0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R5F10FMCDFB#V0

R5F10FMCDFB#V0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP80

  • 描述:

    IC MCU 16BIT 32KB FLASH 80LFQFP

  • 数据手册
  • 价格&库存
R5F10FMCDFB#V0 数据手册
16 RL78/G1E User’s Manual: Hardware 16-Bit Microcontrollers with Smart Analog IC All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). www.renesas.com Rev.2.00 Mar 2014 Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products. 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (2012.4) NOTES FOR CMOS DEVICES (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions. (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device. (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device. How to Use This Manual Readers This manual is intended for user engineers who wish to understand the functions of the RL78/G1E and design and develop application systems and programs for these devices. The target products are as follows. Purpose • 64-pin: R5F10FLx (x = C, D, E) • 80-pin: R5F10FMx (x = C, D, E) This manual is intended to give users an understanding of the functions described in the Organization below. Organization The RL78/G1E manual is separated into three parts: this manual, RL78/G1A user’s manual, and the RL78 family software user’s manual. RL78/G1E RL78/G1A RL78 family User’s Manual Hardware Software (This Manual) User’s Manual User’s Manual • Pin functions • Pin functions • CPU functions • Internal block functions • Internal block functions • Instruction set • On-chip peripheral • Interrupts • Explanation of each functions • Electrical specifications • Other on-chip peripheral functions • Electrical specifications instruction How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers. • To gain a general understanding of functions: → Read this manual in the order of the CONTENTS. The mark “” shows major revised points. The revised points can be easily searched by copying an “” in the PDF file and specifying it in the “Find what:” field. • How to interpret the register format: → For a bit number enclosed in angle brackets, the bit name is defined as a reserved word in the assembler, and is defined as an sfr variable using the #pragma sfr directive in the compiler. • To know details of the microcontroller block: → Refer to the separate document RL78/G1A Hardware User’s Manual (R01UH0305E). • To know details of the RL78 microcontroller instructions: → Refer to the separate document RL78 family User’s Manual (R01US0015E). Conventions Data significance: Higher digits on the left and lower digits on the right Active low representations: ××× (overscore over pin and signal name) Note: Footnote for item marked with Note in the text Caution: Information requiring particular attention Supplementary information ...×××× or ××××B Numerical representations: Binary ...×××× Decimal Remark: Hexadecimal ...××××H Software Related Documents The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such. Documents Related to Devices Document Name Document No. RL78/G1E User’s Manual Hardware This manual RL78/G1A User’s Manual Hardware R01UH0305E RL78 family User’s Manual Software R01US0015E Documents Related to Flash Memory Programming Document Name PG-FP5 Flash Memory Programmer User’s Manual Document No. R02UT0008E Other Documents Document Name Document No. Renesas MPUs & MCUs RL78 Family R01CS0003E Semiconductor Package Mount Manual Note Quality Grades on NEC Semiconductor Devices C11531E Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) C11892E NEC Semiconductor Device Reliability/Quality Control System R51ZZ0001E Note See the “Semiconductor Device Mount Manual” website (http://www.renesas.com/products/package/manual/index.jsp). Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing. All trademarks and registered trademarks are the property of their respective owners. EEPROM is a trademark of Renesas Electronics Corporation. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc. CONTENTS CHAPTER 1 OUTLINE............................................................................................................................... 1 1. 1 Features .......................................................................................................................................... 1 1. 1. 1 Microcontroller block ........................................................................................................................ 1 1. 1. 2 Analog block ..................................................................................................................................... 3 1. 2 List of Part Numbers ..................................................................................................................... 4 1. 3 Pin Configuration (Top View) ....................................................................................................... 5 1. 3. 1 64-pin products................................................................................................................................. 5 1. 3. 2 80-pin products................................................................................................................................. 6 1. 4 Pin Identification............................................................................................................................ 7 1. 5 Block Diagram ............................................................................................................................... 9 1. 5. 1 64-pin products................................................................................................................................. 9 1. 5. 2 80-pin products............................................................................................................................... 12 1. 6 Outline of Functions.................................................................................................................... 15 CHAPTER 2 PIN FUNCTIONS ............................................................................................................... 18 2. 1 Pin Functions in Microcontroller Block .................................................................................... 18 2. 1. 1 Port functions ................................................................................................................................. 22 2. 1. 1. 1 64-pin products ...................................................................................................................... 23 2. 1. 1. 2 80-pin products ...................................................................................................................... 25 2. 1. 2 Functions other than port functions ................................................................................................ 27 2. 1. 2. 1 Functions available for each product...................................................................................... 27 2. 1. 2. 2 Description of each function ................................................................................................... 30 2. 2 Pin Functions in Analog Block .................................................................................................. 32 2. 2. 1 64-pin products............................................................................................................................... 32 2. 2. 2 80-pin products............................................................................................................................... 33 2. 3 Connection of Unused Pins ....................................................................................................... 34 2. 4 Block Diagrams of Pins .............................................................................................................. 36 2. 5 Instruction of Pin Functions ....................................................................................................... 48 2. 5. 1 Port 0 (P00 to P04)......................................................................................................................... 48 2. 5. 2 Port 1 (P10 to P15)......................................................................................................................... 50 2. 5. 3 Port 2 (P20 to P24)......................................................................................................................... 51 2. 5. 4 Port 4 (P40 to P42)......................................................................................................................... 52 2. 5. 5 Port 5 (P50, P51)............................................................................................................................ 53 2. 5. 6 Port 7 (P70 to P73)......................................................................................................................... 54 2. 5. 7 Port 12 (P121, P122)...................................................................................................................... 55 2. 5. 8 Port 13 (P130, P137)...................................................................................................................... 56 2. 5. 9 Port 14 (P140) ................................................................................................................................ 57 2. 5. 10 AVDD, AVSS, VDD, VSS .................................................................................................................... 58 Index-1 2. 5. 11 RESET ......................................................................................................................................... 58 2. 5. 12 REGC ........................................................................................................................................... 58 2. 5. 13 AVDD3 ............................................................................................................................................ 59 2. 5. 14 SC_IN ........................................................................................................................................... 59 2. 5. 15 CLK_SYNCH ................................................................................................................................ 59 2. 5. 16 SYNCH_OUT ............................................................................................................................... 59 2. 5. 17 AGND2 ......................................................................................................................................... 59 2. 5. 18 GAINAMP_OUT ........................................................................................................................... 59 2. 5. 19 GAINAMP_IN ............................................................................................................................... 59 2. 5. 20 MPXIN10, MPXIN11, MPXIN20, MPXIN21, MPXIN30, MPXIN31, MPXIN40, MPXIN41, MPXIN50, MPXIN51, MPXIN60, MPXIN61................................................................................... 59 2. 5. 21 AMP1_OUT, AMP2_OUT, AMP3_OUT........................................................................................ 59 2. 5. 22 DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT ................................................................... 59 2. 5. 23 VREFIN1, VREFIN2, VREFIN3, VREFIN4 ................................................................................... 59 2. 5. 24 AGND1 ......................................................................................................................................... 60 2. 5. 25 AVDD1 ............................................................................................................................................ 60 2. 5. 26 AGND3 ......................................................................................................................................... 60 2. 5. 27 BGR_OUT .................................................................................................................................... 60 2. 5. 28 AVDD2 ............................................................................................................................................ 60 2. 5. 29 LDO_OUT .................................................................................................................................... 60 2. 5. 30 TEMP_OUT .................................................................................................................................. 60 2. 5. 31 ARESET ....................................................................................................................................... 60 2. 5. 32 DVDD ............................................................................................................................................. 60 2. 5. 33 SCLK ............................................................................................................................................ 60 2. 5. 34 SDO.............................................................................................................................................. 60 2. 5. 35 SDI ............................................................................................................................................... 61 2. 5. 36 CS ................................................................................................................................................ 61 2. 5. 37 DGND ........................................................................................................................................... 61 2. 5. 38 HPF_OUT..................................................................................................................................... 61 2. 5. 39 CLK_HPF ..................................................................................................................................... 61 2. 5. 40 CLK_LPF ...................................................................................................................................... 61 2. 5. 41 AGND4 ......................................................................................................................................... 61 2. 5. 42 LPF_OUT ..................................................................................................................................... 61 2. 5. 43 I.C................................................................................................................................................. 61 CHAPTER 3 MICROCONTROLLER BLOCK ........................................................................................ 62 3. 1 Outline of This Chapter ............................................................................................................... 62 3. 2 Comparison of Each Function with RL78/G1A (64-pin products) .......................................... 63 3. 3 CPU Architecture ......................................................................................................................... 67 3. 3. 1 Memory space ................................................................................................................................ 67 3. 3. 2 Processor registers ........................................................................................................................ 67 Index-2 3. 3. 2. 1 Control registers...................................................................................................................... 67 3. 3. 2. 2 General-purpose registers ...................................................................................................... 67 3. 3. 2. 3 ES and CS registers ............................................................................................................... 67 3. 3. 2. 4 Special function registers (SFRs)............................................................................................ 68 3. 3. 2. 5 Expanded special function registers (2nd SFRs) ................................................................... 76 3. 3. 3 Instruction address addressing....................................................................................................... 88 3. 3. 4 Addressing for processing data addresses..................................................................................... 88 3. 4 Port Functions ............................................................................................................................. 89 3. 4. 1 Port functions ................................................................................................................................. 89 3. 4. 2 Port configuration ........................................................................................................................... 89 3. 4. 2. 1 Port 0 ..................................................................................................................................... 90 3. 4. 2. 2 Port 1 ..................................................................................................................................... 90 3. 4. 2. 3 Port 2 ..................................................................................................................................... 90 3. 4. 2. 4 Port 3 ..................................................................................................................................... 91 3. 4. 2. 5 Port 4 ..................................................................................................................................... 91 3. 4. 2. 6 Port 5 ..................................................................................................................................... 91 3. 4. 2. 7 Port 6 ..................................................................................................................................... 91 3. 4. 2. 8 Port 7 ..................................................................................................................................... 91 3. 4. 2. 9 Port 12 ................................................................................................................................... 92 3. 4. 2. 10 Port 13 ................................................................................................................................. 92 3. 4. 2. 11 Port 14 ................................................................................................................................. 92 3. 4. 2. 12 Port 15 ................................................................................................................................. 92 3. 4. 3 Registers controlling port function .................................................................................................. 93 3. 4. 3. 1 Port mode register (PMxx) ..................................................................................................... 95 3. 4. 3. 2 Port register (Pxx) .................................................................................................................. 96 3. 4. 3. 3 Pull-up resistor option register (PUxx) ................................................................................... 97 3. 4. 3. 4 Port input mode register (PIMxx) ............................................................................................ 97 3. 4. 3. 5 Port output mode register (POMxx) ........................................................................................ 98 3. 4. 3. 6 Port mode control register (PMCxx) ....................................................................................... 98 3. 4. 3. 7 A/D port configuration register (ADPC) .................................................................................. 99 3. 4. 3. 8 Peripheral I/O redirection register (PIOR) ............................................................................ 101 3. 4. 3. 9 Global digital input disable register (GDIDIS) ....................................................................... 101 3. 4. 3. 10 Global analog input disable register (GAIDIS).................................................................... 101 3. 4. 4 Port function operation ................................................................................................................. 102 3. 4. 4. 1 Writing to I/O port ................................................................................................................. 102 3. 4. 4. 2 Reading from I/O port ........................................................................................................... 102 3. 4. 4. 3 Operation on I/O port ........................................................................................................... 102 3. 4. 4. 4 Handling different potential (1.8 V, 2.5 V or 3 V) by using EVDD ≤ VDD ................................. 102 3. 4. 4. 5 Handling different potential (1.8 V, 2.5 V or 3V) by using I/O buffers ................................... 103 3. 4. 5 Register settings when using alternate function ........................................................................... 105 3. 4. 6 Cautions when using port function ............................................................................................... 105 Index-3 3. 5 Clock Generator......................................................................................................................... 106 3. 5. 1 Functions of clock generator ....................................................................................................... 106 3. 5. 2 Configuration of clock generator................................................................................................... 108 3. 5. 3 Registers controlling clock generator ........................................................................................... 111 3. 5. 3. 1 Clock operation mode control register (CMC) ....................................................................... 111 3. 5. 3. 2 System clock control register (CKC) ..................................................................................... 112 3. 5. 3. 3 Clock operation status control register (CSC) ....................................................................... 113 3. 5. 3. 4 Oscillation stabilization time counter status register (OSTC) ................................................ 114 3. 5. 3. 5 Oscillation stabilization time select register (OSTS) ............................................................. 114 3. 5. 3. 6 Peripheral enable register 0 (PER0) ..................................................................................... 115 3. 5. 3. 7 Subsystem clock supply mode control register (OSMC) ....................................................... 116 3. 5. 3. 8 High-speed on-chip oscillator frequency select register (HOCODIV) .................................... 116 3. 5. 3. 9 High-speed on-chip oscillator trimming register (HIOTRM) .................................................. 116 3. 5. 4 System clock oscillator ................................................................................................................. 117 3. 5. 5 Clock generator operation ............................................................................................................ 117 3. 5. 6 Controlling clock ........................................................................................................................... 117 3. 5. 7 Resonator and oscillator constants .............................................................................................. 118 3. 6 Timer Array Unit ........................................................................................................................ 122 3. 6. 1 Functions of timer array unit ......................................................................................................... 124 3. 6. 1. 1 Independent channel operation function ............................................................................... 124 3. 6. 1. 2 Simultaneous channel operation function ............................................................................. 126 3. 6. 1. 3 8-bit timer operation function (channels 1 and 3 only) .......................................................... 127 3. 6. 1. 4 LIN-bus supporting function (channel 7 of unit 0 only) .......................................................... 128 3. 6. 2 Configuration of timer array unit ................................................................................................... 129 3. 6. 2. 1 Timer count register mn (TCRmn) ........................................................................................ 133 3. 6. 2. 2 Timer data register mn (TDRmn) .......................................................................................... 133 3. 6. 3 Registers controlling timer array unit ............................................................................................ 134 3. 6. 3. 1 Peripheral enable register 0 (PER0) ..................................................................................... 134 3. 6. 3. 2 Timer clock select register m (TPSm) ................................................................................... 134 3. 6. 3. 3 Timer mode register mn (TMRmn) ........................................................................................ 135 3. 6. 3. 4 Timer status register mn (TSRmn)........................................................................................ 140 3. 6. 3. 5 Timer channel enable status register m (TEm) ..................................................................... 140 3. 6. 3. 6 Timer channel start register m (TSm) ................................................................................... 140 3. 6. 3. 7 Timer channel stop register m (TTm) .................................................................................... 140 3. 6. 3. 8 Timer input select register 0 (TIS0)....................................................................................... 140 3. 6. 3. 9 Timer output enable register m (TOEm) ............................................................................... 141 3. 6. 3. 10 Timer output register m (TOm) ........................................................................................... 141 3. 6. 3. 11 Timer output level register m (TOLm) ................................................................................. 142 3. 6. 3. 12 Timer output mode register m (TOMm) .............................................................................. 142 3. 6. 3. 13 Input switch control register (ISC) ....................................................................................... 143 3. 6. 3. 14 Noise filter enable register 1 (NFEN1) ................................................................................ 143 Index-4 3. 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O ................................... 144 3. 6. 4 Basic rules of timer array unit ....................................................................................................... 145 3. 6. 5 Operation of counter..................................................................................................................... 145 3. 6. 6 Channel output (TOmn pin) control .............................................................................................. 145 3. 6. 7 Timer input (TImn) control ............................................................................................................ 145 3. 6. 8 Independent channel operation function of timer array unit .......................................................... 145 3. 6. 9 Simultaneous channel operation function of timer array unit ........................................................ 145 3. 6. 10 Cautions when using timer array unit ......................................................................................... 145 3. 7 Real-Time Clock........................................................................................................................ 146 3. 8 12-bit Interval Timer .................................................................................................................. 147 3. 8. 1 Functions of 12-bit interval timer .................................................................................................. 147 3. 8. 2 Configuration of 12-bit interval timer............................................................................................. 147 3. 8. 3 Registers controlling 12-bit interval timer...................................................................................... 148 3. 8. 3. 1 Peripheral enable register0 (PER0) ...................................................................................... 148 3. 8. 3. 2 Subsystem clock supply mode control register (OSMC) ....................................................... 148 3. 8. 3. 3 Interval timer control register (ITMC) .................................................................................... 149 3. 8. 4 12- bit interval timer operation ...................................................................................................... 149 3. 9 Clock Output/Buzzer Output Controller .................................................................................. 150 3. 9. 1 Functions of clock output/buzzer output controller ....................................................................... 150 3. 9. 2 Configuration of clock output/buzzer output controller.................................................................. 151 3. 9. 3 Registers controlling clock output/buzzer output controller .......................................................... 151 3. 9. 3. 1 Clock output select register 0 (CKS0) ................................................................................... 152 3. 9. 3. 2 Registers controlling port functions of pins to be used for clock or buzzer output................. 153 3. 9. 4 Operations of clock output/buzzer output controller ..................................................................... 153 3. 9. 5 Cautions of clock output/buzzer output controller ......................................................................... 153 3. 10 Watchdog Timer ...................................................................................................................... 154 3. 11 A/D Converter .......................................................................................................................... 155 3. 11. 1 Function of A/D converter ........................................................................................................... 155 3. 11. 2 Configuration of A/D converter ................................................................................................... 158 3. 11. 3 Registers used in A/D converter ................................................................................................. 160 3. 11. 3. 1 Peripheral enable register 0 (PER0) ................................................................................... 160 3. 11. 3. 2 A/D converter mode register 0 (ADM0) ............................................................................... 160 3. 11. 3. 3 A/D converter mode register 1 (ADM1) ............................................................................... 161 3. 11. 3. 4 A/D converter mode register 2 (ADM2) ............................................................................... 162 3. 11. 3. 5 12-bit A/D conversion result register (ADCR) ..................................................................... 162 3. 11. 3. 6 8-bit A/D conversion result register (ADCRH) ..................................................................... 162 3. 11. 3. 7 Analog input channel specification register (ADS) .............................................................. 163 3. 11. 3. 8 Conversion result comparison upper limit setting register (ADUL)...................................... 167 3. 11. 3. 9 Conversion result comparison lower limit setting register (ADLL) ....................................... 167 3. 11. 3. 10 A/D test register (ADTES) ................................................................................................. 167 3. 11. 3. 11 Registers controlling port function of analog input pins ..................................................... 167 Index-5 3. 11. 4 A/D converter conversion operations ......................................................................................... 168 3. 11. 5 Input voltage and conversion results .......................................................................................... 168 3. 11. 6 A/D converter operation modes .................................................................................................. 168 3. 11. 7 A/D converter setup flowchart .................................................................................................... 168 3. 11. 8 SNOOZE mode function ............................................................................................................. 168 3. 11. 9 How to read A/D converter characteristics table......................................................................... 168 3. 11. 10 Cautions for A/D converter ....................................................................................................... 168 3. 12 Serial Array Unit ...................................................................................................................... 169 3. 12. 1 Functions of serial array unit ...................................................................................................... 170 3. 12. 1. 1 3-wire serial I/O (CSI00, CSI10, CSI20, CSI21).................................................................. 170 3. 12. 1. 2 UART (UART0 to UART2) .................................................................................................. 171 2 3. 12. 1. 3 Simplified I C (IIC00, IIC10, IIC20) ..................................................................................... 172 3. 12. 2 Configuration of serial array unit................................................................................................. 173 3. 12. 2. 1 Shift register ....................................................................................................................... 177 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn) ....................................................... 177 3. 12. 3 Registers controlling serial array unit ......................................................................................... 179 3. 12. 3. 1 Peripheral enable register 0 (PER0) ................................................................................... 179 3. 12. 3. 2 Serial clock select register m (SPSm) ................................................................................ 179 3. 12. 3. 3 Serial mode register mn (SMRmn) ..................................................................................... 180 3. 12. 3. 4 Serial communication operation setting register mn (SCRmn) ........................................... 182 3. 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn) ......................................................... 186 3. 12. 3. 6 Serial flag clear trigger register mn (SIRmn) ...................................................................... 186 3. 12. 3. 7 Serial status register mn (SSRmn) ..................................................................................... 186 3. 12. 3. 8 Serial channel start register m (SSm) ................................................................................. 186 3. 12. 3. 9 Serial channel stop register m (STm) ................................................................................. 186 3. 12. 3. 10 Serial channel enable status register m (SEm) ................................................................ 186 3. 12. 3. 11 Serial output enable register m (SOEm) ........................................................................... 186 3. 12. 3. 12 Serial output register m (SOm) ......................................................................................... 186 3. 12. 3. 13 Serial output level register m (SOLm)............................................................................... 187 3. 12. 3. 14 Serial standby control register 0 (SSC0) .......................................................................... 187 3. 12. 3. 15 Input switch control register (ISC)..................................................................................... 187 3. 12. 3. 16 Noise filter enable register 0 (NFEN0) .............................................................................. 187 3. 12. 3. 17 Registers controlling port functions of serial input/output pins .......................................... 188 3. 12. 4 Operation stop mode .................................................................................................................. 189 3. 12. 5 Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) communication ........................... 189 3. 12. 6 Operation of UART (UART0 to UART2) communication ............................................................ 189 3. 12. 7 LIN communication operation ..................................................................................................... 189 2 3. 12. 8 Operation of simplified I C (IIC00, IIC10, IIC20) communication ................................................ 189 3. 13 Serial Interface IICA................................................................................................................. 190 3. 14 Multiplier and Divider/Multiply-Accumulator ........................................................................ 191 3. 15 DMA Controller ........................................................................................................................ 192 Index-6 3. 16 Interrupt Functions.................................................................................................................. 193 3. 16. 1 Interrupt function types ............................................................................................................... 193 3. 16. 2 Interrupt sources and configuration ............................................................................................ 193 3. 16. 3 Registers controlling interrupt functions...................................................................................... 199 3. 16. 3. 1 Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H) ................................... 204 3. 16. 3. 2 Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) .......................... 206 3. 16. 3. 3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, PR02L, PR02H) ............................................................. 208 3. 16. 3. 4 External interrupt rising edge enable register (EGP0), External interrupt falling edge enable register (EGN0) ...................................................................................................... 212 3. 16. 3. 5 Program status word (PSW) ............................................................................................... 213 3. 16. 4 Interrupt servicing operations ..................................................................................................... 213 3. 17 Key Interrupt Function ............................................................................................................ 214 3. 17. 1 Functions of key interrupt ........................................................................................................... 214 3. 17. 2 Configuration of key interrupt ..................................................................................................... 215 3. 17. 3 Register controlling key interrupt ................................................................................................ 217 3. 17. 3. 1 Key return control register (KRCTL) ................................................................................... 217 3. 17. 3. 2 Key return mode register 0 (KRM0) ................................................................................... 217 3. 17. 3. 3 Key return flag register (KRF) ............................................................................................ 217 3. 17. 3. 4 Port mode registers 0 to 2, 7 (PM0 to PM2, PM7) .............................................................. 218 3. 17. 3. 5 Peripheral I/O redirection register (PIOR) ......................................................................... 219 3. 17. 4 Key interrupt operation ............................................................................................................... 219 3. 18 Standby Function .................................................................................................................... 220 3. 19 Reset Function ......................................................................................................................... 221 3. 20 Power-On-Reset Circuit .......................................................................................................... 222 3. 21 Voltage Detector ...................................................................................................................... 223 3. 21. 1 Functions of voltage detector ..................................................................................................... 223 3. 21. 2 Configuration of voltage detector................................................................................................ 224 3. 21. 3 Registers controlling voltage detector ........................................................................................ 225 3. 21. 3. 1 Voltage detection register (LVIM) ....................................................................................... 225 3. 21. 3. 2 Voltage detection level register (LVIS) ............................................................................... 225 3. 21. 4 Operation of voltage detector ..................................................................................................... 228 3. 21. 5 Cautions for voltage detector...................................................................................................... 228 3. 22 Safety Functions...................................................................................................................... 229 3. 22. 1 Overview of safety functions....................................................................................................... 229 3. 22. 2 Registers used by safety functions ............................................................................................. 230 3. 22. 3 Operation of safety functions ...................................................................................................... 230 3. 22. 3. 1 Flash memory CRC operation function (high-speed CRC) ................................................ 230 3. 22. 3. 2 CRC operation function (general-purpose CRC) ................................................................ 230 3. 22. 3. 3 RAM parity error detection function .................................................................................... 230 3. 22. 3. 4 RAM guard function ........................................................................................................... 230 Index-7 3. 22. 3. 5 SFR guard function ............................................................................................................ 230 3. 22. 3. 6 Invalid memory access detection function .......................................................................... 230 3. 22. 3. 7 Frequency detection function ............................................................................................. 231 3. 22. 3. 8 A/D test function ................................................................................................................. 231 3. 23 Regulator .................................................................................................................................. 232 3. 24 Option Byte .............................................................................................................................. 233 3. 24. 1 Functions of option bytes............................................................................................................ 233 3. 24. 1. 1 User option byte (000C0H to 000C2H/010C0H to 010C2H) .............................................. 233 3. 24. 1. 2 On-chip debug option byte (000C3H/010C3H)................................................................... 234 3. 24. 2 Format of user option byte.......................................................................................................... 235 3. 24. 3 Format of on-chip debug option byte .......................................................................................... 238 3. 24. 4 Setting of option byte .................................................................................................................. 238 3. 25 Flash Memory .......................................................................................................................... 239 3. 25. 1 Serial Programming Using Flash Memory Programmer ............................................................. 239 3. 25. 1. 1 Programming environment ................................................................................................. 240 3. 25. 1. 2 Communication mode ........................................................................................................ 240 3. 25. 2 Serial programming using external device (that Incorporates UART) ......................................... 241 3. 25. 3 Connection of pins on board....................................................................................................... 241 3. 25. 4 Serial programming method ....................................................................................................... 241 3. 25. 5 Processing time for each command when PG-FP5 Is in use (Reference value) ........................ 241 3. 25. 6 Self-programming ....................................................................................................................... 241 3. 25. 7 Security Settings ........................................................................................................................ 241 3. 25. 8 Data flash ................................................................................................................................... 241 3. 26 On-chip Debug Function ........................................................................................................ 242 3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E ......................................................... 242 3. 26. 2 On-chip debug security ID .......................................................................................................... 243 3. 26. 3 Securing of user resources......................................................................................................... 243 3. 27 BCD Correction Circuit ........................................................................................................... 244 3. 28 Instruction Set ......................................................................................................................... 245 CHAPTER 4 ANALOG BLOCK ............................................................................................................. 246 4. 1 Configurable Amplifier .............................................................................................................. 246 4. 1. 1 Overview of configurable amplifier features.................................................................................. 246 4. 1. 2 Block diagram............................................................................................................................... 247 4. 1. 3 Registers controlling the configurable amplifiers .......................................................................... 250 4. 1. 4 Procedure for operating the configurable amplifiers ..................................................................... 268 4. 2 Gain Adjustment Amplifier ....................................................................................................... 282 4. 2. 1 Overview of gain adjustment amplifier features ............................................................................ 282 4. 2. 2 Block diagram............................................................................................................................... 282 4. 2. 3 Registers controlling the gain adjustment amplifier ...................................................................... 284 Index-8 4. 2. 4 Procedure for operating the gain adjustment amplifier ................................................................. 287 4. 3 D/A Converter ............................................................................................................................ 288 4. 3. 1 Overview of D/A converter features .............................................................................................. 288 4. 3. 2 Block diagram............................................................................................................................... 288 4. 3. 3 Registers controlling the D/A converters ...................................................................................... 289 4. 3. 4 Procedure for operating the D/A converters ................................................................................. 291 4. 3. 5 Notes on using D/A converters ..................................................................................................... 292 4. 4 Low-Pass Filter .......................................................................................................................... 293 4. 4. 1 Overview of low-pass filter features .............................................................................................. 293 4. 4. 2 Block diagram............................................................................................................................... 294 4. 4. 3 Registers controlling the low-pass filter ........................................................................................ 295 4. 4. 4 Procedure for operating the low-pass filter ................................................................................... 297 4. 5 High-Pass Filter ......................................................................................................................... 298 4. 5. 1 Overview of high-pass filter features ............................................................................................ 298 4. 5. 2 Block diagram............................................................................................................................... 299 4. 5. 3 Registers controlling the high-pass filter ....................................................................................... 300 4. 5. 4 Procedure for operating the high-pass filter.................................................................................. 302 4 .6 Temperature Sensor.................................................................................................................. 303 4. 6. 1 Overview of temperature sensor features..................................................................................... 303 4. 6. 2 Block diagram............................................................................................................................... 303 4. 6. 3 Registers controlling the temperature sensor ............................................................................... 304 4. 6. 4 Procedure for operating the temperature sensor .......................................................................... 305 4. 7 Variable Output Voltage Regulator ......................................................................................... 306 4. 7. 1 Overview of variable output voltage regulator features ................................................................ 306 4. 7. 2 Block diagram............................................................................................................................... 306 4. 7. 3 Registers controlling the variable output voltage regulator ........................................................... 307 4. 7. 4 Procedure for operating the variable output voltage regulator ...................................................... 309 4. 8 Reference Voltage Generator ................................................................................................... 310 4. 8. 1 Overview of reference voltage generator features........................................................................ 310 4. 8. 2 Block diagram............................................................................................................................... 310 4. 8. 3 Registers controlling the reference voltage generator .................................................................. 311 4. 8. 4 Procedure for operating the reference voltage generator ............................................................. 311 4. 8. 5 Notes on using the reference voltage generator........................................................................... 311 4. 9 SPI ............................................................................................................................................... 312 4. 9. 1 Overview of SPI features .............................................................................................................. 312 4. 9. 2 SPI communication ...................................................................................................................... 313 4. 10 Analog Reset ............................................................................................................................ 315 4. 10. 1 Overview of analog reset feature ................................................................................................ 315 4. 10. 2 Registers controlling the analog reset ........................................................................................ 318 Index-9 CHAPTER 5 ELECTRICAL SPECIFICATIONS ................................................................................... 319 5. 1 Absolute Maximum Ratings ..................................................................................................... 320 5. 1. 1 Absolute maximum ratings of microcontroller block ..................................................................... 320 5. 1. 2 Absolute maximum ratings of analog block .................................................................................. 322 5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog block) ........................ 323 5. 2 Electrical Specifications of Microcontroller Block ................................................................ 324 5. 2. 1 Oscillator characteristics............................................................................................................... 324 5. 2. 1. 1 X1 oscillator characteristics .................................................................................................. 324 5. 2. 1. 2 On-chip oscillator characteristics .......................................................................................... 325 5. 2. 2 DC characteristics ....................................................................................................................... 326 5. 2. 2. 1 Pin characteristics ............................................................................................................... 326 5. 2. 2. 2 Supply current characteristics .............................................................................................. 332 5. 2. 3 AC characteristics ........................................................................................................................ 337 5. 2. 4 Peripheral functions characteristics .............................................................................................. 342 5. 2. 4. 1 Serial array unit .................................................................................................................... 342 5. 2. 5 Analog block characteristics ......................................................................................................... 372 5. 2. 5. 1 A/D converter characteristics................................................................................................ 372 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics ................................ 378 5. 2. 5. 3 POR circuit characteristics ................................................................................................... 378 5. 2. 5. 4 LVD circuit characteristics .................................................................................................... 379 5. 2. 5. 5 Supply voltage rise slope characteristics .............................................................................. 380 5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics ............................. 381 5. 2. 7 Flash memory programming characteristics ................................................................................ 381 5. 2. 8 Dedicated flash memory programmer communication (UART) .................................................... 382 5. 2. 9 Timing specs for switching flash memory programming modes .................................................... 383 5. 3 Electrical Specifications of Analog Block .............................................................................. 384 5. 3. 1 Operating conditions of analog block ........................................................................................... 384 5. 3. 2 Supply current characteristics ...................................................................................................... 385 5. 3. 3 Electrical specifications of each block ......................................................................................... 387 5. 3. 3. 1 Configurable amplifier characteristics .................................................................................. 387 5. 3. 3. 2 Gain adjustment amplifier characteristics ............................................................................. 397 5. 3. 3. 3 D/A converter characteristics................................................................................................ 399 5. 3. 3. 4 Low-pass filter characteristics .............................................................................................. 400 5. 3. 3. 5 High-pass filter characteristics .............................................................................................. 401 5. 3. 3. 6 Temperature sensor characteristics ..................................................................................... 402 5. 3. 3. 7 Variable output voltage regulator characteristics .................................................................. 402 5. 3. 3. 8 Reference voltage generator characteristics ........................................................................ 402 5. 3. 3. 9 SPI characteristics ................................................................................................................ 403 Index-10 CHAPTER 6 PACKAGE DRAWINGS .................................................................................................. 405 APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) ............. 407 APPENDIX B REVISION HISTORY ...................................................................................................... 414 B. 1 Major Revisions in This Edition .............................................................................................. 414 B. 2 Revision History of Preceding Editions ................................................................................. 418 Index-11 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 RL78/G1E RENESAS MCU CHAPTER 1 OUTLINE 1. 1 Features The RL78/G1E is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package. The chip of analog block features a range of front-end analog circuits for small sensor signal processing such as a configurable gain amplifier, gain adjustment amplifier, filter circuit, D/A converter, and temperature sensor. The chip of 16-bit microcontroller block corresponds to the RL78/G1A (64-pin products). 1. 1. 1 Microcontroller block Low power consumption technology by standby function • HALT mode • STOP mode • SNOOZE mode RL78 CPU core • CISC architecture with 3-stage pipeline • Minimum instruction execution time: Can be changed from 0.03125 μs (32 MHz operation with high-speed on-chip oscillator) to 0.05 μs (20 MHz operation with high-speed system clock) • Address space: 1 MB • General-purpose registers: (8-bit register × 8) × 4 banks • On-chip RAM: 2 to 4 KB Code flash memory • Code flash memory: 32 to 64 KB • Block size: 1 KB • Prohibition of block erase and rewriting (security function) • On-chip debug function • Self-programming (with boot swap function/flash shield window function) Data flash memory • Data flash memory: 4 KB • Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory. • Number of rewrites: 1,000,000 times (TYP.) • Voltage of rewrites: VDD = 1.8 to 5.5 V R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 1 RL78/G1E CHAPTER 1 OUTLINE High-speed on-chip oscillator • Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz • High accuracy ±1.0 % (VDD = 1.8 to 5.5 V, TA = -20 to +85°C) Operating ambient temperature • TA = -40 to +85°C (A: Consumer applications, D: Industrial applications) Power supply voltage • VDD (Power supply for microcontroller block) = 1.6 to 5.5 V • AVDD (Power supply for A/D converter in microcontroller block) = 1.6 to 3.6 V • AVDDn (Power supply for analog block) = 3.0 to 5.5 V • DVDD (Power supply for SPI in analog block) = 3.0 to 5.5 V Power management and reset function • On-chip power-on-reset (POR) circuit • On-chip voltage detector (LVD) (Select interrupt and reset from 3 levels) DMA (Direct Memory Access) controller • 2 channels • Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks Multiplier and divider/multiply-accumulator • 16 bits × 16 bits = 32 bits (Unsigned or signed) • 32 bits ÷ 32 bits = 32 bits (Unsigned) • 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) Serial interface • CSI : 2 channels (64-pin products), 6 channels (80-pin products) • UART / UART (LIN-bus supported) : 2 channels / 1channel 2 2 • I C/Simplified I C communication : 1 channel (64-pin products), 3 channels (80-pin products) Timer • 16-bit timer : 8 channels • 12-bit interval timer : 1 channel • Watchdog timer : 1 channel (operable with the dedicated low-speed on-chip oscillator) A/D converter • 8/12-bit resolution A/D converter • Analog input: 13 channels (64-pin products), 17 channels (80-pin products) • Internal reference voltage (1.45 V) and temperature sensor Note Note Can be selected only in HS (high-speed main) mode Remarks 1. n = 1 to 3 2. The functions mounted depend on the product. See 1.6 Outline of Functions. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 2 RL78/G1E CHAPTER 1 OUTLINE I/O port • I/O port : 24 (64-pin products), 30 (80-pin products) • Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor • Different potential interface: Can connect to a 1.8/2.5/3 V device • On-chip key interrupt function • On-chip clock output/buzzer output controller Others • On-chip BCD (binary-coded decimal) correction circuit ROM, RAM capacities Flash ROM Data Flash RAM RL78/G1E 64 pins 80 pins 32 KB 4 KB 2 KB R5F10FLC R5F10FMC 48 KB 4 KB 3 KB R5F10FLD R5F10FMD 64 KB 4 KB 4 KB R5F10FLE R5F10FME Remark The functions mounted depend on the product. See 1.6 Outline of Functions. 1. 1. 2 Analog block • Configurable amplifier: 3 channels • Gain adjustment amplifier: 1 channel • High-pass filter: 1 channel Note • Low-pass filter: 1 channel • D/A converter: 4 channels • Variable output voltage regulator: 1 channel • Reference voltage generator: 1 channel • Temperature sensor: 1 channel • SPI (for analog block): 1 channel Note 80-pin products only. Remark The functions mounted depend on the product. See 1.6 Outline of Functions. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 3 RL78/G1E CHAPTER 1 OUTLINE 1. 2 List of Part Numbers Part No. R 5 F 1 0 F M E A x x x F B # v 0 Packaging specification: #U0 : Tray (HWQFN) #V0 : Tray (LFQFP) #W0 : Embossed Tape (HWQFN) #X0 : Embossed Tape (LFQFP) Package type: FB : LFQFP, 0.5 mm pitch NA : HWQFN, 0.5 mm pitch ROM number (Omitted with blank products) Fields of application: A : Consumer applications D : Industrial applications ROM capacity: C : 32 KB D : 48 KB E : 64 KB Pin count: L : 64-pin M : 80-pin RL78/G1E group Memory type: F : Flash memory Renesas MCU Renesas semiconductor product Pin count 64 pins Package 64-pin plastic HWQFN Data Flash Mounted (fine pitch) (9 × 9) Part Number R5F10FLCANA#U0, R5F10FLCANA#W0, R5F10FLDANA#U0, R5F10FLDANA#W0, R5F10FLEANA#U0, R5F10FLEANA#W0, R5F10FLCDNA#U0, R5F10FLCDNA#W0, R5F10FLDDNA#U0, R5F10FLDDNA#W0, R5F10FLEDNA#U0, R5F10FLEDNA#W0 80 pins 80-pin plastic LFQFP (12 × 12) Mounted R5F10FMCAFB#V0, R5F10FMCAFB#X0, R5F10FMDAFB#V0, R5F10FMDAFB#X0, R5F10FMEAFB#V0, R5F10FMEAFB#X0, R5F10FMCDFB#V0, R5F10FMCDFB#X0, R5F10FMDDFB#V0, R5F10FMDDFB#X0, R5F10FMEDFB#V0, R5F10FMEDFB#X0 Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 4 RL78/G1E 1. 3 Pin Configuration (Top View) 1. 3. 1 64-pin products AMP3_OUT DGND DAC3_OUT/VREFIN3 AMP2_OUT AGND1 AMP1_OUT AVDD1 DAC2_OUT/VREFIN2 DAC1_OUT/VREFIN1 MPXIN41 MPXIN31 MPXIN40 MPXIN30 MPXIN21 MPXIN11 MPXIN20 64-pin plastic WQFN (fine pitch) (9 × 9) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 MPXIN10 49 32 MPXIN50 AGND3 50 31 MPXIN60 BGR_OUT 51 30 AGND2 AVDD2 52 29 DAC4_OUT/VREFIN4 I.C 56 25 AVDD3 P73/KR3/CS 57 24 LPF_OUT TEMP_OUT 58 23 DGND ARESET 59 22 VDD DVDD 60 21 VSS P14/ANI23/RxD2/(KR4) 61 20 REGC P13/ANI22/TxD2/(KR3) 62 19 P121/X1 P12/ANI21/SO00/TxD0/TOOLTxD/(KR2) 63 18 P122/X2/EXCLK P11/ANI20/SI00/SDA00/RxD0/TOOLRxD/(KR1) 64 17 P137/INTP0 7 8 9 10 11 12 13 14 15 16 RESET 6 P40/TOOL0 5 P41/ANI30/TI07/TO07 4 P42/TI04/TO04 3 P00/TI00/(KR0) 2 P01/TO00/(KR1) 1 P02/ANI17/TxD1/(KR2) P72/SO21/KR2/SDI P03/ANI16/RxD1/(KR3) CLK_LPF P130 26 P20/ANI0/AVREFP 55 P21/ANI1/AVREFM AGND4 P71/SI21/KR1/SDO P22/ANI2/(KR5) 27 P23/ANI3/(KR6) 28 54 AVSS 53 AVDD LDO_OUT P70/ANI28/SCK21/KR0/SCLK P10/ANI18/SCK00/SCL00/(KR0) CHAPTER 1 OUTLINE Cautions 1. Connect the REGC pin to VSS via a capacitor (0.47 to 1 μF). 2. Make the potential of VDD, AVDD1, AVDD2, AVDD3, and DVDD the same. 3. Make the potential of VSS, AGND1, AGND2, AGND3, AGND4, and DGND the same. 4. Leave I.C open. 5. Connect the LDO_OUT pin to AGND3 via a capacitor (4.7 μF: recommended). 6. Connect the BGR_OUT pin to AGND3 via a capacitor (0.1 μF: recommended). 7. When using Low-pass filter or High-pass filter, connect the DAC4_OUT/VREFIN4 pin to AGND1 via a capacitor (470 pF: recommended). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 5 RL78/G1E 1. 3. 2 80-pin products DGND DGND DGND MPXIN11 MPXIN21 MPXIN30 MPXIN40 MPXIN31 MPXIN41 DAC1_OUT/VREFIN1 DAC2_OUT/VREFIN2 AV DD1 AMP1_OUT AGND1 AMP2_OUT DAC3_OUT/VREFIN3 AMP3_OUT MPXIN50 MPXIN60 MPXIN51 80-pin plastic LQFP (fine pitch) (12 × 12) 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 MPXIN20 61 40 MPXIN61 MPXIN10 62 39 GAINAMP_IN AGND3 63 38 GAINAMP_OUT BGR_OUT 64 37 AGND2 AV DD2 65 36 DAC4_OUT/VREFIN4 SYNCH_OUT LDO_OUT 66 35 P70/ANI28/SCK21/KR0/SCLK 67 34 AGND4 P71/SI21/KR1/SDO 68 33 CLK_SYNCH P72/SO21/KR2/SDI 69 32 CLK_LPF P73/KR3/CS 70 31 SCIN TEMP_OUT 71 30 CLK_HPF ARESET DVDD 72 29 AV DD3 73 28 HPF_OUT P50/ANI26/INTP1 74 27 LPF_OUT P51/ANI25/INTP2 75 26 DGND P15/ANI24/SCK20/SCL20/(KR5) 76 25 VDD P14/ANI23/SI20/SDA20/RxD2/(KR4) 77 24 VSS P13/ANI22/SO20/TxD2/(KR3) 78 23 REGC P12/ANI21/SO00/TxD0/TOOLTxD/(KR2) 79 22 P121/X1 P11/ANI20/SI00/SDA00/RxD0/TOOLRxD/(KR1) 80 21 P122/X2/EXCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P10/ANI18/SCK00/SCL00/(KR0) AV DD AV SS P24/ANI4/(KR7) P23/ANI3/(KR6) P22/ANI2/(KR5) P21/ANI1/AV REFM P20/ANI0/AV REFP P130 P04/SCK10/SCL10/(KR4) P03/ANI16/SI10/RxD1/SDA10/(KR3) P02/ANI17/SO10/TxD1/(KR2) P01/TO00/(KR1) P00/TI00/(KR0) P140/PCLBUZ0/INTP6 P42/TI04/TO04 P41/ANI30/TI07/TO07 P40/TOOL0 RESET P137/INTP0 CHAPTER 1 OUTLINE Cautions 1. Connect the REGC pin to VSS via a capacitor (0.47 to 1 μF). 2. Make the potential of VDD, AVDD1, AVDD2, AVDD3, and DVDD the same. 3. Make the potential of VSS, AGND1, AGND2, AGND3, AGND4, and DGND the same. 4. Connect the LDO_OUT pin to AGND3 via a capacitor (4.7 μF: recommended). 5. Connect the BGR_OUT pin to AGND3 via a capacitor (0.1 μF: recommended). 6. When using Low-pass filter or High-pass filter, connect the DAC4_OUT/VREFIN4 pin to AGND1 via a capacitor (470 pF: recommended). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 6 RL78/G1E CHAPTER 1 OUTLINE 1. 4 Pin Identification  Microcontroller Block RxD0-RxD2 Receive Data ANI16-ANI18, SCK00, SCK10, Serial Clock Input/Output ANI20-ANI26, SCK20, SCK21 ANI28, ANI30 SCL00, SCL10, ANI0-ANI4, AVREFM AVREFP EXCLK INTP0-INTP2 Analog Input Analog Reference Voltage SCL20 Minus SDA00, SDA10, Analog Reference Voltage SDA20 Plus SI00, SI10, External Clock Input SI20, SI21 (Main System Clock) SO00, SO10 External Interrupt Input SO20, SO21 TI00, TI04, INTP6 KR0-KR7 Key Return TI07 P00-P04 Port 0 TO00, TO04, P10-P15 Port 1 TO07 P20-P24 Port 2 TOOL0 P40-P42 Port 4 TOOLRxD, Serial Clock Input/Output Serial Data Input/Output Serial Data Input Serial Data Output Timer Input Timer Output Data Input/Output for Tool Data Input/Output for External Device P50, P51 Port 5 P70-P73 Port 7 TOOLTxD P121, P122 Port 12 TxD0-TxD2 Transmit Data P130, P137 Port 13 VDD Power Supply P140 Port 14 VSS Ground PCLBUZ0 Programmable Clock Output/ X1, X2 Crystal Oscillator (Main System Clock) Buzzer Output REGC Regulator Capacitance AVDD Analog Power Supply RESET Reset AVSS Analog Ground R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 7 RL78/G1E CHAPTER 1 OUTLINE  Analog Block Power supply for configurable AMP1_OUT, amplifiers AMP2_OUT, Power supply for variable output AMP3_OUT voltage regulator and reference DAC1_OUT, voltage generator DAC2_OUT, Power supply for low-pass filter and DAC3_OUT, high-pass filter DAC4_OUT AGND1 Ground for configurable amplifiers VREFIN1, AGND2 Ground for gain adjustment amplifier VREFIN2, AGND3 Ground for variable output voltage VREFIN3 AVDD1 AVDD2 AVDD3 AGND4 D/A converter output Reference voltage input for configurable amplifier regulator and reference voltage generator Configurable amplifier output VREFIN4 Reference voltage input for Ground for low-pass filter and Gain adjustment amplifier, high-pass filter low-pass filter, and high-pass filter SCLK Serial clock input MPXIN11, SDO Serial data output MPXIN20, SDI Serial data input MPXIN21, CS Chip select input MPXIN30, TEMP_OUT Temperature sensor output MPXIN31, ARESET Reset for analog block MPXIN40, DVDD Power supply for SPI MPXIN41, DGND Ground for SPI MPXIN50, HPF_OUT High-pass filter output MPXIN51, CLK_HPF Pin for inputting high-pass filter MPXIN10, Multiplexer input MPXIN60, control clock MPXIN61 CLK_LPF Pin for inputting low-pass filter SC_IN Input for filter signal processing CLK_SYNCH Synchronous detector control clock LPF_OUT Low-pass filter output input BGR_OUT Reference voltage generator output SYNCH_OUT Synchronous detector output LDO_OUT Variable output voltage regulator GAINAMP_IN Gain adjustment amplifier input I.C Internal connect control clock GAINAMP_OUT Gain adjustment amplifier output R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 8 RL78/G1E CHAPTER 1 OUTLINE 1. 5 Block Diagram MPXIN20 MPXIN11 MPXIN21 MPXIN30 MPXIN40 MPXIN31 MPXIN41 DAC1_OUT/VREFIN1 DAC2_OUT/VREFIN2 AVDD1 AMP1_OUT AGND1 AMP2_OUT DAC3_OUT/VREFIN3 AMP3_OUT 1. 5. 1 64-pin products MPXIN10 SDO SCLK P70/ANI28/SCK21/SCL21/KR0 SDI P71/SI21/SDA21/KR1 DVDD CS ARESET P72/SO21/KR2 LDO_OUT TEMP_OUT P73/SO01/KR3 AVDD2 Analog chip AGND3 BGR_OUT MPXIN50 MPXIN60 AGND2 DAC4_OUT/VREFIN4 I.C AGND4 CLK_LPF AVDD3 LPF_OUT DGND VDD VSS REGC P121/X1 P122/X2/EXCLK P137/INTP0 P10/ANI18/SCK00/SCL00/(KR0) AVDD AVSS P23/ANI3/(KR6) P22/ANI2/(KR5) P21/ANI1/AVREFM P20/ANI0/AVREFP P130 P03/ANI16/RxD1/(KR3) P02/ANI17/TxD1/(KR2) P01/TO00/(KR1) P00/TI00/(KR0) P42/TI04/TO04 P41/ANI30/TI07/TO07 P40/TOOL0 RESET P14/ANI23/SI20/SDA20/RxD2/(KR4) P13/ANI22/SO20/TxD2/(KR3) P12/ANI21/SO00/TxD0/TOOLTxD/(KR2) P11/ANI20/SI00/SDA00/RxD0/TOOLRxD/(KR1) 16-bit Micro. (RL78/G1A 64-pin) P70/ANI28/SCK21/KR0/SCLK P71/SI21/KR1/SDO P72/SO21/KR2/SDI P73/KR3/CS Remark The RL78/G1E (64-pin products) is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 9 RL78/G1E CHAPTER 1 OUTLINE (1) Block diagram in microcontroller block (64-pin products) TIMER ARRAY UNIT (8ch) TI00/P00 TO00/P01 PORT0 4 P00 to P03 PORT1 5 P10 to P14 PORT2 4 P20 to P23 PORT4 3 P40 to P42 PORT7 4 P70 to P72 P73Note To SPI PORT12 2 P121, P122 ch00 ch01 ch02 ch03 TI04/TO04/P42 ch04 ch05 ch06 TI07/TO07/P41 ch07 WINDOW WATCHDOG TIMER CODE FLASH MEMORY RL78 CPU CORE DATA FLASH MEMORY LOW-SPEED ON-CHIP OSCILLATOR INTERVAL TIMER SERIAL ARRAY UNIT0 (4ch) RxD0/P11 TxD0/P12 UART0 RxD1/P03 TxD1/P02 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCL00/P10 SDA00/P11 IIC00 P130 PORT13 P137 4 A/D CONVERTER 9 KEY RETURN 4(6) RAM ANI0/P20 to ANI3/P23 ANI16/P03, ANI17/P02, ANI8/P10, ANI20/P11 to ANI23/P14, ANI28/P70, ANI30/P41 AVREFP/P20 AVREFM/P21 KR0/P70 to KR3/P73 (KR0/P00 to KR3/P03, KR5/P22, KR6/23) (KR0/P10 to KR4/P14) POWER ON RESET /VOLTAGE DETECTOR VDD VSS MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR DIRECT MEMORY ACCESS CONTROL POR/LVD CONTROL TOOLRxD/P11, TOOLTxD/P12 RESET CONTROL ON-CHIP DEBUG SYSTEM CONTROL HIGH-SPEED ON-CHIP OSCILLATOR TOOL0/P40 RESET X1/P121 X2/EXCLK/P122 SERIAL ARRAY UNIT1 (2ch) RxD2/P14 TxD2/P13 To SPI SCK21/P70 SI21/P71 SO21/P72 UART2 LINSEL CSI21Note BCD ADJUSTMENT VOLTAGE REGULATOR REGC INTERRUPT CONTROL RxD2/P14 INTP0/P137 Note Connected inside the package. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 10 RL78/G1E CHAPTER 1 OUTLINE (2) Block diagram in analog block (64-pin products) DAC_OUT1/VREFIN1 DAC_OUT2/VREFIN2 DAC_OUT3/VREFIN3 DAC_OUT4/VREFIN4 AVDD1 Configurable amplifier × 3 channels MPXIN10 MPXIN11 MPXIN20 MPXIN21 AMP1_OUT Ch1 MPXIN30 MPXIN31 MPXIN40 MPXIN41 AMP2_OUT Ch2 D/A converter × 4 channels AGND1 AVDD2 Variable output voltage regulator MPXIN50 LDO_OUT AGND3 MPXIN60 Ch3 AMP3_OUT AGND1 Reference voltage generator BGR_OUT AGND2 Gain adjustment amplifier Temperature sensor AVDD3 TEMP_OUT Filter circuit CLK_LPF Low-pass filter LPF_OUT AGND4 SPI R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 DVDD SCLK SDI SDO CS DGND ARESET To CSI21 11 RL78/G1E CHAPTER 1 OUTLINE CS SDI SDO SCLK MPXIN20 MPXIN10 AGND3 BGR_OUT AV DD2 LDO_OUT TEMP_OUT ARESET DVDD Analog chip MPXIN11 MPXIN21 MPXIN30 MPXIN40 MPXIN31 MPXIN41 DAC1_OUT/VREFIN1 DAC2_OUT/VREFIN2 AV DD1 AMP1_OUT AGND1 AMP2_OUT DAC3_OUT/VREFIN3 AMP3_OUT MPXIN50 MPXIN60 MPXIN51 1. 5. 2 80-pin products MPXIN61 GAINAMP_IN GAINAMP_OUT AGND2 DAC4_OUT/VREFIN4 SYNCH_OUT AGND4 CLK_SYNCH CLK_LPF SC_IN CLK_HPF AV DD3 HPF_OUT LPF_OUT DGND VDD VSS REGC P121/X1 P122/X2/EXCLK P10/ANI18/SCK00/SCL00/(KR0) AV DD AV SS P24/ANI4/(KR7) P23/ANI3/(KR6) P22/ANI2/(KR5) P21/ANI1/AV REFM P20/ANI0/AV REFP P130 P04/SCK10/SCL10/(KR4) P03/ANI16/SI10/RxD1/SDA10/(KR3) P02/ANI17/SO10/TxD1/(KR2) P01/TO00/(KR1) P00/TI00/(KR0) P140/PCLBUZ0/INTP6 P42/TI04/TO04 P41/ANI30/TI07/TO07 P40/TOOL0 RESET P137/INTP0 P12/ANI21/SO00/TxD0/TOOLTxD/(KR2) P11/ANI20/SI00/SDA00/RxD0/TOOLRxD/(KR1) P73/SO01/KR3 P72/SO21/KR2 P71/SI21/SDA21/KR1 P70/ANI28/SCK21/SCL21/KR0 P50/ANI26/INTP1 P51/ANI25/INTP2 P15/ANI24/SCK20/SCL20/(KR5) P14/ANI23/SI20/SDA20/RxD2/(KR4) P13/ANI22/SO20/TxD2/(KR3) 16-bit Micro. (RL78/G1A 64-pin) P70/ANI28/SCK21/KR0/SCLK P71/SI21/KR1/SDO P72/SO21/KR2/SDI P73/KR3/CS Remark The RL78/G1E (80-pin products) is a multi-chip package (MCP) device that integrates a chip of an analog block and a chip of 16-bit microcontroller block in a single package. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 12 RL78/G1E CHAPTER 1 OUTLINE (1) Block diagram in microcontroller block (80-pin products) TIMER ARRAY UNIT (8ch) TI00/P00 TO00/P01 PORT0 5 P00 to P04 PORT1 5 P10 to P15 PORT2 5 P20 to P24 PORT4 4 P40 to P42 PORT5 2 P50, P51 PORT7 4 P70 to P72 P73Note To SPI PORT12 2 P121, P122 ch00 ch01 ch02 ch03 TI04/TO04/P42 ch04 ch05 ch06 TI07/TO07/P41 ch07 WINDOW WATCHDOG TIMER P130 PORT13 LOW-SPEED ON-CHIP OSCILLATOR CODE FLASH MEMORY RL78 CPU CORE P137 PORT14 P140 DATA FLASH MEMORY 5 INTERVAL TIMER A/D CONVERTER SERIAL ARRAY UNIT0 (4ch) RxD0/P11 TxD0/P12 UART0 RxD1/P03 TxD1/P02 UART1 SCK00/P10 SI00/P11 SO00/P12 CSI00 SCK10/P04 SI10/P03 SO10/P02 CSI10 RAM IIC00 IIC10 CLOCK OUTPUT CONTROL MULTIPLIER& DIVIDER, MULITIPLYACCUMULATOR SERIAL ARRAY UNIT1 (2ch) RxD2/P14 TxD2/P13 To SPI SCK20/P15 SI20/P14 SO20/P13 SCK21/P70 SI21/P71 SO21/P72 SCL20/P15 SDA20/P14 UART2 LINSEL KR0/P70 to KR3/P73 (KR0/P00 to KR4/P04, KR5/P22 to KR7/P24) (KR0/P10 to KR5/P15) POWER ON RESET /VOLTAGE DETECTOR VSS POR/LVD CONTROL TOOLRxD/P11, TOOLTxD/P12 BUZZER OUTPUT SCL10/P04 SDA10/P03 ANI16/P03, ANI17/P02, ANI8/P10, 12 ANI20/P11 to ANI24/P15, ANI25/P51, ANI26/P50, ANI28/P70, ANI30/P41 AVREFP/P20 AVREFM/P21 KEY RETURN 4(8) VDD SCL00/P10 SDA00/P11 ANI0/P20 to ANI4/P24 PCLBUZ0/P140 RESET CONTROL ON-CHIP DEBUG TOOL0/P40 SYSTEM CONTROL RESET X1/P121 X2/EXCLK/P122 HIGH-SPEED ON-CHIP OSCILLATOR DIRECT MEMORY ACCESS CONTROL CSI20 CSI21Note IIC20 BCD ADJUSTMENT VOLTAGE REGULATOR REGC INTERRUPT CONTROL RxD2/P14 INTP0/P137 INTP1/P50, INTP2/P51, INTP6/P140 3 Note Connected inside the package. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 13 RL78/G1E CHAPTER 1 OUTLINE (2) Block diagram in analog block (80-pin products) DAC_OUT1/VREFIN1 DAC_OUT2/VREFIN2 DAC_OUT3/VREFIN3 DAC_OUT4/VREFIN4 AVDD1 Configurable amplifier × 3 channels MPXIN10 MPXIN11 MPXIN20 MPXIN21 AMP1_OUT Ch1 MPXIN30 MPXIN31 MPXIN40 MPXIN41 AMP2_OUT Ch2 MPXIN50 MPXIN51 MPXIN60 MPXIN61 AMP3_OUT D/A converter × 4 channels AGND1 AVDD2 Variable output voltage regulator LDO_OUT AGND3 Ch3 AGND1 Reference voltage generator BGR_OUT AGND2 GAINAMP-IN Gain adjustment amplifier GAINAMP_OUT SYNCH_OUT Temperature sensor CLK_SYNCH AVDD3 TEMP_OUT Filter circuit CLK_LPF SC_IN Low-pass filter LPF_OUT SPI CLK_HPF High-pass filter HPF_OUT DVDD SCLK SDI SDO CS DGND ARESET To CSI21 AGND4 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 14 RL78/G1E CHAPTER 1 OUTLINE 1. 6 Outline of Functions Table 1-1 Outline of Functions (Microcontroller Block) (1/2) Item 64-pin products 80-pin products R5F10FLx R5F10FMx Code flash memory (KB) 32 to 64 32 to 64 Data flash memory (KB) 4 4 RAM (KB) 2 to 4 Note1 Memory space 2 to 4 Note1 1 MB Main system High-speed system X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) clock clock 1 to 20 MHz: VDD = 2.7 to 5.5 V, 1 to 8 MHz: VDD = 1.8 to 2.7 V, 1 to 4 MHz: VDD = 1.6 to 1.8 V High-speed on-chip HS (High-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), oscillator HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V) − Subsystem clock Low-speed on-chip oscillator 15 kHz (TYP.) (8-bit register × 8) × 4 banks General-purpose register Minimum instruction execution time 0.03125 μs (High-speed on-chip oscillator: fIH = 32 MHz operation) 0.05 μs (High-speed system clock: fMX = 20 MHz operation) • Data transfer (8/16 bits) Instruction set • Adder and subtractor / logical operation (8/16 bits) • Multiplication (8 bits × 8 bits) • Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. I/O port Total 24 30 CMOS I/O 20 26 CMOS input 3 3 CMOS output 1 1 – – N-ch open-drain I/O (6 V tolerance) Timer 16-bit timer 8 channels Watchdog timer 1 channel Real-time clock (RTC) – 12-bit Interval timer (IT) 1 channel Timer output 3 channels (PWM outputs: 2 channels Note2) RTC output – Clock output / buzzer output 1 channel – • 2.44 kHz, 4.88 kHz,9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 8/12-bit resolution A/D converter Notes 1. 13 channels 17 channels In the case of the 4 KB, this is about 3 KB when the self-programming function and data flash function are used. (For details, see 3. 3 CPU Architecture) 2. The number of PWM outputs varies depending on the setting of channels in use. (For details, see 3. 6 Timer Array Unit) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 15 RL78/G1E CHAPTER 1 OUTLINE Table 1-1 Outline of Functions (Microcontroller Block) (2/2) Item 64-pin products 80-pin products R5F10FLx R5F10FMx • 64-pin products Serial interface CSI: 1 channel / simplified I2C: 1 channel / UART: 1 channel UART: 1 channel CSI: 1 channel / UART (LIN-bus supported): 1 channel • 80-pin products CSI: 1 channel / simplified I2C: 1 channel / UART: 1 channel CSI: 1 channel / simplified I2C: 1 channel / UART: 1 channel CSI: 2 channels / simplified I2C: 1 channel / UART (LIN-bus supported): 1 channel 2 I C bus – Multiplier and divider / multiply Multiplier: 16 bits × 16 bits (Unsigned or signed) accumulator Divider: 32 bits ÷ 32 bits (Unsigned) Multiply accumulator: 16 bits × 16 bits + 32 bits (Unsigned or signed) DMA controller Vectored interrupt sources 2 channels Internal External Key interrupt 25 2 4 ch (7) 5 Note 1 4 ch (8) Note 1 • Reset by RESET pin Reset • Internal reset by watchdog timer • Internal reset by power-on-reset • Internal reset by voltage detector • Internal reset by illegal instruction execution Note 2 • Internal reset by RAM parity error • Internal reset by illegal-memory access Power-on-reset circuit • Power-on-reset: 1.51 ±0.03 V • Power-down-reset: 1.50 ±0.03 V Voltage detector On-chip debug function Detection level: 3 stages Provided Notes 1. The number in parentheses is the channels of key interrupt when using the peripheral I/O redirection register (PIOR). 2. The illegal instruction is generated when instruction code FFH is executed. Rest by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 16 RL78/G1E CHAPTER 1 OUTLINE Table 1-2 Outline of Functions (Analog Block) Item 64-pin products 80-pin products R5F10FLx R5F10FMx Sensor interface amplifier Gain adjustment amplifier Configurable amplifiers: 3 channels 1 channel Low-pass filter 1 channel (with synchronous detector) 1 channel High-pass filter – 1 channel 8-bit D/A converter 4 channels Variable output voltage regulator 1 channel Reference voltage generator 1 channel Temperature sensor circuit 1 channel Power supply voltage VDD = 1.6 to 5.5 V, AVDD = 1.6 to 3.6 V, Operating ambient temperature TA = −40°C to +85°C AVDDn = 3.0 to 5.5 V, DVDD = 3.0 to 5.5 V Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 17 RL78/G1E CHAPTER 2 PIN FUNCTIONS CHAPTER 2 PIN FUNCTIONS 2. 1 Pin Functions in Microcontroller Block The microcontroller block in the RL78/G1E is the RL78/G1A (64-pin products), but a part of pin functions of them are different from each other. The microcontroller function pins in the RL78/G1E (64-pin and 80-pin products) that differ from those in the RL78/G1A (64-pin products) are shown in the table below. (1) Comparison of port functions (64-pin products) (1/2) RL78/G1E (64-pin products) Function Name Alternate Function RL78/G1A (64-pin products) Function Name Alternate Function P00 Same as RL78/G1A (64-pin products) P00 TI00/(KR0) P01 Same as RL78/G1A (64-pin products) P01 TO00/(KR1) P02 ANI17/TxD1/(KR2) P02 ANI17/SO10/TxD1/(KR2) P03 P03/ANI6/RxD1/(KR3) P03 ANI16/SI10/SDA10/RxD1/(KR3) P04 SCK10/SCL10/(KR4) P05 TI05/TO05/KR8 P06 TI06/TO06/KR9 P10 Same as RL78/G1A (64-pin products) P10 ANI18/SCK00/SCL00/(KR0) P11 Same as RL78/G1A (64-pin products) P11 ANI20/SI00/RxD0/TOOLRxD/SDA00/(KR1) P12 Same as RL78/G1A (64-pin products) P12 ANI21/SO00/TxD0/TOOLTxD/(KR2) P13 ANI22/TxD2/(KR3) P13 ANI22/SO20/TxD2/(KR3) P14 ANI23/RxD2/(KR4) P14 ANI23/SI20/SDA20/RxD2/(KR4) P15 ANI24/SCK20/SCL20/(KR5) P16 TI01/TO01/INTP5 P20 Same as RL78/G1A (64-pin products) P20 ANI0/AVREFP P21 Same as RL78/G1A (64-pin products) P21 ANI1/AVREFM P22 Same as RL78/G1A (64-pin products) P22 ANI2/(KR5) P23 Same as RL78/G1A (64-pin products) P23 ANI3/(KR6) P24 ANI4/(KR7) P25 ANI5/(KR8) P26 ANI6/(KR9) P27 ANI7 P30 ANI27/SCK11/SCL11/INTP3/RTC1HZ P31 ANI29/TI03/TO03/INTP4 P40 Same as RL78/G1A (64-pin products) P40 TOOL0 P41 Same as RL78/G1A (64-pin products) P41 ANI30/TI07/TO07 P42 Same as RL78/G1A (64-pin products) P42 TI04/TO04 P43 – P50 ANI26/SI11/SDA11/INTP1 P51 ANI25/SO11/INTP2 P60 SCLA0 P61 SDAA0 P62 – P63 – Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 18 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/2) RL78/G1E (64-pin products) Function Name Alternate Function Note RL78/G1A (64-pin products) Function Name P70 Alternate Function P70 ANI28/SCK21/KR0/SCLK P71 SI21/KR1/SDO Note P71 ANI28/SCK21/SCL21/KR0 SI21/SDA21/KR1 P72 SO21/KR2/SDI Note P72 SO21/KR2 P73 KR3/CS Note P73 SO01/KR3 P74 SI01/SDA01/INTP8/KR4 P75 SCK01/SCL01/INTP9/KR5 P76 INTP10/KR6 P77 INTP11/KR7 P120 ANI19 P121 Same as RL78/G1A (64-pin products) P121 X1 P122 Same as RL78/G1A (64-pin products) P122 X2/EXCLK P123 XT1 P130 Same as RL78/G1A (64-pin products) P137 Same as RL78/G1A (64-pin products) Note P124 XT2/EXCLKS P130 – P137 INTP0 P140 PCLBUZ0/INTP6 P141 PCLBUZ1/INTP7 P150 ANI8 P151 ANI9/(KR6) P152 ANI10/(KR7) P153 ANI11/(KR8) P154 ANI12/(KR9) SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block. Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 19 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2) Comparison of port functions (80-pin products) (1/2) RL78/G1E (80-pin products) Function Name Alternate Function RL78/G1A (64-pin products) Function Name Alternate Function P00 Same as RL78/G1A (64-pin products) P00 TI00/(KR0) P01 Same as RL78/G1A (64-pin products) P01 TO00/(KR1) P02 Same as RL78/G1A (64-pin products) P02 ANI17/SO10/TxD1/(KR2) P03 Same as RL78/G1A (64-pin products) P03 ANI16/SI10/SDA10/RxD1/(KR3) P04 Same as RL78/G1A (64-pin products) P04 SCK10/SCL10/(KR4) P05 TI05/TO05/KR8 P06 TI06/TO06/KR9 P10 Same as RL78/G1A (64-pin products) P10 ANI18/SCK00/SCL00/(KR0) P11 Same as RL78/G1A (64-pin products) P11 ANI20/SI00/RxD0/TOOLRxD/SDA00/(KR1) P12 Same as RL78/G1A (64-pin products) P12 ANI21/SO00/TxD0/TOOLTxD/(KR2) P13 Same as RL78/G1A (64-pin products) P13 ANI22/SO20/TxD2/(KR3) P14 Same as RL78/G1A (64-pin products) P14 ANI23/SI20/SDA20/RxD2/(KR4) P15 Same as RL78/G1A (64-pin products) P15 ANI24/SCK20/SCL20/(KR5) P16 TI01/TO01/INTP5 P20 Same as RL78/G1A (64-pin products) P20 ANI0/AVREFP P21 Same as RL78/G1A (64-pin products) P21 ANI1/AVREFM P22 Same as RL78/G1A (64-pin products) P22 ANI2/(KR5) P23 Same as RL78/G1A (64-pin products) P23 ANI3/(KR6) P24 Same as RL78/G1A (64-pin products) P24 ANI4/(KR7) P25 ANI5/(KR8) P26 ANI6/(KR9) P27 ANI7 P30 ANI27/SCK11/SCL11/INTP3/RTC1HZ P31 ANI29/TI03/TO03/INTP4 P40 Same as RL78/G1A (64-pin products) P40 TOOL0 P41 Same as RL78/G1A (64-pin products) P41 ANI30/TI07/TO07 P42 Same as RL78/G1A (64-pin products) P42 TI04/TO04 P43 – ANI26/SI11/SDA11/INTP1 P50 ANI26/INTP1 P50 P51 ANI25/INTP2 P51 ANI25/SO11/INTP2 P60 SCLA0 P61 SDAA0 P62 – P63 – Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 20 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/2) RL78/G1E (80-pin products) Function Name Alternate Function Note RL78/G1A (64-pin products) Function Name P70 Alternate Function P70 ANI28/SCK21/KR0/SCLK P71 SI21/KR1/SDO Note P71 ANI28/SCK21/SCL21/KR0 SI21/SDA21/KR1 P72 SO21/KR2/SDI Note P72 SO21/KR2 P73 KR3/CS Note P73 SO01/KR3 P74 SI01/SDA01/INTP8/KR4 P75 SCK01/SCL01/INTP9/KR5 P76 INTP10/KR6 P77 INTP11/KR7 P120 ANI19 P121 Same as RL78/G1A (64-pin products) P121 X1 P122 Same as RL78/G1A (64-pin products) P122 X2/EXCLK P123 XT1 P130 Same as RL78/G1A (64-pin products) P124 XT2/EXCLKS P130 – P137 Same as RL78/G1A (64-pin products) P137 INTP0 P140 Same as RL78/G1A (64-pin products) P140 PCLBUZ0/INTP6 Note P141 PCLBUZ1/INTP7 P150 ANI8 P151 ANI9/(KR6) P152 ANI10/(KR7) P153 ANI11/(KR8) P154 ANI12/(KR9) SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block. Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR). (3) Comparison of functions other than port functions (60-pin products and 80-pin products) About the comparison of functions other than port pins, See 2. 1. 2. 1 Functions available for each product. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 21 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 1. 1 Port functions The relationship between pin I/O buffer power supplies and the pins is shown below. Table 2-1. Pin I/O Buffer Power Supplies (1) 64-pin products Power Supply VDD Corresponding Pins • Port pins other than P20 to P23 • RESET, REGC AVDD • P20 to P23 (2) 80-pin products Power Supply VDD Corresponding Pins • Port pins other than P20 to P24 • RESET, REGC AVDD R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 • P20 to P24 22 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 1. 1. 1 64-pin products (1/2) Function Pin Name Type P00 8-1-1 I/O I/O After Reset Input port 7-3-2 P03 8-3-2 Function TI00/(KR0) Port 0. TO00/(KR1) 4-bit I/O port. Analog input ANI17/TxD1/(KR2) Input of P00, P01, and P03 can be set to TTL input buffer. port ANI16/RxD1/(KR3) P01 P02 Alternate Function Output of P02 and P03 can be set to N-ch open-drain output (VDD tolerance). P02 and P03 can be set to analog input. Note1 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P10 8-3-2 I/O Analog input ANI18/SCK00/SCL00/ Port 1. port (KR0) 5-bit I/O port. ANI20/SI00/RxD0/ Input of P10, P11, and P14 can be set to TTL input buffer. P11 P12 TOOLRxD/SDA00/ Output of P10 to P14 can be set to N-ch open-drain output (VDD (KR1) tolerance). ANI21/SO00/TxD0/ 7-3-2 TOOLTxD/(KR2) P13 ANI22/TxD2/(KR3) P14 8-3-2 P20 4-3-1 P10 to P14 can be set to analog input. Note 1 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. ANI23/RxD2/(KR4) I/O Analog input port ANI0/AVREFP Port 2. ANI1/AVREFM 4-bit I/O port. P22 ANI2/(KR5) Can be set to analog input. Note 2 P23 ANI3/(KR6) Input/output can be specified in 1-bit units. Input port TOOL0 Port 4. Analog input ANI30/TI07/TO07 3-bit I/O port. P21 P40 7-1-1 P41 7-3-1 I/O P41 can be set to analog input. Note 1 port P42 Input port 7-1-1 TI04/TO04 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P70 7-3-1 P71 7-1-2 P72 7-1-1 I/O Analog input ANI28/KR0/SCK21/ Port 7. port SCLK Note3 4-bit I/O port. Input port KR1/SI21/SDO Note3 P73 P70 can be set to analog input. Note 1 Input/output can be specified in 1-bit units. KR2/SO21/SDI Note3 Use of an on-chip pull-up resistor can be specified by a software KR3/CS Note3 setting at input port. Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units). 2. Digital or analog for each pin can be selected with the A/D port configuration register (ADPC). 3. SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block. Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 23 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/2) P121 2-2-1 Input Input port P122 Port 12. X1 2-bit input port. X2/EXCLK P130 1-1-1 Output Output port P137 2-1-2 Input RESET 2-1-1 Input Input port − − Port 13. 1-bit output port and 1-bit input port. INTP0 − Input only pin for external reset. When external reset is not used, connect this pin to VDD directly or via a resistor. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 24 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 1. 1. 2 80-pin products (1/2) Function Name P00 Pin I/O After Reset Alternate Function Function Type 8-1-1 I/O Input port P01 P02 7-3-2 Analog input P03 8-3-2 port P04 8-1-2 Input port TI00/(KR0) Port 0. TO00/(KR1) 5-bit I/O port. ANI17/SO10/TxD1/(KR2) Input of P00, P01, P03, and P04 can be set to TTL input buffer. ANI16/SI10/RxD1/ Output of P02 to P04 can be set to N-ch open-drain output SDA10/(KR3) (VDD tolerance). SCK10/SCL10/(KR4) P02 and P03 can be set to analog input. Note 1 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P10 8-3-2 I/O Analog input ANI18/SCK00/ Port 1. port SCL00/(KR0) 6-bit I/O port. ANI20/SI00/RxD0/ Input of P10, P11, P14, and P15 can be set to TTL input TOOLRxD/SDA00/(KR1) buffer. ANI21/SO00/TxD0/ Output of P10 to P15 can be set to N-ch open-drain output P11 P12 7-3-2 TOOLTxD/(KR2) P13 P14 ANI22/TxD2/SO20/(KR3) 8-3-2 ANI23/RxD2/SI20/ SDA20/(KR4) P15 ANI24/SCK20/ (VDD tolerance). P10 to P15 can be set to analog input. Note 1 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. SCL20/(KR5) P20 4-3-1 I/O Analog input ANI0/AVREFP Port 2. port ANI1/AVREFM 5-bit I/O port. P22 ANI2/(KR5) Can be set to analog input. Note 2 P23 ANI3/(KR6) Input/output can be specified in 1-bit units. P24 ANI4/(KR7) P21 P40 7-1-1 P41 7-3-1 I/O Input port TOOL0 Port 4. Analog input ANI30/TI07/TO07 3-bit I/O port. P41 can be set to analog input. Note 1 port P42 7-1-1 Input port TI04/TO04 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units). 2. Digital or analog for each pin can be selected with the A/D port configuration register (ADPC). Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). About format, see Figure in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 25 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/2) Function Name Pin I/O After Reset Alternate Function Function Type P50 7-3-2 P51 7-3-1 I/O Analog input ANI26/INTP1 Port 5. port ANI25/INTP2 2-bit I/O port. Output of P50 can be set to N-ch open-drain output (VDD tolerance). P50 and P51 can be set to analog input. Note 1 Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting at input port. P70 7-3-1 I/O Analog input SCK21/SCLK port P71 7-1-2 P72 7-1-1 Input port P73 Port 7. ANI28/KR0/ Note2 4-bit I/O port. KR1/SI21/SDO P70 can be set to analog input. Note 1 KR2/SO21/SDINote2 Input/output can be specified in 1-bit units. KR3/CSNote2 Use of an on-chip pull-up resistor can be specified by software Note2 setting at input port. P121 2-2-1 Input Input port P122 X1 Port 12. X2/EXCLK 2-bit input port. − P130 1-1-1 Output Output port Port 13. P137 2-1-2 Input Input port INTP0 1-bit output port and 1-bit input port. P140 7-1-1 I/O Input port PCLBUZ0/INTP6 Port 14. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. RESET 2-1-1 Input − − Input only pin for external reset. When external reset is not used, connect this pin to VDD directly or via a resistor. Notes 1. Digital or analog for each pin can be selected with the port mode control register x (PMCx) (can be set in 1-bit units). 2. SCLK, SDO, SDI, CS represent the pin functions of analog block. P70 to P73 which are connected to the pins of the chip of analog block inside the package have some alternate functions for analog block. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 26 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 1. 2 Functions other than port functions 2. 1. 2. 1 Functions available for each product (1/3) Function Name RL78/G1E (64-pin) RL78/G1E (80-pin) RL78/G1A (64-pin) ANI0 ANI1 √ √ √ √ √ √ ANI2 ANI3 √ √ √ √ √ √ ANI4 ANI5 − − √ − √ √ ANI6 ANI7 − − − − √ √ ANI8 ANI9 − − − − √ √ ANI10 ANI11 − − − − √ √ ANI12 ANI16 − √ − √ √ √ ANI17 ANI18 √ √ √ √ √ √ ANI19 ANI20 − √ − √ √ √ ANI21 ANI22 √ √ √ √ √ √ ANI23 ANI24 √ − √ √ √ √ ANI25 ANI26 − − √ √ √ √ ANI27 ANI28 − √ − √ √ √ ANI29 ANI30 − √ − √ √ √ INTP0 INTP1 √ − √ √ √ √ INTP2 INTP3 − − √ − √ √ INTP4 INTP5 − − − − √ √ INTP6 INTP7 − − √ − √ √ INTP8 INTP9 − − − − √ √ INTP10 INTP11 − − − − √ √ R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 27 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/3) Function Name RL78/G1E (64-pin) RL78/G1E (80-pin) RL78/G1A (64-pin) KR0 KR1 √ √ √ √ √ √ KR2 KR3 √ √ √ √ √ √ KR4 KR5 (√) (√) (√) (√) √ √ KR6 KR7 (√) − (√) (√) √ √ KR8 KR9 − − – – √ √ PCLBUZ0 PCLBUZ1 − − √ – √ √ REGC RTC1HZ √ – √ – √ √ RESET RXD0 √ √ √ √ √ √ RXD1 RXD2 √ √ √ √ √ √ SCK00 SCK01 √ – √ – √ √ SCK10 SCK11 – – √ – √ √ SCK20 SCK21 – √ √ √ √ √ SCLA0 SCL00 – √ – √ √ √ SCL01 SCL10 – – – √ √ √ SCL11 SCL20 – – – √ √ √ SCL21 SDAA0 – – – – √ √ SDA00 SDA01 √ – √ – √ √ SDA10 SDA11 – – √ – √ √ SDA20 SDA21 – – √ – √ √ SI00 SI01 √ – √ – √ √ SI10 SI11 – – √ – √ √ SI20 SI21 – √ √ √ √ √ Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 28 RL78/G1E CHAPTER 2 PIN FUNCTIONS (3/3) Function Name RL78/G1E (64-pin) RL78/G1E (80-pin) RL78/G1A (64-pin) SO00 √ √ √ SO01 SO10 – – – √ √ √ SO11 SO20 – – – √ √ √ SO21 TI00 √ √ √ √ √ √ TI01 TI03 – – – – √ √ TI04 TI05 √ – √ – √ √ TI06 TI07 – √ – √ √ √ TO00 TO01 √ – √ – √ √ TO03 TO04 – √ – √ √ √ TO05 TO06 – – – – √ √ TO07 TxD0 √ √ √ √ √ √ TxD1 TxD2 √ √ √ √ √ √ X1 X2 √ √ √ √ √ √ EXCLK EXCLKS √ – √ – √ √ XT1 XT2 – – – – √ √ √ √ √ VDD EVDD0 √ – Note – Note AVDD AVREFP √ √ √ √ √ √ AVREFM VSS √ √ √ √ √ √ Note Note √ √ √ √ TOOLRxD TOOLTxD √ √ √ √ √ √ TOOL0 √ √ √ EVSS0 AVSS – – Note EVDD0 is connected to VDD, and EVSS0 is connected to VSS inside the package. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 29 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 1. 2. 2 Description of each function The functions of RL78/G1E (64-pin products and 80-pin products) are described below. (1/2) Function Name ANI0- ANI4, ANI16- ANI18, I/O Function Input A/D converter analog input INTP0- INTP2, INTP6 Input External interrupt request input KR0- KR7 Input Key interrupt input PCLBUZ0 Output ANI20- ANI26, ANI28, ANI30 REGC – Clock output / buzzer output Pin for connecting to regulator output stabilization capacitance for internal operation. Connect this pin to VSS via a capacitor (0.47 to 1 μF). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage. RESET Input External reset signal input for the functions of microcontroller block RxD0- RxD2 Input Serial data input pins of serial interface UART0 to UART2 TxD0-TxD2 Output SCK00, SCK10, SCK20, SCK21 I/O Serial data output pins of serial interface UART0 to UART2 Serial clock I/O pins of serial interface CSI00, CSI10, CSI20 and CSI21 SCL00, SCL10, SCL20 Output SDA00, SDA10, SDA20 I/O SI00, SI10, SI20, SI21 Input Serial clock output pins of serial interface IIC00, IIC10 and IIC20 Serial data I/O pins of serial interface IIC00, IIC10 and IIC20 Serial data input pins of serial interface CSI00, CSI10, CSI20 and CSI21 SO00, SO10, SO20, SO21 Output Serial data output pins of serial interface CSI00, CSI10, CSI20 and CSI21 TI00, TI04, TI07 Input The pins for inputting an external count clock/capture trigger to 16-bit timers 00, 04 and 07 TO00, TO04, TO07 Output X1, X2 – EXCLK Input R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Timer output pins of 16-bit timers 00, 04 and 07 Resonator connection for main system clock External clock input for main system clock 30 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/2) Function Name VDD I/O – Function < 64-pin products > Positive power supply for port pins other than P20 to P23 and also for RESET, REGC pin. < 80-pin products > Positive power supply for port pins other than P20 to P24 and also for RESET, REGC pin. AVDD – Positive power supply for P20 to P24 and A/D converter AVREFP Input A/D converter reference potential (+ side) input AVREFM Input A/D converter reference potential (− side) input Make the potential of AVREFM pin the same as AVSS pin and VSS pin. VSS – < 64-pin products > Ground potential for port pins other than P20 to P23 and also for RESET, REGC pin. < 80-pin products > Ground potential for port pins other than P20 to P24 and also for RESET, REGC pin. AVSS – Ground potential for P20 to P24 and A/D converter Make the potential of AVSS pin the same as VSS pin. TOOLRxD Input UART reception pin for the external device connection used during flash memory programming TOOLTxD Output UART transmission pin for the external device connection used during flash memory programming TOOL0 I/O Data I/O for flash memory programmer / debugger Caution After reset release, the relationships between P40/TOOL0 and the operating mode are as follows. Table 2-2. Relationship Between P40/TOOL0 and Operation Mode After Reset Release P40/TOOL0 Operating Mode VDD Normal operation mode 0V Flash memory programming mode For details, see 3. 25. 4 Serial programming method. Remark Use bypass capacitors (about 0.1 μF) as noise and latch up countermeasures with relatively thick wires at the shortest distance to VDD to VSS line. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 31 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 2 Pin Functions in Analog Block About I/O circuit type, see 2. 4 Block Diagrams of Pins. 2. 2. 1 64-pin products Function Name I/O Circuit Type I/O Function AVDD3 – − Power supply pin for filter AGND2 – − GND pin for gain adjustment amplifier MPXIN60 ANALOG6 Input MPXIN50 ANALOG6 AMP3_OUT ANALOG10 Output DAC3_OUT/ VREFIN3 ANALOG2 I/O AMP2_OUT ANALOG11 Output – − ANALOG11 Output – − DAC2_OUT/ VREFIN2 ANALOG2 I/O DAC1_OUT/ VREFIN1 ANALOG2 MPXIN41 ANALOG6 MPXIN31 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN40 ANALOG6 Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 0 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN21 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN11 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 AGND1 AMP1_OUT AVDD1 Multiplexer 6 input pin 0 (Configurable amplifier Ch3 input pin 0 (+)) Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 (-)) Configurable amplifier Ch3 output pin D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin Configurable amplifier Ch2 output pin GND pin for configurable amplifiers Ch1 to Ch3. Configurable amplifier Ch1 output pin Power supply pin for configurable amplifiers Ch1 to Ch3 D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) – − ANALOG9 Output – − LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET ANALOG5 Input AGND3 BGR_OUT AVDD2 GND pin for variable output voltage regulator and reference voltage generator Reference voltage generator output pin Power supply pin for variable output voltage regulator and reference voltage generator External reset signal input for the functions of analog block DVDD – − SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG12 Output Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI CS ANALOG8 Input Chip select input pin for SPI – − DAC4_OUT/ VREFIN4 ANALOG13 I/O CLK_LPF ANALOG7 Input DGND AGND4 LPF_OUT – − ANALOG1 Output R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Power supply pin for SPI GND pin for SPI D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin Pin for inputting low-pass filter control clock GND pin for filter Low-pass filter output pin 32 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 2. 2 80-pin products Function Name I/O Circuit Type I/O AVDD3 – − SC_IN ANALOG6 Input CLK_SYNCH ANALOG7 Input SYNCH_OUT ANALOG11 Output Function Power supply pin for filter Input pin for filter signal processing Pin for inputting synchronous detector control clock Synchronous detector output pin – − GAINAMP_OUT ANALOG10 Output GAINAMP_IN ANALOG6 Input Input pin for gain adjustment amplifier MPXIN61 ANALOG6 Input Multiplexer 6 input pin 1 (Configurable amplifier Ch3 input pin 1 (+)) MPXIN51 ANALOG6 Multiplexer 5 input pin 1 (Configurable amplifier Ch3 input pin 1 (-)) MPXIN60 ANALOG6 Multiplexer 6 input pin 0 (Configurable amplifier Ch3 input pin 0 (+)) MPXIN50 ANALOG6 AMP3_OUT ANALOG10 Output DAC3_OUT/ VREFIN3 ANALOG2 I/O AMP2_OUT ANALOG11 Output – − ANALOG11 Output AGND2 AGND1 AMP1_OUT GND pin for gain adjustment amplifier Output pin for gain adjustment amplifier Multiplexer 5 input pin 0 (Configurable amplifier Ch3 input pin 0 (-)) Configurable amplifier Ch3 output pin D/A converter Ch3 output pin/configurable amplifier Ch3 reference voltage input pin Configurable amplifier Ch2 output pin GND pin for configurable amplifiers Ch1 to Ch3 Configurable amplifier Ch1 output pin – − DAC2_OUT/ VREFIN2 ANALOG2 I/O DAC1_OUT/ VREFIN1 ANALOG2 MPXIN41 ANALOG6 MPXIN31 ANALOG6 Multiplexer 3 input pin 1 (Configurable amplifier Ch2 input pin 1 (-)) MPXIN40 ANALOG6 Multiplexer 4 input pin 0 (Configurable amplifier Ch2 input pin 0 (+)) MPXIN30 ANALOG6 Multiplexer 3 input pin 0 (Configurable amplifier Ch2 input pin 0 (-)) MPXIN21 ANALOG6 Multiplexer 2 input pin 1 (Configurable amplifier Ch1 input pin 1 (+)) MPXIN11 ANALOG6 Multiplexer 1 input pin 1 (Configurable amplifier Ch1 input pin 1 (-)) MPXIN20 ANALOG6 Multiplexer 2 input pin 0 (Configurable amplifier Ch1 input pin 0 (+)) MPXIN10 ANALOG6 AVDD1 AGND3 BGR_OUT Power supply pin for configurable amplifiers Ch1 to Ch3 D/A converter Ch2 output pin/configurable amplifier Ch2 reference voltage input pin D/A converter Ch1 output pin/configurable amplifier Ch1 reference voltage input pin Input Multiplexer 4 input pin 1 (Configurable amplifier Ch2 input pin 1 (+)) Multiplexer 1 input pin 0 (Configurable amplifier Ch1 input pin 0 (-)) – − ANALOG9 Output GND pin for variable output voltage regulator and reference voltage generator Reference voltage generator output pin – − LDO_OUT ANALOG3 Output Variable output voltage regulator output pin TEMP_OUT ANALOG4 Output Temperature sensor output pin ARESET AVDD2 Power supply pin for variable output voltage regulator and reference voltage generator ANALOG5 Input DVDD – − SCLK ANALOG8 Input Serial clock input pin for SPI SDO ANALOG12 Output Serial data output pin for SPI SDI ANALOG8 Input Serial data input pin for SPI CS ANALOG8 Input – − DAC4_OUT/ VREFIN4 ANALOG13 I/O HPF_OUT ANALOG1 Output CLK_HPF ANALOG7 Input Pin for inputting high-pass filter control clock CLK_LPF ANALOG7 Input Pin for inputting low-pass filter control clock – − ANALOG1 Output DGND AGND4 LPF_OUT R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 External reset signal input for the functions of analog block Power supply pin for SPI Chip select input pin for SPI GND pin for SPI D/A converter Ch4 output pin/gain adjustment amplifier, filter reference voltage input pin High-pass filter output pin GND pin for filter Low-pass filter output pin 33 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 3 Connection of Unused Pins Table 2-3 shows the recommended connections of unused pins. Remark The provided pins differ depending on the products. See 1. 3 Pin Configuration (Top View), 2. 1 Pin Functions in Microcontroller Block, and 2. 2 Pin Functions in Analog Block. Table 2-3. Connections of Unused Pins (1/2) Pin Name I/O Recommended Connection of Unused Pins P00 I/O Input: P01 I/O Output: Leave open P02 I/O P03 I/O P04 I/O P10 I/O P11 I/O P12 I/O P13 I/O P14 I/O P15 I/O P20 I/O Input: P21 I/O Output: Leave open P22 I/O P23 I/O P24 I/O P40 I/O Input: Independently connect to VDD or VSS via a resistor. Independently connect to AVDD or AVSS via a resistor. Independently connect to VDD via a resistor, or leave open. Output: Leave open P41 I/O Input: P42 I/O Output: Leave open P50 I/O P51 I/O P70 I/O P71 I/O P72 I/O P73 I/O P121 Input P122 Input P130 Output P137 Input P140 I/O Independently connect to VDD or VSS via a resistor. Independently connect to VDD or VSS via a resistor. Leave open Independently connect to VDD or VSS via a resistor. Input: Independently connect to VDD or VSS via a resistor. Output: Leave open RESET Input R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Connect directly or via a resistor to VDD. 34 RL78/G1E CHAPTER 2 PIN FUNCTIONS (2/2) Pin Name Recommended Connection of Unused Pins SC_IN Input Connect to AGND4. CLK_SYNCH Input Leave open SYNCH_OUT Output GAINAMP_OUT Output GAINAMP_IN Input Connect to AGND2. MPXIN61 Input Connect to AGND1. MPXIN51 Input MPXIN60 Input MPXIN50 Input AMP3_OUT Output Leave open DAC3_OUT/ VREFIN3 I/O Leave open AMP2_OUT Output Leave open AMP1_OUT Output Connect to AGND1. DAC2_OUT/ VREFIN2 I/O DAC1_OUT/VREFIN1 Input MPXIN31 Input MPXIN40 Input MPXIN30 Input MPXIN21 Input MPXIN11 Input MPXIN20 Input Connect to AGND1. Input TEMP_OUT Output SCLK Input SDO Output SDI Input CS Input DAC4_OUT/ VREFIN4 HPF_OUT Leave open I/O Output CLK_HPF Input CLK_LPF Input LPF_OUT Output LDO_OUT Output BGR_OUT Output − I.C ARESET Note Leave open I/O MPXIN41 MPXIN10 I/O Input − Note When the resource pin for ARESET is to be Hi-Z, connect ARESET to DGND via a resistor. For details of functions, see 2. 5. 31 ARESET. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 35 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 4 Block Diagrams of Pins Figures 2-1 to 2-12 show the block diagrams of the pins described in 2. 1. 1 Port functions. Figure 2-13 shows the I/O circuit type described in 2. 2 Pin Functions in Analog Block. Figure 2-1. Pin Block Diagram for Pin Type 1-1-1 Internal bus RD VDD WRPORT P-ch Output latch Pmn (Pmn) N-ch VSS Figure 2-2. Pin Block Diagram for Pin Type 2-1-1 RESET RESET Internal bus Figure 2-3. Pin Block Diagram for Pin Type 2-1-2 Alternate function RD Pmn Remark For alternate functions, see 2. 1. 1 Port functions. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 36 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-4. Pin Block Diagram for Pin Type 2-2-1 Clock generator CMC OSCSEL Internal bus RD Alternate function P122/X2/EXCLK/Alternate function CMC EXCLK, OSCSEL N-ch P-ch RD Alternate function P121/X1/Alternate function Remark For alternate functions, see 2. 1. 1 Port functions. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 37 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-5. Pin Block Diagram for Pin Type 4-3-1 WRADPC 0: Analog input 1: Digital I/O ADPC ADPC2 to ADPC0 RD Internal bus 1 0 WRPORT VDD Output latch (Pmn) P-ch Pmn WRPM N-ch PM register (PMmn) VSS P-ch A/D converter N-ch R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 38 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-6. Pin Block Diagram for Pin Type 7-1-1 VDD WRPU PU register (PUmn) P-ch Alternate function Internal bus RD 1 0 WRPORT VDD Output latch (Pmn) P-ch WRPM Pmn PM register (PMmn) N-ch VSS Alternate function (SAU) Alternate function (other than SAU) Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 39 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-7. Pin Block Diagram for Pin Type 7-1-2 VDD WRPU PU register (PUmn) P-ch Alternate function RD Internal bus 1 0 WRPORT VDD Output latch (Pmn) P-ch WRPM Pmn PM register (PMmn) N-ch VSS Alternate function (SAU) Alternate function (other than SAU) Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 40 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-8. Pin Block Diagram for Pin Type 7-3-1 VDD WRPU PU register (PUmn) P-ch WRPMC PMC register (PMCmn) Alternate function RD Internal bus 1 0 WRPORT VDD Output latch (Pmn) P-ch Pmn WRPM N-ch PM register (PMmn) VSS Alternate function (SAU) Alternate function (other than SAU) P-ch A/D converter N-ch Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 41 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-9. Pin Block Diagram for Pin Type 7-3-2 WRPU VDD PU register (PUmn) P-ch WRPMC PMC register (PMCmn) Alternate function RD Internal bus 1 0 WRPORT VDD Output latch (Pmn) P-ch Pmn WRPM WRPOM N-ch PM register (PMmn) VSS POM register (POMmn) Alternate function (SAU) Alternate function (other than SAU) P-ch A/D converter N-ch Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 42 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-10. Pin Block Diagram for Pin Type 8-1-1 VDD WRPU PU register (PUmn) P-ch WRPIM PIM register (PIMmn) Alternate function CMOS Internal bus RD 1 TTL 0 WRPORT VDD Output latch (Pmn) P-ch WRPM Pmn PM register (PMmn) N-ch VSS Alternate function (SAU) Alternate function (other than SAU) Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 43 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-11. Pin Block Diagram for Pin Type 8-1-2 VDD WRPU PU register (PUmn) P-ch WRPIM PIM register (PIMmn) Alternate function CMOS RD Internal bus 1 TTL 0 WRPORT VDD Output latch (Pmn) P-ch WRPM Pmn PM register (PMmn) N-ch WRPOM VSS POM register (POMmn) Alternate function (SAU) Alternate function (other than SAU) Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 44 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-12. Pin Block Diagram for Pin Type 8-3-2 WRPU VDD PU register (PUmn) P-ch WRPIM PIM register (PMCmn) WRPMC PMC register (PMCmn) Alternate function CMOS RD 1 Internal bus TTL 0 WRPORT VDD Output latch (Pmn) P-ch Pmn WRPM WRPOM N-ch PM register (PMmn) VSS POM register (POMmn) Alternate function (SAU) Alternate function (other than SAU) P-ch A/D converter N-ch Remarks 1. 2. For alternate functions, see 2. 1. 1 Port functions. SAU: Serial array unit R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 45 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-13. Pin I/O Circuit List (1/2) ANALOG1 ANALOG2 AVDD3 AVDD1 OUT IN/OUT AGND4 AGND1 AGND1 ANALOG3 ANALOG4 AVDD2 AVDD2 OUT OUT AGND3 AGND3 AGND3 AGND3 ANALOG5 ANALOG6 IN IN Schmitt-triggered input with hysteresis characteristics ANALOG7 ANALOG8 DVDD AVDD3 DVDD IN IN AGND4 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 AGND4 DGND 46 RL78/G1E CHAPTER 2 PIN FUNCTIONS Figure 2-13. Pin I/O Circuit List (2/2) ANALOG9 ANALOG10 AVDD2 AVDD1 OUT OUT AGND3 AGND1 AGND3 ANALOG11 ANALOG12 OUT OUT DGND ANALOG13 AVDD2 IN/OUT AGND3 AGND3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 47 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5 Instruction of Pin Functions Remark The pins mounted depend on the product. See 1. 3 Pin Configuration (Top View), 2. 1 Pin Functions in Microcontroller Block, and 2. 2 Pin Functions in Analog Block. 2. 5. 1 Port 0 (P00 to P04) (1) Port mode P00 to P04 function as an I/O port. P00 to P04 can be set to input or output port in 1-bit units using port mode register 0 (PM0). (2) Control mode P00 to P04 function as A/D converter analog input, serial interface data I/O, clock I/O, and key return input. (a) ANI16, ANI17 These are the analog input pins of A/D converter. (b) SI10 This is a serial data input pin of serial interface CSI10. (c) SO10 This is a serial data output pin of serial interface CSI10. (d) SCK10 This is a serial clock I/O pin of serial interface CSI10. (e) TxD1 This is a serial data output pin of serial interface UART1. (f) RxD1 This is a serial data input pin of serial interface UART1. (g) SDA10 This is a serial data I/O pin of serial interface IIC10. (h) SCL10 This is a serial clock output pin of serial interface IIC10. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 48 RL78/G1E (i) CHAPTER 2 PIN FUNCTIONS TI00 This is a pin for inputting an external count clock/capture trigger to 16-bit timer 00. (j) TO00 This is the timer output pin of 16-bit timer 00. (k) KR0 to KR4 These are the key interrupt input pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 49 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 2 Port 1 (P10 to P15) (1) Port mode P10 to P15 function as an I/O port. P10 to P15 can be set to input or output port in 1-bit units using port mode register 1 (PM1). (2) Control mode P10 to P15 function as A/D converter analog input, serial interface data I/O, clock I/O, and programming UART I/O. (a) ANI18, ANI20 to ANI24 These are the analog input pins of A/D converter. (b) TxD0, TxD2 These are the serial data output pins of serial interface UART0 and UART2. (c) RxD0, RxD2 These are the serial data input pins of serial interface UART0 and UART2. (d) SCK00, SCK20 These are the serial clock I/O pins of serial interface CSI00 and CSI20. (e) SI00, SI20 These are the serial data input pins of serial interface CSI00 and CSI20. (f) SO00, SO20 These are the serial data output pins of serial interface CSI00 and CSI20. (g) TOOLTxD This UART serial data output pin for an external device connection is used during flash memory programming. (h) TOOLRxD This UART serial data input pin for an external device connection is used during flash memory programming. (i) SDA00, SDA20 These are the serial data I/O pins of serial interface IIC00 and IIC20. (j) SCL00, SCL20 These are the serial clock output pins of serial interface IIC00 and IIC20. (k) KR0 to KR5 These are the key interrupt input pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 50 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 3 Port 2 (P20 to P24) (1) Port mode P20 to P24 function as an I/O port. P20 to P24 can be set to input or output port in 1-bit units using port mode register 2 (PM2). (2) Control mode P20 to P24 function as A/D converter analog input, and reference voltage input. (a) ANI0 to ANI4 These are the analog input pins of A/D converter. (b) AVREFP This is a pin that inputs the A/D converter reference potential (+ side). (c) AVREFM This is a pin that inputs the A/D converter reference potential (− side). (d) KR5 to KR7 These are the key interrupt input pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 51 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 4 Port 4 (P40 to P42) (1) Port mode P40 to P42 function as an I/O port. P40 to P42 can be set to input or output port in 1-bit units using port mode register 4 (PM4). (2) Control mode P40 to P42 function as A/D converter analog input, data I/O for a flash memory programmer/debugger, and timer I/O. (a) TI04, TI07 These are the pins for inputting an external count clock/capture trigger to 16-bit timers 04 and 07. (b) TO04, TO07 These are the timer output pins from 16-bit timers 04 and 07. (c) TOOL0 This is a data I/O pin for a flash memory programmer/debugger. Be sure to pull up this pin externally when on-chip debugging is enabled (pulling it down is prohibited). (d) ANI30 This is an analog input pin of A/D converter. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 52 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 5 Port 5 (P50, P51) (1) Port mode P50 and P51 function as an I/O port. P50 and P51 can be set to input or output port in 1-bit units using port mode register 5 (PM5). (2) Control mode P50 and P51 function as A/D converter analog input, and external interrupt request input. (a) ANI25, ANI26 These are the analog input pins of A/D converter. (b) INTP1, INTP2 These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 53 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 6 Port 7 (P70 to P73) (1) Port mode P70 to P73 function as an I/O port. P70 to P73 can be set to input or output port in 1-bit units using port mode register 7 (PM7). (2) Control mode P70 to P73 function as key interrupt input, A/D converter analog input, serial interface data I/O, and clock I/O. (a) ANI28 This is the analog input pin of A/D converter. (b) KR0 to KR2 These are the key interrupt input pins. (c) SI21 This is the serial data input pin of serial interface CSI21. (d) SO21 This is the serial data output pin of serial interface CSI21. (e) SCK21 This is the serial clock I/O pin of serial interface CSI21. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 54 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 7 Port 12 (P121, P122) (1) Port mode P121 and P122 function as an input port. (2) Control mode P121 and P122 function as connecting resonator for main system clock, and external clock input for main system clock. (a) X1, X2 These are the pins for connecting a resonator for main system clock. (c) EXCLK This is an external clock input pin for main system clock. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 55 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 8 Port 13 (P130, P137) (1) Port mode P130 functions as an output port. P137 functions as an input port. (2) Control mode P137 functions as external interrupt request input. (a) INTP0 This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 56 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 9 Port 14 (P140) (1) Port mode P140 functions as an I/O port. P140 can be set to input or output port in 1-bit units using port mode register 14 (PM14). (2) Control mode P140 functions as clock/buzzer output, and external interrupt request input. (a) INTP6 This is the external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified. (b) PCLBUZ0 This is the clock/buzzer output pin. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 57 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 10 AVDD, AVSS, VDD, VSS (a) AVDD This is the A/D converter reference voltage input pin and the positive power supply pin of P20 to P24, and A/D converter. (b) AVSS This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the VSS pin. (c) VDD This is the positive power supply pin. (d) VSS This is the ground potential pin. Remark Use bypass capacitors (about 0.1 μF) as noise and latch up countermeasures with relatively thick wires at the shortest distance to VDD to VSS line. 2. 5. 11 RESET This is the active-low system reset input pin for the functions of microcontroller block. When the external reset pin is not used, connect this pin directly or via a resistor to VDD. When the external reset pin is used, design the circuit based on VDD. For details of the functions, see 3. 5. 5 Clock generator operation, 3. 19 Reset Function, 3. 20 Power-OnReset Circuit. 2. 5. 12 REGC This is the pin for connecting regulator output stabilization capacitance for internal operation. Connect this pin to VSS via a capacitor (0.47 to 1 μF). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage. REGC VSS Caution Keep the wiring length as short as possible for the broken-line part in the above figure. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 58 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 13 AVDD3 This is the power supply pin for high-pass filter Note and low-pass filter. 2. 5. 14 SC_IN This is the input pin for filter signal processing. 2. 5. 15 CLK_SYNCH This is the pin for inputting synchronous detector control clock. 2. 5. 16 SYNCH_OUT This is the synchronous detector output pin. 2. 5. 17 AGND2 This is the ground pin for gain adjustment amplifier. 2. 5. 18 GAINAMP_OUT This is the output pin for gain adjustment amplifier. 2. 5. 19 GAINAMP_IN This is the input pin for gain adjustment amplifier. 2. 5. 20 MPXIN10, MPXIN11, MPXIN20, MPXIN21, MPXIN30, MPXIN31, MPXIN40, MPXIN41, MPXIN50, MPXIN51, MPXIN60, MPXIN61 These are the input pins for multiplexer. 2. 5. 21 AMP1_OUT, AMP2_OUT, AMP3_OUT These are the output pins for configurable amplifiers Ch1 to Ch3. 2. 5. 22 DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT These are the output pins for D/A converters Ch1 to Ch4. 2. 5. 23 VREFIN1, VREFIN2, VREFIN3, VREFIN4 These are the reference voltage input pins for configurable amplifiers Ch1 to Ch3, gain adjustment amplifier, low-pass filer, and high-pass filter Note . Note 80-pin products only R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 59 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 24 AGND1 This is the ground pin for configurable amplifiers Ch1 to Ch3. 2. 5. 25 AVDD1 This is the power supply pin for configurable amplifiers Ch1 to Ch3. 2. 5. 26 AGND3 This is the GND pin for variable output voltage regulator and reference voltage generator. 2. 5. 27 BGR_OUT This is the output pin for reference voltage generator. 2. 5. 28 AVDD2 This is the power supply pin for variable output voltage regulator and reference voltage generator. 2. 5. 29 LDO_OUT This is the output pin for variable output voltage regulator. 2. 5. 30 TEMP_OUT This is the output pin for temperature sensor. 2. 5. 31 ARESET This is the active-low system reset input pin for the function of analog block. After turning on DVDD, it is necessary to input the external reset signal to this pin before starting SPI communication. When controlling the external reset signal by the microcontroller block of this package, it is recommended to directly connect this pin to P130 which is to be a lowlevel output port on reset. If the resource pin of ARESET is to be Hi-Z at a short moment, this pin must be connected to DGND via a resistor. For details of the functions, see 4. 10 Analog Reset. 2. 5. 32 DVDD This is the power supply pin for SPI. 2. 5. 33 SCLK This is the serial clock input pin for SPI. 2. 5. 34 SDO This is the serial data output pin for SPI. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 60 RL78/G1E CHAPTER 2 PIN FUNCTIONS 2. 5. 35 SDI This is the serial data input pin for SPI. 2. 5. 36 CS This is the chip select input pin for SPI. 2. 5. 37 DGND This is the GND pin for SPI. 2. 5. 38 HPF_OUT This is the output pin for high-pass filter. 2. 5. 39 CLK_HPF This is the control clock input pin for high-pass filter. 2. 5. 40 CLK_LPF This is the control clock input pin for low-pass filter. 2. 5. 41 AGND4 This is the GND pin for low-pass filter and high-pass filter. 2. 5. 42 LPF_OUT This is the output pin for low-pass filter. 2. 5. 43 I.C The I.C (internally connected) pin has no function and is simply connected inside the chip. This pin must always be left open. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 61 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK CHAPTER 3 MICROCONTROLLER BLOCK 3. 1 Outline of This Chapter The 16-bit microcontroller block in the RL78/G1E corresponds to the RL78/G1A (64-pin products). For the details of each function in microcontroller block, see the RL78/G1A Hardware User’s Manual (R01UH0305E). Not all of the functions of the RL78/G1A are available to be used in the RL78/G1E package because not all pins of function are drawn out of the package. In this chapter, the differences in functions and registers between the RL78/G1A and the RL78/G1E are described. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 62 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 2 Comparison of Each Function with RL78/G1A (64-pin products) The differences of each function between RL78/G1E (64-pin products, 80-pin products) and RL78/G1A (64-pin products) are as follows. For details, see the section showed in column of Remarks in the tables below. (1/4) Item RL78/G1E RL78/G1A 64-pin products 80-pin products (64-pin products) Code flash memory (KB) 32 to 64 32 to 64 32 to 64 Data flash memory (KB) 4 4 4 2 to 4 2 to 4 2 to 4 RAM (KB) Memory space Processor registers I/O port 1 MB Remarks See the section 3. 3 about details. 1 MB Control registers; PC, PSW, SP Control registers; PC, PSW, SP General-purpose register; General-purpose register; (8-bit register × 8) × 4 banks (8-bit register × 8) × 4 banks Special function registers (SFRs) Special function registers (SFRs) Some differences. Extended special function registers Extended special function registers See the section 3. 3 (2nd SFRs) (2nd SFRs) about details. Total 24 30 56 Some differences. COMS I/O 20 26 46 See the section 3. 4 about details. COMS input 3 5 COMS output 1 1 N-ch open- – 4 drain I/O (6 V tolerance) Main High-speed X1 (crystal/ceramic) oscillation, X1 (crystal/ceramic) oscillation, external There are some system system clock external main system clock input main system clock input (EXCLK) differences between (EXCLK) 1 to 20 MHz: VDD = 2.7 to 3.6 V, RL78/G1E and 1 to 20 MHz: VDD = 2.7 to 5.5 V, 1 to 8 MHz: VDD = 1.8 to 2.7 V, RL78/G1A. 1 to 8 MHz: VDD = 1.8 to 2.7 V, 1 to 4 MHz: VDD = 1.6 to 1.8 V See the section 3. 5 clock 1 to 4 MHz: VDD = 1.6 to 1.8 V High-speed HS (High-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), on-chip oscillator HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V) Subsystem clock − about details. HS (High-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 3.6 V), HS (High-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 3.6 V), Subsystem clock is not available for RL78/G1E. LS (Low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (Low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 3.6 V) XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 63 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (2/4) Item RL78/G1E 64-pin products Low-speed on-chip RL78/G1A (64-pin products) 80-pin products 15 kHz (TYP.): VDD = 1.6 to 5.5 V Remarks 15 kHz (TYP.): VDD = 1.6 to 3.6 V oscillator Some differences. See the section 3. 5 Minimum instruction 0.03125 μs (High-speed on-chip 0.03125 μs (High-speed on-chip about details. execution time oscillator: fIH = 32 MHz operation) oscillator: fIH = 32 MHz operation) Subsystem clock is 0.05 μs (High-speed system clock: 0.05 μs (High-speed system clock: not available for fMX = 20 MHz operation) fMX = 20 MHz operation) RL78/G1E. − 30.5 μs (Subsystem clock: fSUB = 32.768 kHz operation) Timer 16-bit timer 8 channels 8 channels Some differences. See the section 3. 6 about details. Watchdog 1 channel 1 channel Timer See the section 3. 10 about details. − Real-time clock 1 channel (RTC) RTC is not provided in RL78/G1E. (See 3. 7) 12-bit Interval 1 channel 1 channel timer (IT) Timer output See the section 3. 8 about details. 3 channels (PWM outputs: 2 Note) 7 channels (PWM outputs: 6 Note) See the section 3. 6 about details. RTC output − 1 channel RTC is not provided • 1 Hz (subsystem clock: in RL78/G1E. fSUB = 32.768 kHz) Note (See 3. 7) The number of PWM outputs varies depending on the setting of channels in use. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 64 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (3/4) Item RL78/G1E RL78/G1A 64-pin products 80-pin products − 1 channel Clock output • 2.44 kHz, 4.88 kHz, / Buzzer output Remarks (64-pin products) 2 channels • 2.44 kHz, 4.88 kHz, There are some differences between 9.76 kHz, 1.25 MHz, 9.76 kHz, 1.25 MHz, RL78/G1E and 2.5 MHz, 5 MHz, 2.5 MHz, 5 MHz, RL78/G1A. 10 MHz 10 MHz (Main system See the section 3. 9 (Main system clock: clock: fMAIN = 20 MHz about details. fMAIN = 20 MHz operation) operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation) 13 channels 8/12-bit resolution 17 channels 28 channels Some differences. A/D converter See the section 3. 11 (AVDD = 1.6 to 3.6 V) about details. Serial array unit • CSI: 1 channel/ • CSI: 1 channel/ • CSI: 2 channel/ 2 2 simplified I C: simplified I C: 1 channel/ UART: 1 channel Some differences. 2 simplified I C: UART: 1 channel 1 channel/ UART: 1 channel • CSI: 1 channel/ 2 simplified I C: 1 channel/ UART: 1 channel 2 channel/ UART: 1 channel • CSI: 2 channel/ 2 simplified I C: 2 channel/ UART: 1 channel (LIN-bus supported) • UART: 1 channel • CSI: 1 channel/ • CSI: 2 channel/ 2 I C bus 2 simplified I C: 1 channel/ UART: 1 channel 2 channel/ UART: 1 channel – about details. • CSI: 2 channel/ simplified I C: (LIN-bus supported) 2 See the section 3. 12 (LIN-bus supported) 1 channel Not provided in RL78/G1E. (See 3. 13) Multiplier and divider/ 5 functions 5 functions multiply accumulator (Multiplier, divider, multiply accumulator) (Multiplier, divider, See the section 3. 14 about details. multiply accumulator) DMA controller 2 channels 2 channels 25 27 See the section 3. 15 about details. Vectored interrupt sources Internal External Key interrupt 2 Note 4 (7) channels 5 Note 4 (8) channels 13 10 channels Some differences. See the section 3. 16 about details. Some differences. See the section 3. 17 about details. Note Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 65 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (4/4) Item RL78/G1E 64-pin products Standby function (64-pin products) 80-pin products HALT, STOP, SNOOZE mode See 3. 18. 7 reset source 7 reset source See 3. 19. Power-on-reset: 1.51 +/- 0.03V Power-on-reset: 1.51 +/- 0.03V Power-down-reset: 1.50 +/- 0.03V Power-down-reset: 1.50 +/- 0.03V Voltage detector Remarks HALT, STOP, SNOOZE mode Reset function Power-on-reset circuit RL78/G1A Detection level: 3 stages Detection level: 12 stages See 3. 20. Some differences. See the section 3. 21 about details. Safety functions - Flash memory CRC operation function - Flash memory CRC operation function Some differences. - CRC operation function - CRC operation function See the section 3. 22 - RAM parity error detection function - RAM parity error detection function about details. - RAM guard function - RAM guard function - SFR guard function - SFR guard function - Invalid memory access detection - Invalid memory access detection function function - Frequency detection function - Frequency detection function - A/D test function - A/D test function Regulator 1 channel 1 channel See 3. 23 Option byte Available Available Some differences. See the section 3. 24 about details. Flash memory Available Available Some differences. See the section 3. 25 about details. On-chip debug function Available Available See 3. 26 BCD correction circuit Available Available See 3. 27 • Data transfer (8/16 bits) • Data transfer (8/16 bits) See 3. 28 • Adder and subtractor/logical operation • Adder and subtractor / logical operation Instruction set (8/16 bits) (8/16 bits) • Multiplication (8 bits × 8 bits) • Multiplication (8 bits × 8 bits) • Rotate, barrel shift, • Rotate, barrel shift, and bit and bit manipulation (Set, reset, test, and Boolean operation), etc. Power supply voltage VDD = 1.6 to 5.5 V manipulation (Set, reset, test, and Boolean operation), etc. VDD = 1.6 to 3.6 V VDD range is different. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 66 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 3 CPU Architecture In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 3 CPU ARCHITECURE in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 3. 1 Memory space See 3. 1 Memory Space in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 3. 2 Processor registers 3. 3. 2. 1 Control registers See 3. 2. 1 Control registers in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 3. 2. 2 General-purpose registers See 3. 2. 2 General-purpose registers in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 3. 2. 3 ES and CS registers See 3. 2. 3 ES and CS registers in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 67 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 3. 2. 4 Special function registers (SFRs) The differences in special function registers (SFRs) between RL78/G1E (64-pin products, 80-pin products) and RL78/G1A (64-pin products) are shown in the tables below. (1) 64-pin products Table 3-1. List of Differences in Special Function Registers (SFRs) (1/4) Address RL78/G1E (64-pin products) SFRs Name RL78/G1A (64-pin products) Symbol SFRs Name Symbol FFF00H Port register 0 Note P0 Port register 0 P0 FFF01H Port register 1 Note P1 Port register 1 P1 FFF02H Port register 2 Note P2 Port register 2 P2 Port register 3 P3 Port register 4 Note P4 FFF03H FFF04H FFF05H FFF06H Port register 4 P4 Port register 5 P5 Port register 6 P6 FFF07H Port register 7 Note P7 Port register 7 P7 FFF0CH Port register 12 Note P12 Port register 12 P12 FFF0DH Same as RL78/G1A (64-pin products) P13 Port register 13 P13 Port register 14 P14 FFF0EH FFF0FH FFF10H Same as RL78/G1A (64-pin products) TXD0/ SDR00 Port register 15 Serial data register 00 SIO00 FFF11H FFF12H Same as RL78/G1A (64-pin products) - RXD0/ SDR00 SIO00 SDR01 Serial data register 01 SIO01 - RXD0/ SDR01 SIO01 Same as RL78/G1A (64-pin products) - TDR00 Timer data register 00 - TDR00 Same as RL78/G1A (64-pin products) TDR01L TDR01 Timer data register 01 TDR01L TDR01 Same as RL78/G1A (64-pin products) ADCR 12-bit A/D conversion result register TDR01H ADCR 8-bit A/D conversion result register ADCRH FFF13H FFF18H P15 TXD0/ FFF19H FFF1AH FFF1BH FFF1EH FFF1FH TDR01H Same as RL78/G1A (64-pin) ADCRH FFF20H Port mode register 0 Note PM0 Port mode register 0 PM0 FFF21H Port mode register 1 Note PM1 Port mode register 1 PM1 FFF22H Note PM2 Port mode register 2 PM2 Port mode register 3 PM3 Port mode register 4 PM4 Port mode register 2 FFF23H FFF24H Port mode register 4 Note PM4 FFF25H Port mode register 5 PM5 FFF26H Port mode register 6 Note PM6 Port mode register 6 PM6 FFF27H Port mode register 7 Note PM7 Port mode register 7 PM7 FFF2CH Port mode register 12 PM12 PM14 Port mode register 14 PM14 FFF2EH Port mode register 14 Note FFF2FH Port mode register 15 Note PM15 Port mode register 15 PM15 FFF30H Same as RL78/G1A (64-pin products) ADM0 A/D converter mode register 0 ADM0 FFF31H Analog input channel ADS Analog input channel ADS specification register FFF32H Note Note A/D converter mode register 1 specification register Note ADM1 A/D converter mode register 1 ADM1 The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 68 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-1. List of Differences in Special Function Registers (SFRs) (2/4) Address RL78/G1E (64-pin products) SFRs Name RL78/G1A (64-pin products) Symbol SFRs Name Symbol FFF34H Same as RL78/G1A (64-pin products) KRCTL Key return control register KRCTL FFF35H Same as RL78/G1A (64-pin products) KRF Key return flag register KRF Key return mode control register 1 KRM1 KRM0 Key return mode control register 0 KRM0 EGP0 External interrupt rising edge EGP0 FFF36H FFF37H Key return mode control register 0 FFF38H External interrupt rising edge enable register 0 FFF39H Note External interrupt falling edge enable register 0 Note enable register 0 EGN0 External interrupt falling edge Note EGN0 enable register 0 FFF3AH External interrupt rising edge EGP1 enable register 1 FFF3BH External interrupt falling edge EGN1 enable register 1 Same as RL78/G1A (64-pin products) TXD1/ SIO10 FFF44H SDR02 Serial data register 02 Same as RL78/G1A (64-pin products) RXD1/ SIO11 FFF46H - SDR03 Serial data register 03 Same as RL78/G1A (64-pin products) TXD2/ SIO20 FFF48H Same as RL78/G1A (64-pin products) RXD2/ SIO21 FFF4AH SDR10 Serial data register 10 TXD2/ SDR10 SIO20 - SDR11 Serial data register 11 RXD2/ SDR11 SIO21 - FFF4BH SDR03 - - FFF49H RXD1/ SIO11 - FFF47H SDR02 SIO10 - FFF45H TXD1/ - FFF50H IICA shift register 0 IICA0 FFF51H IICA status register 0 IICS0 FFF52H IICA flag register 0 IICF0 FFF64H Timer data register 02 TDR02 Same as RL78/G1A (64-pin products) TDR02 FFF65H Timer data register 03 FFF66H Same as RL78/G1A (64-pin products) TDR03L FFF67H TDR03H FFF68H Same as RL78/G1A (64-pin products) TDR04 Timer data register 04 TDR04 Same as RL78/G1A (64-pin products) TDR05 Timer data register 05 TDR05 Same as RL78/G1A (64-pin products) TDR06 Timer data register 06 TDR06 Same as RL78/G1A (64-pin products) TDR07 Timer data register 07 TDR07 TDR03 TDR03L TDR03 TDR03H FFF69H FFF6AH FFF6BH FFF6CH FFF6DH FFF6EH FFF6FH Note The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 69 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-1. List of Differences in Special Function Registers (SFRs) (3/4) Address RL78/G1E (64-pin products) SFRs Name RL78/G1A (64-pin products) Symbol SFRs Name Symbol Interval timer control register ITMC FFF92H Second count register SEC FFF93H Minute count register MIN FFF94H Hour count register HOUR FFF95H Week count register WEEK FFF96H Day count register DAY FFF97H Month count register MONTH FFF98H Year count register YEAR FFF99H Watch error correction register SUBCUD FFF9AH Alarm minute register ALARMWM FFF9BH Alarm hour register ALARMWH FFF9CH Alarm week register ALARMWW FFF9DH Real-time clock control register 0 RTCC0 FFF90H Same as RL78/G1A (64-pin products) ITMC FFF91H FFF9EH Real-time clock control register 1 RTCC1 Clock operation mode control register CMC CSC Clock operation status control register CSC OSTC Oscillation stabilization time OSTC FFFA0H Clock operation mode control register Note CMC FFFA1H Clock operation status control register Note Same as RL78/G1A (64-pin products) FFFA2H counter status register FFFA3H Same as RL78/G1A (64-pin products) FFFA4H System clock control register OSTS Oscillation stabilization time OSTS CKC System clock control register CKC Clock output select register 0 CKS0 select register Note FFFA5H FFFA6H Clock output select register 1 CKS1 Reset control flag register RESF FFFA8H Same as RL78/G1A (64-pin products) RESF FFFA9H Same as RL78/G1A (64-pin products) LVIM Voltage detection register LVIM FFFAAH Same as RL78/G1A (64-pin products) LVIS Voltage detection level register LVIS FFFABH Same as RL78/G1A (64-pin products) WDTE Watchdog timer enable register WDTE FFFACH Same as RL78/G1A (64-pin products) CRCIN CRC input register CRCIN Note The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 70 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-1. List of Differences in Special Function Registers (SFRs) (4/4) Address RL78/G1E (64-pin products) SFRs Name RL78/G1A (64-pin products) Symbol FFFB0H Same as RL78/G1A (64-pin products) DSA0 FFFB1H Same as RL78/G1A (64-pin products) DSA1 FFFB2H Same as RL78/G1A (64-pin products) DRA0L FFFB3H Same as RL78/G1A (64-pin products) DRA0H FFFB4H Same as RL78/G1A (64-pin products) DRA1L Same as RL78/G1A (64-pin products) DRA1H FFFB6H Same as RL78/G1A (64-pin products) DBC0L FFFB7H Same as RL78/G1A (64-pin products) DBC0H FFFB8H Same as RL78/G1A (64-pin products) DBC1L FFFB9H Same as RL78/G1A (64-pin products) FFFBAH DRA0 DRA1 SFRs Name Symbol DMA SFR address register 0 DSA0 DMA SFR address register 1 DSA1 DMA RAM address register 0L DRA0L DRA0 DMA RAM address register 0H DRA0H DMA RAM address register 1L DRA1L DRA1 DMA RAM address register 1H DRA1H DBC0 DMA byte count register 0L DBC0L DBC0 DMA byte count register 0H DBC0H DBC1 DMA byte count register 1L DBC1L DBC1 DBC1H DMA byte count register 1H DBC1H Same as RL78/G1A (64-pin products) DMC0 DMA mode control register 0 DMC0 FFFBBH Same as RL78/G1A (64-pin products) DMC1 DMA mode control register 1 DMC1 FFFBCH Same as RL78/G1A (64-pin products) DRC0 DMA operation control register 0 DRC0 Same as RL78/G1A (64-pin products) DRC1 DMA operation control register 1 DRC1 FFFB5H FFFBDH FFFD0H Interrupt mask flag register 2L Note IF2L FFFD1H Interrupt mask flag register 2H Note IF2H FFFD4H Interrupt mask flag register 0L Note MK2L FFFD5H Interrupt mask flag register 2H Note MK2H FFFD8H Priority specification flag register 02L Note FFFD9H Priority specification flag register 02H Note PR02H FFFDCH Priority specification flag register 12L Note PR12L FFFDDH Priority specification flag register 12H Note FFFE0H Interrupt mask flag register 0L Note IF0L FFFE1H Interrupt mask flag register 0H Note IF0H FFFE2H Interrupt mask flag register 1L Note IF1L FFFE3H Interrupt mask flag register 1H Note IF1H FFFE4H Interrupt mask flag register 0L Note MK0L FFFE5H Interrupt mask flag register 0H Note MK0H FFFE6H Interrupt mask flag register 1L Note MK1L FFFE7H Interrupt mask flag register 1H Note FFFE8H Priority specification flag register 00L Note PR00L FFFE9H Priority specification flag register 00H Note PR00H FFFEAH Priority specification flag register 01L Note PR01L FFFEBH Priority specification flag register 01H Note PR01H FFFECH Priority specification flag register 10L Note PR10L FFFEDH Priority specification flag register 10H Note PR10H FFFEEH Priority specification flag register 11L Note PR11L FFFEFH Priority specification flag register 11H Note FFFF0H Same as RL78/G1A (64-pin products) PR02L Note MK2L Interrupt mask flag register 2H MK2H PR02 Priority specification flag register 02L PR02L Priority specification flag register 02H PR02H PR12 Priority specification flag register 12L PR12L Priority specification flag register 12H PR12H IF0 IF1 Interrupt mask flag register 0L IF0L Interrupt mask flag register 0H IF0H Interrupt mask flag register 1L IF1L Interrupt mask flag register 1H IF1H MK0 Interrupt mask flag register 0L MK0L Interrupt mask flag register 0H MK0H MK1 Interrupt mask flag register 1L MK1L Interrupt mask flag register 1H MK1H PR00 Priority specification flag register 00L PR00L Priority specification flag register 00H PR00H PR01L Priority specification flag register 01H PR01H PR10 Priority specification flag register 10L PR10L Priority specification flag register 10H PR10H PR11 Priority specification flag register 11L PR11L PR11H MDAL Priority specification flag register 11H Multiplication/division data register A (L) PR11H MDAL Same as RL78/G1A (64-pin products) MDAH Multiplication/division data register A (H) MDAH Same as RL78/G1A (64-pin products) MDBH Multiplication/division data register B (L) MDBH Same as RL78/G1A (64-pin products) MDBL Multiplication/division data register B (H) MDBL Same as RL78/G1A (64-pin products) PMC Processor mode control register PMC FFFF7H FFFFEH Interrupt mask flag register 0L MK2 Priority specification flag register 01L FFFF5H FFFF6H IF2L IF2H MK1H FFFF3H FFFF4H Interrupt mask flag register 2L Interrupt mask flag register 2H PR12H FFFF1H FFFF2H IF2 PR01 IF2 MK2 PR02 PR12 IF0 IF1 MK0 MK1 PR00 PR01 PR10 PR11 The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 71 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (2) 80-pin products Table 3-2. List of Differences in Special Function Registers (SFRs) (1/4) Address RL78/G1E (80-pin products) SFRs Name RL78/G1A (64-pin products) Symbol SFRs Name Symbol FFF00H Port register 0 Note P0 Port register 0 P0 FFF01H Port register 1 Note P1 Port register 1 P1 FFF02H Note P2 Port register 2 FFF03H Port register 2 P2 Port register 3 P3 FFF04H Port register 4 Note P4 Port register 4 P4 FFF05H Same as RL78/G1A (64-pin products) P5 Port register 5 P5 Port register 6 P6 FFF06H Note FFF07H Port register 7 P7 Port register 7 P7 FFF0CH Port register 12 Note P12 Port register 12 P12 FFF0DH Same as RL78/G1A (64-pin products) P13 Port register 13 P13 P14 Port register 14 P14 FFF0EH Port register 14 Note FFF0FH FFF10H Same as RL78/G1A (64-pin products) TXD0/ SDR00 Port register 15 Serial data register 00 SIO00 FFF11H FFF12H Same as RL78/G1A (64-pin products) - RXD0/ SDR00 SIO00 SDR01 Serial data register 01 SIO01 - RXD0/ SDR01 SIO01 Same as RL78/G1A (64-pin products) - TDR00 Timer data register 00 - TDR00 Same as RL78/G1A (64-pin products) TDR01L TDR01 Timer data register 01 TDR01L TDR01 Same as RL78/G1A (64-pin products) ADCR 12-bit A/D conversion result register TDR01H ADCR 8-bit A/D conversion result register ADCRH FFF13H FFF18H P15 TXD0/ FFF19H FFF1AH FFF1BH FFF1EH FFF1FH TDR01H Same as RL78/G1A (64-pin) ADCRH FFF20H Port mode register 0 Note PM0 Port mode register 0 PM0 FFF21H Port mode register 1 Note PM1 Port mode register 1 PM1 FFF22H Note PM2 Port mode register 2 PM2 Port mode register 2 FFF23H Port mode register 3 PM3 FFF24H Port mode register 4 Note PM4 Port mode register 4 PM4 FFF25H Same as RL78/G1A (64-pin products) PM5 Port mode register 5 PM5 FFF26H Port mode register 6 Note PM6 Port mode register 6 PM6 FFF27H Note PM7 Port mode register 7 PM7 Port mode register 7 FFF2CH Port mode register 12 PM12 PM14 Port mode register 14 PM14 FFF2EH Port mode register 14 Note FFF2FH Port mode register 15 Note PM15 Port mode register 15 PM15 FFF30H Same as RL78/G1A (64-pin products) ADM0 A/D converter mode register 0 ADM0 FFF31H Analog input channel ADS Analog input channel ADS ADM1 A/D converter mode register 1 specification register FFF32H Note Note A/D converter mode register 1 specification register Note ADM1 The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 72 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-2. List of Differences in Special Function Registers (SFRs) (2/4) Address RL78/G1E (80-pin products) SFRs Name RL78/G1A (64-pin products) Symbol SFRs Name Symbol FFF34H Same as RL78/G1A (64-pin products) KRCTL Key return control register KRCTL FFF35H Same as RL78/G1A (64-pin products) KRF Key return flag register KRF Key return mode control register 1 KRM1 FFF36H FFF37H Same as RL78/G1A (64-pin products) KRM0 Key return mode control register 0 KRM0 FFF38H External interrupt rising edge External interrupt rising edge EGP0 enable register 0 FFF39H Note External interrupt falling edge enable register 0 EGP0 enable register 0 EGN0 External interrupt falling edge Note EGN0 enable register 0 FFF3AH External interrupt rising edge EGP1 enable register 1 FFF3BH External interrupt falling edge EGN1 enable register 1 Same as RL78/G1A (64-pin products) TXD1/ SIO10 FFF44H SDR02 Serial data register 02 Same as RL78/G1A (64-pin products) RXD1/ SIO11 FFF46H - SDR03 Serial data register 03 Same as RL78/G1A (64-pin products) TXD2/ SIO20 FFF48H Same as RL78/G1A (64-pin products) RXD2/ SIO21 FFF4AH SDR10 Serial data register 10 TXD2/ SDR10 SIO20 - SDR11 Serial data register 11 RXD2/ SDR11 SIO21 - FFF4BH SDR03 - - FFF49H RXD1/ SIO11 - FFF47H SDR02 SIO10 - FFF45H TXD1/ - FFF50H IICA shift register 0 IICA0 FFF51H IICA status register 0 IICS0 FFF52H IICA flag register 0 IICF0 FFF64H Timer data register 02 TDR02 Same as RL78/G1A (64-pin products) TDR02 FFF65H Timer data register 03 FFF66H Same as RL78/G1A (64-pin products) TDR03L FFF67H TDR03H FFF68H Same as RL78/G1A (64-pin products) TDR04 Timer data register 04 TDR04 Same as RL78/G1A (64-pin products) TDR05 Timer data register 05 TDR05 Same as RL78/G1A (64-pin products) TDR06 Timer data register 06 TDR06 Same as RL78/G1A (64-pin products) TDR07 Timer data register 07 TDR07 TDR03 TDR03L TDR03 TDR03H FFF69H FFF6AH FFF6BH FFF6CH FFF6DH FFF6EH FFF6FH Note The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 73 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-2. List of Differences in Special Function Registers (SFRs) (3/4) Address RL78/G1E (80-pin products) SFRs Name RL78/G1A (64-pin products) Symbol SFRs Name Symbol Interval timer control register ITMC FFF92H Second count register SEC FFF93H Minute count register MIN FFF94H Hour count register HOUR FFF95H Week count register WEEK FFF96H Day count register DAY FFF97H Month count register MONTH FFF98H Year count register YEAR FFF99H Watch error correction register SUBCUD FFF9AH Alarm minute register ALARMWM FFF9BH Alarm hour register ALARMWH FFF9CH Alarm week register ALARMWW FFF9DH Real-time clock control register 0 RTCC0 FFF90H Same as RL78/G1A (64-pin products) ITMC FFF91H FFF9EH Real-time clock control register 1 RTCC1 Clock operation mode control register CMC CSC Clock operation status control register CSC OSTC Oscillation stabilization time OSTC FFFA0H Clock operation mode control register Note CMC FFFA1H Clock operation status control register Note Same as RL78/G1A (64-pin products) FFFA2H counter status register OSTS Oscillation stabilization time CKC System clock control register CKC CKS0 Clock output select register 0 CKS0 Clock output select register 1 CKS1 Same as RL78/G1A (64-pin products) RESF Reset control flag register RESF Same as RL78/G1A (64-pin products) LVIM Voltage detection register LVIM FFFAAH Same as RL78/G1A (64-pin products) LVIS Voltage detection level register LVIS FFFABH Same as RL78/G1A (64-pin products) WDTE Watchdog timer enable register WDTE FFFACH Same as RL78/G1A (64-pin products) CRCIN CRC input register CRCIN FFFA3H Same as RL78/G1A (64-pin products) FFFA4H System clock control register FFFA5H Clock output select register 0 Note FFFA8H FFFA9H OSTS select register Note FFFA6H Note The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 74 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-2. List of Differences in Special Function Registers (SFRs) (4/4) Address RL78/G1E (80-pin products) SFRs Name RL78/G1A (64-pin products) Symbol FFFB0H Same as RL78/G1A (64-pin products) DSA0 FFFB1H Same as RL78/G1A (64-pin products) DSA1 FFFB2H Same as RL78/G1A (64-pin products) DRA0L FFFB3H Same as RL78/G1A (64-pin products) DRA0H FFFB4H Same as RL78/G1A (64-pin products) DRA1L Same as RL78/G1A (64-pin products) DRA1H FFFB6H Same as RL78/G1A (64-pin products) DBC0L FFFB7H Same as RL78/G1A (64-pin products) DBC0H FFFB8H Same as RL78/G1A (64-pin products) DBC1L FFFB9H Same as RL78/G1A (64-pin products) FFFBAH DRA0 DRA1 SFRs Name Symbol DMA SFR address register 0 DSA0 DMA SFR address register 1 DSA1 DMA RAM address register 0L DRA0L DRA0 DMA RAM address register 0H DRA0H DMA RAM address register 1L DRA1L DRA1 DMA RAM address register 1H DRA1H DBC0 DMA byte count register 0L DBC0L DBC0 DMA byte count register 0H DBC0H DBC1 DMA byte count register 1L DBC1L DBC1 DBC1H DMA byte count register 1H DBC1H Same as RL78/G1A (64-pin products) DMC0 DMA mode control register 0 DMC0 FFFBBH Same as RL78/G1A (64-pin products) DMC1 DMA mode control register 1 DMC1 FFFBCH Same as RL78/G1A (64-pin products) DRC0 DMA operation control register 0 DRC0 Same as RL78/G1A (64-pin products) DRC1 DMA operation control register 1 DRC1 FFFB5H FFFBDH FFFD0H Interrupt mask flag register 2L Note IF2L FFFD1H Interrupt mask flag register 2H Note IF2H FFFD4H Interrupt mask flag register 0L Note MK2L FFFD5H Interrupt mask flag register 2H Note MK2H FFFD8H Priority specification flag register 02L Note FFFD9H Priority specification flag register 02H Note PR02H FFFDCH Priority specification flag register 12L Note PR12L FFFDDH Priority specification flag register 12H Note FFFE0H Interrupt mask flag register 0L Note IF0L FFFE1H Interrupt mask flag register 0H Note IF0H FFFE2H Interrupt mask flag register 1L Note IF1L FFFE3H Interrupt mask flag register 1H Note IF1H FFFE4H Interrupt mask flag register 0L Note MK0L FFFE5H Interrupt mask flag register 0H Note MK0H FFFE6H Interrupt mask flag register 1L Note MK1L FFFE7H Interrupt mask flag register 1H Note FFFE8H Priority specification flag register 00L Note PR00L FFFE9H Priority specification flag register 00H Note PR00H FFFEAH Priority specification flag register 01L Note PR01L FFFEBH Priority specification flag register 01H Note PR01H FFFECH Priority specification flag register 10L Note PR10L FFFEDH Priority specification flag register 10H Note PR10H FFFEEH Priority specification flag register 11L Note PR11L FFFEFH Priority specification flag register 11H Note FFFF0H Same as RL78/G1A (64-pin products) PR02L Note MK2L Interrupt mask flag register 2H MK2H PR02 Priority specification flag register 02L PR02L Priority specification flag register 02H PR02H PR12 Priority specification flag register 12L PR12L Priority specification flag register 12H PR12H IF0 IF1 Interrupt mask flag register 0L IF0L Interrupt mask flag register 0H IF0H Interrupt mask flag register 1L IF1L Interrupt mask flag register 1H IF1H MK0 Interrupt mask flag register 0L MK0L Interrupt mask flag register 0H MK0H MK1 Interrupt mask flag register 1L MK1L Interrupt mask flag register 1H MK1H PR00 Priority specification flag register 00L PR00L Priority specification flag register 00H PR00H PR01L Priority specification flag register 01H PR01H PR10 Priority specification flag register 10L PR10L Priority specification flag register 10H PR10H PR11 Priority specification flag register 11L PR11L PR11H MDAL Priority specification flag register 11H Multiplication/division data register A (L) PR11H MDAL Same as RL78/G1A (64-pin products) MDAH Multiplication/division data register A (H) MDAH Same as RL78/G1A (64-pin products) MDBH Multiplication/division data register B (L) MDBH Same as RL78/G1A (64-pin products) MDBL Multiplication/division data register B (H) MDBL Same as RL78/G1A (64-pin products) PMC Processor mode control register PMC FFFF7H FFFFEH Interrupt mask flag register 0L MK2 Priority specification flag register 01L FFFF5H FFFF6H IF2L IF2H MK1H FFFF3H FFFF4H Interrupt mask flag register 2L Interrupt mask flag register 2H PR12H FFFF1H FFFF2H IF2 PR01 IF2 MK2 PR02 PR12 IF0 IF1 MK0 MK1 PR00 PR01 PR10 PR11 The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 75 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 3. 2. 5 Expanded special function registers (2nd SFRs) The differences in expanded special function registers (2nd SFRs) between RL78/G1E (64-pin products, 80-pin products) and RL78/G1A (64-pin products) are shown in the tables below. (1) 64-pin products Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (1/6) Address RL78/G1E (64-pin products) 2nd SFRs Name RL78/G1A (64-pin products) Symbol 2nd SFRs Name Symbol F0010H Same as RL78/G1A (64-pin products) ADM2 A/D converter mode register 2 ADM2 F0011H Same as RL78/G1A (64-pin products) ADUL Conversion result comparison ADUL upper limit setting register F0012H Same as RL78/G1A (64-pin products) ADLL Conversion result comparison ADLL lower limit setting register ADTES A/D test register ADTES Pull-up resistor option register 0 Note PU0 Pull-up resistor option register 0 PU0 Pull-up resistor option register 1 Note PU1 Pull-up resistor option register 1 PU1 Pull-up resistor option register 3 PU3 Pull-up resistor option register 4 PU4 Pull-up resistor option register 5 PU5 Pull-up resistor option register 7 PU7 F003CH Pull-up resistor option register 12 PU12 F003EH Pull-up resistor option register 14 PU14 F0013H Same as RL78/G1A (64-pin products) F0030H F0031H F0033H F0034H Pull-up resistor option register 4 Note PU4 F0035H F0037H Pull-up resistor option register 7 Note PU7 F0040H Port input mode register 0 Note PIM0 Port input mode register 0 PIM0 F0041H Port input mode register 1 Note PIM1 Port input mode register 1 PIM1 Port output mode register 0 Note POM0 Port output mode register 0 POM0 Port output mode register 1 Note POM1 F0050H F0051H Port output mode register 1 POM1 F0055H Port output mode register 5 POM5 F0057H Port output mode register 7 POM7 F0060H Same as RL78/G1A (64-pin products) F0061H Port mode control register 1 Note PMC0 Port mode control register 0 PMC0 PMC1 Port mode control register 1 PMC1 Port mode control register 3 PMC3 Port mode control register 4 PMC4 Port mode control register 5 PMC5 Port mode control register 7 PMC7 F0063H F0064H Same as RL78/G1A (64-pin products) PMC4 F0065H F0067H Same as RL78/G1A (64-pin products) PMC7 F006CH F0070H Same as RL78/G1A (64-pin products) F0071H Noise filter enable register 1 Note Note Port mode control register 12 PMC12 NFEN0 Noise filter enable register 0 NFEN0 NFEN1 Noise filter enable register 1 NFEN1 The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 76 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (2/6) Address RL78/G1E (64-pin products) RL78/G1A (64-pin products) 2nd SFRs Name Symbol F0073H Same as RL78/G1A (64-pin products) F0074H Timer input select register 0 F0076H A/D port configuration register F0077H Peripheral I/O redirection register F0078H Same as RL78/G1A (64-pin products) Note Note Note 2nd SFRs Name ISC Input switch control register Symbol ISC TIS0 Timer input select register 0 TIS0 ADPC A/D port configuration register ADPC PIOR Peripheral I/O redirection register PIOR IAWCTL Invalid memory access IAWCTL detection control register Same as RL78/G1A (64-pin products) GAIDIS Global analog input disable register GAIDIS Global digital input disable register GDIDIS F0090H Same as RL78/G1A (64-pin products) DFLCTL Data flash control register DFLCTL F00A0H Same as RL78/G1A (64-pin products) HIOTRM High-speed on-chip oscillator HIOTRM F007CH F007DH trimming register F00A8H Same as RL78/G1A (64-pin products) HOCODIV High-speed on-chip oscillator HOCODIV frequency select register F00E0H Same as RL78/G1A (64-pin products) MDCL Multiplication/division MDCL Same as RL78/G1A (64-pin products) MDCH Multiplication/division Same as RL78/G1A (64-pin products) MDUC Multiplication/division control register MDUC PER0 Peripheral enable register 0 PER0 OSMC Subsystem clock supply mode OSMC data register C (L) F00E2H MDCH data register C (H) F00E8H Note F00F0H Peripheral enable register 0 F00F3H Subsystem clock supply mode control register Note control register F00F5H Same as RL78/G1A (64-pin products) RPECTL RAM parity error control register RPECTL F00FEH Same as RL78/G1A (64-pin products) BCDADJ BCD adjust result register BCDADJ F0100H Same as RL78/G1A (64-pin products) SSR00L SSR00 Serial status register 00 SSR00L - F0101H F0102H Same as RL78/G1A (64-pin products) SSR01L SSR01 Same as RL78/G1A (64-pin products) SSR02L SSR02 F0104H Same as RL78/G1A (64-pin products) SSR03L SSR03 Same as RL78/G1A (64-pin products) SIR01L SIR01 Same as RL78/G1A (64-pin products) SIR02L SIR02 Same as RL78/G1A (64-pin products) SIR03L SIR03 SSR03L SSR02 - SSR03 - Serial flag clear trigger register 00 SIR00L SIR00 - Serial flag clear trigger register 01 SIR01L Serial flag clear trigger register 02 SIR02L Serial flag clear trigger register 03 SIR03L SIR01 - - SIR02 - - F010FH Note Serial status register 03 SSR01 - - F010DH F010EH SIR00L SIR00 Same as RL78/G1A (64-pin products) F010BH F010CH SSR02L - F0109H F010AH Serial status register 02 - F0107H F0108H SSR01L - F0105H F0106H Serial status register 01 - F0103H SSR00 - SIR03 - The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 77 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (3/6) Address RL78/G1E (64-pin products) RL78/G1A (64-pin products) 2nd SFRs Name F0110H Same as RL78/G1A (64-pin products) Symbol 2nd SFRs Name Symbol SMR00 Serial mode register 00 SMR00 SMR01 Serial mode register 01 SMR01 SMR02 Serial mode register 02 SMR02 SMR03 Serial mode register 03 SMR03 Serial communication operation SCR00 F0111H F0112H Serial mode register 01 Note F0113H F0114H Serial mode register 02 Note F0115H F0116H Serial mode register 03 Note F0117H F0118H Same as RL78/G1A (64-pin products) SCR00 setting register 00 F0119H F011AH Serial communication operation F011BH setting register 01 F011CH Serial communication operation SCR01 Serial communication operation Note SCR02 Serial communication operation Note F011DH setting register 02 F011EH Serial communication operation F011FH setting register 03 F0120H SCR01 setting register 01 SCR02 setting register 02 SCR03 Serial communication operation SCR03 Same as RL78/G1A (64-pin products) SE0L SE0 setting register 03 Serial channel enable status register 0 SE0L F0121H - F0122H Same as RL78/G1A (64-pin products) SS0L SS0 Serial channel start register 0 SS0L Same as RL78/G1A (64-pin products) ST0L ST0 Serial channel stop register 0 ST0L Same as RL78/G1A (64-pin products) SPS0L SPS0 Serial clock select register 0 SPS0L Note F0124H F0128H Same as RL78/G1A (64-pin products) SO0 Same as RL78/G1A (64-pin products) SOE0L Same as RL78/G1A (64-pin products) SOL0L Same as RL78/G1A (64-pin products) SSC0L ST0 - - F0127H SS0 - - F0125H F0126H - - F0123H SE0 SPS0 - Serial output register 0 SO0 SOE0 Serial output enable register 0 SOE0L SOL0 Serial output level register 0 SOL0L SSC0 Serial standby control register 0 SSC0L F0129H F012AH - F012BH F0134H F0138H - - F0135H Same as RL78/G1A (64-pin products) SSR10L SSR10 Serial status register 10 Same as RL78/G1A (64-pin products) SSR11L SSR11 Serial status register 11 - F0141H F0142H - F0143H Note SOL0 - - F0140H SOE0 SSC0 - SSR10L SSR10 - SSR11L SSR11 - The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 78 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (4/6) Address RL78/G1E (64-pin products) RL78/G1A (64-pin products) 2nd SFRs Name F0148H Same as RL78/G1A (64-pin products) SIR10L Same as RL78/G1A (64-pin products) SIR11L Symbol SIR10 Serial flag clear trigger register 10 SIR10L SIR11 Serial flag clear trigger register 11 SIR11L SIR10 - SIR11 - - F014BH F0150H 2nd SFRs Name - F0149H F014AH Symbol Serial mode register 10 Note SMR10 Serial mode register 10 SMR10 Serial mode register 11 Note SMR11 Serial mode register 11 SMR11 SCR10 F0151H F0152H F0153H F0158H Serial communication operation setting SCR10 Serial communication operation setting F0159H register 10 Note register 10 F015AH Serial communication operation setting SCR11 Serial communication operation setting F015BH register 11 Note F0160H Same as RL78/G1A (64-pin products) SE1L Same as RL78/G1A (64-pin products) - SS1L Same as RL78/G1A (64-pin products) - ST1L Same as RL78/G1A (64-pin products) SE1L SE1 SS1 Serial channel start register 1 - SS1L SS1 ST1 Serial channel stop register 1 - ST1L ST1 - SPS1L SPS1 Serial clock select register 1 - SPS1L SPS1 Same as RL78/G1A (64-pin products) - SO1 Serial output register 1 - SO1 Same as RL78/G1A (64-pin products) SOE1L SOE1 Serial output enable register 1 SOE1L SOE1 Same as RL78/G1A (64-pin products) - SOL1L SOL1 Serial output level register 1 - SOL1L SOL1 F0163H F0164H F0165H F0166H F0167H F0168H register 11 Serial channel enable status register 1 F0161H F0162H SCR11 SE1 F0169H F016AH F016BH F0174H - F0175H Note - The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 79 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (5/6) Address RL78/G1E (64-pin products) 2nd SFRs Name F0180H RL78/G1A (64-pin products) Same as RL78/G1A (64-pin products) Symbol TCR00 2nd SFRs Name Timer counter register 00 Symbol TCR00 Same as RL78/G1A (64-pin products) TCR01 Timer counter register 01 TCR01 Same as RL78/G1A (64-pin products) TCR02 Timer counter register 02 TCR02 Same as RL78/G1A (64-pin products) TCR03 Timer counter register 03 TCR03 Same as RL78/G1A (64-pin products) TCR04 Timer counter register 04 TCR04 Same as RL78/G1A (64-pin products) TCR05 Timer counter register 05 TCR05 Same as RL78/G1A (64-pin products) TCR06 Timer counter register 06 TCR06 Same as RL78/G1A (64-pin products) TCR07 Timer counter register 07 TCR07 Same as RL78/G1A (64-pin products) TMR00 Timer mode register 00 TMR00 Timer mode register 01 Note TMR01 Timer mode register 01 TMR01 Timer mode register 02 Note TMR02 Timer mode register 02 TMR02 Timer mode register 03 Note TMR03 Timer mode register 03 TMR03 Same as RL78/G1A (64-pin products) TMR04 Timer mode register 04 TMR04 Timer mode register 05 Note TMR05 Timer mode register 05 TMR05 Timer mode register 06 Note TMR06 Timer mode register 06 TMR06 Same as RL78/G1A (64-pin products) TMR07 Timer mode register 07 TMR07 Same as RL78/G1A (64-pin products) TSR00L TSR00 Timer status register 00 TSR00L TSR00 Same as RL78/G1A (64-pin products) - TSR01L TSR01 Timer status register 01 - TSR01L TSR01 Same as RL78/G1A (64-pin products) - TSR02L TSR02 Timer status register 02 - TSR02L TSR02 Same as RL78/G1A (64-pin products) - TSR03L TSR03 Timer status register 03 - TSR03L TSR03 Same as RL78/G1A (64-pin products) - TSR04L TSR04 Timer status register 04 - TSR04L TSR04 Same as RL78/G1A (64-pin products) - TSR05L TSR05 Timer status register 05 - TSR05L TSR05 Same as RL78/G1A (64-pin products) - TSR06L TSR06 Timer status register 06 - TSR06L TSR06 Same as RL78/G1A (64-pin products) - TSR07L TSR07 Timer status register 07 - TSR07L TSR07 F0181H F0182H F0183H F0184H F0185H F0186H F0187H F0188H F0189H F018AH F018BH F018CH F018DH F018EH F018FH F0190H F0191H F0192H F0193H F0194H F0195H F0196H F0197H F0198H F0199H F019AH F019BH F019CH F019DH F019EH F019FH F01A0H F01A1H F01A2H F01A3H F01A4H F01A5H F01A6H F01A7H F01A8H F01A9H F01AAH F01ABH F01ACH F01ADH F01AEH - F01AFH Note - The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 80 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-3. List of Differences in Expanded Special Function Registers (2nd SFRs) (6/6) Address RL78/G1E (64-pin products) 2nd SFRs Name F01B0H Same as RL78/G1A (64-pin products) TE0L Same as RL78/G1A (64-pin products) TS0L Same as RL78/G1A (64-pin products) TT0L Symbol TE0L TE0 – TS0 Timer channel start register 0 TS0L TS0 – TT0 Timer channel stop register 0 TT0L Timer clock select register 0 TPS0 – F01B5H F01B6H Timer channel enable status register 0 – F01B3H F01B4H TE0 2nd SFRs Name – F01B1H F01B2H RL78/G1A (64-pin products) Symbol TT0 – Same as RL78/G1A (64-pin products) TPS0 F01B7H F01B8H TO0L Timer output register 0 Note F01B9H F01BAH Timer output enable register 0 Note Timer output level register 0 Note TOE0L TOL0L Timer output mode register 0 Note TOM0L TOE0 Timer output enable register 0 TO0 TOE0L TOE0 – TOL0 Timer output level register 0 TOL0L TOL0 – TOM0 Timer output mode register 0 – F01BFH TO0L – – F01BDH F01BEH Timer output register 0 – F01BBH F01BCH TO0 – TOM0L TOM0 – F0230H IICA control register 00 IICCTL00 F0231H IICA control register 01 IICCTL01 F0232H IICA low-level width setting register 0 IICWL0 F0233H IICA high-level width setting register 0 IICWH0 F0234H Slave address register 0 SVA40 F02F0H Same as RL78/G1A (64-pin products) CRC0CTL Flash memory CRC control register CRC0CTL F02F2H Same as RL78/G1A (64-pin products) PGCRCL Flash memory CRC operation PGCRCL F02FAH Same as RL78/G1A (64-pin products) CRCD CRC data register result register Note CRCD The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 81 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (2) 80-pin products Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (1/6) Address RL78/G1E (80-pin products) 2nd SFRs Name RL78/G1A (64-pin products) Symbol 2nd SFRs Name Symbol Same as RL78/G1A (64-pin products) ADM2 A/D converter mode register 2 ADM2 Same as RL78/G1A (64-pin products) ADUL Conversion result comparison ADUL Same as RL78/G1A (64-pin products) ADLL Conversion result comparison F0013H Same as RL78/G1A (64-pin products) ADTES A/D test register F0030H Pull-up resistor option register 0 Note PU0 Pull-up resistor option register 0 PU0 F0031H Pull-up resistor option register 1 Note PU1 Pull-up resistor option register 1 PU1 Pull-up resistor option register 3 PU3 F0010H F0011H upper limit setting register F0012H ADLL lower limit setting register F0033H Note ADTES F0034H Pull-up resistor option register 4 PU4 Pull-up resistor option register 4 PU4 F0035H Same as RL78/G1A (64-pin products) PU5 Pull-up resistor option register 5 PU5 F0037H Pull-up resistor option register 7 Note PU7 Pull-up resistor option register 7 PU7 Pull-up resistor option register 12 PU12 PU14 Pull-up resistor option register 14 PU14 F003CH Note F003EH Pull-up resistor option register 14 F0040H Same as RL78/G1A (64-pin products) PIM0 Port input mode register 0 PIM0 F0041H Port input mode register 1 Note PIM1 Port input mode register 1 PIM1 F0050H Same as RL78/G1A (64-pin products) POM0 Port output mode register 0 POM0 F0051H Same as RL78/G1A (64-pin products) POM1 Port output mode register 1 POM1 F0055H Same as RL78/G1A (64-pin products) POM5 Port output mode register 5 POM5 Port output mode register 7 POM7 F0060H Same as RL78/G1A (64-pin products) PMC0 Port mode control register 0 PMC0 F0061H Same as RL78/G1A (64-pin products) PMC1 Port mode control register 1 PMC1 Port mode control register 3 PMC3 F0064H Same as RL78/G1A (64-pin products) PMC4 Port mode control register 4 PMC4 F0065H Same as RL78/G1A (64-pin products) PMC5 Port mode control register 5 PMC5 F0067H Same as RL78/G1A (64-pin products) PMC7 Port mode control register 7 PMC7 Port mode control register 12 PMC12 F0070H Same as RL78/G1A (64-pin products) NFEN0 Noise filter enable register 0 NFEN0 F0071H Noise filter enable register 1 NFEN1 Noise filter enable register 1 NFEN1 F0057H F0063H F006CH Note Note The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 82 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (2/6) Address RL78/G1E (80-pin products) RL78/G1A (64-pin products) 2nd SFRs Name Symbol F0073H Same as RL78/G1A (64-pin products) F0074H Timer input select register 0 F0076H A/D port configuration register F0077H Peripheral I/O redirection register F0078H Same as RL78/G1A (64-pin products) Note Note Note 2nd SFRs Name Symbol ISC Input switch control register ISC TIS0 Timer input select register 0 TIS0 ADPC A/D port configuration register ADPC PIOR Peripheral I/O redirection register PIOR IAWCTL Invalid memory access IAWCTL detection control register Same as RL78/G1A (64-pin products) GAIDIS Global analog input disable register GAIDIS Global digital input disable register GDIDIS F0090H Same as RL78/G1A (64-pin products) DFLCTL Data flash control register DFLCTL F00A0H Same as RL78/G1A (64-pin products) HIOTRM High-speed on-chip oscillator HIOTRM F007CH F007DH trimming register F00A8H Same as RL78/G1A (64-pin products) HOCODIV High-speed on-chip oscillator HOCODIV frequency select register F00E0H Same as RL78/G1A (64-pin products) MDCL Multiplication/division Same as RL78/G1A (64-pin products) MDCH Multiplication/division Same as RL78/G1A (64-pin products) MDUC Multiplication/division control register MDCL data register C (L) F00E2H MDCH data register C (H) F00E8H F00F3H Peripheral enable register 0 Subsystem clock supply mode F00F5H F00F0H Note OSMC Peripheral enable register 0 Subsystem clock supply mode Same as RL78/G1A (64-pin products) RPECTL RAM parity error control register RPECTL F00FEH Same as RL78/G1A (64-pin products) BCDADJ BCD adjust result register BCDADJ F0100H Same as RL78/G1A (64-pin products) SSR00L SSR00 Serial status register 00 SSR00L Same as RL78/G1A (64-pin products) SSR01L SSR01 Serial status register 01 SSR01L Same as RL78/G1A (64-pin products) SSR02L SSR02 Serial status register 02 SSR02L control registerr Note F0106H Same as RL78/G1A (64-pin products) Same as RL78/G1A (64-pin products) Same as RL78/G1A (64-pin products) SIR01L SIR01 Same as RL78/G1A (64-pin products) SIR02L SIR02 F010EH Same as RL78/G1A (64-pin products) SIR03L SIR03 SSR02 SSR03L SSR03 SIR00L SIR00 - Serial flag clear trigger register 01 SIR01L Serial flag clear trigger register 02 SIR02L SIR01 - SIR02 - Serial flag clear trigger register 03 - F010FH Note Serial flag clear trigger register 00 - F010DH SSR01 - - F010BH F010CH Serial status register 03 - F0109H F010AH SIR00L SIR00 SSR00 - - F0107H F0108H SSR03L SSR03 OSMC - - F0105H PER0 - - F0103H F0104H control register - F0101H F0102H PER0 MDUC SIR03L SIR03 - The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 83 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (3/6) Address RL78/G1E (80-pin products) RL78/G1A (64-pin products) 2nd SFRs Name F0110H Same as RL78/G1A (64-pin products) Symbol 2nd SFRs Name Symbol SMR00 Serial mode register 00 SMR00 SMR01 Serial mode register 01 SMR01 SMR02 Serial mode register 02 SMR02 SMR03 Serial mode register 03 SMR03 Serial communication operation SCR00 F0111H F0112H Serial mode register 01 Note F0113H F0114H Same as RL78/G1A (64-pin products) F0115H F0116H Serial mode register 03 Note F0117H F0118H Same as RL78/G1A (64-pin products) SCR00 setting register 00 F0119H F011AH Serial communication operation F011BH setting register 01 F011CH Same as RL78/G1A (64-pin products) SCR02 F011EH Serial communication operation SCR03 Serial communication operation SCR03 F011FH setting register 03 F0120H Same as RL78/G1A (64-pin products) SE0L SE0 setting register 03 Serial channel enable status register 0 SE0L F0121H - F0122H Same as RL78/G1A (64-pin products) SS0L SS0 Serial channel start register 0 SS0L Same as RL78/G1A (64-pin products) ST0L ST0 Serial channel stop register 0 ST0L Same as RL78/G1A (64-pin products) SPS0L SPS0 Serial clock select register 0 SPS0L SCR01 Serial communication operation Note Serial communication operation Note F0128H Same as RL78/G1A (64-pin products) SO0 Same as RL78/G1A (64-pin products) SOE0L Same as RL78/G1A (64-pin products) SOL0L Same as RL78/G1A (64-pin products) SSC0L ST0 - - F0127H SS0 - - F0125H SE0 - - F0123H F0126H SCR02 setting register 02 F011DH F0124H SCR01 setting register 01 SPS0 - Serial output register 0 SO0 SOE0 Serial output enable register 0 SOE0L SOE0 SOL0 Serial output level register 0 SOL0L SSC0 Serial standby control register 0 SSC0L F0129H F012AH - F012BH F0134H - F0135H F0138H - - - F0140H Same as RL78/G1A (64-pin products) SSR10L SSR10 Serial status register 10 Same as RL78/G1A (64-pin products) SSR11L SSR11 Serial status register 11 - F0141H F0142H - F0143H Note SOL0 SSC0 - SSR10L SSR10 - SSR11L SSR11 - The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 84 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (4/6) Address RL78/G1E (80-pin products) RL78/G1A (64-pin products) 2nd SFRs Name F0148H Same as RL78/G1A (64-pin products) SIR10L Same as RL78/G1A (64-pin products) SIR11L Symbol SIR10 Serial flag clear trigger register 10 SIR10L SIR11 Serial flag clear trigger register 11 SIR11L SIR10 - SIR11 - - F014BH F0150H 2nd SFRs Name - F0149H F014AH Symbol Same as RL78/G1A (64-pin products) SMR10 Serial mode register 10 SMR10 Serial mode register 11 Note SMR11 Serial mode register 11 SMR11 Same as RL78/G1A (64-pin products) SCR10 Serial communication operation setting SCR10 F0151H F0152H F0153H F0158H F0159H register 10 F015AH Serial communication operation setting SCR11 F015BH register 11 Note F0160H Same as RL78/G1A (64-pin products) SE1L Same as RL78/G1A (64-pin products) - SS1L Same as RL78/G1A (64-pin products) - ST1L Same as RL78/G1A (64-pin products) SE1 SS1 Serial channel start register 1 - SS1L SS1 ST1 Serial channel stop register 1 - ST1L ST1 - SPS1L SPS1 Serial clock select register 1 - SPS1L SPS1 Same as RL78/G1A (64-pin products) - SO1 Serial output register 1 - SO1 Same as RL78/G1A (64-pin products) SOE1L SOE1 Serial output enable register 1 SOE1L SOE1 Same as RL78/G1A (64-pin products) - SOL1L SOL1 Serial output level register 1 - SOL1L F0165H F0166H F0167H F0168H register 11 SE1L F0163H F0164H SCR11 Serial channel enable status register 1 F0161H F0162H Serial communication operation setting SE1 F0169H F016AH F016BH F0174H - F0175H Note SOL1 - The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 85 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (5/6) Address RL78/G1E (80-pin products) 2nd SFRs Name F0180H RL78/G1A (64-pin products) Same as RL78/G1A (64-pin products) Symbol TCR00 2nd SFRs Name Timer counter register 00 Symbol TCR00 Same as RL78/G1A (64-pin products) TCR01 Timer counter register 01 TCR01 Same as RL78/G1A (64-pin products) TCR02 Timer counter register 02 TCR02 Same as RL78/G1A (64-pin products) TCR03 Timer counter register 03 TCR03 Same as RL78/G1A (64-pin products) TCR04 Timer counter register 04 TCR04 Same as RL78/G1A (64-pin products) TCR05 Timer counter register 05 TCR05 Same as RL78/G1A (64-pin products) TCR06 Timer counter register 06 TCR06 Same as RL78/G1A (64-pin products) TCR07 Timer counter register 07 TCR07 Same as RL78/G1A (64-pin products) TMR00 Timer mode register 00 TMR00 Timer mode register 01 Note TMR01 Timer mode register 01 TMR01 Timer mode register 02 Note TMR02 Timer mode register 02 TMR02 Timer mode register 03 Note TMR03 Timer mode register 03 TMR03 Same as RL78/G1A (64-pin products) TMR04 Timer mode register 04 TMR04 Timer mode register 05 Note TMR05 Timer mode register 05 TMR05 Timer mode register 06 Note TMR06 Timer mode register 06 TMR06 Same as RL78/G1A (64-pin products) TMR07 Timer mode register 07 TMR07 Same as RL78/G1A (64-pin products) TSR00L TSR00 Timer status register 00 TSR00L TSR00 Same as RL78/G1A (64-pin products) - TSR01L TSR01 Timer status register 01 - TSR01L TSR01 Same as RL78/G1A (64-pin products) - TSR02L TSR02 Timer status register 02 - TSR02L TSR02 Same as RL78/G1A (64-pin products) - TSR03L TSR03 Timer status register 03 - TSR03L TSR03 Same as RL78/G1A (64-pin products) - TSR04L TSR04 Timer status register 04 - TSR04L TSR04 Same as RL78/G1A (64-pin products) - TSR05L TSR05 Timer status register 05 - TSR05L TSR05 Same as RL78/G1A (64-pin products) - TSR06L TSR06 Timer status register 06 - TSR06L TSR06 Same as RL78/G1A (64-pin products) - TSR07L TSR07 Timer status register 07 - TSR07L TSR07 F0181H F0182H F0183H F0184H F0185H F0186H F0187H F0188H F0189H F018AH F018BH F018CH F018DH F018EH F018FH F0190H F0191H F0192H F0193H F0194H F0195H F0196H F0197H F0198H F0199H F019AH F019BH F019CH F019DH F019EH F019FH F01A0H F01A1H F01A2H F01A3H F01A4H F01A5H F01A6H F01A7H F01A8H F01A9H F01AAH F01ABH F01ACH F01ADH F01AEH - F01AFH Note - The bit setting is different from that of RL78/G1A (64-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 86 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-4. List of Differences in Expanded Special Function Registers (2nd SFRs) (6/6) Address RL78/G1E (80-pin products) 2nd SFRs Name F01B0H Same as RL78/G1A (64-pin products) TE0L Same as RL78/G1A (64-pin products) TS0L Same as RL78/G1A (64-pin products) TT0L Symbol TE0L TE0 – TS0 Timer channel start register 0 TS0L TS0 – TT0 Timer channel stop register 0 TT0L Timer clock select register 0 TPS0 – F01B5H F01B6H Timer channel enable status register 0 – F01B3H F01B4H TE0 2nd SFRs Name – F01B1H F01B2H RL78/G1A (64-pin products) Symbol TT0 – Same as RL78/G1A (64-pin products) TPS0 F01B7H F01B8H TO0L Timer output register 0 Note F01B9H F01BAH Timer output enable register 0 Note Timer output level register 0 Note TOE0L TOL0L Timer output mode register 0 Note TOM0L TOE0 Timer output enable register 0 TO0 TOE0L TOE0 – TOL0 Timer output level register 0 TOL0L TOL0 – TOM0 Timer output mode register 0 – F01BFH TO0L – – F01BDH F01BEH Timer output register 0 – F01BBH F01BCH TO0 – TOM0L TOM0 – F0230H IICA control register 00 IICCTL00 F0231H IICA control register 01 IICCTL01 F0232H IICA low-level width setting register 0 IICWL0 F0233H IICA high-level width setting register 0 IICWH0 F0234H Slave address register 0 SVA40 F02F0H Same as RL78/G1A (64-pin products) CRC0CTL Flash memory CRC control register CRC0CTL F02F2H Same as RL78/G1A (64-pin products) PGCRCL Flash memory CRC operation PGCRCL F02FAH Same as RL78/G1A (64-pin products) CRCD CRC data register result register Note CRCD The bit setting is different from that of RL78/G1A (64-pin products). Caution Do not write data to the registers which is in the row with painted gray. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 87 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 3. 3 Instruction address addressing See 3. 3 Instruction Address Addressing in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 3. 4 Addressing for processing data addresses See 3. 4 Addressing for Processing Data Addresses in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 88 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4 Port Functions In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 4 PORT FUNCTIONS in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 4. 1 Port functions The RL78/G1E microcontrollers (64-pin products, 80-pin products) are provided with digital I/O ports, which enable variety of control operations. In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see CHAPTER 2 PIN FUNCTIONS. 3. 4. 2 Port configuration Ports include the following hardware. Table 3-5. Port Configuration Item Control registers Configuration Port mode registers (PM0 to PM2, PM4 to PM7, PM14, PM15) Port registers (P0 to P2, P4, P5, P7, P12 to P14) Pull-up resistor option registers (PU0, PU1, PU4, PU5, PU7, PU14) Port input mode registers (PIM0, PIM1) Port output mode registers (POM0, POM1, POM5) Port mode control registers (PMC0, PMC1, PMC3, PMC5, PMC7) A/D port configuration register (ADPC) Peripheral I/O redirection register (PIOR) Global analog input disable register (GAIDIS) Port • 64-pin products Total: 24 (CMOS I/O: 20, CMOS input: 3, CMOS output: 1) • 80-pin products Total: 30 (CMOS I/O: 26, CMOS input: 3, CMOS output: 1) Pull-up resistor • 64-pin products Total: 16 • 80-pin products Total: 21 For details of each port, also see 4. 2 Port Configuration in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 89 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 2. 1 Port 0 Port 0 is an I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1-bit units using port mode register 0 (PM0). When the P00 to P04 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 0 (PU0). Input to the P00, P01, P03 and P04 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 0 (PIM0). Output from the P02 to P04 pins can be specified as normal CMOS output or N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 0 (POM0). The P02 and P03 pins can be specified as digital input/output or analog input in 1-bit units, using port mode control register 0 (PMC0). This port can be also used for timer I/O, A/D converter analog input, serial interface data I/O, clock I/O, and key interrupt input. When reset signal is generated, the following configuration will be set. · P00, P01 and P04 pins ··· Input mode · P02 and P03 pins ··· Analog input 3. 4. 2. 2 Port 1 Port 1 is an I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P15 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 1 (PU1). Input to the P10, P11, P14 to P15 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 1 (PIM1). Output from the P10 to P15 pins can be specified as normal CMOS output or N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 1 (POM1). The P10 to P15 pins can be specified as digital input/output or analog input in 1-bit units, using port mode control register 1 (PMC1). This port can be also used for A/D converter analog input, serial interface data I/O, programming UART I/O, and key return input. When reset signal is generated, the P10 to P15 pins will be set to analog input. 3. 4. 2. 3 Port 2 Port 2 is an I/O port with an output latch. Port 2 can be set to the input mode or output mode in 1-bit units using port mode register 2 (PM2). This port can be also used for A/D converter analog input and reference voltage input, and key return input pin. Setting digital or analog to each pin can be done in A/D port configuration register (ADPC). When reset signal is generated, the P20/ANI0 to P24/ANI4 pins will be set to analog input. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 90 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 2. 4 Port 3 Port 3 is not available for RL78/G1E. 3. 4. 2. 5 Port 4 Port 4 is an I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). When the P40 to P42 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 4 (PU4). The P41 pin can be specified as digital input/output or analog input, using port mode control register 4 (PMC4). This port can be also used for A/D converter analog input, data I/O for a flash memory programmer/debugger, and timer I/O. Be sure to connect an external pull-up resistor to the P40 pins when on-chip debugging is enabled to P40 (by using an option byte). When reset signal is generated, the P40 to P42 pins will be set to input mode. 3. 4. 2. 6 Port 5 Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units using port mode register 5 (PM5). When the P50 and P51 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5). Output from the P50 pins can be specified as normal CMOS output or N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 5 (POM5). The P50 and P51 pins can be specified as digital input/output or analog input in 1-bit units, using port mode control register 5 (PMC5). This port can be also used for A/D converter analog input, and external interrupt request input. When reset signal is generated, the P50 and P51 pins will be set to input mode. 3. 4. 2. 7 Port 6 Port 6 is not available for RL78/G1E. 3. 4. 2. 8 Port 7 Port 7 is an I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When the P70 to P73 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 7 (PU7). The P70 pin can be specified as digital input/output or analog input, using port mode control register 7 (PMC7). This port can be also used for A/D converter analog input, serial interface data I/O, and clock I/O. When reset signal is generated, the P70 to P73 pins will be set to input mode. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 91 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 2. 9 Port 12 P121 and P122 pins are specified as an input-only port. This port can be also used for the pin connecting resonator for main system clock, and external clock input for main system clock. When reset signal is generated, the P121 and P122 pins will be set to input mode. 3. 4. 2. 10 Port 13 P130 pin is specified as a 1-bit output-only port with an output latch. P137 pin is specified as a 1-bit input-only port and can be also used for external interrupt request input. 3. 4. 2. 11 Port 14 Port 14 is an I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 pin is used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 14 (PU14). This port can be also used for clock/buzzer output, and external interrupt request input. When reset signal is generated, the P140 pin will be set to input mode. 3. 4. 2. 12 Port 15 Port 15 is not available for RL78/G1E. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 92 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3 Registers controlling port function The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 4. 3 Registers Controlling Port Function in RL78/G1A Hardware User’s Manual (R01UH0305E). PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product (1/2) Bit Name Port PMxx Pxx 2. (80-pin (64-pin Register Register products) products) PIM00 − − √ √ √ 1 PM01 P01 PU01 PIM01 − − √ √ √ Register Register Register 2 PM02 P02 PU02 − POM02 PMC02 √ √ √ 3 PM03 P03 PU03 PIM03 POM03 PMC03 √ √ √ − * √ √ − * * √ Note 2 P04 PU04 Note 2 PIM04 PU05 Note1 − PU06 Note 1 Note2 Note 2 POM04 P05 Note 1 6 PM06 P06 Note 1 * * √ 0 PM10 P10 PU10 PIM10 POM10 PMC10 √ √ √ 1 PM11 P11 PU11 PIM11 POM11 PMC11 √ √ √ 2 PM12 P12 PU12 − POM12 PMC12 √ √ √ 3 PM13 P13 PU13 − POM13 PMC13 √ √ √ 4 PM14 P14 PU14 PIM14 POM14 PMC14 √ √ √ 5 PM15 P15 POM15 PMC15 − √ √ PU15 Note 1 PU16 − − − PIM15 Note 1 Note 1 * * √ − − √ √ √ − − − √ √ √ − − − √ √ √ √ √ P16 0 PM20 P20 PIM16 − − 1 PM21 P21 − 2 PM22 P22 − 3 PM23 P23 − − − 6 PM16 − − − − √ P24 Note 2 − − − − * √ √ P25 Note 1 − − − − * * √ 6 PM26 P26 Note 1 − − − − * * √ 7 PM27 P27 Note 1 − * * √ 5 PM25 Notes 1. (64-pin PU00 4 PM24 PMCxx P00 5 PM05 Port 2 POMxx 0 PM00 4 PM04 Port 1 PIMxx RL78/G1A products) Register Port 0 PUxx RL78/G1E − − − Not supported by RL78/G1E(Both 64-pin products and 80-pin products) Not supported by RL78/G1E(64-pin products) Remark √: Mounted *: Mounted but there are some differences between RL78/G1E and RL78/G1A −: Not mounted R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 93 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product (2/2) Bit Name Port PMxx Pxx Port 4 Port 5 Port 6 Port 14 Register products) products) − PMC30 − − √ 1 PM31 P31 PU31 − − PMC31 − − √ 0 PM40 P40 PU40 − − √ √ √ 1 PM41 P41 PU41 − − √ √ √ 2 PM42 P42 PU42 − − − √ √ √ 3 PM43 P43 PU43 − − − * * √ 0 PM50 P50 PU50 − PMC50 − √ √ 1 PM51 P51 PU51 PMC51 0 PM60 P60 1 PM61 P61 2. Register Note 1 Register Note 1 Register − PMC41 POM50 − − − √ √ Note 1 − − − − * * √ Note 1 − − − − * * √ Note 1 − − − − * * √ − − − − − P62 Note 1 3 PM63 P63 0 PM70 P70 PU70 − * * √ √ √ √ − * * √ PMC70 Note 1 1 PM71 P71 PU71 − 2 PM72 P72 PU72 − − − √ √ √ 3 PM73 P73 PU73 − − − √ √ √ − * * √ Note 1 P74 Note 1 P75 POM71 Note 1 − Note 1 − − − * * √ Note 1 Note 1 PU74 PU75 Note 1 PU76 Note 1 Note 1 POM74 6 PM76 P76 − − − * * √ 7 PM77 P77 PU77 − − − * * √ 0 PM120 P120 PU120 − − − − √ 1 − P121 − − − − √ √ √ 2 − P122 − − − − √ √ √ 3 − P123 − − − − − − √ 4 − P124 − − − − − − √ 0 − P130 − − − − √ √ √ 7 − P137 − − − − √ √ √ Note 2 − − − * √ √ Note 1 0 PM140 0 PM150 Note 2 P140 PU140 PMC120 Note 1 PU141 − − − * * √ Note 1 − − − − * * √ Note 1 − − − − * * √ Note 1 − − − − * * √ Note 1 − − − − * * √ Note 1 − − − − * * √ P141 P150 1 PM151 P151 2 PM152 P152 4 PM154 Notes 1. (64-pin − 3 PM153 (80-pin Register 1 PM141 Port 15 (64-pin PU30 5 PM75 Port 13 PMCxx P30 4 PM74 Port 12 POMxx 0 PM30 2 PM62 Port 7 PIMxx RL78/G1A products) Register Port 3 PUxx RL78/G1E P153 P154 Not supported by RL78/G1E(Both 64-pin products and 80-pin products) Not supported by RL78/G1E(64-pin products) Remark √: Mounted *: Mounted but there are some differences between RL78/G1E and RL78/G1A −: Not mounted R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 94 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3. 1 Port mode register (PMxx) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PM0 1 PM06 PM05 PM04 PM03 PM02 PM01 PM00 FFF20H FFH R/W PM1 1 PM16 1 PM14 PM13 PM12 PM11 PM10 FFF21H FFH R/W PM2 PM27 PM26 PM25 PM24 PM23 PM22 PM21 PM20 FFF22H FFH R/W PM4 1 1 1 1 PM43 PM42 PM41 PM40 FFF24H FFH R/W PM6 1 1 1 1 PM63 PM62 PM61 PM60 FFF26H FFH R/W PM7 PM77 PM76 PM75 PM74 PM73 PM72 PM71 PM70 FFF27H FFH R/W PM14 1 1 1 1 1 1 PM141 PM140 FFF2EH FFH R/W PM15 1 1 1 PM154 PM153 PM152 PM151 PM150 FFF2FH FFH R/W Cautions 1. Be sure to clear bits 4 to 6 of the PM0 register, bit 6 of the PM1 register, bits 4 to 7 of the PM2 register, bit 3 of the PM4 register, bits 0 to 3 of the PM6 register, bits 4 to 7 of the PM7 register, bits 0 and 1 of the PM14 register, and bits 0 to 4 of the PM15 register to “0”. 2. Be sure to set bit 7 of the PM0 register, bits 5 and 7 of the PM1 register, bits 4 to 7 of the PM4 register, bits 4 to 7 of the PM6 register, bits 2 to 7 of the PM14 register, and bits 5 to 7 of the PM15 register to “1”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PM0 1 PM06 PM05 PM04 PM03 PM02 PM01 PM00 FFF20H FFH R/W PM1 1 PM16 PM15 PM14 PM13 PM12 PM11 PM10 FFF21H FFH R/W PM2 PM27 PM26 PM25 PM24 PM23 PM22 PM21 PM20 FFF22H FFH R/W PM4 1 1 1 1 PM43 PM42 PM41 PM40 FFF24H FFH R/W PM5 1 1 1 1 1 1 PM51 PM50 FFF25H FFH R/W PM6 1 1 1 1 PM63 PM62 PM61 PM60 FFF26H FFH R/W PM7 PM77 PM76 PM75 PM74 PM73 PM72 PM71 PM70 FFF27H FFH R/W PM14 1 1 1 1 1 1 PM141 PM140 FFF2EH FFH R/W PM15 1 1 1 PM154 PM153 PM152 PM151 PM150 FFF2FH FFH R/W Cautions 1. Be sure to clear bits 5 and 6 of the PM0 register, bit 6 of the PM1 register, bits 5 to 7 of the PM2 register, bit 3 of the PM4 register, bits 0 to 3 of the PM6 register, bits 4 to 7 of the PM7 register, bit 1 of the PM14 register, and bits 0 to 4 of the PM15 register to “0”. 2. Be sure to set bit 7 of the PM0 register, bit 7 of the PM1 register, bits 4 to 7 of the PM4 register, bits 2 to 7 of the PM5 register, bits 4 to 7 of the PM6 register, bits 2 to 7 of the PM14 register, and bits 5 to 7 of the PM15 register to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 95 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3. 2 Port register (Pxx) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W P0 0 0 0 0 P03 P02 P01 P00 FFF00H 00H R/W P1 0 0 0 P14 P13 P12 P11 P10 FFF01H 00H R/W P2 0 0 0 0 P23 P22 P21 P20 FFF02H 00H R/W P4 0 0 0 0 0 P42 P41 P40 FFF04H 00H R/W P7 0 0 0 0 P73 P72 P71 P70 FFF07H 00H R/W P12 0 0 0 0 0 P122 P121 0 FFF0CH Undefined R/WNote 1 P13 P137 0 0 0 0 0 0 P130 FFF0DH Note2 R/WNote 1 Notes 1. P121, P122 and P137 are read-only. 2. P137: Undefined P130: 0 (output latch) Cautions Be sure to clear bits 4 to 7 of the P0 register, bits 5 to 7 of the P1 register, bits 4 to 7 of the P2 register, bits 3 to 7 of the P4 register, bits 4 to 7 of the P7 register, and bits 0 and 3 to 7 of the P12 register, bits 1 to 6 of the P13 register to “0”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W P0 0 0 0 P04 P03 P02 P01 P00 FFF00H 00H R/W P1 0 0 P15 P14 P13 P12 P11 P10 FFF01H 00H R/W P2 0 0 0 P24 P23 P22 P21 P20 FFF02H 00H R/W P4 0 0 0 0 0 P42 P41 P40 FFF04H 00H R/W P5 0 0 0 0 0 0 P51 P50 FFF05H 00H R/W P7 0 0 0 0 P73 P72 P71 P70 FFF07H 00H R/W P12 0 0 0 0 0 P122 P121 0 FFF0CH Undefined R/WNote 1 P13 P137 0 0 0 0 0 0 P130 FFF0DH Note 2 R/WNote 1 P14 0 0 0 0 0 0 0 P140 FFF0EH 00H R/W Notes 1. 2. P121, P122 and P137 are read-only. P137: Undefined P130: 0 (output latch) Cautions Be sure to clear bits 5 to 7 of the P0 register, bits 6 and 7of the P1 register, bits 5 to 7 of the P2 register, bits 3 to 7 of the P4 register, bits 2 to 7 of the P5 register, bits 4 to 7 of the P7 register, bits 0 and 3 to 7 of the P12 register, bits 1 to 6 of the P13 register, and bits 1 to 7 of the P14 register to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 96 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3. 3 Pull-up resistor option register (PUxx) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PU0 0 0 0 0 PU03 PU02 PU01 PU00 F0030H 00H R/W PU1 0 0 0 PU14 PU13 PU12 PU11 PU10 F0031H 00H R/W PU4 0 0 0 0 0 PU42 PU41 PU40 F0034H 01H R/W PU7 0 0 0 0 PU73 PU72 PU71 PU70 F0037H 00H R/W Caution Be sure to clear bits 4 to 7 of the PU0 register, bits 5 to 7 of the PU1 register, bits 3 to 7 of the PU4 register, and bits 4 to 7 of the PU7 register to “0”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PU0 0 0 0 PU04 PU03 PU02 PU01 PU00 F0030H 00H R/W PU1 0 0 PU15 PU14 PU13 PU12 PU11 PU10 F0031H 00H R/W PU4 0 0 0 0 0 PU42 PU41 PU40 F0034H 01H R/W PU5 0 0 0 0 0 0 PU51 PU50 F0035H 00H R/W PU7 0 0 0 0 PU73 PU72 PU71 PU70 F0037H 00H R/W PU14 0 0 0 0 0 0 0 PU140 F003EH 00H R/W Caution Be sure to clear bits 5 to 7 of the PU0 register, bits 6 and 7of the PU1 register, bits 3 to 7 of the PU4 register, bits 2 to 7 of the PU5 register, bits 4 to 7 of the PU7 register, and bits 1 to 7 of the PU14 register to “0”. 3. 4. 3. 4 Port input mode register (PIMxx) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PIM0 0 0 0 0 PIM03 0 PIM01 PIM00 F0040H 00H R/W PIM1 0 0 0 PIM14 0 0 PIM11 PIM10 F0041H 00H R/W Caution Be sure to clear bits 2 and 4 to 7 of the PIM0 register, and bits 2, 3 and 5 to 7 of the PIM1 register to “0”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PIM0 0 0 0 PIM04 PIM03 0 PIM01 PIM00 F0040H 00H R/W PIM1 0 0 PIM15 PIM14 0 0 PIM11 PIM10 F0041H 00H R/W Caution Be sure to clear bits 2 and 5 to 7 of the PIM0 register, and bits 2, 3, 6 and 7 of the PIM1 register to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 97 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3. 5 Port output mode register (POMxx) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W POM0 0 0 0 0 POM03 POM02 0 0 F0050H 00H R/W POM1 0 0 0 POM14 POM13 POM12 POM11 POM10 F0051H 00H R/W Caution Be sure to clear bits 0, 1 and 4 to 7 of the POM0 register, and bits 5 to 7 of the POM1 register to “0”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W POM0 0 0 0 POM04 POM03 POM02 0 0 F0050H 00H R/W POM1 0 0 POM15 POM14 POM13 POM12 POM11 POM10 F0051H 00H R/W POM5 0 0 0 0 0 0 0 POM50 F0055H 00H R/W Caution Be sure to clear bits 0, 1 and 5 to 7 of the POM0 register, bits 6 and 7 of the POM1 register, and bits 1 to 7 of the POM5 register to “0”. 3. 4. 3. 6 Port mode control register (PMCxx) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PMC0 1 1 1 1 PMC03 PMC02 1 1 F0060H FFH R/W PMC1 1 1 1 PMC14 PMC13 PMC12 PMC11 PMC10 F0061H FFH R/W PMC4 1 1 1 1 1 1 PMC41 1 F0064H FFH R/W PMC7 1 1 1 1 1 1 1 PMC70 F0067H FFH R/W Caution Be sure to set bits 0, 1 and 4 to 7 of the PMC0 register, bits 5 to 7 of the PMC1 register, bits 0 and 2 to 7 of the PMC4 register, and bits 1 to 7 of the PMC7 register to “0”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PMC0 1 1 1 1 PMC03 PMC02 1 1 F0060H FFH R/W PMC1 1 1 PMC15 PMC14 PMC13 PMC12 PMC11 PMC10 F0061H FFH R/W PMC4 1 1 1 1 1 1 PMC41 1 F0064H FFH R/W PMC5 1 1 1 1 1 1 PMC51 PMC50 F0065H FFH R/W PMC7 1 1 1 1 1 1 1 PMC70 F0067H FFH R/W Caution Be sure to set bits 0, 1 and 4 to 7 of the PMC0 register, bits 6 and 7 of the PMC1 register, bits 0 and 2 to 7 of the PMC4 register, bits 2 to 7 of the PMC5 register, and bits 1 to 7 of the PMC7 register to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 98 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3. 7 A/D port configuration register (ADPC) (1) 64-pin products Address: F0076H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADPC 0 0 0 0 0 ADPC2 ADPC1 ADPC0 ADPC2 ADPC1 ADPC0 ANI3/P23 ANI2/P22 ANI1/P21 ANI0/P20 Analog input (A)/digital I/O (D) switching 0 0 0 A A A A 0 0 1 D D D D 0 1 0 D D D A 0 1 1 D D A A 1 0 0 D A A A Other than above Cautions 1. Setting prohibited Be sure to clear bits 3 to 7 to “0”. 2. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2). 3. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS). 4. When using AVREFP and AVREFM, specify ANI0 and ANI1 as the analog input channels and specify input mode by using the port mode register. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 99 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (2) 80-pin products Address: F0076H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADPC 0 0 0 0 0 ADPC2 ADPC1 ADPC0 ADPC2 ADPC1 ADPC0 ANI4/P24 ANI3/P23 ANI2/P22 ANI1/P21 ANI0/P20 Analog input (A)/digital I/O (D) switching 0 0 0 A A A A A 0 0 1 D D D D D 0 1 0 D D D D A 0 1 1 D D D A A 1 0 0 D D A A A 1 0 1 D A A A A Other than above Cautions 1. Setting prohibited Be sure to clear bits 3 to 7 to “0”. 2. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2). 3. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS). 4. When using AVREFP and AVREFM, specify ANI0 and ANI1 as the analog input channels and specify input mode by using the port mode register. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 100 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 3. 8 Peripheral I/O redirection register (PIOR) Address: F0077H After reset: 00H Symbol 7 6 5 4 3 2 1 0 PIOR 0 0 0 0 0 0 PIOR1 PIOR0 Function R/W 64-pin products 80-pin products Setting value of PIOR1, PIOR0 Setting value of PIOR1, PIOR0 0, 0 0, 1 1, 0 1, 1 0, 0 0, 1 1, 0 1, 1 KR0 P70 Setting P00 P10 P70 Setting P00 P10 KR1 P71 prohibited P01 P11 P71 prohibited P01 P11 KR2 P72 P02 P12 P72 P02 P12 KR3 P73 P03 P13 P73 P03 P13 KR4 − − P14 − P04 P14 KR5 − P22 − − P22 P15 KR6 − P23 − − P23 − KR7 − − − − P24 − Remark −: These functions are not available for use. 3. 4. 3. 9 Global digital input disable register (GDIDIS) GDIDIS is not available for RL78/G1E. 3. 4. 3. 10 Global analog input disable register (GAIDIS) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 4. 3. 10 Global analog input disable register (GAIDIS) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 101 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 4 Port function operation The operations which are different from that of RL78/G1A (64-pin products) are described below. 3. 4. 4. 1 Writing to I/O port See 4. 4. 1 Writing to I/O port in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 4. 4. 2 Reading from I/O port See 4. 4. 2 Reading from I/O port in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 4. 4. 3 Operation on I/O port See 4. 4. 3 Operation on I/O port in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 4. 4. 4 Handling different potential (1.8 V,2.5 V or 3 V) by using EVDD ≤ VDD This function is not available, because the EVDD pin is not provided in the RL78/G1E. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 102 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 4. 5 Handling different potential (1.8 V ,2.5 V or 3V) by using I/O buffers It is possible to connect an external device operating on a different potential (1.8 V, 2.5 V or 3V) by switching I/O buffers with the port input mode register (PIMxx) and port output mode register (POMxx). When receiving input from an external device with a different potential (1.8 V, 2.5 V or 3V), set the port input mode registers 0 and 1 (PIM0 and PIM1) on a bit-by-bit basis to enable normal input (CMOS)/TTL input buffer switching. When outputting data to an external device with a different potential (1.8 V, 2.5 V or 3V), set the port output mode registers 0 and 1 (POM0 and POM1) on a bit-by-bit basis to enable N-ch open drain (VDD tolerance) switching. Following, describes the connection of a serial interface. (1) Setting procedure when using input ports of UART0 to UART2, CSI00, CSI10, and CSI20 functions for the TTL input buffer In case of UART0: P11 In case of UART1: P03 In case of UART2: P14 In case of CSI00: P10, P11 In case of CSI10: P03, P04 In case of CSI20: P14, P15 Using an external resistor, pull up externally the input pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used). Set the corresponding bit of the PIM0 and PIM1 registers to 1 to switch to the TTL input buffer. For VIH and VIL, refer to the DC characteristics when the TTL input buffer is selected. Enable the operation of the serial array unit and set the mode to the UART/CSI mode. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 103 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (2) Setting procedure when using output ports of UART0 to UART2, CSI00, CSI10, and CSI20 functions in N-ch open-drain output mode In case of UART0: P12 In case of UART1: P02 In case of UART2: P13 In case of CSI00: P10, P12 In case of CSI10: P02, P04 In case of CSI20: P13, P15 Using an external resistor, pull up externally the output pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used). After reset release, the port mode changes to the input mode (Hi-Z). Set the output latch of the corresponding port to 1. Set the corresponding bit of the POM0 and POM1 registers to 1 to set the N-ch open drain output (VDD withstand voltage) mode. Enable the operation of the serial array unit and set the mode to the UART/CSI mode. Set the output mode by manipulating the PM0 and PM1 registers. At this time, the output data is high level, so the pin is in the Hi-Z state. (3) Setting procedure when using I/O ports of IIC00, IIC10, and IIC20 functions with a different potential (1.8 V ,2.5 V or 3V) In case of IIC00: P10, P11 In case of IIC10: P03, P04 In case of IIC20: P14, P15 Using an external resistor, pull up externally the input pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used). After reset release, the port mode is the input mode (Hi-Z). Set the output latch of the corresponding port to 1. Set the corresponding bit of the POM0 and POM1 registers to 1 to set the N-ch open drain output (VDD tolerance) mode. Set the corresponding bit of the PIM0 and PIM1 registers to 1 to switch to the TTL input buffer. For VIH and VIL, refer to the DC characteristics when the TTL input buffer is selected. 2 Enable the operation of the serial array unit and set the mode to the simplified I C mode. Set the corresponding bit of the PM0 and PM1 registers to the output mode (data I/O is possible in the output mode). At this time, the output data is high level, so the pin is in the Hi-Z state. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 104 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 4. 5 Register settings when using alternate function See 4. 5 Register Settings When Using Alternate Function in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 4. 6 Cautions when using port function See 4. 6 Cautions When Using Port Function in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 105 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5 Clock Generator In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 5 CLOCK GENERATOR in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 5. 1 Functions of clock generator The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following two kinds of system clocks and clock oscillators are selectable. Caution The subsystem clock is not provided in the RL78/G1E (64-pin products, 80-pin products). (1) Main system clock X1 oscillator This circuit oscillates a clock of fX = 1 to 20 MHz by connecting a resonator to X1 and X2. Oscillation can be stopped by executing the STOP instruction or setting of the MSTOP bit (bit 7 of the clock operation status control register (CSC)). High-speed on-chip oscillator (High-speed OCD) The frequency at which to oscillate can be selected from among fIH = 32, 24, 16, 12, 8, 6, 4, 3, 2 or 1 MHz (typ.) by using the option byte (000C2H). After a reset release, the CPU always starts operating with this high-speed on-chip oscillator clock. Oscillation can be stopped by executing the STOP instruction or setting the HIOSTOP bit (bit 0 of the CSC register). The frequency specified by using an option byte can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV). For details about the frequency, see 3. 5. 3. 8 High-speed on-chip oscillator frequency select register (HOCODIV). The frequencies that can be specified for the high-speed on-chip oscillator by using the option byte and the high-speed on-chip oscillator frequency select register (HOCODIV) are shown below. Power Supply Voltage 2.7 V ≤ VDD ≤ 5.5 V Flash Operation Mode HS (high-speed main) mode 2.4 V ≤ VDD ≤ 5.5 V Oscillation Frequency (MHz) 1 2 3 4 6 8 12 16 24 32 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – – 1.8 V ≤ VDD ≤ 5.5 V LS (low-speed main) mode √ √ √ √ √ √ – – – – 1.6 V ≤ VDD ≤ 5.5 V LV (low-voltage main) mode √ √ – √ – – – – – – An external main system clock (fEX = 1 to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or setting of the MSTOP bit. As the main system clock, a high-speed system clock (X1 clock or external main system clock) or high-speed on-chip oscillator clock can be selected by setting of the MCM0 bit (bit 4 of the system clock control register (CKC)). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 106 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (2) Low-speed on-chip oscillator clock (Low-speed on-chip oscillator) This circuit oscillates a clock of fIL = 15 kHz (TYP.). The low-speed on-chip oscillator clock cannot be used as the CPU clock. Only the following peripheral hardware runs on the low-speed on-chip oscillator clock. • Watchdog timer • 12-bit Interval timer This clock operates when bit 4 (WDTON) of the option byte (000C0H), bit 4 (WUTMMCK0) of the subsystem clock supply mode control register (OSMC), or both are set to 1. However, when WDTON = 1, WUTMMCK0 = 0, and bit 0 (WDSTBYON) of the option byte (000C0H) is 0, oscillation of the low-speed on-chip oscillator stops if the HALT or STOP instruction is executed. Remark fX: X1 clock oscillation frequency fIH: High-speed on-chip oscillator clock frequency fEX: External main system clock frequency fIL: Low-speed on-chip oscillator clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 107 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 2 Configuration of clock generator The clock generator includes the following hardware. Table 3-6. Configuration of Clock Generator Item Control registers Configuration Clock operation mode control register (CMC) System clock control register (CKC) Clock operation status control register (CSC) Oscillation stabilization time counter status register (OSTC) Oscillation stabilization time select register (OSTS) Peripheral enable register 0 (PER0) Subsystem clock supply mode control register (OSMC) High-speed on-chip oscillator frequency select register (HOCODIV) High-speed on-chip oscillator trimming register (HIOTRM) Oscillators X1 oscillator High-speed on-chip oscillator Low-speed on-chip oscillator R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 108 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 External input clock Crystal/ceramic oscillation (8 MHz (TYP.)) (3 MHz (TYP.)) (12 MHz (TYP.)) (4 MHz (TYP.)) STOP mode signal X1 oscillation stabilization time counter 3 OSTS2 OSTS1 OSTS0 Oscillation stabilization time select register (OSTS) Internal bus 6 Controller Internal bus High-speed on-chip oscillator trimming register (HIOTRM) fMAIN Clock output/ buzzer output RTC EN ADC EN SAU0 EN TAU0 EN fCLK Peripheral enable register 0 (PER0) SAU1 EN Watchdog timer CPU clock and peripheral hardware clock source selection System clock control register (CKC) CLS MCS MCM0 Subsystemu clock supply mode control register (OSMC) WUTMMCK0 12-bit Interval timer HIOTRM5 HIOTRM4 HIOTRM3 HIOTRM2 HIOTRM1 HIOTRM0 Selector HALT/STOP mode signal WDTON WDSTBYON Option byte (000C0H) Main system clock source selector Oscillation stabilization time counter status register (OSTC) MOST MOST MOST MOST MOST MOST MOST MOST 8 9 10 11 13 15 17 18 WUTMMCK0 Clock operation status control register (CSC) HIOSTOP Low-speed on-chip oscillator fIL Oscillation (15 kHz (TYP.)) MSTOP HOCODIV2 HOCODIV1 HOCODIV0 fIH fMX High-speed on-chip oscillator frequency select register (HOCODIV) (2 MHz (TYP.)) (6 MHz (TYP.)) (16 MHz (TYP.)) fEX fX Clock operation status control register (CSC) (Remark is listed on the next page) (1 MHz (TYP.)) (24 MHz (TYP.)) (32 MHz (TYP.)) High-speed on-chip oscillator Option byte (000C2H) FRQSEL0 to FRQSEL3 X2/EXCLK/ P122 X1/P121 High-speed system clock oscillator AMPH EXCLK OSCSEL Clock operation mode control register (CMC) Figure 3-1. Block Diagram of Clock Generator CPU Normal operation mode HALT mode STOP mode Standby controller Controller A/D converter Serial array unit 1 Serial array unit 0 Timer array unit 0 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 109 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Remark fX: X1 clock oscillation frequency fIH: High-speed on-chip oscillator clock frequency fEX: External main system clock frequency fMX: High-speed system clock frequency fMAIN: Main system clock frequency fCLK: CPU/peripheral hardware clock frequency fIL: Low-speed on-chip oscillator clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 110 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 3 Registers controlling clock generator The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 5. 3 Registers Controlling Clock Generator in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 5. 3. 1 Clock operation mode control register (CMC) Address: FFFA0H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 CMC EXCLK OSCSEL 0 0 0 0 0 AMPH EXCLK OSCSEL High-speed system clock pin X1/P121 pin X2/EXCLK/P122 pin operation mode 0 0 Input port mode Input port 0 1 X1 oscillation mode Crystal/ceramic resonator connection 1 0 Input port mode Input port 1 1 External clock input mode Input port AMPH Cautions 1. External clock input Control of X1 clock oscillation frequency 0 1 MHz ≤ fX ≤ 10 MHz 1 10 MHz < fX ≤ 20 MHz Be sure to clear bits 1 to 3 and 5 to “0”. 2. The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction. When using the CMC register with its initial value (00H), be sure to set the register to 00H after a reset ends in order to prevent malfunction due to a program loop. Such a malfunction becomes unrecoverable when a value other than 00H is mistakenly written. 3. After reset release, set the CMC register before X1 oscillation is started as set by the clock operation status control register (CSC). 4. Be sure to set the AMPH bit to 1 if the X1 clock oscillation frequency exceeds 10 MHz. 5. Specify the settings for the AMPH, AMPHS1, and AMPHS0 bits while fIH is selected as fCLK after a reset ends (before fCLK is switched to fMX). 6. Although the maximum system clock frequency is 32 MHz, the maximum frequency of the X1 oscillator is 20 MHz. Remark fX: X1 clock oscillation frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 111 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 3. 2 System clock control register (CKC) Address: FFFA4H After reset: 00H R/W Note Symbol 6 3 2 1 0 CKC CLS 0 MCS MCM0 0 0 0 0 CLS 0 Status of CPU/peripheral hardware clock (fCLK) Main system clock (fMAIN) 1 − MCS Status of main system clock (fMAIN) 0 High-speed on-chip oscillator clock (fIH) 1 High-speed system clock (fMX) MCM0 Main system clock (fMAIN) operation control 0 Selects the high-speed on-chip oscillator clock (fIH) as the main system clock (fMAIN) 1 Selects the high-speed system clock (fMX) as the main system clock (fMAIN) Note Bits 7 and 5 are read-only. Caution Be sure to clear bits 0 to 3 and 6 to “0”. Remark fIH: fMX: High-speed on-chip oscillator clock frequency High-speed system clock frequency fMAIN: Main system clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 112 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 3. 3 Clock operation status control register (CSC) Address: FFFA1H After reset: C0H R/W Symbol 6 5 4 3 2 1 CSC MSTOP 1 0 0 0 0 0 HIOSTOP MSTOP High-speed system clock operation control X1 oscillation mode 0 X1 oscillator operating External clock from EXCLK pin is valid 1 X1 oscillator stopped External clock from EXCLK pin is invalid HIOSTOP Cautions 1. External clock input mode Input port mode Input port High-speed on-chip oscillator clock operation control 0 High-speed on-chip oscillator operating 1 High-speed on-chip oscillator stopped Be sure to set bit 6 to “1”. 2. Set the oscillation stabilization time select register (OSTS) before setting the MSTOP bit to 0 after releasing reset. Note that if the OSTS register is being used with its default settings, the OSTS register is not required to be set here. 3. To start X1 oscillation as set by the MSTOP bit, check the oscillation stabilization time of the X1 clock by using the oscillation stabilization time counter status register (OSTC). 4. Do not stop the clock selected for the CPU/peripheral hardware clock (fCLK) with the CSC register. 5. The setting of the flags of the register to stop clock oscillation (invalidate the external clock input) and the condition before clock oscillation is to be stopped are as Table 3-7. Table 3-7. Stopping Clock Method Clock Condition Before Stopping Clock Setting of CSC Register Flags (Invalidating External Clock Input) X1 clock CPU and peripheral hardware clocks operate with a clock External main system clock other than the high-speed system clock. MSTOP = 1 (CLS = 0 and MCS = 0) High-speed on-chip oscillator CPU and peripheral hardware clocks operate with a clock clock other than the high-speed on-chip oscillator clock. HIOSTOP = 1 (CLS = 0 and MCS = 1) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 113 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 3. 4 Oscillation stabilization time counter status register (OSTC) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 5. 3. 4 Oscillation stabilization time counter status register (OSTC) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 5. 3. 5 Oscillation stabilization time select register (OSTS) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 5. 3. 5 Oscillation stabilization time select register (OSTS) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 114 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 3. 6 Peripheral enable register 0 (PER0) Address: F00F0H After reset: 00H R/W Symbol 6 4 1 PER0 RTCEN 0 ADCEN 0 SAU1EN SAU0EN 0 TAU0EN RTCEN 0 Control of 12-bit interval timer input clock supply Stops input clock supply. • SFR used by the 12-bit interval timer cannot be written. • The 12-bit interval timer is in the reset status. 1 Enables input clock supply. • SFR used by the 12-bit interval timer can be written. ADCEN 0 Control of A/D converter input clock supply Stops input clock supply. • SFR used by the A/D converter cannot be written. • The A/D converter is in the reset status. 1 Enables input clock supply. • SFR used by the A/D converter can be written. SAU1EN 0 Control of serial array unit 1 input clock supply Stops input clock supply. • SFR used by the serial array unit 1 cannot be written. • The serial array unit 1 is in the reset status. 1 Enables input clock supply. • SFR used by the serial array unit 1 can be written. SAU0EN 0 Control of serial array unit 0 input clock supply Stops input clock supply. • SFR used by the serial array unit 0 cannot be written. • The serial array unit 0 is in the reset status. 1 Enables input clock supply. • SFR used by the serial array unit 0 can be written. TAU0EN 0 Control of timer array unit 0 input clock supply Stops input clock supply. • SFR used by timer array unit 0 cannot be written. • Timer array unit 0 is in the reset status. 1 Enables input clock supply. • SFR used by timer array unit 0 can be written. Caution Be sure to clear bits 1, 4, and 6 to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 115 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 3. 7 Subsystem clock supply mode control register (OSMC) Address: F00F3H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 OSMC 0 0 0 WUTMMCK0 0 0 0 0 WUTMMCK0 Cautions 1. Operation clock for12-bit interval timer 0 Initial value 1 Low-speed on-chip oscillator clock Be sure to clear bit 7 to “0”. 2. To use 12-bit interval timer, after reset release, set the WUTMMCK0 bit of the subsystem clock supply mode control register (OSMC) to “1” before setting the RTCEN bit of the peripheral enable register0 (PER0) to “1”. Remark The subsystem clock is not supported by RL78/G1E, but the subsystem clock supply mode control register is used to control the clock of 12-bit interval timer. 3. 5. 3. 8 High-speed on-chip oscillator frequency select register (HOCODIV) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 5. 3. 8 High-speed on-chip oscillator frequency select register (HOCODIV) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 5. 3. 9 High-speed on-chip oscillator trimming register (HIOTRM) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 5. 3. 9 High-speed on-chip oscillator trimming register (HIOTRM) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 116 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 4 System clock oscillator See 5. 4 System Clock Oscillator in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 5. 5 Clock generator operation See 5. 5 Clock Generator Operation in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 5. 6 Controlling clock See 5. 6 Controlling Clock in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 117 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 5. 7 Resonator and oscillator constants The resonators for which the operation is verified and their oscillator constants are shown below. Cautions 1. The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. Be sure to apply to the resonator manufacturer for evaluation on the actual circuit before using these constants for your application. Also apply to the resonator manufacturer for re-evaluation on the actual circuit if you have changed the make of the microcontroller or the board. 2. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the RL78/G1E so that the internal operation conditions are within the specifications of the DC and AC characteristics. Figure 3-2. External Oscillation Circuit Example (a) X1 oscillation VSS X1 C1 X2 Rd C2 (1) X1 oscillation: Manufacturer As of March, 2013 (1/4) Resonator Part Number SMD/ Lead Frequency (MHz) Flash Recommended Circuit operation mode Constants Note 1 Note 2 Oscillation Voltage Range (reference) (V) C1 (pF) C2 (pF) Rd (kΩ) MIN. MAX. KYOCERA Crystal CX8045GB04000D0HEQZ1 SMD 4.0 LV 12 12 0 1.6 5.5 rystal Device resonator CX8045GB04000D0HEQZ1 SMD 4.0 LS 12 12 0 1.8 5.5 CX8045GB04000D0HEQZ1 SMD 4.0 HS 12 12 0 2.4 5.5 CX8045GB08000D0HEQZ1 SMD 8.0 LS 12 12 0 1.8 5.5 CX8045GB08000D0HEQZ1 SMD 8.0 HS 12 12 0 2.4 5.5 CX8045GB12000D0HEQZ1 SMD 12.0 HS 10 10 0 2.4 5.5 CX3225GB16000D0HEQZ1 SMD 16.0 HS 10 10 0 2.4 5.5 CX3225GB20000D0HEQZ1 SMD 20.0 HS 8 8 0 2.7 5.5 Corporation Note 3 Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H). 2. C1, C2 columns indicate a reference value. 3. When using these oscillators, contact KYOCERA Crystal Device Corporation (http://www.kyocera-crystal.jp/). Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (High speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V@1 MHz to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) 2.4 V ≤ VDD ≤ 5.5 V@1 MHz to 16 MHz LS (Low speed main) mode: 1.8 V ≤ VDD ≤ 5.5 V@1 MHz to 8 MHz LV (Low voltage main) mode: 1.6 V ≤ VDD ≤ 5.5 V@1 MHz to 4 MHz R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 118 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (1) X1 oscillation: Manufacturer As of March, 2013(2/4) Resonator Part Number SMD/ Lead Murata Manufacturing Co., Ltd. Frequency (MHz) Flash Recommended Circuit operation Constants Note 2 Voltage mode Note 1 (reference) Range (V) LV C1 C2 Rd (pF) (pF) (kΩ) (47) (47) Oscillation MIN. MAX. 0 1.6 5.5 Ceramic CSTCC2M00G56-R0 SMD 2.0 resonator CSTCR4M00G55-R0 SMD 4.0 (39) (39) 0 1.6 5.5 CSTLS4M00G53-B0 Lead 4.0 (15) (15) 0 1.6 5.5 CSTCC2M00G56-R0 SMD 2.0 (47) (47) 0 1.8 5.5 CSTCR4M00G55-R0 SMD 4.0 (39) (39) 0 1.8 5.5 CSTLS4M00G53-B0 Lead 4.0 (15) (15) 0 1.8 5.5 CSTCR4M19G55-R0 SMD 4.194 (39) (39) 0 1.8 5.5 CSTLS4M19G53-B0 Lead 4.194 (15) (15) 0 1.8 5.5 CSTCR4M91G53-R0 SMD 4.915 (15) (15) 0 1.8 5.5 CSTLS4M91G53-B0 Lead 4.915 (15) (15) 0 1.8 5.5 CSTCR5M00G53-R0 SMD 5.0 (15) (15) 0 1.8 5.5 CSTLS5M00G53-B0 Lead 5.0 (15) (15) 0 1.8 5.5 CSTCR6M00G53-R0 SMD 6.0 (15) (15) 0 1.8 5.5 CSTLS6M00G53-B0 Lead 6.0 (15) (15) 0 1.8 5.5 CSTCE8M00G52-R0 SMD 8.0 (10) (10) 0 1.8 5.5 CSTLS8M00G53-B0 Lead 8.0 (15) (15) 0 1.8 5.5 Note 3 LS Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H). 2. Values in parentheses in the C1, C2 columns indicate an internal capacitance. 3. When using these oscillators, contact Murata Manufacturing Co., Ltd. (http://www.murata.co.jp/). Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (High speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V@1 MHz to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) 2.4 V ≤ VDD ≤ 5.5 V@1 MHz to 16 MHz LS (Low speed main) mode: 1.8 V ≤ VDD ≤ 5.5 V@1 MHz to 8 MHz LV (Low voltage main) mode: 1.6 V ≤ VDD ≤ 5.5 V@1 MHz to 4 MHz R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 119 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (1) X1 oscillation: Manufacturer As of March, 2013(3/4) Resonator Part Number SMD/ Lead Murata Manufacturing Co., Ltd. Frequency (MHz) Flash Recommended Circuit operation Constants Note 2 Voltage mode Note 1 (reference) Range (V) HS C1 C2 Rd (pF) (pF) (kΩ) (47) (47) Oscillation MIN. MAX. 0 2.4 5.5 Ceramic CSTCC2M00G56-R0 SMD 2.0 resonator CSTCR4M00G55-R0 SMD 4.0 (39) (39) 0 2.4 5.5 CSTLS4M00G53-B0 Lead 4.0 (15) (15) 0 2.4 5.5 CSTCR4M19G55-R0 SMD 4.194 (39) (39) 0 2.4 5.5 CSTLS4M19G53-B0 Lead 4.194 (15) (15) 0 2.4 5.5 CSTCR4M91G53-R0 SMD 4.915 (15) (15) 0 2.4 5.5 CSTLS4M91G53-B0 Lead 4.915 (15) (15) 0 2.4 5.5 CSTCR5M00G53-R0 SMD 5.0 (15) (15) 0 2.4 5.5 CSTLS5M00G53-B0 Lead 5.0 (15) (15) 0 2.4 5.5 CSTCR6M00G53-R0 SMD 6.0 (15) (15) 0 2.4 5.5 CSTLS6M00G53-B0 Lead 6.0 (15) (15) 0 2.4 5.5 CSTCE8M00G52-R0 SMD 8.0 (10) (10) 0 2.4 5.5 CSTLS8M00G53-B0 Lead 8.0 (15) (15) 0 2.4 5.5 CSTCE8M38G52-R0 SMD 8.388 (10) (10) 0 2.4 5.5 CSTLS8M38G53-B0 Lead 8.388 (15) (15) 0 2.4 5.5 CSTCE10M0G52-R0 SMD 10.0 (10) (10) 0 2.4 5.5 CSTLS10M0G53-B0 Lead 10.0 (15) (15) 0 2.4 5.5 CSTCE12M0G52-R0 SMD 12.0 (10) (10) 0 2.4 5.5 CSTCE16M0V53-R0 SMD 16.0 (15) (15) 0 2.4 5.5 CSTLS16M0X51-B0 Lead 16.0 (5) (5) 0 2.4 5.5 CSTCE20M0V51-R0 SMD 20.0 (5) (5) 0 2.7 5.5 CSTLS20M0X51-B0 Lead 20.0 (5) (5) 0 2.7 5.5 Note 3 Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H). 2. Values in parentheses in the C1, C2 columns indicate an internal capacitance. 3. When using these oscillators, contact Murata Manufacturing Co., Ltd. (http://www.murata.co.jp/). Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (High speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V@1 MHz to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) 2.4 V ≤ VDD ≤ 5.5 V@1 MHz to 16 MHz LS (Low speed main) mode: 1.8 V ≤ VDD ≤ 5.5 V@1 MHz to 8 MHz LV (Low voltage main) mode: 1.6 V ≤ VDD ≤ 5.5 V@1 MHz to 4 MHz R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 120 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (1) X1 oscillation: Manufacturer As of March, 2013(4/4) Resonator Part Number SMD/ Lead Frequency (MHz) Flash Recommended Circuit operation Constants Note 2 Voltage mode Note 1 (reference) Range (V) C1 C2 Rd (pF) (pF) (kΩ) Oscillation MIN. MAX. Nihon Dempa Crystal NX8045GB SMD 8 LS 1 1 0 1.8 5.5 Kogyo Co., resonator NX8045GB SMD 8 HS 1 1 0 2.4 5.5 NX3225GB SMD 16 2 2 0 2.4 5.5 NX2520SA SMD 20 1 1 0 2.7 5.5 Ltd. Note 3 Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H). 2. C1, C2 columns indicate a reference value. 3. When using these oscillators, contact Nihon Dempa Kogyo Co., Ltd. (http://www.ndk.com/jp/). Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (High speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V@1 MHz to 32 MHz (When X1 oscillation: 1 MHz to 20 MHz) 2.4 V ≤ VDD ≤ 5.5 V@1 MHz to 16 MHz LS (Low speed main) mode: 1.8 V ≤ VDD ≤ 5.5 V@1 MHz to 8 MHz LV (Low voltage main) mode: 1.6 V ≤ VDD ≤ 5.5 V@1 MHz to 4 MHz R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 121 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6 Timer Array Unit In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 6 TIMER ARRAY UNIT in RL78/G1A Hardware User’s Manual (R01UH0305E). The timer array unit is provided in all products (Unit 0, Channels 0 to 7). Units Channels 64-pin products, 80-pin products Unit 0 Channel 0 √ Channel 1 √ Channel 2 √ Channel 3 √ Channel 4 √ Channel 5 √ Channel 6 √ Channel 7 √ Caution Most of the following descriptions in this section use the case of 80-pin products as an example. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 122 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK The timer array unit has eight 16-bit timers. Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more “channels” can be used to create a high-accuracy timer. TIMER ARRAY UNIT channel 0 16-bit timers channel 1 channel 2 channel 6 channel 7 For the details of each function, see the section shown below. Independent channel operation function Simultaneous channel operation function • Interval timer (-> see 3. 6. 8) • One-shot pulse output (-> see 3. 6. 9) • Square wave output (-> see 3. 6. 8) • PWM output (-> see 3. 6. 9) • External event counter (-> see 3. 6. 8) • Multiple PWM output (-> see 3. 6. 9) • Divider function Note (-> see 3. 6. 8) • Input pulse interval measurement (-> see 3. 6. 8) • Measurement of high/low-level width of input signal (-> see 3. 6. 8) • Delay counter (-> see 3. 6. 8) Note Only channel 0 of unit 0. It is possible to use the 16-bit timer of channels 1 and 3 of unit 0 as two 8-bit timers (higher and lower). The functions that can use channels 1 and 3 as 8-bit timers are as follows: • Interval timer (higher/lower 8-bit timer)/square wave output (lower 8-bit timer only) • External event counter (lower 8-bit timer only) • Delay counter (lower 8-bit timer only) Channel 7 of unit 0 can be used to realize LIN-bus communication operating in combination with UART2 of the serial array unit. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 123 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 1 Functions of timer array unit Timer array unit has the following functions. 3. 6. 1. 1 Independent channel operation function By operating a channel independently, it can be used for the following purposes without being affected by the operation mode of other channels. Remark The presence or absence of timer I/O pins of channels 0 to 7 depends on the product. See Table 3-9 Timer I/O Pins provided in Each Product for details. Interval timer Each timer of a unit can be used as a reference timer that generates an interrupt (INTTMmn) at fixed intervals. Compare operation Operation clock Channel n Interrupt signal (INTTMmn) Square wave output A toggle operation is performed each time INTTMmn interrupt is generated and a square wave with a duty factor of 50% is output from a timer output pin (TOmn). Compare operation Operation clock Channel n Timer output (TOmn) External event counter Each timer of a unit can be used as an event counter that generates an interrupt when the number of the valid edges of a signal input to the timer input pin (TImn) has reached a specific value. Timer input (TImn) Edge detection Compare operation Interrupt signal (INTTMmn) Channel n Divider function (channel 0 of unit 0 only) A clock input from a timer input pin (TI00) is divided and output from an output pin (TO00). Timer input (TI00) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Compare operation Channel 0 Timer output (TO00) 124 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Input pulse interval measurement Counting is started by the valid edge of a pulse signal input to a timer input pin (TImn). The count value of the timer is captured at the valid edge of the next pulse. In this way, the interval of the input pulse can be measured. Timer input (TImn) Edge detection Capture operation Channel n xxH 00H Start Capture Measurement of high/low-level width of input signal Counting is started by a single edge of the signal input to the timer input pin (TImn), and the count value is captured at the other edge. In this way, the high-level or low-level width of the input signal can be measured. Edge detection Timer input (TImn) Capture operation Channel n 00H xxH Start Capture Delay counter Counting is started at the valid edge of the signal input to the timer input pin (TImn), and an interrupt is generated after any delay period. Edge detection Timer input (TImn) Compare operation Channel n Interrupt signal (INTTMmn) Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn) , timer output pin (TOmn) : n = 0, 4, 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 125 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 1. 2 Simultaneous channel operation function By using the combination of a master channel (a reference timer mainly controlling the cycle) and slave channels (timers operating according to the master channel), channels can be used for the following purposes. One-shot pulse output Two channels are used as a set to generate a one-shot pulse with a specified output timing and a specified pulse width. Timer input (TImn) Edge detection Compare operation Compare operation Channel p (slave) Interrupt signal (INTTMmn) Channel n (master) Output timing Timer output (TOmp) set (Master) Start (Master) Pulse width Reset (Slave) PWM (Pulse Width Modulation) output Two channels are used as a set to generate a pulse with a specified period and a specified duty factor. Operation clock Compare operation Interrupt signal (INTTMmn) Channel n (master) Compare operation Channel p (slave) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Timer output (TOmp) Duty Period 126 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Multiple PWM (Pulse Width Modulation) output By extending the PWM function and using one master channel and two or more slave channels, up to seven types of PWM signals that have a specific period and a specified duty factor can be generated. Operation clock Compare operation Interrupt signal (INTTMmn) Channel n (master) Compare operation Channel p (slave) Timer output (TOmp) Duty Period Compare operation Channel q (slave) Timer output (TOmq) Duty Period Caution For details about the rules of simultaneous channel operation function, see 3. 6. 4 Basic rules of timer array unit. Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn) , timer output pin (TOmn) : n = 0, 4, 7)), p, q: Slave channel number (4, 7) 3. 6. 1. 3 8-bit timer operation function (channels 1 and 3 only) The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3. Caution There are several rules for using 8-bit timer operation function. For details, see 3. 6. 4 Basic rules of timer array unit. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 127 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 1. 4 LIN-bus supporting function (channel 7 of unit 0 only) Timer array unit is used to check whether signals received in LIN-bus communication match the LIN-bus communication format. Detection of wakeup signal The timer starts counting at the falling edge of a signal input to the serial data input pin (RxD2) of UART2 and the count value of the timer is captured at the rising edge. In this way, a low-level width can be measured. If the low-level width is greater than a specific value, it is recognized as a wakeup signal. Detection of break field The timer starts counting at the falling edge of a signal input to the serial data input pin (RxD2) of UART2 after a wakeup signal is detected, and the count value of the timer is captured at the rising edge. In this way, a lowlevel width is measured. If the low-level width is greater than a specific value, it is recognized as a break field. Measurement of pulse width of sync field After a break field is detected, the low-level width and high-level width of the signal input to the serial data input pin (RxD2) of UART2 are measured. From the bit interval of the sync field measured in this way, a baud rate is calculated. Remark For details about setting up the operations used to implement the LIN-bus, see 3. 6. 3. 13 Input switch control register (ISC) and 3. 6. 8 Independent channel operation function of timer array unit. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 128 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 2 Configuration of timer array unit Timer array unit includes the following hardware. Table 3-8. Configuration of Timer Array Unit Item Configuration Timer/counter Timer count register mn (TCRmn) Register Timer data register mn (TDRmn) Timer input TI00, TI04, TI07, RxD2 pin (for LIN-bus) Timer output TO00, TO04, TO07, output controller Control registers • Peripheral enable register 0 (PER0) • Timer clock select register m (TPSm) • Timer channel enable status register m (TEm) • Timer channel start register m (TSm) • Timer channel stop register m (TTm) • Timer input select register 0 (TIS0) • Timer output enable register m (TOEm) • Timer output register m (TOm) • Timer output level register m (TOLm) • Timer output mode register m (TOMm) • Timer mode register mn (TMRmn) • Timer status register mn (TSRmn) • Input switch control register (ISC) • Noise filter enable register 1 (NFEN1) • Port mode control register (PMCxx) • Port mode register (PMxx) • Port register (Pxx) Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 129 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK The presence or absence of timer I/O pins in each timer array unit channel is as follows. Table 3-9. Timer I/O Pins provided in Each Product Timer array unit channels Unit 0 64-pin products, 80-pin products Channel 0 P00/TI00, P01/TO00 Channel 1 − Channel 2 − Channel 3 − Channel 4 P42/TI04/TO04 Channel 5 − Channel 6 − Channel 7 P41/TI07/TO07 Remarks 1. When timer input and timer output are shared by the same pin, either only timer input or only timer output can be used. 2. −: here is no timer I/O pin, but the channel is available. (However, the channel can only be used as an interval timer.) Figures 3-3 show the block diagrams of the timer array unit of the 80-pin products. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 130 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Figure 3-3. Entire Configuration of Timer Array Unit 0 (Example: 80-pin products) Timer clock select register 0 (TPS0) PRS031PRS030 PRS021 PRS020 PRS013 PRS012PRS011 PRS010 PRS003 PRS002 PRS001 PRS000 2 2 4 4 Prescaler fCLK fCLK/21, fCLK/22, fCLK/28, fCLK/210, fCLK/24, fCLK/26, fCLK/212, fCLK/214, Peripheral enable register 0 TAU0EN (PER0) Selector fCLK/20 to fCLK/215 Selector Selector Selector Master controller INTTM00 (Timer interrupt) TI00 Channel 0 Channel 1 Timer input select register 0 (TIS0) TO00 Slave/master controller Channel 2 INTTM01 INTTM01H INTTM02 TIS2 TIS1 TIS0 Channel 3 INTTM03 INTTM03H TO04 fIL Selector TI04 Channel 4 Channel 5 Channel 6 INTTM04 INTTM05 INTTM06 TO07 TI07 RxD2 (Serial input pin) Channel 7 (LIN-bus supported) INTTM07 Remark fIL: ow-speed on-chip oscillator clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 131 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Figure 3-4. Internal Block Diagram of Channel 0, 4 of Timer Array Unit 0 Operating clock selection CK00 CK01 Count clock selection Interrupt signal from master channel Note 1 fMCK TI0n Timer controller Mode selection Trigger selection Edge detection fTCLK Output controller TO0n Output latch (Pxx) Interrupt controller PMxx INTTM0n (Timer interrupt) Timer counter register 0n (TCR0n) Timer status register 0n (TSR0n) Timer data register 0n (TDR0n) Slave/master controller Overflow OVF 0n Note2 CKS0n1 CKS0n0 CCS0n MAS STS0n2 STS0n1 STS0n0 CIS0n1 CIS0n0 MD0n3 MD0n2 MD0n1 MD0n0 TER0n Channel n Timer mode register 0n (TMR0n) Interrupt signal to slave channel Notes 1. Channels 4 only 2. n = 4 only Remark n = 0, 4 Figure 3-5. Internal Block Diagram of Channel 7 of Timer Array Unit 0 TI07 RxD0 Selector fMCK Edge detection Count clock selection CK01 Trigger selection CK00 Operating clock selection Interrupt signal from master channel fTCLK Timer controller Mode selection Output controller TO07 Output latch (Pxx) Interrupt controller PMxx INTTM07 (Timer interrupt) Timer counter register 07 (TCR07) ISC1 Timer status register 07 (TSR07) Input switch control register Timer data register 07 (TDR07) Overflow OVF 07 CKS071 CKS070 CCS07 STS072 STS071 STS070 CIS071 CIS070 MD073 MD072 MD071 MD070 Channel 7 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Timer mode register 07 (TMR07) 132 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 2. 1 Timer count register mn (TCRmn) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 2. 1 Timer count register mn (TCRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 2. 2 Timer data register mn (TDRmn) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 2. 2 Timer data register mn (TDRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 133 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3 Registers controlling timer array unit The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 6. 3 Registers Controlling Timer Array Unit in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 3. 1 Peripheral enable register 0 (PER0) Address: F00F0H After reset: 00H R/W Symbol 6 4 1 PER0 RTCEN 0 ADCEN 0 SAU1EN SAU0EN 0 TAU0EN TAU0EN 0 Control of timer array 0 unit input clock Stops input clock supply. • SFR used by timer array unit 0 cannot be written. • Timer array unit 0 is in the reset status. 1 Enables input clock supply. • SFR used by timer array unit 0 can be read/written. Cautions 1. When setting the timer array unit, be sure to set the TAUmEN bit to 1 first. If TAUmEN = 0, writing to a control register of timer array unit is ignored, and all read values are default values (except for the timer input select register 0 (TIS0), input switch control register (ISC), noise filter enable register 1 (NFEN1), port mode control registers 0, 1, 4 (PMC0, PMC1, PMC4), port mode registers 0, 1, 4 (PM0, PM1, PM4), and port registers 0, 1, 4 (P0, P1, P4)). • Timer clock select register m (TPSm) • Timer mode register mn (TMRmn) • Timer status register mn (TSRmn) • Timer channel enable status register m (TEm) • Timer channel start register m (TSm) • Timer channel stop register m (TTm) • Timer output enable register m (TOEm) • Timer output register m (TOm) • Timer output level register m (TOLm) • Timer output mode register m (TOMm) 2. Be sure to clear bits 1, 4, and 6 to “0”. 3. 6. 3. 2 Timer clock select register m (TPSm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 2 Timer clock select register m (TPSm) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 134 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3. 3 Timer mode register mn (TMRmn) • Format of Timer Mode Register mn (TMRmn) (1/4) Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS MAS STS STS STS CIS CIS 0 0 MD MD MD MD (n = 2, 4, 6) mn1 mn0 mn TER mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 mn Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS SPLIT STS STS STS CIS CIS 0 0 MD MD MD MD (n = 1, 3) mn1 mn0 mn mn mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 Symbol 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 STS STS STS CIS CIS 0 0 MD MD MD MD mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 TMRmn CKS CKS (n = 0, 5, 7) mn1 mn0 13 0 CCS mn Note 0 CKSmn1 CKSmn0 Selection of operation clock (fMCK) of channel n 0 0 Operation clock CKm0 set by timer clock select register m (TPSm) 0 1 Operation clock CKm2 set by timer clock select register m (TPSm) 1 0 Operation clock CKm1 set by timer clock select register m (TPSm) 1 1 Operation clock CKm3 set by timer clock select register m (TPSm) Operation clock (fMCK) is used by the edge detector. A count clock (fTCLK) and a sampling clock are generated depending on the setting of the CCSmn bit. The operation clocks CKm2 and CKm3 can only be selected for channels 1 and 3. CCSmn 0 1 Selection of count clock (fTCLK) of channel n Operation clock (fMCK) specified by the CKSmn0 and CKSmn1 bits Valid edge of input signal input from the TImn pin When channel 5 is used, the valid edge of the input signal selected by the TIS0 Count clock (fTCLK) is used for the timer/counter, output controller, and interrupt controller. Note Bit 11 is fixed at 0 of read only, write is ignored. Cautions 1. Be sure to clear bits 13, 5, and 4 to “0”. 2. The timer array unit must be stopped (TTm = 00FFH) if the clock selected for fCLK is changed (by changing the value of the system clock control register (CKC)), even if the operating clock specified by using the CKSmn0 and CKSmn1 bits (fMCK) or the valid edge of the signal input from the TImn pin is selected as the count clock (fTCLK). Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 135 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • Format of Timer Mode Register mn (TMRmn) (2/4) Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) Symbol TMRmn 15 14 13 CKS CKS (n = 2, 4, 6) mn1 mn0 12 0 After reset: 0000H 11 10 9 8 7 6 CCS MAS STS STS STS CIS CIS mn TER mn2 mn1 mn0 mn1 mn0 R/W 5 0 4 3 2 1 0 0 MD MD MD MD mn3 mn2 mn1 mn0 mn Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS SPLIT STS STS STS CIS CIS 0 0 MD MD MD MD (n = 1, 3) mn1 mn0 mn mn mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 13 12 11 0 CCS Symbol 15 14 TMRmn CKS CKS (n = 0, 5, 7) mn1 mn0 Note 0 mn 10 9 8 7 6 STS STS STS CIS CIS mn2 mn1 mn0 mn1 mn0 5 0 4 3 2 1 0 0 MD MD MD MD mn3 mn2 mn1 mn0 Bit 11 of TMRmn (n = 2, 4, 6) MASTER Selection between using channel n independently or mn simultaneously with another channel (as a slave or master) 0 Operates in independent channel operation function or as slave channel in simultaneous channel operation function. 1 Operates as master channel in simultaneous channel operation function. Only the channel 2, 4, 6 can be set as a master channel (MASTERmn = 1). Be sure to use channel 0, 5, 7 are fixed to 0 (Regardless of the bit setting, channel 0 operates as master, because it is the highest channel). Clear the MASTERmn bit to 0 for a channel that is used with the independent channel operation function. Bit 11 of TMRmn (n = 1, 3) SPLITmn Selection of 8 or 16-bit timer operation for channels 1 and 3 Operates as 16-bit timer. 0 (Operates in independent channel operation function or as slave channel in simultaneous channel operation function.) 1 Operates as 8-bit timer. STS STS STS mn2 mn1 mn0 0 0 0 Only software trigger start is valid (other trigger sources are unselected). 0 0 1 Valid edge of the TImn pin input is used as both the start trigger and capture trigger. 0 1 0 Both the edges of the TImn pin input are used as a start trigger and a capture trigger. 1 0 0 Interrupt signal of the master channel is used (when the channel is used as a slave channel Setting of start trigger or capture trigger of channel n with the simultaneous channel operation function). Other than above Note Setting prohibited Bit 11 is fixed at 0 of read only, write is ignored. Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 136 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • Format of Timer Mode Register mn (TMRmn) (3/4) Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS MAS STS STS STS CIS CIS 0 0 MD MD MD MD (n = 2, 4, 6) mn1 mn0 mn TER mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 mn Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS SPLIT STS STS STS CIS CIS 0 0 MD MD MD MD (n = 1, 3) mn1 mn0 mn mn mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 Symbol 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 STS STS STS CIS CIS 0 0 MD MD MD MD mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 TMRmn CKS CKS (n = 0, 5, 7) mn1 mn0 13 0 CCS mn Note 0 CISmn1 CISmn0 Selection of TImn pin input valid edge 0 0 Falling edge 0 1 Rising edge 1 0 Both edges (when low-level width is measured) Start trigger: Falling edge, Capture trigger: Rising edge 1 1 Both edges (when high-level width is measured) Start trigger: Rising edge, Capture trigger: Falling edge If both the edges are specified when the value of the STSmn2 to STSmn0 bits is other than 010B, set the CISmn1 to CISmn0 bits to 10B. Note Bit 11 is fixed at 0 of read only, write is ignored. Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 137 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • Format of Timer Mode Register mn (TMRmn) (4/4) Address: F0190H, F0191H (TMR00) - F019EH, F019FH (TMR07) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS MAS STS STS STS CIS CIS 0 0 MD MD MD MD (n = 2, 4, 6) mn1 mn0 mn TER mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 mn Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TMRmn CKS CKS 0 CCS SPLIT STS STS STS CIS CIS 0 0 MD MD MD MD (n = 1, 3) mn1 mn0 mn mn mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 Symbol 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 STS STS STS CIS CIS 0 0 MD MD MD MD mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0 TMRmn CKS CKS (n = 0, 5, 7) mn1 mn0 13 0 Note CCS 0 mn MD MD MD MD Operation mode of mn3 mn2 mn1 mn0 channel n 0 0 0 1/0 Interval timer mode Corresponding function Count operation of TCR Interval timer/Square wave output/ Counting down Divider function/PWM output (master) 0 1 0 1/0 0 1 1 0 1 0 0 1/0 Capture mode Input pulse interval measurement Counting up Event counter mode External event counter Counting down One-count mode Delay counter/One-shot pulse output/ Counting down PWM output (slave) 1 1 0 Other than above 0 Capture & one-count Measurement of high/low-level width of mode input signal Counting up Setting prohibited The operation of the MDmn0 bit varies depending on each operation mode (see table below). Note Bit 11 is fixed at 0 of read only, write is ignored. (Remark is on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 138 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Operation mode MD (Value set by the MDmn3 to mn0 Setting of starting counting and interrupt MDmn1 bits (see table above)) • Interval timer mode 0, 0, 0) 0 Timer interrupt is not generated when counting is started (timer output does not change, either). • Capture mode (0, 1, 0) 1 Timer interrupt is generated when counting is started (timer output also changes). • Event counter mode (0, 1, 1) 0 Timer interrupt is not generated when counting is started (timer output does not change, either). 0 Start trigger is invalid during counting operation. At that time, interrupt is not generated, either. 1 Start trigger is valid during counting operation 0 Timer interrupt is not generated when counting is started (timer output does not change, either). • One-count mode Note 1 (1, 0, 0) • Capture & one-count mode (1, 1, 0) Note 2 . At that time, interrupt is not generated. Start trigger is invalid during counting operation. At that time interrupt is not generated, either. Other than above Notes 1. Setting prohibited In one-count mode, interrupt output (INTTMmn) when starting a count operation and TOmn output are not controlled. 2. If the start trigger (TSmn = 1) is issued during operation, the counter is initialized, an interrupt is generated, and recounting is started (does not occur the interrupt request). Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 139 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3. 4 Timer status register mn (TSRmn) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 4 Timer status register mn (TSRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 3. 5 Timer channel enable status register m (TEm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 5 Timer channel enable status register m (TEm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 3. 6 Timer channel start register m (TSm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 6 Timer channel start register m (TSm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 3. 7 Timer channel stop register m (TTm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 7 Timer channel stop register m (TTm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 3. 8 Timer input select register 0 (TIS0) Address: F0074H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 TIS0 0 0 0 0 0 TIS02 TIS01 TIS00 TIS02 TIS01 TIS00 0 0 0 Default value 1 0 0 Low-speed on-chip oscillator clock (fIL) Other than above Selection of timer input used with channel 5 Setting prohibited Caution High-level width, low-level width of timer input selected will require more than 1/fMCK +10 ns. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 140 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3. 9 Timer output enable register m (TOEm) Address: F01BAH, F01BBH (TOE0) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TOEm 0 0 0 0 0 0 0 0 TOE 0 0 TOE 0 0 0 TOE m7 TOEmn 0 m4 m0 Timer output enable/disable of channel n The TOmn operation stopped by count operation (timer channel output bit). Writing to the TOmn bit is enabled. The TOmn pin functions as data output, and it outputs the level set to the TOmn bit. The output level of the TOmn pin can be manipulated by software. 1 The TOmn operation enabled by count operation (timer channel output bit). Writing to the TOmn bit is disabled (writing is ignored). The TOmn pin functions as timer output, and the TOEmn bit is set or reset depending on the timer operation. The TOmn pin outputs the square-wave or PWM depending on the timer operation. Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 1 to “0”. Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) 3. 6. 3. 10 Timer output register m (TOm) Address: F01B8H, F01B9H (TO0) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TOm 0 0 0 0 0 0 0 0 TOm7 0 0 TOm4 0 0 0 TOm0 TOmn Timer output of channel n 0 Timer output value is “0”. 1 Timer output value is “1”. Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 1 to “0”. Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 141 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3. 11 Timer output level register m (TOLm) Address: F01BCH, F01BDH (TOL0) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TOLm 0 0 0 0 0 0 0 0 TOL 0 0 TOL 0 0 0 0 m7 TOLmn m4 Control of timer output level of channel n 0 Positive logic output (active-high) 1 Negative logic output (active-low) Caution Be sure to clear bits 15 to 8, 6, 5, 3 to 0 to “0”. Remarks 1. If the value of this register is rewritten during timer operation, the timer output logic is inverted when the timer output signal changes next, instead of immediately after the register value is rewritten. 2. m: Unit number (m = 0), n: Channel number (n = 0 to 7 (however, timer input pin (TImn), timer output pin (TOmn): n = 0, 4, 7)) 3. 6. 3. 12 Timer output mode register m (TOMm) Address: F01BEH, F01BFH (TOM0) After reset: 0000H R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TOMm 0 0 0 0 0 0 0 0 TOM 0 0 TOM 0 0 0 0 m7 TOMmn m4 Control of timer output mode of channel n 0 Master channel output mode (to produce toggle output by timer interrupt request signal (INTTMmn)) 1 Slave channel output mode (output is set by the timer interrupt request signal (INTTMmn) of the master channel, and reset by the timer interrupt request signal (INTTMmp) of the slave channel) Caution Be sure to clear bits 15 to 8 and 0 to “0”. Remark m: Unit number (m = 0) n: Channel number n = 0, 1 (n = 0, 2, 4, 6) p: Slave channel number n = 4, 7 (For details of the relation between the master channel and slave channel, refer to 3. 6. 4 Basic rules of timer array unit.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 142 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3. 13 Input switch control register (ISC) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 6. 3. 13 Input switch control register (ISC) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 3. 14 Noise filter enable register 1 (NFEN1) Address: F0071H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 NFEN1 TNFEN07 0 0 TNFEN04 0 0 0 TNFEN00 Enable/disable using noise filter of TI07/TO07/P41 pin or RxD2/P14 pin input signalNote TNFEN07 0 Noise filter OFF 1 Noise filter ON TNFEN04 Enable/disable using noise filter of TI04/TO04/P42 pin input signal 0 Noise filter OFF 1 Noise filter ON TNFEN00 Enable/disable using noise filter of TI00/P00 pin input signal 0 Noise filter OFF 1 Noise filter ON Note The applicable pin can be switched by setting the ISC1 bit of the ISC register. ISC1 = 0: Whether or not to use the noise filter of the TI07 pin can be selected. ISC1 = 1: Whether or not to use the noise filter of the RxD2 pin can be selected. Caution Be sure to clear bits 6, 5, 3 to 1 to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 143 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O Using port pins for the timer array unit functions requires setting of the registers that control the port functions multiplexed on the target pins (port mode register (PMxx), port register (Pxx), and port mode control register (PMCxx)). For details, see 3. 4. 3. 1 Port mode registers (PMxx), 3. 4. 3. 2 Port registers (Pxx), and 3. 4. 3. 6 Port mode control registers (PMCxx). For details of setting example, see 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 144 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 6. 4 Basic rules of timer array unit See 6. 4 Basic Rules of Timer Array Unit in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 5 Operation of counter See 6. 5 Operation of Counter in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 6 Channel output (TOmn pin) control See 6. 6 Channel Output (TOmn pin) Control in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 7 Timer input (TImn) control See 6. 7 Timer Input (TImn) Control in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 8 Independent channel operation function of timer array unit See 6. 8 Independent Channel Operation Function of Timer Array Unit in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 9 Simultaneous channel operation function of timer array unit See 6. 9 Simultaneous Channel Operation Function of Timer Array Unit in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 6. 10 Cautions when using timer array unit See 6. 10 Cautions When Using Timer Array Unit in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 145 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 7 Real-Time Clock Real-time clock is not provided in RL78/G1E (64-pin products, 80-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 146 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 8 12-bit Interval Timer 3. 8. 1 Functions of 12-bit interval timer An interrupt (INTIT) is generated at any previously specified time interval. It can be utilized for wakeup from STOP mode and triggering an A/D converter’s SNOOZE mode. 3. 8. 2 Configuration of 12-bit interval timer The 12-bit interval timer includes the following hardware. Table 3-10. Configuration of 12-bit Interval Timer Item Configuration Counter 12-bit counter Control registers Peripheral enable register 0 (PER0) Subsystem clock supply mode control register (OSMC) Interval timer control register (ITMC) Figure 3-6. Block Diagram of 12-bit Interval Timer fIL Selector Clear Count clock 12-bit counter Interrupt signal (INTIT) Match signal WUTMM CK0 RINTE ITMCMP11 to ITMCMP0 Interval timer control register (ITMC) Subsystem clock supply mode control register (OSMC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 147 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 8. 3 Registers controlling 12-bit interval timer The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 8. 3 Registers Controlling 12-bit Interval Timer in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 8. 3. 1 Peripheral enable register0 (PER0) Address: F00F0H After reset: 00H R/W Symbol 6 4 1 PER0 RTCEN 0 ADCEN 0 SAU1EN SAU0EN 0 TAU0EN RTCEN Control of 12-bit interval timer input clock supply 0 Stops input clock supply. • SFR used by the 12-bit interval timer cannot be written. • The 12-bit interval timer is in the reset status. 1 Enables input clock supply. • SFR used by the 12-bit interval timer can be written. 3. 8. 3. 2 Subsystem clock supply mode control register (OSMC) Address: F00F3H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 OSMC 0 0 0 WUTMMCK0 0 0 0 0 WUTMMCK0 Cautions 1. Operation clock for 12-bit interval timer 0 Default value 1 Low-speed on-chip oscillator clock Be sure to clear bit 7 to “0”. 2. To use 12-bit interval timer, after reset release, set the WUTMMCK0 bit of the subsystem clock supply mode control register (OSMC) to “1” before setting the RTCEN bit of the peripheral enable register0 (PER0) to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 148 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 8. 3. 3 Interval timer control register (ITMC) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 8. 3. 3 Interval timer control register (ITMC) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 8. 4 12- bit interval timer operation See 8. 4 12- bit Interval Timer Operation in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 149 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 9 Clock Output/Buzzer Output Controller The number of output pins of the clock output and buzzer output controllers differs, depending on the product. Output Pin 64-pin products 80-pin products PCLBUZ0 − √ PCLBUZ1 − − Caution The output pins for clock output/buzzer output controller are not provided in the 64-pin products. 3. 9. 1 Functions of clock output/buzzer output controller The clock output controller is intended for clock output for supply to peripheral ICs. Buzzer output is a function to output a square wave of buzzer frequency. One pin can be used to output a clock or buzzer sound. The PCLBUZ0 pin outputs a clock selected by clock output select register 0 (CKS0). Figure 3-7 shows the block diagram of clock output/buzzer output controller. Figure 3-7. Block Diagram of Clock Output/Buzzer Output Controller fMAIN Prescaler 5 3 fMAIN to fMAIN/24 Selector fMAIN/211 to fMAIN/213 PCLOE0 PCLOE0 0 0 0 PCLBUZ0Note/INTP6/P140 Clock/buzzer controller Output latch (P140) PM140 CSEL0 CCS02 CCS01 CCS00 Clock output select register 0 (CKS0) Internal bus Note For output frequencies available from PCLBUZ0, see CHAPTER 5 ELECTRICAL SPECIFICATIONS. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 150 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 9. 2 Configuration of clock output/buzzer output controller The clock output/buzzer output controller includes the following hardware. Table 3-11. Configuration of Clock Output/Buzzer Output Controller Item Control registers Configuration Clock output select register n (CKS0) Port mode register 14 (PM14) Port register 14 (P14) 3. 9. 3 Registers controlling clock output/buzzer output controller The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 9. 3 Registers Controlling Clock Output/Buzzer Output Controller in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 151 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 9. 3. 1 Clock output select register 0 (CKS0) Address: FFFA5H (CKS0) After reset: 00H R/W Symbol 6 5 4 3 2 1 0 CKS0 PCLOE0 0 0 0 CSEL0 CCS02 CCS01 CCS00 PCLOE0 0 Output disable (default) 1 Output enable CSEL0 0 PCLBUZ0 pin output enable/disable specification CCS CCS CCS 02 01 00 0 0 0 PCLBUZ0 pin output clock selection fMAIN fMAIN = 5 MHz fMAIN = 10 MHz fMAIN = 20 MHz fMAIN = 32 MHz 5 MHz 10 MHzNote Setting Setting Note prohibited prohibitedNote 0 0 0 1 fMAIN/2 2.5 MHz 5 MHz 10 MHzNote 16 MHzNote 0 0 1 0 fMAIN/22 1.25 MHz 2.5 MHz 5 MHz 8 MHzNote 0 0 1 1 fMAIN/23 625 kHz 1.25 MHz 2.5 MHz 4 MHz 0 4 312.5 kHz 625 kHz 1.25 MHz 2 MHz 11 2.44 kHz 4.88 kHz 9.77 kHz 15.63 kHz 12 1.22 kHz 2.44 kHz 4.88 kHz 7.81 kHz 13 610 Hz 1.22 kHz 2.44 kHz 3.91 kHz 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 Other than above fMAIN/2 fMAIN/2 fMAIN/2 fMAIN/2 Setting prohibited Note Use the output clock within a range of 16 MHz. Furthermore, when using the output clock at 2.7 V ≤ VDD < 4.0 V, can be use it within 8 MHz only. See 5. 2. 3 AC characteristics for details. Cautions 1. Change the output clock after disabling clock output (PCLOEn = 0). 2. To shift to STOP mode when the main system clock is selected (CSELn = 0), set PCLOEn = 0 before executing the STOP instruction. Remark fMAIN: Main system clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 152 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 9. 3. 2 Registers controlling port functions of pins to be used for clock or buzzer output Using a port pin for clock or buzzer output requires setting of the registers that control the port functions multiplexed on the target pin (port mode register (PMxx), port register (Pxx)). For details, see 3. 4. 3. 1 Port mode registers (PMxx) and 3. 4. 3. 2 Port registers (Pxx). For details of setting example, see 9. 3. 2 Registers controlling port functions of pins to be used for clock or buzzer output in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 9. 4 Operations of clock output/buzzer output controller See 9. 4 Operations of Clock Output/Buzzer Output Controller in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 9. 5 Cautions of clock output/buzzer output controller See 9. 5 Cautions of Clock Output/Buzzer Output Controller in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 153 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 10 Watchdog Timer See CHAPTER 10 WATCHDOG TIMER in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 154 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11 A/D Converter The number of analog input channels of the A/D converter differs, depending on the product. 64-pin products 80-pin products Total 13 channels 17 channels High Pins based on input 4 channels 5 channels accuracy buffer power supply (ANI0 to ANI3) (ANI0 to ANI4) channel AVDD Standard Pins based on input 9 channels 12 channels channel buffer power supply (ANI16 to ANI18, ANI20 to ANI23, (ANI16 to ANI18, ANI20 to ANI26, ANI28, ANI30) ANI28, ANI30) Analog input channels VDD Remark In this section, most of the following descriptions, such as function of A/D converter, block diagram and configuration, are based on the case of the 80-pin products as an example. For the case of the 64-pin products, ignore the descriptions which are not available for 64-pin products. 3. 11. 1 Function of A/D converter The A/D converter converts analog input signals into digital values, and is configured to control analog inputs, including up to 17 channels of A/D converter analog inputs (ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30). 12-bit resolution or 8-bit resolution can also be selected by using the ADTYP bit of A/D converter mode register 2 (ADM2). The A/D converter has the following functions. • 12-bit/8-bit resolution A/D conversion A/D conversion is carried out repeatedly for one analog input channel selected from ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, ANI30. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated (when in the select mode). Caution The valid resolution differs depending on the voltage conditions of AVDD and AVREFP. For details, see 5. 2. 5. 1 A/D converter characteristics. Remark When using the converter with a resolution of 10 bits, select the 12-bit resolution mode (ADTYP = 0). Use the higher 10 bits of the conversion result. Do not use the lower 2 bits. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 155 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Various A/D conversion modes can be specified by using the mode combinations below. Trigger mode Software trigger Conversion is started by software manipulation. Hardware trigger no-wait mode Conversion is started by detecting a hardware trigger. Hardware trigger wait mode The power is turned on by detecting a hardware trigger while the system is off and in the conversion standby state, and conversion is then started automatically after the A/D power supply stabilization wait time passes. When using the SNOOZE mode function, specify the hardware trigger wait mode. Channel selection Select mode A/D conversion is performed on the analog input of one selected channel. mode Scan mode A/D conversion is performed on the analog input of four channels in order. Conversion operation One-shot conversion mode A/D conversion is performed on the selected channel once. mode Sequential conversion mode A/D conversion is sequentially performed on the selected channels until it is stopped by software. Operation ModeNote Number of Sampling Clock Normal 1 11 fAD Set a value to the number of sampling clocks, at which the Normal 2 23 fAD sampling capacitor is fully charged, depending on the output Low-voltage 1 33 fAD impedance of the analog input source. Low-voltage 2 187 fAD Note The operation modes selectable differ depending on the analog input channel, AVDD voltage, trigger mode, and fCLK. For details, see 3. 11. 3. 2 A/D converter mode register 0 (ADM0) and check A/D conversion time selection. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 156 Remark ADISS ADS3 ADS1 ADS0 A/D test register (ADTES) 2 Internal bus A/D converter mode register 1 (ADM1) ADCS Controller ADMD FR2 Successive approximation register (SAR) ADTMD1ADTMD0 ADSCM ADTRS1 ADTRS0 ADTYP AVSS FR1 Conversion result comparison lower limit setting register (ADLL) A/D voltage comparator Conversion result comparison upper limit setting register (ADUL) Internal bus Sample & hold circuit ADTES1 ADTES0 A/D converter mode register 2 (ADM2) Analog input channel specification register (ADS) ADS2 Selector ADREFP1 ADREFP0 ADREFPM ADRCK AWC Selector Analog input pins drawn in this figure is for the case of 80-pin products ADS4 6 Internal reference voltage (1.45 V) Temperature sensor ANI16/P03/SI10/RxD1/SDA10 ANI17/P02/SO10/TxD1 ANI18/P10/SCK00/SCL00 ANI20/P11 to ANI24/P15 ANI25/P51/SO11/INTP2 ANI26/P50/SI11/SDA11/INTP1 ANI28/P70/SCK21/SCL21/KR0 ANI30/P41/TI07/TO07 ANI0/AVREFP/P20 ANI1/AVREFM/P21 ANI2/P22 to ANI4/P24 4 ADPC3 ADPC2 ADPC1 ADPC0 Selector Figure 3-8. Block Diagram of A/D Converter FR0 6 ADCE ADREFM bit A/D converter mode register 0 (ADM0) LV0 Comparison voltage generator LV1 ADCS bit A/D conversion result register (ADCR) INTAD Timer trigger signal (INTIT) Timer trigger signal (INTTM01) A/D conversion result upper limit/lower limit comparator AVSS AVREFM/ANI1/P21 Internal reference voltage (1.45 V) AVDD AVREFP/ANI0/P20 ADREFP1 and ADREFP0 bits Selector A/D port configuration register (ADPC) Analog/digital switcher R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Selector RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 157 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 2 Configuration of A/D converter The A/D converter includes the following hardware. (1) ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 pins These are the analog input pins of the 17 channels of the A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as I/O port pins. (2) Sample & hold circuit The sample & hold circuit samples each of the analog input voltages sequentially sent from the input circuit, and sends them to the A/D voltage comparator. This circuit also holds the sampled analog input voltage during A/D conversion. (3) A/D voltage comparator This A/D voltage comparator compares output from the voltage tap of the comparison voltage generator with the sampled voltage value. If the analog input voltage is found to be greater than the reference voltage (1/2 AVREF) as a result of the comparison, the most significant bit (MSB) of the successive approximation register (SAR) is set. If the analog input voltage is less than the reference voltage (1/2 AVREF), the MSB bit of the SAR is reset. After that, bit 10 of the SAR register is automatically set, and the next comparison is made. The voltage tap of the comparison voltage generator is selected by the value of bit 11, to which the result has been already set. Bit 11 = 0: (1/4 AVREF) Bit 11 = 1: (3/4 AVREF) The voltage tap of the comparison voltage generator and the analog input voltage are compared and bit 10 of the SAR register is manipulated according to the result of the comparison. Analog input voltage ≥ Voltage tap of comparison voltage generator: Bit 10 = 1 Analog input voltage ≤ Voltage tap of comparison voltage generator: Bit 10 = 0 Comparison is continued like this to bit 0 of the SAR register. When performing A/D conversion at a resolution of 8 bits, the comparison continues until bit 4 of the SAR register. Remark AVREF: The + side reference voltage of the A/D converter. (This can be selected from AVREFP, the internal reference voltage (1.45 V), and AVDD.) (4) Comparison voltage generator The comparison voltage generator generates the comparison voltage input from an analog input pin. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 158 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (5) Successive approximation register (SAR) The SAR register is a register that sets voltage tap data whose values from the comparison voltage generator match the voltage values of the analog input pins, 1 bit at a time starting from the most significant bit (MSB). If data is set in the SAR register all the way to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register (conversion results) are held in the A/D conversion result register (ADCR). When all the specified A/D conversion operations have ended, an A/D conversion end interrupt request signal (INTAD) is generated. (6) 12-bit A/D conversion result register (ADCR) The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCR register holds the A/D conversion result in its lower 12 bits (the higher 4 bits are fixed to 0). (7) 8-bit A/D conversion result register (ADCRH) The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCRH register stores the higher 8 bits of the A/D conversion result. (8) Controller This circuit controls the conversion time of an input analog signal that is to be converted into a digital signal, as well as starting and stopping of the conversion operation. When A/D conversion has been completed, this controller generates INTAD. (9) AVREFP pin This pin inputs an external reference voltage (AVREFP). If using AVREFP as the + side reference voltage of the A/D converter, set the ADREFP1 and ADREFP0 bits of A/D converter mode register 2 (ADM2) to 1. The analog signals input to ANI0 to ANI12 and ANI16 to ANI30 are converted to digital signals based on the voltage applied between AVREFP and the − side reference voltage (AVREFM/AVSS). In addition to AVREFP, it is possible to select AVDD, or the internal reference voltage (1.45 V) as the + side reference voltage of the A/D converter. (10) AVREFM pin This pin inputs an external reference voltage (AVREFM). If using AVREFM as the − side reference voltage of the A/D converter, set the ADREFM bit of the ADM2 register to 1. In addition to AVREFM, it is possible to select AVSS as the − side reference voltage of the A/D converter. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 159 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 3 Registers used in A/D converter The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 11. 3 Registers Used in A/D Converter in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 3. 1 Peripheral enable register 0 (PER0) Address: F00F0H After reset: 00H R/W Symbol 6 4 1 PER0 RTCEN 0 ADCEN 0 SAU1EN SAU0EN 0 TAU0EN ADCEN 0 Control of A/D converter input clock supply Stops input clock supply. • SFR used by the A/D converter cannot be written. • The A/D converter is in the reset status. 1 Enables input clock supply. • SFR used by the A/D converter can be read/written. Caution Be sure to clear bits 1, 4, and 6 to “0”. 3. 11. 3. 2 A/D converter mode register 0 (ADM0) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 2 A/D converter mode register 0 (ADM0) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 160 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 3. 3 A/D converter mode register 1 (ADM1) Address: FFF32H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADM1 ADTMD1 ADTMD0 ADSCM 0 0 0 ADTRS1 ADTRS0 ADTMD1 ADTMD0 0 × Software trigger mode 1 0 Hardware trigger no-wait mode 1 1 Hardware trigger wait mode Selection of the A/D conversion trigger mode ADSCM 0 Sequential conversion mode 1 One-shot conversion mode ADTRS1 ADTRS0 0 0 End of timer channel 1 count or capture interrupt signal (INTTM01) 0 1 Setting prohibited 1 0 Setting prohibited 1 1 Interval timer interrupt signal (INTIT) Cautions 1. Specification of the A/D conversion mode Selection of the hardware trigger signal Rewrite the value of the ADM1 register while conversion is stopped (ADCS = 0, ADCE = 0). 2. To complete A/D conversion, specify at least the following time as the hardware trigger interval: Hardware trigger no wait mode: 2 fCLK clock + A/D conversion time Hardware trigger wait mode: 2 fCLK clock + A/D power supply stabilization wait time +A/D conversion time 3. In modes other than SNOOZE mode, input of the next INTRTC or INTIT will not be recognized as a valid hardware trigger for up to four fCLK cycles after the first INTRTC or INTIT is input. Remarks 1. ×: don’t care 2. fCLK: CPU/peripheral hardware clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 161 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 3. 4 A/D converter mode register 2 (ADM2) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 4 A/D converter mode register 2 (ADM2) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 3. 5 12-bit A/D conversion result register (ADCR) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 5 12-bit A/D conversion result register (ADCR) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 3. 6 8-bit A/D conversion result register (ADCRH) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 6 8-bit A/D conversion result register (ADCRH) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 162 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 3. 7 Analog input channel specification register (ADS) Address: FFF31H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADS ADISS 0 0 ADS4 ADS3 ADS2 ADS1 ADS0 • Select mode (64-pin products, ADMD = 0) ADISS ADS4 ADS3 ADS2 ADS1 ADS0 Selected channel Input source 0 0 0 0 0 0 ANI0 P20/ANI0/AVREFP pin 0 0 0 0 0 1 ANI1 P21/ANI1/AVREFM pin 0 0 0 0 1 0 ANI2 P22/ANI2 pin 0 0 0 0 1 1 ANI3 P23/ANI3 pin 0 0 0 1 0 0 Setting prohibited 0 0 0 1 0 1 Setting prohibited 0 0 0 1 1 0 Setting prohibited 0 0 0 1 1 1 Setting prohibited 0 0 1 0 0 0 Setting prohibited 0 0 1 0 0 1 Setting prohibited 0 0 1 0 1 0 Setting prohibited 0 0 1 0 1 1 Setting prohibited 0 0 1 1 0 0 Setting prohibited 0 0 1 1 0 1 Setting prohibited 0 0 1 1 1 0 Setting prohibited 0 0 1 1 1 1 Setting prohibited 0 1 0 0 0 0 ANI16 P03/ANI16 pin 0 1 0 0 0 1 ANI17 P02/ANI17 pin 0 1 0 0 1 0 ANI18 P10/ANI18 pin 0 1 0 0 1 1 Setting prohibited 0 1 0 1 0 0 ANI20 P11/ANI20 pin 0 1 0 1 0 1 ANI21 P12/ANI21 pin 0 1 0 1 1 0 ANI22 P13/ANI22 pin 0 1 0 1 1 1 ANI23 P14/ANI23 pin 0 1 1 0 0 0 Setting prohibited 0 1 1 0 0 1 Setting prohibited 0 1 1 0 1 0 Setting prohibited 0 1 1 0 1 1 Setting prohibited 0 1 1 1 0 0 ANI28 0 1 1 1 0 1 Setting prohibited 0 1 1 1 1 0 ANI30 0 1 1 1 1 1 Setting prohibited 1 0 0 0 0 0 − 1 0 0 0 0 1 − P70/ANI28 pin P41/ANI30 pin Temperature sensor output Note Internal reference voltage output (1.45 V)Note Other than above Setting prohibited Note This setting can be used only in HS (high-speed main) mode. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 163 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Address: FFF31H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADS ADISS 0 0 ADS4 ADS3 ADS2 ADS1 ADS0 • Scan mode (64-pin products, ADMD = 1) ADISS ADS4 ADS3 ADS2 ADS1 ADS0 Analog input channel Scan 0 Scan 1 Scan 2 Scan 3 0 0 0 0 0 0 ANI0 ANI1 ANI2 ANI3 0 1 0 1 0 0 ANI20 ANI21 ANI22 ANI23 Other than above Cautions 1. 2. Setting prohibited Be sure to clear bits 5 and 6 to 0. Set a channel to be used for A/D conversion in the input mode by using port mode registers 0 to 2, 4, or 7 (PM0 to PM2, PM4, PM7). 3. Do not set the pin that is set by the A/D port configuration register (ADPC) as digital I/O by the ADS register. 4. Do not set the pin that is set by port mode control register 0, 4, or 7 (PMC0, PMC4, PMC7) as digital I/O by the ADS register. 5. Rewrite the value of the ADISS bit while conversion operation is stopped (ADCS = 0, ADCE = 0). 6. If using AVREFP as the + side reference voltage source of the A/D converter, do not select ANI0 as an A/D conversion channel. 7. If using AVREFM as the − side reference voltage source of the A/D converter, do not select ANI1 as an A/D conversion channel. 8. If ADISS is set to 1, the internal reference voltage (1.45 V) cannot be used for the + side reference voltage source. Also, after setting the ADISS to 1, the result of the first conversion cannot be used. For details about the setting flow, refer to 3. 11. 7 A/D converter setup flowchart. 9. Do not set the ADISS bit to 1 when shifting from STOP mode to HALT mode. Also, if the ADISS bit is set to 1, the temperature sensor operating current indicated in 5. 2. 2. 2 Supply current characteristics (ITMPS) will be added to the current consumption when shifting to HALT mode while the CPU is operating on the main system clock. 10. Ignore the conversion result if the corresponding ANI pin does not exist in the product used. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 164 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Address: FFF31H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADS ADISS 0 0 ADS4 ADS3 ADS2 ADS1 ADS0 • Select mode (80-pin products, ADMD = 0) ADISS ADS4 ADS3 ADS2 ADS1 ADS0 Selected channel Input source 0 0 0 0 0 0 ANI0 P20/ANI0/AVREFP pin 0 0 0 0 0 1 ANI1 P21/ANI1/AVREFM pin 0 0 0 0 1 0 ANI2 P22/ANI2 pin 0 0 0 0 1 1 ANI3 P23/ANI3 pin 0 0 0 1 0 0 ANI4 P24/ANI4 pin 0 0 0 1 0 1 Setting prohibited 0 0 0 1 1 0 Setting prohibited 0 0 0 1 1 1 Setting prohibited 0 0 1 0 0 0 Setting prohibited 0 0 1 0 0 1 Setting prohibited 0 0 1 0 1 0 Setting prohibited 0 0 1 0 1 1 Setting prohibited 0 0 1 1 0 0 Setting prohibited 0 0 1 1 0 1 Setting prohibited 0 0 1 1 1 0 Setting prohibited 0 0 1 1 1 1 Setting prohibited 0 1 0 0 0 0 ANI16 P03/ANI16 pin 0 1 0 0 0 1 ANI17 P02/ANI17 pin 0 1 0 0 1 0 ANI18 P10/ANI18 pin 0 1 0 0 1 1 Setting prohibited 0 1 0 1 0 0 ANI20 P11/ANI20 pin 0 1 0 1 0 1 ANI21 P12/ANI21 pin 0 1 0 1 1 0 ANI22 P13/ANI22 pin 0 1 0 1 1 1 ANI23 P14/ANI23 pin 0 1 1 0 0 0 ANI24 P15/ANI24 pin 0 1 1 0 0 1 ANI25 P51/ANI25 pin 0 1 1 0 1 0 ANI26 P50/ANI26 pin 0 1 1 0 1 1 Setting prohibited 0 1 1 1 0 0 ANI28 0 1 1 1 0 1 Setting prohibited 0 1 1 1 1 0 ANI30 0 1 1 1 1 1 Setting prohibited 1 0 0 0 0 0 − Temperature sensor outputNote 1 0 0 0 0 1 − Internal reference voltage P70/ANI28 pin P41/ANI30 pin output (1.45 V)Note Other than above Setting prohibited Note This setting can be used only in HS (high-speed main) mode. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 165 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Address: FFF31H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 ADS ADISS 0 0 ADS4 ADS3 ADS2 ADS1 ADS0 • Scan mode (80-pin products, ADMD = 1) ADISS ADS4 ADS3 ADS2 ADS1 ADS0 Analog input channel Scan 0 Scan 1 Scan 2 Scan 3 0 0 0 0 0 0 ANI0 ANI1 ANI2 ANI3 0 0 0 0 0 1 ANI1 ANI2 ANI3 ANI4 0 1 0 1 0 0 ANI20 ANI21 ANI22 ANI23 0 1 0 1 0 1 ANI21 ANI22 ANI23 ANI24 0 1 0 1 1 0 ANI22 ANI23 ANI24 ANI25 0 1 0 1 1 1 ANI23 ANI24 ANI25 ANI26 Other than above Cautions 1. Setting prohibited Be sure to clear bits 5 and 6 to 0. 2. Set a channel to be used for A/D conversion in the input mode by using port mode registers 0 to 2, 4, or 7 (PM0 to PM2, PM4, PM7). 3. Do not set the pin that is set by the A/D port configuration register (ADPC) as digital I/O by the ADS register. 4. Do not set the pin that is set by port mode control register 0, 4, or 7 (PMC0, PMC4, PMC7) as digital I/O by the ADS register. 5. Rewrite the value of the ADISS bit while conversion operation is stopped (ADCS = 0, ADCE = 0). 6. If using AVREFP as the + side reference voltage source of the A/D converter, do not select ANI0 as an A/D conversion channel. 7. If using AVREFM as the − side reference voltage source of the A/D converter, do not select ANI1 as an A/D conversion channel. 8. If ADISS is set to 1, the internal reference voltage (1.45 V) cannot be used for the + side reference voltage source. Also, after setting the ADISS to 1, the result of the first conversion cannot be used. For details about the setting flow, refer to 3. 11. 7 A/D converter setup flowchart. 9. Do not set the ADISS bit to 1 when shifting from STOP mode to HALT mode. Also, if the ADISS bit is set to 1, the temperature sensor operating current indicated in 5. 2. 2. 2 Supply current characteristics (ITMPS) will be added to the current consumption when shifting to HALT mode while the CPU is operating on the main system clock. 10. Ignore the conversion result if the corresponding ANI pin does not exist in the product used. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 166 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 3. 8 Conversion result comparison upper limit setting register (ADUL) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 8 Conversion result comparison upper limit setting register (ADUL) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 3. 9 Conversion result comparison lower limit setting register (ADLL) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 9 Conversion result comparison lower limit setting register (ADLL) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 3. 10 A/D test register (ADTES) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 11. 3. 10 A/D test register (ADTES) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 3. 11 Registers controlling port function of analog input pins Set up the registers for controlling the functions of the ports shared with the analog input pins of the A/D converter (port mode registers (PMxx), port mode control registers (PMCxx), and A/D port configuration register (ADPC)). For details, see as follows. • 3. 4. 3. 1 Port mode registers (PMxx) • 3. 4. 3. 6 Port mode control registers (PMCxx) • 3. 4. 3. 7 A/D port configuration register (ADPC) For details of setting example, see 11. 3. 11 Registers controlling port function of analog input pins in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 167 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 11. 4 A/D converter conversion operations See 11. 4 A/D Converter Conversion Operations in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 5 Input voltage and conversion results See 11. 5 Input Voltage and Conversion Results in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 6 A/D converter operation modes See 11. 6 A/D Converter Operation Modes in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 7 A/D converter setup flowchart See 11. 7 A/D Converter Setup Flowchart in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 8 SNOOZE mode function See 11. 8 SNOOZE Mode Function in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 9 How to read A/D converter characteristics table See 11. 9 How to Read A/D Converter Characteristics Table in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 11. 10 Cautions for A/D converter See 11. 10 Cautions for A/D Converter in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 168 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12 Serial Array Unit Serial array unit 0 has four serial channels, and serial array unit 1 has two. Each channel can achieve 3-wire serial 2 (CSI), UART, and simplified I C communication. Function assignment of each channel supported by the RL78/G1E (64-pin products, 80-pin products) is as shown below. • 64-pin products Unit Channel Used as CSI Used as UART Used as Simplified I2C 0 0 CSI00 UART0 IIC00 1 − 2 − 3 − 0 − 1 1 − UART1 − − Note CSI21 UART2 − (LIN-bus supported) − Note Connected to the pins of the chip of analog block inside the package. • 80-pin products Unit Channel Used as CSI Used as UART Used as Simplified I2C 0 0 CSI00 UART0 IIC00 1 − 2 CSI10 3 − 0 CSI20 1 1 − UART1 IIC10 − Note CSI21 UART2 IIC20 (LIN-bus supported) − Note Connected to the pins of the chip of analog block inside the package. When “UART0” is used for channels 0 and 1 of unit 0, CSI00 cannot be used, but CSI10, UART1, or IIC10 of channel 2 or 3 can be used. Caution Most of the descriptions in this section use the units and channels of the 80-pin products as an example. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 169 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 1 Functions of serial array unit Each serial interface supported by the RL78/G1E (64-pin products, 80-pin products) has the following features. 3. 12. 1. 1 3-wire serial I/O (CSI00, CSI10, CSI20, CSI21) Data is transmitted or received in synchronization with the serial clock (SCK) output from the master channel. 3-wire serial communication is clocked communication performed by using three communication lines: one for the serial clock (SCK), one for transmitting serial data (SO), one for receiving serial data (SI). For details about the settings, see 3. 12. 5 Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) Communication. [Data transmission/reception] • Data length of 7 or 8 bits • Phase control of transmit/receive data • MSB/LSB first selectable • Level setting of transmit/receive data [Clock control] • Master/slave selection • Phase control of I/O clock • Setting of transfer period by prescaler and internal counter of each channel • Maximum transfer rate During master communication (CSI00): Max. fCLK/2 Note During master communication (other than CSI00): Max. fCLK/4 During slave communication: Max. fMCK/6 Note Note [Interrupt function] • Transfer end interrupt/buffer empty interrupt [Error detection flag] • Overrun error In addition, CSI00 of following channels supports the SNOOZE mode. When SCK input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible. Only CSI00 can be specified for asynchronous reception. Note Use the clocks within a range satisfying the SCK cycle time (tKCY) characteristics (see CHAPTER 5 ELECTRICAL SPECIFICATIONS). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 170 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 1. 2 UART (UART0 to UART2) This is a start-stop synchronization function using two lines: serial data transmission (TXD) and serial data reception (RXD) lines. By using these two communication lines, each data frame, which consist of a start bit, data, parity bit, and stop bit, is transferred asynchronously (using the internal baud rate) between the microcontroller and the other communication party. Full-duplex UART communication can be performed by using a channel dedicated to transmission (even-numbered channel) and a channel dedicated to reception (odd-numbered channel). The LIN-bus can be implemented by using timer array unit with an external interrupt (INTP0). For details about the settings, see 3. 12. 6 Operation of UART (UART0 to UART2) Communication. [Data transmission/reception] • Data length of 7, 8, or 9 bits Note • Select the MSB/LSB first • Level setting of transmit/receive data and select of reverse • Parity bit appending and parity check functions • Stop bit appending [Interrupt function] • Transfer end interrupt/buffer empty interrupt • Error interrupt in case of framing error, parity error, or overrun error [Error detection flag] • Framing error, parity error, or overrun error In addition, UARTs of following channels support the SNOOZE mode. When RxD input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible. Only UART0 can be specified for asynchronous reception. The LIN-bus is accepted in UART2 (0 and 1 channels of unit 1). [LIN-bus functions] • Wakeup signal detection • Sync break field (SBF) detection • Sync field measurement, baud rate calculation Using the external interrupt (INTP0) and timer array unit Note Only UART0 can be specified for the 9-bit data length. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 171 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 2 3. 12. 1. 3 Simplified I C (IIC00, IIC10, IIC20) This is a clocked communication function to communicate with two or more devices by using two lines: serial clock 2 (SCL) and serial data (SDA). This simplified I C is designed for single communication with a device such as EEPROM, flash memory, or A/D converter, and therefore, it functions only as a master. Make sure by using software, as well as operating the control registers, that the AC specifications of the start and stop conditions are observed. 2 For details about the settings, see 3. 12. 8 Operation of simplified I C (IIC00, IIC10, IIC20). [Data transmission/reception] • Master transmission, master reception (only master function with a single master) • ACK output function Note and ACK detection function • Data length of 8 bits (When an address is transmitted, the address is specified by the higher 7 bits, and the least significant bit is used for R/W control.) • Manual generation of start condition and stop condition [Interrupt function] • Transfer end interrupt [Error detection flag] • Parity error (ACK error), or overrun error 2 [Functions not supported by simplified I C] • Slave transmission, slave reception • Arbitration loss detection function • Wait detection functions Note When receiving the last data, ACK will not be output if 0 is written to the SOEmn bit (serial output enable register m (SOEm)) and serial communication data output is stopped. For details, see 3. 12. 8 Operation of 2 simplified I C (IIC00, IIC10, IIC20). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 172 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 2 Configuration of serial array unit The serial array unit includes the following hardware. Table 3-12. Configuration of Serial Array Unit Item Configuration Shift register 8 bits or 9 bitsNote 1 Buffer register Lower 8 bits or 9 bits of serial data register mn (SDRmn)Notes 1, 2 Serial clock I/O SCK00, SCK10, SCK20, SCK21 pins (for 3-wire serial I/O), SCL00, SCL10, SCL20, SCL21 pins (for simplified I2C) Serial data input SI00, SI10, SI20, SI21 pins (for 3-wire serial I/O), RxD0, RxD1 pins (for UART), RxD2 pin (for UART supporting LIN-bus) Serial data output SO00, SO10, SO20, SO21 pins (for 3-wire serial I/O), TxD0, TxD1 pins (for UART), TxD2 pin (for UART supporting LIN-bus), output controller Serial data I/O SDA00, SDA10, SDA20 pins (for simplified I2C) Control registers • Peripheral enable register 0 (PER0) • Serial clock select register m (SPSm) • Serial channel enable status register m (SEm) • Serial channel start register m (SSm) • Serial channel stop register m (STm) • Serial output enable register m (SOEm) • Serial output register m (SOm) • Serial output level register m (SOLm) • Serial standby control register m (SSCm) • Input switch control register (ISC) • Noise filter enable register 0 (NFEN0) • Serial data register mn (SDRmn) • Serial mode register mn (SMRmn) • Serial communication operation setting register mn (SCRmn) • Serial status register mn (SSRmn) • Serial flag clear trigger register mn (SIRmn) • Port input mode registers 0, 1 (PIM0, PIM1) • Port output mode registers 0, 1 (POM0, POM1) • Port mode registers 0, 1, 7 (PM0, PM1, PM7) • Port registers 0, 1, 7 (P0, P1, P7) (Notes and Remark are on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 173 RL78/G1E Notes 1. CHAPTER 3 MICROCONTROLLER BLOCK The number of bits used as the shift register and buffer register differs depending on the unit and channel. • mn = 00, 01: lower 9 bits • Other than above: lower 8 bits 2. The lower 8 bits of serial data register mn (SDRmn) can be read or written as the following SFR, depending on the communication mode. • CSIp communication … SIOp (CSIp data register) • UARTq reception … RXDq (UARTq receive data register) • UARTq transmission … TXDq (UARTq transmit data register) • IICr communication … SIOr (IICr data register) Remark m: Unit number (m = 0, 1) n: Channel number (n = 0 to 3) p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21) q: UART number (q = 0 to 2) r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 174 RL78/G1E Figure 3-9 shows the block diagram of the serial array unit 0. Figure 3-9. Block Diagram of Serial Array Unit 0 Serial output register 0 (SO0) 0 0 Peripheral enable register 0 (PER0) SAU0EN 0 0 CKO03 CKO02 CKO01 CKO00 0 0 0 0 PRS 013 PRS 012 PRS 011 PRS 003 PRS 010 PRS 002 4 PRS 001 PRS 000 SO00 SE03 SE02 SE01 SE00 SS03 SS02 SS01 SS00 Serial channel start register 0 (SS0) ST00 Serial channel stop register 0 (ST0) ST03 4 Noise filter enable register 0 (NFEN0) SO03 SO02 SO01 Serial clock select register 0 (SPS0) ST02 ST01 Serial channel enable status register 0 (SE0) SNFEN SNFEN 10 00 Serial standby control register 0 (SSC0) SSEC0 SWC0 Serial output SOE03 SOE02 SOE01 SOE00 enable register 0 (SOE0) fCLK Prescaler 0 0 SOL02 SOL00 Serial output level register 0 (SOL0) fCLK /20 to fCLK /211 fCLK/20 to fCLK/211 Selector Selector Serial data register 00 (SDR00) CK00 (Clock division setting block) Serial clock I/O pin (when CSI00: SCK00) (when IIC00: SCL00) Synchronous circuit Edge detection Output latch (P11 or P12) (Buffer register block) Serial data output pin (when CSI00: SO00) (when IIC00: SDA00) (when UART0: TXD0) fSCK fTCLK Shift register Output controller Interrupt controller Communication controller Mode selection CSI00 or IIC00 or UART0 (for transmission) Output latch (P10) Serial data input pin (when CSI00: SI00) (when IIC00: SDA00) (when UART0: RxD0) Synchronous circuit Noise elimination enabled/ disabled Edge/ level detection SNFEN00 CKS00 CCS00 STS00 MD002 MD001 Serial mode register 00 (SMR00) When UART0 TXE 00 RXE 00 DAP 00 CKP 00 EOC 00 PTC 001 PTC 000 DIR 00 SLC 001 SLC 000 Serial transfer end interrupt (when CSI00: INTCSI00) (when IIC00: INTIIC00) (when UART0: INTST0) Serial flag clear trigger register 00 (SIR00) PECT OVCT 00 00 Communication status PM10 PM11 or PM12 fMCK Clock controller CK01 Selector Channel 0 Selector CHAPTER 3 MICROCONTROLLER BLOCK Clear Error controller Error information DLS 001 Serial communication operation setting register 00 (SCR00) DLS 000 TSF 00 BFF 00 PEF 00 OVF 00 Serial status register 00 (SSR00) CK00 CK01 Channel 1 Communication controller Edge/level detection Selector Serial data I/O pin (when CSI10: SI10) (when IIC10: SDA10) (when UART1: RXD1) Channel 2 Synchronous circuit Serial transfer end interrupt (when UART0: INTSR0) Error controller Serial data output pin (when CSI10: SO10) (when IIC10: SDA10) (when UART1: TXD1) Communication controller Noise elimination enabled/ disabled Serial transfer error interrupt (INTSRE0) CK00 CK01 Serial clock I/O pin (when CSI10: SCK10) (when IIC10: SCL10) Mode selection UART0 (for reception) Edge/level detection Serial transfer end interrupt (when CSI10: INTCSI10) (when IIC10: INTIIC10) (when UART1: INTST1) Mode selection CSI10 or IIC10 or UART1 (for transmission) SNFEN10 CK01 When UART1 CK00 Channel 3 Communication controller Selector R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Edge/level detection Mode selection UART1 (for reception) Serial transfer end interrupt (when UART1: INTSR1) Error controller Serial transfer error interrupt (INTSRE1) 175 RL78/G1E Figure 3-10 shows the block diagram of the serial array unit 1. Figure 3-10. Block Diagram of Serial Array Unit 1 Serial output register 1 (SO1) 0 0 Peripheral enable register 0 (PER0) 0 0 1 CKO11 CKO10 1 0 0 0 0 Serial clock select register 1 (SPS1) PRS 113 SAU1EN PRS 112 PRS 111 PRS 110 PRS 103 PRS 101 PRS 102 4 PRS 100 4 fCLK 1 1 SO11 fCLK/20 to fCLK/211 Noise filter enable register 0 (NFEN0) SO10 Serial channel enable status register 1 (SE1) 0 0 SE11 SE10 0 0 SS11 SS10 Serial channel start register 1 (SS1) ST10 Serial channel stop register 1 (ST1) 0 0 0 0 0 0 ST11 SNFEN 20 Serial output SOE11 SOE10 enable register 1 (SOE1) Prescaler fCLK/20 to fCLK/211 0 SOL10 Serial output level register 1 (SOL1) Selector Selector Serial data register 10 (SDR10) CK10 (Clock division setting block) Serial clock I/O pin (when CSI20: SCK20) (when IIC20: SCL20) Synchronous circuit Edge detection Output latch (P14 or P13) (Buffer register block) Serial data output pin (when CSI20: SO20) (when IIC20: SDA20) (when UART2: TxD2) fSCK fTCLK Shift register Output controller Interrupt controller Communication controller Mode selection CSI20 or IIC20 or UART2 (for transmission) Output latch (P15) Serial data input pin (when CSI20: SI20) (when IIC20: SDA20) (when UART2: RxD2) Synchronous circuit Noise elimination enabled/ disabled Edge/ level detection SNFEN20 Serial flag clear trigger register 10 (SIR10) CKS10 CCS10 MD102 MD101 Serial mode register 10 (SMR10) Serial transfer end interrupt (when CSI20: INTCSI20) (when IIC20: INTIIC20) (when UART2: INTST2) PECT OVCT 10 10 Communication status PM15 PM14 or PM13 fMCK Clock controller CK11 Selector Channel 0 (LIN-bus supported) Selector CHAPTER 3 MICROCONTROLLER BLOCK Clear Error controller Error information TXE 10 RXE 10 DAP 10 When UART2 CKP 10 CK11 Serial clock I/O pin (when CSI21: SCK21) Serial data input pin (when CSI21: SI21) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 EOC 10 PTC 101 PTC 100 DIR 10 SLC 101 SLC 100 Serial communication operation setting register 10 (SCR10) Selector DLS 100 TSF 10 BFF 10 PEF 10 OVF 10 Serial status register 10 (SSR10) CK10 Serial data output pin (when CSI21: SO21) Channel 1 (LIN-bus supported) Synchronous circuit DLS 101 Communication controller Edge/level detection Mode selection CSI21 or UART2 (for reception) Serial transfer end interrupt (when CSI21: INTCSI21) (when UART2: INTSR2) Error controller Serial transfer error interrupt (INTSRE2) 176 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 2. 1 Shift register This is a 9-bit register that converts parallel data into serial data or vice versa. In case of the UART communication of nine bits of data, nine bits (bits 0 to 8) are used Note 1 . The shift register cannot be directly manipulated by program. During reception, it converts data input to the serial pin into parallel data, and stores to the lower 8/9 bits of the SDRmn register. When data is transmitted, the value transferred from the lower 8/9 bits of the SDRmn register to this register is output as serial data from the serial output pin. For details, see 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn). 8 7 6 5 4 3 2 1 0 Shift register 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn) The SDRmn register is the transmit/receive data register (16 bits) of channel n. Bits 8 to 0 of SDR00, SDR01 (lower 9 bits) or bits 7 to 0 of SDR02, SDR03, SDR10Note 1, and SDR11Note 1 (lower 8 bits) function as a transmit/receive buffer register, and bits 15 to 9 (higher 7 bits) are used as a register that sets the division ratio of the operation clock (fMCK). Remark For the function of the higher 7 bits of the SDRmn register, see 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). When data is received, parallel data converted by the shift register is stored in the lower 8/9 bits. When data is to be transmitted, set transmit to be transferred to the shift register to the lower 8/9 bits. The data stored in the lower 8/9 bits of this register is as follows, depending on the setting of bits 0 and 1 (DLSmn0, DLSmn1) of serial communication operation setting register mn (SCRmn), regardless of the output sequence of the data. • 7-bit data length (stored in bits 0 to 6 of SDRmn register) • 8-bit data length (stored in bits 0 to 7 of SDRmn register) Note 1 • 9-bit data length (stored in bits 0 to 8 of SDRmn register) The SDRmn register can be read or written in 16-bit units. The lower 8/9 bits of the SDRmn register can be read or written Note 2 as the following SFR, depending on the communication mode. • CSIp communication … SIOp (CSIp data register) • UARTq reception … RXDq (UARTq receive data register) • UARTq transmission … TXDq (UARTq transmit data register) • IICr communication … SIOr (IICr data register) The SDRmn register can be read or written in 16-bit units. Reset signal generation clears the SDRmn register to 0000H. Notes 1. 2. Only following UART0 can be specified for the 9-bit data length. Writing in 8-bit units is prohibited when the operation is stopped (SEmn = 0). Remarks 1. After data is received, “0” is stored in bits 0 to 8 in bit portions that exceed the data length. 2. m: Unit number (m = 0, 1) n: Channel number (n = 0 to 3) p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21) q: UART number (q = 0 to 2) r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 177 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Figure 3-11. Format of Serial Data Register mn (SDRmn) (mn = 00, 01, 02, 03, 10, 11) Address: FFF10H, FFF11H (SDR00), FFF12H, FFF13H (SDR01) After reset: 0000H R/W FFF44H, FFF45H (SDR02), FFF46H, FFF47H (SDR03), Note FFF48H, FFF49H (SDR10) Note , FFF4AH, FFF4BH (SDR11) FFF11H (SDR00) 15 14 13 12 11 FFF10H (SDR00) 10 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 SDRmn Shift register • For 9-bit data communication with UART0 (mn = 00, 01) Shift register Caution For 9-bit data communication, be sure to clear bit 8 of the SDRmn register to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 178 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 3 Registers controlling serial array unit The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 12. 3 Registers Controlling Serial Array Unit in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 1 Peripheral enable register 0 (PER0) Address: F00F0H After reset: 00H R/W Symbol 6 4 1 PER0 RTCEN 0 ADCEN 0 SAU1EN SAU0EN 0 TAU0EN SAU1EN 0 Control of serial array unit 1 input clock supply Stops input clock supply. • SFR used by the serial array unit 1 cannot be written. • The serial array unit 1 is in the reset status. 1 Enables input clock supply. • SFR used by the serial array unit 1 can be read/written. SAU0EN 0 Control of serial array unit 0 input clock supply Stops input clock supply. • SFR used by the serial array unit 0 cannot be written. • The serial array unit 0 is in the reset status. 1 Enables input clock supply. • SFR used by the serial array unit 0 can be read/written. Caution Be sure to clear bits 1, 4, and 6 to “0”. 3. 12. 3. 2 Serial clock select register m (SPSm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 2 Serial clock select register m (SPSm) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 179 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 3. 3 Serial mode register mn (SMRmn) • Setting of serial mode register mn (SMRmn) (1/2) Address: F0110H, F0111H (SMR00) - F0116H, F0117H (SMR03), After reset: 0020H R/W F0150H, F0151H (SMR10), F0152H, F0153H (SMR11) Symbol 15 14 13 12 11 10 9 8 7 6 SMRmn CKS CCS 0 0 0 0 0 STS 0 SIS mn Note mn mn CKSmn 5 4 3 2 1 0 1 0 0 MD MD MD mn2 mn1 mn0 Note mn0 Selection of operation clock (fMCK) of channel n 0 Operation clock CKm0 set by the SPSm register 1 Operation clock CKm1 set by the SPSm register Operation clock (fMCK) is used by the edge detector. In addition, depending on the setting of the CCSmn bit and the higher 7 bits of the SDRmn register, a transfer clock (fTCLK) is generated. CCSmn Selection of transfer clock (fTCLK) of channel n 0 Divided operation clock fMCK specified by the CKSmn bit 1 Clock input fSCK from the SCKp pin (slave transfer in CSI mode) Transfer clock fTCLK is used for the shift register, communication controller, output controller, interrupt controller, and error controller. When CCSmn = 0, the division ratio of operation clock (fMCK) is set by the higher 7 bits of the SDRmn register. STSmnNote Selection of start trigger source 0 Only software trigger is valid (selected for CSI, UART transmission, and simplified I2C). 1 Valid edge of the RXDq pin (selected for UART reception) Transfer is started when the above source is satisfied after 1 is set to the SSm register. Note The SMR01, SMR03, and SMR11 registers only. Caution Be sure to clear bits 13 to 9, 7, 4, and 3 (or bits 13 to 6, 4, and 3 for the SMR00, SMR02, or SMR10 register) to “0”. Be sure to set bit 5 to “1”. Remark m: Unit number (m = 0, 1) n: Channel number (n = 0 to 3) p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21) q: UART number (q = 0 to 2) r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 180 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • Setting of serial mode register mn (SMRmn) (2/2) Address: F0110H, F0111H (SMR00) - F0116H, F0117H (SMR03), After reset: 0020H R/W F0150H, F0151H (SMR10), F0152H, F0153H (SMR11) Symbol 15 14 13 12 11 10 9 SMRmn CKS CCS 0 0 0 0 0 mn 7 STS 0 mnNote mn SISmn0Note 0 8 6 5 4 3 2 1 0 SIS 1 0 0 MD MD MD mn2 mn1 mn0 mn0Note Controls inversion of level of receive data of channel n in UART mode Falling edge is detected as the start bit. The input communication data is captured as is. 1 Rising edge is detected as the start bit. The input communication data is inverted and captured. MDmn2 MDmn1 Setting of operation mode of channel n 0 0 CSI mode 0 1 UART mode 1 0 Simplified I2C mode 1 1 Setting prohibited MDmn0 Selection of interrupt source of channel n 0 Transfer end interrupt 1 Buffer empty interrupt (Occurs when data is transferred from the SDRmn register to the shift register.) For successive transmission, the next transmit data is written by setting the MDmn0 bit to 1 when SDRmn data has run out. Note The SMR01, SMR03, and SMR11 registers only. Caution Be sure to clear bits 13 to 9, 7, 4, and 3 (or bits 13 to 6, 4, and 3 for the SMR00, SMR02, or SMR10 register) to “0”. Be sure to set bit 5 to “1”. Remark m: Unit number (m = 0, 1) n: Channel number (n = 0 to 3) p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21) q: UART number (q = 0 to 2) r: IIC number (80-pin products: r = 00, 10, 20 64-pin products: r = 00) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 181 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 3. 4 Serial communication operation setting register mn (SCRmn) • Setting of serial communication operation setting register mn (SCRmn) (1/2) Address: F0118H, F0119H (SCR00) - F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11) Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SCR TXE RXE DAP CKP 0 EOC PTC PTC DIR 0 SLC SLC 0 1 DLS DLS mn mn mn mn mn mn mn1 mn0 mn mn1 mn0 mn1 mn0 Note 1 TXEmn RXEmn 0 0 Disable communication. 0 1 Reception only 1 0 Transmission only 1 1 Transmission/reception DAPmn CKPmn 0 0 Note 2 Setting of operation mode of channel n Selection of data and clock phase in CSI mode SCKp Type 1 SOp D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 SIp 0 SCKp 1 2 SOp SIp 1 SCKp 0 SOp 3 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 SIp 1 SCKp 1 SOp 4 SIp Be sure to set DAPmn, CKPmn = 0, 0 in the UART mode and simplified I2C mode. EOCmn Selection of masking of error interrupt signal (INTSREx (x = 0 to 2)) 0 Masks error interrupt INTSREx (INTSRx is not masked). 1 Enables generation of error interrupt INTSREx (INTSRx is masked if an error occurs). Set EOCmn = 0 in the CSI mode, simplified I2C mode, and during UART transmissionNote 3. Set EOCmn = 1 during UART reception. (Notes, Caution and Remark are on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 182 RL78/G1E Notes 1. CHAPTER 3 MICROCONTROLLER BLOCK The SCR00, SCR02, and SCR10 registers only. Others are fixed to 0. 2. The SCR00 and SCR01 registers only. Others are fixed to 1. 3. When using CSImn not with EOCmn = 0, error interrupt INTSRE0 may be generated. Caution Be sure to clear bits 3, 6, and 11 to “0”. Be sure to set bit 2 to “1”. Remark m: Unit number (m = 0, 1) n: Channel number (n = 0 to 3) p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 183 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • Setting of serial communication operation setting register mn (SCRmn) (2/2) Address: F0118H, F0119H (SCR00) - F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11) Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SCRmn TXE RXE DAP CKP 0 EOC PTC PTC DIR 0 SLC SLC 0 1 DLS DLS mn mn mn mn mn mn1 mn0 mn mn1 mn0 mn1 mn0 Note 1 PTCmn1 PTCmn0 Setting of parity bit in UART mode Transmission 0 0 Note 2 Reception Does not output the parity bit. Receives without parity Note 3 0 1 Outputs 0 parity 1 0 Outputs even parity. 1 1 Outputs odd parity. . No parity judgment Judged as even parity. Judges as odd parity. 2 Be sure to set PTCmn1, PTCmn0 = 0, 0 in the CSI mode and simplified I C mode. DIRmn Selection of data transfer sequence in CSI and UART modes 0 Inputs/outputs data with MSB first. 1 Inputs/outputs data with LSB first. Be sure to clear DIRmn = 0 in the simplified I2C mode. SLCmn1Note 1 SLCmn0 0 0 No stop bit 0 1 Stop bit length = 1 bit 1 0 Stop bit length = 2 bits (mn = 00, 02, 10 only) 1 1 Setting prohibited Setting of stop bit in UART mode When the transfer end interrupt is selected, the interrupt is generated when all stop bits have been completely transferred. Set 1 bit (SLCmn1, SLCmn0 = 0, 1) during UART reception and in the simplified I2C mode. Set no stop bit (SLCmn1, SLCmn0 = 0, 0) in the CSI mode. DLSmn1Note 2 DLSmn0 0 1 9-bit data length (stored in bits 0 to 8 of the SDRmn register) (settable in UART mode only) 1 0 7-bit data length (stored in bits 0 to 6 of the SDRmn register) 1 1 8-bit data length (stored in bits 0 to 7 of the SDRmn register) Other than above Setting of data length in CSI and UART modes Setting prohibited Be sure to set DLSmn1, DLSmn0 = 1, 1 in the simplified I2C mode. (Notes, Caution and Remark are on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 184 RL78/G1E Notes 1. CHAPTER 3 MICROCONTROLLER BLOCK The SCR00, SCR02, and SCR10 registers only. 2. The SCR00 and SCR01 registers only. Others are fixed to 1. 3. 0 is always added regardless of the data contents. Caution Be sure to clear bits 3, 6, and 11 to “0”. (Also clear bit 5 of the SCR01, SCR03, or SCR11 register to 0, as well as bit 1 of the SCR02, SCR03, SCR10, SCR11 registers). Be sure to set bit 2 to “1”. Remark m: Unit number (m = 0, 1) n: Channel number (n = 0 to 3) p: CSI number (80-pin products: p = 00, 10, 20, 21 64-pin products: p = 00, 21) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 185 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 5 Higher 7 bits of the serial data register mn (SDRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 6 Serial flag clear trigger register mn (SIRmn) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 6 Serial flag clear trigger register mn (SIRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 7 Serial status register mn (SSRmn) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 7 Serial status register mn (SSRmn) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 8 Serial channel start register m (SSm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 8 Serial channel start register m (SSm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 9 Serial channel stop register m (STm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 9 Serial channel stop register m (STm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 10 Serial channel enable status register m (SEm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 10 Serial channel enable status register m (SEm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 11 Serial output enable register m (SOEm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 11 Serial output enable register m (SOEm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 12 Serial output register m (SOm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 12 Serial output register m (SOm) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 186 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 3. 13 Serial output level register m (SOLm) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 13 Serial output level register m (SOLm) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 14 Serial standby control register 0 (SSC0) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 14 Serial standby control register 0 (SSC0) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 15 Input switch control register (ISC) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 15 Input switch control register (ISC) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 3. 16 Noise filter enable register 0 (NFEN0) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 12. 3. 16 Noise filter enable register 0 (NFEN0) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 187 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 3. 17 Registers controlling port functions of serial input/output pins Using the serial array unit requires setting of the registers that control the port functions multiplexed on the target channel (port mode register (PMxx), port register (Pxx), port input mode register (PIMxx), port output mode register (POMxx), port mode control register (PMCxx)). For details, see 3. 4. 3. 1 Port mode registers (PMxx), 3. 4. 3. 2 Port registers (Pxx), 3. 4. 3. 4 Port input mode registers (PIMxx), 3. 4. 3. 5 Port output mode registers (POMxx), and 3. 4. 3. 6 Port mode control registers (PMCxx). For details of setting example, see 12. 3. 17 Registers controlling port functions of serial Input/output pins in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 188 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 12. 4 Operation stop mode See 12. 4 Operation Stop Mode in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 5 Operation of 3-Wire serial I/O (CSI00, CSI10, CSI20, CSI21) communication See 12. 5 Operation of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21) Communication in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 6 Operation of UART (UART0 to UART2) communication See 12. 6 Operation of UART (UART0 to UART2) Communication in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 12. 7 LIN communication operation See 12. 7 LIN Communication Operation in RL78/G1A Hardware User’s Manual (R01UH0305E). 2 3. 12. 8 Operation of simplified I C (IIC00, IIC10, IIC20) communication 2 See 12. 8 Operation of Simplified I C (IIC00, IIC01, IIC10, IIC11, IIC20, IIC21) Communication in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 189 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 13 Serial Interface IICA Serial interface IICA is not provided in RL78/G1E (64-pin products, 80-pin products). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 190 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 14 Multiplier and Divider/Multiply-Accumulator See CHAPTER 14 MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 191 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 15 DMA Controller See CHAPTER 15 DMA CONTROLLER in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 192 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 16 Interrupt Functions The interrupt function switches the program execution to other processing. When the branch processing is finished, the program returns to the interrupted processing. The number of interrupt sources differs, depending on the product. Maskable External interrupts Internal 64-pin products 80-pin products 2 5 25 3. 16. 1 Interrupt function types The following two types of interrupt functions are used. (1) Maskable interrupts These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H). Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the default priority of vectored interrupt servicing. Default priority, see Table 3-13. A standby release signal is generated and STOP, HALT, and SNOOZE modes are released. External interrupt requests and internal interrupt requests are provided as maskable interrupts. (2) Software interrupt This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control. 3. 16. 2 Interrupt sources and configuration Interrupt sources include maskable interrupts and software interrupts. In addition, they also have up to seven reset sources (see Table 3-13). The vector codes that store the program start address when branching due to the generation of a reset or various interrupt requests are two bytes each, so interrupts jump to a 64 K address of 00000H to 0FFFFH. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 193 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-13. Interrupt Source List (1/3) 0004H External 0008H 80-pin Internal RL78/G1E 64-pin Watchdog timer intervalNote 3 Basic Configuration TypeNote 2 INTWDTI Trigger Vector Table Address Default PriorityNote 1 Maskable Name Internal/External Interrupt Type 0 Interrupt Source √ √ √ √ √ √ (A) (75% of overflow time + 1/2fIL) 1 INTLVI Voltage detectionNote 4 2 INTP0 Pin input edge detection 3 INTP1 000AH − √ 4 INTP2 000CH − √ 5 INTP3 000EH − − 6 INTP4 0010H − − 7 INTP5 0012H − − 8 9 INTST2/ UART2 transmission transfer end or buffer empty interrupt/ INTCSI20/ CSI20 transfer end or buffer empty interrupt/ INTIIC20 IIC20 transfer end INTSR2/ UART2 reception transfer end or buffer empty interrupt/ INTCSI21/ CSI21 transfer end or buffer empty interrupt/ 0006H Internal 0014H (B) (A) √ Note 5 √ 0016H √Note 6 √Note 6 INTIIC21 IIC21 transfer end 10 INTSRE2 UART2 reception communication error occurrence 0018H √ √ 11 INTDMA0 End of DMA0 transfer 001AH √ √ 12 INTDMA1 End of DMA1 transfer 001CH √ √ 13 INTST0/ UART0 transmission transfer end or buffer empty interrupt/ 001EH √ √ INTCSI00/ CSI00 transfer end or buffer empty interrupt/ INTIIC00 IIC00 transfer end INTSR0/ UART0 reception transfer end or buffer empty interrupt/ 0020H √Note 7 √Note 7 INTCSI01/ CSI01 transfer end or buffer empty interrupt/ INTIIC01 IIC01 transfer end INTSRE0 UART0 reception communication error occurrence 0022H √ √ INTTM01H End of timer channel 1 count or capture (at higher 8-bit √ √ 14 15 timer operation) Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 53 indicates the lowest priority. 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13. 3. When bit 7 (WDTINT) of the option byte (000C0H) is set to 1. 4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is cleared to 0. 5. INTST2 only. 6. INTSR2 and INTCSI21 only. 7. INTSR0 only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 194 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-13. Interrupt Source List (2/3) INTCSI10/ CSI10 transfer end or buffer empty interrupt/ INTIIC10 IIC10 transfer end INTSR1/ UART1 reception transfer end/ INTCSI11/ CSI11 transfer end or buffer empty interrupt/ INTIIC11 IIC11 transfer end INTSRE1 UART1 reception communication error occurrence INTTM03H End of timer channel 3 count or capture (at higher 8-bit Internal 80-pin UART1 transmission transfer end or buffer empty interrupt/ RL78/G1E 64-pin 18 INTST1/ Basic Configuration TypeNote 2 17 Trigger Vector Table Address Default PriorityNote 1 Maskable Name Internal/External Interrupt Type 16 Interrupt Source √Note 3 √ 0026H √Note 4 √Note 4 0028H √ √ √ √ 0024H (A) timer operation) 19 INTIICA0 End of IICA0 communication 002AH − − 20 INTTM00 End of timer channel 0 count or capture 002CH √ √ 21 INTTM01 End of timer channel 1 count or capture (at 16-bit/lower 8- 002EH √ √ bit timer operation) 22 INTTM02 End of timer channel 2 count or capture 0030H √ √ 23 INTTM03 End of timer channel 3 count or capture (at 16-bit/lower 8- 0032H √ √ bit timer operation) 24 INTAD End of A/D conversion 0034H √ √ 25 INTRTC Fixed-cycle signal of real-time clock/alarm match detection 0036H − − 26 INTIT Interval signal of 12-bit interval timer detection 0038H √ √ 27 INTKR Key return signal detection External 003AH (C) √ √ 28 INTTM04 End of timer channel 4 count or capture Internal 0042H (A) √ √ Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 39 indicates the lowest priority. 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13. 3. INTST1 only. 4. INTSR1 only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 195 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-13. Interrupt Source List (3/3) 30 INTTM06 End of timer channel 6 count or capture 31 INTTM07 End of timer channel 7 count or capture 32 INTP6 Pin input edge detection 33 INTP7 34 RL78/G1E 64-pin 80-pin Basic Configuration TypeNote 2 End of timer channel 5 count or capture Vector Table Address Default PriorityNote 1 Maskable INTTM05 Internal/External Interrupt Type 29 Interrupt Source √ √ 0046H √ √ 0048H √ √ − √ 004CH − − INTP8 004EH − − 35 INTP9 0050H − − 36 INTP10 0052H − − 37 INTP11 0054H − − 38 INTMD √ √ √ √ Name Trigger Internal External End of division operation/Overflow of multiplyaccumulation Internal 0044H 004AH 005EH (A) (B) (A) result occurs 39 INTFL Reserved Note 3 Software − BRK Execution of BRK instruction − 007EH (D) √ √ Reset − RESET RESET pin input − 0000H − √ √ POR Power-on-reset √ √ √ √ √ √ Notes 1. 0062H Note 4 LVD Voltage detection WDT Overflow of watchdog timer Note 5 TRAP Execution of illegal instruction √ √ IAW Illegal-memory access √ √ RAMTOP RAM parity error √ √ The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 39 indicates the lowest priority. 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 3-13. 3. Be used at the flash self programming library or the data flash library. 4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is set to 1. 5. When the instruction code in FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 196 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Figure 3-13. Basic Configuration of Interrupt Function (1/2) (a) Internal maskable interrupt Internal bus MK Interrupt request IE PR1 PR0 ISP1 ISP0 Vector table address generator Priority controller IF Standby release signal (b) External maskable interrupt (INTPn) Internal bus External interrupt edge enable register (EGP, EGN) INTPn pin input Edge detector MK IF IE PR1 PR0 Priority controller ISP1 ISP0 Vector table address generator Standby release signal IF: Interrupt request flag IE: Interrupt enable flag ISP0: In-service priority flag 0 ISP1: In-service priority flag 1 MK: Interrupt mask flag PR0: Priority specification flag 0 PR1: Priority specification flag 1 Remark 64-pin products: n = 0 80-pin products: n = 0 to 3, 6 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 197 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Figure 3-13. Basic Configuration of Interrupt Function (2/2) (c) External maskable interrupt (INTKR) Internal bus Key return mode register (KRM) KRn pin input MK Key interrupt detector IE PR1 PR0 Priority controller IF ISP1 ISP0 Vector table address generator Standby release signal (d) Software interrupt Internal bus Interrupt request IF: Interrupt request flag IE: Interrupt enable flag Vector table address generator ISP0: In-service priority flag 0 ISP1: In-service priority flag 1 MK: Interrupt mask flag PR0: Priority specification flag 0 PR1: Priority specification flag 1 Remark 64-pin products: n = 0 to 6 80-pin products: n = 0 to 7 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 198 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 16. 3 Registers controlling interrupt functions The following 6 types of registers are used to control the interrupt functions. • Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H) • Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) • Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) • External interrupt rising edge enable register (EGP0) • External interrupt falling edge enable register (EGN0) • Program status word (PSW) Table 3-14 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources. Table 3-14. Flags Corresponding to Interrupt Request Sources (1/4) Source Register INTWDTI WDTIIF IF0L Interrupt Mask Flag Priority Specification Flag Register WDTIMK MK0L Register RL78/G1E 80-pin Interrupt Request Flag 64-pin Interrupt WDTIPR0, WDTIPR1 PR00L, √ √ PR10L √ √ INTLVI LVIIF LVIMK LVIPR0, LVIPR1 INTP0 PIF0 PMK0 PPR00, PPR10 √ √ INTP1 PIF1 PMK1 PPR01, PPR11 − √ INTP2 PIF2 PMK2 PPR02, PPR12 − √ INTP3 PIF3 PMK3 PPR03, PPR13 − − INTP4 PIF4 PMK4 PPR04, PPR14 − − INTP5 PIF5 PMK5 PPR05, PPR15 − − INTST2Note 1 STIF2Note 1 Note 1 INTCSI20 IF0H Note 1 CSIIF20 STMK2Note 1 Note 1 CSIMK20 MK0H STPR02, STPR12Note 1 PR00H, √ √ CSIPR020, PR10H − √ − √ CSIPR120Note 1 INTIIC20Note 1 IICIF20Note 1 IICMK20Note 1 IICPR020, IICPR120Note 1 INTSR2Note 2 SRIF2Note 2 SRMK2Note 2 SRPR02, SRPR12Note 2 − √ INTCSI21Note 2 CSIIF21Note 2 CSIMK21Note 2 CSIPR021, √ √ − − CSIPR121Note 2 INTIIC21Note 2 IICIF21Note 2 IICMK21Note 2 IICPR021, Note 2 IICPR121 Notes 1. If one of the interrupt sources INTST2, INTCSI20, and INTIIC20 is generated, bit 0 of the IF0H register is set to 1. Bit 0 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources. 2. If one of the interrupt sources INTSR2, INTCSI21, and INTIIC21 is generated, bit 1 of the IF0H register is set to 1. Bit 1 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 199 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-14. Flags Corresponding to Interrupt Request Sources (2/4) Interrupt Interrupt Request Flag SREIF2 INTDMA0 IF0H DMAIF0 Register SREMK2 MK0H DMAMK0 Register SREPR02, PR00H, SREPR12 PR10H DMAPR00, RL78/G1E 80-pin INTSRE2 Register Priority Specification Flag 64-pin Source Interrupt Mask Flag √ √ √ √ √ √ √ √ √ √ √ √ √ √ − − − − √ √ √ √ DMAPR10 INTDMA1 DMAIF1 DMAMK1 DMAPR01, DMAPR11 Note 1 INTST0 Note 1 STIF0 Note 1 STMK0 STPR00, Note 1 STPR10 Note 1 INTCSI00 Note 1 CSIIF00 Note 1 CSIMK00 CSIPR000, Note 1 CSIPR100 Note 1 INTIIC00 Note 1 IICIF00 Note 1 IICMK00 IICPR000, IICPR100Note 1 INTSR0Note 2 SRIF0Note 2 SRMK0Note 2 SRPR00, SRPR10Note 2 INTCSI01Note 2 CSIIF01Note 2 CSIMK01Note 2 CSIPR001, Note 2 CSIPR101 Note 2 INTIIC01 Note 2 IICIF01 Note 2 IICMK01 IICPR001, Note 2 IICPR101 Note 3 INTSRE0 Note 3 SREIF0 Note 3 SREMK0 SREPR00, Note 3 SREPR10 Note 3 INTTM01H Note 3 TMIF01H Note 3 TMMK01H TMPR001H, Note 3 TMPR101H Notes 1. If one of the interrupt sources INTST0, INTCSI00, and INTIIC00 is generated, bit 5 of the IF0H register is set to 1. Bit 5 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources. 2. If one of the interrupt sources INTSR0, INTCSI01, and INTIIC01 is generated, bit 6 of the IF0H register is set to 1. Bit 6 of the MK0H, PR00H, and PR10H registers can be used for all three of these interrupt sources. 3. Do not use the error interrupt of UART0 reception and the interrupt of channel 1 of TAU0 (while the higher 8 bits are operating at a timer) at the same time because they share flags for the interrupt request sources. If the error interrupt of UART0 reception is not used (EOC01 = 0), UART0 and channel 1 of TAU0 (while the higher 8 bits are operating at a timer) can be used at the same time. If the interrupt source INTSRE0 or INTTM01H is generated, bit 7 of the IF0H register is set to 1. Bit 7 of the MK0H, PR00H, and PR10H registers can be used for both these interrupt sources. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 200 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-14. Flags Corresponding to Interrupt Request Sources (3/4) Interrupt Interrupt Request Flag STIF1Note 1 IF1L Register STMK1Note 1 MK1L Register PR01L, STPR01, Note 1 STPR11 Note 1 INTCSI10 Note 1 Note 1 CSIIF10 CSIMK10 RL78/G1E 80-pin INTST1Note 1 Register Priority Specification Flag 64-pin Source Interrupt Mask Flag √ √ − √ − √ √ √ − − − − √ √ √ √ − − √ √ √ √ √ √ √ √ PR11L CSIPR010, Note 1 CSIPR110 Note 1 INTIIC10 Note 1 Note 1 IICIF10 IICMK10 IICPR010, Note 1 IICPR110 Note 2 INTSR1 Note 2 Note 2 SRIF1 SRMK1 SRPR01, Note 2 SRPR11 Note 2 INTCSI11 Note 2 Note 2 CSIIF11 CSIMK11 CSIPR011, Note 2 CSIPR111 Note 2 INTIIC11 Note 2 Note 2 IICIF11 IICMK11 IICPR011, IICPR111Note 2 INTSRE1Note 3 SREIF1Note 3 SREMK1Note 3 SREPR01, SREPR11Note 3 INTTM03HNote 3 TMIF03HNote 3 TMMK03HNote 3 TMPR003H, Note 3 TMPR103H INTIICA0 IICAIF0 IICAMK0 IICAPR00, IICAPR10 INTTM00 TMIF00 TMMK00 TMPR000, TMPR100 INTTM01 TMIF01 TMMK01 TMPR001, TMPR101 INTTM02 TMIF02 TMMK02 TMPR002, TMPR102 INTTM03 TMIF03 TMMK03 TMPR003, TMPR103 INTAD INTRTC ADIF IF1H RTCIF ADMK RTCMK MK1H ADPR0, ADPR1 PR01H, √ √ RTCPR0, PR11H − − RTCPR1 INTIT ITIF ITMK ITPR0, ITPR1 √ √ INTKR KRIF KRMK KRPR0, KRPR1 √ √ INTTM04 TMIF04 TMMK04 TMPR004, √ √ TMPR104 (Notes are on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 201 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Notes 1. If one of the interrupt sources INTST1, INTCSI10, and INTIIC10 is generated, bit 0 of the IF1L register is set to 1. Bit 0 of the MK1L, PR01L, and PR11L registers can be used for all three of these interrupt sources. 2. If one of the interrupt sources INTSR1, INTCSI11, and INTIIC11 is generated, bit 1 of the IF1L register is set to 1. Bit 1 of the MK1L, PR01L, and PR11L registers can be used for all three of these interrupt sources. 3. Do not use the error interrupt of UART1 reception and the interrupt of channel 3 of TAU0 (while the higher 8 bits are operating at a timer) at the same time because they share flags for the interrupt request sources. If the error interrupt of UART1 reception is not used (EOC03 = 0), UART1 and channel 3 of TAU0 (while the higher 8 bits are operating at a timer) can be used at the same time. If the interrupt source INTSRE1 or INTTM03H is generated, bit 2 of the IF1L register is set to 1. Bit 2 of the MK1L, PR01L, and PR11L registers can be used for both these interrupt sources. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 202 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-14. Flags Corresponding to Interrupt Request Sources (4/4) Interrupt Interrupt Request Flag INTTM06 TMIF05 IF2L TMIF06 Register TMMK05 MK2L TMMK06 Register TMPR005, PR02L, TMPR105 PR12L TMPR006, RL78/G1E 80-pin INTTM05 Register Priority Specification Flag 64-pin Source Interrupt Mask Flag √ √ √ √ √ √ TMPR106 INTTM07 TMIF07 TMMK07 TMPR007, TMPR107 INTP6 PIF6 PMK6 PPR06, PPR16 − √ INTP7 PIF7 PMK7 PPR07, PPR17 − − INTP8 PIF8 PMK8 PPR08, PPR18 − − INTP9 PIF9 PMK9 PPR09, PPR19 − − INTP10 PIF10 PMK10 PPR010, − − − − √ √ √ √ PPR110 INTP11 INTMD PIF11 MDIF IF2H PMK11 MDMK MK2H PPR011, PR02H, PPR111 PR12H MDPR0, MDPR1 INTFL FLIF FLMK FLPR0, FLPR1 The bit settings which are different from that of RL78/G1A (64-pin products) are shown on the next page. For details of each register, see 16. 3 Registers Controlling Interrupt Functions in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 203 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 16. 3 Registers Controlling Interrupt Functions in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 16. 3. 1 Interrupt request flag register (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H) • 64-pin products Address: FFFE0H After reset: 00H R/W Symbol 6 5 4 3 IF0L 0 0 0 0 0 PIF0 LVIIF WDTIIF Address: FFFE1H After reset: 00H R/W Symbol IF0H TMIF01H SRIF0 STIF0 DMAIF1 DMAIF0 SREIF2 SRIF2 STIF2 SREIF0 CSIIF00 CSIIF21 IICIF00 Address: FFFE2H After reset: 00H R/W Symbol 3 IF1L TMIF03 TMIF02 TMIF01 TMIF00 0 SREIF1 SRIF1 STIF1 TMIF03H Address: FFFE3H After reset: 00H R/W Symbol 6 5 4 1 IF1H TMIF04 0 0 0 KRIF ITIF 0 ADIF Address: FFFD0H After reset: 00H R/W Symbol 7 6 5 4 3 IF2L 0 0 0 0 0 TMIF07 TMIF06 TMIF05 Address: FFFD1H After reset: 00H R/W Symbol 6 4 3 2 1 0 IF2H FLIF 0 MDIF 0 0 0 0 0 Cautions 1. Be sure to clear bits 3 to 7 of the IF0L register to “0”. 2. Be sure to clear bit 3 of the IF1L register to “0”. 3. Be sure to clear bits 1 and 4 to 6 of the IF1H register to “0”. 4. Be sure to clear bits 3 to 7 of the IF2L register to “0”. 5. Be sure to clear bits 0 to 4 and 6 of the IF2H register to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 204 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • 80-pin products Address: FFFE0H After reset: 00H R/W Symbol 7 6 5 IF0L 0 0 0 PIF2 PIF1 PIF0 LVIIF WDTIIF STIF0 DMAIF1 DMAIF0 SREIF2 Address: FFFE1H After reset: 00H Symbol IF0H TMIF01H SRIF0 R/W SREIF0 CSIIF00 SRIF2 STIF2 CSIIF21 CSIIF20 IICIF00 Address: FFFE2H After reset: 00H IICIF20 R/W Symbol 3 IF1L TMIF03 TMIF02 TMIF01 TMIF00 0 SREIF1 SRIF1 TMIF03H STIF1 CSIIF10 IICIF10 Address: FFFE3H After reset: 00H R/W Symbol 6 5 4 1 IF1H TMIF04 0 0 0 KRIF ITIF 0 ADIF Address: FFFD0H After reset: 00H R/W Symbol 7 6 5 4 IF2L 0 0 0 0 PIF6 TMIF07 TMIF06 TMIF05 Address: FFFD1H After reset: 00H R/W Symbol 6 4 3 2 1 0 IF2H FLIF 0 MDIF 0 0 0 0 0 Cautions 1. Be sure to clear bits 5 to 7 of the IF0L register to “0”. 2. Be sure to clear bit 3 of the IF1L register to “0”. 3. Be sure to clear bits 1 and 4 to 6 of the IF1H register to “0”. 4. Be sure to clear bits 4 to 7 of the IF2L register to “0”. 5. Be sure to clear bits 0 to 4 and 6 of the IF2H register to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 205 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 16. 3. 2 Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) • 64-pin products Address: FFFE4H After reset: FFH R/W Symbol 7 6 5 4 3 MK0L 1 1 1 1 1 PMK0 LVIMK WDTIMK Address: FFFE5H After reset: FFH R/W Symbol MK0H TMMK01H SRMK0 STMK0 DMAMK1 DMAMK0 SREMK2 SRMK2 STMK2 SREMK0 CSIMK00 CSIMK21 IICMK00 Address: FFFE6H After reset: FFH R/W Symbol 3 MK1L TMMK03 TMMK02 TMMK01 TMMK00 1 SREMK1 SRMK1 STMK1 TMMK03H Address: FFFE7H After reset: FFH R/W Symbol 6 5 4 1 MK1H TMMK04 1 1 1 KRMK ITMK 1 ADMK Address: FFFD4H After reset: FFH R/W Symbol 7 6 5 4 3 MK2L 1 1 1 1 1 TMMK07 TMMK06 TMMK05 Address: FFFD5H After reset: FFH R/W Symbol 6 4 3 2 1 0 MK2H FLMK 1 MDMK 1 1 1 1 1 Cautions 1. Be sure to set bits 3 to 7 of the MK0L register to “1”. 2. Be sure to set bit 3 of the MK1L register to “1”. 3. Be sure to set bits 1 and 4 to 6 of the MK1H register to “1”. 4. Be sure to set bits 3 to 7 of the MK2L register to “1”. 5. Be sure to set bits 0 to 4 and 6 of the MK2H register to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 206 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • 80-pin products Address: FFFE4H After reset: FFH R/W Symbol 7 6 5 MK0L 1 1 1 PMK2 PMK1 PMK0 LVIMK WDTIMK STMK0 DMAMK1 DMAMK0 SREMK2 Address: FFFE5H After reset: FFH R/W Symbol MK0H TMMK01H SRMK0 SREMK0 CSIMK00 SRMK2 STMK2 CSIMK21 CSIMK20 IICMK00 Address: FFFE6H After reset: FFH IICMK20 R/W Symbol 3 MK1L TMMK03 TMMK02 TMMK01 TMMK00 1 SREMK1 SRMK1 TMMK03H STMK1 CSIMK10 IICMK10 Address: FFFE7H After reset: FFH R/W Symbol 6 5 4 1 MK1H TMMK04 1 1 1 KRMK ITMK 1 ADMK Address: FFFD4H After reset: FFH R/W Symbol 7 6 5 4 MK2L 1 1 1 1 PMK6 TMMK07 TMMK06 TMMK05 Address: FFFD5H After reset: FFH R/W Symbol 6 4 3 2 1 0 MK2H FLMK 1 MDMK 1 1 1 1 1 Cautions 1. Be sure to set bits 5 to 7 of the MK0L register to “1”. 2. Be sure to set bit 3 of the MK1L register to “1”. 3. Be sure to set bits 1 and 4 to 6 of the MK1H register to “1”. 4. Be sure to set bits 4 to 7 of the MK2L register to “1”. 5. Be sure to set bits 0 to 4 and 6 of the MK2H register to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 207 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 16. 3. 3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, PR02L, PR02H) • 64-pin products Address: FFFE8H After reset: FFH R/W Symbol 7 6 5 4 3 PR00L 1 1 1 1 1 PPR00 LVIPR0 WDTIPR0 Address: FFFECH After reset: FFH R/W Symbol 7 6 5 4 3 PR10L 1 1 1 1 1 PPR10 LVIPR1 WDTIPR1 STPR00 DMAPR01 DMAPR00 SREPR02 SRPR02 STPR02 Address: FFFE9H After reset: FFH R/W Symbol PR00H TMPR001H SRPR00 SREPR00 CSIPR000 CSIPR021 IICPR00 Address: FFFEDH After reset: FFH R/W Symbol PR10H TMPR101H SRPR10 SREPR10 STPR10 DMAPR11 DMAPR10 SREPR12 CSIPR100 SRPR12 STPR12 CSIPR121 IICPR100 Address: FFFEAH After reset: FFH R/W Symbol 3 PR01L TMPR003 TMPR002 TMPR001 TMPR000 1 SREPR01 SRPR01 STPR01 TMPR003H Address: FFFEEH After reset: FFH R/W Symbol 3 PR11L TMPR103 TMPR102 TMPR101 TMPR100 1 SREPR11 SRPR11 STPR11 TMPR103H Address: FFFEBH After reset: FFH R/W Symbol 6 5 4 1 PR01H TMPR004 1 1 1 KRPR0 ITPR0 1 ADPR0 Address: FFFEFH After reset: FFH R/W Symbol 6 5 4 1 PR11H TMPR104 1 1 1 KRPR1 ITPR1 1 ADPR1 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 208 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Address: FFFD8H After reset: FFH R/W Symbol 7 6 5 4 3 PR02L 1 1 1 1 1 TMPR007 TMPR006 TMPR005 Address: FFFDCH After reset: FFH R/W Symbol 7 6 5 4 3 PR12L 1 1 1 1 1 TMPR107 TMPR106 TMPR105 Address: FFFD9H After reset: FFH R/W Symbol 6 4 3 2 1 0 PR02H FLPR0 1 MDPR0 1 1 1 1 1 Address: FFFDDH After reset: FFH R/W Symbol 6 4 3 2 1 0 PR12H FLPR1 1 MDPR1 1 1 1 1 1 Cautions 1. Be sure to set bits 3 to 7 of the PR00L register to “1”. 2. Be sure to set bits 3 to 7 of the PR10L register to “1”. 3. Be sure to set bit 3 of the PR01L register to “1”. 4. Be sure to set bit 3 of the PR11L register to “1”. 5. Be sure to set bits 1 and 4 to 6 of the PR01H register to “1”. 6. Be sure to set bits 1 and 4 to 6 of the PR11H register to “1”. 7. Be sure to set bits 3 to 7 of the PR02L register to “1”. 8. Be sure to set bits 3 to 7 of the PR12L register to “1”. 9. Be sure to set bits 0 to 4 and 6 of the PR02H register to “1”. 10. Be sure to set bits 0 to 4 and 6 of the PR12H register to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 209 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK • 80-pin products Address: FFFE8H After reset: FFH R/W Symbol 7 6 5 PR00L 1 1 1 PPR02 PPR01 PPR00 LVIPR0 WDTIPR0 Address: FFFECH After reset: FFH R/W Symbol 7 6 5 4 PR10L 1 1 1 PPR12 PPR11 PPR10 LVIPR1 WDTIPR1 Address: FFFE9H After reset: FFH R/W Symbol PR00H TMPR001H SRPR00 STPR00 DMAPR01 DMAPR00 SREPR02 SRPR02 STPR02 CSIPR021 CSIPR020 SREPR00 IICPR000 IICPR020 Address: FFFEDH After reset: FFH R/W Symbol PR10H TMPR101H SRPR10 STPR10 DMAPR11 DMAPR10 SREPR12 SRPR12 STPR12 CSIPR121 CSIPR120 SREPR10 CSIPR100 IICPR100 Address: FFFEAH After reset: FFH IICPR120 R/W Symbol 3 PR01L TMPR003 TMPR002 TMPR001 TMPR000 1 SREPR01 SRPR01 STPR01 TMPR003H CSIPR010 IICPR010 Address: FFFEEH After reset: FFH R/W Symbol 3 PR11L TMPR103 TMPR102 TMPR101 TMPR100 1 SREPR11 SRPR11 STPR11 TMPR103H CSIPR110 IICPR110 Address: FFFEBH After reset: FFH R/W Symbol 6 5 4 1 PR01H TMPR004 1 1 1 KRPR0 ITPR0 1 ADPR0 Address: FFFEFH After reset: FFH R/W Symbol 6 5 4 1 PR11H TMPR104 1 1 1 KRPR1 ITPR1 1 ADPR1 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 210 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Address: FFFD8H After reset: FFH R/W Symbol 7 6 5 4 PR02L 1 1 1 1 PPR06 TMPR007 TMPR006 TMPR005 Address: FFFDCH After reset: FFH R/W Symbol 7 6 5 4 PR12L 1 1 1 1 PPR16 TMPR107 TMPR106 TMPR105 Address: FFFD9H After reset: FFH R/W Symbol 6 4 3 2 1 0 PR02H FLPR0 1 MDPR0 1 1 1 1 1 Address: FFFDDH After reset: FFH R/W Symbol 6 4 3 2 1 0 PR12H FLPR1 1 MDPR1 1 1 1 1 1 Cautions 1. Be sure to set bits 5 to 7 of the PR00L register to “1”. 2. Be sure to set bits 5 to 7 of the PR10L register to “1”. 3. Be sure to set bit 3 of the PR01L register to “1”. 4. Be sure to set bit 3 of the PR11L register to “1”. 5. Be sure to set bits 1 and 4 to 6 of the PR01H register to “1”. 6. Be sure to set bits 1 and 4 to 6 of the PR11H register to “1”. 7. Be sure to set bits 4 to 7 of the PR02L register to “1”. 8. Be sure to set bits 4 to 7 of the PR12L register to “1”. 9. Be sure to set bits 4 to 7 of the PR02H register to “1”. 10. Be sure to set bits 0 to 4 and 6 of the PR12H register to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 211 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 16. 3. 4 External interrupt rising edge enable register (EGP0), External interrupt falling edge enable register (EGN0) • 64-pin products Address: FFF38H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 EGP0 0 0 0 0 0 0 0 EGP0 Address: FFF39H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 EGN0 0 0 0 0 0 0 0 EGN0 • 80-pin products Address: FFF38H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 EGP0 0 EGP6 0 0 0 EGP2 EGP1 EGP0 Address: FFF39H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 EGN0 0 EGN6 0 0 0 EGN2 EGN1 EGN0 Table 3-15 shows the ports corresponding to the EGPn and EGNn bits. Table 3-15. Ports Corresponding to EGPn and EGNn Bits RL78/G1E Detection Enable Bit Edge Detection Port Interrupt Request Signal 64-pin 80-pin EGP0 EGN0 P137 INTP0 √ √ EGP1 EGN1 P50 INTP1 − √ EGP2 EGN2 P51 INTP2 − √ EGP6 EGN6 P140 INTP6 − √ Caution Select the port mode by clearing the EGPn and EGNn bits to 0 because an edge may be detected when the external interrupt function is switched to the port function. Remark n = 0 to 2, 6 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 212 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 16. 3. 5 Program status word (PSW) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 16. 3. 5 Program status word (PSW) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 16. 4 Interrupt servicing operations See 16. 4 Interrupt Servicing Operations in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 213 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 17 Key Interrupt Function The number of key interrupt input channels differs, depending on the product. 64-pin products 80-pin products 4 ch (7 ch) 4 ch (8 ch) Key interrupt input channels Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). 2. Most of the following descriptions in this section use the case of 80-pin products as an example. 3. 17. 1 Functions of key interrupt A key interrupt (INTKR) can be generated by inputting a rising/falling edge to the key interrupt input pins (KR0 to KR7). There are two ways to identify the channel(s) to which a valid edge has been input: • Identify the channel(s) (KR0 to KR7) by using the port input level. • Identify the channel(s) (KR0 to KR5) by using the key interrupt flag. Table 3-16. Assignment of Key Interrupt Detection Pins Key Interrupt Pins Key return mode register (KRM0) Key return flag register (KRF) KR0 KRM00 KRF0 KR1 KRM01 KRF1 KR2 KRM02 KRF2 KR3 KRM03 KRF3 KR4 KRM04 KRF4 KR5 KRM05 KRF5 KR6 KRM06 − KR7 KRM07 − Remark KR0 to KR3 (KR0 to KR6): 64-pin products KR0 to KR3 (KR0 to KR7): 80-pin products Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 214 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 17. 2 Configuration of key interrupt The key interrupt includes the following hardware. Table 3-17. Configuration of Key Interrupt Item Control register Configuration Key interrupt control register (KRCTL) Key interrupt mode control register 0 (KRM0) Key interrupt flag register (KRF) Port mode registers 0, 1, 2, 7 (PM0, PM1, PM2, PM7) Peripheral I/O redirection register (PIOR) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 215 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Figure 3-14. Block Diagram of Key Interrupt 0 0 KR0 1 KRF0 KREG 1 KRM00 KRMD 0 0 KR1 1 KRF1 1 KRF2 1 KRF3 1 KRM01 KREG KRMD 0 0 KR2 1 KREG KRM02 KRMD 0 0 KR3 1 KRM03 KREG INTKR KRMD 0 0 KR4 1 KREG KRF4 1 KRM04 KRMD 0 KR5 0 1 KRF5 KREG 1 KRM05 KRMD 0 KR6 1 KREG KRM06 0 KR7 1 KREG KRM07 Remark KR0 to KR3 (KR0 to KR6): 64-pin products KR0 to KR3 (KR0 to KR7): 80-pin products Functions in parentheses can be assigned via settings in the peripheral I/O redirection register (PIOR) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 216 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 17. 3 Register controlling key interrupt The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 17. 3 Register Controlling Key Interrupt in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 17. 3. 1 Key return control register (KRCTL) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 17. 3. 1 Key return control register (KRCTL) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 17. 3. 2 Key return mode register 0 (KRM0) (1) 64-pin products Address: FFF37H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 KRM0 0 KRM06 KRM05 KRM04 KRM03 KRM02 KRM01 KRM00 Caution Be sure to clear bit 7 of the KRM0 register to “0”. (2) 80-pin products Address: FFF37H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 KRM0 KRM07 KRM06 KRM05 KRM04 KRM03 KRM02 KRM01 KRM00 3. 17. 3. 3 Key return flag register (KRF) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 17. 3. 3 Key return flag register (KRF) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 217 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 17. 3. 4 Port mode registers 0 to 2, 7 (PM0 to PM2, PM7) (1) 64-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PM0 1 PM06 PM05 PM04 PM03 PM02 PM01 PM00 FFF20H FFH R/W PM1 1 PM16 1 PM14 PM13 PM12 PM11 PM10 FFF21H FFH R/W PM2 PM27 PM26 PM25 PM24 PM23 PM22 PM21 PM20 FFF22H FFH R/W PM7 PM77 PM76 PM75 PM74 PM73 PM72 PM71 PM70 FFF27H FFH R/W Cautions 1. Be sure to clear bits 4 to 6 of the PM0 register, bit 6 of the PM1 register, bits 4 to 7 of the PM2 register, bits 4 to 7 of the PM7 register to “0”. 2. Be sure to set bit 7 of the PM0 register, bits 5 and 7 of the PM1 register to “1”. (2) 80-pin products Symbol 7 6 5 4 3 2 1 0 Address After Reset R/W PM0 1 PM06 PM05 PM04 PM03 PM02 PM01 PM00 FFF20H FFH R/W PM1 1 PM16 PM15 PM14 PM13 PM12 PM11 PM10 FFF21H FFH R/W PM2 PM27 PM26 PM25 PM24 PM23 PM22 PM21 PM20 FFF22H FFH R/W PM7 PM77 PM76 PM75 PM74 PM73 PM72 PM71 PM70 FFF27H FFH R/W Cautions 1. Be sure to clear bits 5 and 6 of the PM0 register, bit 6 of the PM1 register, bits 5 to 7 of the PM2 register, bits 4 to 7 of the PM7 register to “0”. 2. Be sure to set bit 7 of the PM0 register, bit 7 of the PM1 register to “1”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 218 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 17. 3. 5 Peripheral I/O redirection register (PIOR) Address: F0077H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 PIOR 0 0 0 0 0 0 PIOR1 PIOR0 Function 64-pin products 80-pin products Setting value of PIOR1, PIOR0 Setting value of PIOR1, PIOR0 0, 0 0, 1 1, 0 1, 1 0, 0 0, 1 1, 0 1, 1 KR0 P70 Setting P00 P10 P70 Setting P00 P10 KR1 P71 prohibited P01 P11 P71 prohibited P01 P11 KR2 P72 P02 P12 P72 P02 P12 KR3 P73 P03 P13 P73 P03 P13 KR4 − − P14 − P04 P14 KR5 − P22 − − P22 P15 KR6 − P23 − − P23 − KR7 − − − − P24 − 3. 17. 4 Key interrupt operation See 17. 4 Key Interrupt Operation in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 219 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 18 Standby Function See CHAPTER 18 STANDBY FUNCTION in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 220 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 19 Reset Function See CHAPTER 19 RESET FUNCTION in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 221 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 20 Power-On-Reset Circuit See CHAPTER 20 POWER-ON-RESET CIRCUIT in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 222 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 21 Voltage Detector 3. 21. 1 Functions of voltage detector The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H). The voltage detector (LVD) has the following functions. • The LVD circuit compares the supply voltage (VDD) with the detection voltage (VLVDH, VLVDL, VLVD), and generates an internal reset or interrupt request signal. • The detection level for the power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 3 levels (For details, see 3. 24 Option Byte). • Operable in STOP mode. • After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detector or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H). (a) Interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0) The two detection voltages (VLVDH, VLVDL) are selected by the option byte 000C1H. The high-voltage detection level (VLVDH) is used for releasing resets and generating interrupts. The low-voltage detection level (VLVDL) is used for generating resets. (b) Reset mode (option byte LVIMDS1, LVIMDS0 = 1, 1) The detection voltage (VLVD) selected by the option byte 000C1H is used for generating/releasing resets. (c) Interrupt mode (option byte LVIMDS1, LVIMDS0 = 0, 1) The detection voltage (VLVD) selected by the option byte 000C1H is used for releasing resets/generating interrupts. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 223 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK The reset and internal interrupt signals are generated in each mode as follows. Interrupt & reset mode Reset mode Interrupt mode (LVIMDS1, LVIMDS0 = 1, 0) (LVIMDS1, LVIMDS0 = 1, 1) (LVIMDS1, LVIMDS0 = 0, 1) Generates an interrupt request signal by Releases an internal reset by detecting Releases an internal reset by detecting detecting VDD < VLVDH when the operating VDD ≥ VLVD. VDD ≥ VLVD at power on after the first voltage falls, and an internal reset by Generates an interrupt request signal by release of the POR. detecting VDD < VLVDL. detecting VDD < VLVD. Generates an interrupt request signal by Releases an internal reset by detecting detecting VDD < VLVD or VDD ≥ VLVD at VDD ≥ VLVDH. power on after the second release of the POR. While the voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)). Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see 3. 19 Reset Function. 3. 21. 2 Configuration of voltage detector The block diagram of the voltage detector is shown in Figure 3-15. Figure 3-15. Block Diagram of Voltage Detector VDD VDD Controller Internal reset signal + VLVDH VLVDL/VLVD Selector Voltage detection level selector N-ch Option byte (000C1H) LVIS1, LVIS0 − INTLVI Reference voltage source LVIF LVIOMSK LVISEN Option byte (000C1H) VPOC2 to VPOC0 Voltage detection register (LVIM) LVIMD LVILV Voltage detection level register (LVIS) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 224 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 21. 3 Registers controlling voltage detector The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. For details of each register, see 21. 3 Registers Controlling Voltage Detector in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 21. 3. 1 Voltage detection register (LVIM) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 21. 3. 1 Voltage detection register (LVIM) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 21. 3. 2 Voltage detection level register (LVIS) The bit setting is same as that of RL78/G1A (64-pin products). For details, see 21. 3. 2 Voltage detection level register (LVIS) in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 225 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Format of User Option Byte (000C1H/010C1H) (1/2) Address: 000C1H/010C1HNote 7 6 5 4 3 2 1 0 VPOC2 VPOC1 VPOC0 1 LVIS1 LVIS0 LVIMDS1 LVIMDS0 • LVD setting (interrupt & reset mode) Detection voltage VLVDH Option byte setting value VLVDL VPOC2 VPOC1 VPOC0 LVIS1 LVIS0 Rising Falling Falling edge edge edge 3.13 3.06 1.84 0 0 1 0 0 3.75 3.67 2.45 0 1 0 0 0 4.06 3.98 2.75 0 1 1 0 0 – Mode setting LVIMDS1 LVIMDS0 1 0 Value other than above is setting prohibited. • LVD setting (reset mode) Detection voltage VLVDH Option byte setting value VPOC2 VPOC1 VPOC0 LVIS1 LVIS0 Rising Falling edge edge 3.13 3.06 0 0 1 0 0 3.75 3.67 0 1 0 0 0 4.06 3.98 0 1 1 0 0 – Mode setting LVIMDS1 LVIMDS0 1 1 Value other than above is setting prohibited. Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H. Remarks 1. For details on the LVD circuit, see 3. 21 Voltage Detector. 2. The detection voltage is a TYP. value. For details, see 5. 2. 5. 4 LVD circuit characteristics. (Cautions are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 226 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Format of User Option Byte (000C1H/010C1H) (2/2) Address: 000C1H/010C1HNote 7 6 5 4 3 2 1 0 VPOC2 VPOC1 VPOC0 1 LVIS1 LVIS0 LVIMDS1 LVIMDS0 • LVD setting (interrupt mode) Detection voltage Option byte setting value VLVDH VPOC2 VPOC1 VPOC0 LVIS1 LVIS0 Rising Falling edge edge 3.13 3.06 0 0 1 0 0 3.75 3.67 0 1 0 0 0 4.06 3.98 0 1 1 0 0 – Mode setting LVIMDS1 LVIMDS0 0 1 Value other than above is setting prohibited. • LVD off (use of external reset input via RESET pin) Detection voltage Option byte setting value VLVD VPOC2 Rising Falling edge edge − − – 1 VPOC1 × VPOC0 × LVIS1 × LVIS0 × Mode setting LVIMDS1 LVIMDS0 × 1 Value other than above is setting prohibited. Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H. Cautions1. 2. Set bit 4 to 1. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detector or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H). Remarks 1. ×: don’t care 2. For details on the LVD circuit, see 3. 21 Voltage Detector. 3. The detection voltage is a TYP. value. For details, see 5. 2. 5. 4 LVD circuit characteristics. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 227 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 21. 4 Operation of voltage detector See 21. 4 Operation of Voltage Detector in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 21. 5 Cautions for voltage detector See 21. 5 Cautions for Voltage Detector in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 228 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 22 Safety Functions 3. 22. 1 Overview of safety functions The following safety functions are provided in the RL78/G1E to comply with the IEC60730 and IEC61508 safety standards. These functions enable the microcontroller to self-diagnose abnormalities and stop operating if an abnormality is detected. (1) Flash memory CRC operation function (high-speed CRC, general-purpose CRC) This detects data errors in the flash memory by performing CRC operations. Two CRC functions are provided in the RL78/G1E that can be used according to the application or purpose of use. • High-speed CRC: The CPU can be stopped and a high-speed check executed on its entire code flash memory area during the initialization routine. • General CRC: This can be used for checking various data in addition to the code flash memory area while the CPU is running. (2) RAM parity error detection function This detects parity errors when reading RAM data. (3) RAM guard function This prevents RAM data from being rewritten when the CPU freezes. (4) SFR guard function This prevents SFRs from being rewritten when the CPU freezes. (5) Invalid memory access detection function This detects illegal accesses to invalid memory areas (such as areas where no memory is allocated and areas to which access is restricted). (6) Frequency detection function This function allows a self-check of the CPU/peripheral hardware clock frequencies using the timer array unit. (7) A/D test function This is used to perform a self-check of the A/D converter by performing A/D conversion of the A/D converter’s positive and negative reference voltages, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage. Remark See the self-testing library application note for the RL78 MCU series (R01AN0749, R01AN1062, R01AN1296) for use examples of the safety functions compliant with the safety standard IEC60730. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 229 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 22. 2 Registers used by safety functions See 22. 2 Registers Used by Safety Functions in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 22. 3 Operation of safety functions 3. 22. 3. 1 Flash memory CRC operation function (high-speed CRC) See 22. 3. 1 Flash memory CRC operation function (high-speed CRC) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 22. 3. 2 CRC operation function (general-purpose CRC) See 22. 3. 2 CRC operation function (general-purpose CRC) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 22. 3. 3 RAM parity error detection function See 22. 3. 3 RAM parity error detection function in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 22. 3. 4 RAM guard function See 22. 3. 4 RAM guard function in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 22. 3. 5 SFR guard function See 22. 3. 5 SFR guard function in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 22. 3. 6 Invalid memory access detection function See 22. 3. 6 Invalid memory access detection function in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 230 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 22. 3. 7 Frequency detection function For details of each register, see 22. 3. 7 Frequency detection function in RL78/G1A Hardware User’s Manual (R01UH0305E). The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. (1) Timer input select register 0 (TIS0) Address: F0074H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 TIS0 0 0 0 0 0 TIS02 TIS01 TIS00 TIS02 TIS01 TIS00 0 0 0 Default value 1 0 0 Low-speed on-chip oscillator clock (fIL) Other than above Selection of timer input used with channel 5 Setting prohibited Caution High-level width, low-level width of timer input is selected, will require more than 1/fMCK +10 ns. Therefore, when selecting fSUB to fCLK (CSS bit of CKS register = 1), can not TIS02 bit set to 1. 3. 22. 3. 8 A/D test function See 22. 3. 8 A/D test function in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 231 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 23 Regulator See CHAPTER 23 REGULATOR in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 232 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 24 Option Byte 3. 24. 1 Functions of option bytes Addresses 000C0H to 000C3H of the flash memory of the RL78/G1E form an option byte area. Option bytes consist of user option byte (000C0H to 000C2H) and on-chip debug option byte (000C3H). Upon power application or resetting and starting, an option byte is automatically referenced and a specified function is set. For the bits to which no function is allocated, be sure to set the value specified in this manual. To use the boot swap operation during self programming, 000C0H to 000C3H are replaced by 010C0H to 010C3H. Therefore, set the same values as 000C0H to 000C3H to 010C0H to 010C3H. Caution Be sure to specify option byte settings regardless of whether they are used or not. 3. 24. 1. 1 User option byte (000C0H to 000C2H/010C0H to 010C2H) (1) 000C0H/010C0H  Setting of watchdog timer operation • Enabling or disabling of counter operation • Enabling or disabling of counter operation in the HALT or STOP mode  Setting of overflow time of watchdog timer  Setting of window open period of watchdog timer  Setting of interval interrupt of watchdog timer • Whether or not to use the interval interrupt is selectable Caution Set the same value as 000C0H to 010C0H when the boot swap operation is used because 000C0H is replaced by 010C0H. (2) 000C1H/010C1H  Setting of LVD operation mode • Interrupt & reset mode. • Reset mode. • Interrupt mode. • LVD off (by controlling the externally input reset signal on the RESET pin)  Setting of LVD detection level (VLVDH, VLVDL, VLVD) Cautions1. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H). 2. Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 233 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK (3) 000C2H/010C2H  Setting of flash operation mode • LV (low voltage main) mode • LS (low speed main) mode • HS (high speed main) mode  Setting of the frequency of the high-speed on-chip oscillator • Select from 32 MHz/24 MHz/16 MHz/12 MHz/8 MHz/6 MHz/4 MHz/3 MHz/2 MHz/1 MHz (TYP.). Caution Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H. 3. 24. 1. 2 On-chip debug option byte (000C3H/010C3H)  Control of on-chip debug operation • On-chip debug operation is disabled or enabled.  Handling of data of flash memory in case of failure in on-chip debug security ID authentication • Data of flash memory is erased or not erased in case of failure in on-chip debug security ID authentication. Caution Set the same value as 000C3H to 010C3H when the boot swap operation is used because 000C3H is replaced by 010C3H. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 234 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 24. 2 Format of user option byte For details of each register, see 24. 2 Format of User Option Byte in RL78/G1A Hardware User’s Manual (R01UH0305E). The bit settings which are different from that of RL78/G1A (64-pin products) are shown below. Format of user option byte (000C1H/010C1H) (1/2) Address: 000C1H/010C1H Note 7 6 5 4 3 2 1 0 VPOC2 VPOC1 VPOC0 1 LVIS1 LVIS0 LVIMDS1 LVIMDS0 • LVD setting (interrupt & reset mode) Detection voltage VLVDH Option byte setting value VLVDL VPOC1 VPOC0 LVIS1 LVIS0 Rising Falling Falling edge edge edge 3.13 3.06 1.84 0 0 1 0 0 3.75 3.67 2.45 0 1 0 0 0 4.06 3.98 2.75 0 1 1 0 0 Mode setting LVIMDS1 LVIMDS0 1 0 Value other than above is setting prohibited. – VPOC2 • LVD setting (reset mode) Detection voltage VLVDH Option byte setting value VPOC2 VPOC1 VPOC0 LVIS1 LVIS0 Rising Falling edge edge 3.13 3.06 0 0 1 0 0 3.75 3.67 0 1 0 0 0 4.06 3.98 0 1 1 0 0 Mode setting LVIMDS1 LVIMDS0 1 1 Value other than above is setting prohibited. – Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H. Cautions 1. Be sure to set bit 4 to “1”. 2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H). Remarks 1. For details on the LVD circuit, see 3. 21 Voltage Detector. 2. The detection voltage is a typical value. For details, see 5. 2. 5. 4 LVD circuit characteristics. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 235 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Format of user option byte (000C1H/010C1H) (2/2) Address: 000C1H/010C1H Note 7 6 5 4 3 2 1 0 VPOC2 VPOC1 VPOC0 1 LVIS1 LVIS0 LVIMDS1 LVIMDS0 • LVD setting (interrupt mode) Detection voltage VLVDH Option byte setting value VPOC2 VPOC1 VPOC0 LVIS1 LVIS0 Rising Falling edge edge 3.13 3.06 0 0 1 0 0 3.75 3.67 0 1 0 0 0 4.06 3.98 0 1 1 0 0 – Mode setting LVIMDS1 LVIMDS0 0 1 Value other than above is setting prohibited. • LVD off (by controlling the externally input reset signal on the RESET pin) Detection voltage VLVD Option byte setting value VPOC2 Rising Falling edge edge − − – VPOC1 1 × VPOC0 × LVIS1 × LVIS0 × Mode setting LVIMDS1 LVIMDS0 × 1 Value other than above is setting prohibited. Note Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H. Cautions 1. Be sure to set bit 4 to “1”. 2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 5. 2. 3 AC characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H). Remarks 1. ×: don’t care 2. For details on the LVD circuit, see 3. 21 Voltage Detector. 3. The detection voltage is a typical value. For details, see 5. 2. 5. 4 LVD circuit characteristics. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 236 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Format of user option byte (000C2H/010C2H) Address: 000C2H/010C2H Note 7 6 5 4 3 2 1 0 CMODE1 CMODE0 1 0 FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0 CMODE1 CMODE0 Setting of flash operation mode Operating Frequency Operating Voltage Range Range 0 0 LV (low voltage main) mode 1 to 4 MHz 1.6 to 5.5 V 1 0 LS (low speed main) mode 1 to 8 MHz 1.8 to 5.5 V 1 1 HS (high speed main) mode 1 to 16 MHz 2.4 to 5.5 V 1 to 32 MHz 2.7 to 5.5 V Other than above Setting prohibited FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0 1 0 0 0 32 MHz 0 0 0 0 24 MHz 1 0 0 1 16 MHz 0 0 0 1 12 MHz 1 0 1 0 8 MHz 0 0 1 0 6 MHz 1 0 1 1 4 MHz 0 0 1 1 3 MHz 1 1 0 0 2 MHz 1 1 0 1 1 MHz Other than above Frequency of the high-speed on-chip oscillator Setting prohibited Note Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H. Cautions 1. Be sure to set bits 5, 4 to “10B”. 2. The ranges of operation frequency and operation voltage vary depending on the flash operation mode. For details, see 5. 2. 3 AC characteristics. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 237 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 24. 3 Format of on-chip debug option byte See 24. 3 Format of On-chip Debug Option Byte in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 24. 4 Setting of option byte See 24. 4 Setting of Option Byte in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 238 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 25 Flash Memory In this section, the differences of the functions and registers from RL78/G1A (64-pin products) are described. For details, see CHAPTER 25 FLASH MEMORY in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 1 Serial Programming Using Flash Memory Programmer The following dedicated flash memory programmer can be used to write data to the internal flash memory of the RL78/G1E. • PG-FP5, FL-PR5 • E1 on-chip debugging emulator Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer. (1) On-board programming The contents of the flash memory can be rewritten after the RL78/G1E has been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system. (2) Off-board programming Data can be written to the flash memory with a dedicated program adapter (FA series) before the RL78/G1E is mounted on the target system. Remark FL-PR5 and FA series are products of Naito Densei Machida Mfg. Co., Ltd. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 239 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK Table 3-18. Wiring Between RL78/G1E and Dedicated Flash Memory Programmer Pin Configuration of Dedicated Flash Memory Programmer Signal Name PG-FP5 E1 On-chip FL-PR5 Debugging I/O Pin Name Pin Function Pin No. 64-pin products 80-pin products WQFN (9 × 9) LQFP (12 × 12) Emulator − SI / RxD − /RESET VDD TOOL0 I/O − I/O RESET Output − Output I/O Transmit/receive signal TOOL0/P40 15 18 Reset signal RESET 16 19 VDD voltage generation/ VDD 22 25 VSS 21 24 − − 20 23 power monitoring − GND Ground EVSS0 REGC − EMVDD Note Driving power VDD 22 25 for TOOL0 pin EVDD0 − − Note Connect REGC pin to ground via a capacitor (0.47 to 1 μF). Remark Pins that are not indicated in the above table can be left open when using the flash memory programmer for flash programming. 3. 25. 1. 1 Programming environment See 25. 1. 1 Programming environment in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 1. 2 Communication mode See 25. 1. 2 Communication mode in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 240 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 25. 2 Serial programming using external device (that Incorporates UART) See 25. 2 Serial Programming Using External Device (that Incorporates UART) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 3 Connection of pins on board See 25. 3 Connection of Pins on Board in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 4 Serial programming method See 25. 4 Serial Programming Method in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 5 Processing time for each command when PG-FP5 Is in use (Reference value) See 25. 5 Processing Time for Each Command When PG-FP5 Is in Use (Reference Value) in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 6 Self-programming See 25. 6 Self-Programming in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 7 Security Settings See 25. 7 Security Settings in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 25. 8 Data flash See 25. 8 Data Flash in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 241 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 26 On-chip Debug Function 3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E The RL78/G1A uses the VDD, RESET, TOOL0, and VSS pins to communicate with the host machine via an E1 on-chip debugging emulator. Serial communication is performed by using a single-line UART that uses the TOOL0 pin. Caution The RL78/G1E has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. Figure 3-16. Connection Example of E1 On-chip Debugging Emulator and RL78/G1E E1 target connector VDD VDD RL78/G1E VDD VDD VDD AVDD AVDDNote3 EMVDD GND GND VSS VDD GND 1 kΩ TOOL0 TOOL0 Reset_out Reset_out Reset_in Notes 1. RESET VDD 10 kΩ 1 kΩNote2 Note1 Reset circuit Reset signal Connecting the dotted line is not necessary during serial flash programming.. 2. If the reset circuit on the target system does not have a buffer and generates a reset signal only with resistors and capacitors, this pull-up resistor is not necessary. 3. AVDD ≤ 3.6 V. Cautions 1. This circuit diagram is assumed that the reset signal outputs from an N-ch open drain buffer (output resistor: 100 Ω or less). 2. For the details of ARESET pin, see 2. 5. 31 ARESET. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 242 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 26. 2 On-chip debug security ID See 26. 2 On-Chip Debug Security ID in RL78/G1A Hardware User’s Manual (R01UH0305E). 3. 26. 3 Securing of user resources See 26. 3 Securing of User Resources in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 243 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 27 BCD Correction Circuit See CHAPTER 27 BCD CORRECTION CIRCUIT in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 244 RL78/G1E CHAPTER 3 MICROCONTROLLER BLOCK 3. 28 Instruction Set See CHAPTER 28 INSTRUCTION SET in RL78/G1A Hardware User’s Manual (R01UH0305E). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 245 RL78/G1E CHAPTER 4 ANALOG BLOCK CHAPTER 4 ANALOG BLOCK 4. 1 Configurable Amplifier The RL78/G1E (64-pin products, 80-pin products) has three on-chip configurable amplifier channels. 4. 1. 1 Overview of configurable amplifier features By specifying settings in the SPI control registers, the configurable amplifiers can be used to realize the following features: • Single-channel operation • Non-inverting amplifier • The gain can be specified between 9.5 dB and 40.1 dB in 18 steps • Four operating modes are available • Includes a power-off function • Inverting amplifier • The gain can be specified between 6 dB and 40 dB in 18 steps • Four operating modes are available • Includes a power-off function • Differential amplifier • The gain can be specified between 6 dB and 40 dB in 18 steps • Four operating modes are available • Includes a power-off function • Transimpedance amplifier • The feedback resistance can be specified between 20 kΩ and 640 kΩ in 6 steps • Four operating modes are available • Includes a power-off function • Multiple-channel operation • Instrumentation amplifier • The gain can be specified between 20 dB and 54 dB in 18 steps • Four operating modes are available • Includes a power-off function And also, the DACn_OUT output signals can be used as the reference voltage for each configurable amplifier. If D/A converter is powered off, the external reference voltage is to be input to DACn_OUT/VREFINn pin. For details about use of D/A converter, see 4. 3 D/A Converter. Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 246 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 1. 2 Block diagram Figure 4-1. Block Diagram of Configurable Amplifier Ch1 Internal bus Configuration register 1 (CONFIG1) Configuration register 2 (CONFIG2) SW00 SW01 SW11 SW12 SW13 AMP operation mode control register (AOMC) Gain control register 1 (GC1) AMPG14 AMPG13 AMPG12 AMPG11 AMPG10 CC1 CC0 MPX1 AVDD1 Selector MPXIN10 MPXIN11 AGND1 SW11 - SW01 AMP1_OUT + MPX2 MPX5, MXP6, MPX7 Selector MPXIN20 MPXIN21 SW12 SW13 8-bit DAC1 DAC1_OUT/VREFIN1 MPX3 SW00 Selector MPXIN30 MPXIN31 Source of configurable amp Ch2 inverted input DAC2_OUT/VREFIN2 MPX11 MPX10 MPX21 MPX20 MPX31 MPX setting register 1 (MPX1) MPX30 DAC1OF AMP1OF DAC17 DAC16 DAC15 DAC14 Power control register 1 (PC1) DAC13 DAC12 DAC11 DAC10 DAC control register 1 (DAC1C) VRT1 VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 247 RL78/G1E CHAPTER 4 ANALOG BLOCK Figure 4-2. Block Diagram of Configurable Amplifier Ch2 Internal bus Configuration register 1 (CONFIG1) Configuration register 2 (CONFIG2) SW00 SW01 SW21 SW22 SW23 AMP operation mode control register (AOMC) Gain control register 2 (GC2) AMPG24 AMPG23 AMPG22 AMPG21 AMPG20 CC1 CC0 MPX3 AVDD1 Selector MPXIN30 MPXIN31 AGND1 SW21 - SW02 AMP2_OUT + MPX4 MPX5, MXP6, MPX7 Selector MPXIN40 MPXIN41 SW22 SW23 8-bit DAC2 DAC2_OUT/VREFIN2 MPX1 SW00 Selector MPXIN10 MPXIN11 Source of configurable amp Ch1 inverted input DAC1_OUT/VREFIN1 MPX11 MPX10 MPX31 MPX30 MPX41 MPX setting register 1 (MPX1) MPX40 DAC2OF AMP2OF DAC27 DAC26 DAC25 Power control register 1 (PC1) DAC24 DAC23 DAC22 DAC21 DAC20 DAC control register 2 (DAC2C) VRT1 VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 248 RL78/G1E CHAPTER 4 ANALOG BLOCK Figure 4-3. Block Diagram of Configurable Amplifier Ch3 • 64-pin products Internal bus Configuration register 2 (CONFIG2) SW31 AMP operation mode control register (AOMC) Gain control register 3 (GC3) SW32 SW33 CC1 AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 CC0 AVDD1 MPX5 AGND1 MPXIN50 Selector Configurable amp Ch1 output signal Configurable amp Ch2 output signal SW31 AMP3_OUT + MPX6 MPXIN60 MPX7 Selector SW32 Configurable amp Ch1 output signal Configurable amp Ch2 output signal SW33 8-bit DAC3 DAC3_OUT/VREFIN3 MPX52 MPX51 MPX50 MPX62 MPX61 MPX60 DAC3OF AMP3OF MPX setting register 2 (MPX2) DAC37 DAC36 DAC35 DAC34 Power control register 1 (PC1) DAC33 DAC32 DAC31 VRT1 DAC30 DAC control register 3 (DAC3C) VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus • 80-pin products Internal bus Configuration register 2 (CONFIG2) AMP operation mode control register (AOMC) Gain control register 3 (GC3) SW31 SW32 SW33 CC1 AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 CC0 AVDD1 MPX5 AGND1 MPXIN50 Selector MPXIN51 Configurable amp Ch1 output signal Configurable amp Ch2 output signal SW31 AMP3_OUT + MPX6 MPXIN60 MPX7 Selector MPXIN61 Configurable amp Ch1 output signal Configurable amp Ch2 output signal SW32 SW33 8-bit DAC3 DAC3_OUT/VREFIN3 MPX52 MPX51 MPX50 MPX62 MPX61 MPX setting register 2 (MPX2) MPX60 DAC3OF AMP3OF DAC37 DAC36 Power control register 1 (PC1) DAC35 DAC34 DAC33 DAC32 DAC31 DAC30 VRT1 DAC control register 3 (DAC3C) VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 249 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 1. 3 Registers controlling the configurable amplifiers The configurable amplifiers are controlled by the following 9 registers: • Configuration register 1 (CONFIG1) • Configuration register 2 (CONFIG2) • MPX setting register 1 (MPX1) • MPX setting register 2 (MPX2) • Gain control register 1 (GC1) • Gain control register 2 (GC2) • Gain control register 3 (GC3) • AMP operation mode control register (AOMC) • Power control register 1 (PC1) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 250 RL78/G1E CHAPTER 4 ANALOG BLOCK (1) Configuration register 1 (CONFIG1) This register is used to turn on or off each switch of configurable amplifiers Ch1 and Ch2. Reset signal input clears this register to 00H. Address: 00H After reset: 00H R/W CONFIG1 7 6 5 4 3 2 1 0 0 SW11 SW12 SW13 0 SW21 SW22 SW23 SW11 Control of SW11 0 Turn off SW11. 1 Turn on SW11. SW12 Control of SW12 0 Turn off SW12. 1 Turn on SW12. SW13 Control of SW13 0 Turn off SW13. 1 Turn on SW13. SW21 Control of SW21 0 Turn off SW21. 1 Turn on SW21. SW22 Control of SW22 0 Turn off SW22. 1 Turn on SW22. SW23 Control of SW23 0 Turn off SW23. 1 Turn on SW23. Remark Bits 7 and 3 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 251 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) Configuration register 2 (CONFIG2) This register is used to turn on or off each switch of configurable amplifiers Ch1 to Ch3. Reset signal input clears this register to 00H. Address: 01H After reset: 00H R/W CONFIG2 7 6 5 4 3 2 1 0 0 SW31 SW32 SW33 0 SW02 SW01 SW00 SW31 Control of SW31 0 Turn off SW31. 1 Turn on SW31. SW32 Control of SW32 0 Turn off SW32. 1 Turn on SW32. SW33 Control of SW33 0 Turn off SW33. 1 Turn on SW33. SW02 Control of SW02 0 Turn off SW02. 1 Turn on SW02. SW01 Control of SW01 0 Turn off SW01. 1 Turn on SW01. SW00 Control of SW00 0 Turn off SW00. 1 Turn on SW00. Remark Bits 7 and 3 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 252 RL78/G1E CHAPTER 4 ANALOG BLOCK (3) MPX setting register 1 (MPX1) This register is used to control MPX1, MPX2, MPX3, and MPX4. This register is used to select the signal input to configurable amplifiers Ch1 and Ch2. Reset signal input clears this register to 00H. Address: 03H After reset: 00H R/W MPX1 7 6 5 4 3 2 1 0 MPX11 MPX10 MPX21 MPX20 MPX31 MPX30 MPX41 MPX40 MPX11 MPX10 0 0 MPXIN10 pin 0 1 MPXIN11 pin 1 0 D/A converter Ch1 output signal or VREFIN1 pin 1 1 Open pin MPX21 MPX20 0 0 MPXIN20 pin 0 1 MPXIN21 pin 1 0 D/A converter Ch1 output signal or VREFIN1 pin 1 1 Open pin MPX31 MPX30 0 0 MPXIN30 pin 0 1 MPXIN31 pin 1 0 D/A converter Ch2 output signal or VREFIN2 pin 1 1 Open pin MPX41 MPX40 0 0 MPXIN40 pin 0 1 MPXIN41 pin 1 0 D/A converter Ch2 output signal or VREFIN2 pin 1 1 Open pin R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Source of configurable amplifier Ch1 inverse input Source of configurable amplifier Ch1 non-inverted input Source of configurable amplifier Ch2 inverse input Source of configurable amplifier Ch2 non-inverted input 253 RL78/G1E CHAPTER 4 ANALOG BLOCK (4) MPX setting register 2 (MPX2) This register is used to control MPX5 and MPX6. This register is used to select the signal input to configurable amplifier Ch3. Reset signal input clears this register to 00H. • 64-pin products Address: 04H After reset: 00H R/W MPX2 7 6 5 4 3 2 1 0 0 MPX52 MPX51 MPX50 0 MPX62 MPX61 MPX60 MPX52 MPX51 MPX50 0 0 0 MPXIN50 pin 0 1 0 Configurable amplifier Ch1 output signal 0 1 1 Configurable amplifier Ch2 output signal 1 0 0 D/A converter Ch3 output signal or VREFIN3 pin Other than above Source of configurable amplifier Ch3 inverse input Setting prohibited MPX62 MPX61 MPX60 0 0 0 MPXIN60 pin 0 1 0 Configurable amplifier Ch1 output signal 0 1 1 Configurable amplifier Ch2 output signal 1 0 0 D/A converter Ch3 output signal or VREFIN3 pin Other than above Source of configurable amplifier Ch3 non-inverted input Setting prohibited Remark Bits 7 and 3 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 254 RL78/G1E CHAPTER 4 ANALOG BLOCK • 80-pin products Address: 04H After reset: 00H R/W MPX2 7 6 5 4 3 2 1 0 0 MPX52 MPX51 MPX50 0 MPX62 MPX61 MPX60 MPX52 MPX51 MPX50 0 0 0 MPXIN50 pin 0 0 1 MPXIN51 pin 0 1 0 Configurable amplifier Ch1 output signal 0 1 1 Configurable amplifier Ch2 output signal 1 0 0 D/A converter Ch3 output signal or VREFIN3 pin Other than above Source of configurable amplifier Ch3 inverse input Setting prohibited MPX62 MPX61 MPX60 0 0 0 MPXIN60 pin 0 0 1 MPXIN61 pin 0 1 0 Configurable amplifier Ch1 output signal 0 1 1 Configurable amplifier Ch2 output signal 1 0 0 D/A converter Ch3 output signal or VREFIN3 pin Other than above Source of configurable amplifier Ch3 non-inverted input Setting prohibited Remark Bits 7 and 3 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 255 RL78/G1E CHAPTER 4 ANALOG BLOCK (5) Gain control register 1 (GC1) This register is used to specify the gain and feedback resistance of configurable amplifier Ch1. The value to specify depends on the configuration of configurable amplifier Ch1. When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) to 03H. Reset signal input clears this register to 00H. Address: 06H After reset: 00H R/W GC1 7 6 5 4 3 2 1 0 0 0 0 AMPG14 AMPG13 AMPG12 AMPG11 AMPG10 Table 4-1. Gain of Configurable Amplifier Ch1 (Non-Inverting Amplifier) AMPG14 AMPG13 AMPG12 AMPG11 AMPG10 0 0 0 0 0 9.5 dB 0 0 0 0 1 10.9 dB 0 0 0 1 0 12.4 dB 0 0 0 1 1 14.0 dB 0 0 1 0 0 15.6 dB 0 0 1 0 1 17.3 dB 0 0 1 1 0 19.0 dB 0 0 1 1 1 20.8 dB 0 1 0 0 0 22.7 dB 0 1 0 0 1 24.5 dB 0 1 0 1 0 26.4 dB 0 1 0 1 1 28.3 dB 0 1 1 0 0 30.3 dB 0 1 1 0 1 32.2 dB 0 1 1 1 0 34.2 dB 0 1 1 1 1 36.1 dB 1 0 0 0 0 38.1 dB 1 0 0 0 1 40.1 dB Other than above Gain of Configurable Amplifier Ch1 (Typ.) Setting prohibited Remark Bits 7 to 5 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 256 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-2. Gain of Configurable Amplifier Ch1 (Inverting Amplifier and Differential Amplifier) AMPG14 AMPG13 AMPG12 AMPG11 AMPG10 0 0 0 0 0 6 dB 0 0 0 0 1 8 dB 0 0 0 1 0 10 dB 0 0 0 1 1 12 dB 0 0 1 0 0 14 dB 0 0 1 0 1 16 dB 0 0 1 1 0 18 dB 0 0 1 1 1 20 dB 0 1 0 0 0 22 dB 0 1 0 0 1 24 dB 0 1 0 1 0 26 dB 0 1 0 1 1 28 dB 0 1 1 0 0 30 dB 0 1 1 0 1 32 dB 0 1 1 1 0 34 dB 0 1 1 1 1 36 dB 1 0 0 0 0 38 dB 1 0 0 0 1 40 dB Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Gain of Configurable Amplifier Ch1 (Typ.) Setting prohibited 257 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-3. Feedback Resistance of Configurable Amplifier Ch1 (Transimpedance Amplifier) AMPG14 AMPG13 AMPG12 AMPG11 AMPG10 Feedback Resistance of Configurable Amplifier Ch1 (Typ.) 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 20 kΩ 40 kΩ 80 kΩ 160 kΩ 320 kΩ 640 kΩ Setting prohibited 258 RL78/G1E CHAPTER 4 ANALOG BLOCK (6) Gain control register 2 (GC2) This register is used to specify the gain and feedback resistance of configurable amplifier Ch2. The value to specify depends on the configuration of configurable amplifier Ch2. When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 2 (GC2) to 03H. Reset signal input clears this register to 00H. Address: 07H After reset: 00H R/W GC2 7 6 5 4 3 2 1 0 0 0 0 AMPG24 AMPG23 AMPG22 AMPG21 AMPG20 Table 4-4. Gain of Configurable Amplifier Ch2 (Non-Inverting Amplifier) AMPG24 AMPG23 AMPG22 AMPG21 AMPG20 0 0 0 0 0 9.5 dB 0 0 0 0 1 10.9 dB 0 0 0 1 0 12.4 dB 0 0 0 1 1 14.0 dB 0 0 1 0 0 15.6 dB 0 0 1 0 1 17.3 dB 0 0 1 1 0 19.0 dB 0 0 1 1 1 20.8 dB 0 1 0 0 0 22.7 dB 0 1 0 0 1 24.5 dB 0 1 0 1 0 26.4 dB 0 1 0 1 1 28.3 dB 0 1 1 0 0 30.3 dB 0 1 1 0 1 32.2 dB 0 1 1 1 0 34.2 dB 0 1 1 1 1 36.1 dB 1 0 0 0 0 38.1 dB 1 0 0 0 1 40.1 dB Other than above Gain of Configurable Amplifier Ch2 (Typ.) Setting prohibited Remark Bits 7 to 5 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 259 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-5. Gain of Configurable Amplifier Ch2 (Inverting Amplifier and Differential Amplifier) AMPG24 AMPG23 AMPG22 AMPG21 AMPG20 0 0 0 0 0 6 dB 0 0 0 0 1 8 dB 0 0 0 1 0 10 dB 0 0 0 1 1 12 dB 0 0 1 0 0 14 dB 0 0 1 0 1 16 dB 0 0 1 1 0 18 dB 0 0 1 1 1 20 dB 0 1 0 0 0 22 dB 0 1 0 0 1 24 dB 0 1 0 1 0 26 dB 0 1 0 1 1 28 dB 0 1 1 0 0 30 dB 0 1 1 0 1 32 dB 0 1 1 1 0 34 dB 0 1 1 1 1 36 dB 1 0 0 0 0 38 dB 1 0 0 0 1 40 dB Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Gain of Configurable Amplifier Ch2 (Typ.) Setting prohibited 260 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-6. Feedback Resistance of Configurable Amplifier Ch2 (Transimpedance Amplifier) AMPG24 AMPG23 AMPG22 AMPG21 AMPG20 Feedback Resistance of Configurable Amplifier Ch2 (Typ.) 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 20 kΩ 40 kΩ 80 kΩ 160 kΩ 320 kΩ 640 kΩ Setting prohibited 261 RL78/G1E CHAPTER 4 ANALOG BLOCK (7) Gain control register 3 (GC3) This register is used to specify the gain and feedback resistance of configurable amplifier Ch3. The value to specify depends on the configuration of configurable amplifier Ch3. When using configurable amplifiers Ch1 to Ch3 together as an instrumentation amplifier, be sure to set gain control register 1 (GC1) and gain control register 2 (GC2) to 03H, respectively. Reset signal input clears this register to 00H. Address: 08H After reset: 00H R/W GC3 7 6 5 4 3 2 1 0 0 0 0 AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 Table 4-7. Gain of Configurable Amplifier Ch3 (Non-Inverting Amplifier) AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 0 0 0 0 0 9.5 dB 0 0 0 0 1 10.9 dB 0 0 0 1 0 12.4 dB 0 0 0 1 1 14.0 dB 0 0 1 0 0 15.6 dB 0 0 1 0 1 17.3 dB 0 0 1 1 0 19.0 dB 0 0 1 1 1 20.8 dB 0 1 0 0 0 22.7 dB 0 1 0 0 1 24.5 dB 0 1 0 1 0 26.4 dB 0 1 0 1 1 28.3 dB 0 1 1 0 0 30.3 dB 0 1 1 0 1 32.2 dB 0 1 1 1 0 34.2 dB 0 1 1 1 1 36.1 dB 1 0 0 0 0 38.1 dB 1 0 0 0 1 40.1 dB Other than above Gain of Configurable Amplifier Ch3 (Typ.) Setting prohibited Remark Bits 7 to 5 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 262 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-8. Gain of Configurable Amplifier Ch3 (Inverting Amplifier and Differential Amplifier) AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 0 0 0 0 0 6 dB 0 0 0 0 1 8 dB 0 0 0 1 0 10 dB 0 0 0 1 1 12 dB 0 0 1 0 0 14 dB 0 0 1 0 1 16 dB 0 0 1 1 0 18 dB 0 0 1 1 1 20 dB 0 1 0 0 0 22 dB 0 1 0 0 1 24 dB 0 1 0 1 0 26 dB 0 1 0 1 1 28 dB 0 1 1 0 0 30 dB 0 1 1 0 1 32 dB 0 1 1 1 0 34 dB 0 1 1 1 1 36 dB 1 0 0 0 0 38 dB 1 0 0 0 1 40 dB Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Gain of Configurable Amplifier Ch3 (Typ.) Setting prohibited 263 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-9. Feedback Resistance of Configurable Amplifier Ch3 (Transimpedance Amplifier) AMPG34 AMPG33 AMPG32 AMPG31 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 AMPG30 Feedback Resistance of Configurable Amplifier Ch3 (Typ.) 20 kΩ 40 kΩ 80 kΩ 160 kΩ 320 kΩ 640 kΩ Setting prohibited 264 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-10. Gain of Configurable Amplifier Ch3 (Instrumentation Amplifier) AMPG34 AMPG33 AMPG32 AMPG31 AMPG30 0 0 0 0 0 20 dB 0 0 0 0 1 22 dB 0 0 0 1 0 24 dB 0 0 0 1 1 26 dB 0 0 1 0 0 28 dB 0 0 1 0 1 30 dB 0 0 1 1 0 32 dB 0 0 1 1 1 34 dB 0 1 0 0 0 36 dB 0 1 0 0 1 38 dB 0 1 0 1 0 40 dB 0 1 0 1 1 42 dB 0 1 1 0 0 44 dB 0 1 1 0 1 46 dB 0 1 1 1 0 48 dB 0 1 1 1 1 50 dB 1 0 0 0 0 52 dB 1 0 0 0 1 54 dB Other than above R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Gain of Configurable Amplifier Ch3 (Typ.) Setting prohibited 265 RL78/G1E CHAPTER 4 ANALOG BLOCK (8) AMP operation mode control register (AOMC) This register is used to specify the operating mode of configurable amplifiers Ch1 to Ch3. Reset signal input clears this register to 00H. Address: 09H After reset: 00H R/W AOMC 7 6 5 4 3 2 1 0 0 0 0 0 0 0 CC1 CC0 CC1 CC0 0 0 High-speed mode 0 1 Mid-speed mode 2 1 0 Mid-speed mode 1 1 1 Low-speed mode Operating mode of configurable amplifiers Ch1 to Ch3 Remarks 1. Bits 5 to 2 can be set to 1, but this has no effect on the function. 2. Bits 7 and 6 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 266 RL78/G1E CHAPTER 4 ANALOG BLOCK (9) Power control register 1 (PC1) This register is used to enable or disable operation of the configurable amplifiers and the D/A converters. Use this register to stop unused functions to reduce power consumption and noise. When using one of configurable amplifier channels Ch1 to Ch3, be sure to set the control bit that corresponds to the channel (bits 0 to 2) to 1. Reset signal input clears this register to 00H. Address: 11H After reset: 00H R/W PC1 7 6 5 4 3 2 1 0 DAC4OF DAC3OF DAC2OF DAC1OF 0 AMP3OF AMP2OF AMP1OF AMP3OF Operation of configurable amplifier Ch3 0 Stop operation of configurable amplifier Ch3. 1 Enable operation of configurable amplifier Ch3. AMP2OF Operation of configurable amplifier Ch2 0 Stop operation of configurable amplifier Ch2. 1 Enable operation of configurable amplifier Ch2. AMP1OF Operation of configurable amplifier Ch1 0 Stop operation of configurable amplifier Ch1. 1 Enable operation of configurable amplifier Ch1. Caution Be sure to clear bit 3 to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 267 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 1. 4 Procedure for operating the configurable amplifiers (1) Procedure when using the amplifiers as non-inverting amplifiers When using the configurable amplifiers as non-inverting amplifiers, follow the procedures below to start and stop the amplifiers. Example of procedure for starting configurable amplifier Ch1 (non-inverting amplifier) Example of procedure for stopping configurable amplifier Ch1 (non-inverting amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 268 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch2 (non-inverting amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch2. (SW21, SW22, SW23 = 0, 1, 0) Set MPX1 register Set the input pins. (MPX31, MPX30, MPX41, MPX40 = 1, 0, 0, *) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Set GC2 register Specify the gain. (GC2 = **H) Set CONFIG2 register Set PC1 register Set the output switches. (SW02 = 1) Start operation of configurable amplifier Ch2. (AMP2OF = 1) Operation starts *: don’t care Example of procedure for stopping configurable amplifier Ch2 (non-inverting amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 269 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch3 (non-inverting amplifier) Start Set CONFIG2 register Specify the circuit configuration of configurable amplifier Ch3. (SW31, SW32, SW33 = 0, 1, 0) Set MPX2 register Set the input pins. (MP52, MPX51, MPX50, MPX62, MPX61, MPX60 = 1, 0, 0, 0, 0, *) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Specify the gain. (GC3 = **H) Set GC3 register Set PC1 register Start operation of configurable amplifier Ch3. (AMP3OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch3 (non-inverting amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 270 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) Procedure when using the amplifiers as inverting amplifiers When using the configurable amplifiers as inverting amplifiers, follow the procedures below to start and stop the amplifiers. Example of procedure for starting configurable amplifier Ch1 (inverting amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch1. (SW11, SW12, SW13 = 0, 1, 1) Set MPX1 register Set the input pins. (MPX11, MPX10, MPX21, MPX20 = 0, *, 1, 0) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Specify the gain. (GC1 = **H) Set GC1 register Set CONFIG2 register Set PC1 register Set the output switches. (SW01 = 1) Start operation of configurable amplifier Ch1. (AMP1OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch1 (inverting amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 271 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch2 (inverting amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch2. (SW21, SW22, SW23 = 0, 1, 1) Set MPX1 register Set the input pins. (MPX31, MPX30, MPX41, MPX40 = 0, *, 1, 0) Set AOMC register Set GC2 register Specify the amplifier operation mode. (CC1, CC0 = *, *) Specify the gain. (GC2 = **H) Set the output switches. (SW02 = 1) Set CONFIG2 register Set PC1 register Start operation of configurable amplifier Ch2. (AMP2OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch2 (inverting amplifier) Operating Set PC1 register Stop operation of configurable amplifier Ch2. (AMP2OF = 0) Operation stops R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 272 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch3 (inverting amplifier) Start Set CONFIG2 register Specify the circuit configuration of configurable amplifier Ch3. (SW31, SW32, SW33 = 0, 1, 1) Set MPX2 register Set the input pins. (MP52, MPX51, MPX50, MPX62, MPX61, MPX60 = 0, 0, *, 1, 0, 0) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Set GC3 register Set PC1 register Specify the gain (GC3 = **H) Start operation of configurable amplifier Ch3. (AMP3OF = 1) Operation starts *: don’t care Example of procedure for stopping configurable amplifier Ch3 (inverting amplifier) Operating Set PC1 register Stop operation of configurable amplifier Ch3. (AMP3OF = 0) Operation stops R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 273 RL78/G1E CHAPTER 4 ANALOG BLOCK (3) Procedure when using the amplifiers as differential amplifiers When using the configurable amplifiers together as a differential amplifier, follow the procedures below to start and stop the amplifier. Example of procedure for starting configurable amplifier Ch1 (differential amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch1. (SW11, SW12, SW13 = 0, 0, 1) Set MPX1 register Set the input pins. (MPX11, MPX10, MPX21, MPX20 = 0, *, 0, *) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Specify the gain. (GC1 = **H) Set GC1 register Set the output switches. (SW01 = 1) Set CONFIG2 register Set PC1 register Start operation of configurable amplifier Ch1. (AMP1OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch1 (differential amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 274 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch2 (differential amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch2. (SW21, SW22, SW23 = 0, 0, 1) Set MPX1 register Set the input pins. (MPX31, MPX30, MPX41, MPX40 = 0, *, 0, *) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Set GC2 register Set CONFIG2 register Set PC1 register Specify the gain. (GC2 = **H) Set the output switches. (SW02 = 1) Start operation of configurable amplifier Ch2. (AMP2OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch2 (differential amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 275 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch3 (differential amplifier) Start Set CONFIG2 register Specify the circuit configuration of configurable amplifier Ch3. (SW31, SW32, SW33 = 0, 0, 1) Set MPX2 register Set the input pins. (MP52, MPX51, MPX50, MPX62, MPX61, MPX60 = 0, 0, *, 0, 0, *) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Specify the gain. (GC3 = **H) Set GC3 register Set PC1 register Start operation of configurable amplifier Ch3. (AMP3OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch3 (differential amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 276 RL78/G1E CHAPTER 4 ANALOG BLOCK (4) Procedure when using the amplifiers as a transimpedance amplifier When using the configurable amplifiers as transimpedance amplifiers, follow the procedures below to start and stop the amplifiers. Example of procedure for starting configurable amplifier Ch1 (transimpedance amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch1. (SW11, SW12, SW13 = 1, 1, 1) Set MPX1 register Set the input pins. (MPX11, MPX10, MPX21, MPX20 = 0, *, 1, 0) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Set GC1 register Set CONFIG2 register Set PC1 register Specify the feedback resistance. (GC1 = **H) Set the output switches. (SW01 = 1) Start operation of configurable amplifier Ch1. (AMP1OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch1 (transimpedance amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 277 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch2 (transimpedance amplifier) Start Set CONFIG1 register Specify the circuit configuration of configurable amplifier Ch2. (SW21, SW22, SW23 = 1, 1, 1) Set MPX1 register Set the input pins. (MPX31, MPX30, MPX41, MPX40 = 0, *, 1, 0) Set AOMC register Specify the amplifier operation mode. (CC1, CC0 = *, *) Set GC2 register Specify the feedback resistance. (GC2 = **H) Set the output switches. (SW02 = 1) Set CONFIG2 register Set PC1 register Start operation of configurable amplifier Ch2. (AMP2OF = 1) Operation starts Remark *: don’t care Example of procedure for stopping configurable amplifier Ch2 (transimpedance amplifier) Operating Set PC1 register Stop operation of configurable amplifier Ch2. (AMP2OF = 0) Operation stops R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 278 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for starting configurable amplifier Ch3 (transimpedance amplifier) Example of procedure for stopping configurable amplifier Ch3 (transimpedance amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 279 RL78/G1E CHAPTER 4 ANALOG BLOCK (5) Procedure when using the amplifiers as an instrumentation amplifier When using the configurable amplifiers together as an instrumentation amplifier, follow the procedures below to start and stop the amplifier. Example of procedure for starting configurable amplifiers (instrumentation amplifier) Start Set CONFIG1 register Set CONFIG2 register Set MPX1 register Set MPX2 register Set AOMC register Specify the circuit configuration of configurable amplifiers Ch1 and Ch2. (SW11, SW12, SW13, SW21, SW22, SW23 = 0, 1, 0, 0, 1, 0) Specify the circuit configuration and switches of configurable amplifier Ch3. (SW31, SW32, SW33, SW02, SW01, SW00 = 0, 0, 1, 0, 0, 1) Set the input pins of configurable amplifiers Ch1 and Ch2. (MPX11, MPX10, MPX21, MPX20, MPX31, MPX30, MPX41, MPX40 = 1, 1, 0, *, 1, 1, 0, *) Set the input pins of configurable amplifier Ch3. (MP52, MPX51, MPX50, MPX62, MPX61, MPX60 = 0, 1, 0, 0, 1, 1) Specify the amplifier operation mode. (CC1, CC0 = *, *) Set GC1 register Specify the gain of configurable amplifier Ch1. (GC1 = 03H) Set GC2 register Specify the gain of configurable amplifier Ch2. (GC2 = 03H) Set GC3 register Specify the gain of configurable amplifier Ch3. (GC3 =**H) Set PC1 register Start operation of configurable amplifiers Ch1 to Ch3. (AMP1OF, AMP2OF, AMP3OF = 1, 1, 1) Operation starts Remark *: don’t care R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 280 RL78/G1E CHAPTER 4 ANALOG BLOCK Example of procedure for stopping configurable amplifiers (instrumentation amplifier) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 281 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 2 Gain Adjustment Amplifier The RL78/G1E (64-pin products, 80-pin products) has one on-chip gain adjustment amplifier channel. 4. 2. 1 Overview of gain adjustment amplifier features The features of gain adjustment amplifier are described below. • Rail-to-rail I/O • The gain can be specified between 6 dB and 40 dB in 18 steps. • Includes a power-off function. • Includes a synchronous detector Note . • CLK_SYNCH = H: Inverted output signal (SYNCH_OUT pin) • CLK_SYNCH = L: Non-inverted output signal (SYNCH_OUT pin) Note 80-pin products only. There are two output pins (GAINAMP_OUT pin, SYNCH_OUT pin), the output from SYNCH_OUT pin can be inverted output or non-inverted output according to the input of CLK_SYNCH pin. And also, the DAC4_OUT output signals can be used as the reference voltage for gain adjustment amplifier. If D/A converter is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see 4. 3 D/A Converter. 4. 2. 2 Block diagram • 64-pin products Internal bus DAC control register 4 (DAC4C) DAC47 DAC46 DAC45 DAC44 DAC43 DAC42 DAC41 DAC40 AVDD1 MPX7 Selector Configurable amplifier Ch1 output signal Configurable amplifier Ch2 output signal Configurable amplifier Ch3 output signal AGND2 - - + MPX9 + MPX9 8-bit DAC4 DAC4_OUT/VREFIN4 MPX72 MPX71 MPX70 DAC4OF MPX setting register 3 (MPX3) Power control register 1 (PC1) GAINOF AMPG44 AMPG43 AMPG42 AMPG41 AMPG40 Power control register 2 (PC2) Gain control register 4 (GC4) VRT1 VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 282 RL78/G1E CHAPTER 4 ANALOG BLOCK • 80-pin products Internal bus DAC control register 4 (DAC4C) DAC47 DAC46 DAC45 DAC44 DAC43 DAC42 DAC41 DAC40 AVDD1 MPX7 AGND2 GAINAMP_IN Selector Configurable amplifier Ch1 output signal Configurable amplifier Ch2 output signal Configurable amplifier Ch3 output signal - - + GAINAMP_OUT + MPX9 MPX9 8-bit DAC4 DAC4_OUT/VREFIN4 MPX8 Selector SYNCH_OUT CLK_SYNCH MPX72 MPX71 MPX70 DAC4OF MPX setting register 3 (MPX3) Power control register 1 (PC1) GAINOF AMPG44 AMPG43 AMPG42 AMPG41 AMPG40 Power control register 2 (PC2) Gain control register 4 (GC4) VRT1 VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 283 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 2. 3 Registers controlling the gain adjustment amplifier The gain adjustment amplifier is controlled by the following 3 registers: • MPX setting register 3 (MPX3) • Gain control register 4 (GC4) • Power control register 2 (PC2) (1) MPX setting register 3 (MPX3) This register is used to control MPX7, MPX9, MPX10, and MPX11. When selecting the signal to be input to the gain adjustment amplifier, use bits 2 to 0. Reset signal input clears this register to 00H. • 64-pin products Address: 05H After reset: 00H R/W MPX3 7 6 5 4 3 2 1 0 0 0 SCF2 SCF1 0 MPX72 MPX71 MPX70 MPX72 MPX71 MPX70 Source of gain adjustment amplifier input 0 0 0 – 0 0 1 Configurable amplifier Ch1 output signal 0 1 0 Configurable amplifier Ch2 output signal 0 1 1 Configurable amplifier Ch3 output signal 1 0 0 D/A converter Ch4 output signal or VREFIN4 pin Other than above Setting prohibited Caution Be sure to clear bit 3 to “0”. Remark Bits 7 and 6 are fixed at 0 of read only. • 80-pin products Address: 05H After reset: 00H R/W MPX3 7 6 5 4 3 2 1 0 0 0 SCF2 SCF1 SCF0 MPX72 MPX71 MPX70 MPX72 MPX71 MPX70 0 0 0 GAINAMP_IN pin 0 0 1 Configurable amplifier Ch1 output signal 0 1 0 Configurable amplifier Ch2 output signal 0 1 1 Configurable amplifier Ch3 output signal 1 0 0 D/A converter Ch4 output signal or VREFIN4 pin Other than above Source of gain adjustment amplifier input Setting prohibited Remark Bits 7 and 6 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 284 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) Gain control register 4 (GC4) This register is used to specify the gain of the gain adjustment amplifier. Reset signal input clears this register to 00H. Address: 0AH After reset: 00H R/W GC4 7 6 5 4 3 2 1 0 0 0 0 AMP44 AMP43 AMP42 AMP41 AMP40 AMP44 AMP43 AMP42 AMP41 AMP40 0 0 0 0 0 6 dB 0 0 0 0 1 8 dB 0 0 0 1 0 10 dB 0 0 0 1 1 12 dB 0 0 1 0 0 14 dB 0 0 1 0 1 16 dB 0 0 1 1 0 18 dB 0 0 1 1 1 20 dB 0 1 0 0 0 22 dB 0 1 0 0 1 24 dB 0 1 0 1 0 26 dB 0 1 0 1 1 28 dB 0 1 1 0 0 30 dB 0 1 1 0 1 32 dB 0 1 1 1 0 34 dB 0 1 1 1 1 36 dB 1 0 0 0 0 38 dB 1 0 0 0 1 40 dB Other than above Gain Setting prohibited Remark Bits 7 to 5 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 285 RL78/G1E CHAPTER 4 ANALOG BLOCK (3) Power control register 2 (PC2) This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise. When using the gain adjustment amplifier, be sure to set bit 4 to 1. Reset signal input clears this register to 00H. • 64-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF 0 LDOOF TEMPOF GAINOF Operation of gain adjustment amplifier 0 Stop operation of the gain adjustment amplifier. 1 Enable operation of the gain adjustment amplifier. Caution Be sure to clear bit 2 to “0”. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. • 80-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF HPFOF LDOOF TEMPOF GAINOF Operation of gain adjustment amplifier 0 Stop operation of the gain adjustment amplifier. 1 Enable operation of the gain adjustment amplifier. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 286 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 2. 4 Procedure for operating the gain adjustment amplifier Follow the procedures below to start and stop the gain adjustment amplifier. Example of procedure for starting the gain adjustment amplifier Start Set MPX3 register Set the input pins. (MPX72, MPX71, MPX70 = *, *, *) Specify the gain. (GC4 = **H) Set GC4 register Set PC2 register Start operation of the gain adjustment amplifier. (GAINOF = 1) Operation starts *: don’t care Example of procedure for stopping the gain adjustment amplifier R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 287 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 3 D/A Converter The RL78/G1E (64-pin products, 80-pin products) has four on-chip D/A converter channels. 4. 3. 1 Overview of D/A converter features The D/A converters are 8-bit resolution converters that convert digital input signals into analog signals. The D/A converters have the following features: • 8-bit resolution (× 4 ch: Ch1 to Ch4) • R-2R ladder method • Analog output voltage: Output voltage can be calculated with the equation shown below. Output voltage = {(Reference voltage upper limit – Reference voltage lower limit) × m/256} + Reference voltage lower limit (m = 0 to 255: Value set to DACnC register) • Controls the reference voltage for the configurable amplifiers, gain adjustment amplifiers, low-pass filter, and highpass filter Note • Includes a power-off function. Note 80-pin products only. Remark n = 1 to 4 4. 3. 2 Block diagram AVDD1/AVDD2 AVDD1 Ch1 to Ch3 AGND1 Selector - AVDD2 + AGND3 Ch4 8-bit DACn + DACn_OUT/VREFINn - Selector + DACnOF DACn7 DACn6 DACn5 DACn4 DACn3 DACn2 DACn1 DACn0 Power control register 1 (PC1) DAC control register n (DACnC) VRT1 VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus Remark: n = 1 to 4 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 288 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 3. 3 Registers controlling the D/A converters The D/A converters are controlled by the following 3 registers: • DAC reference voltage control register (DACRC) • DAC control registers 1, 2, 3, 4 (DAC1C, DAC2C, DAC3C, DAC4C) • Power control register 1 (PC1) (1) DAC reference voltage control register (DACRC) This register is used to specify the upper (VRT) and lower (VRB) limits of the reference voltage for D/A converter channels Ch1 to Ch4. When selecting the upper limit of the reference voltage, use bits 3 and 2. When selecting the lower limit of the reference voltage, use bits 1 and 0. Reset signal input clears this register to 00H. Address: 0CH After reset: 00H R/W DACRC 7 6 5 4 3 2 1 0 0 0 0 0 VRT1 VRT0 VRB1 VRB0 VRT1 VRT0 Reference voltage upper limit (Typ.) 0 0 AVDD1 0 1 AVDD1 × 4/5 1 0 AVDD1 × 3/5 1 1 AVDD1 VRB1 VRB0 Reference voltage lower limit (Typ.) 0 0 AGND1 0 1 AVDD1 × 1/5 1 0 AVDD1 × 2/5 1 1 AGND1 Remarks 1. Bits 7 to 4 are fixed at 0 of read only. 2. To calculate the output voltage, see 4. 3. 1 Overview of D/A converter features. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 289 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) DAC control registers 1, 2, 3, 4 (DAC1C, DAC2C, DAC3C, DAC4C) This register is used to specify the analog voltage to be output to the DACn_OUT pin. The DACn_OUT output signal can be used as the reference voltage for the configurable amplifiers, gain adjustment amplifier, low-pass filter, and high-pass filter. Reset signal input sets this register to 80H. Address: 0DH (n = 1), 0EH (n = 2), 0FH (n = 3), 10H (n = 4) After reset: 80H R/W DACnC 7 6 5 4 3 2 1 0 DACn7 DACn6 DACn5 DACn4 DACn3 DACn2 DACn1 DACn0 Remarks 1. n = 1 to 4 2. To calculate the output voltage, see 4. 3. 1 Overview of D/A converter features. (3) Power control register 1 (PC1) This register is used to enable or disable operation of the configurable amplifiers and the D/A converters. Use this register to stop unused functions to reduce power consumption and noise. When using one of D/A converter channels Ch1 to Ch4, be sure to set the control bit that corresponds to the channel (bits 7 to 4) to 1. Reset signal input clears this register to 00H. Address: 11H After reset: 00H R/W PC1 7 6 5 4 3 2 1 0 DAC4OF DAC3OF DAC2OF DAC1OF 0 AMP3OF AMP2OF AMP1OF DAC4OF Operation of D/A converter Ch4 0 Stop operation of D/A converter Ch4. 1 Enable operation of D/A converter Ch4. DAC3OF Operation of D/A converter Ch3 0 Stop operation of D/A converter Ch3. 1 Enable operation of D/A converter Ch3. DAC2OF Operation of D/A converter Ch2 0 Stop operation of D/A converter Ch2. 1 Enable operation of D/A converter Ch2. DAC1OF Operation of D/A converter Ch1 0 Stop operation of D/A converter Ch1. 1 Enable operation of D/A converter Ch1. Caution Be sure to clear bit 3 to “0”. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 290 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 3. 4 Procedure for operating the D/A converters Follow the procedures below to start and stop the D/A converters. Example of procedure for starting the D/A converters Example of procedure for stopping the D/A converters Operating Set PC1 register Stop operation of the D/A converter. (DACnOF = 0) Operation stops *: don’t care n = 1 to 4 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 291 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 3. 5 Notes on using D/A converters Observe the following points when using the D/A converters: (1) Only a very small current can flow from the DACn_OUT pin because the output impedance of the D/A converters is high. If the load input impedance is low, insert a follower amplifier between the load and the DACn_OUT pin. Also, make sure that the wiring between the pin and the follower amplifier or load is as short as possible (because of the high output impedance). If it is not possible to keep the wiring short, take measures such as surrounding the pin with a ground pattern. (2) If inputting an external reference power supply to the VREFINn pin, be sure to set the DACnOF bit to 0. Remark n = 1 to 4 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 292 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 4 Low-Pass Filter The RL78/G1E (64-pin products, 80-pin products) has one on-chip switched-capacitor low-pass filter channel. 4. 4. 1 Overview of low-pass filter features The features of low-pass filter are described below. • Butterworth characteristics (Q value = 0.702) • Cutoff frequency (fC) range: 9 Hz to 4.5 kHz • External input clock frequency (fCLK_LPF) range: fC × 2 / 0.009 = 2 kHz to 1 MHz • Includes a power-off function. And also, the DAC4_OUT output signals can be used as the reference voltage for low-pass filter. If D/A converter is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see 4. 3 D/A Converter. Remarks 1. The internal control clock (fS) of the low-pass filter has a duty of 50%, so the external input clock is divided by two at the internal D flip-flop before being used for the low-pass filter. If the internal control clock frequency (fS) is 100 kHz, therefore, input a 200 kHz clock signal to the CLK_LPF pin. 2. The phase of the signal input to the low-pass filter inverts after passing the low-pass filter. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 293 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 4. 2 Block diagram • 64-pin products AVDD3 2 AGND4 fs = fCLK_LPF/2 CLK_LPF fCLK_LPF D Q CLK Q 2 1 1 MPX9 Selector Gain adjustment amplifier output signal 2 2 - MPX7 output 1 2 + + 1 LPF_OUT 2 1 + 1 8-bit DAC4 DAC4_OUT/VREFIN4 DAC4OF SCF2 SCF1 MPX setting register 3 (MPX3) DAC47 DAC46 DAC45 DAC44 DAC43 DAC42 DAC41 DAC40 Power control register 1 (PC1) DAC control register 4 (DAC4C) VRT1 VRT0 VRB1 VRB0 LPFOF DAC reference voltage Power control control register (DACRC) register 2 (PC2) Internal bus • 80-pin products Selector Selector R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 294 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 4. 3 Registers controlling the low-pass filter The low-pass filter is controlled by the following 2 registers: • MPX setting register 3 (MPX3) • Power control register 2 (PC2) (1) MPX setting register 3 (MPX3) This register is used to control MPX7, MPX9, MPX10, and MPX11. When selecting the signal to be input to the filter circuits, use bits 5 and 4. When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3. Reset signal input clears this register to 00H. • 64-pin products Address: 05H After reset: 00H R/W MPX3 7 6 5 4 3 2 1 0 0 0 SCF2 SCF1 0 MPX72 MPX71 MPX70 SCF2 SCF1 Source of input to filter circuits 0 0 − 0 1 MPX7 output signal 1 0 Gain adjustment amplifier output signal 1 1 Setting prohibited Caution Be sure to clear bit 3 to “0”. Remark Bits 7 and 6 are fixed at 0 of read only. • 80-pin products Address: 05H After reset: 00H R/W MPX3 7 6 5 4 3 2 1 0 0 0 SCF2 SCF1 SCF0 MPX72 MPX71 MPX70 SCF2 SCF1 0 0 SC_IN pin 0 1 MPX7 output signal 1 0 Gain adjustment amplifier output signal 1 1 Setting prohibited Source of input to filter circuits SCF0 Specification of the order of filter signal processing 0 The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter. 1 The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter. Remark Bits 7 and 6 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 295 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) Power control register 2 (PC2) This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise. When using the low-pass filter, be sure to set bit 3 to 1. Reset signal input clears this register to 00H. • 64-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF 0 LDOOF TEMPOF LPFOF Operation of low-pass filter 0 Stop operation of the low-pass filter. 1 Enable operation of the low-pass filter. Caution Be sure to clear bit 2 to “0”. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. • 80-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF HPFOF LDOOF TEMPOF LPFOF Operation of low-pass filter 0 Stop operation of the low-pass filter. 1 Enable operation of the low-pass filter. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 296 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 4. 4 Procedure for operating the low-pass filter Follow the procedures below to start and stop the low-pass filter. Example of procedure for starting the low-pass filter Example of procedure for stopping the low-pass filter R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 297 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 5 High-Pass Filter The RL78/G1E (80-pin products) has one on-chip switched-capacitor high-pass filter channel Note . Note The high-pass filter is not provided in the RL78/G1E (64-pin products). 4. 5. 1 Overview of high-pass filter features The features of high-pass filter are described below. • Butterworth characteristics (Q value = 0.702) • Cutoff frequency (fC) range: 8 Hz to 800 Hz • External input clock frequency (fCLK_HPF) range: fC × 2 / 0.008 = 2 kHz to 200 kHz • Includes a power-off function. And also, the DAC4_OUT output signals can be used as the reference voltage for high-pass filter. If D/A converter is powered off, the external reference voltage is to be input to DAC4_OUT/VREFIN4 pin. For details about use of D/A converter, see 4. 3 D/A Converter. Remarks 1. The internal control clock (fS) of the high-pass filter has a duty of 50%, so the external input clock is divided by two at the internal D flip-flop before being used for the low-pass filter. If the internal control clock frequency (fS) is 100 kHz, therefore, input a 200 kHz clock signal to the CLK_HPF pin. 2. The phase of the signal input to the high-pass filter inverts after passing the high-pass filter. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 298 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 5. 2 Block diagram AVDD3 2 AGND4 fs D Q CLK Q 2 1 fCLK_HPF CLK_HPF 1 2 MPX11 LPF_OUT 1 - Selector MPX9 output 2 + + 1 HPF_OUT + 2 1 MPX10 8-bit DAC4 SCF0 DAC4_OUT/VREFIN4 DAC4OF MPX setting register 3 (MPX3) DAC47 DAC46 DAC45 DAC44 DAC43 DAC42 DAC41 DAC40 Power control register 1 (PC1) DAC control register 4 (DAC4C) HPFOF Power control register 2 (PC2) VRT1 VRT0 VRB1 VRB0 DAC reference voltage control register (DACRC) Internal bus R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 299 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 5. 3 Registers controlling the high-pass filter The high-pass filter is controlled by the following 2 registers: • MPX setting register 3 (MPX3) • Power control register 2 (PC2) (1) MPX setting register 3 (MPX3) This register is used to control MPX7, MPX9, MPX10, and MPX11. When selecting the signal to be input to the filter circuits, use bits 5 and 4. When switching the order in which signals are processed by the low-pass and high-pass filters, use bit 3. • 80-pin products Address: 05H After reset: 00H R/W MPX3 7 6 5 4 3 2 1 0 0 0 SCF2 SCF1 SCF0 MPX72 MPX71 MPX70 SCF2 SCF1 0 0 SC_IN pin 0 1 MPX7 output signal 1 0 Gain adjustment amplifier output signal 1 1 Setting prohibited Source of input to filter circuits SCF0 Specification of the order of filter signal processing 0 The MPX9 output signal passes the low-pass filter and then is input to the high-pass filter. 1 The MPX9 output signal passes the high-pass filter and then is input to the low-pass filter. Remark Bits 7 and 6 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 300 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) Power control register 2 (PC2) This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise. When using the high-pass filter, be sure to set bit 2 to 1. Reset signal input clears this register to 00H. • 80-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF HPFOF LDOOF TEMPOF HPFOF Operation of high-pass filter 0 Stop operation of the high-pass filter. 1 Enable operation of the high-pass filter. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 301 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 5. 4 Procedure for operating the high-pass filter Follow the procedures below to start and stop the high-pass filter. Example of procedure for starting the high-pass filter Start Set MPX3 register Select the signal processing route. (SCF0 = *) Input control clock to CLK_HPF pin Set PC2 register Start operation of the high-pass filter. (HPFOF = 1) Operation starts *: don’t care Example of procedure for stopping the high-pass filter R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 302 RL78/G1E CHAPTER 4 ANALOG BLOCK 4 .6 Temperature Sensor The RL78/G1E (64-pin products, 80-pin products) has one on-chip temperature sensor channel. 4. 6. 1 Overview of temperature sensor features The features of temperature sensor are described below. • Output voltage temperature coefficient: −5 mV/°C (Typ.) • Includes a power-off function. 4. 6. 2 Block diagram R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 303 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 6. 3 Registers controlling the temperature sensor The temperature sensor is controlled by power control register 2 (PC2). (1) Power control register 2 (PC2) This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise. When selecting the signal to be input to the temperature sensor, be sure to set bit 0 to 1. Reset signal input clears this register to 00H. • 64-pin products Address: 12H After reset: 00 R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF 0 LDOOF TEMPOF TEMPOF Operation of temperature sensor 0 Stop operation of the temperature sensor. 1 Enable operation of the temperature sensor. Caution Be sure to clear bit 2 to “0”. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. • 80-pin products Address: 12H After reset: 00 R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF HPFOF LDOOF TEMPOF TEMPOF Operation of temperature sensor 0 Stop operation of the temperature sensor. 1 Enable operation of the temperature sensor. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 304 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 6. 4 Procedure for operating the temperature sensor Follow the procedures below to start and stop the temperature sensor. Example of procedure for starting the temperature sensor Example of procedure for stopping the temperature sensor R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 305 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 7 Variable Output Voltage Regulator The RL78/G1E (64-pin products, 80-pin products) has one on-chip variable output voltage regulator channel. This is a series regulator that generates a voltage of 3.3 V (default) from a supplied voltage of 5 V. 4. 7. 1 Overview of variable output voltage regulator features The features of variable output voltage regulator are described below. • Output voltage range: 2.0 to 3.3 V (Typ.) • Output current: 15 mA (Max.) • Includes a power-off function. 4. 7. 2 Block diagram R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 306 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 7. 3 Registers controlling the variable output voltage regulator The variable output voltage regulator is controlled by the following 2 registers: • LDO control register (LDOC) • Power control register 2 (PC2) (1) LDO control register (LDOC) This register is used to specify the output voltage of the variable output voltage regulator. Reset signal input sets this register to 0DH. Address: 0BH After reset: 0DH R/W LDOC 7 6 5 4 3 2 1 0 0 0 0 0 LDO3 LDO2 LDO1 LDO0 LDO3 LDO2 LDO1 LDO0 0 0 0 0 2.0 V 0 0 0 1 2.1 V 0 0 1 0 2.2 V 0 0 1 1 2.3 V 0 1 0 0 2.4 V 0 1 0 1 2.5 V 0 1 1 0 2.6 V 0 1 1 1 2.7 V 1 0 0 0 2.8 V 1 0 0 1 2.9 V 1 0 1 0 3.0 V 1 0 1 1 3.1 V 1 1 0 0 3.2 V 1 1 0 1 3.3 V Note Other than above Output Voltage of Variable Output Voltage Regulator (Typ.) Setting prohibited Note Output voltage of 3.3 V is available when the power supply voltage is more than 4 V. Remark Bits 7 to 4 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 307 RL78/G1E CHAPTER 4 ANALOG BLOCK (2) Power control register 2 (PC2) This register is used to enable or disable operation of the gain adjustment amplifier, the low-pass filter, the high-pass filter, the variable output voltage regulator, the reference voltage generator, and the temperature sensor. Use this register to stop unused functions to reduce power consumption and noise. When using the variable output voltage regulator and reference voltage generator, be sure to set bit 1 to 1. Reset signal input clears this register to 00H. • 64-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF 0 LDOOF TEMPOF LDOOF Operation of variable output voltage regulator and reference voltage generator 0 Stop operation of the variable output voltage regulator and reference voltage generator. 1 Enable operation of the variable output voltage regulator and reference voltage generator. Caution Be sure to clear bit 2 to “0”. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. • 80-pin products Address: 12H After reset: 00H R/W PC2 7 6 5 4 3 2 1 0 0 0 0 GAINOF LPFOF HPFOF LDOOF TEMPOF LDOOF Operation of variable output voltage regulator and reference voltage generator 0 Stop operation of the variable output voltage regulator and reference voltage generator. 1 Enable operation of the variable output voltage regulator and reference voltage generator. Remark Bits 7 to 5 can be set to 1, but this has no effect on the function. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 308 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 7. 4 Procedure for operating the variable output voltage regulator Follow the procedures below to start and stop the variable output voltage regulator and reference voltage generator. Example of procedure for starting the variable output voltage regulator and reference voltage generator Start Set LDOC register Set PC2 register Select the output voltage value. (LDOC = **H) Start operation of the variable output voltage regulator and reference voltage generator. (LDOOF = 1) Operation starts *: don’t care Example of procedure for stopping the variable output voltage regulator and reference voltage generator R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 309 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 8 Reference Voltage Generator The RL78/G1E (64-pin products, 80-pin products) has one on-chip reference voltage generator channel. 4. 8. 1 Overview of reference voltage generator features The features of reference voltage generator are described below. • Output reference voltage: 1.21 V (Typ.) • Includes a power-off function. 4. 8. 2 Block diagram R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 310 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 8. 3 Registers controlling the reference voltage generator The reference voltage generator is controlled by power control register 2 (PC2). For details about the setting of power control register 2, see 4. 7. 3 (2) Power control register 2 (PC2). 4. 8. 4 Procedure for operating the reference voltage generator For details about the procedures to start and stop the reference voltage generator, see 4. 7. 4 Procedure for operating the variable output voltage regulator. 4. 8. 5 Notes on using the reference voltage generator Observe the following points when using the reference voltage generator: (1) Only a very small current can flow from the BGR_OUT pin because the output impedance of the reference voltage generator is high. If the load input impedance is low, insert a follower amplifier between the load and the BGR_OUT pin. Also, make sure that the wiring between the pin and the follower amplifier or load is as short as possible (because of the high output impedance). If it is not possible to keep the wiring short, take measures such as surrounding the pin with a ground pattern. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 311 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 9 SPI 4. 9. 1 Overview of SPI features The SPI interface is used to allow control from external devices by using clocked communication via four lines: a serial clock line (SCLK), two serial data lines (SDI and SDO), and a chip select input line (CS). Data transmission/reception: • 16-bit data unit • MSB first Figure 4-4. SPI Configuration Example DVDD RL78/G1E (60-pin, 80-pin) 16-bit Micro. (RL78/G1A) Master CSI21 SCK21 Analog chip Slave 1 SPI SCLK SI21 SDO SO21 SDI P73 CS Port Slave 2 SPI SCLK SDO SDI CS Caution After turning on DVDD, be sure to generate external reset by inputting a reset signal to ARESET pin before starting SPI communication. For details, see 4.10 Analog Reset. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 312 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 9. 2 SPI communication The SPI transmits and receives data in 16-bit units. Data can be transmitted and received when CS is low. Data is transmitted one bit at a time in synchronization with the falling edge of the serial clock, and is received one bit at a time in synchronization with the rising edge of the serial clock. When the R/W bit is 1, data is written to the SPI control register in accordance with the address/data setting after the 16th rising edge of SCLK has been detected following the fall of CS, and the operation specified by the data is executed. When the R/W bit is 0, the data is output from the register in accordance with the address/data setting in synchronization with the 9th and later falling edges of SCLK following the fall of CS. Figure 4-5. SPI Communication Timing R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 313 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-11. SPI Control Registers Address SPI Control Register R/W After Reset 00H Configuration register 1 (CONFIG1) R/W 00H 01H Configuration register 2 (CONFIG2) R/W 00H 03H MPX setting register 1 (MPX1) R/W 00H 04H MPX setting register 2 (MPX2) R/W 00H 05H MPX setting register 3 (MPX3) R/W 00H 06H Gain control register 1 (GC1) R/W 00H 07H Gain control register 2 (GC2) R/W 00H 08H Gain control register 3 (GC3) R/W 00H 09H AMP operation mode control register (AOMC) R/W 00H 0AH Gain control register 4 (GC4) R/W 00H 0BH LDO control register (LDOC) R/W 0DH 0CH DAC reference voltage control register (DACRC) R/W 00H 0DH DAC control register 1 (DAC1C) R/W 80H 0EH DAC control register 2 (DAC2C) R/W 80H 0FH DAC control register 3 (DAC3C) R/W 80H 10H DAC control register 4 (DAC4C) R/W 80H 11H Power control register 1 (PC1) R/W 00H 12H Power control register 2 (PC2) R/W 00H 13H Reset control register (RC) R/W 00HNote Note The reset control register is not initialized by generating internal reset of the reset control register. For details, see 4. 10 Analog Reset. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 314 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 10 Analog Reset 4. 10. 1 Overview of analog reset feature The RL78/G1E (64-pin products, 80-pin products) has an on-chip analog reset function. The SPI control registers of analog block are initialized by analog reset. Reset can be generated in the following two ways: • External reset by inputting an external reset signal to the ARESET pin • Internal reset by writing 1 to the RESET bit of the reset control register (RC) The functions of the external reset and the internal reset are described below. • After turning on DVDD, be sure to generate external reset by inputting a reset signal to ARESET pin before starting SPI communication. For the details of ARESET pin, see 2. 5. 31 ARESET. • During analog reset, each function of analog block is shifted to the status shown in Table 4-12. The status of each SPI control register after analog reset has been acknowledged is shown in Table 4-13. After analog reset, the status of each pin is shown in Table 4-14. • External reset is generated when a low-level signal is input to the ARESET pin. On the other hand, internal reset is generated when 1 is written to the RESET bit of the reset control register (RC). • External reset is subsequently cancelled by inputting a high-level signal to ARESET pin after a low-level signal is input to this pin. On the other hand, internal reset is subsequently cancelled by writing 0 to the RESET bit of the reset control register (RC) after 1 is written to the same bit of this register. Cautions When generating an external reset, input a low-level signal to the ARESET pin for at least 10 μs. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 315 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-12. Statuses during Analog Reset Function Block External Reset from ARESET Pin Internal Reset by Reset Control Register (RC) Configurable amplifier Operation stops. Gain adjustment amplifier Operation stops. D/A converter Operation stops. Low-pass filter High-pass filter Operation stops. Note Operation stops. Temperature sensor Operation stops. Variable output voltage regulator Operation stops. Reference voltage generator Operation stops. SPI Operation stops. Operation enabled. Note 80-pin products only. Table 4-13. Statuses of SPI Control Registers after Analog Reset Is Acknowledged Address SPI Control Register Status After a Reset Is Acknowledged External Reset Internal Reset 00H Configuration register 1 (CONFIG1) 00H 00H 01H Configuration register 2 (CONFIG2) 00H 00H 03H MPX setting register 1 (MPX1) 00H 00H 04H MPX setting register 2 (MPX2) 00H 00H 05H MPX setting register 3 (MPX3) 00H 00H 06H Gain control register 1 (GC1) 00H 00H 07H Gain control register 2 (GC2) 00H 00H 08H Gain control register 3 (GC3) 00H 00H 09H AMP operation mode control register (AOMC) 00H 00H 0AH Gain control register 4 (GC4) 00H 00H 0BH LDO control register (LDOC) 0DH 0DH 0CH DAC reference voltage control register (DACRC) 00H 00H 0DH DAC control register 1 (DAC1C) 80H 80H 0EH DAC control register 2 (DAC2C) 80H 80H 0FH DAC control register 3 (DAC3C) 80H 80H 10H DAC control register 4 (DAC4C) 80H 80H 11H Power control register 1 (PC1) 00H 00H 12H Power control register 2 (PC2) 00H 00H 13H Reset control register (RC) 00H 01H Note Note The reset control register is not initialized by generating internal reset of the reset control register, but it can be done to 00H by generating external reset from ARESET pin or writing 0 to the RESET bit of the reset control register (RC).. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 316 RL78/G1E CHAPTER 4 ANALOG BLOCK Table 4-14. Pin Statuses after Analog Reset Pin Name External Reset from ARESET Pin Internal Reset by Reset Control Register (RC) SC_IN Hi-Z Hi-Z CLK_SYNCH Pull-down input Pull-down input SYNCH_OUT Hi-Z Hi-Z GAINAMP_OUT Hi-Z Hi-Z GAINAMP_IN Hi-Z Hi-Z MPXIN61 Hi-Z Hi-Z MPXIN51 Hi-Z Hi-Z MPXIN60 Hi-Z Hi-Z MPXIN50 Hi-Z Hi-Z AMP3_OUT Hi-Z Hi-Z DAC3_OUT/VREFIN3 Pull-down input Pull-down input AMP2_OUT Hi-Z Hi-Z AMP1_OUT Hi-Z Hi-Z DAC2_OUT/VREFIN2 Pull-down input Pull-down input DAC1_OUT/VREFIN1 Pull-down input Pull-down input MPXIN41 Hi-Z Hi-Z MPXIN31 Hi-Z Hi-Z MPXIN40 Hi-Z Hi-Z MPXIN30 Hi-Z Hi-Z MPXIN21 Hi-Z Hi-Z MPXIN11 Hi-Z Hi-Z MPXIN20 Hi-Z Hi-Z MPXIN10 Hi-Z Hi-Z BGR_OUT Pull down Pull down LDO_OUT Pull down Pull down TEMP_OUT Pull down Pull down SCLK Hi-Z Pull-up input SDO Hi-Z (open drain) Hi-Z (open drain) SDI Hi-Z Pull-up input CS Hi-Z Pull-up input DAC4_OUT/VREFIN4 Pull-down input Pull-down input HPF_OUT Hi-Z Hi-Z CLK_HPF Pull-down input Pull-down input CLK_LPF Pull-down input Pull-down input LPF_OUT Hi-Z Hi-Z R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 317 RL78/G1E CHAPTER 4 ANALOG BLOCK 4. 10. 2 Registers controlling the analog reset (1) Reset control register (RC) This register is used to control the reset feature in the analog block. An internal reset can be generated by writing 1 to the RESET bit. The reset control register (RC) is not initialized by generating internal reset of the reset control register, but it can be done by generating external reset from ARESET pin. External reset from ARESET pin clears this register to 00H. Address: 13H After reset: 00H Note R/W RC 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 RESET RESET Reset request by internal reset signal 0 Do not make a reset request by using the internal reset signal, or cancel the reset. 1 Make a reset request by using the internal reset signal, or the reset signal is currently being input. Note The reset control register is not initialized by generating internal reset of the reset control register, but it can be done to 00H by generating external reset from ARESET pin or by writing 0 to the RESET bit of the reset control register (RC). Caution When the RESET bit is 1, writing to any register other than the reset control register (RC) is ignored. Initializing the reset control register (RC) to 00H by external reset, or writing 0 to the RESET bit enables writing to all the registers. Remark Bits 7 to 1 are fixed at 0 of read only. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 318 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS CHAPTER 5 ELECTRICAL SPECIFICATIONS In this capter, the electrical specification is described for the target products shown below. Target products A: Consumer applications TA = −40 to +85°C R5F10FLCANA, R5F10FLCANA, R5F10FLDANA, R5F10FLDANA, R5F10FLEANA, R5F10FLEANA, R5F10FMCAFB, R5F10FMCAFB, R5F10FMDAFB, R5F10FMDAFB, R5F10FMEAFB, R5F10FMEAFB Target products D: Industrial applications TA = −40 to +85°C R5F10FLCDNA, R5F10FLCDNA, R5F10FLDDNA, R5F10FLDDNA, R5F10FLEDNA, R5F10FLEDNA, R5F10FMCDFB, R5F10FMCDFB, R5F10FMDDFB, R5F10FMDDFB, R5F10FMEDFB, R5F10FMEDFB Cautions 1. The RL78/G1E microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used. 2. The pins mounted depend on the product, so that refer to CHAPTER 2 PIN FUNCTIONS. In this Chapter, most of the descriptions use the case of 80-pin products as an example. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 319 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 1 Absolute Maximum Ratings 5. 1. 1 Absolute maximum ratings of microcontroller block Absolute maximum ratings (TA = 25°C) Parameter Supply voltage Symbol Conditions Ratings Unit VDD −0.5 to +6.5 V AVDD −0.5 to +4.6 V Note 3 −0.3 to AVDD +0.3 AVREFP −0.5 to +0.3 AVSS V Note 3 −0.3 to AVDD +0.3 AVREFM V V and AVREFM ≤ AVREFP REGC pin input VIREGC −0.3 to 2.8 REGC voltage V and −0.3 to VDD + 0.3Note 1 Input voltage P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, P140 −0.3 to VDD + 0.3Note 2 V P121, P122, P137, EXCLK, RESET −0.3 to VDD + 0.3 V VI4 P20 to P24 −0.3 to AVDD + 0.3 VI5 I.C pin VI1 VI3 Output voltage VO1 Note 2 Note 3 −0.5 to +0.3 P00 to P04, P10 to P15, P40 to P42, P50, P51, P70 to P73, V V −0.3 to VDD + 0.3 Note 2 V P130, P140 Analog input VO2 P20 to P24 VAI1 ANI16 to ANI18, ANI20 to ANI26, ANI28, ANI30 voltage −0.3 to AVDD + 0.3Note 3 V −0.3 to VDD + 0.3 V and -0.3 to AVREF(+) + 0.3Note 2, 4 VAI2 −0.3 to AVDD + 0.3 ANI0 to ANI4 V and -0.3 to AVREF(+) + 0.3Note 3, 4 Output current, IOH1 high IOH2 Per pin IOL1 low IOL2 mA Total of all pins: P00 to P04, P40 to P42, P130, P140 −70 mA −170 mA P10 to P15, P50, P51, P70 to P73 −100 mA Per pin ANI0 to ANI4 −0.1 mA −1.3 mA 40 mA Total of all pins Output current, −40 Per pin Total of all pins: P00 to P04, P40 to P42, P130, P140 70 mA 170 mA P10 to P15, P50, P51, P70 to P73 100 mA Per pin ANI0 to ANI4 0.4 mA 6.4 mA Total of all pins (Notes, Causion and Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 320 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS Notes 1. Connect the REGC pin to VSS via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not apply any external voltage to this pin. 2. Must be 6.5 V or lower. 3. Must be 4.6 V or lower. 4. Do not exceed AVREF(+)+0.3 V in case of A/D conversion target pin. Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. 2. AVREF(+): + side reference voltage of the A/D Conveter. 3. VSS is reference voltage. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 321 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 1. 2 Absolute maximum ratings of analog block Absolute maximum ratings (TA = 25°C) Parameter Supply voltage Input voltage Symbol Conditions Ratings Unit AVDDA AVDD1, AVDD2, AVDD3 −0.3 to +6.0 V DVDD DVDD −0.3 to +6.0 V AGND AGND1, AGND2, AGND3, AGND4 −0.3 to +0.3 V DGND DGND −0.3 to +0.3 VI1 V Note −0.3 to AVDDA + 0.3 V SCLK, SDI, CS −0.3 to DVDD + 0.3Note V LDO_OUT, BGR_OUT, AMP1_OUT, Note −0.3 to AVDDA + 0.3 V −0.3 to DVDD + 0.3Note V 1 mA MPXIN10, MPXIN11, MPXIN20, MPXIN21, MPXIN30, MPXIN31, MPXIN40, MPXIN41, MPXIN50, MPXIN51, MPXIN60, MPXIN61, SC_IN, CLK_SYNCH, VREFIN1, VREFIN2, VREFIN3, VREFIN4, CLK_LPF, CLK_HPF, RESET VI2 Output voltage VO1 AMP2_OUT, AMP3_OUT, GAINAMP_OUT, SYNCH_OUT, LPF_OUT, HPF_OUT, DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT, TEMP_OUT Output current VO2 SDO IO1 AMP1_OUT, AMP2_OUT, AMP3_OUT, GAINAMP_OUT, SYNCH_OUT LPF_OUT, HPF_OUT DAC1_OUT, DAC2_OUT, DAC3_OUT, DAC4_OUT, TEMP_OUT IO2 SDO −10 mA ILDOOUT LDO_OUT 15 mA Note Must be 6.0 V or lower. Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 322 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog block) Absolute maximum ratings Parameter Symbol Operating ambient Conditions Ratings Unit In normal operation mode −40 to +85 °C In flash memory programming mode −40 to +85 °C −40 to +150 °C TA temperature Storage temperature Tstg Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 323 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2 Electrical Specifications of Microcontroller Block 5. 2. 1 Oscillator characteristics 5. 2. 1. 1 X1 oscillator characteristics (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Resonator Note X1 clock oscillation frequency (fX) Ceramic resonator / Crystal resonator Conditions MIN. TYP. MAX. Unit MHz 2.7 V ≤ VDD ≤ 5.5 V 1.0 20.0 2.4 V ≤ VDD < 2.7 V 1.0 16.0 1.8 V ≤ VDD < 2.4 V 1.0 8.0 1.6 V ≤ VDD < 1.8 V 1.0 4.0 Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time. Also, be sure to apply to the resonator manufacturer for evaluation on the actual circuit so as to confirm the oscillation characteristics. Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used. Remark When using the X1 oscillator, see 3. 5. 4 System clock oscillator. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 324 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 1. 2 On-chip oscillator characteristics (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Resonator Symbol Conditions MAX. Unit 1 32 MHz 1.8 V ≤ VDD ≤ 5.5 V − 1.0 + 1.0 % 1.6 V ≤ VDD ≤ 1.8 V − 5.0 + 5.0 % 1.8 V ≤ VDD ≤ 5.5 V − 1.5 + 1.5 % 1.6 V ≤ VDD ≤ 1.8 V − 5.5 + 5.5 % fIH High-speed on-chip oscillator MIN. TYP. clock frequency Note 1, 2 −20 to + 85 °C High-speed on-chip oscillator clock frequency accuracy −40 to − 20 °C Low-speed on-chip oscillator clock fIL 15 kHz frequency Low-speed on-chip oscillator clock − 15 + 15 % frequency accuracy Notes 1. Frequency can be selected in a high-speed on-chip oscillator. Selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register. 2. Indicates only permissible frequency level. Refer to AC Characteristics for instruction execution time. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 325 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 2 DC characteristics 5. 2. 2. 1 Pin characteristics (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Symbol Output current, IOH1 Note 1 high Conditions MAX. Unit 1.6 V ≤ VDD ≤ 5.5 V −10.0Note 2 mA Per pin for P70 to P73 1.6 V ≤ VDD ≤ 5.5 V −3.0Note 2 mA Total of P00 to P04, P40 to P42, 4.0 V ≤ VDD ≤ 5.5 V −55.0 mA P130, P140 2.7 V ≤ VDD < 4.0 V −10.0 1.8 V ≤ VDD < 2.7 V −5.0 1.6 V ≤ VDD < 1.8 V −2.5 Total of P10 to P15, P50, P51, 4.0 V ≤ VDD ≤ 5.5 V −80.0 P70 to P73 2.7 V ≤ VDD < 4.0 V −19.0 1.8 V ≤ VDD < 2.7 V −10.0 1.6 V ≤ VDD < 1.8 V −5.0 1.6 V ≤ VDD ≤ 5.5 V −100.0 mA 1.6 V ≤ AVDD ≤ 3.6 −0.1Note 2 mA −1.3 mA Per pin for P00 to P04, P10 to P15, MIN. TYP. P40 to P42, P50, P51, P130, P140 (When duty = 70%Note 3) (When duty = 70%Note 3) Total of all pins mA (When duty = 70%Note 3) IOH2 Per pin for P20 to P24 V Notes 1. Total of all pins 1.6 V ≤ AVDD ≤ 3.6 (When duty = 70%Note 3) V Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin. 2. Do not exceed the total current value. 3. Specification under conditions where the duty ≤ 70%. The output current value that has changed the duty ratio > 70% can be calculated with the following expression (when changing the duty ratio to n%). • Total output current of pins = (IOH × 0.7) / (n × 0.01) When IOH = −10.0 mA and n = 80% Total output current of pins = (-10.0 × 0.7) / (80 × 0.01) ≅ -8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. Caution P00, P02 to P04, P10 to P15 and P50 do not output high level in N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 326 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Symbol Output current, IOL1 lowNote 1 Conditions MAX. Unit 1.6 V ≤ VDD ≤ 5.5 V 20.0Note 2 mA Per pin for P70 to P73 1.6 V ≤ VDD ≤ 5.5 V 3.0Note 2 mA Total of P00 to P04, P40 to P42, 4.0 V ≤ VDD ≤ 5.5 V 70.0 mA 2.7 V ≤ VDD < 4.0 V 15.0 1.8 V ≤ VDD < 2.7 V 9.0 1.6 V ≤ VDD < 1.8 V 4.5 4.0 V ≤ VDD ≤ 5.5 V 80.0 2.7 V ≤ VDD < 4.0 V 35.0 1.8 V ≤ VDD < 2.7 V 20.0 1.6 V ≤ VDD < 1.8 V 10.0 Total of all pinsNote 3 1.6 V ≤ VDD ≤ 5.5 V 150.0 mA Per pin for P20 to P24 1.6 V ≤ AVDD ≤ 3.6 V 0.4Note 2 mA Total of all pinsNote 3 1.6 V ≤ AVDD ≤ 3.6 V 5.2 mA Per pin for P00 to P04, P10 to P15, MIN. TYP. P40 to P42, P50 to P51, P130, P140 P130, P140 (When duty = 70%Note 3) Total of P10 to P15, P50, P51, P70 to P73 (When duty = 70%Note 3) IOL2 Notes 1. mA Value of current at which the device operation is guaranteed even if the current flows from the VSS pin to an output pin. 2. Do not exceed the total current value. 3. Specification under conditions where the duty ≤ 70%. The output current value that has changed the duty ratio > 70 % can be calculated with the following expression (when changing the duty ratio to n%). • Total output current of pins = (IOL × 0.7) / (n × 0.01) When IOL = 10.0 mA and n = 80% Total output current of pins = (10.0 × 0.7) / (80 × 0.01) ≅ 8.7 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 327 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Input voltage, Symbol VIH1 high Conditions MAX. Unit 0.8VDD VDD V 2.2 VDD V 2.0 VDD V 1.5 VDD V 0.7AVDD AVDD V 0.8VDD VDD V Normal input buffer 0 0.2VDD V P01, P03, P04, P10, P11, TTL input buffer 0 0.8 V P13 to P15 4.0 V ≤ VDD ≤ 5.5 V 0 0.5 V 0 0.32 V P00 to P04, P10 to P15, MIN. Normal input buffer TYP. P40 to P42, P50, P51, P70 to P73, P140 VIH2 P01, P03, P04, P10, P11, TTL input buffer P13 to P15 4.0 V ≤ VDD ≤ 5.5 V TTL input buffer 3.3V ≤ VDD < 4.0 V TTL input buffer 1.6 V ≤ VDD < 3.3 V Input voltage, VIH3 P20 to P24 VIH5 P121, P122, P137, EXCLK, RESET VIL1 P00 to P04, P10 to P15, low P40 to P42, P50, P51, P70 to P73, P140 VIL2 TTL input buffer 3.3 V ≤ VDD ≤ 4.0 V TTL input buffer 1.6 V ≤ VDD < 3.3 V VIL3 P20 to P24 0 0.3AVDD V VIL5 P121, P122, P137, EXCLK, RESET 0 0.2VDD V Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, and P50 is VDD, even in the N-ch opendrain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 328 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Output voltage, Symbol VOH1 high Conditions P00 to P04, P10 to P15, 4.0 V ≤ VDD ≤ 5.5 V, P40 to P42, P50, P51, IOH1 = −10.0 mA P130, P140 4.0 V ≤ VDD ≤ 5.5 V, MIN. TYP. MAX. Unit VDD − 1.5 V VDD − 0.7 V VDD − 0.6 V VDD − 0.5 V VDD − 0.5 V AVDD − 0.5 V VDD − 1.1 V VDD − 0.9 V VDD − 0.7 V VDD − 0.7 V IOH1 = −3.0 mA 2.7 V ≤ VDD ≤ 5.5 V, IOH1 = −2.0 mA 1.8 V ≤ VDD ≤ 5.5 V, IOH1 = −1.5 mA 1.6 V ≤ VDD ≤ 5.5 V, IOH1 = −1.0 mA VOH2 P20 to P24 1.6 V ≤ AVDD ≤ 3.6 V, IOH2 = −100 μA VOH4 P70 to P73 4.0 V ≤ VDD ≤ 5.5 V, IOH4 = −3.0 mA 2.7 V ≤ VDD ≤ 5.5 V, IOH4 = −2.0 mA 1.8 V ≤ VDD ≤ 5.5 V, IOH4 = −1.5 mA 1.6 V ≤ VDD ≤ 5.5 V, IOH4 = −1.0 mA Caution P00, P02 to P04, P10 to P15 and P50 do not output high level in N-ch open-drain mode. Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 329 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Output voltage, Symbol VOL1 low Conditions P00 to P04, P10 to P15, 4.0 V ≤ VDD ≤ 5.5 V, P40 to P42, P50, P51, IOL1 = 20.0 mA P130, P140 4.0 V ≤ VDD ≤ 5.5 V, MIN. TYP. MAX. Unit 1.5 V 0.7 V 0.6 V 0.4 V 0.4 V 0.4 V 0.4 V 1.0 V 0.6 V 0.5 V 0.5 V IOL1 = 8.5 mA 2.7 V ≤ VDD ≤ 5.5 V, IOL1 = 3.0 mA 2.7 V ≤ VDD ≤ 5.5 V, IOL1 = 1.5 mA 1.8 V ≤ VDD ≤ 5.5 V, IOL1 = 0.6 mA 1.6 V ≤ VDD < 5.5 V, IOL1 = 0.3 mA VOL2 P20 to P24 1.6 V ≤ AVDD ≤ 3.6 V, IOL2 = 400 μA VOL4 P70 to P73 2.7 V ≤ VDD ≤ 5.5 V, IOL4 = -3.0 mA 2.7 V ≤ VDD ≤ 5.5 V, IOL4 = -1.5 mA 1.8 V ≤ VDD ≤ 5.5 V, IOL4 = -0.6 mA 1.6 V ≤ VDD ≤ 5.5 V, IOL4 = -0.3 mA Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 330 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Symbol Conditions Input leakage current, ILIH1 P00 to P04, high P10 to P15, MIN. TYP. MAX. Unit VI = VDD 1 μA 1 μA 1 μA 10 μA P40 to P42, P50, P51, P70 to P73, P140 ILIH2 P137, RESET VI = VDD ILIH3 P121, P122 VI = VDD (X1, X2, EXCLK) Input port or external clock input selected Resonator connected ILIH4 P20 to P24 VI = AVDD 1 μA Input leakage current, ILIL1 P00 to P04, VI = VSS −1 μA low P10 to P15, VI = VSS −1 μA −1 μA −10 μA −1 μA 100 kΩ P40 to P42, P50, P51, P70 to P73, P140 ILIL2 P121, P122, P137, RESET ILIL3 P121, P122 VI = VSS (X1, X2, EXCLK) Input port or external clock input selected Resonator connected On-chip pull-up ILIL4 P20 to P24 VI = AVSS RU P00 to P04, VI = VSS, input port selected resistance 10 20 P10 to P15, P40 to P42, P50, P51, P70 to P73, P140 Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 331 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 2. 2 Supply current characteristics (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Symbol Supply IDD1 (1/3) Conditions MIN. TYP. MAX Unit . current Operating HS(Highmode Note 1 fIH = 32 MHzNote 3 Basic VDD = 5.0 V 2.1 mA speed main) operation VDD = 3.0 V 2.1 modeNote 4 Normal VDD = 5.0 V 4.6 7.0 operation VDD = 3.0 V 4.6 7.0 Normal VDD = 5.0 V 3.7 5.5 operation VDD = 3.0 V 3.7 5.5 Normal Note 3 fIH = 24 MHz fIH = 16 MHzNote 3 LS (Low- fIH = 8 MHzNote 3 speed main) VDD = 5.0 V 2.7 4.0 operation VDD = 3.0 V 2.7 4.0 Normal VDD = 3.0 V 1.2 1.8 operation VDD = 2.0 V 1.2 1.8 Normal VDD = 3.0 V 1.2 1.7 operation VDD = 2.0 V 1.2 1.7 mA mA mA mA modeNote 4 LV (Low- fIH = 4 MHzNote 3 voltage main) mA modeNote 4 HS (High- fMX = 20 MHzNote 2 Normal Square wave input 3.0 4.6 speed main) VDD = 5.0 V operation Resonator connection 3.2 4.8 modeNote 4 fMX = 20 MHzNote 2 Normal Square wave input 3.0 4.6 VDD = 3.0 V operation Resonator connection 3.2 4.8 fMX = 10 MHzNote 2 Normal Square wave input 1.9 2.7 VDD = 5.0 V operation Resonator connection 1.9 2.7 fMX = 10 MHzNote 2 Normal Square wave input 1.9 2.7 VDD = 3.0 V operation Resonator connection 1.9 2.7 LS (Low- fMX = 8 MHzNote 2 Normal Square wave input 1.1 1.7 speed main) VDD = 3.0 V operation Resonator connection 1.1 1.7 fMX = 8 MHz Normal Square wave input 1.1 1.7 VDD = 2.0 V operation Resonator connection 1.1 1.7 modeNote 4 Notes 1. Note 2 mA mA mA Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pullup/pull-down resistors, and data flash rewriting. 2. When the high-speed on-chip oscillator is stopped. 3. When the high-speed system clock is stopped. 4. The relationship between the operation voltage range, CPU operating frequency, and operating mode is as below. HS (High-speed main) mode: VDD = 2.7 to 5.5 V @ 1 MHz to 32 MHz VDD = 2.4 to 5.5 V @ 1 MHz to 16 MHz LS (Low-speed main) mode: VDD = 1.8 to 5.5 V @ 1 MHz to 8 MHz LV (Low-voltage main) mode: VDD = 1.6 to 5.5 V @ 1 MHz to 4 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 332 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Symbol Supply IDD2Note 2 current Note (2/3) Conditions HALT mode MIN. TYP. MAX. Unit VDD = 5.0 V 0.54 1.63 mA VDD = 3.0 V 0.54 1.63 VDD = 5.0 V 0.44 1.28 VDD = 3.0 V 0.44 1.28 VDD = 5.0 V 0.40 1.00 VDD = 3.0 V 0.40 1.00 VDD = 3.0 V 260 530 VDD = 2.0 V 260 530 VDD = 3.0 V 420 640 VDD = 2.0 V 420 640 Note 3 Square wave input HS (High-speed fMX = 20 MHz 0.28 1.00 main) modeNote 6 VDD = 5.0 V Resonator connection 0.45 1.17 fMX = 20 MHz Square wave input 0.28 1.00 VDD = 3.0 V Resonator connection 0.45 1.17 fMX = 10 MHz Square wave input 0.19 0.60 VDD = 5.0 V Resonator connection 0.26 0.67 fMX = 10 MHz Square wave input 0.19 0.60 VDD = 3.0 V Resonator connection 0.26 0.67 fMX = 8 MHzNote 3 Square wave input 95 330 VDD = 3.0 V Resonator connection 145 380 fMX = 8 MHz Square wave input 95 330 VDD = 2.0 V Resonator connection 145 380 Note 4 HS (High-speed fIH = 32 MHz Note 6 main) mode 1 fIH = 24 MHzNote 4 Note 4 fIH = 16 MHz LS (Low-speed Note 4 fIH = 8 MHz Note 6 main) mode Note 4 LV (Low-voltage fIH = 4 MHz Note 6 main) mode Note 3 Note 3 Note 3 LS (Low-speed Note 6 main) mode Note 3 IDD3Note 5 STOP TA = −40°C 0.15 0.50 mode TA = +25°C 0.22 0.50 TA = +50°C 0.34 1.10 TA = +70°C 0.46 1.90 TA = +85°C 0.75 3.30 mA mA μA μA mA mA μA μA (Notes and Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 333 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pullup/pull-down resistors, and data flash rewriting. 2. When the HALT instruction is executed for the flash memory. 3. When the high-speed on-chip oscillator is stopped. 4. When the high-speed system clock is stopped. 5. Not including the current flowing into 12-bit interval timer, watchdog timer. 6. The relationship between the operation voltage range, CPU operating frequency, and operating mode is as below. HS (High-speed main) mode: VDD = 2.7 to 5.5 V @ 1 MHz to 32 MHz VDD = 2.4 to 5.5 V @ 1 MHz to 16 MHz LS (Low-speed main) mode: VDD = 1.8 to 5.5 V @ 1 MHz to 8 MHz LV (Low-voltage main) mode: VDD = 1.6 to 5.5 V @ 1 MHz to 4 MHz Remarks 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) 2. fIH: High-speed on-chip oscillator clock frequency 3. The TYP. temperature condition in modes other than STOP mode is TA = 25°C. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 334 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Low-speed on-chip Symbol (3/3) Conditions IfIL Note 1 MIN. TYP. MAX. Unit 0.20 μA 0.02 Note 3 μA μA oscillator operating current 12-bit Interval timer IIT Note 1, 2, 3 operating current Watchdog timer IWDT Note 1, 2, 4 fIL = 15 kHz, fMAIN is stopped 0.22 IADC Note 5, 6 AVDD = 3.0 V, When conversion at maximum speed 420 720 μA IAVREF Note 7 AVDD = 3.0 V, ADREFP1 = 0, ADREFP0 = 0 Note 6 14.0 25.0 μA AVREFP = 3.0 V, ADREFP1 = 0, ADREFP0 = 1 Note 9 14.0 25.0 μA ADREFP1 = 1, ADREFP0 = 0 Note 1 14.0 25.0 μA IADREF Note 1, 8 VDD = 3.0 V 75.0 μA ITMPS Note 1 VDD = 3.0 V 75.0 μA ILVD Note 1, 10 0.08 μA IBGO Note 1, 11 2.5 12.2 mA IFSP Note 1, 12 2.5 12.2 mA operating current A/D converter operating current AVREF (+) current A/D converter reference voltage current Temperature sensor operating current LVD operating current BGO operating current Selfprogramming operating current SNOOZE operating ISNOZ current A/D converter The mode is performed Note 1, 13 0.50 0.60 mA operation During A/D conversion Note 1 0.60 0.75 mA During A/D conversion Note 6 420 720 μA 0.70 0.84 mA (AVDD = 3.0 V) CSI/UART operation Note 1 (Notes and Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 335 RL78/G1E Notes 1. CHAPTER 5 ELECTRICAL SPECIFICATIONS Current flowing to VDD. 2. When high-speed on-chip oscillator and high-speed system clock are stopped. 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed onchip oscillator is selected, IFIL should be added. 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IWDT when the watchdog timer is in operation. 5. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode. 6. Current flowing to the AVDD. 7. Current flowing from the reference voltage source of A/D converter. 8. Operation current flowing to the internal reference voltage. 9. Current flowing to the AVREFP. 10. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation. 11. Current flowing only during data flash rewrite. 12. Current flowing only during self programming. 13. For shift time to the SNOOZE mode, see 3. 18 Standby Function. Remarks 1. fIL: Low-speed on-chip oscillator clock frequency 2. fCLK: CPU/peripheral hardware clock frequency 3. The TYP. temperature condition is TA = 25°C. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 336 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 3 AC characteristics (TA = −40 to +85°C, 1.6 V ≤ AVDD ≤ 3.6 V, 1.6 V ≤ VDD ≤ 5.5 V, AVDD ≤ VDD, VSS = 0 V) Parameter Instruction cycle (minimum instruction execution time) Symbol TCY Conditions Main system clock (fMAIN) operation In the self programming mode External main system clock frequency External main system clock input fEX tEXH, tEXL high-level width, Unit 0.03125 MIN. 1 μs 2.4 V ≤ VDD < 2.7 V 0.0625 1 μs LV (Low-voltage main) mode 1.6 V ≤ VDD ≤ 5.5 V 0.25 1 μs LS (Low-speed main) mode 1.8 V ≤ VDD ≤ 5.5 V 0.125 1 μs HS (high-speed main) mode 2.7 V ≤ VDD ≤ 5.5 V 0.03125 1 μs 2.4 V ≤ VDD < 2.7 V 0.0625 1 μs LV (Low-voltage main) mode 1.8 V ≤ VDD ≤ 5.5 V 0.25 1 μs LS (Low-speed main) mode 1.8 V ≤ VDD ≤ 5.5 V 0.125 1 μs TI00, TI04, TI07 input high/low level width tTIH, tTIL TO00, TO04, TO07 output frequency fTO fPCL TYP. MHz 2.7 V ≤ VDD ≤ 5.5 V 1.0 20.0 2.4 V ≤ VDD < 2.7 V 1.0 16.0 1.8 V ≤ VDD < 2.4 V 1.0 8.0 1.6 V ≤ VDD < 1.8 V 1.0 4.0 2.7 V ≤ VDD ≤ 5.5 V 24 2.4 V ≤ VDD < 2.7 V 30 1.8 V ≤ VDD < 2.4 V 60 1.6 V ≤ VDD < 1.8 V low-level width PCLBUZ0 output frequency MAX. 2.7 V ≤ VDD ≤ 5.5 V HS (high-speed main) mode 120 ns 1/fMCK + 10 HS (high-speed main) mode 4.0 V ≤ VDD ≤ 5.5 V 16 2.7 V ≤ VDD < 4.0 V 8 1.8 V ≤ VDD < 2.7 V 4 1.6 V ≤ VDD < 1.8 V 2 LV (Low-voltage main) mode 1.6 V ≤ VDD < 5.5 V 2 LS (Low-speed main) mode 1.8 V ≤ VDD ≤ 5.5 V 4 1.6 V ≤ VDD < 1.8 V 2 HS (high-speed main) mode 4.0 V ≤ VDD ≤ 5.5 V 16 2.7 V ≤ VDD < 4.0 V 8 1.8 V ≤ VDD < 2.7 V 4 1.6 V ≤ VDD < 1.8 V 2 1.8 V ≤ VDD ≤ 5.5 V 4 1.6 V ≤ VDD < 1.8 V 2 LS (Low-speed main) mode 1.8 V ≤ VDD ≤ 5.5 V 4 tINIH, tINIL INTP0, INTP1, INTP2, INTP6 1.6 V ≤ VDD ≤ 5.5 V tKR KR0 to KR7 LV (Low-voltage main) mode 1.6 V ≤ VDD < 1.8 V Interrupt input high level width, ns MHz MHz 2 1 μs 1.8 V ≤ VDD ≤ 5.5 V 1.8 V ≤ AVDD ≤ 3.6 V 250 ns 1.6 V ≤ VDD < 1.8 V 1.6 V ≤ AVDD < 1.8 V 1 μs 10 μs low level width Key interrupt input high level width, low level width RESET low level width tRSL Remark fMCK: Timer array unit operation clock frequency. (Operation clock to be set by the timer clock select register 0 (TPS0) and CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 337 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS Minimum Instruction Execution Time during Main System Clock Operation TCY vs VDD (HS (high-speed main) mode) 10 1.0 Cycle time TCY [μs] When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected 0.1 0.0625 0.05 0.03125 0.01 0 1.0 2.0 3.0 2.4 2.7 4.0 5.0 6.0 5.5 Supply voltage VDD [V] R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 338 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS TCY vs VDD (LS (low-speed main) mode) 10 When the high-speed on-chip oscillator clock is selected Cycle time TCY [μs] 1.0 During self programming When high-speed system clock is selected 0.125 0.1 0.01 0 1.0 2.0 1.8 3.0 4.0 5.0 6.0 5.5 Supply voltage VDD [V] TCY vs VDD (LV (low-voltage main) mode) Cycle time TCY [μs] 10 1.0 When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected 0.25 0.1 0.01 0 1.0 2.0 1.6 1.8 3.0 4.0 5.0 6.0 5.5 Supply voltage VDD [V] R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 339 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS AC Timing Test Points VIH/VOH VIH/VOH Test points VIL/VOL VIL/VOL External System Clock Timing 1/fEX tEXL tEXH 0.7VDD (MIN.) 0.3VDD (MAX.) EXCLK TI/TO Timing tTIH tTIL TI00, TI04, TI07 1/fTO TO00, TO04, TO07 Interrupt Request Input Timing tINTL tINTH INTP0 to INTP2, INTP6 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 340 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS Key Interrupt Input Timing tKR KR0 to KR7 RESET Input Timing tRSL RESET R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 341 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 4 Peripheral functions characteristics AC Timing Test Points VIH/VOH VIL/VOL VIH/VOH Test points VIL/VOL 5. 2. 4. 1 Serial array unit (1) Communication between devices at same potential (UART mode) (dedicated baud rate generator output) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Paramete Symbol Conditions r MIN. Transfer rate HS Note 4 2.4 V ≤ VDD ≤ 5.5 V Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. Note 3 Unit MAX. fMCK/6 fMCK/6 fMCK/6 bps Theoretical value of the 5.3 1.3 0.6 Mbps maximum transfer rate: Note 5 fMCK/6 fMCK/6 fMCK/6 bps Theoretical value of the 5.3 1.3 0.6 Mbps maximum transfer rate: Note 5 fMCK/6 fMCK/6 bps 0.6 Mbps fMCK = fCLK Note 6 1.8 V ≤ VDD ≤ 5.5 V fMCK = fCLK Note 6 1.7 V ≤ VDD ≤ 5.5 V fMCK/6 Theoretical value of the 5.3 1.3 maximum transfer rate: Note 5 Note 5 - fMCK/6 fMCK/6 bps 1.3 0.6 Mbps fMCK = fCLK Note 6 1.6 V ≤ VDD ≤ 5.5 V Theoretical value of the - maximum transfer rate: fMCK = fCLK Note 5 Note 6 Notes 1. HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Transfer rate in the SNOOZE mode is 4800 bps. 5. The following conditions are required for low voltage interface. 2.4 V ≤ VDD < 2.7 V: 2.6 Mbps max. 1.8 V ≤ VDD < 2.4 V: 1.3 Mbps max. 1.6 V ≤ VDD < 1.8 V: 0.6 Mbps max. 6. fCLK in each operating mode is as below. HS (high-speed main) mode : fCLK = 32 MHz LS (low-speed main) mode : fCLK = 8 MHz LV (low-voltage main) mode : fCLK = 4 MHz Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 342 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS UART mode connection diagram (during communication between devices at same potential) TxD RL78 microcontroller RxD Rx User's device Tx UART mode bit width (during communication between devices at same potential) (reference) 1/Transfer rate High/Low-bit width Baud rate error tolerance TxDq RxDq Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1) 2. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 343 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (2) Communication between devices at same potential (CSI mode) (master mode, SCKp ... internal clock output corresponding CSI00 only) (TA = −40 to +85°C, 2.7 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Symbol SCKp cycle time tKCY1 SCKp tKH1, high-level width, tKL1 Note 1 MIN. Note 4 ≤ 5.5 V 83.3 2.7 V ≤ VDD tKCY1 ≥ 2/fCLK 4.0 V ≤ VDD ≤ 5.5 V MAX. LS MIN. 250 Note 2 LV MAX. MIN. 500 Note 3 Unit MAX. ns tKCY1/2 -50 tKCY1/2 -50 2.7 V ≤ VDD ≤ 5.5 V tKCY1/2 -10 tKCY1/2 -50 tKCY1/2 -50 tSIK1 4.0 V ≤ VDD ≤ 5.5 V 2.7 V ≤ VDD ≤ 5.5 V 23 33 110 110 110 110 ns tKSI1 2.7 V ≤ VDD ≤ 5.5 V 10 10 10 ns tKSO1 C = 20 pF (to SCKp↑) Note 5 Slp hold time HS tKCY1/2 -7 low-level width Slp setup time Conditions ns (from SCKp↑) Note 5 Delay time from Note 7 10 10 10 ns SCKp↓ to SOp output Note 6 Notes 1. HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. fMCK must be 24 MHz or less. 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↓. 6. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 7. C is the load capacitance of the SCKp and SOp output lines. 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↑. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1) 2. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 344 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (3) Communication between devices at same potenntial (CSI mode) (master mode, SCKp ... internal clock output) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Symbol Conditions HS MIN. SCKp cycle time tKCY1 2.7 V ≤ VDD ≤ 5.5 V Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. Note 3 MAX. Uni t 125 500 1000 ns 250 500 1000 ns 500 500 1000 ns 1000 1000 1000 ns - 1000 1000 ns tKCY1/2 tKCY1/2 tKCY1/2 ns -12 -50 -50 tKCY1/2 tKCY1/2 tKCY1/2 -18 -50 -50 tKCY1/2 tKCY1/2 tKCY1/2 -38 -50 -50 tKCY1/2 tKCY1/2 tKCY1/2 -50 -50 -50 tKCY1/2 tKCY1/2 tKCY1/2 -100 -100 -100 1.6 V ≤ VDD ≤ 5.5 V - tKCY1/2 tKCY1/2 -100 -100 4.0 V ≤ VDD ≤ 5.5 V 44 110 110 ns 2.7 V ≤ VDD ≤ 5.5 V 44 110 110 ns 2.4 V ≤ VDD ≤ 5.5 V 75 110 110 ns 1.8 V ≤ VDD ≤ 5.5 V 110 110 110 ns 1.7 V ≤ VDD ≤ 5.5 V 220 220 220 ns 1.6 V ≤ VDD ≤ 5.5 V - 220 220 ns 1.7 V ≤ VDD ≤ 5.5 V 19 19 19 ns 1.6 V ≤ VDD ≤ 5.5 V - 19 19 tKCY1 ≥ 4/fCLK 2.4 V ≤ VDD ≤ 5.5 V tKCY1 ≥ 4/fCLK 1.8 V ≤ VDD ≤ 5.5 V tKCY1 ≥ 4/fCLK 1.7 V ≤ VDD ≤ 5.5 V tKCY1 ≥ 4/fCLK 1.6 V ≤ VDD ≤ 5.5 V tKCY1 ≥ 4/fCLK SCKp tKH1, high-level width tKL1 low-level width 4.0 V ≤ VDD ≤ 5.5 V 2.7 V ≤ VDD ≤ 5.5 V 2.4 V ≤ VDD ≤ 5.5 V 1.8 V ≤ VDD ≤ 5.5 V 1.7 V ≤ VDD ≤ 5.5 V Slp setup time tSIK1 Note 4 (to SCKp↑) tKSI1 Slp hold time (from SCKp↑)Note 4 tKSO1 Slp hold time Note 5 (from SCKp↑) 1.7 V ≤ VDD ≤ 5.5 V C = 30 pF ns ns ns ns 25 25 25 - 25 25 ns Note 6 1.6 V ≤ VDD ≤ 5.5 V C = 30 pF ns Note 6 (Notes Caution and Remark are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 345 RL78/G1E Notes 1. CHAPTER 5 ELECTRICAL SPECIFICATIONS HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↓. 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↑. 6. C is the load capacitance of the SCKp and SOp output lines. Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remark p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 346 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (4) Communication between devices at same potential (CSI mode) (slave mode, SCKp ... External clock input) (1/2) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Parameter Symbol HS Conditions MIN. SCKp tKCY2 cycle time Note 4 Unit MAX. ns 5.5V fMCK ≤ 20MHz 6/fMCK 6/fMCK 6/fMCK ns - ns 2.7V ≤ VDD ≤ 16MHz < fMCK 8/fMCK - 5.5V fMCK ≤ 16MHz 6/fMCK 6/fMCK 6/fMCK ns 6/fMCK 6/fMCK 6/fMCK ns and and and 500ns 500ns 500ns 6/fMCK 6/fMCK 6/fMCK and and and 750ns 750ns 750ns 6/fMCK 6/fMCK 6/fMCK and and and 1500ns 1500ns 1500ns - 6/fMCK 6/fMCK and and 1500ns 1500ns tKCY2/2 tKCY2/2 tKCY2/2 -7 -7 -7 tKCY2/2 tKCY2/2 tKCY2/2 -8 -8 -8 tKCY2/2 tKCY2/2 tKCY2/2 -18 -18 -18 tKCY2/2 tKCY2/2 tKCY2/2 -66 -66 -66 - tKCY2/2 tKCY2/2 -66 -66 4.0 V ≤ VDD ≤ 5.5 V low-level width 1.8 V ≤ VDD ≤ 5.5 V 1.7 V ≤ VDD ≤ 5.5 V 1.6 V ≤ VDD ≤ 5.5 V Notes 1. MIN. - 2.7 V ≤ VDD ≤ 5.5 V width MAX. Note 3 - 1.6 V ≤ VDD ≤ 5.5 V tKL2 LV 8/fMCK 1.7 V ≤ VDD ≤ 5.5 V tKH2, MIN. Note 2 20MHz < fMCK 1.8 V ≤ VDD ≤ 5.5 V high-level MAX. LS 4.0V ≤ VDD ≤ 2.4 V ≤ VDD ≤ 5.5 V SCKp Note 1 ns ns ns ns ns ns ns ns HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1) 2. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 347 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (4) Communication between devices at same potential (CSI mode) (slave mode, SCKp ... External clock input) (2/2) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Parameter Symbo l tSIK2 SIp setup time (to SCKp↑) Conditions HS MIN. 2.7 V ≤ VDD ≤ 5.5 V (from SCKp↑) 1/fMCK +30 1.8 V ≤ VDD ≤ 5.5 V 1/fMCK 1/fMCK 1/fMCK +30 +30 +30 1.7 V ≤ VDD ≤ 5.5 V 1/fMCK 1/fMCK 1/fMCK +40 +40 +40 - 1/fMCK 1/fMCK +40 +40 1/fMCK 1/fMCK 1/fMCK +31 +31 +31 1/fMCK 1/fMCK 1/fMCK +250 +250 +250 - 1/fMCK 1/fMCK +250 +250 1.8 V ≤ VDD ≤ 5.5 V 1.6 V ≤ VDD ≤ 5.5 V output tKSO2 C = 30 pF 2.7V ≤ VDD ≤ 5.5V Note 6 Note 5 2.4V ≤ VDD ≤ 5.5V 1.8V ≤ VDD ≤ 5.5V 1.7V ≤ VDD ≤ 5.5V 1.6V ≤ VDD ≤ 5.5V Notes 1. Unit MAX. ns ns ns ns ns ns ns 2/fMCK 2/fMCK 2/fMCK +44 +110 +110 2/fMCK 2/fMCK 2/fMCK +75 +110 +110 2/fMCK 2/fMCK 2/fMCK +110 +110 +110 2/fMCK 2/fMCK 2/fMCK +220 +220 +220 - 2/fMCK 2/fMCK +220 +220 ns ns ns ns ns HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Note 3 MIN. +30 1.7 V ≤ VDD ≤ 5.5 V SCKp↓ to SOp MAX. LV 1/fMCK Note 4 Delay time from MIN. Note 2 +20 1.6 V ≤ VDD ≤ 5.5 V tKSI2 MAX. LS 1/fMCK Note 4 SIp hold time Note 1 This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↓. 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↑. 6. C is the load capacitance of the SOp output line. Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). Remarks 1. p: CSI number (p = 00, 10, 20, 21), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), g: PIM and POM numbers (g = 0, 1) 2. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 348 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS CSI mode connection diagram (during communication between devices with the same voltage) SCKp SCK RL78 SO microcontroller SIp SOp User's device SI CSI mode serial transfer timing (during communication between devices with the same voltage) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1) tKCY1, 2 tKL1, 2 tKH1, 2 SCKp tSIK1, 2 SIp tKSI1, 2 Input data tKSO1, 2 Output data SOp CSI mode serial transfer timing (during communication between devices with the same voltage) (when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0) tKCY1, 2 tKH1, 2 tKL1, 2 SCKp tSIK1, 2 SIp tKSI1, 2 Input data tKSO1, 2 SOp Output data Remarks 1. p: CSI number (p = 00, 10, 20, 21) 2. m: Unit number, n: Channel number (mn = 00 to 03, 10, 11) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 349 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 2 (5) Communication between devices at same potential (simplified I C mode) (1/2) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Parameter Symbol Conditions HS MIN. SCLr clock frequency Hold time when SCLr = L Hold time when SCLr = H Notes 1. fSCL tLOW tHIGH Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. Note 3 Unit MAX. 2.7 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ 1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ 1.7 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ 1000 400 400 Note 4 Note 4 Note 4 1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ - 400 400 400 Note 4 Note 4 Note 4 300 300 300 Note 4 Note 4 Note 4 250 250 250 Note 4 Note 4 Note 4 250 250 Note 4 Note 4 kHz kHz kHz kHz kHz 2.7 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ 475 1150 1150 ns 1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ 1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ 1.7 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ 1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ 1150 1150 1150 ns 1550 1550 1550 ns 1850 1850 1850 ns - 1850 1850 ns 2.7 V ≤ VDD ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ 475 1150 1150 ns 1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ 1150 1150 1150 ns 1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ 1.7 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ 1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ 1550 1550 1550 ns 1850 1850 1850 ns - 1850 1850 ns HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. The value must also be fCLK/4 or lower. (Caution are listed on the next page, and Remarks are listed on the page after the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 350 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 2 (5) Communication between devices at same potential (simplified I C mode) (2/2) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Parameter Symbol Conditions HS MIN. Data setup time tSU:DAT (for reception) 2.7 V ≤ VDD ≤ 5.5 V, Note 1 MAX. tHD:DAT MAX. LV MIN. 1/fMCK 1/fMCK +85 +145 +145 Note 4 Note 4 Note 4 1.8 V ≤ VDD ≤ 5.5 V, 1/fMCK 1/fMCK 1/fMCK Cb = 100 pF, Rb = 3 kΩ +145 +145 +145 Note 4 Note 4 Note 4 1.8 V ≤ VDD < 2.7 V, 1/fMCK 1/fMCK 1/fMCK Cb = 100 pF, Rb = 5 kΩ +230 +230 +230 Note 4 Note 4 Note 4 1.7 V ≤ VDD < 1.8 V, 1/fMCK 1/fMCK 1/fMCK Cb = 100 pF, Rb = 5 kΩ +290 +290 +290 Note 4 Note 4 Note 4 - 1/fMCK 1/fMCK +290 +290 Note 4 Note 4 Cb = 100 pF, Rb = 5 kΩ (for transmission) MIN. Note 2 1/fMCK Cb = 50 pF, Rb = 2.7 kΩ 1.6 V ≤ VDD < 1.8 V, Data hold time LS 2.7 V ≤ VDD ≤ 5.5 V, Note 3 Unit MAX. ns ns ns ns ns 0 305 0 305 0 305 ns 0 355 0 355 0 355 ns 0 405 0 405 0 405 ns 0 405 0 405 0 405 ns - - 0 405 0 405 ns Cb = 50 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ 1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ 1.7 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ 1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ Notes 1. HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Set the fMCK value so as not to exceed the hold time when SCLr = “L” and SCLr = “H”. Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 351 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 2 Simplified I C connection diagram (during communication between devices at same potential) VDD Rb SDA SDAr RL78 microcontroller SCLr SCL User's device 2 Simplified I C mode serial transfer timing (during communication between devices at same potential) 1/fSCL tLOW tHIGH SCLr SDAr tHD:DAT tSU:DAT Remarks 1. Rb [Ω]: Communication line (SDAr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance 2. r: IIC number (r = 00, 10, 20), g: PIM number (g = 0, 1), h: POM number (h = 0, 1) 3. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00 to 03, 10, 11) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 352 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (6) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (UART mode) (output from dedicated baud rate generator) (1/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Paramete Symbo r l rate MIN. Reception Transfer HS Conditions Note 4 4.0V ≤ VDD ≤ 5.5V, Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. Note 3 Unit MAX. fMCK/6 fMCK/6 fMCK/6 bps 5.3 1.3 0.6 Mbps fMCK/6 fMCK/6 fMCK/6 bps 5.3 1.3 0.6 Mbps fMCK/6 fMCK/6 fMCK/6 bps Theoretical value of the 5.3 1.3 0.6 Mbps maximum transfer rate: Note 6 2.7V ≤ Vb ≤ 4.0V Theoretical value of the maximum transfer rate: fMCK = fCLK Note 7 2.7V ≤ VDD < 4.0V, 2.3V ≤ Vb ≤ 2.7V Theoretical value of the maximum transfer rate: fMCK = fCLK Note 7 1.8V ≤ VDD < 3.3V, 1.6V ≤ Vb ≤ 2.0V fMCK = fCLK Notes 1. Note 5 Note 7 HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Transfer rate in the SNOOZE mode is 4,800 bps. 5. Specify a value so as to satisfy VDD ≥ Vb. 6. The following conditions are also required for low voltage interface. 2.4 V ≤ VDD < 2.7 V: MAX. 2.6 Mbps 1.8 V ≤ VDD < 2.4 V: MAX. 1.3 Mbps 7. fCLK in each operating mode is as below. HS (high-speed main) mode: fCLK = 32 MHz LS (low-speed main) mode: fCLK = 8 MHz LV (low-voltage main) mode: fCLK = 4 MHz (Caution and Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 353 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Vb [V]: Communication line voltage 2. q: UART number (q = 0 to 2), g: PIM and POM numbers (g = 0, 1) 3. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)) 4. The AC characteristics of serial array units communicating with a device at different potential in UART mode is observed at VIH and VIL below. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: VIH = 2.2 V, VIL = 0.8 V 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: VIH = 2.0 V, VIL = 0.5 V 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V: VIH = 1.5 V, VIL = 0.32 V 5. UART2 cannot communicate with a device at different potential when bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 354 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (6) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (UART mode) (output from dedicated baud rate generator) (2/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Paramete Symbo r l HS Conditions MIN. Transfer Transmissio 4.0V ≤ VDD ≤ 5.5V, rate n 2.7V ≤ Vb ≤ 4.0V Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. Note 3 Unit MAX. Note Note Note 4 4 4 Theoretical value of the 2.8 2.8 2.8 maximum transfer rate: Note 5 Note 5 Note 5 Note Note Note 7 7 7 bps Mbps Cb = 50 pF, Rb = 1.4 kΩ, Vb = 2.7 V 2.7V ≤ VDD < 4.0V, 2.3V ≤ Vb ≤ 2.7V Theoretical value of the 1.2 1.2 1.2 maximum transfer rate: Note 8 Note 8 Note 8 Note Note Note 9 9 9 bps Mbps Cb = 50 pF, Rb = 2.7 kΩ, Vb = 2.3 V 1.8V ≤ VDD < 3.3V, 1.6V ≤ Vb ≤ 2.0V Note 5 Theoretical value of the 0.43 0.43 0.43 maximum transfer rate: Note 10 Note 10 Note 10 bps Mbps Cb = 50 pF, Rb = 5.5 kΩ, Vb = 1.6 V Notes 1. HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. The smaller value derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V 1 Maximum transfer rate = {−Cb × Rb × ln (1 − 1 Baud rate error = Transfer rate × 2 ( Vb [bps] )} × 3 − {−Cb × Rb × ln (1 − 1 (theoretical value) 2.2 Transfer rate 2.2 )} Vb × 100 [%] ) × Number of transferred bits * This value is the theoretical value of the relative difference between the transmission and reception sides. (Other Notes and Caution are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 355 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer. 6. Specify a value so as to satisfy VDD ≥ Vb. 7. The smaller value derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V 1 Maximum transfer rate = {−Cb × Rb × ln (1 − 1 Baud rate error Transfer rate × 2 = (theoretical value) ( 1 Transfer rate 2.0 Vb [bps] )} × 3 − {−Cb × Rb × ln (1 − 2.0 )} Vb × 100[%] ) × Number of transferred bits * This value is the theoretical value of the relative difference between the transmission and reception sides. 8. This value as an example is calculated when the conditions described in the “Conditions” column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer. 9. The smaller value derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V ≤ VDD ≤ 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V 1 Maximum transfer rate = [bps] {−Cb × Rb × ln (1− 1 Baud rate error = Transfer rate × 2 (theoretical value) ( 1.5 Vb )} × 3 − {−Cb × Rb × ln (1 − 1 Transfer rate 1.5 Vb )} × 100[%] ) × Number of transferred bits * This value is the theoretical value of the relative difference between the transmission and reception sides. 10. This value as an example is calculated when the conditions described in the Conditions column are met. See Note 9 above to calculate the maximum transfer rate under conditions of the customer. Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 356 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS UART mode connection diagram (during communication between devices at different potential) Vb Rb RL78 TxDq Rx microcontroller Tx RxDq User's device UART mode bit width (during communication between devices at different potential) (reference) 1/Transfer rate Low-bit width High-bit width Baud rate error tolerance TxDq 1/Transfer rate High/Low-bit width Baud rate error tolerance RxDq Remarks 1. Rb [Ω]: Communication line (TxDq) pull-up resistance, Cb [F]: Communication line (TxDq) load capacitance, Vb [V]: Communication line voltage 2. q: UART number (q = 0 to 2), g: PIM and POM numbers (g = 0, 1) 3. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11)) 4. The AC characteristics of serial array units communicating with a device at different potential in UART mode is observed at VIH and VIL below. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: VIH = 2.2 V, VIL = 0.8 V 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: VIH = 2.0 V, VIL = 0.5 V 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V: VIH = 1.5 V, VIL = 0.32 V 5. UART2 cannot communicate with a device at different potential when bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 357 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (7) Communication between devices at different potential (2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output corresponding CSI00 only) (1/2) (TA = −40 to +85°C, 2.7 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Parameter Symbol Conditions HS MIN. SCKp cycle time SCKp high level width SCKp low level width SIp setup time tKCY1 tKH1 tKL1 tSIK1 Note 4 (to SCKp↑) SIp hold time tKSI1 (from SCKp↑)Note 4 Delay time tKSO1 from SCKp↓ to SOp output Note 4 Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ, tKCY1 ≥ 2/fCLK 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ, tKCY1 ≥ 2/fCLK 200 1150 1150 300 1150 1150 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ tKCY1/2 -50 tKCY1/2 -50 tKCY1/2 -50 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ tKCY1/2 -120 tKCY1/2 -120 tKCY1/2 -120 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ tKCY1/2 -7 tKCY1/2 -50 tKCY1/2 -50 tKCY1/2 -10 tKCY1/2 -50 tKCY1/2 -50 58 479 479 121 479 479 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ 10 10 10 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ 10 10 10 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ Note 3 Unit MAX. ns ns ns ns ns 60 60 60 130 130 130 ns (Notes are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 358 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (7) Communication between devices at different potential (2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output corresponding CSI00 only) (2/2) (TA = −40 to +85°C, 2.7 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Parameter Symbol Conditions HS MIN. tSIK1 SIp setup time 4.0 V ≤ VDD ≤ 5.5 V, Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. 23 110 110 33 110 110 10 10 10 10 10 10 Note 3 Unit MAX. ns 2.7 V ≤ Vb ≤ 4.0 V, (to SCKp↓)Note 5 Cb = 20 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ tKSI1 SIp hold time (from SCKp↓) 4.0 V ≤ VDD ≤ 5.5 V, ns 2.7 V ≤ Vb ≤ 4.0 V, Note 5 Cb = 20 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ tKSO1 Delay time from SCKp↑ to SOp output Note 5 4.0 V ≤ VDD ≤ 5.5 V, 10 10 10 10 10 10 ns 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 20 pF, Rb = 2.7 kΩ Notes 1. HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. 5. This indicates the time when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1) 3. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at VIH and VIL below. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: VIH = 2.2 V, VIL = 0.8 V 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: VIH = 2.0 V, VIL = 0.5 V R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 359 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (8) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output) (1/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Parameter Symbol Conditions HS MIN. SCKp cycle time tKCY1 4.0 V ≤ VDD ≤ 5.5 V, Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. 300 1150 1150 500 1150 1150 1150 1150 1150 4.0 V ≤ VDD ≤ 5.5 V, tKCY1/2 tKCY1/2 tKCY1/2 2.7 V ≤ Vb ≤ 4.0 V, -75 -75 -75 2.7 V ≤ VDD < 4.0 V, tKCY1/2 tKCY1/2 tKCY1/2 2.3 V ≤ Vb ≤ 2.7 V, -170 -170 -170 tKCY1/2 tKCY1/2 tKCY1/2 -458 -458 -458 4.0 V ≤ VDD ≤ 5.5 V, tKCY1/2 tKCY1/2 tKCY1/2 2.7 V ≤ Vb ≤ 4.0 V, -12 -50 -50 2.7 V ≤ VDD < 4.0 V, tKCY1/2 tKCY1/2 tKCY1/2 2.3 V ≤ Vb ≤ 2.7 V, -18 -50 -50 tKCY1/2 tKCY1/2 tKCY1/2 -50 -50 -50 Note 3 Unit MAX. ns 2.7 V ≤ Vb ≤ 4.0 V, Cb = 30 pF, Rb = 1.4 kΩ tKCY1 ≥ 4/fCLK 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ tKCY1 ≥ 4/fCLK 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 4 Cb = 30 pF, Rb = 5.5 kΩ tKCY1 ≥ 4/fCLK SCKp tKH1 high level width ns Cb = 30 pF, Rb = 1.4 kΩ Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 4 Cb = 30 pF, Rb = 5.5 kΩ SCKp tKL1 low level width ns Cb = 30 pF, Rb = 1.4 kΩ Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 4 Cb = 30 pF, Rb = 5.5 kΩ (Notes, Caution and Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 360 RL78/G1E Notes 1. CHAPTER 5 ELECTRICAL SPECIFICATIONS HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Specify a value so as to satisfy VDD ≥ Vb. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. Remarks 1. Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage 2. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1) 3. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at VIH and VIL below. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: VIH = 2.2 V, VIL = 0.8 V 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: VIH = 2.0 V, VIL = 0.5 V 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V: VIH = 1.5 V, VIL = 0.32 V 4. CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 361 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (8) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (master mode, SCKp ... internal clock output) (2/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Parameter Symbol HS Conditions MIN SIp setup time tSIK1 (to SCKp↑)Note 4 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Note 1 MAX LS MIN Note 2 MAX LV MIN Note 3 Unit MAX 81 479 479 ns 177 479 479 ns 479 479 479 ns 19 19 19 ns 19 19 19 ns 19 19 19 ns Cb = 30 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 6 Cb = 30 pF, Rb = 5.5 kΩ tKSI1 SIp hold time (from SCKp↑) Note 4 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 30 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 6 Cb = 30 pF, Rb = 5.5 kΩ tKSO1 Delay time 100 100 100 ns 195 195 195 ns 483 483 483 ns Cb = 30 pF, Rb = 1.4 kΩ from SCKp↓ to SOp output 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Note 4 Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 6 Cb = 30 pF, Rb = 5.5 kΩ SIp setup time (to SCKp↓) tSIK1 Note 5 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, 44 110 110 ns 44 110 110 ns 110 110 110 ns 19 19 19 ns 19 19 19 ns 19 19 19 ns Cb = 30 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 6 Cb = 30 pF, Rb = 5.5 kΩ tKSI1 SIp hold time (from SCKp↓) Note 5 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 30 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 6 Cb = 30 pF, Rb = 5.5 kΩ tKSO1 Delay time from SCKp↑ to SOp output Note 5 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, 25 25 25 ns 25 25 25 ns 25 25 25 ns Cb = 30 pF, Rb = 1.4 kΩ 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 4.0 V, 1.6 V ≤ Vb ≤ 2.0 V, Note 6 Cb = 30 pF, Rb = 5.5 kΩ (Notes, Caution and Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 362 RL78/G1E Notes 1. CHAPTER 5 ELECTRICAL SPECIFICATIONS HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. 5. This indicates the time when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0. 6. Specify a value so as to satisfy VDD ≥ Vb. Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected. CSI mode connection diagram (during communication between devices at different potential) Vb Vb Rb Rb SCKp RL78 microcontroller SCK SIp SO SOp SI User's device Remarks 1. Rb [Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage 2. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1) 3. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at VIH and VIL below. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: VIH = 2.2 V, VIL = 0.8 V 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: VIH = 2.0 V, VIL = 0.5 V 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V: VIH = 1.5 V, VIL = 0.32 V 4. CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 363 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS CSI mode serial transfer timing: master mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1) tKCY1 tKL1 tKH1 SCKp tSIK1 SIp tKSI1 Input data tKSO1 Output data SOp CSI mode serial transfer timing: master mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0) tKCY1 tKL1 tKH1 SCKp tSIK1 SIp tKSI1 Input data tKSO1 SOp Output data Remarks 1. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1) 2. CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 364 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (9) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (slave mode, SCKp ... External clock input) (1/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Parameter Symbol Conditions HS MIN. SCKp tKCY2 cycle time Note 4 Note 1 MAX. LS MIN. Note 2 LV MAX. MIN. Note 3 Unit MAX. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V 14/fMCK - - ns 20 MHz < fMCK ≤ 24 MHz 12/fMCK - - ns 8 MHz < fMCK ≤ 20 MHz 10/fMCK - - ns 4 MHz < fMCK ≤ 8 MHz 8/fMCK 16/fMCK - ns fMCK ≤ 4 MHz 6/fMCK 10/fMCK 10/fMCK ns 20/fMCK - - ns 20 MHz < fMCK ≤ 24 MHz 16/fMCK - - ns 16 MHz < fMCK ≤ 20 MHz 14/fMCK - - ns 8 MHz < fMCK ≤ 16 MHz 12/fMCK - - ns 4 MHz < fMCK ≤ 8 MHz 8/fMCK 16/fMCK - ns fMCK ≤ 4 MHz 6/fMCK 10/fMCK 10/fMCK ns 24 MHz < fMCK 48/fMCK - - ns 20 MHz < fMCK ≤ 24 MHz 36/fMCK - - ns 16 MHz < fMCK ≤ 20 MHz 32/fMCK - - ns 8 MHz < fMCK ≤ 16 MHz 26/fMCK - - ns 4 MHz < fMCK ≤ 8 MHz 16/fMCK 16/fMCK - ns fMCK ≤ 4 MHz 10/fMCK 10/fMCK 10/fMCK ns 24 MHz < fMCK 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V 24 MHz < fMCK 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V Notes 1. Note 5 HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps 5. Specify a value so as to satisfy VDD ≥ Vb. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the page after the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 365 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (9) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (CSI mode) (slave mode, SCKp ... External clock input) (2/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Parameter Symbol HS Conditions MIN. Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. SCKp tKH2, 4.0 V ≤ VDD ≤ 5.5 V, tKCY2/2 tKCY2/2 tKCY2/2 high-level width tKL2 2.7 V ≤ Vb ≤ 4.0 V -12 -50 -50 2.7 V ≤ VDD < 4.0 V, tKCY2/2 tKCY2/2 tKCY2/2 low-level width 2.3 V ≤ Vb ≤ 2.7 V -18 -50 -50 1.8 V ≤ VDD < 3.3 V, tKCY2/2 tKCY2/2 tKCY2/2 -50 -50 -50 4.0 V ≤ VDD ≤ 5.5 V, 1/fMCK 1/fMCK 1/fMCK 2.7 V ≤ Vb ≤ 4.0 V +20 +30 +30 2.7 V ≤ VDD ≤ 4.0 V, 1/fMCK 1/fMCK 1/fMCK 2.3 V ≤ Vb ≤ 2.7 V +20 +30 +30 1/fMCK 1/fMCK 1/fMCK 1.6 V ≤ Vb ≤ 2.0 V tSIK2 SIp setup time Note 5 (to SCKp↑) Note 4 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V SIp hold time (from SCKp↑) Note 4 tKSI2 +30 +30 +30 1/fMCK 1/fMCK 1/fMCK +31 +31 +31 Note 5 tKSO2 Delay time from SCKp↓ to SOp output Note 6 Note 3 Unit MAX. ns ns ns ns ns ns ns 4.0 V ≤ VDD ≤ 5.5 V, 2/fMCK 2/fMCK 2/fMCK 2.7 V ≤ Vb ≤ 4.0 V, +120 +573 +573 2.7 V ≤ VDD ≤ 4.0 V, 2/fMCK 2/fMCK 2/fMCK 2.3 V ≤ Vb ≤ 2.7 V, +214 +573 +573 2/fMCK 2/fMCK 2/fMCK +573 +573 +573 ns Cb = 30 pF, Rb = 1.4 kΩ ns Cb = 30 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V Note 4 , ns Cb = 30 pF, Rb = 5.5 kΩ Notes 1. HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. Specify a value so as to satisfy VDD ≥ Vb. 5. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↓. 6. This indicates the time when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. When DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0, this specification refers to SCKp↑. Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 366 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS CSI mode connection diagram (during communication between devices at different potential) Vb Rb SCKp RL78 SIp microcontroller SOp Remarks 1. SCK SO User's device SI Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage 2. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1) 3. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10, 20)) 4. The AC characteristics of serial array units communicating with a device at different potential in CSI mode is observed at VIH and VIL below. 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V: VIH = 2.2 V, VIL = 0.8 V 2.7 V ≤ VDD < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V: VIH = 2.0 V, VIL = 0.5 V 1.8 V ≤ VDD < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V: VIH = 1.5 V, VIL = 0.32 V 5. CSI01, CSI11, and CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 367 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS CSI mode serial transfer timing: slave mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 0 or DAPmn = 1 and CKPmn = 1) tKCY2 tKL2 tKH2 SCKp tSIK2 SIp tKSI2 Input data tKSO2 Output data SOp CSI mode serial transfer timing: slave mode (during communication between devices at different potential) (when DAPmn = 0 and CKPmn = 1 or DAPmn = 1 and CKPmn = 0) tKCY2 tKL2 tKH2 SCKp tSIK2 SIp tKSI2 Input data tKSO2 SOp Output data Remarks 1. p: CSI number (p = 00, 10, 20), m: Unit number, n: Channel number (mn = 00, 10, 20), g: PIM and POM numbers (g = 0, 1) 2. CSI21 cannot communicate with a device at different potential. Use other CSI channels for communication between devices at different potential. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 368 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 2 (10) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (simplified I C mode) (1/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (1/2) Parameter Symbol Conditions HS MIN. SCLr clock frequency Hold time when SCLr = L Hold time when SCLr = H fSCL tLOW tHIGH 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 50 pF, Rb = 2.7 kΩ 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 100 pF, Rb = 2.8 kΩ 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 100 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, Note 5 1.6 V ≤ Vb ≤ 2.0 V , Cb = 100 pF, Rb = 5.5 kΩ 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 50 pF, Rb = 2.7 kΩ 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 100 pF, Rb = 2.8 kΩ 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 100 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, Note 5 1.6 V ≤ Vb ≤ 2.0 V , Cb = 100 pF, Rb = 5.5 kΩ 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 50 pF, Rb = 2.7 kΩ 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 100 pF, Rb = 2.8 kΩ 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 100 pF, Rb = 2.7 kΩ 1.8 V ≤ VDD < 3.3 V, Note 5 1.6 V ≤ Vb ≤ 2.0 V , Cb = 100 pF, Rb = 5.5 kΩ Note 1 LS MAX. 1000 MIN. Note 2 LV MAX. Note 4 300 MIN. Note 3 Unit MAX. Note 4 300 kHz Note 4 1000 300 Note 4 300 Note 4 kHz Note 4 400 Note 4 300 Note 4 300 Note 4 kHz 400 Note 4 300 Note 4 300 Note 4 kHz 300 Note 4 300 Note 4 300 Note 4 kHz 475 1550 1550 ns 475 1550 1550 ns 1150 1550 1550 ns 1150 1550 1550 ns 1550 1550 1550 ns 245 610 610 ns 200 610 610 ns 675 610 610 ns 600 610 610 ns 610 610 610 ns (Notes are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 369 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 2 (10) Communication between devices at different potential (1.8 V, 2.5 V or 3 V) (simplified I C mode) (2/2) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) (2/2) Parameter Symbol Conditions HS MIN. Data setup time tSU:DAT (for reception) tHD:DAT Data hold time (for transmission) Notes 1. Note 1 MAX. LS MIN. Note 2 MAX. LV MIN. Unit MAX. 4.0 V ≤ VDD ≤ 5.5V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 50 pF, Rb = 2.7 kΩ 1/fMCK +135 1/fMCK +190 1/fMCK +190 Note 6 Note 6 Note 6 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ 1/fMCK +135 1/fMCK +190 1/fMCK +190 Note 6 Note 6 Note 6 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 100 pF, Rb = 2.8 kΩ 1/fMCK +190 1/fMCK +190 1/fMCK +190 Note 6 Note 6 Note 6 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 100 pF, Rb = 2.7 kΩ 1/fMCK +190 1/fMCK +190 1/fMCK +190 Note 6 Note 6 Note 6 1.8 V ≤ VDD < 3.3 V, Note 5 1.6 V ≤ Vb ≤ 2.0 V , Cb = 100 pF, Rb = 5.5 kΩ 1/fMCK +190 1/fMCK +190 1/fMCK +190 Note 6 Note 6 Note 6 4.0 V ≤ VDD ≤ 5.5V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 50 pF, Rb = 2.7 kΩ 0 305 0 305 0 305 ns 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 50 pF, Rb = 2.7 kΩ 0 305 0 305 0 305 ns 4.0 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 100 pF, Rb = 2.8 kΩ 0 355 0 355 0 355 ns 2.7 V ≤ VDD ≤ 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 100 pF, Rb = 2.7 kΩ 0 355 0 355 0 355 ns 1.8 V ≤ VDD < 3.3 V, Note 5 1.6 V ≤ Vb ≤ 2.0 V , Cb = 100 pF, Rb = 5.5 kΩ 0 405 0 405 0 405 ns ns ns ns ns ns HS is condition of HS (high-speed main) mode. 2. LS is condition of LS (low-speed main) mode. 3. LV is condition of LV (low-voltage main) mode. 4. The value must also be fCLK/4 or lower. 5. Specify a value so as to satisfy VDD ≥ Vb. 6. Set the fMCK value so as not to exceed the hold time when SCLr = “L” and SCLr = “H”. Caution Note 3 Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).For VIH and VIL, see the DC characteristics with TTL input buffer selected. (Remarks are listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 370 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 2 Simplified I C mode connection diagram (during communication between devices at different potential) Vb Rb Vb Rb SDA SDAr User’s device RL78/G1E SCL SCLr 2 Simplified I C mode serial transfer timing (during communication between devices at different potential) 1/fSCL tLOW tHIGH SCLr SDAr tHD:DAT tSU:DAT Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage 2. r: IIC number (r = 00, 10, 20), g: PIM and POM numbers (g = 0, 1) 3. fMCK: Serial array unit operating clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10)) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 371 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 5 Analog block characteristics 5. 2. 5. 1 A/D converter characteristics Division of A/D Converter Characteristics Reference voltage Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM Reference voltage (+) = AVDD Reference voltage (+) Reference voltage (-) = AVSS = Internal refrence voltage Reference voltage (-) = AVSS Input channel High-accuracy channe; See 5. 2. 5. 1 (1) ANI0 to ANI4 See 5. 2. 5. 1 (2) See 5. 2. 5. 1 (3) See 5. 2. 5. 1 (6) (input buffer power supply: AVDD) Normal channel; See 5. 2. 5. 1 (4) See 5. 2. 5. 1 (5) See 5. 2. 5. 1 (4) See 5. 2. 5. 1 (5) ANI16 to ANI18, ANI20 to ANI26, ANI28, ANI30 (input buffer power supply: VDD) Internal reference voltage, − temperature sensor output See the section shown above for the electrical specifications depending on both input channel and reference voltage. (1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (−) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI4 (TA = −40 to +85°C, 2.7 V ≤ VDD ≤ 5.5 V, 2.7 V ≤ AVREFP ≤ AVDD ≤ 3.6 V, AVDD ≤ VDD, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (−) = AVREFM = 0 V, HALT mode) Parameter Symbol Resolution Conditions MIN. TYP. RES Notes 1, 2, 3 Overall error ±1.7 MAX. Unit 12 bit ±3.3 LSB AINL 12-bit resolution tCONV ADTYP = 0, 12-bit resolution Zero-scale error EZS 12-bit resolution ±1.3 ±3.2 LSB Full-scale errorNotes 1, 2, 3 EFS 12-bit resolution ±0.7 ±2.9 LSB ILE 12-bit resolution ±1.0 ±1.4 LSB DLE 12-bit resolution ±0.9 ±1.2 LSB AVREFP V Conversion time Notes 1, 2, 3 Notes 1, 2, 3 Integral linearity error Differential linearity error Notes 1, 2, 3 Analog input voltage VAIN μs 3.375 0 Notes 1. TYP. Value is the average value at AVDD = AVREFP = 3 V and TA = 25°C. MAX. value is the average value ±3σ at normalized distribution. 2. These values are the results of characteristic evaluation and are not checked for shipment. 3. Excludes quantization error (±1/2 LSB). Cautions 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise. In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise. 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P20 to P27. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 372 RL78/G1E (2) CHAPTER 5 ELECTRICAL SPECIFICATIONS When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (–) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI4 (ANI pins that use AVDD as their power source) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V, AVDD ≤ VDD, AVREFP ≤ AVDD ≤ VDD, VSS = 0 V, AVSS = 0 V, reference voltage (+) = AVREFP, reference voltage (−) = AVREFM = 0 V) Parameter Symbol Resolution Conditions 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V RES 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V MIN. MAX. Unit 8 12 bit 8 Note 1 Conversion time AINL tCONV 10 Note 2 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V Overall errorNote 3 TYP. 8 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±6.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±5.0 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.5 ADTYP = 0, 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 3.375 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 6.75 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 13.5 ADTYP = 1, 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 2.5625 8-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 5.125 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 10.25 LSB μs 12-bit resolution ADTYP = 0, Note 1 10-bit resolution ADTYP = 0, 8-bit resolutionNote 2 EZS Zero-scale Notes 3 error EFS Full-scale Notes 3 error Integral linearity ILE errorNote 3 DLE Differential Note 3 linearity error Analog input 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±4.5 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±4.5 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.0 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±4.5 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±4.5 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.0 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.5 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.0 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.5 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.5 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.0 VAIN 0 AVREFP LSB LSB LSB LSB V voltage Notes 1. The lower 2 bits of the ADCR register cannot be used. 2. The lower 4 bits of the ADCR register cannot be used. 3. Excludes quantization error (±1/2 LSB). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 373 RL78/G1E (3) CHAPTER 5 ELECTRICAL SPECIFICATIONS When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (–) = AVSS (ADREFM = 0), target for conversion: ANI0 to ANI4 (ANI pins that use AVDD as their power source) (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, 1.6 V ≤ AVDD ≤ 3.6 V, AVDD ≤ VDD, VSS = 0 V, AVSS = 0 V, reference voltage (+) = AVDD, reference voltage (−) = AVSS = 0 V) Parameter Symbol Resolution Conditions MIN. 2.4 V ≤ AVDD ≤ 3.6 V RES 1.8 V ≤ AVDD ≤ 3.6 V MAX. Unit 8 12 bit 8 Note 1 Overall error Conversion time AINL tCONV 2.4 V ≤ AVDD ≤ 3.6 V ±7.5 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±5.5 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±3.0 2.4 V ≤ AVDD ≤ 3.6 V 3.375 1.8 V ≤ AVDD ≤ 3.6 V 6.75 ADTYP = 0, 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V 13.5 ADTYP = 1, 8-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V 2.5625 1.8 V ≤ AVDD ≤ 3.6 V 5.125 1.6 V ≤ AVDD ≤ 3.6 V 10.25 ADTYP = 0, 12-bit resolution ADTYP = 0, 10-bit resolution Note 2 EZS errorNotes 3 EFS Full-scale Notes 3 error Integral linearity ILE Note 3 error DLE Differential linearity errorNote 3 Analog input 8 12-bit resolution Note 1 Zero-scale 10 Note 2 1.6 V ≤ AVDD ≤ 3.6 V Note 3 TYP. μs 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±6.0 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±5.0 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±2.5 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±6.0 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±5.0 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±2.5 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±3.0 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±2.0 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±1.5 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±2.0 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±2.0 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±1.5 VAIN 0 LSB AVDD LSB LSB LSB LSB V voltage Notes 1. The lower 2 bits of the ADCR register cannot be used. 2. The lower 4 bits of the ADCR register cannot be used. 3. Excludes quantization error (±1/2 LSB). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 374 RL78/G1E (4) CHAPTER 5 ELECTRICAL SPECIFICATIONS When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (–) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 (ANI pins that use VDD as their power source), interanal reference voltage, temperature sensor output voltage (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V, AVREFP ≤ AVDD ≤ VDD, VSS = 0 V, AVSS = 0 V, reference voltage (+) = AVREFP, reference voltage (−) = AVREFM = 0 V) Parameter Resolution Symbol Conditions 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V RES 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V MIN. MAX. Unit 8 12 bit 8 Note 1 Conversion time AINL tCONV 10 8Note 2 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V Overall errorNote 3 TYP. 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±7.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±5.5 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±3.0 ADTYP = 0, 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 4.125 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 9.5 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 57.5 ADTYP = 1, 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 3.3125 8-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 7.875 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V 54.25 LSB μs 12-bit resolution ADTYP = 0, Note 1 10-bit resolution ADTYP = 0, Note 2 8-bit resolution Zero-scale errorNotes 3 Notes 3 Full-scale error Integral linearity EZS EFS ILE errorNote 3 Differential linearity DLE errorNote 3 Analog input voltage 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±5.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±5.0 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.5 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±5.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±5.0 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.5 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±3.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.0 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.5 12-bit resolution 2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.0 10-bit resolution 1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±2.0 8-bit resolution 1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V ±1.5 VAIN 0 AVREFP LSB LSB LSB LSB V and VDD Intenal reference voltage VBGR Note 4 V VTMPS25 Note 4 V (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) Notes 1. The lower 2 bits of the ADCR register cannot be used. 2. The lower 4 bits of the ADCR register cannot be used. 3. Excludes quantization error (±1/2 LSB). 4. Refer to 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 375 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (5) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (–) = AVSS (ADREFM = 0), target for conversion: ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 (ANI pins that use VDD as their power source), interanal reference voltage, temperature sensor output voltage (TA = −40 to +85°C, 1.6 V ≤ VDD ≤ 5.5 V, 1.6 V ≤ AVDD ≤ 3.6 V, AVDD ≤ VDD, VSS = 0 V, AVSS = 0 V, reference voltage (+) = AVDD, reference voltage (−) = AVSS = 0 V) Parameter Resolution Symbol Conditions MIN. 2.4 V ≤ AVDD ≤ 3.6 V RES 1.8 V ≤ AVDD ≤ 3.6 V MAX. Unit 8 12 bit 8 Note 1 Overall error Conversion time Notes 3 Zero-scale error Full-scale errorNotes 3 Integral linearity AINL tCONV EZS EFS ILE Note 3 error Differential linearity DLE errorNote 3 Analog input voltage 10 Note 2 1.6 V ≤ AVDD ≤ 3.6 V Note 3 TYP. 8 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±8.5 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±6.0 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±3.5 ADTYP = 0, 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V μs 4.125 ADTYP = 0, 10-bit resolutionNote 1 1.8 V ≤ AVDD ≤ 3.6 V 9.5 ADTYP = 0, 8-bit resolutionNote 2 1.6 V ≤ AVDD ≤ 3.6 V 57.5 ADTYP = 1, 8-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V 3.3125 1.8 V ≤ AVDD ≤ 3.6 V 7.875 1.6 V ≤ AVDD ≤ 3.6 V 54.25 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±8.0 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±5.5 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±3.0 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±8.0 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±5.5 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±3.0 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±3.5 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±2.5 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±1.5 12-bit resolution 2.4 V ≤ AVDD ≤ 3.6 V ±2.5 10-bit resolution 1.8 V ≤ AVDD ≤ 3.6 V ±2.5 8-bit resolution 1.6 V ≤ AVDD ≤ 3.6 V ±2.0 VAIN LSB 0 AVDD LSB LSB LSB LSB V and VDD Intenal reference voltage VBGR Note 4 V (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) Temperature sensor output voltage VTMPS25 Note 4 V (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) Notes 1. The lower 2 bits of the ADCR register cannot be used. 2. The lower 4 bits of the ADCR register cannot be used. 3. Excludes quantization error (±1/2 LSB). 4. Refer to 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 376 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (6) When reference voltage (+) = internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (– ) = AVSS (ADREFM = 0), target for conversion: ANI0 to ANI4, ANI16 to ANI18, ANI20 to ANI26, ANI28, and ANI30 (TA = −40 to +85°C, 2.4 V ≤ VDD ≤ 5.5 V, 1.6 V ≤ AVDD ≤ 3.6 V, AVDD ≤ VDD, VSS = 0 V, AVSS = 0 V, reference voltage (+) = internal reference voltage, reference voltage (−) = AVSS = 0 V, HS (high-speed main) mode) Parameter Resolution Symbol Conditions MIN. RES Conversion time TYP. MAX. 8 Unit bit μs tCONV 8-bit resolution Zero-scale error EZS 8-bit resolution ±4.0 LSB Integral linearity errorNote ILE 8-bit resolution ±2.0 LSB Differential linearity errorNote DLE 8-bit resolution ±2.5 LSB Reference voltage (+) AVREF(+) = internal reference voltage (VBGR) 1.5 V Analog input voltage VAIN VBGR V Notes Note 16 1.38 0 1.45 Excludes quantization error (±1/2 LSB). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 377 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics (TA = −40 to +85°C, 2.4 V ≤ VDD ≤ 5.5 V, VSS = 0 V, HS (high-speed main) mode) Parameter Symbol Conditions Temperature sensor output voltage VTMPS25 ADS register = 80H, TA = +25°C Internal reference voltage VBGR ADS register = 81H Temperature coefficient FVTMPS Temperature sensor output voltage that MIN. TYP. MAX. 1.05 1.38 1.45 Unit V 1.5 −3.6 V mV/°C depends on the temperature Operation stabilization wait time tAMP μs 10 5. 2. 5. 3 POR circuit characteristics (TA = −40 to +85°C, VSS = 0 V) Parameter Symbol Detection voltage Note Minimum pulse width Conditions MIN. TYP. MAX. Unit VPOR When power supply voltage is rising 1.47 1.51 1.55 V VPDR When power supply voltage is falling 1.46 1.50 1.54 V μs 300 TPW Note This is the time required for the POR circuit to execute a reset when VDD falls below VPDR. When the microcontroller enters STOP mode or if the main system clock (fMAIN) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset before VDD rises to VPOR after having fallen below 0.7 V. TPW Supply voltage (VDD㧕 VPOR VPOR or 0.7 V R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 378 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 5. 4 LVD circuit characteristics • LVD detection voltage of reset mode and interrupt mode (TA = −40 to +85°C, VPDR ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Detection Symbol Supply voltage level VLVD10 voltage VLVD11 VLVD12 Minimum pulse width Conditions MIN. TYP. MAX. Unit When power supply voltage is rising 3.98 4.06 4.14 V When power supply voltage is falling 3.90 3.98 4.06 V When power supply voltage is rising 3.68 3.75 3.82 V When power supply voltage is falling 3.60 3.67 3.74 V When power supply voltage is rising 3.07 3.13 3.19 V When power supply voltage is falling 3.00 3.06 3.12 V tLW μs 300 Detection delay time 300 μs • LVD detection voltage of interrupt & reset mode (TA = −40 to +85°C, VPDR ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Interrupt and Symbol VLVDB0 reset mode Conditions VPOC2, VPOC1, VPOC0 = 0, 0, 1 MIN. TYP. MAX. Unit 1.80 1.84 1.87 V 3.07 3.13 3.19 V 3.00 3.06 3.12 V 2.40 2.45 2.50 V 3.68 3.75 3.82 V 3.60 3.67 3.74 V 2.70 2.75 2.81 V 3.98 4.06 4.14 V 3.90 3.98 4.06 V reset release when power supply voltage is falling VLVDB3 LVIS1, LVIS0 = 0, 0 Reset release voltage when power supply voltage is rising Interrupt generating voltage when power supply voltage is falling VLVDC0 VPOC2, VPOC1, VPOC0 = 0, 1, 0 reset release when power supply voltage is falling VLVDC3 LVIS1, LVIS0 = 0, 0 Reset release voltage when power supply voltage is rising Interrupt generating voltage when power supply voltage is falling VLVDD0 VPOC2, VPOC1, VPOC0 = 0, 1, 1 reset release when power supply voltage is falling VLVDD3 LVIS1, LVIS0 = 0, 0 Reset release voltage when power supply voltage is rising Interrupt generating voltage when power supply voltage is falling Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 5.5 V@1 MHz to 32 MHz VDD = 2.4 to 5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: VDD = 1.8 to 5.5 V@1 MHz to 8 MHz LV (low voltage main) mode: VDD = 1.6 to 5.5 V@1 MHz to 4 MHz R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 379 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 5. 5 Supply voltage rise slope characteristics (TA = −40 to +85°C, VSS = 0 V) Parameter Supply voltage rise Symbol Conditions MIN. SVDD TYP. MAX. Unit 54 V/ms Caution Be sure to maintain the internal reset state until VDD reaches the operating voltage range specified in 5. 2. 3 AC Characteristics, by using the LVD circuit or external reset pin. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 380 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics (TA = −40 to +85°C, VSS = 0 V) Parameter Symbol Data retention supply voltage Conditions MIN. TYP. MAX. Unit 5.5 V 1.46Note VDDDR Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effective, but data is not retained when a POR reset is effective. Operation mode STOP mode Data retention mode VDD VDDDR STOP instruction execution Standby release signal (interrupt request) 5. 2. 7 Flash memory programming characteristics (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter System clock frequency Number of code flash rewrites Symbol fCLK Cerwr Conditions MIN. 1.8 V ≤ VDD ≤ 5.5 V 1 TA = 85°C Note 3 Retained for 1 year TA = 25°C Note 3 Retained for 5 years TA = 85°C Note 3 100,000 Retained for 20 years TA = 85°C Note 3 10,000 Retained for 20 years TYP. 1,000 MAX. Unit 32 MHz time Note 1, 2 s Number of data flash rewrites 1,000,000 Note 1, 2 Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite. 2. When using a flash memory programmer and a Renesas Electronics self programming library. 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 381 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 8 Dedicated flash memory programmer communication (UART) (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Symbol Transfer rate R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Conditions When programming for flash memory MIN. 115.2 k TYP. MAX. Unit 1M bps 382 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 2. 9 Timing specs for switching flash memory programming modes (TA = −40 to +85°C, 1.8 V ≤ VDD ≤ 5.5 V, VSS = 0 V) Parameter Symbol How long from when a external reset ends Conditions MIN. TYP. POR and LVD resets must end tSUINIT until the initial communication settings are MAX. Unit 100 ms before the external reset ends. specified How long from when the TOOL0 pin is placed tSU POR and LVD resets must end at the low level until a external reset ends How long the TOOL0 pin must be kept at the 10 μs 1 ms before the external reset ends. tHD POR and LVD resets must end low level after a reset ends before the external reset ends. (except flash firmware processing time) (1) (2) (3) (4) RESET 723 µs+tHD process time 00H is received (TOOLRxD, TOOLTxD mode) TOOL0 tSU tSUINIT The low level is input to the TOOL0 pin. The external reset ends (POR and LVD resets must end before the external reset ends.). The TOOL0 pin is set to the high level. The flash memory programming mode is set by UART reception and the baud rate setting completes. Remark tSUINIT: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end. tSU: How long from when the TOOL0 pin is placed at the low level until a external reset ends. tHD: How long to keep the TOOL0 pin at the low level from when the external or internal resets end (except flash firmware processing time). R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 383 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3 Electrical Specifications of Analog Block 5. 3. 1 Operating conditions of analog block Parameter Power supply Symbol VDDOP Conditions AVDD1, AVDD2, AVDD3, DVDD Ratings Unit MIN TYP. MAX. 3.0 − 5.5 V voltage range R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 384 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 2 Supply current characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V) Parameter Symbol Conditions Ratings Unit MIN TYP MAX Supply Istby11Note PC1 = 00H, TA = -40°C – 100 150 nA current PC2 = 00H TA = +25°C – 140 210 nA TA = +50°C – 290 550 nA TA = +85°C – 850 1850 nA – 1.55 3.6 mA – 3.4 7.6 mA – 4.5 11.0 mA – 4.5 11.3 mA – 0.73 1.8 mA – 2.6 5.8 mA – 3.7 9.2 mA – 3.9 9.5 mA Note Im111 PC1 = 47H (configurable amplifiers Ch1 to Ch3 and D/A converters Ch3 are operating) PC2 = 00H, CC1, CC0 = 0, 0, DACRC = 00H Im112Note PC1 = F7H, PC2 = 13H (configurable amplifiers Ch1 to Ch3, D/A converters Ch1 to Ch4, gain adjustment amplifier, variable output voltage regulator, reference voltage generator, and temperature sensor are operating), CC1, CC0 = 0, 0, DACRC = 00H Note Im113 PC1 = 7FH, PC2 = 0FH (configurable amplifiers Ch1 to Ch3, D/A converters Ch1 to Ch4, low-pass filter, high-pass filter, variable output voltage regulator, reference voltage generator, and temperature sensor are operating), CC1, CC0 = 0, 0, DACRC = 00H Note Im114 PC1 = F7H, PC2 = 1FH (configurable amplifiers Ch1 to Ch3, D/A converters Ch1 to Ch4, general operational amplifier, low-pass filter, high-pass filter, gain adjustment amplifier, variable output voltage regulator, reference voltage generator, and temperature sensor are operating), CC1, CC0 = 0, 0, DACRC = 00H Note Im121 PC1 = 47H (configurable amplifiers Ch1 to Ch3 and D/A converters Ch1 to Ch3 are operating), CC1, CC0 = 1, 1, DACRC = 00H Im122Note PC1 = F7H, PC2 = 13H (configurable amplifiers Ch1 to Ch3, D/A converters Ch1 to Ch4, gain adjustment amplifier, variable output voltage regulator, reference voltage generator, and temperature sensor are operating), CC1, CC0 = 1, 1, DACRC = 00H Note Im123 PC1 = F7H, PC2 = 0FH (configurable amplifiers Ch1 to Ch3, D/A converters Ch1 to Ch4, low-pass filter, high-pass filter, variable output voltage regulator, reference voltage generator, and temperature sensor are operating), CC1, CC0 = 1, 1, DACRC = 00H Note Im124 PC1 = F7H, PC2 = 1FH (configurable amplifiers Ch1 to Ch3, D/A converters Ch1 to Ch4, low-pass filter, high-pass filter, gain adjustment amplifier, variable output voltage regulator, reference voltage generator, and temperature sensor are operating), CC1, CC0 = 1, 1, DACRC = 00H (Note is listed on the next page.) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 385 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS Note Total current flowing to internal power supply pins AVDD1, AVDD2, AVDD3, and DVDD. Current flowing through the pull-up resistor is not included. The input leakage current flowing when the level of the input pin is fixed to AVDD1, AVDD2, AVDD3 or DVDD, or AGND1, AGND2, AGND3, AGND4, or DGND is included. See the table below to check the definition of those symbols of the current flowing. Analog function with power on Configurable Parameter Symbol amplifier Gain D/A converter adjustment Ch1 Ch2 Ch3 amplifier Ch1 Ch2 Ch3 Ch4 Variable Low- High- pass pass filter filter – – – – Temperature output sensor voltage regulator Im111 Note 1 ON ON ON – Im112 Note 1 ON ON ON ON ON ON ON ON – – ON ON Im113 Note 1 ON ON ON – ON ON ON ON ON ON ON ON Im114 Note1 Supply ON ON ON ON ON ON ON ON ON ON ON ON current Im121 Note 2 ON ON ON – – – – – Im122 Note 2 ON ON ON ON ON ON ON ON – – ON ON Im123 Note 2 ON ON ON – ON ON ON ON ON ON ON ON Im124 Note 2 ON ON ON ON ON ON ON ON ON ON ON ON Notes 1. CC1, CC0 = 0, 0 2. CC1, CC0 = 1, 1 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 – – – – ON ON – – 386 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3 Electrical specifications of each block 5. 3. 3. 1 Configurable amplifier characteristics (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, non-inverting amplifier) (1/2) Parameter Current consumption Note Input voltage Symbol Conditions Setting time Unit MIN TYP MAX Icc00 CC1, CC0 = 0, 0 – 330 720 μA Icc01 CC1, CC0 = 0, 1 – 175 390 μA Icc10 CC1, CC0 = 1, 0 – 125 275 μA Icc11 CC1, CC0 = 1, 1 – 55 120 μA AGND1 - 0.1 – – V – AVDD1 - 1.5 V VINL VINH Output voltage Ratings – VOUTL IOL = -200 μA – VOUTH IOH = 200 μA AVDD1 - 0.06 AVDD1 - 0.02 – V tSET_AMP00 GCn = 00H (9.5 dB), CC1, CC0 = 0, 0, CL – – 9 μs – – 18 μs – – 28 μs – – 71 μs – 2.3 MHz – 1.1 MHz – 0.71 MHz – 0.22 MHz – 64 – nV/√ Hz – 85 – nV/√ Hz – 107 – nV/√ Hz – 159 – nV/√ Hz AGND1 + 0.02 AGND1 + 0.06 V = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP01 GCn = 00H (9.5 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP10 GCn = 00H (9.5 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP11 GCn = 00H (9.5 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV Gain bandwidth GBW00 CL = 30 pF, CC1, CC0 = 0, 0 GCn = 11H (40.1 dB) GBW01 CL = 30 pF,CC1, CC0 = 0, 1 GCn = 11H (40.1 dB) GBW10 CL = 30 pF, CC1, CC0 = 1, 0 GCn = 11H (40.1 dB) GBW11 CL = 30 pF, CC1, CC0 = 1, 1 GCn = 11H (40.1 dB) Equivalent input En00 noise CC1, CC0 = 0, 0 f = 1 kHz, GCn = 11H (40.1 dB) En01 CC1, CC0 = 0, 1 En10 CC1, CC0 = 1, 0 f = 1 kHz, GCn = 11H (40.1 dB) f = 1 kHz, GCn = 11H (40.1 dB) En11 CC1, CC0 = 1, 1 f = 1 kHz, GCn = 11H (40.1 dB) Note These are the values for one channel of configurable amplifier. Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 387 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, non-inverting amplifier) (2/2) Parameter Input conversion Symbol VOFF00 offset voltage Conditions CC1, CC0 = 0, 0, TA = 25°C Ratings Unit MIN TYP MAX -7 – 7 mV -10 – 10 mV -10 – 10 mV -12 – 12 mV – ±6 – μV/°C – 0.68 – V/μs – 0.35 – V/μs – 0.25 – V/μs – 0.09 – V/μs – 70 – dB – 68 – dB – 62 – dB – 50 – dB GCn = 07H (20.8 dB) VOFF01 CC1, CC0 = 0, 1, TA = 25°C GCn = 07H (20.8 dB) VOFF10 CC1, CC0 = 1, 0, TA = 25°C GCn = 07H (20.8 dB) VOFF11 CC1, CC0 = 1, 1, TA = 25°C GCn = 07H (20.8 dB) Input conversion VOTC offset voltage temperature coefficient Slew rate SR00 CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (9.5 dB) SR01 CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (9.5 dB) SR10 CC1, CC0 = 1, 0, CL = 30 pF, GCn = 00H (9.5 dB) SR11 CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (9.5 dB) Power supply PSRR00 rejection ratio CC1, CC0 = 0, 0, GCn = 00H (9.5 dB), f = 1 kHz PSRR01 CC1, CC0 = 0, 1, GCn = 00H (9.5 dB), f = 1 kHz PSRR10 CC1, CC0 = 1, 0, GCn = 00H (9.5 dB), f = 1 kHz PSRR11 CC1, CC0 = 1, 1, GCn = 00H (9.5 dB), f = 1 kHz Gain setting error GAIN_Accu1 TA = 25°C -0.6 – 0.6 dB GAIN_Accu2 TA = –40 to 85°C -1.0 – 1.0 dB Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 388 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, inverting amplifier) (1/2) Parameter Symbol Conditions Ratings Unit MIN TYP MAX Current Icc00 CC1, CC0 = 0, 0 – 330 720 μA consumption Note Icc01 CC1, CC0 = 0, 1 – 175 390 μA Icc10 CC1, CC0 = 1, 0 – 125 275 μA Icc11 CC1, CC0 = 1, 1 – 55 120 μA VINL AGND1 - 0.1 – – V VINH – – AVDD1 - 1.5 V Input voltage Output voltage Settling time VOUTL IOL = -200 μA – VOUTH IOH = 200 μA AVDD1 - 0.06 AVDD1 - 0.02 – V – – 9 μs – – 18 μs – – 28 μs – – 71 μs – 1.5 MHz – 0.9 MHz – 0.67 MHz – 0.22 MHz – 63 – nV/√ Hz – 85 – nV/√ Hz – 105 – nV/√ Hz – 150 – nV/√ Hz tSET_AMP00 GCn = 00H (6 dB), CC1, CC0 = 0, 0, CL AGND1 + 0.02 AGND1 + 0.06 V = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP01 GCn = 00H (6 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP10 GCn = 00H (6 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP11 GCn = 00H (6 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV Gain bandwidth GBW00 CL = 30 pF,CC1, CC0 = 0, 0 GCn = 11H (40 dB) GBW01 CL = 30 pF,CC1, CC0 = 0, 1 GBW10 CL = 30 pF,CC1, CC0 = 1, 0 GCn = 11H (40 dB) GCn = 11H (40 dB) GBW11 CL = 30 pF,CC1, CC0 = 1, 1 GCn = 11H (40 dB) Equivalent input En00 noise CC1, CC0 = 0, 0 f = 1 kHz, GCn = 11H (40 dB) En01 CC1, CC0 = 0, 1 f = 1 kHz, GCn = 11H (40 dB) En10 CC1, CC0 = 1, 0 f = 1 kHz, GCn = 11H (40 dB) En11 CC1, CC0 = 1, 1 f = 1 kHz, GCn = 11H (40 dB) Note These are the values for one channel of configurable amplifier. Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 389 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, inverting amplifier) (2/2) Parameter Input conversion Symbol VOFF00 offset voltage Conditions CC1, CC0 = 0, 0, TA = 25°C Ratings Unit MIN TYP MAX -7 – 7 mV -10 – 10 mV -10 – 10 mV -12 – 12 mV – ±6 – μV/°C – 0.68 – V/μs – 0.35 – V/μs – 0.25 – V/μs – 0.09 – V/μs – 70 – dB – 68 – dB – 62 – dB – 50 – dB GCn = 07H (20 dB) VOFF01 CC1, CC0 = 0, 1, TA = 25°C GCn = 07H (20 dB) VOFF10 CC1, CC0 = 1, 0, TA = 25°C GCn = 07H (20 dB) VOFF11 CC1, CC0 = 1, 1, TA = 25°C GCn = 07H (20 dB) Input conversion VOTC offset voltage temperature coefficient Slew rate SR00 CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (6 dB) SR01 CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (6 dB) SR10 CC1, CC0 = 1, 0, CL = 30 pF, GCn = 00H (6 dB) SR11 CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (6 dB) Power supply PSRR00 rejection ratio CC1, CC0 = 0, 0 GCn = 00H (6 dB), f = 1 kHz PSRR01 CC1, CC0 = 0, 1 GCn = 00H (6 dB), f = 1 kHz PSRR10 CC1, CC0 = 1, 0 GCn = 00H (6 dB), f = 1 kHz PSRR11 CC1, CC0 = 1, 1 GCn = 00H (6 dB), f = 1 kHz Gain setting error GAIN_Accu1 TA = 25°C -0.6 – 0.6 dB GAIN_Accu2 TA = –40 to 85°C -1.0 – 1.0 dB Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 390 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, differential amplifier) (1/2) Parameter Symbol Conditions Ratings Unit MIN TYP MAX Current Icc00 CC1, CC0 = 0, 0 – 330 720 μA consumption Note Icc01 CC1, CC0 = 0, 1 – 175 390 μA Icc10 CC1, CC0 = 1, 0 – 125 275 μA Icc11 CC1, CC0 = 1, 1 – 55 120 μA VINL AGND1 - 0.1 – – V VINH – – AVDD1 - 1.5 V Input voltage Output voltage Settling time VOUTL IOL = -200 μA – VOUTH IOH = 200 μA AVDD1- 0.06 AVDD1 - 0.02 – V – – 9 μs – – 18 μs – – 28 μs – – 71 μs – 1.5 – MHz – 1.0 – MHz – 0.67 – MHz – 0.22 – MHz – 63 – nV/√ Hz – 85 – nV/√ Hz – 106 – nV/√ Hz – 160 – nV/√ Hz tSET_AMP00 GCn = 00H (6 dB), CC1, CC0 = 0, 0, CL AGND1 + 0.02 AGND1+ 0.06 V = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP01 GCn = 00H (6 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP10 GCn = 00H (6 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP11 GCn = 00H (6 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV Gain bandwidth GBW00 CL = 30 pF, CC1, CC0 = 0, 0, GCn = 11H (40 dB) GBW01 CL = 30 pF, CC1, CC0 = 0, 1, GBW10 CL = 30 pF, CC1, CC0 = 1, 0, GCn = 11H (40 dB) GCn = 11H (40 dB) GBW11 CL = 30 pF, CC1, CC0 = 1, 1, GCn = 11H (40 dB) Equivalent input En00 noise CC1, CC0 = 0, 0 f = 1 kHz, GCn = 11H (40 dB) En01 CC1, CC0 = 0, 1 f = 1 kHz, GCn = 11H (40 dB) En10 CC1, CC0 = 1, 0 f = 1 kHz, GCn = 11H (40 dB) En11 CC1, CC0 = 1, 1 f = 1 kHz, GCn = 11H (40 dB) Note These are the values for one channel of configurable amplifier. Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 391 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, differential amplifier) (2/2) Parameter Input conversion Symbol VOFF00 offset voltage Conditions CC1, CC0 = 0, 0, TA = 25°C Ratings Unit MIN TYP MAX -7 – 7 mV -10 – 10 mV -10 – 10 mV -12 – 12 mV – ±6 – μV/°C – 0.68 – V/μs – 0.35 – V/μs – 0.25 – V/μs – 0.09 – V/μs – 84 – dB – 82 – dB – 80 – dB – 76 – dB – 70 – dB – 68 – dB – 62 – dB – 50 – dB GCn = 07H (20 dB) VOFF01 CC1, CC0 = 0, 1, TA = 25°C GCn = 07H (20 dB) VOFF10 CC1, CC0 = 1, 0, TA = 25°C GCn = 07H (20 dB) VOFF11 CC1, CC0 = 1, 1, TA = 25°C GCn = 07H (20 dB) Input conversion VOTC offset voltage temperature coefficient Slew rate SR00 CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (6 dB) SR01 CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (6 dB) SR10 CC1, CC0 = 1, 0 CL = 30 pF, GCn = 00H (6 dB) SR11 CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (6 dB) Common mode CMRR00 rejection ratio CC1, CC0 = 0, 0, GCn = 11H (40 dB), f = 1 kHz CMRR01 CC1, CC0 = 0, 1, GCn = 11H (40 dB) f = 1 kHz CMRR10 CC1, CC0 = 1, 0, GCn = 11H (40 dB) f = 1 kHz CMRR11 CC1, CC0 = 1, 1, GCn = 11H (40 dB) f = 1 kHz Power supply PSRR00 rejection ratio CC1, CC0 = 0, 0, GCn = 00H (6 dB), f = 1 kHz PSRR01 CC1, CC0 = 0, 1, GCn = 00H (6 dB) f = 1 kHz PSRR10 CC1, CC0 = 1, 0, GCn = 00H (6 dB) f = 1 kHz PSRR11 CC1, CC0 = 1, 1, GCn = 00H (6 dB) f = 1 kHz Gain setting error GAIN_Accu1 TA = 25°C -0.6 – 0.6 dB GAIN_Accu2 TA = –40 to 85°C -1.0 – 1.0 dB Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 392 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, transimpedance amplifier) (1/2) Parameter Symbol Conditions Ratings MIN TYP Unit MAX Current Icc00 CC1, CC0 = 0, 0 – 330 720 μA consumption Note Icc01 CC1, CC0 = 0, 1 – 175 390 μA Icc10 CC1, CC0 = 1, 0 – 125 275 μA Icc11 CC1, CC0 = 1, 1 – 55 120 μA IINL GCn = 0FH (Rfb = 640 kΩ) (10) – – nA Input current Output voltage Settling time VOUTL IOL= -200 μA – VOUTH IOH = 200 μA AVDD1- 0.06 AVDD1 - 0.02 – V – – 9 μs – – 18 μs – – 28 μs – – 71 μs – 1.3 – MHz – 1.0 – MHz – 0.79 – MHz – 0.51 – MHz – 0.58 – MHz – 0.31 – MHz – 0.25 – MHz – 0.09 – MHz – 66 – nV/√ Hz – 90 – nV/√ Hz – 116 – nV/√ Hz – 193 – nV/√ Hz tSET_AMP00 GCn = 00H (20 kΩ), CC1, CC0 = 0, 0 AGND1 + 0.02 AGND1 + 0.06 V CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP01 GCn = 00H (20 kΩ), CC1, CC0 = 0, 1 CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP10 GCn = 00H (20 kΩ), CC1, CC0 = 1, 0 CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP11 GCn = 00H (20 kΩ), CC1, CC0 = 1, 1 CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV Current-to-voltage GBW00_0 CL = 30 pF, CC1, CC0 = 0, 0 GBW00_1 CL = 30 pF, CC1, CC0 = 0, 0 conversion gain bandwidth GCn = 00H (Rfb = 20 kΩ) GCn = 0FH (Rfb = 640 kΩ) GBW01_0 CL = 30 pF, CC1, CC0 = 0, 1 GCn = 00H (Rfb = 20 kΩ) GBW01_1 CL = 30 pF, CC1, CC0 = 0, 1 GBW10_0 CL = 30 pF, CC1, CC0 = 1, 0 GCn = 0FH (Rfb = 640 kΩ) GCn = 00H (Rfb = 20 kΩ) GBW10_1 CL = 30 pF, CC1, CC0 = 1, 0 GCn = 0FH (Rfb = 640 kΩ) GBW11_0 CL = 30 pF, CC1, CC0 = 1, 1 GBW11_1 CL = 30 pF, CC1, CC0 = 1, 1 GCn = 00H (Rfb = 20 kΩ) GCn = 0FH (Rfb = 640 kΩ) Equivalent input En00 noise CC1, CC0 = 0, 0 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ) En01 CC1, CC0 = 0, 1 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ) En10 CC1, CC0 = 1, 0 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ) En11 CC1, CC0 = 1, 1 f = 1 kHz, GCn = 00H (Rfb = 20 kΩ) Note These are the values for one channel of configurable amplifier. Remark 1. In the ratings column, values in parentheses are the target design values and therefore are not tested for shipment. 2. n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 393 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, transimpedance amplifier) (2/2) Parameter Input conversion Symbol VOFF00 offset voltage Conditions CC1, CC0 = 0, 0, TA = 25°C, Ratings Unit MIN TYP MAX -7 – 7 mV -10 – 10 mV -10 – 10 mV -12 – 12 mV – ±6 – μV/°C – 0.68 – V/μs – 0.35 – V/μs – 0.25 – V/μs – 0.09 – V/μs – 70 – dB – 68 – dB – 62 – dB – 50 – dB GCn = 07H (Rfb = 80 kΩ) VOFF01 CC1, CC0 = 0, 1, TA = 25°C, GCn = 07H (Rfb = 80 kΩ) VOFF10 CC1, CC0 = 1, 0, TA = 25°C, GCn = 07H (Rfb = 80 kΩ) VOFF11 CC1, CC0 = 1, 1, TA = 25°C, GCn = 07H (Rfb = 80 kΩ) Input conversion offset VOTC voltage temperature coefficient Slew rate SR00 CC1, CC0 = 0, 0, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ) SR01 CC1, CC0 = 0, 1, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ) SR10 CC1, CC0 = 1, 0, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ) SR11 CC1, CC0 = 1, 1, CL = 30 pF, GCn = 00H (Rfb = 20 kΩ) Power supply PSRR00 rejection ratio CC1, CC0 = 0, 0, GCn = 00H (Rfb = 20 kΩ) PSRR01 CC1, CC0 = 0, 1, GCn = 00H (Rfb = 20 kΩ) PSRR10 CC1, CC0 = 1, 0, GCn = 00H (Rfb = 20 kΩ) PSRR11 CC1, CC0 = 1, 1, GCn = 00H (Rfb = 20 kΩ) Rfb setting error Rfb_Accu1 TA = 25°C -25 – 25 % Rfb_Accu2 TA = –40 to 85°C -35 – 35 % Remark n = 1 to 3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 394 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, GC1 = GC2 = 03H, instrumentation amplifier) (1/2) Parameter Current Symbol Icc00 consumption Conditions AMP1OF = AMP2OF = AMP3OF = 1, Ratings Unit MIN TYP MAX – 970 2,150 μA – 510 1,150 μA – 350 780 μA – 140 330 μA CC1, CC0 = 0, 0 Icc01 AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 0, 1 Icc10 AMP1OF = AMP2OF = AMP3OF = 1, Icc11 AMP1OF = AMP2OF = AMP3OF = 1, CC1, CC0 = 1, 0 CC1, CC0 = 1, 1 Input voltage Output voltage Settling time VINL AGND1 - 0.1 – – V VINH – – AVDD1 - 1.5 V VOUTL IOL = -200 μA – VOUTH IOH = 200 μA AVDD1- 0.06 AVDD1 - 0.02 – V tSET_AMP00 GC3 = 00H (20 dB), CC1, CC0 = 0, 0, CL – – 9 μs – – 18 μs – – 28 μs – – 71 μs – 1.82 – MHz – 1.03 – MHz – 0.69 – MHz – 0.22 – MHz – 90 – nV/√ Hz – 119 – nV/√ Hz – 150 – nV/√ Hz – 260 – nV/√ Hz AGND1 + 0.02 AGND1 + 0.06 V = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP01 GC3 = 00H (20 dB), CC1, CC0 = 0, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP10 GC3 = 00H (20 dB), CC1, CC0 = 1, 0, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV tSET_AMP11 GC3 = 00H (20 dB), CC1, CC0 = 1, 1, CL = 30 pF, output voltage = 1VPP, output convergence voltage VPP = 999 mV Gain bandwidth GBW00 CL = 30 pF, CC1, CC0 = 0, 0 GC3 = 11H (54 dB) GBW01 CL = 30 pF, CC1, CC0 = 0, 1 GC3 = 11H (54 dB) GBW10 CL = 30 pF, CC1, CC0 = 1, 0 GC3 = 11H (54 dB) GBW11 CL = 30 pF, CC1, CC0 = 1, 1 GC3 = 11H (54 dB) Equivalent input En00 noise CC1, CC0 = 0, 0 GC3 = 11H (54 dB) f = 1 kHz En01 CC1, CC0 = 0, 1 GC3 = 11H (54 dB) f = 1 kHz En10 CC1, CC0 = 1, 0 GC3 = 11H (54 dB) f = 1 kHz En11 CC1, CC0 = 1, 1 GC3 = 11H (54 dB) f = 1 kHz R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 395 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN1 = VREFIN2 = VREFIN3 = 1.7 V, AMP1OF = AMP2OF = AMP3OF = 1, DAC1OF = DAC2OF = DAC3OF = 0, GC1 = GC2 = 03H, instrumentation amplifier) (2/2) Parameter Input conversion Symbol VOFF00 offset voltage Conditions CC1, CC0 = 0, 0, TA = 25°C, Ratings Unit MIN TYP MAX -7 – 7 mV -10 – 10 mV -10 – 10 mV -12 – 12 mV – ±6.0 – μV/°C – 0.68 – V/μs – 0.35 – V/μs – 0.25 – V/μs – 0.09 – V/μs – 86 – dB – 84 – dB – 82 – dB – 76 – dB – 70 – dB – 68 – dB – 62 – dB – 50 – dB GC3 = 00H (20 dB) VOFF01 CC1, CC0 = 0, 1, TA = 25°C, GC3 = 00H (20 dB) VOFF10 CC1, CC0 = 1, 0, TA = 25°C, GC3 = 00H (20 dB) VOFF11 CC1, CC0 = 1, 1, TA = 25°C, GC3 = 00H (20 dB) Input conversion VOTC offset voltage temperature coefficient Slew rate SR00 CC1, CC0 = 0, 0, CL = 30 pF, GC3 = 00H (20 dB) SR01 CC1, CC0 = 0, 1, CL = 30 pF, SR10 CC1, CC0 = 1, 0, CL = 30 pF, GC3 = 00H (20 dB) GC3 = 00H (20 dB) SR11 CC1, CC0 = 1, 1, CL = 30 pF, GC3 = 00H (20 dB) Common mode CMRR00 rejection ratio CC1, CC0 = 0, 0 GC3 = 11H (54 dB) f = 1 kHz CMRR01 CC1, CC0 = 0, 1 GC3 = 11H (54 dB) f = 1 kHz CMRR10 CC1, CC0 = 1, 0 GC3 = 11H (54 dB) f = 1 kHz CMRR11 CC1, CC0 = 1, 1 GC3 = 11H (54 dB) f = 1 kHz Power supply PSRR00 rejection ratio CC1, CC0 = 0, 0 GC3 = 00H (20 dB) f = 1 kHz PSRR01 CC1, CC0 = 0, 1 GC3 = 00H (20 dB) f = 1 kHz PSRR10 CC1, CC0 = 1, 0 GC3 = 00H (20 dB) f = 1 kHz PSRR11 CC1, CC0 = 1, 1 GC3 = 00H (20 dB) f = 1 kHz Gain setting error GAIN_Accu1 TA = 25°C -0.6 – 0.6 dB GAIN_Accu2 TA = –40 to 85°C -1.0 – 1.0 dB R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 396 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3. 2 Gain adjustment amplifier characteristics (1) 64-pin products (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN4 = 1.7 V, GAINOF = 1, DAC4OF = 0) Parameter Current Symbol Conditions Ratings Unit MIN TYP MAX IccA – 530 1,300 μA VINL AGND2 - 0.1 – – V VINH – – AVDD1 - 0.05 V consumption Input voltage VOUTL1 IOL = -100 μA – VOUTH1 IOH = 100 μA Gain bandwidth GBW2 CL = 30 pF, GC4 = 11H (40 dB) Input conversion VOFF GC4 = 00H (6 dB), TA = 25°C, Output voltage offset voltage AGND2 + 0.02 AGND2 + 0.05 V AVDD1 - 0.05 AVDD1 - 0.02 – V – 0.86 – MHz -30 – 30 mV GAINAMP_IN = 2.5 V VOTC2 CLK_SYNCH = L, GAINAMP_OUT pin – ±18 – μV/°C Slew rate SR CL = 30 pF – 0.9 – V/μs Equivalent input En_Gain f = 1 kHz, GC4 = 11H (40 dB) – 700 – nV/√ Hz PSRR2 f = 1 kHz, GC4 = 00H (6 dB) – 45 – dB GAIN_Accu1 TA = 25°C -0.6 – 0.6 dB GAIN_Accu2 TA = –40 to 85°C -1.0 – 1.0 dB Input conversion offset voltage temperature coefficient noise Power supply rejection ratio Gain setting error R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 397 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS (2) 80-pin products (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, VREFIN4 = 1.7 V, GAINOF = 1, DAC4OF = 0) Parameter Current Symbol Conditions Ratings Unit MIN TYP MAX IccA – 530 1,300 VINL AGND2 - 0.1 – – V VINH – – AVDD1 - 0.05 V μA consumption Input voltage Output voltage Gain bandwidth VOUTL1 IOL = -100 μA, GAINAMP_OUT pin – VOUTH1 IOH = 100 μA, GAINAMP_OUT pin AVDD1 - 0.05 VOUTL2 IOL = -100 μA, SYNCH_OUT pin – VOUTH2 IOH = 100 μA, SYNCH_OUT pin GBW1 CLK_SYNCH = H, SYNCH_OUT pin GBW2 CLK_SYNCH = L, SYNCH_OUT or AGND2 + 0.02 AGND2 + 0.05 V AVDD1 - 0.02 V – AGND2 + 0.03 AGND2 + 0.06 V AVDD1 - 0.06 AVDD1 - 0.03 – V – 1.38 – MHz – 0.86 – MHz -30 – 30 mV CL = 30 pF, GC4 = 11H (40 dB) GAINAMP_OUT pin CL = 30 pF, GC4 = 11H (40 dB) Input conversion VOFF offset voltage GC4 = 00H (6 dB), TA = 25°C, GAINAMP_IN = 2.5 V Input conversion VOTC1 CLK_SYNCH = H, SYNCH_OUT pin – ±6 – μV/°C offset voltage VOTC2 CLK_SYNCH = L, GAINAMP_OUT pin – ±18 – μV/°C temperature coefficient Slew rate SR CL = 30 pF – 0.9 – V/μs Equivalent input En_Gain f = 1 kHz, GC4 = 11H (40 dB) – 700 – nV/√ Hz – 60 – dB – 45 – dB noise Power supply GAINAMP_OUT pin PSRR1 rejection ratio CLK_SYNCH = H, SYNCH_OUT pin, f = 1 kHz, GC4 = 00H (6 dB) PSRR2 CLK_SYNCH = L, SYNCH_OUT or GAINAMP_OUT pin, f = 1 kHz, GC4 = 00H (6 dB) Gain setting error CLK_SYNCH GAIN_Accu1 TA = 25°C -0.6 – 0.6 dB GAIN_Accu2 TA = –40 to 85°C -1.0 – 1.0 dB 0.3 × AVDD1 V VILCLK_SYNCH low-level input voltage CLK_SYNCH VIHCLK_SYNCH 0.7 × AVDD1 V high-level input voltage R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 398 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3. 3 D/A converter characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = DVDD = 5.0 V, DAC1OF = DAC2OF = DAC3OF = DAC4OF = 1) Parameter DAC ALL ON current Symbol I_DAC_ON1 consumption 1 I_DAC_ON2 Unit MIN. TYP. MAX. – 1400 2950 μA DAC1OF = DAC2OF = DAC3OF = – 1620 3360 μA – 390 820 μA – 610 1320 μA DAC4OF = 1, VRB1, VRB0 ≠ 0, 0 consumption 2 Buffer AMP ON current I_DAC_Buff1 Note 1 Note 1 DAC1 GAMP ON DACxOF = 1, VRB1, VRB0 = 0, 0 (x = 1, 2, 3, 4) Buffer AMP ON current I_DAC_Buff2 consumption 2 DAC1OF = DAC2OF = DAC3OF = Ratings DAC4OF = 1, VRB1, VRB0 = 0, 0 DAC ALL ON current consumption 1 Conditions DACxOF = 1, VRB1, VRB0 ≠ 0, 0 (x = 1, 2, 3, 4) I_DAC_AMP1 DAC1OF = 1 – 140 320 μA I_DAC_AMP2 DAC2OF = 1 – 120 265 μA I_DAC_AMP3 DAC3OF = 1 – 120 265 μA I_DAC_AMP4 DAC4OF = 1 – 630 1370 μA – – 8 bit – – 100 μs –2 – 2 LSB –2 – 2 LSB current consumption DAC2 GAMP ON current consumption DAC3 GAMP ON current consumption DAC4 GAMP ON current consumption Resolution RES Settling time tSET output voltage = 1 Vpp Differential non-linearity DNL VRT1 = VRT0 = 0, output convergence voltage Vpp = 990 mV error Note 2 VRB1 = VRB0 = 0 Integral non-linearity INL error VRT1 = VRT0 = 0, VRB1 = VRB0 = 0 Notes 1. Buffer amplifier is powered on when one of DACx (x = 1, 2, 3, 4) is powered on at least. For example, the current consumption (I_EXAMPLE) is shown as a following equation when “DAC1OF=DAC2OF=1”, and “VRB1, VRB0=0, 0”. I_EXAMPLE = I_DAC_Buff1 + I_DAC_AMP1 + I_DAC_AMP2 2. Guaranteed monotonic. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 399 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3. 4 Low-pass filter characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V, LPFOF = 1) Parameter Symbol Conditions Ratings Unit MIN. TYP. MAX. Current consumption IccA – 800 1800 μA Input voltage VILLPF AGND4 +0.2 – – V VIHLPF – – AVDD3 -1.5 V Output voltage Cutoff frequency CLK_LPF VOLLPF IOL = –200 μA – AGND4 +0.22 AGND4 +0.25 V VOHLPF IOH = 200 μA AVDD3 -1.55 AVDD3 -1.52 – V fc1 fCLK_LPF = 2 kHz – 9 – Hz fc2 fCLK_LPF = 1 MHz – 4.5 – kHz 0.3 × AVDD3 V VILCLK_LPF low-level input voltage CLK_LPF 0.7 × AVDD3 VIHCLK_LPF V high-level input voltage CLK_LPF fCLK_LPF 2 – 1000 kHz CLK_LPF tILW_LPF 200 – – ns Input low-level-width tIHW_LPF Input frequency Input high-level-width Clock Timing tILW_LPF tIHW_LPF 0.7×AVDD3 CLK_LPF 0.3×AVDD3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 400 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3. 5 High-pass filter characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V, HPFOF = 1) Parameter Symbol Conditions Ratings Unit MIN. TYP. MAX. Current consumption IccA – 800 1800 μA Input voltage VILHPF AGND4 +0.2 – – V VIHHPF – – AVDD3 - 1.5 V Output voltage Cutoff frequency VOLHPF IOL = –200 μA – AGND4 +0.22 AGND4 +0.25 V VOHHPF IOH = 200 μA AVDD3 -1.55 AVDD3 -1.52 – V fc1 fCLK_HPF = 2 kHz – 8 – Hz fc2 fCLK_HPF = 200 kHz – 800 – Hz 0.3 × AVDD3 V CLK_HPF VILCLK_HPF low-level input voltage CLK_HPF 0.7 × AVDD3 VIHCLK_HPF V high-level input voltage CLK_HPF fCLK_HPF 2 – 200 kHz 200 – – ns Input frequency CLK_HPF tILW_HPF Input low-level-width tIHW_HPF Input high-level-width Clock Timing tILW_HPF tIHW_HPF 0.7×AVDD3 CLK_HPF 0.3×AVDD3 R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 401 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3. 6 Temperature sensor characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V, TEMPOF = 1) Parameter Symbol Current consumption IccA Output voltage VO Temperature sensitivity TSE Conditions TA = 25°C Ratings Unit MIN. TYP. MAX. – 105 220 μA – 1.67 – V – –5.0 – mV/°C 5. 3. 3. 7 Variable output voltage regulator characteristics (-40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V, LDOOF = 1) Parameter Symbol Conditions Ratings Unit MIN TYP MAX Current consumption IccON Iout = 0 mA – 150 320 μA Output voltage V_Accu Iout = 0 mA -10 – 10 % Vout_load Iout = 0 to 5 mA – 15 30 mV – – 15 mA accuracy Load current characteristics Output current Dropout voltage Power supply Io Note Vd Iout = 15 mA – – 0.4 V PSRR f = 1 kHz, CL = 4.7 μF, Io = 5 mA, – 60 – dB 540 715 1200 Ω rejection ratio AVDD2 = 5.0 V, LDOC = 0DH (3.3 V) Discharge resistance Rs LDOOF = 0 Settling time Tset_rise CL = 4.7 μF, CBGR_OUT = 0.1 μF – – 5.0 ms Tset_fall CL = 4.7 μF, CBGR_OUT = 0.1 μF – – 45 ms Note The output voltage range is determined not only by dropout voltage but also by output voltage accuracy. 5. 3. 3. 8 Reference voltage generator characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V, LDOOF = 1) Parameter Output voltage Symbol VBGR R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Conditions Ratings Unit MIN. TYP. MAX. – 1.21 – V 402 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS 5. 3. 3. 9 SPI characteristics (−40°C ≤ TA ≤ 85°C, AVDD1 = AVDD2 = AVDD3 = AVDD4 = DVDD = 5.0 V) Parameter Input voltage, high Symbol VIH Conditions CS pin, SDI pin, SCLK pin, Ratings Unit MIN. TYP. MAX. 2.0 DVDD DVDD + 0.1 V –0.1 DGND 0.7 V RESET pin Input voltage, low VIL CS pin, SDI pin, SCLK pin, RESET pin Leakage current during Ileak_Hi1 CS pin, SDI pin, SCLK pin –1 – 2 μA high level input Ileak_Hi2 RESET pin –1 – 2 μA Leakage current during Ileak_Lo1 CS pin, SDI pin, SCLK pin 50 100 200 μA low level input Note Ileak_Lo2 RESET pin –1 – 2 μA Low-level output voltage VSDO_Lo IO = -5 mA – 400 830 mV –1 – 2 μA 32.5 50 at SDO pin Leakage current when Ileak_SDO SDO pin is off Pull-up resistance RSPI SCLK cycle time tKCYA 100 – – ns SCLK high-level width tKHA, 0.9tKCYA/2 – – ns low-level width tKLA SDI setup time tSIKA 40 – – ns tKSIA 20 – – ns – 250 300 ns – – 20 ns CS pin, SDI pin, SCLK pin 67.5 kΩ (to SCLK↑) SDI hold time (from SCLK↑) Delay time from SCLK↓ tKSOAR to SDO output Pull-up resistance = 10 kΩ, CL = 5 pF, VSDO = 5 V tKSOAF Pull-up resistance = 10 kΩ, CL = 5 pF, VSDO = 5 V CS high-level width tSHA 200 – – ns Delay time from CS↓to tSKA 200 – – ns tKSA 200 – – ns SCLK↓ output Delay time from SCLK↑ to CS ↑ output Note Including the current flowing into each pull-up resistor R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 403 RL78/G1E CHAPTER 5 ELECTRICAL SPECIFICATIONS SPI transfer clock timing tKSA tSKA tSHA CS tKCYA tKLA tKHA SCLK tSIKA tKSIA Input data SDI Input data tKSOAR, tKSOAF SDO R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 Output data 404 RL78/G1E CHAPTER 6 PACKAGE DRAWINGS CHAPTER 6 PACKAGE DRAWINGS R5F10FLCANA, R5F10FLDANA, R5F10FLEANA, R5F10FLCDNA, R5F10FLDDNA, R5F10FLEDNA 64-PIN PLASTIC WQFN (9 x 9) JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-HWQFN64-9x9-0.50 PWQN0064KD-A P64K8-50-6BA-1 0.21 D DETAIL OF A PART E S A A S y S ITEM D E A D2 EXPOSED DIE PAD A 1 16 b 17 64 (UNIT: mm) DIMENSIONS 9.00±0.05 9.00±0.05 0.75±0.05 0.25+0.05 –0.07 0.50 e Lp x y B E2 D2 E2 MIN NOM MAX MIN NOM MAX 7.45 7.45 ITEM 49 32 33 48 Lp e b x R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 M S AB EXPOSED DIE PAD VARIATIONS 0.40±0.10 0.50 0.50 A 7.50 7.55 7.50 7.55 c 2012 Renesas Electronics Corporation. All rights reserved. 405 RL78/G1E CHAPTER 6 PACKAGE DRAWINGS R5F10FMCAFB, R5F10FMDAFB, R5F10FMEAFB, R5F10FMCDFB, R5F10FMDDFB, R5F10FMEDFB 80-PIN PLASTIC LQFP (FINE PITCH) (12 × 12) JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-LFQFP80-12x12-0.50 PLQP0080KE-B P80GK-50-GAK-2 0.53 HD D detail of lead end 41 60 61 A3 40 c L E Lp HE L1 (UNIT:mm) 21 80 1 20 ZE e ZD b x M S DIMENSIONS 12.00±0.20 E 12.00±0.20 HD 14.00±0.20 HE 14.00±0.20 A 1.60 MAX. A1 0.10±0.05 A2 1.40±0.05 A3 b 0.25 c L A A2 S y ITEM D A1 S 0.22±0.05 0.145 +0.055 0.045 0.50 Lp 0.60±0.15 L1 1.00±0.20 3° +5° 3° e 0.50 x 0.08 y 0.08 ZD 1.25 ZE 1.25 NOTE Each lead centerline is located within 0.08 mm of its true position at maximum material condition. c 2012 Renesas Electronics Corporation. All rights reserved. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 406 RL78/G1E APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) • Configurable amplifier G vs. f (Inverting amplifier) 40 AVDD = 5 V CC1, CC0 = 0, 0 30 20 10 100 AVDD = 5 V CC1, CC0 = 1, 1 1k 10 k 100 k 1M G vs. f (Non-inverting amplifier) 50 Voltage gain G (dB) Voltage gain G (dB) 50 10 M 40 AVDD = 5 V CC1, CC0 = 0, 0 30 20 AVDD = 5 V CC1, CC0 = 1, 1 10 100 Frequency f (Hz) G vs. f (Differential amplifier) 40 20 AVDD = 5 V CC1, CC0 = 1, 1 10 10 k 100 k Frequency f (Hz) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 1M 1M 10 M G vs. f (Instrumentation amplifier) AVDD = 5 V CC1, CC0 = 0, 0 1k 100 k 60 30 100 10 k Frequency f (Hz) 10 M Voltage gain G (dB) Voltage gain G (dB) 50 1k 50 AVDD = 5 V CC1, CC0 = 0, 0 40 30 20 AVDD = 5 V CC1, CC0 = 1, 1 10 100 1k 10 k 100 k 1M 10 M Frequency f (Hz) 407 Output response (Inverting amplifier) 4 3 AV DD = 5 V, CC1, CC0 = 0, 0 2 1 0 2.7 2.5 2.3 0 20 40 Time t ( s) 60 2 AV DD = 5 V, CC1, CC0 = 0, 0 0 2.7 2.5 2.3 20 40 Time t ( s) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 60 3 2 80 AV DD = 5 V, CC1, CC0 = 1, 1 1 0 2.7 2.5 2.3 80 160 Time t ( s) 240 320 Output response (Non-inverting amplifier) Output voltage VO (V) 3 0 4 0 Input voltage VI (V) Output voltage VO (V) 4 1 Output response (Inverting amplifier) 80 Output response (Non-inverting amplifier) Input voltage VI (V) Output voltage VO (V) APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) Input voltage VI (V) Input voltage VI (V) Output voltage VO (V) RL78/G1E 4 3 2 AV DD = 5 V, CC1, CC0 = 1, 1 1 0 2.7 2.5 2.3 0 80 160 240 320 Time t ( s) 408 RL78/G1E APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) 4 3 2 AVDD = 5 V, CC1, CC0 = 0, 0 1 0 2.7 2.5 2.3 20 40 60 3 2 AVDD = 5 V, CC1, CC0 = 1, 1 1 0 2.7 2.5 2.3 80 0 80 160 Time t ( s) 240 320 Output response (Instrumentation amplifier) Output response (Instrumentation amplifier) Input voltage VI (V) Output voltage Vo (V) Time t ( s) 4 Input voltage VI (V) Output voltage Vo (V) 0 Output response (Differential amplifier) Input voltage VI (V) Output voltage Vo (V) Input voltage VI (V) Output voltage Vo (V) Output response (Differential amplifier) AVDD = 5 V, CC1, CC0 = 0, 0 4 2 0 2.7 2.5 2.3 0 20 40 Time t ( s) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 60 80 4 2 AVDD = 5 V, CC1, CC0 = 1, 1 0 2.7 2.5 2.3 0 80 Time t ( s) 160 240 409 RL78/G1E 0 APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) CMRR (Differential amplifier) -20 AVDD = 5 V, GCn = 11 H 40 dB, CC1, CC0 = 0, 0 CMRR (dB) CMRR (dB) -20 -40 -60 1k 10 k 100 k 1M Frequency f (Hz) -40 -60 -100 100 CMRR (Instrumentation amplifier) 0 -20 -20 -40 AVDD = 5 V, GC3 = 11 H 54 dB, CC1, CC0 = 0, 0 -60 -80 -100 -120 100 1k 10 k 100 k Frequency f (Hz) 1M CMRR (Instrumentation amplifier) 0 CMRR (dB) CMRR (dB) AVDD = 5 V, GCn = 11 H 40 dB, CC1, CC0 = 1, 1 -80 -80 -100 100 CMRR (Differential amplifier) 0 -40 AVDD = 5 V, GC3 = 11 H 54 dB, CC1, CC0 = 1, 1 -60 -80 -100 1k 10 k 100 k 1M Frequency f (Hz) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 10 M -120 100 1k 10 k 100 k 1M 10 M Frequency f (Hz) 410 RL78/G1E 1000 APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) En vs. f (Inverting amplifier) 300 1000 300 AV DD = 5 V, GCn = 11 H 40 dB, CC1, CC0 = 0, 0 100 100 30 30 10 10 100 1k 10 k 100 k En vs. f (Non-inverting amplifier) 1M 10 10 Frequency f (Hz) 1000 10 k 100 k 1M En vs. f (Instrumentation amplifier) 1000 AV DD = 5 V, GC3 = 11 H 54 dB, CC1, CC0 = 0, 0 100 30 30 10 10 1k 300 AV DD = 5 V, GCn = 11 H 40 dB, CC1, CC0 = 0, 0 100 100 Frequency f (Hz) En vs. f (Differential amplifier) 300 AV DD = 5 V, GCn = 11 H 40 dB, CC1, CC0 = 0, 0 100 1k 10 k 100 k Frequency f (Hz) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 1M 10 10 100 1k 10 k 100 k 1M Frequency f (Hz) 411 RL78/G1E APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) • Low-pass filter and high-pass filter G vs. f 10 0 Voltage gain G (dB) Voltage gain G (dB) 0 -10 -20 -30 -40 AVDD = 5 V, fCLK_LPF = 2 kHz -50 -60 G vs. f 10 1 10 100 AVDD = 5 V, fCLK_LPF = 200 kHz 1k 10 k -10 -20 -30 -40 AVDD = 5 V, fCLK_HPF = 200 kHz -50 -60 100 k AVDD = 5 V, fCLK_HPF = 2 kHz 1 10 Frequency f (Hz) 100 1k 10 k 100 k Frequency f (Hz) • Temperature sensor VTEMP_OUT vs. TA Output voltage VTEMP_OUT (V) 2.2 AVDD = 5 V 2.0 1.8 1.6 1.4 1.2 1.0 -50 -25 0 25 50 75 100 125 Temperature T A (°C) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 412 RL78/G1E APPENDIX A CHARACTERISTICS CURVE (TA = 25°C, TYP.) (REFERENCE VALUE) • Variable output voltage regulator Output voltage vs. Load current 2.020 AVDD=5V, LDOC = 00H (2.0 V) VOUT (V) 2.010 2.000 1.990 1.980 1.970 0.0 5.0 10.0 15.0 IOUT (mA) Output voltage vs. Load current 3.320 AVDD=5V, LDOC = 0DH (3.3 V) VOUT (V) 3.310 3.300 3.290 3.280 3.270 0.0 5.0 10.0 15.0 IOUT (mA) R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 413 RL78/G1E APPENDIX B REVISION HISTORY APPENDIX B REVISION HISTORY B. 1 Major Revisions in This Edition (1/4) Page Description Classification R01UH0353EJ0100 → R01UH0353EJ0200 CHAPTER 1 OUTLINE p.1 Modification of 1. 1 Features (c) p.4 Deletion of Note form 1. 2 List of Part Numbers (c) p.5-14 Modification of SCK00, SCK10, SCK20, SCK21 in 1. 3 Pin Configuration (Top View), in 1. 4 Pin (a) Identification and 1. 5 Block Diagram p.15-17 Modification of 1. 6 Outline of Functions (c) CHAPTER 2 PIN FUNCTIONS p.18-21 Modification of the alternative function and Remark in 2. 1 Pin Functions in Microcontroller Block (c) (1) (2) p.23, 24 Modification of the table structure, Caution and Remark in 2. 1. 1. 1 64-pin products (c) p.25, 26 Modification of the table structure, Caution and Remark in 2. 1. 1. 2 80-pin products (c) p.28 Modification of the function name and Remark in 2. 1. 2. 1 Functions available for each product (c) p.30, 31 Modification of the function name, Caution and Remark in 2. 1. 2. 2 Description of each function (c) p.32 Modification of the description in 2. 2 Pin Functions in Analog Block (c) p.32 Modification of the table structure in 2. 2. 1 64-pin products (c) p.33 Modification of the table structure in 2. 2. 2 80-pin products (c) p.34, 35 Modification of Table 2-3. Connections of Unused Pins (c) p.36-46 Modification of 2. 4 Block Diagram of Pins (c) p.50 Modification of 2. 5. 2 Port 1 (P10 to P15) (a) p.54 Modification of 2. 5. 6 Port 7 (P70 to P73) (a) CHAPTER 3 MICROCONTROLLER BLOCK p.77 Change of the register name of OSMC to “Subsystem clock supply mode control register” in Table 3-3. (c) p.83 Change of the register name of OSMC to “Subsystem clock supply mode control register” in Table 3-4. (c) p.90 Modification of the descriptions in 3. 4. 2. 1 Port 0 (c) p.90 Modification of the descriptions in 3. 4. 2. 2 Port 1 (c) p.91 Modification of the descriptions in 3. 4. 2. 5 Port 4 (c) p.91 Modification of the descriptions in 3. 4. 2. 6 Port 5 (c) p.91 Modification of the descriptions in 3. 4. 2. 8 Port 7 (c) p.93, 94 Addition of 3. 4. 3 Registers controlling port function (c) p.93, 94 Modification of Caution and Remark in 3. 4. 3 Registers controlling port function (c) p.95 Modification of 3. 4. 3. 1 Port mode register (PMxx) (c) p.96 Modification of 3. 4. 3. 2 Port register (Pxx) (c) p.97 Modification of 3. 4. 3. 3 Pull-up resistor option register (PUxx) (c) Remark “Classification” in the above table classifies revisions as follows. (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 414 RL78/G1E APPENDIX B REVISION HISTORY (2/4) Page Description Classification p.97 Modification of 3. 4. 3. 4 Port input mode register (PIMxx) (c) p.98 Modification of 3. 4. 3. 5 Port output mode register (POMxx) (c) p.98 Modification of 3. 4. 3. 6 Port mode control register (PMCxx) (c) p.101 Addition of Remark in 3. 4. 3. 8 Peripheral I/O redirection register (PIOR) (c) p.102 Addition of 3. 4. 4. 4 Handling different potential (1.8 V,2.5 V or 3 V) by using EVDD ≤ VDD (c) p.103, 104 Modification of 3. 4. 4. 5 Handling different potential (1.8 V,2.5 V or 3 V) by using I/O buffers (c) p.105 Modification of 3. 4. 5 Register settings when using alternate function (c) p.106, 107 Modification of 3. 5. 1 Functions of clock generator (c) p.108 Modification of Table 3-6. Configuration of Clock Generator (c) p.109 Modification of Figure 3-1. Block Diagram of Clock Generator (c) p.111 Modification of 3. 5. 3. 1 Clock operation mode control register (CMC) (c) p.116 Modification of 3. 5. 3. 7 Subsystem clock supply mode control register (OSMC) (c) p.118-121 Modification of 3. 5. 7 Resonator and oscillator constants (c) p.126 Modification of 3. 6. 1. 2 One-shot pulse output (c) p.134 Modification of 3. 6. 3. 1 Peripheral enable register 0 (PER0) (c) p.135-139 Modification of 3. 6. 3. 3 Timer mode register mn (TMRmn) (c) p.144 Modification of 3. 6. 3. 15 Registers controlling port functions of pins to be used for timer I/O (c) p.147 Modification of 3. 8. 2 Configuration of 12-bit interval timer (a) p.148 Modification of 3. 8. 3. 2 Subsystem clock supply mode control register (OSMC) (c) p.153 Modification of 3. 9. 3. 2 Registers controlling port functions of pins used for clock or buzzer (c) output p.155, 156 Modification of 3. 11. 1 Function of A/D converter (c) p.157 Modification of Figure 3-8. Block Diagram of A/D converter (c) p.160 Modification of 3. 11. 3. 1 Peripheral enable register 0 (PER0) (c) p.161 Modification of 3. 11. 3. 3 A/D converter mode register 1 (ADM1) (c) p.167 Modification of 3. 11. 3. 11 Registers controlling port function of analog input pins (c) p.173 Modification of Table 3-12. Configuration of Serial Array Unit (c) p.175 Modification of Figure 3-9. Block Diagram of Serial Array Unit 0 (a) p.176 Modification of Figure 3-10. Block Diagram of Serial Array Unit 1 (c) p.177 Modification of 3. 12. 2. 1 Shift register (c) p.177, 178 Modification of 3. 12. 2. 2 Lower 8/9 bits of the serial data register mn (SDRmn) (c) p.179 Modification of 3. 12. 3. 1 Peripheral enable register 0 (PER0) (c) p.180, 181 Modification of 3. 12. 3. 3 Serial mode register mn (SMRmn) (c) p.182-184 Modification of 3. 12. 3. 4 Serial communication operation setting register mn (SCRmn) (c) p.188 Modification of 3. 12. 3. 17 Registers controlling port functions of serial input/output pins (c) p.194-196 Modification of Table 3-13. Interrupt Source List (c) p.200, 202 Modification of Table 3-14. Flags Corresponding to Interrupt Request Sources (a) Remark “Classification” in the above table classifies revisions as follows. (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 415 RL78/G1E APPENDIX B REVISION HISTORY (3/4) Page Description Classification p.215 Modification of Table 3-17. Configuration of Key Interrupt (c) p.216 Modification of Figure 3-14. Block Diagram of Key Interrupt (c) p.217 Modification Addition of 3. 17. 3. 2 Key return mode registers 0 (KRM0) (c) p.223, 224 Modification of 3. 21. 1 Functions of voltage detector (c) p.224 Modification of Figure 3-15. Block Diagram of Voltage Detector (c) p.226, 227 Modification of Format of User Option Byte (000C1H/010C1H) (1/2) (2/2) (c) p.229 Modification of 3. 22. 1 Overview of safety functions (c) p.233, 234 Modification of 3. 24. 1. 1 User option byte (000C0H to 000C2H/010C0H to 010C2H) (c) p.235-237 Modification of 3. 24. 2 Format of user option byte (c) p.239 Modification of 3. 25. 1 Serial Programming Using Flash Memory Programmer (c) p.240 Modification of Table 3-18. Wiring Between RL78/G1E and Dedicated Flash Memory Programmer (c) p.241 Modification of 3. 25. 2 Serial programming using external device (that Incorporates UART) (c) p.241 Modification of 3. 25. 4 Serial programming method (c) p.241 Modification of 3. 25. 5 Processing time for each command when PG-FP5 Is in use (Reference (c) value) p.241 Modification of 3. 25. 6 Self-programming (c) p.241 Modification of 3. 25. 7 Security Settings (c) p.241 Modification of 3. 25. 8 Data flash (c) p.242 Modification of Figure 3-16. Connection Example of E1 On-chip Debugging Emulator and (c) RL78/G1E CHAPTER 4 ANALOG BLOCK p.256 Addition of Remark to 4. 1. 3 (5) Gain control register 1 (GC1) (c) p.259 Addition of Remark to 4. 1. 3 (6) Gain control register 2 (GC2) (c) p.262 Addition of Remark to 4. 1. 3 (7) Gain control register 3 (GC3) (c) p.266 Addition of Remark to 4. 1. 3 (8) AMP operation mode control register (AOMC) (c) p.282 Modification of 4. 2. 1 Overview of gain adjustment amplifier features (c) p.284, 285 Modification of 4. 2. 3 Registers controlling the gain adjustment amplifier (c) p.288 Modification of 4. 3. 1 Overview of D/A converter features (c) p.289 Modification of 4. 3. 3 Registers controlling the D/A converters (c) p.289 Modification of 4. 3. 3 (1) DAC reference voltage control register (DACRC) (c) p.293 Modification of 4. 4. 1 Overview of low-pass filter features (c) p.295, 296 Modification of 4. 4. 3 Registers controlling the low-pass filter (c) p.298 Modification of 4. 5. 1 Overview of low-pass filter features (c) p.300 Modification of 4. 5. 3 Registers controlling the high-pass filter (c) p.307 Addition of Remark to 4. 7. 3 (1) LDO control register (LDOC) (c) p.308 Addition of Remark to 4. 7. 3 (2) Power control register 2 (PC2) (c) p.314 Modification of Note in Table 4-11. SPI Control Registers (c) Remark “Classification” in the above table classifies revisions as follows. (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 416 RL78/G1E APPENDIX B REVISION HISTORY (4/4) Page Description Classification p.315 Modification of Caution in 4. 10. 1 Overview of analog reset feature (c) p.316 Modification of Note in Table 4-13. Statuses of SPI Control Registers after Analog Reset Is (c) Acknowledged p.317 Modification of Table 4-14. Pin Statuses after Analog Reset (c) p.318 Modification of 4. 10. 2 Registers controlling the analog reset (c) CHAPTER 5 ELECTRICAL SPECIFICATIONS p.323 Modification of 5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog (c) block) p.324 Modification of 5. 2. 1. 1 X1 oscillator characteristics (c) p.325 Modification of 5. 2. 1. 2 On-chip oscillator characteristics (c) p.335, 336 Modification of 5. 2. 2. 2 Supply current characteristics (c) p.337 Modification of 5. 2. 3 AC characteristics (a) p.338-340 Modification of two figures about Minimum Instruction Execution Time during Main System Clock (c) Operation and AC Timing Test Points p.342 Addition of AC Timing Test Points to 5. 2. 4 Peripheral functions characteristics (c) p.342 Modification of 5. 2. 4. 1 Serial array unit (1) (c) p.344 Modification of 5. 2. 4. 1 Serial array unit (2) (c) p.345 Modification of 5. 2. 4. 1 Serial array unit (3) (c) p.347, 348 Modification of 5. 2. 4. 1 Serial array unit (4) (c) p.350, 351 Modification of 5. 2. 4. 1 Serial array unit (5) (c) p.353, 355 Modification of 5. 2. 4. 1 Serial array unit (6) (c) p.358, 359 Modification of 5. 2. 4. 1 Serial array unit (7) (c) p.360, 362 Modification of 5. 2. 4. 1 Serial array unit (8) (c) p.365, 366 Modification of 5. 2. 4. 1 Serial array unit (9) (c) p.369, 370 Modification of 5. 2. 4. 1 Serial array unit (10) (c) p.372-377 Modification of 5. 2. 5. 1 A/D converter characteristics (c) p.379 Correction of the Caution in 5. 2. 5. 4 LVD circuit characteristics (a) p.381 Modification of 5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics (c) p.382 Addition of 5. 2. 8 Dedicated flash memory programmer communication (UART) (c) p.383 Modification of 5. 2. 9 Timing specs for switching flash memory programming modes (c) p.384 Change of the title to 5. 3. 1 “Operating conditions of analog block” (c) p.392, 395, Modification of 5. 3. 3. 1 Configurable amplifier characteristics (c) p.399 Modification of 5. 3. 3. 3 D/A converter characteristics (c) p.400 Modification of 5. 3. 3. 4 Low-pass filter characteristics (c) p.401 Modification of 5. 3. 3. 5 High-pass filter characteristics (c) p.403 Modification of 5. 3. 3. 9 SPI characteristics (c) 396 Remark “Classification” in the above table classifies revisions as follows. (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 417 RL78/G1E APPENDIX B REVISION HISTORY B. 2 Revision History of Preceding Editions Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition. (1/6) Edition Rev.1.00 Description Chapter The structure of CHAPTERS and Sessions are drastically changed. Whole pages Modification of 1. 1 Features CHAPTER 1 Addition of Packaging, modification of Part Numbers and addition of Cautions in 1. 2 List of OUTLINE Part Numbers Modification of Note 7. for 64-pin products in 1. 3 Pin Configuration Modification of Note 6. for 80-pin products in 1. 3 Pin Configuration Addition of Items and Notes in 1. 6 Outline of Functions Error correction of the descriptions in 1. 6 Outline of Functions Modification of the tables for Comparison of port functions with RL78/G1A in 2. 1 Pin CHAPTER 2 Functions in Microcontroller Block PIN FUNCTIONS Error correction of the descriptions in 2. 1. 1 Port functions Addition of the descriptions in 2. 1. 2 Functions other than port Functions Error correction of the descriptions in 2. 2 Pin Functions in Analog Block Addition of Notes about the pin of ARESET in 2. 3 Recommended Connection of Unused Pins Addition of the descriptions for the pin of RESET and the pin of ARESET in 2. 5 Instruction of Pin Functions Addition of the items listed on the tables in 3. 2 Comparison of Each Function with CHAPTER 3 RL78/G1A (64-pin products) MICROCONTROLLER Error correction of the descriptions on the tables in 3. 2 Comparison of Each Function BLOCK with RL78/G1A (64-pin products) Modification of the tables for List of Differences in Special Function Registers (SFRs) in 3. 3. 2. 4 Special function registers (SFRs) Modification of the tables for List of Differences in Expanded Special Function Registers (2nd SFRs) in 3. 3. 2. 5 Expanded special function registers (2nd SFRs) Addition of the descriptions for each port in 3. 4. 2 Port configuration Error correction of the descriptions for each port in 3. 4. 2 Port configuration Addition of registers listed in 3. 4. 3 Registers controlling port functions Modification of the frequency for oscillation about the function of high-speed on-chip oscillator and addition of the table about the frequency for oscillation in 3. 5. 1 Functions of clock generator Addition of the registers listed in 3. 5. 3 Registers controlling clock generator Error correction of the descriptions about a crystal resonator in 3. 5. 7 Resonator and oscillator constants Addition of “Port mode control register” to Table 3-8. Modification of the figures for Block Diagram on Figure 3-4. and Figure 3-5. in 3. 6. 2 Configuration of timer array unit Addition of the registers listed in 3. 6. 3 Registers controlling timer array unit Addition of the registers listed in 3. 8. 3 Registers controlling 12-bit interval timer R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 418 RL78/G1E APPENDIX B REVISION HISTORY (2/6) Edition Rev.1.00 Description Chapter Addition of the registers listed in 3. 9. 3 Registers controlling clock output/buzzer output CHAPTER 3 controller MICROCONTROLLER Addition of the registers listed in 3. 11. 3 Registers used in A/D converters BLOCK Addition and Modification of Cautions in 3. 11. 3. 7 Analog input channel specification register (ADS) Addition of the registers listed in 3. 12. 3 Registers controlling serial array unit Error correction of the number of maskable interrupts (internal) in 3. 16 Interrupt Functions Addition of the registers listed in 3. 16. 3 Registers controlling interrupt functions Error correction of the number of key interrupt input channels for 64-pin products in 3. 17 Key Interrupt Function Addition of the registers listed in 3. 17. 3 Registers controlling key interrupt Addition of Caution in 3. 17. 3. 2 Key return mode registers 0 (KRM0) Error correction of the descriptions in 3. 21. Voltage Detector Addition of the registers listed in 3. 21. 3 Registers controlling voltage detector Error correction of the descriptions about user option byte (000C1H/010C1H) in 3. 21. 3 Registers controlling voltage detector Addition of the registers listed in 3. 22. 3 Operation of safety functions Error correction of the descriptions about user option byte (000C1H/010C1H) in 3. 24. 2 Format of user option byte Addition of 3. 25 Flash Memory Addition of 3. 26. 1 Connecting E1 on-chip debugging emulator to RL78/G1E Addition of the descriptions about the reference voltage in 4. 1. 1 Overview of configurable CHAPTER 4 amplifier features ANALOG BLOCK Modification of the registers listed in 4. 1. 3 Registers controlling the configurable amplifiers Addition of the descriptions about the reference voltage in 4. 2. 1 Overview of gain adjustment amplifier features Modification of the registers listed in 4. 2. 3 Registers controlling the gain adjustment amplifier Modification of the equation for calculation of analog output voltage in 4. 3. 1 Overview of D/A converter features Addition of the descriptions about the reference voltage in 4. 4. 1 Overview of low-pass filter features Modification of the registers listed in 4. 4. 3 Registers controlling the low-pass filter Addition of the descriptions about the reference voltage in 4. 5. 1 Overview of high-pass filter features Modification of the registers listed in 4. 5. 3 Registers controlling the high-pass filter Modification of the description in 4. 8. 3 Registers controlling the reference voltage generator Modification of Caution in 4. 9. 1 Overview of SPI features Addition of Note to Table 4-11. R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 419 RL78/G1E APPENDIX B REVISION HISTORY (3/6) Edition Rev.1.00 Description Chapter Addition and Modification of the descriptions in 4. 10. 1 Overview of analog reset feature CHAPTER 4 Modification of the description and Note on Table 4-13. ANALOG BLOCK Modification of the description and Note, and addition of Caution in 4. 10. 2 (1) Reset control register (RC) Erase the description of “(target)” CHAPTER 5 Modification of the description and addition of Remark 3 in 5. 1. 1 Absolute Maximum ELECTRICAL Ratings SPECIFICATIONS Addition of “5. 1. 3 Absolute maximum ratings (common to microcontroller block and analog block)” Modification of the description and Note in 5. 2. 1. 1 X1 oscillator characteristics Modification of Note 3 in 5. 2. 2. 1 Pin characteristics Addition of the specifications for P70 to P73 in terms of output current/voltage high and output current/voltage low in 5. 2. 2. 1 Pin characteristics Modification of the description and Notes in 5. 2. 2. 2 Supply current characteristics Change of the specification of the typical value for IDD3 (TA=+50°C) in 5. 2. 2. 2 Supply current characteristics Addition of operation current flowing to low-speed on-chip oscillator (fIL) in 5. 2. 2. 2 Supply current characteristics Addition of the descriptions and modification of Remark in 5. 2. 3 AC characteristics Modification of the description in 5. 2. 4. 1 Serial array unit (1) Modification of the description in 5. 2. 4. 1 Serial array unit (2) Modification of the description in 5. 2. 4. 1 Serial array unit (3) Modification of the description in 5. 2. 4. 1 Serial array unit (4) Modification of the description in 5. 2. 4. 1 Serial array unit (5) Modification of the description in 5. 2. 4. 1 Serial array unit (6) Modification of the description in 5. 2. 4. 1 Serial array unit (7) Modification of the description in 5. 2. 4. 1 Serial array unit (8) Modification of the description in 5. 2. 4. 1 Serial array unit (9) Modification of the description in 5. 2. 4. 1 Serial array unit (10) Addition of “Internal reference voltage” and “Temperature sensor output voltage” to the input channel in 5. 2. 5. 1 A/D converter characteristics Change of the symbol for the internal reference voltage in 5. 2. 5. 2 Temperature sensor, internal reference voltage output characteristics Addition of Note in 5. 2. 5. 3 POR circuit characteristics Error correction of the description in 5. 2. 5. 4 LVD circuit characteristics Change of the specification for the slope in 5. 2. 5. 5 Supply voltage rise slope characteristics Change of the specification for the data retention supply voltage in 5. 2. 6 Data memory STOP mode low supply voltage data retention characteristics Addition of Notes in 5. 2. 7 Flash memory programming characteristics R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 420 RL78/G1E APPENDIX B REVISION HISTORY (4/6) Edition Rev.1.00 Description Chapter Modification of the description in 5. 2. 8 Timing specs for switching flash memory CHAPTER 5 programming modes ELECTRICAL Addition of the specification depending on the products in 5. 3. 3. 2 Gain adjustment SPECIFICATIONS amplifier characteristics Addition of the specification for “CLK_SYNCH input voltage” in 5. 3. 3. 2 Gain adjustment amplifier characteristics (2) 80-pin products Error correction of the description and addition of the specification for “CLK_SYNCH input voltage” in 5. 3. 3. 4 Low-pass filter characteristics Error correction of the description and addition of the specification for “CLK_SYNCH input voltage” in 5. 3. 3. 5 High-pass filter characteristics Rev.0.04 Change of the name for CS from “Slave Select” to “Chip Select” Whole pages Deletion of the word “interface” from the name of SPI Error correction of the figures in 1. 4 Pin Configuration (Top View) CHAPTER 1 Error correction of the description (deletion of “SCLA0”, “SCLA1”) in 1. 4. 3 Pin OUTLINE identification (Microcontroller Block) Error correction of the figures in 1. 5 Block Diagram Error correction of the function names and modification of the description for the function in CHAPTER 2 2. 2 Pin Functions in Analog Block PIN FUNCTIONS Error correction of the description for the pin of ANI30 (D/A converter -> A/D converter) in 2. 3. 4 P40 to P42 (port 4) Modification of the description in 2. 3. 43 I.C Addition of “Remarks” on the tables in 3. 1 Differences in Functions between RL78/G1E CHAPTER 3 and RL78/G1A MICROCONTROLLER Modification of the description on the tables (deletion of the same registers as RL78/G1A) in FUNCTION 3. 2 Differences in (Expanded) Special-Function Registers between RL78/G1E and RL78/G1A Modification of the description and change of the sequence flow of the setting procedure (2) in 3. 3. 3 Connecting to an external device with different potential (1.8 V, 2.5 V, 3 V) Addition of 3. 4. 4 Resonator and Oscillator Constants Error correction of the description on Table 3-14. Addition of 3. 13 Safety Functions Modification of the gain setting of non-inverting amplifier in 5. 1 Overview of Configurable CHAPTER 5 Amplifier Features and in 5. 3 Registers Controlling the Configurable Amplifiers CONFIGURABLE AMPLIFIERS Modification of the description in 8. 1 Overview of Low-Pass Filter Features CHAPTER 8 LOW-PASS FILTER Modification of the description in 9. 1 Overview of High-Pass Filter Features CHAPTER 8 HIGH-PASS FILTER Addition of Note in 11. 3 Registers Controlling the Variable Output Voltage Regulator CHAPTER 11 VARIABLE OUTPUT VOLTAGE REGULATOR R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 421 RL78/G1E APPENDIX B REVISION HISTORY (5/6) Edition Rev.0.04 Description Chapter Change of the specification for the typical value of Im124 in 15. 3. 2 Supply current CHAPTER 15 characteristics ELECTRICAL Addition of the table which describes the operation state of the circuit in 15. 3. 2 Supply SPECIFICATIONS current characteristics (TARGET) Error correction of the description and change of the specification in 15. 3. 3 Electrical specifications of each block Modification of the description for the current consumption and addition of the Notes in 15. 3. 3 Electrical specifications of each block (3) D/A converter Addition of the definition for “CLK_LPF” in 15. 3. 3 Electrical specifications of each block (4) Low-pass filter Addition of the definition for “CLK_HPF” in 15. 3. 3 Electrical specifications of each block (5) High-pass filter Error correction of the description and addition of Note for the dropout voltage in 15. 3. 3 Electrical specifications of each block (7) Variable output voltage regulator Error correction of the description in 15. 3. 3 Electrical specifications of each block (9) SPI Rev.0.03 Change of Block Diagram in 1. 5. 2 RL78/G1E (80-pin) CHAPTER 1 OUTLINE Change of Table 3-12. Analog Input Channels of A/D Converter CHAPTER 15 Change of ratings in 15. 1 Absolute Maximum Ratings ELECTRICAL SPECIFICATIONS Change of 15. 2. 1 (1) X1 oscillator characteristics (TARGET) Change of conditions and ratings in 15. 2. 2 (2) Supply current characteristics Addition of SNOOZE operating current to 15. 2. 2 (3) Supply current characteristics of peripheral functions Addition of diagrams (AC Timing Test Points to RESET Input Timing) to 15. 2. 3 AC characteristics Detection of Remarks 4 in Simplified I2C connection diagram (during communication between devices with the different voltages) Addition of Division of A/D Converter Characteristics in 15. 2. 5. 1 A/D converter characteristics Change of ratings in 15. 2. 5. 2 Temperature sensor characteristics Change of ratings in 15. 2. 5. 3 POR circuit characteristics Change of conditions and ratings in 15. 3. 2 Supply current characteristics Change of conditions in 15. 3. 3 (4) Variable output voltage regulator Change of conditions in 15. 3. 3 (9) SPI interface Rev.0.02 Change of conditions and ratings in 15. 2. 2 (2) Supply current characteristics Change of ratings in 15. 2. 4. 1 (7) Communication between devices with different voltages CHAPTER 15 ELECTRICAL SPECIFICATIONS (TARGET) Change of ratings in 15. 2. 5. (1) A/D converter characteristics R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 422 RL78/G1E APPENDIX B REVISION HISTORY (6/6) Edition Rev.0.02 Description Chapter Addition of new conditions (Retained for 20 years) to 15. 2. 10 Flash memory CHAPTER 15 programming characteristics ELECTRICAL Change of condition and ratings in 15. 3. 2 Supply Current characteristics SPECIFICATIONS (TARGET) Change of conditions and ratings and addition of settling time in 15. 3. 3 (1) Configurable amplifier block characteristics Change of conditions and ratings in 15. 3. 3 (2) Gain Adjustment amplifier Change of conditions and ratings in 15. 3. 3 (3) D/A converter Change of conditions and ratings in 15. 3. 3 (4) Low-pass filter Change of conditions and ratings in 15. 3. 3 (5) Temperature sensor Change of conditions and ratings in 15. 3. 3 (7) Variable output voltage regulator Change of conditions and ratings in 15. 3. 3 (9) SPI interface R01UH0353EJ0200 Rev.2.00 Mar 31, 2014 423 RL78/G1E User’s Manual: Hardware Publication Date: Rev.2.00 Mar. 31, 2014 Published by: Renesas Electronics Corporation http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. California Eastern Laboratories, Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054, U.S.A. Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 D üsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141 © 2014 Renesas Electronics Corporation. All rights reserved. Colophon 2.0 RL78/G1E R01UH0353EJ0200
R5F10FMCDFB#V0 价格&库存

很抱歉,暂时无法提供与“R5F10FMCDFB#V0”相匹配的价格&库存,您可以联系我们找货

免费人工找货