +50C fSUB = 32.768 kHz Note 4 TA = +70C fSUB = 32.768 kHz Note 4 TA = +85C fSUB = 32.768 kHz Note 4 TA = +105C TYP. MAX. Unit Basic operatio n VDD = 5.0 V 2.1 mA VDD = 3.0 V 2.1 mA Normal operatio n VDD = 5.0 V 4.6 7.5 mA VDD = 3.0 V 4.6 7.5 mA Normal operatio n VDD = 5.0 V 3.7 5.8 mA VDD = 3.0 V 3.7 5.8 mA Normal operatio n VDD = 5.0 V 2.7 4.2 mA VDD = 3.0 V 2.7 4.2 mA Normal operatio n Normal operatio n Square wave input 3.0 4.9 mA Resonator connection 3.2 5.0 mA Square wave input 3.0 4.9 mA Resonator connection 3.2 5.0 mA Normal operatio n Square wave input 1.9 2.9 mA Resonator connection 1.9 2.9 mA Normal operatio n Square wave input 1.9 2.9 mA Resonator connection 1.9 2.9 mA Normal operatio n Square wave input 4.1 4.9 A Resonator connection 4.2 5.0 A Normal operatio n Square wave input 4.1 4.9 A Resonator connection 4.2 5.0 A Normal operatio n Square wave input 4.2 5.5 A Resonator connection 4.3 5.6 A Normal operatio n Square wave input 4.3 6.3 A Resonator connection 4.4 6.4 A Normal Square wave input operation Resonator connection 4.6 7.7 A 4.7 7.8 A Normal Square wave input operation Resonator connection 6.9 19.7 A 7.0 19.8 A (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 133 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) Notes 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. When high-speed on-chip oscillator and subsystem clock are stopped. 3. When high-speed system clock and subsystem clock are stopped. 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12bit interval timer, and watchdog timer. 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 134 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (TA = 40 to +105C, 2.4 V  EVDD0  VDD  5.5 V, VSS = EVSS0 = 0 V) (2/2) Parameter Symbol Conditions Supply IDD2 HALT current Note 2 mode Note 1 HS (highspeed main) Note 7 mode HS (highspeed main) Note 7 mode fIH = 32 MHz Note 4 fIH = 24 MHz Note 4 fIH = 16 MHz Note 4 MIN. Note 3 fMX = 20 MHz , VDD = 5.0 V 0.54 2.90 mA VDD = 3.0 V 0.54 2.90 mA VDD = 5.0 V 0.44 2.30 mA VDD = 3.0 V 0.44 2.30 mA VDD = 5.0 V 0.40 1.70 mA VDD = 3.0 V 0.40 1.70 mA Square wave input 0.28 1.90 mA 2.00 mA Square wave input 0.28 1.90 mA Resonator connection 0.45 2.00 mA Note 3 Square wave input 0.19 1.02 mA Resonator connection 0.26 1.10 mA Square wave input 0.19 1.02 mA Resonator connection 0.26 1.10 mA , , VDD = 5.0 V Note 3 fMX = 10 MHz , VDD = 3.0 V Subsystem fSUB = 32.768 kHz Square wave input 0.25 0.57 A clock TA = 40C operation Note 5 Resonator connection 0.44 0.76 A Note 5 Square wave input 0.30 0.57 A Resonator connection 0.49 0.76 A fSUB = 32.768 kHz Note 5 Square wave input 0.37 1.17 A TA = +50C Resonator connection 0.56 1.36 A fSUB = 32.768 kHz Square wave input 0.53 1.97 A TA = +70C Resonator connection 0.72 2.16 A fSUB = 32.768 kHz Square wave input 0.82 3.37 A TA = +85C Resonator connection 1.01 3.56 A fSUB = 32.768 kHz Square wave input 3.01 15.37 A TA = +105C Resonator connection fSUB = 32.768 kHz TA = +25C Note 5 Note 5 Note 5 mode VDD = 5.0 V 0.45 fMX = 10 MHz STOP Unit Resonator connection VDD = 3.0 V Note 6 MAX. Note 3 fMX = 20 MHz IDD3 TYP. 3.20 15.56 A TA = 40C 0.18 0.50 A TA = +25C 0.23 0.50 A TA = +50C 0.30 1.10 A TA = +70C 0.46 1.90 A TA = +85C 0.75 3.30 A TA = +105C 2.94 15.30 A Note 8 (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 135 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) Notes 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. During HALT instruction execution by flash memory. 3. When high-speed on-chip oscillator and subsystem clock are stopped. 4. When high-speed system clock and subsystem clock are stopped. 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 136 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (1/2) Parameter Symbol Supply current Note 1 IDD1 Conditions Operating HS (highfIH = 32 MHz speed main) mode Note 5 mode fIH = 24 MHz fIH = 16 MHz MIN. Note 3 Note 3 Note 3 Note 2 HS (highfMX = 20 MHz speed main) VDD = 5.0 V Note 5 mode , Note 2 fMX = 20 MHz , VDD = 3.0 V Note 2 fMX = 10 MHz , VDD = 5.0 V Note 2 fMX = 10 MHz , VDD = 3.0 V Subsystem clock operation fSUB = 32.768 kHz Note 4 TA = 40C fSUB = 32.768 kHz Note 4 TA = +25C fSUB = 32.768 kHz Note 4 TA = +50C fSUB = 32.768 kHz Note 4 TA = +70C fSUB = 32.768 kHz Note 4 TA = +85C fSUB = 32.768 kHz Note 4 TA = +105C TYP. MAX. Unit Basic operatio n VDD = 5.0 V 2.3 mA VDD = 3.0 V 2.3 mA Normal operatio n VDD = 5.0 V 5.2 9.2 mA VDD = 3.0 V 5.2 9.2 mA Normal operatio n VDD = 5.0 V 4.1 7.0 mA VDD = 3.0 V 4.1 7.0 mA Normal operatio n VDD = 5.0 V 3.0 5.0 mA VDD = 3.0 V 3.0 5.0 mA Normal operatio n Square wave input 3.4 5.9 mA Resonator connection 3.6 6.0 mA Normal operatio n Square wave input 3.4 5.9 mA Resonator connection 3.6 6.0 mA Square wave input 2.1 3.5 mA Resonator connection 2.1 3.5 mA Normal operatio n Normal operatio n Square wave input 2.1 3.5 mA Resonator connection 2.1 3.5 mA Normal operatio n Square wave input 4.8 5.9 A Resonator connection 4.9 6.0 A Normal operatio n Square wave input 4.9 5.9 A Resonator connection 5.0 6.0 A Normal operatio n Square wave input 5.0 7.6 A Resonator connection 5.1 7.7 A Normal operatio n Square wave input 5.2 9.3 A Resonator connection 5.3 9.4 A Normal operatio n Square wave input 5.7 13.3 A Resonator connection 5.8 13.4 A Normal operatio n Square wave input 10.0 46.0 A Resonator connection 10.0 46.0 A (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 137 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) Notes 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. When high-speed on-chip oscillator and subsystem clock are stopped. 3. When high-speed system clock and subsystem clock are stopped. 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer. 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 138 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) (2/2) Parameter Symbol Supply current IDD2 Note 2 Conditions HALT mode Note 1 HS (highspeed main) Note 7 mode fIH = 32 MHz Note 4 fIH = 24 MHz Note 4 fIH = 16 MHz HS (highspeed main) Note 7 mode MIN. VDD = 5.0 V Note 4 Note 3 fMX = 20 MHz , VDD = 5.0 V Note 3 fMX = 20 MHz , VDD = 3.0 V Note 3 fMX = 10 MHz , VDD = 5.0 V Note 3 fMX = 10 MHz , VDD = 3.0 V Subsystem clock operation fSUB = 32.768 kHz Note 5 TA = 40C fSUB = 32.768 kHz Note 5 TA = +25C mA mA VDD = 3.0 V 0.62 3.40 VDD = 5.0 V 0.50 2.70 mA VDD = 3.0 V 0.50 2.70 mA VDD = 5.0 V 0.44 1.90 mA VDD = 3.0 V 0.44 1.90 mA Square wave input 0.31 2.10 mA Resonator connection 0.48 2.20 mA Square wave input 0.31 2.10 mA Resonator connection 0.48 2.20 mA Square wave input 0.21 1.10 mA Resonator connection 0.28 1.20 mA Square wave input 0.21 1.10 mA Resonator connection 0.28 1.20 mA Square wave input 0.28 0.61 A Resonator connection 0.47 0.80 A Square wave input 0.34 0.61 A Resonator connection 0.53 0.80 A 0.41 2.30 A 0.60 2.49 A Square wave input 0.64 4.03 A Resonator connection 0.83 4.22 A Square wave input 1.09 8.04 A Resonator connection 1.28 8.23 A Square wave input 5.50 41.00 A Resonator connection 5.50 41.00 A TA = 40C 0.19 0.52 A TA = +25C 0.25 0.52 A TA = +50C 0.32 2.21 A TA = +70C 0.55 3.94 A TA = +85C 1.00 7.95 A TA = +105C 5.00 40.00 A fSUB = 32.768 kHz Note 5 TA = +70C fSUB = 32.768 kHz Note 5 TA = +85C fSUB = 32.768 kHz TA = +105C STOP Note 8 mode Unit 3.40 Square wave input Note 5 TA = +50C Note 6 MAX. 0.62 Resonator connection fSUB = 32.768 kHz IDD3 TYP. Note 5 (Notes and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 139 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) Notes 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite. 2. During HALT instruction execution by flash memory. 3. When high-speed on-chip oscillator and subsystem clock are stopped. 4. When high-speed system clock and subsystem clock are stopped. 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer. 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer. 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V  VDD  5.5 V@1 MHz to 32 MHz 2.4 V  VDD  5.5 V@1 MHz to 16 MHz 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 140 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (3) Peripheral Functions (Common to all products) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Low-speed on- IFIL chip oscillator Note 1 Conditions MIN. TYP. MAX. Unit 0.20 A 0.02 A 0.02 A 0.22 A operating current RTC operating IRTC current Notes 1, 2, 3 12-bit interval IIT timer operating Notes 1, 2, 4 current Watchdog timer IWDT operating Notes 1, 2, 5 fIL = 15 kHz current A/D converter operating current A/D converter reference voltage current Temperature sensor operating current IADC Notes 1, 6 When conversion at maximum speed Normal mode, AVREFP = VDD = 5.0 V 1.3 1.7 mA Low voltage mode, AVREFP = VDD = 3.0 V 0.5 0.7 mA IADREF 75.0 A 75.0 A 0.08 A Note 1 ITMPS Note 1 LVD operating ILVD current Notes 1, 7 Self IFSP programming Notes 1, 9 2.50 12.20 mA 2.50 12.20 mA 0.50 1.10 mA 1.20 2.04 mA 0.70 1.54 mA operating current BGO operating IBGO current Notes 1, 8 SNOOZE ISNOZ ADC operation The mode is performed Note 10 Note 1 operating The A/D conversion operations are current performed, Loe voltage mode, AVREFP = VDD = 3.0 V CSI/UART operation Notes 1. Current flowing to the VDD. 2. When high speed on-chip oscillator and high-speed system clock are stopped. 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock. 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 141 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation. 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation. 8. Current flowing only during data flash rewrite. 9. Current flowing only during self programming. 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode in the RL78/G13 User’s Manual. Remarks 1. fIL: Low-speed on-chip oscillator clock frequency 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency) 3. fCLK: CPU/peripheral hardware clock frequency 4. Temperature condition of the TYP. value is TA = 25C R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 142 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) 3.4 AC Characteristics (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Items Instruction cycle (minimum instruction execution time) Symbol TCY Conditions Main system clock (fMAIN) operation MIN. TYP. HS (high-speed 2.7 V  VDD  5.5 V 0.03125 main) mode 2.4 V  VDD < 2.7 V 0.0625 Subsystem clock (fSUB) 2.4 V  VDD  5.5 V 28.5 30.5 MAX. Unit 1 s 1 s 31.3 s 1 s 1 s operation In the self HS (high-speed 2.7 V  VDD  5.5 V 0.03125 programming main) mode 2.4 V  VDD < 2.7 V 0.0625 mode External system clock frequency fEX 2.7 V  VDD  5.5 V 1.0 20.0 MHz 2.4 V  VDD < 2.7 V 1.0 16.0 MHz 32 35 kHz fEXS External system clock input highlevel width, low-level width tEXH, tEXL 2.7 V  VDD  5.5 V 24 2.4 V  VDD < 2.7 V tEXHS, tEXLS TI00 to TI07, TI10 to TI17 input high-level width, low-level width tTIH, tTIL TO00 to TO07, TO10 to TO17 output frequency fTO PCLBUZ0, PCLBUZ1 output frequency fPCL ns 30 ns 13.7 s Note 1/fMCK+10 ns HS (high-speed main) mode 4.0 V  EVDD0  5.5 V 16 MHz 2.7 V  EVDD0 < 4.0 V 8 MHz 2.4 V  EVDD0 < 2.7 V 4 MHz HS (high-speed main) mode 4.0 V  EVDD0  5.5 V 16 MHz 2.7 V  EVDD0 < 4.0 V 8 MHz 2.4 V  EVDD0 < 2.7 V 4 MHz Interrupt input high-level width, low-level width tINTH, tINTL INTP0 2.4 V  VDD  5.5 V 1 s INTP1 to INTP11 2.4 V  EVDD0  5.5 V 1 s Key interrupt input low-level width tKR KR0 to KR7 2.4 V  EVDD0  5.5 V 250 ns RESET low-level width tRSL 10 s Note The following conditions are required for low voltage interface when EVDD0 < VDD 2.4V  EVDD0 < 2.7 V : MIN. 125 ns Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7)) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 143 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 Minimum Instruction Execution Time during Main System Clock Operation TCY vs VDD (HS (high-speed main) mode) Cycle time TCY [μs] 10 1.0 When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected 0.1 0.0625 0.05 0.03125 0.01 0 1.0 2.0 3.0 4.0 5.0 5.5 6.0 2.4 2.7 Supply voltage VDD [V] AC Timing Test Points VIH/VOH VIL/VOL Test points VIH/VOH VIL/VOL External System Clock Timing 1/fEX/ 1/fEXS tEXL/ tEXLS tEXH/ tEXHS EXCLK/EXCLKS R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 144 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 TI/TO Timing tTIH tTIL TI00 to TI07, TI10 to TI17 1/fTO TO00 to TO07, TO10 to TO17 Interrupt Request Input Timing tINTL tINTH INTP0 to INTP11 Key Interrupt Input Timing tKR KR0 to KR7 RESET Input Timing tRSL RESET R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 145 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.5 Peripheral Functions Characteristics AC Timing Test Points VIH/VOH VIH/VOH Test points VIL/VOL VIL/VOL 3.5.1 Serial array unit (1) During communication at same potential (UART mode) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. Transfer rate Note 1 MAX. fMCK/12 Theoretical value of the Unit 2.6 Note 2 bps Mbps maximum transfer rate fCLK = 32 MHz, fMCK = fCLK Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only. 2. The following conditions are required for low voltage interface when EVDD0 < VDD. 2.4 V  EVDD0 < 2.7 V : MAX. 1.3 Mbps Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). UART mode connection diagram (during communication at same potential) Rx TxDq User device RL78 microcontroller RxDq Tx UART mode bit width (during communication at same potential) (reference) 1/Transfer rate High-/Low-bit width Baud rate error tolerance TxDq RxDq Remarks 1. 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 146 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SCKp cycle time tKCY1 SCKp high-/low-level width SIp setup time (to SCKp) Note 1 SIp hold time (from SCKp) Note 2 Delay time from SCKp to SOp output Unit MAX. tKCY1  4/fCLK 2.7 V  EVDD0  5.5 V 250 ns 2.4 V  EVDD0  5.5 V 500 ns tKH1, 4.0 V  EVDD0  5.5 V tKCY1/2  24 ns tKL1 2.7 V  EVDD0  5.5 V tKCY1/2  36 ns 2.4 V  EVDD0  5.5 V tKCY1/2  76 ns 4.0 V  EVDD0  5.5 V 66 ns 2.7 V  EVDD0  5.5 V 66 ns 2.4 V  EVDD0  5.5 V 113 ns 38 ns tSIK1 tKSI1 tKSO1 C = 30 pF Note 4 50 ns Note 3 Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14) 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 147 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SCKp cycle time Note 5 tKCY2 Unit MAX. 4.0 V  EVDD0  5.5 20 MHz < fMCK 16/fMCK ns V fMCK  20 MHz 12/fMCK ns 2.7 V  EVDD0  5.5 16 MHz < fMCK 16/fMCK ns V fMCK  16 MHz 12/fMCK ns 16/fMCK ns 12/fMCK and 1000 ns 2.4 V  EVDD0  5.5 V SCKp high-/low-level tKH2, 4.0 V  EVDD0  5.5 V tKCY2/2  14 ns width tKL2 2.7 V  EVDD0  5.5 V tKCY2/2  16 ns 2.4 V  EVDD0  5.5 V tKCY2/2  36 ns 2.7 V  EVDD0  5.5 V 1/fMCK+40 ns SIp setup time (to SCKp) tSIK2 Note 1 SIp hold time (from SCKp) 2.4 V  EVDD0  5.5 V 1/fMCK+60 ns tKSI2 2.4 V  EVDD0  5.5 V 1/fMCK+62 ns tKSO2 C = 30 pF Note 2 Delay time from Note 4 SCKp to SOp output 2.7 V  EVDD0  5.5 2/fMCK+66 ns 2/fMCK+113 ns V Note 3 2.4 V  EVDD0  5.5 V Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. C is the load capacitance of the SOp output lines. 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14) 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) CSI mode connection diagram (during communication at same potential) SCKp RL78 SIp microcontroller SOp R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 SCK SO User device SI Page 148 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) tKCY1, 2 tKL1, 2 tKH1, 2 SCKp tSIK1, 2 SIp tKSI1, 2 Input data tKSO1, 2 Output data SOp CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) tKCY1, 2 tKH1, 2 tKL1, 2 SCKp tSIK1, 2 SIp tKSI1, 2 Input data tKSO1, 2 SOp Remarks 1. 2. Output data p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 149 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) 2 (4) During communication at same potential (simplified I C mode) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Unit Mode MIN. SCLr clock frequency fSCL 2.7 V  EVDD0  5.5 V, MAX. 400 Note1 kHz 100 Note1 kHz Cb = 50 pF, Rb = 2.7 k 2.4 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k Hold time when SCLr = “L” tLOW 2.7 V  EVDD0  5.5 V, 1200 ns 4600 ns 1200 ns 4600 ns 1/fMCK + 220 ns Cb = 50 pF, Rb = 2.7 k 2.4 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k Hold time when SCLr = “H” tHIGH 2.7 V  EVDD0  5.5 V, Cb = 50 pF, Rb = 2.7 k 2.4 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k Data setup time (reception) tSU:DAT 2.7 V  EVDD0  5.5 V, Note2 Cb = 50 pF, Rb = 2.7 k 2.4 V  EVDD  5.5 V, 1/fMCK + 580 ns Note2 Cb = 100 pF, Rb = 3 k Data hold time (transmission) tHD:DAT 2.7 V  EVDD0  5.5 V, 0 770 ns 0 1420 ns Cb = 50 pF, Rb = 2.7 k 2.4 V  EVDD0  5.5 V, Cb = 100 pF, Rb = 3 k Notes 1. The value must also be equal to or less than fMCK/4. 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 150 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) 2 Simplified I C mode mode connection diagram (during communication at same potential) VDD Rb SDA SDAr User device RL78 microcontroller SCLr SCL 2 Simplified I C mode serial transfer timing (during communication at same potential) 1/fSCL tLOW tHIGH SCLr SDAr tHD:DAT tSU:DAT Remarks 1. Rb[]:Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 151 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Unit Mode MIN. Transfer rate Reception 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V MAX. fMCK/12 Theoretical value of the Note 1 2.6 bps Mbps maximum transfer rate fCLK = 32 MHz, fMCK = fCLK 2.7 V  EVDD0 < 4.0 fMCK/12 V, Theoretical value of the 2.3 V  Vb  2.7 V maximum transfer rate Note 1 bps 2.6 Mbps fMCK/12 bps fCLK = 32 MHz, fMCK = fCLK 2.4 V  EVDD0 < 3.3 Notes 1,2 V, 1.6 V  Vb  2.0 V Theoretical value of the 2.6 Mbps maximum transfer rate fCLK = 32 MHz, fMCK = fCLK Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only. 2. The following conditions are required for low voltage interface when EVDD0 < VDD. 2.4 V  EVDD0 < 2.7 V : MAX. 1.3 Mbps Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Vb[V]: Communication line voltage 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13) 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 152 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode Unit MIN. Transfer rate Transmission 4.0 V  EVDD0  5.5 V, Note 1 Theoretical value of the 2.7 V  Vb  4.0 V MAX. 2.6 Note 2 bps Mbps maximum transfer rate Cb = 50 pF, Rb = 1.4 k, Vb = 2.7 V 2.7 V  EVDD0 < 4.0 Note 3 V, Theoretical value of the 2.3 V  Vb  2.7 V maximum transfer rate 1.2 Note 4 bps Mbps Cb = 50 pF, Rb = 2.7 k, Vb = 2.3 V 2.4 V  EVDD0 < 3.3 Note 5 bps 0.43 Mbps V, Theoretical value of the 1.6 V  Vb  2.0 V maximum transfer rate Note 6 Cb = 50 pF, Rb = 5.5 k, Vb = 1.6 V Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V  EVDD0  5.5 V and 2.7 V  Vb  4.0 V 1 Maximum transfer rate = {Cb × Rb × ln (1  Baud rate error (theoretical value) = 2.2 Vb )} × 3 [bps] 2.2 1  {Cb × Rb × ln (1  Vb )} Transfer rate  2 1 ( Transfer rate ) × Number of transferred bits × 100 [%] * This value is the theoretical value of the relative difference between the transmission and reception sides. 2. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer. 3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V  EVDD0 < 4.0 V and 2.4 V  Vb  2.7 V 1 Maximum transfer rate = {Cb × Rb × ln (1  Baud rate error (theoretical value) = 2.0 Vb )} × 3 [bps] 1 2.0  {Cb × Rb × ln (1  Vb )} Transfer rate  2 1 ( Transfer rate ) × Number of transferred bits × 100 [%] * This value is the theoretical value of the relative difference between the transmission and reception sides. 4. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 153 of 196 RL78/G13 5. 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V  EVDD0 < 3.3 V and 1.6 V  Vb  2.0 V 1 Maximum transfer rate = {Cb × Rb × ln (1  Baud rate error (theoretical value) = 1.5 Vb )} × 3 [bps] 1.5 1  {Cb × Rb × ln (1  Vb )} Transfer rate  2 1 ( Transfer rate ) × Number of transferred bits × 100 [%] * This value is the theoretical value of the relative difference between the transmission and reception sides. 6. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. UART mode connection diagram (during communication at different potential) Vb Rb TxDq Rx User device RL78 microcontroller RxDq R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Tx Page 154 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 UART mode bit width (during communication at different potential) (reference) 1/Transfer rate Low-bit width High-bit width Baud rate error tolerance TxDq 1/Transfer rate High-/Low-bit width Baud rate error tolerance RxDq Remarks 1. Rb[]:Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)) 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 155 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SCKp cycle time tKCY1 tKCY1  4/fCLK 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Unit MAX. 600 ns 1000 ns 2300 ns tKCY1/2  150 ns tKCY1/2  340 ns tKCY1/2  916 ns tKCY1/2  24 ns tKCY1/2  36 ns tKCY1/2  100 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k SCKp high-level width tKH1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k SCKp low-level width tKL1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed two pages after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 156 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SIp setup time Note (to SCKp) tSIK1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Unit MAX. 162 ns 354 ns 958 ns 38 ns 38 ns 38 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k SIp hold time Note (from SCKp) tKSI1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 2.7 k Delay time from SCKp to Note SOp output tKSO1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, 200 ns 390 ns 966 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the page after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 157 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SIp setup time Note (to SCKp) tSIK1 4.0 V  EVDD  5.5 V, 2.7 V  Vb  4.0 V, Unit MAX. 88 ns 88 ns 220 ns 38 ns 38 ns 38 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k SIp hold time Note (from SCKp) tKSI1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k Delay time from SCKp to Note SOp output tKSO1 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, 50 ns 50 ns 50 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 30 pF, Rb = 5.5 k Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 158 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) CSI mode connection diagram (during communication at different potential) Vb Rb Vb Rb SCKp RL78 microcontroller SCK SIp SO SOp SI User device Remarks 1. Rb[]:Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 159 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) tKCY1 tKL1 tKH1 SCKp tSIK1 SIp tKSI1 Input data tKSO1 SOp Output data CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) tKCY1 tKL1 tKH1 SCKp tSIK1 SIp tKSI1 Input data tKSO1 SOp Output data Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 160 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. SCKp cycle time Note 1 tKCY2 Unit MAX. 4.0 V  EVDD0  5.5 24 MHz < fMCK 28/fMCK ns V, 20 MHz < fMCK  24 MHz 24/fMCK ns 2.7 V  Vb  4.0 V 8 MHz < fMCK  20 MHz 20/fMCK ns 4 MHz < fMCK  8 MHz 16/fMCK ns fMCK  4 MHz 12/fMCK ns 2.7 V  EVDD0 < 4.0 24 MHz < fMCK 40/fMCK ns V, 20 MHz < fMCK  24 MHz 32/fMCK ns 2.3 V  Vb  2.7 V 16 MHz < fMCK  20 MHz 28/fMCK ns 8 MHz < fMCK  16 MHz 24/fMCK ns 4 MHz < fMCK  8 MHz 16/fMCK ns fMCK  4 MHz 12/fMCK ns 2.4 V  EVDD0 < 3.3 24 MHz < fMCK 96/fMCK ns V, 20 MHz < fMCK  24 MHz 72/fMCK ns 1.6 V  Vb  2.0 V 16 MHz < fMCK  20 MHz 64/fMCK ns 8 MHz < fMCK  16 MHz 52/fMCK ns 4 MHz < fMCK  8 MHz 32/fMCK ns fMCK  4 MHz 20/fMCK ns tKCY2/2  24 ns tKCY2/2  36 ns tKCY2/2  100 ns 1/fMCK + 40 ns 1/fMCK + 40 ns 1/fMCK + 60 ns 1/fMCK + 62 ns SCKp high-/low-level tKH2, 4.0 V  EVDD0  5.5 V, width tKL2 2.7 V  Vb  4.0 V 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V SIp setup time (to SCKp) tSIK2 Note 2 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V Note2 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V SIp hold time (from SCKp) tKSI2 Note 3 Delay time from SCKp to SOp output tKSO2 Note 4 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, 2/fMCK + 240 ns 2/fMCK + 428 ns 2/fMCK + 1146 ns Cb = 30 pF, Rb = 1.4 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 30 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V Cb = 30 pF, Rb = 5.5 k (Notes, Caution and Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 161 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes “to SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes “from SCKp” when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. CSI mode connection diagram (during communication at different potential) Vb Rb SCKp RL78 SIp microcontroller SOp SCK SO User device SI Remarks 1. Rb[]:Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)) 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 162 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) tKCY2 tKL2 tKH2 SCKp tSIK2 SIp tKSI2 Input data tKSO2 Output data SOp CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) tKCY2 tKL2 tKH2 SCKp tSIK2 SIp tKSI2 Input data tKSO2 SOp Output data Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14) 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 163 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (1/2) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Unit Mode MIN. SCLr clock frequency fSCL 4.0 V  EVDD0  5.5 V, MAX. 400 Note 1 kHz 400 Note 1 kHz 100 Note 1 kHz 100 Note 1 kHz 100 Note 1 kHz 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 100 pF, Rb = 5.5 k Hold time when SCLr = “L” tLOW 4.0 V  EVDD0  5.5 V, 1200 ns 1200 ns 4600 ns 4600 ns 4650 ns 620 ns 500 ns 2700 ns 2400 ns 1830 ns 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 100 pF, Rb = 5.5 k Hold time when SCLr = “H” tHIGH 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 100 pF, Rb = 5.5 k (Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 164 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (2/2) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode MIN. Data setup time (reception) Data hold time (transmission) tSU:DAT tHD:DAT 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 1/fMCK + 340 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 1/fMCK + 340 Unit MAX. ns Note 2 ns Note 2 1/fMCK + 760 4.0 V  EVDD0  5.5 V, Note 2 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k ns 2.7 V  EVDD0 < 4.0 V, 1/fMCK + 760 Note 2 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k ns 2.4 V  EVDD0 < 3.3 V, 1/fMCK + 570 Note 2 1.6 V  Vb  2.0 V, Cb = 100 pF, Rb = 5.5 k ns 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 50 pF, Rb = 2.7 k 0 770 ns 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 50 pF, Rb = 2.7 k 0 770 ns 4.0 V  EVDD0  5.5 V, 2.7 V  Vb  4.0 V, Cb = 100 pF, Rb = 2.8 k 0 1420 ns 2.7 V  EVDD0 < 4.0 V, 2.3 V  Vb  2.7 V, Cb = 100 pF, Rb = 2.7 k 0 1420 ns 2.4 V  EVDD0 < 3.3 V, 1.6 V  Vb  2.0 V, Cb = 100 pF, Rb = 5.5 k 0 1215 ns Notes 1. The value must also be equal to or less than fMCK/4. 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H". Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 165 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) 2 Simplified I C mode connection diagram (during communication at different potential) Vb Vb Rb Rb SDA SDAr RL78 microcontroller User device SCLr SCL 2 Simplified I C mode serial transfer timing (during communication at different potential) 1/fSCL tLOW tHIGH SCLr SDAr tHD:DAT tSU:DAT Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 20- to 52-pin products)/EVDD tolerance (for the 64- to 100pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Rb[]:Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14) 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 166 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.5.2 Serial interface IICA (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Conditions HS (high-speed main) Mode Standard Unit Fast Mode Mode SCLA0 clock frequency fSCL Setup time of restart condition Hold time Note 1 Hold time when SCLA0 = “L” MAX. MIN. MAX. Fast mode: fCLK  3.5 MHz   0 400 kHz Standard mode: fCLK  1 MHz 0 100   kHz tSU:STA 4.7 0.6 s tHD:STA 4.0 0.6 s tLOW 4.7 1.3 s Hold time when SCLA0 = “H” tHIGH 4.0 0.6 s Data setup time (reception) tSU:DAT 250 100 ns Data hold time (transmission) tHD:DAT 0 Setup time of stop condition tSU:STO 4.0 0.6 s Bus-free time tBUF 4.7 1.3 s Note 2 MIN. Notes 1. 2. 3.45 0 0.9 s The first clock pulse is generated after this period when the start/restart condition is detected. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing. Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination. Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: Cb = 400 pF, Rb = 2.7 k Fast mode: Cb = 320 pF, Rb = 1.1 k IICA serial transfer timing tLOW tR SCLAn tHD:DAT tHD:STA tHIGH tF tSU:STA tHD:STA tSU:STO tSU:DAT SDAAn tBUF Stop condition Start condition Restart condition Stop condition Remark n = 0, 1 R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 167 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.6 Analog Characteristics 3.6.1 A/D converter characteristics Classification of A/D converter characteristics Reference Voltage Reference voltage (+) = AVREFP Reference voltage (+) = VDD Reference voltage (+) = VBGR Input channel Reference voltage () = AVREFM Reference voltage () = VSS Reference voltage () = AVREFM ANI0 to ANI14 Refer to 3.6.1 (1). Refer to 3.6.1 (3). Refer to 3.6.1 (4). ANI16 to ANI26 Refer to 3.6.1 (2). Internal reference voltage Refer to 3.6.1 (1).  Temperature sensor output voltage (1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage (TA = 40 to +105C, 2.4 V  AVREFP  VDD  5.5 V, VSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage () = AVREFM = 0 V) Parameter Resolution Symbol Conditions RES Note 1 Overall error AINL tCONV TYP. 8 10-bit resolution AVREFP = VDD Conversion time MIN. 2.4 V  AVREFP  5.5 V 1.2 MAX. Unit 10 bit 3.5 LSB Note 3 10-bit resolution 3.6 V  VDD  5.5 V 2.125 39 s Target pin: ANI2 to ANI14 2.7 V  VDD  5.5 V 3.1875 39 s 2.4 V  VDD  5.5 V 17 39 s 2.375 39 s 3.5625 39 s 17 39 s 3.6 V  VDD  5.5 V Target pin: Internal reference 2.7 V  VDD  5.5 V voltage, and temperature 2.4 V  VDD  5.5 V sensor output voltage (HS 10-bit resolution (high-speed main) mode) Notes 1, 2 Zero-scale error Full-scale error Notes 1, 2 Integral linearity error EZS 10-bit resolution Note 3 AVREFP = VDD 2.4 V  AVREFP  5.5 V 0.25 %FSR EFS 10-bit resolution Note 3 AVREFP = VDD 2.4 V  AVREFP  5.5 V 0.25 %FSR ILE 10-bit resolution 2.4 V  AVREFP  5.5 V 2.5 LSB 2.4 V  AVREFP  5.5 V 1.5 LSB Note 1 AVREFP = VDD Differential linearity error DLE 10-bit resolution Note 1 Analog input voltage AVREFP = VDD VAIN Note 3 Note 3 ANI2 to ANI14 Internal reference voltage output 0 AVREFP VBGR Note 4 V V (2.4 V  VDD  5.5 V, HS (high-speed main) mode) Temperature sensor output voltage VTMPS25 Note 4 V (2.4 V  VDD  5.5 V, HS (high-speed main) mode) (Notes are listed on the next page.) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 168 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. When AVREFP < VDD, the MAX. values are as follows. Overall error: Add 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add 0.05%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add 0.5 LSB to the MAX. value when AVREFP = VDD. 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 169 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage () = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26 (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, 2.4 V  AVREFP  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage () = AVREFM = 0 V) Parameter Symbol Resolution Conditions RES Note 1 Overall error AINL tCONV Notes 1, 2 Zero-scale error Full-scale error Notes 1, 2 Integral linearity error EZS EFS Note 1 ILE Notes 3, 4 1.2 MAX. Unit 10 bit 5.0 LSB V 10-bit resolution 3.6 V  VDD  5.5 V 2.125 39 s Target pin : ANI16 to ANI26 2.7 V  VDD  5.5 V 3.1875 39 s 2.4 V  VDD  5.5 V 17 39 s 0.35 %FSR 0.35 %FSR 3.5 LSB 2.0 LSB AVREFP V 10-bit resolution Notes 3, 4 EVDD0  AVREFP = VDD 2.4 V  AVREFP  5.5 10-bit resolution Notes 3, 4 EVDD0  AVREFP = VDD 2.4 V  AVREFP  5.5 10-bit resolution 2.4 V  AVREFP  5.5 Differential linearity error DLE 10-bit resolution Note 1 EVDD0  AVREFP = VDD VAIN 2.4 V  AVREFP  5.5 10-bit resolution EVDD0  AVREFP = VDD Analog input voltage TYP. 8 EVDD0  AVREFP = VDD Conversion time MIN. Notes 3, 4 V V V 2.4 V  AVREFP  5.5 Notes 3, 4 V ANI16 to ANI26 0 and EVDD0 Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. When AVREFP < VDD, the MAX. values are as follows. Overall error: Add 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add 0.05%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add 0.5 LSB to the MAX. value when AVREFP = VDD. 4. When AVREFP < EVDD0  VDD, the MAX. values are as follows. Overall error: Add 4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add 0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add 2.0 LSB to the MAX. value when AVREFP = VDD. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 170 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage () = VSS (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V, Reference voltage (+) = VDD, Reference voltage () = VSS) Parameter Symbol Resolution Conditions MIN. RES TYP. 8 MAX. Unit 10 bit 7.0 LSB Note 1 Overall error AINL 10-bit resolution 2.4 V  VDD  5.5 V Conversion time tCONV 10-bit resolution 3.6 V  VDD  5.5 V 2.125 39 s Target pin: ANI0 to ANI14, 1.2 2.7 V  VDD  5.5 V 3.1875 39 s 2.4 V  VDD  5.5 V 17 39 s 10-bit resolution 3.6 V  VDD  5.5 V 2.375 39 s Target pin: Internal reference 2.7 V  VDD  5.5 V 3.5625 39 s 2.4 V  VDD  5.5 V 17 39 s ANI16 to ANI26 voltage, and temperature sensor output voltage (HS (high-speed main) mode) Notes 1, 2 Zero-scale error Full-scale error Notes 1, 2 Integral linearity error Note 1 EZS 10-bit resolution 2.4 V  VDD  5.5 V 0.60 %FSR EFS 10-bit resolution 2.4 V  VDD  5.5 V 0.60 %FSR ILE 10-bit resolution 2.4 V  VDD  5.5 V 4.0 LSB 10-bit resolution 2.4 V  VDD  5.5 V 2.0 LSB VDD V EVDD0 V Differential linearity error DLE Note 1 Analog input voltage VAIN ANI0 to ANI14 0 ANI16 to ANI26 0 Internal reference voltage output VBGR Note 3 V (2.4 V  VDD  5.5 V, HS (high-speed main) mode) Temperature sensor output voltage VTMPS25 Note 3 V (2.4 V  VDD  5.5 V, HS (high-speed main) mode) Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 171 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage () = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26 (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage () = AVREFM Note 4 = 0 V, HS (high-speed main) mode) Parameter Symbol Resolution Conditions MIN. TYP. RES Conversion time Notes 1, 2 Zero-scale error Integral linearity error Note 1 Differential linearity error Note 1 Analog input voltage MAX. 8 Unit bit 39 s 2.4 V  VDD  5.5 V 0.60 %FSR 8-bit resolution 2.4 V  VDD  5.5 V 2.0 LSB 8-bit resolution 2.4 V  VDD  5.5 V 1.0 LSB tCONV 8-bit resolution 2.4 V  VDD  5.5 V EZS 8-bit resolution ILE DLE 17 VAIN 0 VBGR Note 3 V Notes 1. Excludes quantization error (1/2 LSB). 2. This value is indicated as a ratio (%FSR) to the full-scale value. 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics. 4. When reference voltage () = VSS, the MAX. values are as follows. Zero-scale error: Add 0.35%FSR to the MAX. value when reference voltage () = AVREFM. Integral linearity error: Add 0.5 LSB to the MAX. value when reference voltage () = AVREFM. Differential linearity error: Add 0.2 LSB to the MAX. value when reference voltage () = AVREFM. 3.6.2 Temperature sensor/internal reference voltage characteristics (TA = 40 to +105C, 2.4 V  VDD  5.5 V, VSS = 0 V, HS (high-speed main) mode) Parameter Symbol Conditions Temperature sensor output voltage VTMPS25 Setting ADS register = 80H, TA = +25C Internal reference voltage VBGR Setting ADS register = 81H Temperature coefficient FVTMPS Temperature sensor that depends on the MIN. TYP. MAX. 1.05 1.38 1.45 3.6 Unit V 1.5 V mV/C temperature Operation stabilization wait time R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 tAMP 5 s Page 172 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.6.3 POR circuit characteristics (TA = 40 to +105C, VSS = 0 V) Parameter Symbol Conditions MIN. TYP. MAX. Unit V Detection voltage VPOR Power supply rise time 1.45 1.51 1.57 VPDR Power supply fall time 1.44 1.50 1.56 Minimum pulse width TPW V s 300 Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC). TPW Supply voltage (VDD) VPOR VPDR or 0.7 V R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 173 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.6.4 LVD circuit characteristics LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = 40 to +105C, VPDR  VDD  5.5 V, VSS = 0 V) Parameter Detection Symbol Supply voltage level VLVD0 voltage VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7 Minimum pulse width Conditions MIN. TYP. MAX. Unit Power supply rise time 3.90 4.06 4.22 V Power supply fall time 3.83 3.98 4.13 V Power supply rise time 3.60 3.75 3.90 V Power supply fall time 3.53 3.67 3.81 V Power supply rise time 3.01 3.13 3.25 V Power supply fall time 2.94 3.06 3.18 V Power supply rise time 2.90 3.02 3.14 V Power supply fall time 2.85 2.96 3.07 V Power supply rise time 2.81 2.92 3.03 V Power supply fall time 2.75 2.86 2.97 V Power supply rise time 2.70 2.81 2.92 V Power supply fall time 2.64 2.75 2.86 V Power supply rise time 2.61 2.71 2.81 V Power supply fall time 2.55 2.65 2.75 V Power supply rise time 2.51 2.61 2.71 V Power supply fall time 2.45 2.55 2.65 V tLW s 300 Detection delay time 300 s LVD Detection Voltage of Interrupt & Reset Mode (TA = 40 to +105C, VPDR  VDD  5.5 V, VSS = 0 V) Parameter Symbol Interrupt and reset VLVDD0 mode VLVDD1 Conditions MIN. TYP. MAX. Unit VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage 2.64 2.75 2.86 V LVIS1, LVIS0 = 1, 0 Rising release reset voltage 2.81 2.92 3.03 V 2.75 2.86 2.97 V 2.90 3.02 3.14 V 2.85 2.96 3.07 V 3.90 4.06 4.22 V 3.83 3.98 4.13 V Falling interrupt voltage VLVDD2 LVIS1, LVIS0 = 0, 1 Rising release reset voltage Falling interrupt voltage VLVDD3 LVIS1, LVIS0 = 0, 0 Rising release reset voltage Falling interrupt voltage R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 174 of 196 RL78/G13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) 3.6.5 Power supply voltage rising slope characteristics (TA = 40 to +105C, VSS = 0 V) Parameter Symbol Power supply voltage rising slope Caution Conditions MIN. TYP. SVDD MAX. Unit 54 V/ms Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics. 3.7 RAM Data Retention Characteristics (TA = 40 to +105°C, VSS = 0 V) Parameter Data retention supply voltage Symbol Conditions VDDDR MIN. 1.44 Note TYP. MAX. Unit 5.5 V Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated. STOP mode Operation mode RAM data retention VDD VDDDR STOP instruction execution Standby release signal (interrupt request) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 175 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.8 Flash Memory Programming Characteristics (TA = 40 to +105C, 2.4 V  VDD  5.5 V, VSS = 0 V) Parameter CPU/peripheral hardware clock Symbol Conditions fCLK 2.4 V  VDD  5.5 V Cerwr Retained for 20 years MIN. TYP. 1 MAX. Unit 32 MHz frequency Number of code flash rewrites Notes 1,2,3 TA = 85C Number of data flash rewrites Retained for 1 years Notes 1,2,3 TA = 25C Retained for 5 years TA = 85C Notes 1. 2. 3. 4. Times 1,000,000 100,000 Note 4 Retained for 20 years TA = 85C 1,000 Note 4 10,000 Note 4 1 erase + 1 write after the erase is regarded as 1 rewrite.The retaining years are until next rewrite after the rewrite. When using flash memory programmer and Renesas Electronics self programming library. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation. This temperature is the average value at which data are retained. 3.9 Dedicated Flash Memory Programmer Communication (UART) (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Transfer rate R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Symbol Conditions During serial programming MIN. 115,200 TYP. MAX. Unit 1,000,000 bps Page 176 of 196 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C) RL78/G13 3.10 Timing of Entry to Flash Memory Programming Modes (TA = 40 to +105C, 2.4 V  EVDD0 = EVDD1  VDD  5.5 V, VSS = EVSS0 = EVSS1 = 0 V) Parameter Symbol Time to complete the tSUINIT Conditions MIN. POR and LVD reset must be released before TYP. MAX. Unit 100 ms the external reset is released. communication for the initial setting after the external reset is released Time to release the external reset tSU POR and LVD reset must be released before 10  s 1 ms the external reset is released. after the TOOL0 pin is set to the low level Time to hold the TOOL0 pin at the tHD low level after the external reset is POR and LVD reset must be released before the external reset is released. released (excluding the processing time of the firmware to control the flash memory) RESET 723 μs + tHD processing time 1-byte data for setting mode TOOL0 tSU tSUINIT The low level is input to the TOOL0 pin. The external reset is released (POR and LVD reset must be released before the external reset is released.). The TOOL0 pin is set to the high level. Setting of the flash memory programming mode by UART reception and complete the baud rate setting. Remark tSUINIT: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period. tSU: Time to release the external reset after the TOOL0 pin is set to the low level tHD: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory) R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 177 of 196 RL78/G13 4. PACKAGE DRAWINGS 4. PACKAGE DRAWINGS 4.1 20-pin Products R5F1006AASP, R5F1006CASP, R5F1006DASP, R5F1006EASP R5F1016AASP, R5F1016CASP, R5F1016DASP, R5F1016EASP R5F1006ADSP, R5F1006CDSP, R5F1006DDSP, R5F1006EDSP R5F1016ADSP, R5F1016CDSP, R5F1016DDSP, R5F1016EDSP R5F1006AGSP, R5F1006CGSP, R5F1006DGSP, R5F1006EGSP JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LSSOP20-0300-0.65 PLSP0020JC-A S20MC-65-5A4-3 0.12 20 11 detail of lead end F G T P L U E 1 10 A H J I S N S K C D M M B NOTE Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition. ITEM A MILLIMETERS 6.65±0.15 B 0.475 MAX. C 0.65 (T.P.) D 0.24 +0.08 −0.07 E 0.1±0.05 F 1.3±0.1 G 1.2 H 8.1±0.2 I 6.1±0.2 J 1.0±0.2 K 0.17±0.03 L 0.5 M 0.13 N 0.10 P 3° +5° −3° T 0.25 U 0.6±0.15 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 178 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.2 24-pin Products R5F1007AANA, R5F1007CANA, R5F1007DANA, R5F1007EANA R5F1017AANA, R5F1017CANA, R5F1017DANA, R5F1017EANA R5F1007ADNA, R5F1007CDNA, R5F1007DDNA, R5F1007EDNA R5F1017ADNA, R5F1017CDNA, R5F1017DDNA, R5F1017EDNA R5F1007AGNA, R5F1007CGNA, R5F1007DGNA, R5F1007EGNA JEITA Package code P-HWQFN24-4x4-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0024KE-A P24K8-50-CAB-3 0.04 D 18 13 DETAIL OF A PART 12 19 E 24 A 7 A1 c2 6 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 6 7 24 Dimension in Millimeters Min Nom Max D 3.95 4.00 4.05 E 3.95 4.00 4.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 ZE 19 12 e ZD b R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 x M 0.30 0.50 0.30 0.40 0.50 x 0.05 y 0.05 ZD 0.75 ZE 0.75 c2 13 18 0.25 0.15 0.20 D2 2.50 E2 2.50 0.25 S AB Page 179 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.3 25-pin Products R5F1008AALA, R5F1008CALA, R5F1008DALA, R5F1008EALA R5F1018AALA, R5F1018CALA, R5F1018DALA, R5F1018EALA R5F1008AGLA, R5F1008CGLA, R5F1008DGLA, R5F1008EGLA JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-WFLGA25-3x3-0.50 PWLG0025KA-A P25FC-50-2N2-2 0.01 21x b w S A S AB M A ZD D x e ZE 5 4 B 3 2.27 E 2 C 1 ED w S B INDEX MARK y1 S CB INDEX MARK A D 2.27 A S (UNIT:mm) y S DETAIL OF C PART DETAIL OF D PART R0.17±0.05 0.43±0.05 R0.12±0.05 0.33±0.05 0.50±0.05 0.365±0.05 b (LAND PAD) 0.34±0.05 (APERTURE OF SOLDER RESIST) 0.365±0.05 ITEM D DIMENSIONS 3.00 ±0.10 E 3.00 ±0.10 w 0.20 e 0.50 A 0.69 ±0.07 b 0.24 ±0.05 x 0.05 y 0.08 y1 0.20 ZD 0.50 ZE 0.50 R0.165±0.05 0.50±0.05 0.33±0.05 R0.215±0.05 0.43±0.05 2012 Renesas Electronics Corporation. All rights reserved . R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 180 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.4 30-pin Products R5F100AAASP, R5F100ACASP, R5F100ADASP, R5F100AEASP, R5F100AFASP, R5F100AGASP R5F101AAASP, R5F101ACASP, R5F101ADASP, R5F101AEASP, R5F101AFASP, R5F101AGASP R5F100AADSP, R5F100ACDSP, R5F100ADDSP, R5F100AEDSP, R5F100AFDSP, R5F100AGDSP R5F101AADSP, R5F101ACDSP, R5F101ADDSP, R5F101AEDSP, R5F101AFDSP, R5F101AGDSP R5F100AAGSP, R5F100ACGSP, R5F100ADGSP,R5F100AEGSP, R5F100AFGSP, R5F100AGGSP JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LSSOP30-0300-0.65 PLSP0030JB-B S30MC-65-5A4-3 0.18 30 16 detail of lead end F G T P 1 L 15 U E A H I J S C D N M S B M K ITEM A MILLIMETERS 9.85±0.15 B 0.45 MAX. C 0.65 (T.P.) NOTE D 0.24 +0.08 −0.07 Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition. E 0.1±0.05 F 1.3±0.1 G 1.2 H 8.1±0.2 I 6.1±0.2 J 1.0±0.2 K 0.17±0.03 L 0.5 M 0.13 N 0.10 P 3° +5° −3° T 0.25 U 0.6±0.15 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 181 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.5 32-pin Products R5F100BAANA, R5F100BCANA, R5F100BDANA, R5F100BEANA, R5F100BFANA, R5F100BGANA R5F101BAANA, R5F101BCANA, R5F101BDANA, R5F101BEANA, R5F101BFANA, R5F101BGANA R5F100BADNA, R5F100BCDNA, R5F100BDDNA, R5F100BEDNA, R5F100BFDNA, R5F100BGDNA R5F101BADNA, R5F101BCDNA, R5F101BDDNA, R5F101BEDNA, R5F101BFDNA, R5F101BGDNA R5F100BAGNA, R5F100BCGNA, R5F100BDGNA,R5F100BEGNA, R5F100BFGNA, R5F100BGGNA JEITA Package code RENESAS code Previous code P-HWQFN32-5x5-0.50 PWQN0032KB-A P32K8-50-3B4-5 MASS (TYP.)[g] 0.06 D 17 24 DETAIL OF A PART 16 25 E A 9 32 A1 C2 8 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 8 9 32 Dimension in Millimeters Min Nom Max D 4.95 5.00 5.05 E 4.95 5.00 5.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.25 0.30 0.40 x 0.05 ZD 16 25 17 24 ZD e b x M 0.75 ZE c2 0.50 0.05 y ZE 0.30 0.50 0.75 0.15 0.20 D2 3.50 E2 3.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 182 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.6 36-pin Products R5F100CAALA, R5F100CCALA, R5F100CDALA, R5F100CEALA, R5F100CFALA, R5F100CGALA R5F101CAALA, R5F101CCALA, R5F101CDALA, R5F101CEALA, R5F101CFALA, R5F101CGALA R5F100CAGLA, R5F100CCGLA, R5F100CDGLA, R5F100CEGLA, R5F100CFGLA, R5F100CGGLA JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-WFLGA36-4x4-0.50 PWLG0036KA-A P36FC-50-AA4-2 0.023 32x b S AB e ZE w S A M A ZD D x 6 5 B 4 E 3 2.90 2 C INDEX MARK y1 D w S B S 1 F E D C B A E 2.90 A S y S DETAIL C DETAIL E DETAIL D R0.17± 0.05 0.70 ±0.05 0.55 ±0.05 R0.12 ±0.05 0.75 0.55 (UNIT:mm) R0.17 ±0.05 0.70 ±0.05 R0.12 ±0.05 0.55 ±0.05 0.75 0.55 φb (LAND PAD) φ 0.34±0.05 (APERTURE OF SOLDER RESIST) 0.55 0.75 0.55±0.05 0.70± 0.05 0.55 0.75 0.55±0.05 R0.275±0.05 R0.35±0.05 ITEM D DIMENSIONS E 4.00±0.10 w 0.20 4.00±0.10 e 0.50 A 0.69±0.07 b 0.24±0.05 x 0.05 y 0.08 y1 0.20 ZD 0.75 ZE 0.75 0.70±0.05 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 183 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.7 40-pin Products R5F100EAANA, R5F100ECANA, R5F100EDANA, R5F100EEANA, R5F100EFANA, R5F100EGANA, R5F100EHANA R5F101EAANA, R5F101ECANA, R5F101EDANA, R5F101EEANA, R5F101EFANA, R5F101EGANA, R5F101EHANA R5F100EADNA, R5F100ECDNA, R5F100EDDNA, R5F100EEDNA, R5F100EFDNA, R5F100EGDNA, R5F100EHDNA R5F101EADNA, R5F101ECDNA, R5F101EDDNA, R5F101EEDNA, R5F101EFDNA, R5F101EGDNA, R5F101EHDNA R5F100EAGNA, R5F100ECGNA, R5F100EDGNA, R5F100EEGNA, R5F100EFGNA, R5F100EGGNA, R5F100EHGNA JEITA Package code P-HWQFN40-6x6-0.50 RENESAS code Previous code MASS (TYP.) [g] PWQN0040KC-A P40K8-50-4B4-5 0.09 D 21 30 DETAIL OF A PART 20 31 E 40 A A1 11 C2 10 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 10 11 40 Dimension in Millimeters Min Nom Max D 5.95 6.00 6.05 E 5.95 6.00 6.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.25 0.50 0.30 0.40 x y 0.05 0.75 ZE 20 31 30 21 ZD e b x M c2 0.50 0.05 ZD ZE 0.30 0.75 0.15 0.20 D2 4.50 E2 4.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 184 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.8 44-pin Products R5F100FAAFP, R5F100FCAFP, R5F100FDAFP, R5F100FEAFP, R5F100FFAFP, R5F100FGAFP, R5F100FHAFP, R5F100FJAFP, R5F100FKAFP, R5F100FLAFP R5F101FAAFP, R5F101FCAFP, R5F101FDAFP, R5F101FEAFP, R5F101FFAFP, R5F101FGAFP, R5F101FHAFP, R5F101FJAFP, R5F101FKAFP, R5F101FLAFP R5F100FADFP, R5F100FCDFP, R5F100FDDFP, R5F100FEDFP, R5F100FFDFP, R5F100FGDFP, R5F100FHDFP, R5F100FJDFP, R5F100FKDFP, R5F100FLDFP R5F101FADFP, R5F101FCDFP, R5F101FDDFP, R5F101FEDFP, R5F101FFDFP, R5F101FGDFP, R5F101FHDFP, R5F101FJDFP, R5F101FKDFP, R5F101FLDFP R5F100FAGFP, R5F100FCGFP, R5F100FDGFP, R5F100FEGFP, R5F100FFGFP, R5F100FGGFP, R5F100FHGFP, R5F100FJGFP JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LQFP44-10x10-0.80 PLQP0044GC-A P44GB-80-UES-2 0.36 HD D detail of lead end A3 23 22 33 34 c θ E L Lp HE L1 (UNIT:mm) 12 11 44 1 ZE e ZD b x M S A S S NOTE Each lead centerline is located within 0.20 mm of its true position at maximum material condition. A1 DIMENSIONS 10.00±0.20 E 10.00±0.20 HD 12.00±0.20 HE 12.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 A3 A2 y ITEM D 0.25 b 0.37 +0.08 −0.07 c 0.145 +0.055 −0.045 L 0.50 Lp 0.60±0.15 L1 θ 1.00±0.20 3° +5° −3° e 0.80 x 0.20 y 0.10 ZD 1.00 ZE 1.00 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 185 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.9 48-pin Products R5F100GAAFB, R5F100GCAFB, R5F100GDAFB, R5F100GEAFB, R5F100GFAFB, R5F100GGAFB, R5F100GHAFB, R5F100GJAFB, R5F100GKAFB, R5F100GLAFB R5F101GAAFB, R5F101GCAFB, R5F101GDAFB, R5F101GEAFB, R5F101GFAFB, R5F101GGAFB, R5F101GHAFB, R5F101GJAFB, R5F101GKAFB, R5F101GLAFB R5F100GADFB, R5F100GCDFB, R5F100GDDFB, R5F100GEDFB, R5F100GFDFB, R5F100GGDFB, R5F100GHDFB, R5F100GJDFB, R5F100GKDFB, R5F100GLDFB R5F101GADFB, R5F101GCDFB, R5F101GDDFB, R5F101GEDFB, R5F101GFDFB, R5F101GGDFB, R5F101GHDFB, R5F101GJDFB, R5F101GKDFB, R5F101GLDFB R5F100GAGFB, R5F100GCGFB, R5F100GDGFB, R5F100GEGFB, R5F100GFGFB, R5F100GGGFB, R5F100GHGFB, R5F100GJGFB JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LFQFP48-7x7-0.50 PLQP0048KF-A P48GA-50-8EU-1 0.16 HD D detail of lead end 36 25 37 A3 24 c θ E L Lp HE L1 (UNIT:mm) 13 48 12 1 ZE e ZD b x M S A ITEM D DIMENSIONS 7.00±0.20 E 7.00±0.20 HD 9.00±0.20 HE 9.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 A3 b A2 c L S y S NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. A1 0.25 0.22±0.05 0.145 +0.055 −0.045 0.50 Lp 0.60±0.15 L1 θ 1.00±0.20 3° +5° −3° e 0.50 x 0.08 y 0.08 ZD 0.75 ZE 0.75 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 186 of 196 RL78/G13 4. PACKAGE DRAWINGS R5F100GAANA, R5F100GCANA, R5F100GDANA, R5F100GEANA, R5F100GFANA, R5F100GGANA, R5F100GHANA, R5F100GJANA, R5F100GKANA, R5F100GLANA R5F101GAANA, R5F101GCANA, R5F101GDANA, R5F101GEANA, R5F101GFANA, R5F101GGANA, R5F101GHANA, R5F101GJANA, R5F101GKANA, R5F101GLANA R5F100GADNA, R5F100GCDNA, R5F100GDDNA, R5F100GEDNA, R5F100GFDNA, R5F100GGDNA, R5F100GHDNA, R5F100GJDNA, R5F100GKDNA, R5F100GLDNA R5F101GADNA, R5F101GCDNA, R5F101GDDNA, R5F101GEDNA, R5F101GFDNA, R5F101GGDNA, R5F101GHDNA, R5F101GJDNA, R5F101GKDNA, R5F101GLDNA R5F100GAGNA, R5F100GCGNA, R5F100GDGNA, R5F100GEGNA, R5F100GFGNA, R5F100GGGNA, R5F100GHGNA, R5F100GJGNA JEITA Package code P-HWQFN48-7x7-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0048KB-A 48PJN-A P48K8-50-5B4-6 0.13 D 25 36 DETAIL OF A PART 24 37 E A A1 13 48 c2 12 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 12 1 13 48 Dimension in Millimeters Min Nom Max D 6.95 7.00 7.05 E 6.95 7.00 7.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.25 0.30 0.40 x y 0.05 0.75 ZE 37 24 36 25 ZD e b x M c2 0.50 0.05 ZD ZE 0.30 0.50 0.75 0.15 0.20 D2 5.50 E2 5.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 187 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.10 52-pin Products R5F100JCAFA, R5F100JDAFA, R5F100JEAFA, R5F100JFAFA, R5F100JGAFA, R5F100JHAFA, R5F100JJAFA, R5F100JKAFA, R5F100JLAFA R5F101JCAFA, R5F101JDAFA, R5F101JEAFA, R5F101JFAFA, R5F101JGAFA, R5F101JHAFA, R5F101JJAFA, R5F101JKAFA, R5F101JLAFA R5F100JCDFA, R5F100JDDFA, R5F100JEDFA, R5F100JFDFA, R5F100JGDFA, R5F100JHDFA, R5F100JJDFA, R5F100JKDFA, R5F100JLDFA R5F101JCDFA, R5F101JDDFA, R5F101JEDFA, R5F101JFDFA, R5F101JGDFA, R5F101JHDFA, R5F101JJDFA, R5F101JKDFA, R5F101JLDFA R5F100JCGFA, R5F100JDGFA, R5F100JEGFA, R5F100JFGFA, R5F100JGGFA, R5F100JHGFA, R5F100JJGFA JEITA Package Code RENESAS Code P-LQFP52-10x10-0.65 PLQP0052JA-A Previous Code MASS (TYP.) [g] P52GB-65-GBS-1 0.3 HD D 2 27 39 40 detail of lead end 26 c 1 E HE L 52 14 1 13 e (UNIT:mm) 3 b x M A A2 y NOTE A1 ITEM D E 10.00±0.10 10.00±0.10 HD 12.00±0.20 HE 12.00±0.20 A 1.70 MAX. A1 0.10±0.05 A2 1.40 b 0.32±0.05 c 0.145±0.055 L 0.50±0.15 1.Dimensions “ 1” and “ 2” do not include mold flash. 2.Dimension “ 3” does not include trim offset. DIMENSIONS 0° to 8° e 0.65 x 0.13 y 0.10 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 188 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.11 64-pin Products R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA R5F100LCDFA, R5F100LDDFA, R5F100LEDFA, R5F100LFDFA, R5F100LGDFA, R5F100LHDFA, R5F100LJDFA, R5F100LKDFA, R5F100LLDFA R5F101LCDFA, R5F101LDDFA, R5F101LEDFA, R5F101LFDFA, R5F101LGDFA, R5F101LHDFA, R5F101LJDFA, R5F101LKDFA, R5F101LLDFA R5F100LCGFA, R5F100LDGFA, R5F100LEGFA, R5F100LFGFA, R5F100LGGFA, R5F100LHGFA, R5F100LJGFA JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LQFP64-12x12-0.65 PLQP0064JA-A P64GK-65-UET-2 0.51 HD D detail of lead end 48 33 49 32 A3 c θ E L Lp HE L1 (UNIT:mm) 17 64 1 16 ZE e ZD b x M S A2 S S NOTE Each lead centerline is located within 0.13 mm of its true position at maximum material condition. DIMENSIONS 12.00±0.20 E 12.00±0.20 HD 14.00±0.20 HE 14.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 A3 A y ITEM D A1 0.25 b 0.32 +0.08 −0.07 c 0.145 +0.055 −0.045 L 0.50 Lp 0.60±0.15 L1 θ 1.00±0.20 3° +5° −3° e 0.65 x 0.13 y 0.10 ZD 1.125 ZE 1.125 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 189 of 196 RL78/G13 4. PACKAGE DRAWINGS R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB, R5F101LJAFB, R5F101LKAFB, R5F101LLAFB R5F100LCDFB, R5F100LDDFB, R5F100LEDFB, R5F100LFDFB, R5F100LGDFB, R5F100LHDFB, R5F100LJDFB, R5F100LKDFB, R5F100LLDFB R5F101LCDFB, R5F101LDDFB, R5F101LEDFB, R5F101LFDFB, R5F101LGDFB, R5F101LHDFB, R5F101LJDFB, R5F101LKDFB, R5F101LLDFB R5F100LCGFB, R5F100LDGFB, R5F100LEGFB, R5F100LFGFB, R5F100LGGFB, R5F100LHGFB, R5F100LJGFB JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LFQFP64-10x10-0.50 PLQP0064KF-A P64GB-50-UEU-2 0.35 HD D detail of lead end 48 33 49 A3 32 c θ E L Lp HE L1 (UNIT:mm) 17 64 1 16 ZE e ZD b x M S ITEM D DIMENSIONS 10.00±0.20 E 10.00±0.20 HD 12.00±0.20 HE 12.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 A3 b A A2 c L S y S NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. A1 0.25 0.22±0.05 0.145 +0.055 −0.045 0.50 Lp 0.60±0.15 L1 θ 1.00±0.20 3° +5° −3° e 0.50 x 0.08 y 0.08 ZD 1.25 ZE 1.25 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 190 of 196 RL78/G13 4. PACKAGE DRAWINGS R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG, R5F100LGABG, R5F100LHABG, R5F100LJABG R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG, R5F101LGABG, R5F101LHABG, R5F101LJABG R5F100LCGBG, R5F100LDGBG, R5F100LEGBG, R5F100LFGBG, R5F100LGGBG, R5F100LHGBG, R5F100LJGBG JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-VFBGA64-4x4-0.40 PVBG0064LA-A P64F1-40-AA2-2 0.03 w D S A ZE ZD A 8 7 6 B 5 4 E 3 2 1 H G F E D C B A INDEX MARK w S B (UNIT:mm) A y1 A2 S S y e S b x M A1 S A B INDEX MARK ITEM D DIMENSIONS E 4.00±0.10 w 0.15 4.00±0.10 A 0.89±0.10 A1 0.20± 0.05 A2 0.69 e 0.40 b 0.25 ± 0.05 x 0.05 y 0.08 y1 0.20 ZD 0.60 ZE 0.60 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 191 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.12 80-pin Products R5F100MFAFA, R5F100MGAFA, R5F100MHAFA, R5F100MJAFA, R5F100MKAFA, R5F100MLAFA R5F101MFAFA, R5F101MGAFA, R5F101MHAFA, R5F101MJAFA, R5F101MKAFA, R5F101MLAFA R5F100MFDFA, R5F100MGDFA, R5F100MHDFA, R5F100MJDFA, R5F100MKDFA, R5F100MLDFA R5F101MFDFA, R5F101MGDFA, R5F101MHDFA, R5F101MJDFA, R5F101MKDFA, R5F101MLDFA R5F100MFGFA, R5F100MGGFA, R5F100MHGFA, R5F100MJGFA JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LQFP80-14x14-0.65 PLQP0080JB-E P80GC-65-UBT-2 0.69 HD detail of lead end D L1 A A3 c 60 61 41 40 L Lp B E HE Referance Symbol D 80 1 21 20 Dimension in Millimeters Min Nom Max 13.80 14.00 14.20 E 13.80 14.00 14.20 HD 17.00 17.20 17.40 HE 17.00 17.20 17.40 A1 0.05 0.125 0.20 A2 1.35 1.40 1.45 A ZE e ZD 1.70 A3 bp x M S AB 0.26 0.32 0.38 c 0.10 0.145 0.20 Lp 0.736 0.886 1.036 L1 1.40 1.60 1.80 0° 3° L A A2 S e y S A1 0.25 bp 0.80 8° 0.65 x 0.13 y 0.10 ZD 0.825 ZE 0.825 2012 Renesas ElectronicsCorporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 192 of 196 RL78/G13 4. PACKAGE DRAWINGS R5F100MFAFB, R5F100MGAFB, R5F100MHAFB, R5F100MJAFB, R5F100MKAFB, R5F100MLAFB R5F101MFAFB, R5F101MGAFB, R5F101MHAFB, R5F101MJAFB, R5F101MKAFB, R5F101MLAFB R5F100MFDFB, R5F100MGDFB, R5F100MHDFB, R5F100MJDFB, R5F100MKDFB, R5F100MLDFB R5F101MFDFB, R5F101MGDFB, R5F101MHDFB, R5F101MJDFB, R5F101MKDFB, R5F101MLDFB R5F100MFGFB, R5F100MGGFB, R5F100MHGFB, R5F100MJGFB JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LFQFP80-12x12-0.50 PLQP0080KE-A P80GK-50-8EU-2 0.53 HD D detail of lead end 41 60 61 A3 40 c θ E L Lp HE L1 (UNIT:mm) 21 80 1 20 ZE e ZD b x M S E 12.00±0.20 HD 14.00±0.20 HE 14.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 c L A2 S S DIMENSIONS 12.00±0.20 A3 b A y ITEM D A1 0.25 0.22±0.05 0.145 +0.055 −0.045 0.50 Lp 0.60±0.15 L1 θ 1.00±0.20 3° +5° −3° e 0.50 x 0.08 y 0.08 ZD 1.25 ZE 1.25 NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 193 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.13 100-pin Products R5F100PFAFB, R5F100PGAFB, R5F100PHAFB, R5F100PJAFB, R5F100PKAFB, R5F100PLAFB R5F101PFAFB, R5F101PGAFB, R5F101PHAFB, R5F101PJAFB, R5F101PKAFB, R5F101PLAFB R5F100PFDFB, R5F100PGDFB, R5F100PHDFB, R5F100PJDFB, R5F100PKDFB, R5F100PLDFB R5F101PFDFB, R5F101PGDFB, R5F101PHDFB, R5F101PJDFB, R5F101PKDFB, R5F101PLDFB R5F100PFGFB, R5F100PGGFB, R5F100PHGFB, R5F100PJGFB JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LFQFP100-14x14-0.50 PLQP0100KE-A P100GC-50-GBR-1 0.69 HD D detail of lead end A L1 75 76 51 50 A3 c B L E HE Lp (UNIT:mm) 26 25 100 1 ITEM D DIMENSIONS 14.00±0.20 E 14.00±0.20 HD 16.00±0.20 HE 16.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40± 0.05 A3 ZE e b ZD x M S AB A A2 0.22 ±0.05 c 0.145 + 0.055 0.045 L 0.50 Lp 0.60±0.15 L1 e 1.00±0.20 3° + 5° 3° 0.50 x 0.08 y 0.08 ZD 1.00 ZE 1.00 S y S A1 0.25 b 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 194 of 196 RL78/G13 4. PACKAGE DRAWINGS R5F100PFAFA, R5F100PGAFA, R5F100PHAFA, R5F100PJAFA, R5F100PKAFA, R5F100PLAFA R5F101PFAFA, R5F101PGAFA, R5F101PHAFA, R5F101PJAFA, R5F101PKAFA, R5F101PLAFA R5F100PFDFA, R5F100PGDFA, R5F100PHDFA, R5F100PJDFA, R5F100PKDFA, R5F100PLDFA R5F101PFDFA, R5F101PGDFA, R5F101PHDFA, R5F101PJDFA, R5F101PKDFA, R5F101PLDFA R5F100PFGFA, R5F100PGGFA, R5F100PHGFA, R5F100PJGFA JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LQFP100-14x20-0.65 PLQP0100JC-A P100GF-65-GBN-1 0.92 HD D detail of lead end A A3 51 50 80 81 c B E HE L Lp 100 1 L1 31 30 (UNIT:mm) ZE e ZD b x M S AB A A2 S ITEM D DIMENSIONS 20.00 0.20 E 14.00 0.20 HD 22.00 0.20 HE 16.00 0.20 A 1.60 MAX. A1 0.10 0.05 A2 1.40 0.05 A3 0.25 b c y S A1 L + 0.08 0.32 0.07 0.145 + 0.055 0.045 0.50 Lp 0.60 0.15 L1 e 1.00 0.20 3 +5 3 0.65 x 0.13 y 0.10 ZD 0.575 ZE 0.825 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 195 of 196 RL78/G13 4. PACKAGE DRAWINGS 4.14 128-pin Products R5F100SHAFB, R5F100SJAFB, R5F100SKAFB, R5F100SLAFB R5F101SHAFB, R5F101SJAFB, R5F101SKAFB, R5F101SLAFB R5F100SHDFB, R5F100SJDFB, R5F100SKDFB, R5F100SLDFB R5F101SHDFB, R5F101SJDFB, R5F101SKDFB, R5F101SLDFB JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LFQFP128-14x20-0.50 PLQP0128KD-A P128GF-50-GBP-1 0.92 HD detail of lead end D A A3 102 103 65 64 c B θ E L HE Lp L1 128 1 39 38 (UNIT:mm) ZE e ZD b x M S AB A A2 ITEM D DIMENSIONS 20.00±0.20 E 14.00±0.20 HD 22.00±0.20 HE 16.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 A3 S y S A1 0.25 b 0.22 ±0.05 c 0.145 +0.055 −0.045 L 0.50 Lp 0.60±0.15 L1 e 1.00±0.20 3° +5° −3° 0.50 x 0.08 y 0.08 ZD 0.75 ZE 0.75 θ 2012 Renesas Electronics Corporation. All rights reserved. R01DS0131EJ0330 Rev.3.30 Mar 31, 2016 Page 196 of 196 Revision History RL78/G13 Data Sheet Description Summary Rev. Date Page 1.00 Feb 29, 2012 - First Edition issued 2.00 Oct 12, 2012 7 Figure 1-1. Part Number, Memory Size, and Package of RL78/G13: Pin count corrected. 25 1.4 Pin Identification: Description of pins INTP0 to INTP11 corrected. 40, 42, 44 1.6 Outline of Functions: Descriptions of Subsystem clock, Low-speed on-chip oscillator, and General-purpose register corrected. 41, 43, 45 1.6 Outline of Functions: Lists of Descriptions changed. 59, 63, 67 (4) Common to RL78/G13 all products: Descriptions of Notes corrected. 69 2.4 AC Characteristics: Symbol of external system clock frequency corrected. 96 to 98 Aug 02, 2013 2.6.1 A/D converter characteristics: Notes of overall error corrected. 100 2.6.2 Temperature sensor characteristics: Parameter name corrected. 104 2.8 Flash Memory Programming Characteristics: Incorrect descriptions corrected. 116 3.10 52-pin products: Package drawings of 52-pin products corrected. 120 3.00 Descriptions of Note 8 in a table corrected. 68 3.12 80-pin products: Package drawings of 80-pin products corrected. 1 Modification of 1.1 Features 3 Modification of 1.2 List of Part Numbers 4 to 15 Modification of Table 1-1. List of Ordering Part Numbers, note, and caution 16 to 32 Modification of package type in 1.3.1 to 1.3.14 33 48, 50, 52 Modification of description in 1.4 Pin Identification Modification of caution, table, and note in 1.6 Outline of Functions 55 Modification of description in table of Absolute Maximum Ratings (TA = 25C) 57 Modification of table, note, caution, and remark in 2.2.1 X1, XT1 oscillator characteristics 57 Modification of table in 2.2.2 On-chip oscillator characteristics 58 Modification of note 3 of table (1/5) in 2.3.1 Pin characteristics 59 Modification of note 3 of table (2/5) in 2.3.1 Pin characteristics 63 Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products 64 Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products 65 Modification of table in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products 66 Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64pin products 68 Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100pin products 70 Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products 72 Modification of notes 1 and 4 in (3) Flash ROM: 384 to 512 KB of 44- to 100pin products 74 Modification of notes 1, 5, and 6 in (3) Flash ROM: 384 to 512 KB of 44- to 100-pin products 75 Modification of (4) Peripheral Functions (Common to all products) 77 Modification of table in 2.4 AC Characteristics 78, 79 Addition of Minimum Instruction Execution Time during Main System Clock Operation 80 Modification of figures of AC Timing Test Points and External System Clock Timing C-1 Description Summary Rev. Date Page 3.00 Aug 02, 2013 81 Modification of figure of AC Timing Test Points 81 Modification of description and note 3 in (1) During communication at same potential (UART mode) 83 Modification of description in (2) During communication at same potential (CSI mode) 84 Modification of description in (3) During communication at same potential (CSI mode) 85 Modification of description in (4) During communication at same potential (CSI mode) (1/2) 86 Modification of description in (4) During communication at same potential (CSI mode) (2/2) 88 Modification of table in (5) During communication at same potential (simplified I2C mode) (1/2) 89 Modification of table and caution in (5) During communication at same potential (simplified I2C mode) (2/2) 91 Modification of table and notes 1 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) 92, 93 Modification of table and notes 2 to 7 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) 94 Modification of remarks 1 to 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) 95 Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (1/2) 96 Modification of table and caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (2/2) 97 Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) 98 Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) 99 Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) 100 Modification of remarks 3 and 4 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) 102 Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/2) 103 Modification of table and caution in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/2) 106 Modification of table in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (1/2) 107 Modification of table, note 1, and caution in (10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (2/2) 109 Addition of (1) I2C standard mode 111 Addition of (2) I2C fast mode 112 Addition of (3) I2C fast mode plus 112 Modification of IICA serial transfer timing 113 Addition of table in 2.6.1 A/D converter characteristics 113 Modification of description in 2.6.1 (1) 114 Modification of notes 3 to 5 in 2.6.1 (1) 115 Modification of description and notes 2, 4, and 5 in 2.6.1 (2) 116 Modification of description and notes 3 and 4 in 2.6.1 (3) 117 Modification of description and notes 3 and 4 in 2.6.1 (4) C-2 Rev. Date Page 3.00 Aug 02, 2013 118 Description Summary Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics 118 Modification of table and note in 2.6.3 POR circuit characteristics 119 Modification of table in 2.6.4 LVD circuit characteristics 120 Modification of table of LVD Detection Voltage of Interrupt & Reset Mode 120 Renamed to 2.6.5 Power supply voltage rising slope characteristics 122 Modification of table, figure, and remark in 2.10 Timing Specs for Switching Flash Memory Programming Modes 123 Modification of caution 1 and description 124 Modification of table and remark 3 in Absolute Maximum Ratings (TA = 25°C) 126 Modification of table, note, caution, and remark in 3.2.1 X1, XT1 oscillator characteristics 126 Modification of table in 3.2.2 On-chip oscillator characteristics 127 Modification of note 3 in 3.3.1 Pin characteristics (1/5) 128 Modification of note 3 in 3.3.1 Pin characteristics (2/5) 133 Modification of notes 1 and 4 in (1) Flash ROM: 16 to 64 KB of 20- to 64-pin products (1/2) 135 Modification of notes 1, 5, and 6 in (1) Flash ROM: 16 to 64 KB of 20- to 64pin products (2/2) 137 Modification of notes 1 and 4 in (2) Flash ROM: 96 to 256 KB of 30- to 100pin products (1/2) 139 Modification of notes 1, 5, and 6 in (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (2/2) 140 Modification of (3) Peripheral Functions (Common to all products) 142 Modification of table in 3.4 AC Characteristics 143 Addition of Minimum Instruction Execution Time during Main System Clock Operation 143 Modification of figure of AC Timing Test Points 143 Modification of figure of External System Clock Timing 145 Modification of figure of AC Timing Test Points 145 Modification of description, note 1, and caution in (1) During communication at same potential (UART mode) 146 Modification of description in (2) During communication at same potential (CSI mode) 147 Modification of description in (3) During communication at same potential (CSI mode) 149 Modification of table, note 1, and caution in (4) During communication at same potential (simplified I2C mode) 151 Modification of table, note 1, and caution in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2) 152 to 154 Modification of table, notes 2 to 6, caution, and remarks 1 to 4 in (5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2) 155 Modification of table in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (1/3) 156 Modification of table and caution in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (2/3) 157, 158 Modification of table, caution, and remarks 3 and 4 in (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3) 160, 161 Modification of table and caution in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) C-3 Rev. Date Page 3.00 Aug 02, 2013 163 164, 165 3.30 Nov 15, 2013 Mar 31, 2016 Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (1/2) Modification of table, note 1, and caution in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (2/2) 166 Modification of table in 3.5.2 Serial interface IICA 166 Modification of IICA serial transfer timing 167 Addition of table in 3.6.1 A/D converter characteristics 167, 168 3.10 Description Summary Modification of table and notes 3 and 4 in 3.6.1 (1) 169 Modification of description in 3.6.1 (2) 170 Modification of description and note 3 in 3.6.1 (3) 171 Modification of description and notes 3 and 4 in 3.6.1 (4) 172 Modification of table and note in 3.6.3 POR circuit characteristics 173 Modification of table of LVD Detection Voltage of Interrupt & Reset Mode 173 Modification from Supply Voltage Rise Time to 3.6.5 Power supply voltage rising slope characteristics 174 Modification of 3.9 Dedicated Flash Memory Programmer Communication (UART) 175 Modification of table, figure, and remark in 3.10 Timing Specs for Switching Flash Memory Programming Modes 123 Caution 4 added. 125 Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted. Modification of the position of the index mark in 25-pin plastic WFLGA (3 × 3 mm, 0.50 mm pitch) of 1.3.3 25-pin products Modification of power supply voltage in 1.6 Outline of Functions [20-pin, 24pin, 25-pin, 30-pin, 32-pin, 36-pin products] Modification of power supply voltage in 1.6 Outline of Functions [40-pin, 44pin, 48-pin, 52-pin, 64-pin products] Modification of power supply voltage in 1.6 Outline of Functions [80-pin, 100pin, 128-pin products] ACK corrected to ACK ACK corrected to ACK All trademarks and registered trademarks are the property of their respective owners. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc. C-4 NOTES FOR CMOS DEVICES (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions. (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device. (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products. 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. California Eastern Laboratories, Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A. Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141 © 2016 Renesas Electronics Corporation. All rights reserved. Colophon 5.0
R5F101FAA100FP#V0 价格&库存

很抱歉,暂时无法提供与“R5F101FAA100FP#V0”相匹配的价格&库存,您可以联系我们找货

免费人工找货