0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R5F523E5ADFL#10

R5F523E5ADFL#10

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP48

  • 描述:

    IC MCU 32BIT 128KB FLASH 48LFQFP

  • 数据手册
  • 价格&库存
R5F523E5ADFL#10 数据手册
Datasheet RX23E-A Group R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Renesas MCUs 32-MHz, 32-bit RX MCUs with up to 256-KB flash memory, 2 low-noise and low-drift 24-bit delta-sigma A/D converters, rail-to-rail programmable gain instrumentation amplifiers, a low-drift voltage reference, and on-chip excitation current sources Features ■ 32-bit RXv2 CPU core  Max. operating frequency: 32 MHz Capable of 64 DMIPS in operation at 32 MHz  Enhanced DSP: 32-bit multiply-accumulate and 16-bit multiplysubtract instructions supported  Built-in FPU: 32-bit single-precision floating point (compliant to IEEE754)  Divider (fastest instruction execution takes two CPU clock cycles)  Fast interrupt  CISC Harvard architecture with 5-stage pipeline  Variable-length instructions, ultra-compact code  On-chip debugging circuit  Memory protection unit (MPU) supported ■ Low power design and architecture  Operation from a single 1.8-V to 5.5-V supply  Three low power consumption modes  Low power timer (LPT) that operates during the software standby state ■ On-chip flash memory for code       Read cycle of 31.25 ns in 32-MHz operation No waiting time when the CPU is reading at full speed 128-Kbyte to 256-Kbyte capacities On-board or off-board user programming Programmable at 1.8 V For instructions and operands ■ On-chip data flash memory  8 Kbytes (1,000,000 program/erase cycles (typ.))  BGO (Background Operation) ■ On-chip SRAM, no wait states  16- to 32-Kbyte size capacities ■ Data transfer functions  DMAC: Incorporates four channels  DTC: Four transfer modes ■ ELC  Module operation can be initiated by event signals without using interrupts.  Linked operation between modules is possible while the CPU is sleeping. ■ Reset and supply management  Seven types of reset, including the power-on reset (POR)  Low voltage detection (LVD) with voltage settings ■ Clock functions     Main clock oscillator frequency: 1 MHz to 20 MHz External clock input frequency: Up to 20 MHz PLL circuit input: 4 MHz to 8 MHz On-chip low- and high-speed oscillators, dedicated on-chip low-speed oscillator for the IWDT  Clock frequency accuracy measurement circuit (CAC) ■ Independent watchdog timer  15-kHz on-chip oscillator produces a dedicated clock signal to drive IWDT operation. ■ Useful functions for IEC60730 compliance  Self-diagnostic and disconnect detection assistance functions for the A/ D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test assistance functions using the DOC, etc. ■ MPC  Input/output functions selectable from multiple pins ■ Up to eight communication functions  CAN (one channel) compliant to ISO11898-1: Transfer at up to 1 Mbps  SCI with many useful functions (up to four channels), asynchronous mode, clock synchronous mode, smart card interface, reduction of errors in communications using the bit rate modulation function  I2C bus interface: Transfer at up to 400 kbps, capable of SMBus operation (one channel)  RSPI (one channel): Transfer at up to 16 Mbps R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 PLQP0048KB-B 7 × 7 mm, 0.5 mm pitch PWQN0040KC-A 6 × 6 mm, 0.5 mm pitch ■ Up to 12 extended-function timers  16-bit MTU: input capture, output compare, complementary PWM output, phase counting mode (six channels)  8-bit TMR (four channels)  16-bit compare-match timers (two channels) ■ Analog functions  Two 24-bit delta-sigma A/D converters  A/D converter with up to 23-bit effective resolution (gain = 1, output data rate = 7.6 SPS)  High-precision programmable gain instrumentation amplifier, 30 nVRMS (gain = 128, output data rate = 7.6 SPS)  Rail-to-rail programmable gain instrumentation amplifier (gain = 1 to 128)  Two operating modes and programmable data rates, Normal mode: Output data rate of 7.6 SPS to 15625 SPS, Low power mode: Output data rate of 1.9 SPS to 3906 SPS  Offset drift 10 nV/°C (gain = 128)  Gain drift 1 ppm/°C (gain = 1 (PGA), gain = 2 to 128)  Up to six differential inputs, 11 single-ended inputs  Fourth-order sinc filter  Simultaneous 50 Hz/60 Hz rejection (output data rate = 10, 54 SPS)  Offset error and gain error calibration  Inter-unit A/D conversion synchronized start  Delta-sigma A/D input disconnect detection assist  Delta-sigma A/D reference voltage external input  Voltage reference output voltage: 2.5 V ±0.1%, temperature drift: 4 ppm/°C, output current: ±10 mA  Excitation current sources: Up to four, Output current: 50 µA to 1000 µA, current matching: ±0.2%, drift matching: 5 ppm/°C  Bias voltage generator output voltage: (AVCC0 + AVSS0)/2  Temperature sensor: Accuracy ±5°C  Low-side switch: 10 Ω on-resistance  Low power-supply-voltage detectors  Delta-sigma A/D input voltage fault detectors  Delta-sigma A/D reference voltage fault detectors and disconnect detectors  Excitation current source disconnect detectors ■ 12-bit A/D converter     Capable of conversion within 1.4 µs Six channels Sampling time can be set for each channel Self-diagnostic function and analog input disconnect detection assistance function ■ General I/O ports  5-V tolerant, open drain, input pull-up, switching of driving capacity ■ Operating temperature range  –40°C to +85°C  –40°C to +105°C ■ Applications  General industrial and consumer equipment Page 1 of 100 RX23E-A Group 1. Overview 1. Overview 1.1 Outline of Specifications Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages. Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages. Table 1.1 Outline of Specifications (1/4) Classification Module/Function Description CPU CPU               Memory Maximum operating frequency: 32 MHz 32-bit RX CPU (RX v2) Minimum instruction execution time: One instruction per clock cycle Address space: 4-Gbyte linear Register set General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 (variable-length instruction format) Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 10 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32-bit × 32-bit → 64-bit On-chip divider: 32-bit ÷ 32-bit → 32 bits Barrel shifter: 32 bits Memory protection unit (MPU) FPU  Single precision (32-bit) floating point  Data types and exceptions in conformance with the IEEE754 standard ROM  Capacity: 128/256 Kbytes  32 MHz: No-wait access  Programming/erasing method: Serial programming (asynchronous serial communication), self-programming RAM  Capacity: 16/32 Kbytes  32 MHz, no-wait memory access E2 DataFlash  Capacity: 8 Kbytes  Number of erase/write cycles: 1,000,000 (typ) MCU operating mode Single-chip mode Clock  Main clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator  Oscillation stop detection: Available  Clock frequency accuracy measurement circuit (CAC)  Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 32 MHz (at max.) MTU2a runs in synchronization with the PCLKA: 32 MHz (at max.) The ADCLK for the S12AD runs in synchronization with the PCLKD: 32 MHz (at max.) Peripheral modules other than MTU2a and S12AD run in synchronization with the PCLKB: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.) Clock generation circuit Resets Voltage detection RES# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset Voltage detection circuit (LVDAb) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020  When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 0 is capable of selecting the detection voltage from 4 levels Voltage detection circuit 1 is capable of selecting the detection voltage from 14 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels Page 2 of 100 RX23E-A Group Table 1.1 1. Overview Outline of Specifications (2/4) Classification Module/Function Description Low power consumption Low power consumption functions  Module stop function  Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode  Low power timer that operates during the software standby state Function for lower operating power consumption  Operating power control modes High-speed operating mode and middle-speed operating mode Interrupt Interrupt controller (ICUb)  Interrupt vectors: 256  External interrupts: 9 (NMI, IRQ0 to IRQ7 pins)  Non-maskable interrupts: 5 (NMI pin, oscillation stop detection interrupt, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, and IWDT interrupt)  16 levels specifiable for the order of priority DMA DMA controller (DMACA)  4 channels  Three transfer modes: Normal transfer, repeat transfer, and block transfer  Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions Data transfer controller (DTCa)  Transfer modes: Normal transfer, repeat transfer, and block transfer  Activation sources: Interrupts  Chain transfer function General I/O ports 48-pin/40-pin I/O: 20/16  Input: 1/1 Pull-up resistors: 20/16  Open-drain outputs: 20/16  5-V tolerance: 2/2 I/O ports Event link controller (ELC)  Event signals of 56 types can be directly connected to the module  Operations of timer modules are selectable at event input  Capable of event link operation for port B Multi-function pin controller (MPC) Capable of selecting the input/output function from multiple pins Timers Multi-function timer pulse unit 2 (MTU2a)  (16 bits × 6 channels) × 1 unit  Up to 16 pulse-input/output lines and three pulse-input lines are available based on the six 16-bit timer channels  Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD) other than channel 5, for which only four signals are available.  Input capture function  21 output compare/input capture registers  Pulse output mode PWM/complementary PWM/reset synchronous PWM  Phase-counting mode  Capable of generating conversion start triggers for the A/D converter Port output enable 2 (POE2a) Controls the high-impedance state of the MTU’s waveform output pins Compare match timer (CMT)  (16 bits × 2 channels) × 1 unit  Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512) Independent watchdog timer (IWDTa)  14 bits × 1 channel  Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256 Low power timer (LPT)  16 bits × 1 channel  Clock source: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32 8-bit timer (TMR)  (8 bits × 2 channels) × 2 units  Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected  Pulse output and PWM output with any duty cycle are available  Two channels can be cascaded and used as a 16-bit timer R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 3 of 100 RX23E-A Group Table 1.1 Classification 1. Overview Outline of Specifications (3/4) Module/Function Communication Serial communications functions interfaces (SCIg, SCIh) Description  4 channels (channel 1, 5, 6: SCIg, channel 12: SCIh)  SCIg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Start-bit detection: Level or edge detection is selectable. Simple I2C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5)  SCIh (The following functions are added to SCIg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format I2C bus interface (RIICa)     Serial peripheral interface (RSPIb)  1 channel  Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines)  Capable of handling serial transfer as a master or slave  Data formats  Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits)  Double buffers for both transmission and reception CAN module (RSCAN)  1 channel  Compliance with the ISO11898-1 specification (standard frame and extended frame)  16 Message boxes 24-bit delta-sigma A/D converter (DSAD)              R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 1 channel Communications formats: I2C bus format/SMBus format Master mode or slave mode selectable Supports fast mode 24 bits (6 channels × 2 units) Type of A/D conversion: delta-sigma Post filter: Fourth-order sinc filter 24-bit resolution Input types: Differential, pseudo-differential, or single-ended Operating modes Normal mode/low-power mode Modulator clock: 500 kHz (typ.; 125 kHz in low-power mode) Oversampling ratio: 32 to 65536 (only multiples of 16) Includes a programmable gain instrumentation amplifier (PGA) Gain settings: ×1, ×2, ×4, ×8, ×16, ×32, ×64, ×128 PGA bypass function: with or without an analog input buffer Configuration settings per channel Conditions for starting A/D conversion: software trigger or ELC Disconnect detection assist Selectable reference voltage Page 4 of 100 RX23E-A Group Table 1.1 Classification 1. Overview Outline of Specifications (4/4) Module/Function Description Analog front end (AFE)  Voltage reference (VREF) Output voltage: 2.5V  Output from bias voltage source (VBIAS) Output voltage: (AVCC0 + AVSS0)/2  Internal temperature sensor (TEMPS)  Excitation current sources (IEXC) Two channels (up to 1000 µA) or four channels (up to 500 µA) Output current settings: 50 µA, 100 µA, 250 µA, 500 µA, 750 µA, 1000 µA  Analog multiplexer (AMUX) Select from among external pins, bias voltage sources, internal temperature sensor, or excitation current sources  Low-side switch (LSW) On-resistance: 10 Ω (max.) Allowable current: 30 mA (max.)  Voltage detector (VDET) Voltage monitoring of AVCC0 Detection of abnormal voltages at analog inputs Detection of abnormal reference voltages and assistance in detecting disconnection Assistance in detecting disconnection for excitation current source output 12-bit A/D converter (S12ADE)           12 bits (6 channels × 1 unit) 12-bit resolution Minimum conversion time: 1.4 µs per channel when the ADCLK is operating at 32 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Group A priority control (only for group scan mode) Sampling variable Sampling time can be set up for each channel. Self-diagnostic function Double trigger mode (A/D conversion data duplicated) Detection of analog input disconnection A/D conversion start conditions A software trigger, a trigger from a timer (MTU), an external trigger signal, or ELC Event linking by the ELC CRC calculator (CRC)  CRC code generation for arbitrary amounts of data in 8-bit units  Select any of three generating polynomials: X8 + X2 + X + 1, X16 + X15 + X2 + 1, or X16 + X12 + X5 + 1  Generation of CRC codes for use with LSB-first or MSB-first communications is selectable. Data operation circuit (DOC) Comparison, addition, and subtraction of 16-bit data Power supply voltages/Operating frequencies VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 5.5 V: 32 MHz AVCC0 = 2.7 to 5.5 V (1.8 to 5.5 V when only S12AD is operating) Operating temperature range D version: –40 to +85°C, G version: –40 to +105°C Packages 48-pin LFQFP (PLQP0048KB-B) 7 × 7 mm, 0.5 mm pitch 40-pin HWQFN (PWQN0040KC-A) 6 × 6 mm, 0.5 mm pitch Debugging interface One-wire type FINE interface R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 5 of 100 RX23E-A Group Table 1.2 1. Overview Comparison of Functions for Different Packages RX23E-A Group Module/Functions 48 Pins Interrupts External interrupts DMA DMA controller 40 Pins NMI, IRQ0 to IRQ7 4 channels (DMAC0 to DMAC3) Data transfer controller Timers Multi-function timer pulse unit 2 Port output enable 2 Communication functions Available 6 channels (MTU0 to MTU5) POE0# to POE3#, POE8# 8-bit timer 2 channels × 2 units Compare match timer 2 channels × 1 unit Low power timer 1 channel Independent watchdog timer Available Serial communications interfaces (SCIg) 3 channels (SCI1, 5, 6) Serial communications interfaces (SCIh) 1 channel (SCI12) I2C bus interface 1 channel CAN module 1 channel Serial peripheral interface 1 channel 24-bit delta-sigma A/D converter Analog front end 2 channels (SCI1, 5) 6 channels × 2 units Voltage reference Available Excitation current sources Available Analog multiplexer Available Temperature sensor Available Voltage detector Available 12-bit A/D converter (including high-precision channels) 6 channels (6 channels) CRC calculator Available Event link controller Packages R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 4 channels (4 channels) Available 48-pin LFQFP 40-pin HWQFN Page 6 of 100 RX23E-A Group 1.2 1. Overview List of Products Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type. Table 1.3 List of Products Group Part No. Order Part No. Package ROM Capacity RAM Capacity RX23E-A R5F523E6ADFL R5F523E6ADFL#30 PLQP0048KB-B 256 Kbytes 32 Kbytes R5F523E6ADNF R5F523E6ADNF#U0 PWQN0040KC-A R5F523E5ADFL R5F523E5ADFL#30 PLQP0048KB-B 128 Kbytes 16 Kbytes R5F523E5ADNF R5F523E5ADNF#U0 PWQN0040KC-A R5F523E6AGFL R5F523E6AGFL#30 PLQP0048KB-B 256 Kbytes 32 Kbytes R5F523E6AGNF R5F523E6AGNF#U0 PWQN0040KC-A R5F523E5AGFL R5F523E5AGFL#30 PLQP0048KB-B 128 Kbytes 16 Kbytes 256 Kbytes 32 Kbytes 128 Kbytes 16 Kbytes 256 Kbytes 32 Kbytes 128 Kbytes 16 Kbytes E2 DataFlash Operating Frequency DSAD Operating Temperature –40 to +85°C 2 Units R5F523E5AGNF R5F523E5AGNF#U0 PWQN0040KC-A R5F523E6SDFL R5F523E6SDFL#30 PLQP0048KB-B R5F523E6SDNF R5F523E6SDNF#20 PWQN0040KD-A R5F523E5SDFL R5F523E5SDFL#30 PLQP0048KB-B –40 to +105°C 8 Kbytes R5F523E5SDNF R5F523E5SDNF#20 PWQN0040KD-A R5F523E6SGFL R5F523E6SGFL#30 PLQP0048KB-B R5F523E6SGNF R5F523E6SGNF#20 PWQN0040KD-A R5F523E5SGFL R5F523E5SGFL#30 PLQP0048KB-B R5F523E5SGNF R5F523E5SGNF#20 PWQN0040KD-A 32 MHz –40 to +85°C 1 Unit R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 –40 to +105°C Page 7 of 100 RX23E-A Group R 5 F 1. Overview 5 2 3 E 6 A D F L Package type, number of pins, and pin pitch FL: LFQFP/48/0.50 NF: HWQFN/40/0.50 Range of ambient temperatures for guaranteed operation D: Operating ambient temperature: –40 to +85°C G: Operating ambient temperature: –40 to +105°C Target sensor A: Temperature (thermocouple or resistive temperature detector), DSAD 2 Units S: Temperature (thermocouple or resistive temperature detector), DSAD 1 Unit ROM, RAM, and E2 DataFlash capacity 6: 256 Kbytes/32 Kbytes/8 Kbytes 5: 128 Kbytes/16 Kbytes/8 Kbytes Group name 3E: RX23E Group Series name 52: RX200 Series Type of memory F: Flash memory version Renesas MCU Renesas semiconductor product Figure 1.1 How to Read the Product Part Number R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 8 of 100 RX23E-A Group 1.3 1. Overview Block Diagram Figure 1.2 shows a block diagram. RSCAN E2 DataFlash LPT IWDTa 24-bit delta-sigma A/D converter × 6 channels (unit 0) ELC CRC SCIg × 3 channels Voltage reference SCIh × 1 channel Excitation current sources Analog multiplexer Voltage detector ICUb ROM Internal peripheral buses 1 to 6 24-bit delta-sigma A/D converter × 6 channels (unit 1) RSPIb × 1 channel RIICa × 1 channel MTU2a × 6 channels POE2a TMR × 2 channels (unit 0) TMR × 2 channels (unit 1) CMT × 2 channels (unit 0) RX CPU MPU Clock generation circuit Internal main bus 2 Internal main bus 1 Operand bus RAM Instruction bus 12-bit A/D converter × 6 channels DTCa DOC CAC DMACA × 4 channels Port 1 Port 2 Port 3 Port B Port C Port H LVDAb ICUb: DTCa: DMACA: IWDTa: ELC: CRC: SCIg/SCIh: RSPIb: RIICa: LVDAb: Figure 1.2 Interrupt controller Data transfer controller DMA controller Independent watchdog timer Event link controller CRC (cyclic redundancy check) calculator Serial communications interface Serial peripheral interface I2C bus interface Voltage detection circuit MTU2a: POE2a: CMT: DOC: CAC: MPU: TMR: RSCAN: LPT: Multi-function timer pulse unit 2 Port output enable 2 Compare match timer Data operation circuit Clock frequency accuracy measurement circuit Memory protection unit 8-bit timer CAN module Low power timer Block Diagram R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 9 of 100 RX23E-A Group 1.4 1. Overview Pin Functions Table 1.4 lists the pin functions. Table 1.4 Pin Functions (1/3) Classifications Pin Name I/O Description Power supply VCC Input Power supply pin. Connect it to the system power supply. VCL — Connect this pin to the VSS pin via the 4.7 µF smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect it to the system power supply (0 V). XTAL Output EXTAL Input Pins for connecting a crystal. An external clock can be input through the EXTAL pin. CLKOUT Output Clock output pin. Operating mode control MD Input Pin for setting the operating mode. The signal levels on this pin must not be changed during operation. System control RES# Input Reset pin. This MCU enters the reset state when this signal goes low. Clock CAC CACREF Input Input pin for the clock frequency accuracy measurement circuit. On-chip emulator FINED I/O FINE interface pin. NMI Input Non-maskable interrupt request pin. IRQ0 to IRQ7 Input Interrupt request pins. Multi-function MTIOC0A, MTIOC0B, timer pulse unit 2 MTIOC0C, MTIOC0D I/O The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins. MTIOC1A, MTIOC1B I/O The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins. MTIOC2A, MTIOC2B I/O The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins. MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D I/O The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins. MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D I/O The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins. MTIC5U, MTIC5V, MTIC5W Input The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins. MTCLKA, MTCLKB, MTCLKC, MTCLKD Input Input pins for the external clock. POE0# to POE3#, POE8# Input Input pins for request signals to place the MTU pins in the high impedance state. Interrupts Port output enable 2 8-bit timer Serial communications interface (SCIg) TMO0 to TMO3 Output Compare match output pins. TMCI0 to TMCI3 Input Input pins for the external clock to be input to the counter. TMRI0 to TMRI3 Input Counter reset input pins.  Asynchronous mode/clock synchronous mode SCK1, SCK5, SCK6 I/O Input/output pins for the clock. RXD1, RXD5, RXD6 Input Input pins for received data. TXD1, TXD5, TXD6 Output Output pins for transmitted data. CTS1#, CTS5#, CTS6# Input Input pins for controlling the start of transmission and reception. RTS1#, RTS5#, RTS6# Output Output pins for controlling the start of transmission and reception. SSCL1, SSCL5, SSCL6 I/O Input/output pins for the I2C clock. SSDA1, SSDA5, SSDA6 I/O Input/output pins for the I2C data.  Simple I2 C mode R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 10 of 100 RX23E-A Group Table 1.4 1. Overview Pin Functions (2/3) Classifications Pin Name Serial communications interface (SCIg)  Simple SPI mode Serial communications interface (SCIh) I/O Description SCK1, SCK5, SCK6 I/O Input/output pins for the clock. SMISO1, SMISO5, SMISO6 I/O Input/output pins for slave transmit data. SMOSI1, SMOSI5, SMOSI6 I/O Input/output pins for master transmit data. SS1#, SS5#, SS6# Input Slave-select input pins.  Asynchronous mode/clock synchronous mode SCK12 I/O Input/output pin for the clock. RXD12 Input Input pin for receiving data. TXD12 Output Output pin for transmitting data. CTS12# Input Input pin for controlling the start of transmission and reception. RTS12# Output Output pin for controlling the start of transmission and reception. SSCL12 I/O Input/output pin for the I2C clock. SSDA12 I/O Input/output pin for the I2C data. SCK12 I/O Input/output pin for the clock. SMISO12 I/O Input/output pin for slave transmit data. SMOSI12 I/O Input/output pin for master transmit data. SS12# Input Slave-select input pin. RXDX12 Input Input pin for data reception by SCIh. TXDX12 Output Output pin for data transmission by SCIh.  Simple I2C mode  Simple SPI mode  Extended serial mode I2C bus interface Serial peripheral interface SIOX12 I/O Input/output pin for data reception or transmission by SCIh. SCL I/O Input/output pin for I2C bus interface clocks. Bus can be directly driven by the N-channel open drain output. SDA I/O Input/output pin for I2C bus interface data. Bus can be directly driven by the N-channel open drain output. RSPCKA I/O Input/output pin for the RSPI clock. MOSIA I/O Input/output pin for transmitting data from the RSPI master. MISOA I/O Input/output pin for transmitting data from the RSPI slave. SSLA0 I/O Input/output pin to select the slave for the RSPI. SSLA1 to SSLA3 Output Output pins to select the slave for the RSPI. CRXD0 Input Input pin CTXD0 Output Output pin 12-bit A/D converter AN000 to AN005 Input Analog input pins for the 12-bit A/D converter. ADTRG0# Input Input pin for the external trigger signal that start the A/D conversion. Analog front end REF0P, REF1P Input Positive input pins of the reference voltage for the 24-bit delta-sigma A/D converter. REF0N, REF1N Input Negative input pins of the reference voltage for the 24-bit delta-sigma A/D converter. REFOUT Output Internal reference voltage output pin. Connect this to AVSS0 via a capacitor (0.47 µF) for stabilizing the internal reference voltage. Place the capacitor close to the pin. IEXC0 to IEXC3 Output Excitation current source output pins. CAN module AIN0 to AIN11 I/O Analog input/output pins. LSW Output Low-side-switch output pin. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 11 of 100 RX23E-A Group Table 1.4 1. Overview Pin Functions (3/3) Classifications Pin Name I/O Description Analog power supply AVCC0 Input Analog voltage supply pin. Connect this pin to VCC when not using. I/O ports AVSS0 Input Analog ground pin. Connect this pin to VSS when not using. VREFH0 Input Analog reference voltage supply pin for the 12-bit A/D converter. VREFL0 Input Analog reference ground pin for the 12-bit A/D converter. P14 to P17 I/O 4-bit input/output pins. P26, P27 I/O 2-bit input/output pins. P30, P31, P35 to P37 I/O 5-bit input/output pins (P35 input pin). PB0, PB1 I/O 2-bit input/output pins. PC4 to PC7 I/O 4-bit input/output pins. PH0 to PH3 I/O 4-bit input/output pins. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 12 of 100 RX23E-A Group Pin Assignments Note: Figure 1.3 LS W REFOUT AV SS0 AV CC0 V SS PB 0 VCC PB 1 PC4 PC5 PC6 PC7 36 35 34 33 32 31 30 29 28 27 26 25 48-Pin LFQFP REF0N 37 24 PH0 REF0P 38 23 PH1 AIN0 39 22 PH2 AIN1 40 21 PH3 AIN2 41 20 P14 AIN3 42 19 P15 AIN4/REF1N 43 18 P16 AIN5/REF1P 44 17 P17 AIN6 45 16 P26 AIN7 46 15 P27 AIN8/VREFL0 47 14 P30 AIN9/VREFH0 48 13 P31 1 2 3 4 5 6 7 8 9 10 11 12 AVSS 0 AVCC0 RES # P 37/XTA L VS S P3 6/E XTA L VCC VCL MD P 35 RX23E-A Group PLQP0048KB-B (48-pin LFQFP) (Top view) AIN11 1.5.1 AIN10 1.5 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table “List of Pins and Pin Functions (48-Pin LFQFP)”. Pin Assignments of the 48-Pin LFQFP R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 13 of 100 RX23E-A Group 21 PC5 22 PC4 23 PB 1 24 VCC 25 PB 0 26 VS S PH0 19 PH1 AIN0 33 18 P14 17 P15 16 P16 15 P17 14 P26 13 P27 AIN8/VREFL0 39 12 P30 AIN9/VREFH0 40 11 P31 P35 10 MD 9 V CL 8 VCC 7 4 P3 7/X TAL 6 3 RES# P36/EX TAL 2 VSS 5 1 AIN7 38 AVSS0 AIN6 37 RX23E-A Group PWQN0040KC-A (40-pin HWQFN) (Top view) AVCC0 AIN5 /REF1P 36 Figure 1.4 27 AV CC0 20 REF0P 32 AIN4/REF1 N 35 Note: 28 A VSS0 REF0 N 31 AIN1 34 Note: 29 REFOUT 40-Pin HWQFN 30 LS W 1.5.2 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see the table “List of Pins and Pin Functions (40-Pin HWQFN)”. It is recommended that the exposed die pad of HWQFN should be connected to VSS. Pin Assignments of the 40-Pin HWQFN R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 14 of 100 RX23E-A Group 1.6 List of Pins and Pin Functions 1.6.1 Table 1.5 Pin No. 1. Overview 48-Pin LFQFP List of Pins and Pin Functions (48-Pin LFQFP) (1/2) Power Supply, Clock, System Control I/O Port Timers (MTU, TMR, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN) Analog (S12AD, VREF, IEXC, DSAD, AMUX) Others 1 AIN10/AN004/ IEXC0 to IEXC3 2 AIN11/AN005/ IEXC0 to IEXC3 3 AVSS0 4 AVCC0 5 RES# 6 XTAL 7 VSS 8 EXTAL 9 VCC 10 VCL 11 MD P37 P36 FINED 12 P35 13 P31 MTIOC1A/MTIOC4D/TMO3 CTS1#/RTS1#/SS1# IRQ1 NMI 14 P30 MTIOC0A/MTIOC4B/TMCI3/ POE8# RXD1/SMISO1/SSCL1 IRQ0 15 P27 MTIOC2B/MTIOC4A/TMRI3 SCK1 IRQ3 16 P26 MTIOC2A/MTIOC4C/TMO0 TXD1/SMOSI1/SSDA1 IRQ2 17 P17 MTIOC3A/MTIOC3B/TMO1/ POE8# SCK1/MISOA/SDA IRQ7 18 P16 MTIOC3C/MTIOC3D/TMO2 TXD1/SMOSI1/SSDA1/MOSIA/ SCL IRQ6/ADTRG0# 19 P15 MTIOC0B/MTCLKB/TMCI2 RXD1/SMISO1/SSCL1/SSLA1/ CRXD0 IRQ5 20 P14 MTIOC3A/MTCLKA/TMRI2 CTS1#/RTS1#/SS1#/SSLA3/ CTXD0 IRQ4 21 PH3 MTIC5W/MTCLKB/TMCI0/POE2# CTS6#/RTS6#/SS6#/RSPCKA 22 PH2 MTIC5V/MTCLKA/TMRI0 SCK5/MOSIA IRQ1 23 PH1 MTIC5U/MTCLKD/TMO0/POE2# TXD5/SMOSI5/SSDA5/SSLA0 IRQ0/CLKOUT 24 PH0 MTIOC0D/MTCLKC/TMRI0/ CACREF RXD5/SMISO5/SSCL5/SSLA2 25 PC7 MTIOC3A/MTCLKB/TMO2/ CACREF TXD6/SMOSI6/SSDA6/MISOA 26 PC6 MTIOC3C/MTCLKA/TMCI2 RXD6/SMISO6/SSCL6/MOSIA 27 PC5 MTIOC3B/MTCLKD/TMRI2 SCK5/SCK6/SCK12/RSPCKA 28 PC4 MTIOC3D/MTCLKC/TMCI1/ POE0# CTS5#/RTS5#/SS5#/CTS12#/ RTS12#/SS12#/SSLA0 29 PB1 MTIOC1B/MTIOC2A/TMRI1/ POE1# TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12 PB0 MTIOC0C/TMCI0/POE3# RXD12/RXDX12/SMISO12/ SSCL12 30 VCC 31 32 VSS 33 AVCC0 34 AVSS0 IRQ4 35 REFOUT 36 LSW 37 REF0N 38 REF0P 39 AIN0/IEXC0 to IEXC3 40 AIN1/IEXC0 to IEXC3 41 AIN2/IEXC0 to IEXC3 R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 15 of 100 RX23E-A Group Table 1.5 Pin No. 1. Overview List of Pins and Pin Functions (48-Pin LFQFP) (2/2) Power Supply, Clock, System Control I/O Port Timers (MTU, TMR, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN) Analog (S12AD, VREF, IEXC, DSAD, AMUX) Others 42 AIN3/IEXC0 to IEXC3 43 AIN4/IEXC0 to IEXC3/REF1N 44 AIN5/IEXC0 to IEXC3/REF1P 45 AIN6/AN000/ IEXC0 to IEXC3 46 AIN7/AN001/ IEXC0 to IEXC3 47 VREFL0 AIN8/AN002/ IEXC0 to IEXC3 48 VREFH0 AIN9/AN003/ IEXC0 to IEXC3 R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 16 of 100 RX23E-A Group 1.6.2 Table 1.6 40-Pin HWQFN List of Pins and Pin Functions (40-Pin HWQFN) Pin No. Power Supply, Clock, System Control 1 AVSS0 2 AVCC0 3 RES# 4 XTAL 5 VSS 6 EXTAL 7 VCC 8 VCL 9 MD 10 1. Overview I/O Port Timers (MTU, TMR, CMT, POE, CAC) Communications (SCIg, SCIh, RSPI, RIIC, CAN) Analog (S12AD, VREF, IEXC, DSAD, AMUX) Others P37 P36 FINED P35 NMI 11 P31 MTIOC1A/MTIOC4D/TMO3 CTS1#/RTS1#/SS1# IRQ1 12 P30 MTIOC0A/MTIOC4B/TMCI3/ POE8# RXD1/SMISO1/SSCL1 IRQ0 13 P27 MTIOC2B/MTIOC4A/TMRI3 SCK1 IRQ3 14 P26 MTIOC2A/MTIOC4C/TMO0 TXD1/SMOSI1/SSDA1 IRQ2 15 P17 MTIOC3A/MTIOC3B/TMO1/ POE8# SCK1/MISOA/SDA IRQ7 16 P16 MTIOC3C/MTIOC3D/TMO2 TXD1/SMOSI1/SSDA1/MOSIA/ SCL IRQ6/ADTRG0# 17 P15 MTIOC0B/MTCLKB/TMCI2 RXD1/SMISO1/SSCL1/SSLA1/ CRXD0 IRQ5 18 P14 MTIOC3A/MTCLKA/TMRI2 CTS1#/RTS1#/SS1#/SSLA3/ CTXD0 IRQ4 IRQ0/CLKOUT 19 PH1 MTCLKD/TMO0/POE2# TXD5/SMOSI5/SSDA5/SSLA0 20 PH0 MTIOC0D/MTCLKC/TMRI0/ CACREF RXD5/SMISO5/SSCL5/SSLA2 21 PC5 MTIOC3B/MTCLKD/TMRI2 SCK5/SCK12/RSPCKA 22 PC4 MTIOC3D/MTCLKC/TMCI1/ POE0# CTS5#/RTS5#/SS5#/CTS12#/ RTS12#/SS12#/SSLA0 23 PB1 MTIOC1B/MTIOC2A/TMRI1/ POE1# TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12 PB0 MTIOC0C/TMCI0/POE3# RXD12/RXDX12/SMISO12/ SSCL12 24 VCC 25 26 VSS 27 AVCC0 28 AVSS0 IRQ4 29 REFOUT 30 LSW 31 REF0N 32 REF0P 33 AIN0/IEXC0 to IEXC3 34 AIN1/IEXC0 to IEXC3 35 AIN4/IEXC0 to IEXC3/REF1N 36 AIN5/IEXC0 to IEXC3/REF1P 37 AIN6/AN000/ IEXC0 to IEXC3 38 AIN7/AN001/ IEXC0 to IEXC3 39 VREFL0 AIN8/AN002/ IEXC0 to IEXC3 40 VREFH0 AIN9/AN003/ IEXC0 to IEXC3 R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 17 of 100 RX23E-A Group 2. Electrical Characteristics 2. Electrical Characteristics 2.1 Absolute Maximum Ratings Table 2.1 Absolute Maximum Ratings Conditions: VSS = AVSS0 = VREFL0 = 0 V Item Power supply voltage Input voltage P16 and P17 (5-V tolerant) Symbol Value Unit VCC –0.3 to +6.5 V –0.3 to +6.5 V Vin Ports other than above Reference power supply voltage VREFH0 Analog power supply voltage Analog input voltage Reference voltage for 24-bit delta-sigma A/D converter Junction temperature –0.3 to VCC + 0.3 D version –0.3 to AVCC0 + 0.3 V AVCC0 –0.3 to +6.5 V VAN –0.3 to AVCC0 + 0.3 V REF0P, REF1P –0.3 to AVCC0 + 0.3 V REF0N, REF1N –0.3 to AVCC0 + 0.3 Tj –40 to +105 G version Storage temperature °C –40 to +112 Tstg –55 to +125 °C Caution: Exceeding absolute maximum ratings may permanently damage the MCU. To preclude malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, and between the VREFH0 and VREFL0 pins. Place capacitors with values of about 0.1 µF as close as possible to every power supply pin and use the shortest and widest possible traces. Connect the VCL pin to a VSS pin via a 4.7-µF capacitor. The capacitor must be placed close to the pin. For details, refer to section 2.12.1, Connecting VCL Capacitor and Bypass Capacitors. Do not input signals to ports other than 5-V tolerant ports while power is not being supplied to the MCU. The current injection that results from the input of such a signal may lead to malfunctions and the abnormal current that passes through the MCU at such times may cause degradation of internal elements. However, even if –0.3 to +6.5 V is input to a 5-V tolerant port, this will not cause problems such as damage to the MCU. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 18 of 100 RX23E-A Group 2.2 Table 2.2 2. Electrical Characteristics Recommended Operating Conditions Recommended Operating Conditions (1) Item Power supply voltages Analog power supply voltages Operating temperature D version Symbol Min. Typ. Max. Unit VCC*1, *2 1.8 — 5.5 V VSS — 0 — AVCC0*1, *2 1.8 — 5.5 AVSS0 — 0 — VREFH0 1.8 — AVCC0 VREFL0 — 0 — Topr –40 — 85 –40 — 105 G version V °C Note 1. Use AVCC0 and VCC under the following conditions: While VCC > 2.4 V: AVCC0 and VCC can be set independently when AVCC0 ≥ 2.4 V While VCC ≤ 2.4 V: AVCC0 and VCC can be set independently when AVCC0 ≥ VCC Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin. Table 2.3 Recommended Operating Conditions (2) Item VCL pin external capacitance Symbol Value CVCL 4.7 µF ± 30%*1 Note 1. Use a multilayer ceramic capacitor whose nominal capacitance is 4.7 µF and a capacitance tolerance is ±30% or better. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 19 of 100 RX23E-A Group 2.3 2. Electrical Characteristics DC Characteristics Table 2.4 DC Characteristics (1) Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Schmitt trigger input voltage Symbol Min. Typ. Max. Unit VIH 0.7 × VCC — 5.8 V P16 and P17 (5-V tolerant) 0.8 × VCC — 5.8 P14, P15, P26, P27, P30, P31, P35 to P37, PB0, PB1, PC4 to PC7, PH0 to PH3, and RES# 0.8 × VCC — VCC + 0.3 VIL –0.3 — 0.3 × VCC –0.3 — 0.2 × VCC ΔVT 0.05 × VCC — — RIIC input pin (except for SMBus, 5-V tolerant) RIIC input pin (except for SMBus) Other than RIIC input pin Hysteresis of Schmitt trigger input RIIC input pin (except for SMBus) P16 and P17 0.05 × VCC — — Other than RIIC input pin 0.1 × VCC — — 0.9 × VCC — VCC + 0.3 High-level input voltage (except for Schmitt trigger input pins) MD Low-level input voltage (except for Schmitt trigger input pins) MD Table 2.5 VIH EXTAL (external clock input) RIIC input pin (SMBus) VIL 0.8 × VCC — VCC + 0.3 2.1 — VCC + 0.3 –0.3 — 0.1 × VCC EXTAL (external clock input) –0.3 — 0.2 × VCC RIIC input pin (SMBus) –0.3 — 0.8 Test Conditions V DC Characteristics (2) Conditions: 1.8 V ≤ VCC < 2.7 V, 1.8 V ≤ AVCC0 < 2.7 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Schmitt trigger input voltage P16 and P17 (5-V tolerant) Symbol Min. Typ. Max. Unit VIH 0.8 × VCC — 5.8 V 0.8 × VCC — VCC + 0.3 P14, P15, P26, P27, P30, P31, P35 to P37, PB0, PB1, PC4 to PC7, PH0 to PH3, and RES# P14 to P17, P26, P27, P30, P31, P35 to P37, PB0, PB1, PC4 to PC7, PH0 to PH3, and RES# VIL –0.3 — 0.2 × VCC Hysteresis of Schmitt trigger input P14 to P17, P26, P27, P30, P31, P35 to P37, PB0, PB1, PC4 to PC7, PH0 to PH3, and RES# ΔVT 0.01 × VCC — — High-level input voltage (except for Schmitt trigger input pins) MD VIH 0.9 × VCC — VCC + 0.3 0.8 × VCC — VCC + 0.3 –0.3 — 0.1 × VCC –0.3 — 0.2 × VCC Low-level input voltage (except for Schmitt trigger input pins) EXTAL (external clock input) MD EXTAL (external clock input) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 VIL Test Conditions V Page 20 of 100 RX23E-A Group Table 2.6 2. Electrical Characteristics DC Characteristics (3) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Input leakage current RES#, MD, and P35 Three-state leakage current (off-state) P16 and P17 Input capacitance P14 to P17, P26, P27, P30, P31, P36, P37, PB0, PB1, PC4 to PC7, PH0 to PH3, MD, and RES# Symbol Min. Typ. Max. Unit |Iin| — — 1.0 µA Vin = 0 V, VCC |ITSI| — — 1.0 µA Vin = 0 V, 5.8V — — 0.2 Cin — — 15 pF Vin = 20 mV, f = 1 MHz, Ta = 25°C — — 30 — 2.12 — V Ports other than P16 and P17 P35 Output voltage of the VCL pin Table 2.7 VCL Test Conditions Vin = 0 V, VCC DC Characteristics (4) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Input pull-up resistor Table 2.8 All ports (except for P35) Symbol Min. Typ. Max. Unit RU 10 20 50 kΩ Test Conditions Vin = 0 V DC Characteristics (5) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Supply current *1 High-speed operating mode Normal operating mode No peripheral modules are operating.*2 All peripheral modules are in normal operation. ICLK = 32 MHz Unit ICC 4.1 — mA 2.9 — ICLK = 8 MHz 2.2 — ICLK = 4 MHz 1.9 — MHz*3 16.3 — ICLK = 16 MHz*3 9.1 — ICLK = 8 MHz*3 5.5 — MHz*3 ICLK = 32 3.7 — ICLK = 32 MHz*3 — 30.3 No peripheral modules are operating.*2 ICLK = 32 MHz 2.4 — ICLK = 16 MHz 1.9 — ICLK = 8 MHz 1.6 — ICLK = 4 MHz 1.5 — ICLK = 32 MHz*3 8.9 — MHz*3 No peripheral modules are operating.*2 All peripheral modules are in normal operation. 5.4 — ICLK = 8 MHz*3 3.5 — ICLK = 4 MHz*3 2.5 — ICLK = 32 MHz 1.5 — ICLK = 16 MHz 1.3 — ICLK = 8 MHz 1.2 — ICLK = 4 MHz 1.2 — ICLK = 32 MHz*3 7.2 — ICLK = 16 MHz*3 ICLK = 16 4.4 — MHz*3 2.8 — ICLK = 4 MHz*3 2.1 — 2.5 — ICLK = 8 Increase during BGO R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Max. All peripheral modules are in full operation. All peripheral modules are in normal operation. Deep sleep mode Typ. *4 ICLK = 16 MHz ICLK = 4 Sleep mode Symbol operation*5 Test Conditions Page 21 of 100 RX23E-A Group 2. Electrical Characteristics Symbol Typ. *4 Max. Unit ICC 2.1 — mA ICLK = 8 MHz 1.7 — ICLK = 4 MHz 1.4 — ICLK = 1 MHz 1.1 — Item Supply current *1 Middle-speed operating mode Normal operating mode No peripheral modules are operating.*6 All peripheral modules are in normal operation.*7 Sleep mode ICLK = 12 MHz 6.8 — ICLK = 8 MHz 5.0 — ICLK = 4 MHz 3.1 — ICLK = 1 MHz 1.6 — All peripheral modules are in full operation.*7 ICLK = 12 MHz — 13.5 No peripheral modules are operating.*6 ICLK = 12 MHz 1.4 — ICLK = 8 MHz 1.2 — ICLK = 4 MHz 1.1 — ICLK = 1 MHz 1.0 — ICLK = 12 MHz 4.0 — ICLK = 8 MHz 3.0 — ICLK = 4 MHz 2.1 — ICLK = 1 MHz 1.3 — All peripheral modules are in normal operation.*7 Deep sleep mode ICLK = 12 MHz No peripheral modules are operating.*6 All peripheral modules are in normal operation.*7 Increase during BGO operation*5 ICLK = 12 MHz 1.0 — ICLK = 8 MHz 0.9 — ICLK = 4 MHz 0.9 — ICLK = 1 MHz 0.8 — ICLK = 12 MHz 3.3 — ICLK = 8 MHz 2.6 — ICLK = 4 MHz 1.8 — ICLK = 1 MHz 1.2 — 2.5 — Test Conditions Note 1. Supply current values do not include the output charge/discharge current from all pins. The values apply when internal pull-up resistors are disabled. Note 2. Peripheral module clocks are stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64. Note 3. Peripheral module clocks are supplied. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are the same frequency as that of ICLK. Note 4. Conditions for typical values are at VCC = 3.3 V and Ta = 25°C. Note 5. The increase is caused by program/erase operation to the ROM or E2 DataFlash during the execution of a user program. Note 6. Peripheral module clocks are stopped. The clock source is PLL when ICLK is 12 MHz and HOCO for other cases. FCLK and PCLK are set to divided by 64. Note 7. Peripheral module clocks are supplied. The clock source is PLL when ICLK is 12 MHz and HOCO for other cases. FCLK and PCLK are the same frequency of that of the ICLK. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 22 of 100 RX23E-A Group 2. Electrical Characteristics 40 ICC [mA] 30 Ta = 105°C, ICLK = 32 MHz 20 Ta = 25°C, ICLK = 32 MHz Ta = 105°C, ICLK = 16 MHz Ta Ta Ta Ta Ta 10 = 105°C, ICLK = 8 MHz = 25°C, ICLK = 16 MHz = 105°C, ICLK = 4 MHz = 25°C, ICLK = 8 MHz = 25°C, ICLK = 4 MHz 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VCC [V] Ta = 25 °C, ICLK = 32 MHz* 1 Ta = 25 °C, ICLK = 16 MHz * 1 Ta = 10 5°C, ICLK = 32 MHz *2 2 Ta = 10 5°C, ICLK = 16 MHz * Ta = 25 °C, ICLK = 8 MHz * 1 Ta = 10 5°C, ICLK = 8 MHz * 2 Ta = 25 °C, ICLK = 4 MHz * 1 Ta = 10 5°C, ICLK = 4 MHz * 2 Note 1. This result applies when all peripheral modules are in normal operation but BGO is not in use. Indicates the average of the typical samples through actual measurement during product evaluation. Note 2. This result applies when all peripheral modules are in full operation but BGO is not in use. Indicates the average of the upper-limit samples through actual measurement during product evaluation. Figure 2.1 Voltage Dependence in High-Speed Operating Mode (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 23 of 100 RX23E-A Group 2. Electrical Characteristics ICC [mA] 20 Ta = 105°C, ICLK = 12 MHz 10 Ta = 105°C, ICLK = 8 MHz Ta = 25°C, ICLK = 12 MHz Ta = 105°C, ICLK = 4 MHz Ta = 25°C, ICLK = 8 MHz Ta = 25°C, ICLK = 4 MHz Ta = 105°C, ICLK = 1 MHz Ta = 25°C, ICLK = 1 MHz 0 1.5 2.0 2.5 3.0 3.5 4.0 VCC [V] Ta = 25°C, ICLK = 12 MHz * 1 1 4.5 5.0 5.5 6.0 Ta = 105°C, ICLK = 12 MHz * 2 Ta = 25°C, ICLK = 8 MHz * Ta = 105°C, ICLK = 8 MHz * Ta = 25°C, ICLK = 4 MHz *1 Ta = 105°C, ICLK = 4 MHz * 2 1 Ta = 25°C, ICLK = 1 MHz * Ta = 105°C, ICLK = 1 MHz * 2 2 Note 1. This result applies when all peripheral modules are in normal operation but BGO is not in use. Indicates the average of the typical samples through actual measurement during product evaluation. Note 2. This result applies when all peripheral modules are in full operation but BGO is not in use. Indicates the average of the upper-limit samples through actual measurement during product evaluation. Figure 2.2 Voltage Dependence in Middle-Speed Operating Mode (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 24 of 100 RX23E-A Group Table 2.9 2. Electrical Characteristics DC Characteristics (6) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Symbol Typ.*3 Max. Unit ICC 0.4 2.6 µA Ta = 55°C 0.8 3.0 Ta = 85°C 2.5 12.6 Ta = 105°C 6.3 31.2 Increment for IWDT operation 0.4 — Increment for LPT operation 0.4 — Item Supply current*1 Software standby mode*2 Ta = 25°C Test Conditions Use IWDT-Dedicated On-Chip Oscillator for clock source Note 1. Supply current values were obtained with no load on any output pin and all internal pull-up resistors disabled. Note 2. The IWDT and LVD are stopped. Note 3. Conditions for typical values are at VCC = 3.3 V. 100 2 Ta = 105°C * 10 2 ICC [µA] Ta = 85°C * 1 Ta = 105°C * 1 Ta = 85°C * 2 Ta = 55°C * 1 1 Ta = 55°C * 2 Ta = 25°C * 1 Ta = 25°C * 0.1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VCC [V] Ta = 25°C *1 2 Ta = 25°C * Ta = 55°C *1 2 Ta = 55°C * Ta = 85°C *1 2 Ta = 85°C * Ta = 105°C *1 2 Ta = 105°C * Note 1. Indicates the average of the typical samples through actual measurement during product evaluation. Note 2. Indicates the average of the upper-limit samples through actual measurement during product evaluation. Figure 2.3 Voltage Dependence in Software Standby Mode (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 25 of 100 RX23E-A Group 2. Electrical Characteristics 100 ICC [µA] 10 1 0.1 –40 –20 0 20 40 60 80 100 Ta [°C] Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.4 Table 2.10 Temperature Dependence in Software Standby Mode (Reference Data) DC Characteristics (7) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ.*1 Max. Unit lLVD — 0.10 — µA LVD1 — 0.10 — LVD2 — 0.20 — Item LVD LVD0 Test Conditions Note 1. Conditions for typical values are at VCC = AVCC0 = 3.3 V and Ta = 25°C. Table 2.11 DC Characteristics (8) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item RAM standby voltage Table 2.12 Symbol Min. Typ. Max. Unit VRAM 1.8 — — V Test Conditions DC Characteristics (9) Conditions: 0 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item VCC ramp-up rate at power-on Note 1. Note 2. Note 3. Note 4. Symbol Min. Typ. Max. Unit SrVCC 0.02 — 20.00 ms/V During fast startup time*2 0.02 — 2.00 Voltage monitoring 0 reset enabled at startup*3, *4 0.02 — — At normal startup*1 Test Conditions When the OFS1.LVDAS and OFS1.FASTSTUP bits are 1 When the OFS1.LVDAS bit is 1 and the OFS1.FASTSTUP bit is 0 When the OFS1.LVDAS bit is 0 Turn on the power supply voltage according to the normal startup rising gradient because the settings in the OFS1 register are not read in boot mode. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 26 of 100 RX23E-A Group Table 2.13 2. Electrical Characteristics DC Characteristics (10) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C The result of any ripple must be within the limit on allowable ripple frequency fr (VCC) where the ripple voltage is within the range between the VCC upper limit and lower limit. The result of any ripple must be within the limit on the allowable VCC ramp rate in power fluctuation (dt/dVCC) where the change in VCC exceeds VCC ±10%. Item Allowable ripple frequency Allowable VCC ramp rate at power fluctuation Symbol Min. Typ. Max. Unit fr (VCC) — — 10 kHz Figure 2.5 Vr (VCC) ≤ 0.2 × VCC — — 1 MHz Figure 2.5 Vr (VCC) ≤ 0.08 × VCC — — 10 MHz Figure 2.5 Vr (VCC) ≤ 0.06 × VCC 1.0 — — ms/V When VCC change exceeds VCC ±10% dt/dVCC Test Conditions 1 / fr (VCC) VCC Figure 2.5 Vr (VCC) Ripple Waveform R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 27 of 100 RX23E-A Group Table 2.14 2. Electrical Characteristics DC Characteristics (11) Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Operating current of 24-bit delta-sigma A/D converter (normal mode) Operating current of 24-bit delta-sigma A/D converter (low power mode) Symbol Min. Typ. Max. Unit IAVCC0 — 500*1 660 µA Gain = 1 to 16 (PGA enabled) OPCR.DSADLVM bit = 0 — 840*1 1130 Gain = 32 to 128 OPCR.DSADLVM bit = 0 — 1050*1 1360 Gain = 1 (PGA disabled, BUF disabled) OPCR.DSADLVM bit = 1 — 490*2 850 Gain = 1 to 16 (PGA enabled) OPCR.DSADLVM bit = 1 — 820*2 1320 Gain = 32 to 128 OPCR.DSADLVM bit = 1 — 1040*2 1560 Gain = 1 (PGA disabled, BUF disabled) OPCR.DSADLVM bit = 0 — 250*1 280 Gain = 1 to 16 (PGA enabled) OPCR.DSADLVM bit = 0 — 390*1 480 Gain = 32 to 128 OPCR.DSADLVM bit = 0 — 430*1 520 Gain = 1 (PGA disabled, BUF disabled) OPCR.DSADLVM bit = 1 — 240*2 350 Gain = 1 to 16 (PGA enabled) OPCR.DSADLVM bit = 1 — 380*2 550 Gain = 32 to 128 OPCR.DSADLVM bit = 1 — 420*2 590 — 45 75 µA Figure 2.18 — 15 40 µA Figure 2.19 — 15 25 µA Figure 2.20 — 55 70 µA Figure 2.21 µA Gain = 1 (PGA disabled, BUF disabled) OPCR.DSADLVM bit = 0 Operating current of voltage reference (DSAD) IAVCC0 Test Conditions Figure 2.6, Figure 2.7 1 unit, external reference in use, reference buffer disabled, AVCC0 = 3.6 to 5.5 V Figure 2.8, Figure 2.9 1 unit, external reference in use, reference buffer disabled, AVCC0 = 2.7 to 5.5 V µA Figure 2.10, Figure 2.11 1 unit, external reference in use, reference buffer disabled, AVCC0 = 3.6 to 5.5 V Figure 2.12, Figure 2.13 1 unit, external reference in use, reference buffer disabled, AVCC0 = 2.7 to 5.5 V (VREF) Operating current of temperature sensor IAVCC0 (TEMPS) Operating current of bias voltage generator IAVCC0 (VBIAS) Operating current of excitation current source IAVCC0 (IEXC) Operating current of analog input buffer Normal mode Operating current of reference buffer Normal mode Operating current of voltage detector Low voltage detector for power supply (LVDET) Excitation current source disconnect detector (IEXCDET) DSAD input voltage fault detector (DSIDET) DSAD reference voltage fault detector (DSRDET) Low power mode Low power mode IAVCC0 — 85 130 (BUF) — 25 40 IAVCC0 — 85 130 (REFBUF) — 25 40 IAVCC0 — 5 9 — 1 2 — 5 7 — 10 15 IAVCC0 IAVCC0 IAVCC0 Figure 2.14, 1 unit Figure 2.15, 1 unit µA Figure 2.16, 1 unit Figure 2.17, 1 unit µA 1 unit Note 1. Conditions for this value is at AVCC0 = 5.0 V and Ta = 25°C. Note 2. Conditions for this value is at AVCC0 = 3.3 V and Ta = 25°C. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 28 of 100 2. Electrical Characteristics 1400 1400 1200 1200 1000 800 600 400 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 200 0 –50 –25 0 25 50 75 100 AVCC0 current [µA] AVCC0 current [µA] RX23E-A Group 1000 800 600 400 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 200 0 3.0 125 3.5 Temperature [°C] Figure 2.7 1400 1400 1200 1200 1000 800 600 400 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 200 0 –50 600 400 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 200 0 –25 0 25 50 75 100 125 2.5 3.0 Figure 2.9 500 500 400 300 200 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 100 3.5 4.0 4.5 5.0 5.5 6.0 AVCC0 [V] Temperature Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (AVCC0 = 5.0 V, Normal Mode, OPCR.DSADLVM bit = 1) AVCC0 current [µA] AVCC0 current [µA] 6.0 800 600 Power-Supply Voltage Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (Ta = 25°C, Normal Mode, OPCR.DSADLVM bit = 1) 400 300 200 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 100 0 –25 0 25 50 75 100 125 3.0 Temperature Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (AVCC0 = 5.0 V, Low Power Mode, OPCR.DSADLVM bit = 0) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 3.5 4.0 4.5 5.0 5.5 6.0 AVCC0 [V] Temperature [°C] Figure 2.10 5.5 1000 600 0 –50 5.0 Power-Supply Voltage Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (Ta = 25°C, Normal Mode, OPCR.DSADLVM bit = 0) Temperature [°C] Figure 2.8 4.5 AVCC0 [V] Temperature Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (AVCC0 = 5.0 V, Normal Mode, OPCR.DSADLVM bit = 0) AVCC0 current [µA] AVCC0 current [µA] Figure 2.6 4.0 Figure 2.11 Power-Supply Voltage Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (Ta = 25°C, Low Power Mode, OPCR.DSADLVM bit = 0) Page 29 of 100 2. Electrical Characteristics 600 600 500 500 400 300 200 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 100 0 –50 AVCC0 current [µA] AVCC0 current [µA] RX23E-A Group 400 300 200 Gain = 1 (PGA disabled, BUF disabled) Gain = 16 Gain = 128 100 0 –25 0 25 50 75 100 125 2.5 3.0 3.5 Temperature Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (AVCC0 = 5.0 V, Low Power Mode, OPCR.DSADLVM bit = 1) Figure 2.13 100 70 AVCC0 = 3.3 V AVCC0 = 5.0 V 60 AVCC0 current [µA] 80 50 –50 –25 AVCC0 = 3.3 V AVCC0 = 5.0 V 0 25 50 75 AVCC0 = 5.5 V 10 –50 –25 100 125 150 0 25 50 75 100 125 150 Temperature [°C] Temperature Dependence of Operating Current of Analog Input Buffer (Normal Mode) Figure 2.15 Temperature Dependence of Operating Current of Analog Input Buffer (Low Power Mode) 30 90 80 70 AVCC0 = 3.3 V 60 50 –50 –25 0 25 50 AVCC0 current [µA] 100 AVCC0 current [µA] 6.0 20 Temperature [°C] 20 AVCC0 = 3.3 V AVCC0 = 5.0 V AVCC0 = 5.0 V AVCC0 = 5.5 V AVCC0 = 5.5 V 75 100 125 150 10 –50 –25 Temperature [°C] Figure 2.16 5.5 Power-Supply Voltage Dependence of Operating Current of 24-Bit Delta-Sigma A/D Converter (Ta = 25°C, Low Power Mode, OPCR.DSADLVM bit = 1) AVCC0 = 5.5 V Figure 2.14 5.0 30 90 AVCC0 current [µA] 4.5 AVCC0 [V] Temperature [°C] Figure 2.12 4.0 Temperature Dependence of Operating Current of Reference Buffer (Normal Mode) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 0 25 50 75 100 125 150 Temperature [°C] Figure 2.17 Temperature Dependence of Operating Current of Reference Buffer (Low Power Mode) Page 30 of 100 RX23E-A Group 2. Electrical Characteristics 20 AVCC0 current [µA] AVCC0 current [µA] 60 50 40 AVCC0 = 2.7 V AVCC0 = 3.3 V 30 10 AVCC0 = 2.7 V AVCC0 = 3.3 V AVCC0 = 5.0 V AVCC0 = 5.0 V AVCC0 = 5.5 V AVCC0 = 5.5 V 20 –50 –25 0 25 50 75 100 125 0 –50 –25 150 0 Temperature [°C] Figure 2.18 50 75 Figure 2.19 AVCC0 current [µA] AVCC0 = 2.7 V 10 Temperature Dependence of Operating Current of Temperature Sensor AVCC0 = 3.3 V 60 AVCC0 = 2.7 V 50 AVCC0 = 3.3 V AVCC0 = 5.0 V AVCC0 = 5.0 V AVCC0 = 5.5 V –25 0 25 50 75 100 125 AVCC0 = 5.5 V 150 40 –50 –25 Temperature [°C] Figure 2.20 125 150 70 20 0 –50 100 Temperature [°C] Temperature Dependence of Operating Current of Voltage Reference 30 AVCC0 current [µA] 25 Temperature Dependence of Operating Current of Bias Voltage Generator R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 0 25 50 75 100 125 150 Temperature [°C] Figure 2.21 Temperature Dependence of Operating Current of Excitation Current Source Page 31 of 100 RX23E-A Group Table 2.15 2. Electrical Characteristics DC Characteristics (12) Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 1.8 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C 12-bit A/D converter operating current Item Symbol Min. Typ.*1 Max. Unit During A/D conversion (in high-speed conversion) IAVCC0 — 1.1 1.8 mA — 0.6 1.1 — 71 122 µA — — 60 nA — — 2.2 µA (S12AD) During A/D conversion (in low-current mode) Reference power supply current Test Conditions During A/D conversion (in high-speed conversion) IREFH0 Current while waiting for A/D conversion (all units) AVCC0 power down current ISTBY Note 1. Conditions for typical values are at AVCC0 = 5.0 V and Ta = 25°C. Table 2.16 Permissible Output Currents (1) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +85°C Item Permissible low-level output current (average value per pin) P36 and P37 Ports other than above Symbol Max. Unit IOL 4.0 mA Normal drive output mode 4.0 High-drive output mode Permissible low-level output current (maximum value per pin) P36 and P37 Permissible low-level output current Total of P14 to P17, P26, P27, P30, P31, P36, and P37 Ports other than above 8.0 4.0 Normal drive output mode 4.0 High-drive output mode 8.0 ΣIOL Total of PB0, PB1, PC4 to PC7, and PH0 to PH3 40 Total of all output pins Permissible high-level output current (average value per pin) 80 P36 and P37 Ports other than above IOH Normal drive output mode P36 and P37 Permissible high-level output current Total of P14 to P17, P26, P27, P30, P31, P36, and P37 –8.0 –4.0 Normal drive output mode –4.0 High-drive output mode R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 –4.0 –4.0 High-drive output mode Permissible high-level output current (maximum value per pin) Ports other than above 40 –8.0 ΣIOH –40 Total of PB0, PB1, PC4 to PC7, and PH0 to PH3 –40 Total of all output pins –80 Page 32 of 100 RX23E-A Group Table 2.17 2. Electrical Characteristics Permissible Output Currents (2) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Permissible low-level output current (average value per pin) Symbol Max. Unit IOL 4.0 mA P36 and P37 Ports other than above Normal drive output mode 4.0 High-drive output mode Permissible low-level output current (maximum value per pin) P36 and P37 Permissible low-level output current Total of P14 to P17, P26, P27, P30, P31, P36, and P37 Ports other than above 8.0 4.0 Normal drive output mode 4.0 High-drive output mode Permissible high-level output current (average value per pin) 30 Total of all output pins 60 Ports other than above Permissible high-level output current 30 Total of PB0, PB1, PC4 to PC7, and PH0 to PH3 P36 and P37 Permissible high-level output current (maximum value per pin) Table 2.18 8.0 ΣIOL –4.0 IOH Normal drive output mode –4.0 High-drive output mode –8.0 P36 and P37 Ports other than above –4.0 Normal drive output mode –4.0 High-drive output mode –8.0 ΣIOH Total of P14 to P17, P26, P27, P30, P31, P36, and P37 –30 Total of PB0, PB1, PC4 to PC7, and PH0 to PH3 –30 Total of all output pins –60 Output Voltage (1) Conditions: 1.8 V ≤ VCC = AVCC0 < 2.7 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Low-level output voltage All output ports Normal drive output mode High-level output voltage All output ports Normal drive output mode Table 2.19 Symbol Min. Max. Unit VOL — 0.3 V IOL = 0.5 mA — 0.3 VOH VCC – 0.3 — V IOH = –0.5 mA VCC – 0.3 — High-drive output mode High-drive output mode Test Conditions IOL = 1.0 mA IOH = –1.0 mA Output Voltage (2) Conditions: 2.7 V ≤ VCC = AVCC0 < 4.0 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Low-level output voltage Symbol Min. Max. Unit VOL — 0.5 V High-drive output mode — 0.5 IOL = 2.0 mA RIIC pins Normal drive output mode — 0.4 IOL = 3.0 mA All output ports Normal drive output mode All output ports (except for RIIC pins) Normal drive output mode High-drive output mode High-level output voltage R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 High-drive output mode VOH — 0.6 VCC – 0.5 — VCC – 0.5 — Test Conditions IOL = 1.0 mA IOL = 6.0 mA V IOH = –1.0 mA IOH = –2.0 mA Page 33 of 100 RX23E-A Group Table 2.20 2. Electrical Characteristics Output Voltage (3) Conditions: 4.0 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Low-level output voltage Symbol Min. Max. Unit VOL — 0.8 V High-drive output mode — 0.8 IOL = 4.0 mA RIIC pins Normal drive output mode — 0.4 IOL = 3.0 mA All output ports Normal drive output mode All output ports (except for RIIC pins) Normal drive output mode High-drive output mode High-level output voltage Table 2.21 High-drive output mode VOH — 0.6 VCC – 0.8 — VCC – 0.8 — IOL = 6.0 mA V IOH = –2.0 mA IOH = –4.0 mA Thermal Resistance Value (Reference) Item Thermal resistance Package 48-pin LFQFP (PLQP0048KB-B) Symbol Max. Unit ja 50.7 °C/W JESD51-2 and JESD51-7 compliant °C/W JESD51-2 and JESD51-7 compliant 40-pin HWQFN (PWQN0040KC-A) 48-pin LFQFP (PLQP0048KB-B) 40-pin HWQFN (PWQN0040KC-A) Note: Test Conditions IOL = 2.0 mA 18.8 jt 1.07 0.07 Test Conditions The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 34 of 100 RX23E-A Group 2.3.1 2. Electrical Characteristics Typical I/O Pin Output Characteristics (1) Figure 2.22 to Figure 2.26 show the characteristics when normal drive output is selected by the drive capacity control register. IOH/IOL vs VOH/VOL 50 VCC = 5.5V 40 30 VCC = 3.3V 20 VCC = 2.7V IOH/IOL [mA] 10 VCC = 1.8V 0 VCC = 1.8V –10 VCC = 2.7V –20 VCC = 3.3V –30 –40 –50 VCC = 5.5V –60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.22 VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C When Normal Drive Output is Selected (Reference Data) IOH/IOL vs VOH/VOL 8 6 Ta = –40°C Ta = 25°C IOH/IOL [mA] 4 Ta = 105°C 2 0 –2 Ta = 105°C –4 Ta = 25°C Ta = –40°C –6 –8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VOH/VOL [V] Figure 2.23 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 1.8 V When Normal Drive Output is Selected (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 35 of 100 RX23E-A Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 20 15 Ta = –40°C Ta = 25°C IOH/IOL [mA] 10 Ta = 105°C 5 0 –5 –10 Ta = 105°C Ta = 25°C –15 Ta = –40°C –20 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VOH/VOL [V] Figure 2.24 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 2.7 V When Normal Drive Output is Selected (Reference Data) IOH/IOL vs VOH/VOL 30 Ta = –40°C 20 Ta = 25°C Ta = 105°C IOH/IOL [mA] 10 0 –10 Ta = 105°C –20 Ta = 25°C Ta = –40°C –30 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH/VOL [V] Figure 2.25 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 3.3 V When Normal Drive Output is Selected (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 36 of 100 RX23E-A Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 60 Ta = –40°C Ta = 25°C Ta = 105°C 40 IOH/IOL [mA] 20 0 –20 –40 Ta = 105°C Ta = 25°C Ta = –40°C –60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.26 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 5.5 V When Normal Drive Output is Selected (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 37 of 100 RX23E-A Group 2.3.2 2. Electrical Characteristics Typical I/O Pin Output Characteristics (2) Figure 2.27 to Figure 2.31 show the characteristics when high-drive output is selected by the drive capacity control register. IOH/IOL vs VOH/VOL 150 VCC = 5.5V 100 VCC = 3.3V 50 IOH/IOL [mA] VCC = 2.7V VCC = 1.8V 0 VCC = 1.8V VCC = 2.7V –50 VCC = 3.3V –100 VCC = 5.5V –150 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.27 VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C When High-Drive Output is Selected (Reference Data) IOH/IOL vs VOH/VOL 16 12 Ta = –40°C Ta = 25°C Ta = 105°C IOH/IOL [mA] 8 4 0 –4 –8 Ta = 105°C Ta = 25°C –12 Ta = –40°C –16 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VOH/VOL [V] Figure 2.28 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 1.8 V When High-Drive Output is Selected (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 38 of 100 RX23E-A Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 50 40 Ta = –40°C 30 Ta = 25°C Ta = 105°C IOH/IOL [mA] 20 10 0 –10 –20 Ta = 105°C Ta = 25°C Ta = –40°C –30 –40 –50 0.0 1.0 0.5 1.5 3.0 2.5 2.0 VOH/VOL [V] Figure 2.29 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 2.7 V When High-Drive Output is Selected (Reference Data) IOH/IOL vs VOH/VOL 60 Ta = –40°C Ta = 25°C 40 Ta = 105°C IOH/IOL [mA] 20 0 –20 Ta = 105°C –40 Ta = 25°C Ta = –40°C –60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH/VOL [V] Figure 2.30 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 3.3 V When High-Drive Output is Selected (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 39 of 100 RX23E-A Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 150 Ta = –40°C Ta = 25°C Ta = 105°C 100 IOH/IOL [mA] 50 0 –50 Ta = 105°C –100 Ta = 25°C Ta = –40°C –150 0 1 2 3 4 6 5 VOH/VOL [V] Figure 2.31 VOH/VOL and IOH/IOL Temperature Characteristics at VCC = 5.5 V When High-Drive Output is Selected (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 40 of 100 RX23E-A Group 2.3.3 2. Electrical Characteristics Typical I/O Pin Output Characteristics (3) Figure 2.32 to Figure 2.35 show the characteristics of the RIIC output pin. IOL vs VOL 120 VCC = 5.5V IOL [mA] 100 80 60 VCC = 3.3V 40 VCC = 2.7V 20 0 0 1 2 3 4 5 6 VOL [V] Figure 2.32 VOL and IOL Voltage Characteristics of RIIC Output Pin at Ta = 25°C (Reference Data) IOL vs VOL IOL [mA] 40 35 Ta = –40°C 30 Ta = 25°C Ta = 105°C 25 20 15 10 5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VOL [V] Figure 2.33 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 41 of 100 RX23E-A Group 2. Electrical Characteristics IOL vs VOL 60 Ta = –40°C 50 Ta = 25°C IOL [mA] 40 Ta = 105°C 30 20 10 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOL [V] Figure 2.34 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data) IOL vs VOL 140 120 Ta = –40°C Ta = 25°C 100 IOL [mA] Ta = 105°C 80 60 40 20 0 0 1 2 3 4 5 6 VOL [V] Figure 2.35 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 5.5 V (Reference Data) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 42 of 100 RX23E-A Group 2.4 2. Electrical Characteristics AC Characteristics 2.4.1 Table 2.22 Clock Timing Operating Frequency Value (High-Speed Operating Mode) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C VCC Item Maximum operating frequency*3 Symbol 1.8 V ≤ VCC < 2.4 V System clock (ICLK) fmax 2.4 V ≤ VCC < 2.7 V 2.7 V ≤ VCC ≤ 5.5 V Unit MHz 8 16 32 FlashIF clock (FCLK)*1, *2 8 16 32 Peripheral module clock (PCLKA) 8 16 32 Peripheral module clock (PCLKB) 8 16 32 Peripheral module clock (PCLKD) 8 16 32 Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When FCLK is in use at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of FCLK must be within ±3.5%. Note 3. The maximum operating frequency listed above does not include errors of the external oscillator and internal oscillator. For details on the range for the guaranteed operation, see Table 2.24, Clock Timing. Table 2.23 Operating Frequency Value (Middle-Speed Operating Mode) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C VCC Item Maximum operating frequency*3 Symbol 1.8 V ≤ VCC < 2.4 V System clock (ICLK) FlashIF clock (FCLK)*1, *2 fmax 8 2.4 V ≤ VCC < 2.7 V 2.7 V ≤ VCC ≤ 5.5 V Unit 12 12 MHz 8 12 12 Peripheral module clock (PCLKA) 8 12 12 Peripheral module clock (PCLKB) 8 12 12 Peripheral module clock (PCLKD) 8 12 12 Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of FCLK must be within ±3.5%. Note 3. The maximum operating frequency listed above does not include errors of the external oscillator and internal oscillator. For details on the range for the guaranteed operation, see Table 2.24, Clock Timing. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 43 of 100 RX23E-A Group Table 2.24 2. Electrical Characteristics Clock Timing Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Item Symbol Min. Typ. Max. Unit tXcyc 50 — — ns EXTAL external clock input high pulse width tXH 20 — — ns EXTAL external clock input low pulse width tXL 20 — — ns EXTAL external clock rise time tXr — — 5 ns tXf — — 5 ns EXTAL external clock input cycle time EXTAL external clock fall time time*1 Test Conditions Figure 2.36 tXWT 0.5 — — µs fMAIN 1 — 20 MHz 1 — 8 Main clock oscillation stabilization time (crystal)*2 tMAINOSC — 3 — ms Main clock oscillation stabilization time (ceramic resonator)*2 tMAINOSC — 50 — µs LOCO clock oscillation frequency fLOCO 3.44 4.00 4.56 MHz LOCO clock oscillation stabilization time tLOCO — — 0.5 µs IWDT-dedicated clock oscillation frequency fILOCO 12.75 15.00 17.25 kHz IWDT-dedicated clock oscillation stabilization time tILOCO — — 50 µs HOCO clock oscillation frequency fHOCO 31.52 32.00 32.48 MHz 31.68 32.00 32.32 Ta = –20 to +85°C 31.36 32.00 32.64 Ta = –40 to +105°C EXTAL external clock input wait Main clock oscillator oscillation frequency*2 2.4 ≤ VCC ≤ 5.5 1.8 ≤ VCC < 2.4 HOCO clock oscillation stabilization time tHOCO — — 41.3 µs PLL input frequency*3 fPLLIN 4 — 8 MHz fPLL 24 — 32 MHz PLL clock oscillation stabilization time tPLL — — 74.4 µs PLL free-running oscillation frequency fPLLFR — 8 — MHz PLL circuit oscillation frequency*3 Figure 2.37 Figure 2.38 Figure 2.39 Ta = –40 to +85°C Figure 2.41 Figure 2.42 Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating). Note 2. Reference values when an 8-MHz resonator is used. When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the resonator-manufacturer-recommended value. After the MOSCCR.MOSTP bit is changed to enable the main clock oscillator, confirm that the OSCOVFSR.MOOVF flag has become 1, and then start using the main clock. Note 3. The VCC range should be 2.4 to 5.5 V when the PLL is used. tXcyc tXL tXH EXTAL external clock input 0.5 × VCC tXr Figure 2.36 tXf EXTAL External Clock Input Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 44 of 100 RX23E-A Group 2. Electrical Characteristics MOSCCR.MOSTP tMAINOSC Main clock oscillator output Figure 2.37 Main Clock Oscillation Start Timing LOCOCR.LCSTP tLOCO LOCO clock oscillator output Figure 2.38 LOCO Clock Oscillation Start Timing ILOCOCR.ILCSTP tILOCO IWDT-dedicated clock oscillator output Figure 2.39 IWDT-Dedicated Clock Oscillation Start Timing RES# Internal reset tRESWT OFS1.HOCOEN HOCO clock Figure 2.40 HOCO Clock Oscillation Start Timing (After Release from a Reset by Setting OFS1.HOCOEN Bit to 0) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 45 of 100 RX23E-A Group 2. Electrical Characteristics HOCOCR.HCSTP tHOCO HOCO clock Figure 2.41 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit) MOSCCR.MOSTP tMAINOSC Main clock oscillator output PLLCR2.PLLEN tPLL PLL clock Figure 2.42 PLL Clock Oscillation Start Timing (PLL is Operated after Main Clock Oscillation Has Been Stabled) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 46 of 100 RX23E-A Group 2.4.2 Table 2.25 2. Electrical Characteristics Reset Timing Reset Timing Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ. Max. Unit Test Conditions At power-on Item tRESWP 3 — — ms Figure 2.43 Other than above tRESW 30 — — µs Figure 2.44 tRESWT — 8.5 — ms Figure 2.43 tRESWT — 650 — µs Wait time after release from the RES# pin reset (from a warm start) tRESWT — 310 — µs Figure 2.44 Independent watchdog timer reset period tRESWIW — 1 — IWDT clock cycle Figure 2.45 RES# pulse width Wait time after release from the RES# pin reset (at power-on) At normal startup*1 During fast startup time*2 Software reset period tRESWSW — 1 — ICLK cycle Wait time after release from the independent watchdog timer reset*3 tRESWT2 — 350 — µs Wait time after release from the software reset tRESWT2 — 220 — µs Note 1. When the OFS1.LVDAS and OFS1.FASTSTUP bits are 1 Note 2. When the OFS1.LVDAS and/or OFS1.FASTSTUP bits are 0 Note 3. When the IWDTCR.CKS[3:0] bits are 0000b VCC RES# tRESWP Internal reset tRESWT Figure 2.43 Reset Input Timing at Power-On tRESW RES# Internal reset tRESWT Figure 2.44 Reset Input Timing (1) tRESWIW, tRESWSW Independent watchdog timer reset Software reset Internal reset tRESWT2 Figure 2.45 Reset Input Timing (2) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 47 of 100 RX23E-A Group 2.4.3 2. Electrical Characteristics Timing of Recovery from Low Power Consumption Modes Table 2.26 Timing of Recovery from Low Power Consumption Modes (1) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ. Max. Unit Test Conditions Crystal connected to Main clock oscillator main clock oscillator operating*2 tSBYMC — 2 3 ms Figure 2.46 External clock input to main clock oscillator tSBYEX — 35 50 µs HOCO clock oscillator operating tSBYHO — 40 55 µs LOCO clock oscillator operating tSBYLO — 40 55 µs Item Recovery time from software standby mode*1 High-speed mode Main clock oscillator operating*3 Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating. Note 2. When the frequency of the crystal is 20 MHz When the main clock oscillator wait control register (MOSCWTCR) is set to 04h Note 3. When the frequency of the external clock is 20 MHz When the main clock oscillator wait control register (MOSCWTCR) is set to 00h Table 2.27 Timing of Recovery from Low Power Consumption Modes (2) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ. Max. Unit Test Conditions Crystal connected to Main clock oscillator main clock oscillator operating*2 tSBYMC — 2 3 ms Figure 2.46 Main clock oscillator and PLL circuit operating*3 tSBYPC — 2 3 ms Main clock oscillator operating*4 tSBYEX — 3 4 µs Main clock oscillator and PLL circuit operating*5 tSBYPE — 65 85 µs HOCO clock oscillator operating*6 tSBYHO — 40 50 µs LOCO clock oscillator operating tSBYLO — 5 7 µs Item Recovery time from software standby mode*1 Middle-speed mode External clock input to main clock oscillator Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating. Note 2. When the frequency of the crystal is 12 MHz When the main clock oscillator wait control register (MOSCWTCR) is set to 04h Note 3. This is the case when PLL is selected as the system clock and its frequency division is set to be 12 MHz. When the main clock oscillator wait control register (MOSCWTCR) is set to 04h Note 4. When the frequency of the external clock is 12 MHz When the main clock oscillator wait control register (MOSCWTCR) is set to 00h Note 5. This is the case when PLL is selected as the system clock and its frequency division is set to be 12 MHz. When the main clock oscillator wait control register (MOSCWTCR) is set to 00h Note 6. This is the case when HOCO is selected as the system clock and its frequency division is set to be 8 MHz. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 48 of 100 RX23E-A Group 2. Electrical Characteristics Oscillator ICLK IRQ Software standby mode tSBYMC, tSBYPC, tSBYEX, tSBYPE, tSBYHO, tSBYLO Figure 2.46 Table 2.28 Software Standby Mode Recovery Timing Timing of Recovery from Low Power Consumption Modes (3) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Item Recovery time from deep sleep mode*1 High-speed mode*2 Middle-speed mode*3 Symbol Min. Typ. Max. Unit tDSLP — 2.0 3.5 µs tDSLP — 3.0 4.0 µs Test Conditions Figure 2.47 Note 1. Oscillators continue oscillating in deep sleep mode. Note 2. When the frequency of the system clock is 32 MHz Note 3. When the frequency of the system clock is 12 MHz Oscillator ICLK IRQ Deep sleep mode tDSLP Figure 2.47 Table 2.29 Deep Sleep Mode Recovery Timing Operating Mode Transition Time Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Mode before Transition Mode after Transition ICLK Frequency Transition Time Min. Typ. Max. Unit High-speed operating mode Middle-speed operating modes 8 MHz — 10.0 — µs Middle-speed operating modes High-speed operating mode 8 MHz — 37.5 — µs Note: Values when the frequencies of PCLKA, PCLKB, PCLKD, and FCLK are not divided. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 49 of 100 RX23E-A Group 2.4.4 2. Electrical Characteristics Control Signal Timing Table 2.30 Control Signal Timing Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item NMI pulse width IRQ pulse width Symbol Min. Typ. Max. Unit tNMIW 200 — — ns — — 2 × tPcyc *1 200 — — 3.5 × tNMICK*2 — — tIRQW 200 — — 2 × tPcyc*1 — — 200 — — — — 3.5 × tIRQCK Note: Note 1. Note 2. Note 3. *3 ns Test Conditions NMI digital filter is disabled (NMIFLTE.NFLTEN = 0) 2 × tPcyc ≤ 200 ns NMI digital filter is enabled (NMIFLTE.NFLTEN = 1) 3 × tNMICK ≤ 200 ns IRQ digital filter is disabled (IRQFLTE0.FLTENi = 0) IRQ digital filter is enabled (IRQFLTE0.FLTENi = 1) 2 × tPcyc > 200 ns 3 × tNMICK > 200 ns 2 × tPcyc ≤ 200 ns 2 × tPcyc > 200 ns 3 × tIRQCK ≤ 200 ns 3 × tIRQCK > 200 ns 200 ns minimum in software standby mode. tPcyc indicates the cycle of PCLKB. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7). NMI Figure 2.48 tNMIW tNMIW tIRQW tIRQW NMI Interrupt Input Timing IRQi Figure 2.49 IRQ Interrupt Input Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 50 of 100 RX23E-A Group 2.4.5 2. Electrical Characteristics Timing of On-Chip Peripheral Modules 2.4.5.1 I/O ports Table 2.31 Timing of I/O ports Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item I/O ports Input data pulse width Symbol Min. Typ. Max. Unit*1 tPRW 1.5 — — tPcyc Max. Unit*1 tPcyc Test Conditions Figure 2.50 Note 1. tPcyc: PCLK cycle PCLK Port tPRW Figure 2.50 I/O Port Input Timing 2.4.5.2 MTU Table 2.32 Timing of MTU Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item MTU Input capture input pulse width Symbol Single-edge setting Input capture input rise/fall time Timer clock pulse width tTICW Both-edge setting Single-edge setting Both-edge setting tTICr, tTICf tTCKWH, tTCKWL Phase counting mode Timer clock rise/fall time tTCKr, tTCKf Min. Typ. 1.5 — — 2.5 — — — — 0.1 µs/V tPcyc 1.5 — — 2.5 — — 2.5 — — — — 0.1 Test Conditions Figure 2.51 Figure 2.52 µs/V Note 1. tPcyc: PCLK cycle PCLK Output compare output Input capture input tTICW tTICr Figure 2.51 tTICf MTU Input/Output Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 51 of 100 RX23E-A Group 2. Electrical Characteristics PCLK MTCLKA to MTCLKD tTCKWL tTCKWH tTCKr Figure 2.52 MTU Clock Input Timing 2.4.5.3 POE Table 2.33 tTCKf Timing of POE Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item POE Min. Typ. POE# input pulse width tPOEW 1.5 — — tPcyc POE# input rise/fall time tPOEr, tPOEf — — 0.1 µs/V Transition of the POE# signal level tPOEDI — — 5 PCLKB + 0.24 µs Figure 2.54 When detecting falling edges (ICSRm.POEnM[1:0] = 00 (m = 1, 2; n = 0 to 3, 8)) Simultaneous conduction of output pins tPOEDO — — 3 PCLKB + 0.2 µs Figure 2.55 Register setting tPOEDS — — 1 PCLKB + 0.2 µs Figure 2.56 Time for access to the register is not included. Oscillation stop detection tPOEDOS — — 21 µs Figure 2.57 Output disable time Max. Unit*1 Symbol Test Conditions Figure 2.53 Note 1. tPcyc: PCLK cycle PCLK POEn# input tPOEW tPOEf Figure 2.53 tPOEr POE Input Timing (n = 0 to 3, 8) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 52 of 100 RX23E-A Group 2. Electrical Characteristics POEn# input tPOEW Outputs disabled MTU PWM output pins tPOEDI Figure 2.54 Output Disable Time for POE in Response to Transition of the POEn# Signal Level Simultaneous active-level outputs detected*1 Outputs disabled MTU PWM output pins tPOEDO Note 1. Figure 2.55 When the active level is set to low. Output Disable Time for POE in Response to the Simultaneous Conduction of Output Pins Corresponding bit in the SPOER register Outputs disabled MTU PWM output pins tPOEDS Figure 2.56 Output Disable Time for POE in Response to the Register Setting Main clock Oscillation stop detection signal (internal signal) Outputs disabled MTU PWM output pins tPOEDOS Figure 2.57 Output Disable Time for POE in Response to the Oscillation Stop Detection R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 53 of 100 RX23E-A Group 2.4.5.4 2. Electrical Characteristics TMR Table 2.34 Timing of TMR Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item TMR Timer clock pulse width Single-edge setting Both-edge setting Max. Unit*1 — — tPcyc — — Symbol Min. tTMCWH, tTMCWL 1.5 2.5 — — 0.1 tTMCr, tTMCf Timer clock rise/fall time Typ. Test Conditions Figure 2.58 µs/V Note 1. tPcyc: PCLK cycle PCLK TMCI0 to TMCI3 tTMCWL tTMCWH tTMCr Figure 2.58 TMR Clock Input Timing 2.4.5.5 SCI Table 2.35 tTMCf Timing of SCI Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item SCI Input clock cycle time Symbol Asynchronous tScyc Clock synchronous Min. Typ. Max. Unit*1 tPcyc 4 — — 6 — — Input clock pulse width tSCKW 0.4 — 0.6 tScyc Input clock rise time tSCKr — — 20 ns Input clock fall time tSCKf — — 20 ns tScyc 16 — — tPcyc 4 — — Output clock pulse width tSCKW 0.4 — 0.6 tScyc Output clock rise time tSCKr — — 20 ns Output clock fall time tSCKf — — 20 ns Transmit data delay time (master) Clock synchronous tTXD — — 40 ns Transmit data delay time (slave) Clock VCC ≥ 2.7 V synchronous VCC < 2.7 V — — 65 ns — — 100 ns Receive data setup time (master) Clock VCC ≥ 2.7 V synchronous VCC < 2.7 V Receive data setup time (slave) Clock synchronous Receive data hold time Clock synchronous Output clock cycle time Asynchronous Clock synchronous tRXS tRXH 65 — — ns 90 — — ns 40 — — ns 40 — — ns Test Conditions Figure 2.59 Figure 2.60 Note 1. tPcyc: PCLK cycle R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 54 of 100 RX23E-A Group Table 2.36 2. Electrical Characteristics Timing of Simple I2C Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Simple I2C (Standard mode) I2C Simple (Fast mode) Symbol Min.*1 Max. Unit Test Conditions Figure 2.61 SDA rise time tSr — 1000 ns SDA fall time tSf — 300 ns SDA spike pulse removal time tSP 0 4 × tPcyc ns Data setup time tSDAS 250 — ns Data hold time tSDAH 0 — ns SCL, SDA capacitive load Cb — 400 pF SDA rise time tSr — 300 ns SDA fall time tSf — 300 ns SDA spike pulse removal time tSP 0 4 × tPcyc ns Data setup time tSDAS 100 — ns Data hold time tSDAH 0 — ns Cb — 400 pF SCL, SDA capacitive load Figure 2.61 Note: tPcyc: PCLK cycle Note 1. Cb is the total capacitance of the bus lines. Table 2.37 Timing of Simple SPI Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Simple SCK clock cycle output (master) SPI SCK clock cycle input (slave) Symbol Min. Max. Unit*1 Test Conditions tSPcyc 4 65536 tPcyc Figure 2.62 6 — tPcyc SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc tSPCKr, tSPCKf — 20 ns tSU 65 — ns 95 — 40 — SCK clock rise/fall time Data input setup time (master) VCC ≥ 2.7 V VCC < 2.7 V Data input setup time (slave) Data input hold time tH 40 — ns SSL input setup time tLEAD 3 — tSPcyc SSL input hold time tLAG 3 — tSPcyc tOD ns Data output delay time (master) Data output delay time (slave) Data output hold time (master) — 40 VCC ≥ 2.7 V — 65 VCC < 2.7 V — 100 –10 — –20 — VCC ≥ 2.7 V tOH VCC < 2.7 V Data output hold time (slave) ns –10 — tDr, tDf — 20 ns tSSLr, tSSLf — 20 ns Slave access time tSA — 6 tPcyc Slave output release time tREL — 6 tPcyc Data rise/fall time SSL input rise/fall time Figure 2.63, Figure 2.64 Figure 2.65, Figure 2.66 Note 1. tPcyc: PCLK cycle R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 55 of 100 RX23E-A Group 2.4.5.6 Table 2.38 2. Electrical Characteristics RIIC Timing of RIIC Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item RIIC (Standard mode, SMBus) Min.*1, *2 Max. Unit Test Conditions Figure 2.61 SCL cycle time tSCL 6 (12) × tIICcyc + 1300 — ns SCL high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA rise time tSr — 1000 ns SCL, SDA fall time tSf — 300 ns SCL, SDA spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA bus free time tBUF 3 (6) × tIICcyc + 300 — ns START condition hold time tSTAH tIICcyc + 300 — ns Repeated START condition setup time tSTAS 1000 — ns STOP condition setup time tSTOS 1000 — ns Data setup time tSDAS tIICcyc + 50 — ns Data hold time tSDAH 0 — ns Cb — 400 pF SCL cycle time tSCL 6 (12) × tIICcyc + 600 — ns SCL high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA rise time tSr — 300 ns SCL, SDA fall time tSf — 300 ns SCL, SDA spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA bus free time tBUF 3 (6) × tIICcyc + 300 — ns SCL, SDA capacitive load RIIC (Fast mode) Symbol START condition hold time tSTAH tIICcyc + 300 — ns Repeated START condition setup time tSTAS 300 — ns STOP condition setup time tSTOS 300 — ns Data setup time tSDAS tIICcyc + 50 — ns Data hold time tSDAH 0 — ns Cb — 400 pF SCL, SDA capacitive load Figure 2.61 Note: tIICcyc: RIIC internal reference clock (IICφ) cycle Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE bit = 1. Note 2. Cb is the total capacitance of the bus lines. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 56 of 100 RX23E-A Group 2.4.5.7 Table 2.39 2. Electrical Characteristics RSPI Timing of RSPI Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C, C = 30 pF, when high-drive output is selected by the drive capacity control register Item RSPI RSPCK clock cycle Master Symbol Min. Max. Unit*1 tSPcyc 2 4096 tPcyc 6 — Slave RSPCK clock Master high pulse width tSPCKWH (tSPcyc – tSPCKr – tSPCKf)/2 – 3 — (tSPcyc – tSPCKr – tSPCKf)/2 — tSPCKWL (tSPcyc – tSPCKr – tSPCKf)/2 – 3 — (tSPcyc – tSPCKr – tSPCKf)/2 — — 10 Slave RSPCK clock low pulse width Master Slave RSPCK clock rise/fall time Output VCC ≥ 2.7 V VCC < 2.7 V tSPCKr, tSPCKf Input Data input setup Master VCC ≥ 2.7 V time VCC < 2.7 V tSU Slave Data input hold time Master RSPCK set to a division ratio other than PCLKB divided by 2 RSPCK set to PCLKB divided by 2 Slave SSL setup time Master SSL hold time — tH 20 — tLAG Master VCC ≥ 2.7 V tOD × tSPcyc — ns tPcyc –30 + N*3 × tSPcyc — ns 6 — tPcyc ns — 14 30 VCC ≥ 2.7 V — 65 VCC < 2.7 V — 105 Slave MOSI and MISO Output VCC ≥ 2.7 V rise/fall time VCC < 2.7 V tDr, tDf Input Output VCC ≥ 2.7 V VCC < 2.7 V tSSLr, tSSLf Input VCC ≥ 2.7 V tSA VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V tREL 0 — 0 — tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc 6 × tPcyc — — 10 — 15 Figure 2.63 to Figure 2.66 ns — — tTD Slave output release time –30 + N*2 VCC < 2.7 V Master Slave access time ns — 0 tOH SSL rise/fall time — 30 tHF Data output hold Master time Slave Successive transmission delay time 10 6 Master Slave µs/V — Slave Data output delay time 15 — tLEAD ns 0.1 25 Slave ns — tPcyc Figure 2.62 ns — tH Test Conditions ns ns ns — 1 µs — 10 ns — 15 ns — 1 µs — 6 tPcyc — 7 — 5 — 6 Figure 2.65, Figure 2.66 tPcyc Note 1. tPcyc: PCLK cycle Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 57 of 100 RX23E-A Group 2. Electrical Characteristics Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND) tSCKW tSCKr tSCKf SCKn tScyc Figure 2.59 SCK Clock Input Timing (n = 1, 5, 6, 12) SCKn tTXD TXDn tRXS tRXH RXDn Figure 2.60 SCI Input/Output Timing: Clock Synchronous Mode (n = 1, 5, 6, 12) VIH SDA VIL tBUF tSCLH tSTAS tSTAH tSTOS tSP SCL P*1 tSCLL tSr tSf tSCL tSDAS tSDAH Note 1. S, P, and Sr indicate the following conditions, respectively. S: START condition P: STOP condition Sr: Repeated START condition Figure 2.61 P*1 Sr*1 S*1 Test conditions VIH = 0.7 × VCC, VIL = 0.3 × VCC RIIC Bus Interface Input/Output Timing and Simple I2C Bus Interface Input/Output Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 58 of 100 RX23E-A Group 2. Electrical Characteristics tSPCKr tSPCKWH RSPI Simple SPI RSPCKA Master select output SCKn Master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH RSPCKA Slave select input VIH VIL SCKn Slave select input tSPCKf VIH VIH VIL tSPCKWL VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.62 RSPI RSPI Clock Timing and Simple SPI Clock Timing (n = 1, 5, 6, 12) Simple SPI SSLA0 to SSLA3 output tTD tLEAD RSPCKA CPOL = 0 output SCKn CKPOL = 0 output RSPCKA CPOL = 1 output SCKn CKPOL = 1 output tSSLr, tSSLf tSU MISOA input tLAG SMISOn input tH MSB IN tDr, tDf MOSIA output Figure 2.63 SMOSIn output DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT RSPI Timing (Master, CPHA = 0) and Simple SPI Clock Timing (Master, CKPH = 1) (n = 1, 5, 6, 12) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 59 of 100 RX23E-A Group RSPI 2. Electrical Characteristics Simple SPI tTD SSLA0 to SSLA3 output tLEAD RSPCKA CPOL = 0 output SCKn CKPOL = 1 output RSPCKA CPOL = 1 output SCKn CKPOL = 0 output tLAG tSSLr, tSSLf tSU MISOA input SMISOn input tH MSB IN tOH MOSIA output Figure 2.64 DATA LSB IN tOD SMOSIn output tDr, tDf MSB OUT DATA LSB OUT Simple SPI SSLA0 input SSn# input RSPCKA CPOL = 0 input SCKn CKPOL = 0 input RSPCKA CPOL = 1 input SCKn CKPOL = 1 input tLAG tSA tOH SMISOn output MSB OUT tSU Figure 2.65 MSB OUT tTD tLEAD MOSIA input IDLE RSPI Timing (Master, CPHA = 1) and Simple SPI Clock Timing (Master, CKPH = 0) (n = 1, 5, 6, 12) RSPI MISOA output MSB IN SMOSIn input tOD DATA tREL LSB OUT tH MSB IN MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN RSPI Timing (Slave, CPHA = 0) and Simple SPI Clock Timing (Slave, CKPH = 1) (n = 1, 5, 6, 12) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 60 of 100 RX23E-A Group 2. Electrical Characteristics RSPI Simple SPI SSLA0 input SSn# input tTD tLEAD RSPCKA CPOL = 0 input SCKn CKPOL = 1 input RSPCKA CPOL = 1 input SCKn CKPOL = 0 input MISOA output SMISOn output tSA tLAG tOH tOD LSB OUT (Last data) MSB OUT tSU MOSIA input SMOSIn input tREL DATA MSB OUT LSB OUT tH tDr, tDf MSB IN DATA LSB IN MSB IN Figure 2.66 RSPI Timing (Slave, CPHA = 1) and Simple SPI Clock Timing (Slave, CKPH = 0) (n = 1, 5, 6, 12) 2.4.5.8 A/D converter Trigger Table 2.40 Timing of A/D converter Trigger) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item A/D Trigger input pulse width converter Symbol Min. Typ. Max. Unit*1 tTRGW 1.5 — — tPcyc Test Conditions Figure 2.67 Note 1. tPcyc: PCLK cycle PCLK ADTRG0# tTRGW Figure 2.67 A/D Converter External Trigger Input Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 61 of 100 RX23E-A Group 2.4.5.9 2. Electrical Characteristics CAC Table 2.41 Timing of CAC Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ. Max. Unit*1 tCACREF 4.5 tcac + 3 tPcyc — — ns 5 tcac + 6.5 tPcyc — — — 0.1 µs/V Typ. Max. Unit*1 — ns — ns — ns — 12 ns — 25 Item CAC CACREF input pulse width tPcyc ≤ tcac*2 tPcyc > tcac*2 CACREF input rise/fall time tCACREFr, tCACREFf Test Conditions Note 1. tPcyc: PCLK cycle Note 2. tcac: CAC count clock source cycle 2.4.5.10 Table 2.42 CLKOUT Timing of CLKOUT Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item CLKOUT CLKOUT pin output cycle*3 VCC ≥ 2.7 V Symbol Min. tCcyc 62.5 — 125 — VCC < 2.7 V CLKOUT pin high pulse width*2 CLKOUT pin low pulse width*2 VCC ≥ 2.7 V tCH VCC < 2.7 V VCC ≥ 2.7 V tCL VCC < 2.7 V CLKOUT pin output rise time VCC ≥ 2.7 V 15 — 30 — 15 — 30 — tCr — VCC < 2.7 V CLKOUT pin output fall time VCC ≥ 2.7 V tCf — VCC < 2.7 V Note 1. Note 2. Note 3. — 12 — 25 Test Conditions Figure 2.68 ns tPcyc: PCLK cycle When the LOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 000b), set the clock output division ratio selection to divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b). When the EXTAL external clock input or an oscillator is used with divided by 1 (the CKOCR.CKOSEL[2:0] bits are 010b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%. tCcyc tCH tCf CLKOUT pin output tCL tCr Test conditions: VOH = 0.7 × VCC, VOL = 0.3 × VCC, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 2.68 CLKOUT Output Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 62 of 100 RX23E-A Group 2.5 2. Electrical Characteristics Characteristics of Power-On Reset Circuit and Voltage Detection Circuit Table 2.43 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (1) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Voltage detection level Power-on reset (POR) Voltage detection circuit (LVD0)*1 Voltage detection circuit (LVD1)*2 Voltage detection circuit (LVD2)*3 Symbol Min. Typ. Max. Unit VPOR 1.35 1.50 1.65 V Figure 2.69, Figure 2.70 Vdet0_0 3.67 3.84 3.97 V Vdet0_1 2.70 2.82 3.00 Figure 2.71 At falling edge VCC Vdet0_2 2.37 2.51 2.67 V Figure 2.72 At falling edge VCC V Figure 2.73 At falling edge VCC Vdet0_3 1.80 1.90 1.99 Vdet1_0 4.12 4.29 4.42 Vdet1_1 3.98 4.14 4.28 Vdet1_2 3.86 4.02 4.16 Vdet1_3 3.68 3.84 3.98 Vdet1_4 2.99 3.10 3.29 Vdet1_5 2.89 3.00 3.19 Vdet1_6 2.79 2.90 3.09 Vdet1_7 2.68 2.79 2.98 Vdet1_8 2.57 2.68 2.87 Vdet1_9 2.47 2.58 2.67 Vdet1_A 2.37 2.48 2.57 Vdet1_B 2.10 2.20 2.30 Vdet1_C 1.86 1.96 2.06 Vdet1_D 1.80 1.86 1.96 Vdet2_0 4.08 4.29 4.48 Vdet2_1 3.95 4.14 4.35 Vdet2_2 3.82 4.02 4.22 Vdet2_3 3.62 3.84 4.02 Test Conditions Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection. Note 1. n in the symbol Vdet0_n denotes the value of the OFS1.VDSEL[1:0] bits. Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits. Note 3. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[1:0] bits. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 63 of 100 RX23E-A Group Table 2.44 2. Electrical Characteristics Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (2) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Symbol Min. Typ. Max. Unit At normal startup tPOR — 9.1 — ms Figure 2.70 During fast startup time tPOR — 1.6 — Wait time after release from voltage monitoring 0 reset tLVD0 — 600 — µs Figure 2.71 Wait time after release from voltage monitoring 1 reset tLVD1 — 150 — µs Figure 2.72 Wait time after release from voltage monitoring 2 reset tLVD2 — 150 — µs Figure 2.73 tdet — — 350 µs Figure 2.69 Minimum VCC down time*1 tVOFF 350 — — µs Figure 2.69, VCC = 1.0 V or above Power-on reset enable time tW(POR) 1 — — ms Figure 2.70, VCC = below 1.0 V LVD operation stabilization time (after LVD is enabled) Td(E-A) — — 300 µs Figure 2.72, Figure 2.73 Hysteresis width (power-on rest (POR)) VPORH — 110 — mV VLVH — 70 — mV — 60 — When Vdet1_5 to Vdet1_9 is selected — 50 — When Vdet1_A or Vdet1_B is selected — 40 — When Vdet1_C or Vdet1_D is selected — 60 — When LVD0 or LVD2 is selected Wait time after release from the power-on reset Response delay time Hysteresis width (voltage detection circuit: LVD0, LVD1 and LVD2) Test Conditions When Vdet1_0 to Vdet1_4 is selected Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection. Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. tVOFF VCC VPORH VPOR 1.0V Internal reset signal (active-low) tdet Figure 2.69 tdet tPOR Voltage Detection Reset Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 64 of 100 RX23E-A Group 2. Electrical Characteristics VPORH VPOR VCC 1.0 V tw(POR) Internal reset signal (active-low) *1 tdet tPOR Note 1. tw(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When turning the VCC on, maintain a voltage below 1.0V for at least 1.0ms. Figure 2.70 Power-On Reset Timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.71 tdet tLVD0 Voltage Detection Circuit Timing (Vdet0) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 65 of 100 RX23E-A Group 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVD1E Td(E-A) LVD1 Comparator output LVD1CMPE LVD1MON Internal reset signal (active-low) When LVD1RN = L tdet tdet tLVD1 When LVD1RN = H tLVD1 Figure 2.72 Voltage Detection Circuit Timing (Vdet1) tVOFF VCC VLVH Vdet2 LVD2E Td(E-A) LVD2 Comparator output LVD2CMPE LVD2MON Internal reset signal (active-low) When LVD2RN = L tdet tdet tLVD2 When LVD2RN = H tLVD2 Figure 2.73 Voltage Detection Circuit Timing (Vdet2) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 66 of 100 RX23E-A Group 2.6 2. Electrical Characteristics Oscillation Stop Detection Timing Table 2.45 Oscillation Stop Detection Timing Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C Item Symbol Min. Typ. Max. Unit tdr — — 1 ms Detection time Main clock Test Conditions Figure 2.74 Main clock tdr tdr OSTDSR.OSTDF OSTDSR.OSTDF Low-speed clock PLL clock ICLK Low-speed clock When the main clock is selected ICLK When the PLL clock is selected Figure 2.74 Oscillation Stop Detection Timing R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 67 of 100 RX23E-A Group 2.7 2. Electrical Characteristics ROM (Code Flash Memory) Characteristics Table 2.46 ROM (Code Flash Memory) Characteristics (1) Symbol Min. Typ. Max. Unit Program/erase cycles*1 Item NPEC 1000 — — Times Data retention tDRP 20*2, *3 — — Year After 1000 times of erase Conditions Ta = 85°C Note 1. Definition of program/erase cycle: The program/erase cycle is the number of erasing for each block. When the number of program/erase cycles is n, each block can be erased n times. For instance, when 4-byte program is performed 256 times for different addresses in a 1-Kbyte block and then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more than once before the next erase cycle (overwriting is prohibited). Note 2. Characteristic when using the flash programmer and the self-programming library provided from Renesas Electronics. Note 3. This result is obtained from reliability testing. Table 2.47 ROM (Code Flash Memory) Characteristics (2) (High-Speed Operating Mode) Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V Temperature range for the programming/erasure operation: Ta = –40 to +105°C Item Symbol FCLK = 1 MHz FCLK = 32 MHz Min. Typ. Max. Min. Typ. Max. Unit Program time 8-byte tP8 — 112.0 967.0 — 52.3 490.5 µs Erase time 2-Kbyte tE2K — 8.7 278.1 — 5.5 214.6 ms 256-Kbyte (when block erase command is used) tE256K — 469.1 9813.6 — 41.2 1049.2 ms 256-Kbyte (when all-block erase command is used) tEA256K — 463.9 9609.0 — 36.0 839.5 ms 8-byte tBC8 — — 55.0 — — 16.1 µs 2-Kbyte Blank check time tBC2K — — 1840.0 — — 135.7 µs Erase operation forced stop time tSED — — 18.0 — — 10.7 µs Start-up area switching time tSAS — 12.3 566.5 — 6.2 433.5 ms Access window setting time tAWS — 12.3 566.5 — 6.2 433.5 ms ROM mode transition wait time 1 tDIS 2.0 — — 2.0 — — µs ROM mode transition wait time 2 tMS 5.0 — — 5.0 — — µs Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within ±3.5%. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 68 of 100 RX23E-A Group Table 2.48 2. Electrical Characteristics ROM (Code Flash Memory) Characteristics (3) (Middle-Speed Operating Mode) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V Temperature range for the programming/erasure operation: Ta = –40 to +85°C Item Program time Erase time 8-byte FCLK = 1 MHz FCLK = 8 MHz Min. Typ. Max. Min. Typ. Max. tP8 — 152.0 1367.0 — 97.9 936.0 Unit µs tE2K — 8.8 279.7 — 5.9 220.8 ms 256-Kbyte (when block erase command is used) tE256K — 469.2 9816.9 — 100.5 2260.1 ms 256-Kbyte (when all-block erase command is used) tEA256K — 464.0 9610.7 — 95.3 2053.7 ms 8-byte tBC8 — — 85.0 — — 50.9 µs 2-Kbyte tBC2K — — 1870.0 — — 401.5 µs tSED — — 28.0 — — 21.3 µs Start-up area switching time tSAS — 13.0 573.3 — 7.7 450.1 ms Access window setting time tAWS — 13.0 573.3 — 7.7 450.1 ms ROM mode transition wait time 1 tDIS 2.0 — — 2.0 — — µs ROM mode transition wait time 2 tMS 3.0 — — 3.0 — — µs Blank check time 2-Kbyte Symbol Erase operation forced stop time Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within ±3.5%. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 69 of 100 RX23E-A Group 2.8 2. Electrical Characteristics E2 DataFlash (Data Flash Memory) Characteristics Table 2.49 E2 DataFlash Characteristics (1) Symbol Min. Typ. Max. Unit Program/erase cycles*1 Item NDPEC 100000 1000000 — Times Data retention tDDRP 20*2, *3 After 10000 times of erase — — Year After 100000 times of erase 5*2, *3 — — Year After 1000000 times of erase — 1*2, *3 — Year Conditions Ta = 85°C Ta = 25°C Note 1. Definition of program/erase cycle: The program/erase cycle is the number of erasing for each block. When the number of program/erase cycle is n, each block can be erased n times. For instance, when 1-byte program is performed 1000 times for different addresses in a 1-Kbyte block and then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more than once before the next erase cycle (overwriting is prohibited). Note 2. Characteristic when the flash programmer is used and the self-programming library is provided from Renesas Electronics. Note 3. These results are obtained from reliability testing. Table 2.50 E2 DataFlash Characteristics (2) (High-Speed Operating Mode) Conditions: 2.7 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V Temperature range for the programming/erasure operation: Ta = –40 to +105°C Item Symbol FCLK = 1 MHz FCLK = 32 MHz Min. Typ. Max. Min. Typ. Max. Unit Program time 1 byte tDP1 — 95.0 797.0 — 40.8 375.5 µs Erase time 1 Kbyte tDE1K — 19.5 498.5 — 6.2 229.4 ms 8 Kbyte tDE8K — 119.8 2555.7 — 12.9 367.2 ms 1 byte tDBC1 — — 55.0 — — 16.1 µs 1 Kbyte tDBC1K — — 7216.0 — — 495.7 µs Erase operation forced stop time tDSED — — 16.0 — — 10.7 µs DataFlash STOP recovery time tDSTOP 5.0 — — 5.0 — — µs Blank check time Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within ±3.5%. Table 2.51 E2 DataFlash Characteristics (3) (Middle-Speed Operating Mode) Conditions: 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V Temperature range for the programming/erasure operation: Ta = –40 to +85°C Item Symbol FCLK = 1 MHz FCLK = 8 MHz Min. Typ. Max. Min. Typ. Max. Unit Programming time 1 byte tDP1 — 135.0 1197.0 — 86.5 822.5 µs Erasure time 1 Kbyte tDE1K — 19.6 500.1 — 8.0 264.1 ms 8 Kbyte tDE8K — 119.9 2557.4 — 27.7 668.2 ms 1 byte tDBC1 — — 85.0 — — 50.9 µs 1 Kbyte tDBC1K — — 7246.0 — — 1457.5 µs Erase operation forced stop time tDSED — — 28.0 — — 21.3 µs DataFlash STOP recovery time tDSTOP 0.72 — — 0.72 — — µs Blank check time Note: Note: Note: The time until each operation of the flash memory is started after instructions are executed by software is not included. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be within ±3.5%. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 70 of 100 RX23E-A Group 2.9 2. Electrical Characteristics 24-Bit Delta-Sigma A/D Converter Characteristics Table 2.52 24-Bit Delta-Sigma A/D Converter Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, VREF = 2.5 V, Ta = –40 to +105°C Item Gain Output data rate Symbol Gain Normal mode fDR Typ. Max. 1, 2, 4, 8, 16, 32, 64, 128 7.6 — 15625 Unit Test Conditions — SPS 1.9 — 3906 Resolution (no missing codes) — 24 — — Bits RMS noise VN — Table 2.53, Table 2.55 — — INL — ±7 ±15 ppmFSR Gain = 2 to 64, Normal/low power mode, OPCR.DSADLVM bit = 0 — ±4 ±15 Gain = 128, Normal mode, OPCR.DSADLVM bit = 0 — ±5 ±15 Gain = 128, Low power mode, OPCR.DSADLVM bit = 0 — ±7 ±20 Gain = 1 to 128 (PGA enabled), Normal/low power mode, OPCR.DSADLVM bit = 1 — ±7 ±30 AVCC0 = 2.7 to 5.5 V Gain = 1 (PGA disabled, BUF disabled) — ±7 ±20 AVCC0 = 2.7 to 5.5 V, VI < 2.6 V Gain = 1 (PGA disabled, BUF enabled) — ±7 — — — ±10 — Less than or equal to the RMS noise — — 60 220 Gain = 4 to 8 — 40 140 Gain = 16 to 32 — 15 40 Gain = 64 to 128 — 10 25 Gain = 1 (PGA disabled, BUF disabled) — 50 140 — ±0.01 ±0.03 Gain = 128 — ±0.01 ±0.04 Gain = 1 (PGA disabled, BUF disabled) — ±0.015 ±0.04 Gain = 1 (PGA disabled, BUF enabled) — ±0.03 — After calibration of gain errors — Less than or equal to the RMS noise — Integral nonlinearity Offset error Low power mode Min. Gain = 1 (PGA enabled), Normal/low power mode, OPCR.DSADLVM bit = 0 Before calibration EO After calibration Offset drift Gain error Gain = 1 or 2 (PGA enabled) Gain = 1 to 64 (PGA enabled) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 dEO EG µV Figure 2.75 to Figure 2.91 Figure 2.92, Figure 2.93 AVCC0 = 3.6 to 5.5 V Figure 2.94 AVCC0 = 5.0 V, Ta = 25°C, Normal mode, Gain = 2 nV/°C Figure 2.94 % Figure 2.95 Ta = 25°C Page 71 of 100 RX23E-A Group 2. Electrical Characteristics Item Gain drift Power supply rejection ratio Common mode rejection ratio Normal mode rejection ratio Symbol Min. Typ. Max. Unit dEG — 1 3 ppm/°C Gain = 1 to 128 (PGA enabled), OPCR.DSADLVM bit = 1 — 1 5 AVCC0 = 3.0 to 5.5 V — — 10 AVCC0 < 3.0 V Gain = 1 (PGA disabled) — 1.4 — Figure 2.95 VI < 2.6 V 80 88 — Gain = 2 to 16 89 95 — Gain = 32 to 128 102 115 — Gain = 1 (PGA disabled, BUF disabled) 68 88 — Gain = 1 (PGA disabled, BUF enabled) — 78 — 95 100 — Gain = 16 to 32, OPCR.DSADLVM bit = 0 110 120 — Gain = 64 to 128, OPCR.DSADLVM bit = 0 120 130 — Gain = 1 to 8 (PGA enabled), OPCR.DSADLVM bit = 1 80 100 — Gain = 16 to 32, OPCR.DSADLVM bit = 1 88 120 — Gain = 64 to 128, OPCR.DSADLVM bit = 1 100 130 — Gain = 1 (PGA disabled, BUF disabled) 60 88 — Gain = 1 (PGA disabled, BUF enabled) — 78 — 120 — — 75 — — 54 SPS, 50 ± 1 Hz, 60 ± 1 Hz External clock, 50 Hz 120 — — 50SPS, 50 ± 1 Hz External clock, 60 Hz 120 — — 60 SPS, 60 ± 1 Hz Internal clock (HOCO), 50 Hz, 60 Hz 110 — — 10 SPS, 50 ± 1 Hz, 60 ± 1 Hz 70 — — 54 SPS, 50 ± 1 Hz, 60 ± 1 Hz Internal clock (HOCO), 50 Hz 110 — — 50 SPS, 50 ± 1 Hz Internal clock (HOCO), 60 Hz 110 — — 60 SPS, 60 ± 1 Hz Gain = 1 to 128 (PGA enabled), OPCR.DSADLVM bit = 0 Gain = 1 (PGA enabled) Gain = 1 to 8 (PGA enabled), OPCR.DSADLVM bit = 0 External clock, 50 Hz, 60 Hz Burnout current Modulator clock PSRR CMRR NMRR IBO Normal mode Low power mode R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 fMOD 0.5, 2, 4, 20 dB Test Conditions Figure 2.95 VID = 1 V/Gain (DC) VID = 1 V (DC) dB VID = 1 V/Gain (DC) VID = 1 V (DC) dB 10 SPS, 50 ± 1 Hz, 60 ± 1 Hz µA 430 500 570 107.5 125.0 142.5 kHz Page 72 of 100 RX23E-A Group Table 2.53 2. Electrical Characteristics Typical Noise Characteristics (Normal Mode) Conditions: AVCC0 = 5.0 V, Ta = 25°C, fMOD = 500 kHz, VID = 0 V, VREF = 2.5 V fDR (SPS) OSR 7.6 Gain = 1 (Bypass) Gain = 1 (BUF) Gain = 1 (PGA) Gain = 2 Gain = 4 65536 0.383 (2.39) 0.524 (2.69) 0.601 (3.89) 0.563 (3.59) 0.284 (2.02) 0.166 (1.08) 0.097 (0.60) 0.052 (0.34) 0.036 (0.28) 0.029 (0.20) 10 50048 0.426 (2.64) 0.671 (3.96) 0.680 (4.40) 0.618 (4.18) 0.322 (2.53) 0.185 (1.15) 0.108 (0.71) 0.056 (0.40) 0.041 (0.27) 0.033 (0.20) 50 9984 0.878 (5.42) 1.117 (7.59) 1.308 (9.76) 1.196 (7.59) 0.667 (5.15) 0.369 (2.51) 0.230 (1.69) 0.121 (0.92) 0.084 (0.61) 0.072 (0.52) 54 9216 0.929 (6.35) 1.225 (9.71) 1.359 (10.5) 1.254 (9.52) 0.702 (4.85) 0.392 (2.85) 0.240 (1.70) 0.127 (0.88) 0.090 (0.59) 0.076 (0.51) 60 8320 0.973 (7.31) 1.279 (8.99) 1.450 (10.7) 1.345 (9.27) 0.723 (4.50) 0.426 (3.30) 0.258 (1.48) 0.129 (1.07) 0.093 (0.59) 0.080 (0.58) 100 4992 1.228 (8.67) 1.673 (11.4) 1.873 (13.0) 1.673 (9.76) 0.904 (5.96) 0.536 (3.46) 0.327 (2.41) 0.172 (1.19) 0.128 (0.96) 0.100 (0.68) 195 2560 1.681 (12.7) 2.206 (18.6) 2.530 (16.7) 2.378 (16.7) 1.277 (8.45) 0.710 (4.65) 0.460 (3.15) 0.238 (1.55) 0.176 (1.16) 0.139 (0.90) 488 1024 2.697 (17.3) 3.311 (22.4) 3.954 (29.3) 3.881 (27.4) 2.007 (13.5) 1.175 (8.52) 0.723 (4.73) 0.355 (2.28) 0.264 (1.80) 0.231 (1.55) 977 512 3.691 (27.5) 4.740 (29.0) 5.758 (36.5) 5.442 (35.7) 2.871 (20.0) 1.656 (12.0) 1.025 (6.67) 0.522 (3.53) 0.389 (2.57) 0.321 (2.21) 1953 256 5.734 (35.3) 6.572 (42.5) 8.535 (55.3) 7.438 (48.9) 4.130 (28.2) 2.308 (15.8) 1.434 (9.34) 0.768 (4.85) 0.567 (4.05) 0.476 (2.71) 3906 128 7.446 (51.1) 9.607 (65.8) 12.32 (70.0) 11.15 (76.5) 5.778 (38.6) 3.476 (27.2) 2.237 (14.7) 1.162 (7.83) 0.831 (5.98) 0.669 (4.21) 7813 64 13.60 (102) 15.91 (110) 21.39 (143) 19.22 (120) 10.43 (67.6) 5.971 (39.0) 3.760 (26.4) 2.161 (13.9) 1.482 (11.0) 1.112 (6.96) 15625 32 120.5 (644) 117.5 (720) 112.5 (735) 67.81 (347) 36.42 (218) 17.96 (109) 9.766 (58.7) 5.812 (37.6) 3.726 (22.2) 2.498 (16.9) Note: Note: Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128 “Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF is enabled, and “PGA” indicates the state where PGA is enabled. The upper rows indicate RMS noise (µVRMS) and the lower rows (in parentheses) indicate peak-to-peak noise (µVPP). R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 73 of 100 RX23E-A Group Table 2.54 2. Electrical Characteristics Effective Resolution (Normal Mode) Conditions: AVCC0 = 5.0 V, Ta = 25°C, fMOD = 500 kHz, VID = 0 V, VREF = 2.5 V fDR (SPS) OSR 7.6 Gain = 1 (Bypass) Gain = 1 (BUF) Gain = 1 (PGA) Gain = 2 Gain = 4 65536 23.6 (21.0) 23.1 (20.8) 23.0 (20.3) 22.1 (19.4) 22.1 (19.2) 21.8 (19.1) 21.6 (19.0) 21.5 (18.8) 21.0 (18.1) 20.4 (17.6) 10 50048 23.5 (20.9) 22.8 (20.2) 22.8 (20.1) 22.0 (19.2) 21.9 (18.9) 21.7 (19.1) 21.5 (18.7) 21.4 (18.6) 20.9 (18.2) 20.2 (17.6) 50 9984 22.4 (19.8) 22.0 (19.3) 21.9 (19.0) 21.0 (18.3) 20.8 (17.9) 20.7 (17.9) 20.4 (17.5) 20.3 (17.4) 19.8 (17.0) 19.0 (16.2) 54 9216 22.4 (19.6) 21.9 (18.9) 21.8 (18.9) 20.9 (18.0) 20.8 (18.0) 20.6 (17.7) 20.3 (17.5) 20.2 (17.5) 19.7 (17.0) 19.0 (16.2) 60 8320 22.3 (19.4) 21.8 (19.0) 21.7 (18.8) 20.8 (18.0) 20.7 (18.1) 20.5 (17.5) 20.2 (17.7) 20.2 (17.2) 19.7 (17.0) 18.9 (16.1) 100 4992 22.0 (19.1) 21.5 (18.7) 21.4 (18.6) 20.5 (18.0) 20.4 (17.7) 20.2 (17.5) 19.9 (17.0) 19.8 (17.0) 19.2 (16.3) 18.6 (15.8) 195 2560 21.5 (18.6) 21.1 (18.0) 21.0 (18.2) 20.0 (17.2) 19.9 (17.2) 19.8 (17.0) 19.4 (16.6) 19.3 (16.6) 18.8 (16.0) 18.1 (15.4) 488 1024 20.8 (18.1) 20.5 (17.7) 20.3 (17.4) 19.3 (16.5) 19.3 (16.5) 19.0 (16.2) 18.7 (16.0) 18.8 (16.1) 18.2 (15.4) 17.4 (14.6) 977 512 20.4 (17.5) 20.0 (17.3) 19.7 (17.1) 18.8 (16.1) 18.7 (15.9) 18.5 (15.7) 18.2 (15.5) 18.2 (15.4) 17.6 (14.9) 16.9 (14.1) 1953 256 19.7 (17.1) 19.5 (16.8) 19.2 (16.5) 18.4 (15.6) 18.2 (15.4) 18.1 (15.3) 17.7 (15.0) 17.6 (15.0) 17.1 (14.2) 16.3 (13.8) 3906 128 19.4 (16.6) 18.9 (16.2) 18.6 (16.1) 17.8 (15.0) 17.7 (15.0) 17.5 (14.5) 17.1 (14.4) 17.0 (14.3) 16.5 (13.7) 15.8 (13.2) 7813 64 18.5 (15.6) 18.2 (15.4) 17.8 (15.1) 17.0 (14.3) 16.9 (14.2) 16.7 (14.0) 16.3 (13.5) 16.1 (13.5) 15.7 (12.8) 15.1 (12.5) 15625 32 15.3 (12.9) 15.3 (12.7) 15.4 (12.7) 15.2 (12.8) 15.1 (12.5) 15.1 (12.5) 15.0 (12.4) 14.7 (12.0) 14.4 (11.8) 13.9 (11.2) Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128 Effective resolution = log2(full-scale voltage/RMS noise) Noise-free resolution = log2(full-scale voltage/peak-to-peak noise) Note: Note: “Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF is enabled, and “PGA” indicates the state where PGA is enabled. The upper rows indicate effective resolution (bits) and the lower rows (in parentheses) indicate noise-free resolution (bits). R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 74 of 100 RX23E-A Group Table 2.55 2. Electrical Characteristics Typical Noise Characteristics (Low Power Mode) Conditions: AVCC0 = 5.0 V, Ta = 25°C, fMOD = 125 kHz, VID = 0 V, VREF = 2.5 V Gain = 1 (Bypass) Gain = 1 (BUF) Gain = 1 (PGA) Gain = 2 Gain = 4 65536 0.463 (3.29) 0.640 (4.19) 0.892 (5.38) 0.708 (4.63) 0.444 (2.62) 0.245 (1.72) 0.140 (0.90) 0.070 (0.47) 0.048 (0.34) 0.038 (0.25) 10 12512 1.053 (7.03) 1.313 (8.79) 1.596 (11.4) 1.492 (10.6) 0.797 (5.27) 0.437 (2.86) 0.286 (1.79) 0.143 (1.00) 0.109 (0.72) 0.085 (0.61) 50 2496 2.412 (15.7) 2.883 (18.4) 3.390 (21.7) 3.093 (22.5) 1.669 (11.0) 0.954 (5.96) 0.592 (3.86) 0.317 (2.35) 0.228 (1.69) 0.187 (1.22) 54 2304 2.558 (19.4) 3.098 (20.5) 3.544 (23.9) 3.139 (19.4) 1.719 (11.3) 0.962 (6.39) 0.637 (3.92) 0.333 (2.12) 0.242 (1.81) 0.199 (1.39) 60 2080 2.491 (16.3) 3.230 (20.8) 3.598 (26.4) 3.348 (25.0) 1.810 (13.6) 1.024 (7.38) 0.645 (4.50) 0.346 (2.30) 0.257 (1.88) 0.207 (1.37) 100 1248 3.237 (21.7) 3.843 (26.6) 4.794 (32.5) 4.274 (27.1) 2.319 (15.3) 1.357 (9.35) 0.872 (6.37) 0.454 (2.98) 0.338 (2.29) 0.268 (1.83) 195 640 4.663 (37.7) 5.666 (37.7) 6.826 (46.5) 5.799 (39.7) 3.245 (21.3) 1.930 (12.9) 1.164 (7.50) 0.627 (4.61) 0.474 (3.31) 0.371 (2.68) 488 256 7.451 (46.6) 9.151 (62.5) 10.30 (70.9) 9.404 (59.6) 5.216 (35.7) 2.934 (20.2) 1.869 (13.6) 1.006 (6.13) 0.729 (5.46) 0.599 (4.56) 977 128 10.37 (72.4) 13.13 (83.1) 15.63 (111) 13.71 (93.3) 7.605 (63.0) 4.383 (30.3) 2.796 (18.0) 1.510 (9.78) 1.099 (7.60) 0.908 (7.23) 1953 64 16.80 (117) 19.92 (153) 25.41 (177) 22.23 (138) 12.30 (94.9) 7.226 (50.9) 4.520 (30.6) 2.531 (16.2) 1.927 (13.6) 1.499 (11.1) 3906 32 120.9 (720) 120.4 (761) 126.6 (634) 73.29 (507) 36.82 (216) 19.83 (124) 11.22 (78.4) 6.332 (39.1) 4.427 (27.3) 3.143 (20.0) fDR (SPS) OSR 1.9 Note: Note: Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128 “Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF is enabled, and “PGA” indicates the state where PGA is enabled. The upper rows indicate RMS noise (µVRMS) and the lower rows (in parentheses) indicate peak-to-peak noise (µVPP). R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 75 of 100 RX23E-A Group Table 2.56 2. Electrical Characteristics Effective Resolution (Low Power Mode) Conditions: AVCC0 = 5.0 V, Ta = 25°C, fMOD = 125 kHz, VID = 0 V, VREF = 2.5 V fDR (SPS) OSR 1.9 Gain = 1 (Bypass) Gain = 1 (BUF) Gain = 1 (PGA) Gain = 2 Gain = 4 65536 23.4 (20.5) 22.8 (20.1) 22.4 (19.8) 21.8 (19.0) 21.4 (18.9) 21.3 (18.5) 21.1 (18.4) 21.1 (18.4) 20.6 (17.8) 20.0 (17.3) 10 12512 22.2 (19.4) 21.8 (19.1) 21.6 (18.7) 20.7 (17.9) 20.6 (17.9) 20.5 (17.7) 20.1 (17.4) 20.1 (17.3) 19.5 (16.7) 18.8 (16.0) 50 2496 21.0 (18.3) 20.7 (18.0) 20.5 (17.8) 19.6 (16.8) 19.5 (16.8) 19.3 (16.7) 19.0 (16.3) 18.9 (16.0) 18.4 (15.5) 17.7 (15.0) 54 2304 20.9 (18.0) 20.6 (17.8) 20.4 (17.7) 19.6 (17.0) 19.5 (16.8) 19.3 (16.6) 18.9 (16.3) 18.8 (16.2) 18.3 (15.4) 17.6 (14.8) 60 2080 20.9 (18.2) 20.5 (17.8) 20.4 (17.5) 19.5 (16.6) 19.4 (16.5) 19.2 (16.4) 18.9 (16.1) 18.8 (16.1) 18.2 (15.3) 17.5 (14.8) 100 1248 20.6 (17.8) 20.3 (17.5) 20.0 (17.2) 19.2 (16.5) 19.0 (16.3) 18.8 (16.0) 18.5 (15.6) 18.4 (15.7) 17.8 (15.1) 17.2 (14.4) 195 640 20.0 (17.0) 19.7 (17.0) 19.5 (16.7) 18.7 (15.9) 18.6 (15.8) 18.3 (15.6) 18.0 (15.4) 17.9 (15.1) 17.3 (14.5) 16.7 (13.8) 488 256 19.4 (16.7) 19.0 (16.2) 18.9 (16.1) 18.0 (15.4) 17.9 (15.1) 17.7 (14.9) 17.4 (14.5) 17.3 (14.6) 16.7 (13.8) 16.0 (13.1) 977 128 18.9 (16.1) 18.5 (15.8) 18.3 (15.4) 17.5 (14.7) 17.3 (14.3) 17.1 (14.3) 16.8 (14.1) 16.7 (14.0) 16.1 (13.3) 15.4 (12.4) 1953 64 18.2 (15.4) 17.9 (14.9) 17.6 (14.8) 16.8 (14.2) 16.6 (13.7) 16.4 (13.6) 16.1 (13.3) 15.9 (13.2) 15.3 (12.5) 14.7 (11.8) 3906 32 15.3 (12.8) 15.3 (12.6) 15.3 (12.9) 15.1 (12.3) 15.1 (12.5) 14.9 (12.3) 14.8 (12.0) 14.6 (12.0) 14.1 (11.5) 13.6 (10.9) Gain = 8 Gain = 16 Gain = 32 Gain = 64 Gain = 128 Effective resolution = log2(full-scale voltage/RMS noise) Noise-free resolution = log2(full-scale voltage/peak-to-peak noise) Note: Note: “Bypass” indicates the state where both PGA and BUF are disabled, “BUF” indicates the state where PGA is disabled and BUF is enabled, and “PGA” indicates the state where PGA is enabled. The upper rows indicate effective resolution (bits) and the lower rows (in parentheses) indicate noise-free resolution (bits). R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 76 of 100 RX23E-A Group Table 2.57 2. Electrical Characteristics 24-Bit Delta-Sigma A/D Converter Analog Input Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Differential input voltage range Symbol Min. Typ. Max. Unit Test Conditions VIDR −VREF — +VREF V Whichever is greater of the values of −VREF and −(AVCC0 – AVSS0 – 0.5V) — Whichever is smaller of the values of +VREF and +(AVCC0 – AVSS0 – 0.5V) VREF = V(REFnP) − V(REFnN) (n = 0, 1), or VREF = VREFOUT −VREF/ Gain — +VREF / Gain AVSS0 – 0.05 — AVCC0 + 0.05 Gain = 1 (PGA disabled, BUF enabled) AVSS0 + 0.1 — AVCC0 – 0.1 Gain = 1 to 128 (PGA enabled) AVSS0 – 0.05 — AVCC0 + 0.05 — ±5 ±25 Gain = 1 (PGA disabled, BUF disabled), OPCR.DSADLVM = 0 — ±1 ±5 Gain = 1 (PGA disabled, BUF enabled) — ±1 ±5 Gain = 1 (PGA disabled, BUF disabled), OPCR.DSADLVM = 1 — ±1.5 ±3.0 µA — ±3 ±10 nA Gain = 1 (PGA disabled, BUF enabled) — ±0.5 ±2.0 Gain = 1 (PGA disabled, BUF disabled) — 5 10 µA/V — 50 180 pA/°C Gain = 32 to 128 — 70 200 Gain = 1 (PGA disabled, BUF enabled) — 50 100 Gain = 1 (PGA disabled, BUF disabled), OPCR.DSADLVM = 0 — 50 100 Gain = 1 (PGA disabled, BUF disabled), OPCR.DSADLVM = 1 — 300 500 — 50 200 Gain = 1 (PGA disabled, BUF enabled) — 45 80 Gain = 1 (PGA disabled, BUF disabled) — 170 350 Gain = 1 (PGA disabled) Gain = 1 (PGA enabled) Gain ≥ 2 Absolute input voltage range Input bias current Input offset current Input bias current drift Input offset current drift Gain = 1 (PGA disabled, BUF disabled) Gain = 1 to 128 (PGA enabled) Gain = 1 to 128 (PGA enabled) Gain = 1 to 16 (PGA enabled) Gain = 1 to 128 (PGA enabled) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 VI IIB IIO dIIB dIIO V nA Figure 2.96 Ta = 25°C Figure 2.97 Ta = 25°C pA/°C pA/V/°C Page 77 of 100 RX23E-A Group 2. Electrical Characteristics 350 0.15 300 0.10 0.05 Noise [µV] Occurrence 250 200 150 100 0.00 –0.05 –0.10 50 0 –0.15 –0.15 –0.10 –0.05 0.00 0.05 0.10 0 0.15 500 Noise [µV] Figure 2.75 1000 1500 2000 sample Noise Histogram (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 128, fDR = 7.6 SPS, VID = 0V, VREF = 2.5V) Figure 2.76 350 0.5 300 0.4 Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 128, fDR = 7.6 SPS, VID = 0V, VREF = 2.5V) 0.3 Noise [µV] Occurrence 250 200 150 0.2 0.1 0.0 –0.1 –0.2 100 –0.3 50 0 –0.6 –0.4 –0.5 –0.4 –0.2 0.0 0.2 0.4 0 0.6 500 Noise [µV] Noise Histogram (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 16, fDR = 7.6 SPS, VID = 0V, VREF = 2.5V) Figure 2.78 700 2.0 600 1.5 500 1.0 1500 2000 Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 16, fDR = 7.6 SPS, VID = 0V, VREF = 2.5V) 0.5 400 Noise [µV] Occurrence Figure 2.77 1000 sample 300 200 100 0.0 –0.5 –1.0 –1.5 –2.0 0 –2.4 –1.8 –1.2 –0.6 0.0 0.6 1.2 1.8 2.4 0 Noise Histogram (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 1 (PGA disabled, BUF disabled), fDR = 7.6 SPS, VID = 0V, VREF = 2.5V) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 1000 1500 2000 sample Noise [µV] Figure 2.79 500 Figure 2.80 Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 1 (PGA disabled, BUF disabled), fDR = 7.6 SPS, VID = 0V, VREF = 2.5V) Page 78 of 100 2. Electrical Characteristics 350 0.20 300 0.15 250 0.10 Noise [µV] Occurrence RX23E-A Group 200 150 100 0.05 0.00 –0.05 –0.10 50 –0.15 –0.20 0 –0.24 –0.18 –0.12 –0.06 0.00 0.06 0.12 0.18 0.24 0 500 Noise [µV] Noise Histogram (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, Gain = 128, fDR = 1.9 SPS, VID = 0V, VREF = 2.5V) Figure 2.82 350 0.8 300 0.6 250 0.4 Noise [µV] Occurrence Figure 2.81 200 150 100 Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, Gain = 128, fDR = 1.9 SPS, VID = 0V, VREF = 2.5V) 0.2 0.0 –0.2 –0.8 0.0 0.2 0.4 0.6 0.8 0 500 Noise Histogram (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, Gain = 16, fDR = 1.9 SPS, VID = 0V, VREF = 2.5V) Figure 2.84 3 500 2 400 1 Noise [µV] 600 300 –1 100 –2 R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 2000 Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, Gain = 16, fDR = 1.9 SPS, VID = 0V, VREF = 2.5V) –3 0 500 1000 1500 2000 sample Noise [µV] Noise Histogram (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, Gain = 1 (PGA disabled, BUF disabled), fDR = 1.9 SPS, VID = 0V, VREF = 2.5V) 1500 0 200 0 –3.0 –2.4 –1.8 –1.2 –0.6 0.0 0.6 1.2 1.8 2.4 3.0 1000 sample Noise [µV] Occurrence 2000 –0.6 0 –0.8 –0.6 –0.4 –0.2 Figure 2.85 1500 –0.4 50 Figure 2.83 1000 sample Figure 2.86 Plot of Noise (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, Gain = 1 (PGA disabled, BUF disabled), fDR = 1.9 SPS, VID = 0V, VREF = 2.5V) Page 79 of 100 RX23E-A Group 2. Electrical Characteristics Gain = 1 (PGA disabled, BUF disabled) Gain = 2 Gain = 16 Gain = 128 Gain = 1 (PGA disabled , BUF enabled ) Gain = 4 Gain = 32 Gain = 1 (PGA enabled ) Gain = 8 Gain = 64 24 Effective resolution [bits] RMS noise [µVRMS] 1000 100 10 1 0.1 Gain = 1 (PGA enabled ) Gain = 8 Gain = 64 22 20 18 16 12 1 Figure 2.87 10 100 1000 Data rate [SPS] 10000 Gain = 1 (PGA disabled, BUF enabled ) Gain = 4 Gain = 32 1 100000 Data Rate Dependence of RMS Noise (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, VID = 0V, VREF = 2.5V) Gain = 1 (PGA disabled , BUF disabled) Gain = 2 Gain = 16 Gain = 128 Figure 2.88 Gain = 1 (PGA enabled ) Gain = 8 Gain = 64 10 100 1000 Data rate [SPS] 10000 100000 Data Rate Dependence of Effective Resolution (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, VID = 0V, VREF = 2.5V) Gain = 1 (PGA disabled , BUF disabled) Gain = 2 Gain = 16 Gain = 128 1000 Gain = 1 (PGA disabled, BUF enabled ) Gain = 4 Gain = 32 Gain = 1 (PGA enabled ) Gain = 8 Gain = 64 Effective resolution [bits] 24 100 RMS noise [µVRMS] Gain = 1 (PGA disabled , BUF enabled ) Gain = 4 Gain = 32 14 0.01 10 1 0.1 0.01 Gain = 1 (PGA disabled , BUF disabled) Gain = 2 Gain = 16 Gain = 128 22 20 18 16 14 12 1 10 100 1000 10000 1 Data rate [SPS] Figure 2.89 Data Rate Dependence of RMS Noise (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, VID = 0V, VREF = 2.5V) Figure 2.90 10 100 Data rate [SPS] 1000 10000 Data Rate Dependence of Effective Resolution (AVCC0 = 5.0 V, Ta = 25°C, Low Power Mode, VID = 0V, VREF = 2.5V) 3.0 Gain = 1 (PGA disabled, BUF disabled) Gain = 2 RMS noise [µVRMS] 2.5 2.0 1.5 1.0 –50 –40 –30 –20 –10 0 10 20 30 40 50 Input voltage [% of FSR] Figure 2.91 Input Voltage Dependence of RMS Noise (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, fDR = 122 SPS, VREF = 2.5V) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 80 of 100 2. Electrical Characteristics 8 8 6 6 4 4 INL [ppm FSR] INL [ppm FSR] RX23E-A Group 2 0 –2 2 0 –2 –4 –4 –6 –6 –8 –50 –40 –30 –20 –10 0 10 20 30 40 –8 –50 –40 –30 –20 –10 50 Input voltage[% of FSR] Input Voltage Dependence of Integral Non-Linearity (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 2, OPCR.DSADLVM bit = 0, VREF = 2.5V) Figure 2.93 15 0.03 10 0.02 5 0.01 Gain error [%] Offset error [µV] Figure 2.92 0 –5 –10 Gain = 1 (PGA disabled, BUF disabled) Gain = 2 Gain = 1 (PGA disabled, BUF enabled) Gain = 4 –25 Gain = 8 Gain = 16 Gain = 32 Gain = 64 0 –0.01 Gain = 1 (PGA disabled, BUF disabled) Gain = 2 Gain = 16 Gain = 128 –0.02 50 75 100 –50 125 Gain = 1 (PGA disabled, BUF disabled) Gain = 1 (PGA enabled) Gain = 4 Gain = 16 Gain = 64 Gain = 1 (PGA disabled, BUF enabled) Gain = 2 Gain = 8 Gain = 32 Gain = 128 0 –1 –2 –3 –50 Figure 2.95 6 4 2 50 Gain = 1 (PGA disabled , BUF enabled ) Gain = 4 Gain = 32 Gain = 1 (PGA enabled ) Gain = 8 Gain = 64 –25 0 25 50 75 100 125 Temperature Dependence of Gain Error (AVCC0 = 5.0 V, OPCR.DSADLVM bit = 0, VREF = 2.5V) Gain = 1 (PGA disabled, BUF enabled) Gain = 2 Gain = 8 Gain = 32 Gain = 128 Gain = 1 (PGA enabled) Gain = 4 Gain = 16 Gain = 64 0 –2 –4 –25 0 25 50 75 100 125 –6 –50 Temperature Dependence of Analog Input Bias Current (AVCC0 = 5.0 V) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 –25 0 25 50 75 100 125 Temperature [°C] Temperature [°C] Figure 2.96 40 Temperature [°C] Temperature Dependence of Offset Error (AVCC0 = 5.0 V, VID = 0V, VREF = 2.5V) offset current [nA] bias current [nA] 1 30 –0.03 25 3 2 20 Input Voltage Dependence of Integral Non-Linearity (AVCC0 = 5.0 V, Ta = 25°C, Normal Mode, Gain = 1 (PGA disabled, BUF disabled), OPCR.DSADLVM bit = 0, VREF = 2.5V) Temperature [°C] Figure 2.94 10 0.00 Gain = 1 (PGA enabled) Gain = 128 –15 –50 0 Input voltage[% of FSR] Figure 2.97 Temperature Dependence of Analog Input Offset Current (AVCC0 = 5.0 V) Page 81 of 100 RX23E-A Group 2.10 2. Electrical Characteristics Analog Front End Characteristics Table 2.58 Voltage Reference Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ. Max. Unit Output voltage Item VREFOUT — 2.5 — V Figure 2.98 Initial accuracy — — — ±0.1 % Figure 2.99 Ta = 25°C Temperature drift — — 4 10 ppm/°C — 5 12 Load current IL — — ±10 mA Load regulation — — –35 –50 µV/mA — 250 400 70 80 — Power supply rejection ratio Table 2.59 PSRR Test Conditions Ta = –40 to +85°C Ta = –40 to +105°C Figure 2.100 IL= 0 to +10 mA IL = –10 to 0 mA dB DC Bias Voltage Generator Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Symbol Min. Typ. Max. Unit Output voltage VBIAS (AVCC0 + AVSS0)/2 – 0.02 (AVCC0 + AVSS0)/2 (AVCC0 + AVSS0)/2 + 0.02 V Startup time tSTART — — 20 µs/nF Table 2.60 Test Conditions Temperature Sensor Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Accuracy Voltage sensitivity coefficient Second-order Symbol Min. Typ. Max. Unit — — — ±5 °C TCSNS First-order Output code R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 — — °C/LSB2 — 7.5 × 10–5 — °C/LSB — 3D4F50h (4018000) — — — –6.2 × 10–13 Test Conditions Figure 2.101 Page 82 of 100 RX23E-A Group Table 2.61 2. Electrical Characteristics Excitation Current Source Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Output current Symbol 2 channels mode Min. IEXC Typ. Max. Unit 50, 100, 250, 500, 750, 1000 4 channels mode Test Conditions µA Figure 2.102 ±5 % Figure 2.103 Ta = 25°C 50, 100, 250, 500 Initial accuracy — — Temperature drift — — 25 60 ppm/°C Current matching — — ±0.2 ±2.0 % Drift matching — — 5 30 ppm/°C Line regulation — — 0.05 0.30 %/V — — 0.1 0.5 %/V VCOMP AVSS0 – 0.05 — AVCC0 – 0.5 V Load regulation Compliance voltage Table 2.62 ±1 Figure 2.104, Figure 2.105 Ta = 25°C Matching between IEXC0 and IEXC1 Matching between IEXC2 and IEXC3 Figure 2.106 Output current error = –2.0% External Reference Input Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Differential input voltage range Absolute input voltage range Reference buffer disabled Reference buffer enabled Input current Reference buffer disabled Symbol Min. Typ. Max. Unit VREF 1 2.5 AVCC0 V V(REF0P), V(REF1P), V(REF0N), V(REF1N) AVSS0 – 0.05 — AVCC0 + 0.05 V AVSS0 + 0.1 — AVCC0 – 0.1 Ib — 7 15 µA/V Figure 2.107 Ta = 25°C — ±1 ±3 nA Figure 2.108 Ta = 25°C — 0.8 1.5 nA/V/°C Ta = –40 to +105°C — 18 60 pA/°C Ta = –40 to +85°C Ta = –40 to +105°C Reference buffer enabled Input current drift Reference buffer disabled dIb Reference buffer enabled Common mode rejection ratio Reference buffer disabled CMRR Reference buffer enabled Table 2.63 — 30 150 pA/°C 70 90 — dB 70 80 — Test Conditions VREF = V(REFnP) – V(REFnN) (n = 0, 1) Low Side Switch Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item On-state resistance Off-state leakage current Allowable current R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Symbol Min. Typ. Max. Unit RON — — 10 Ω Ilkg — — 0.1 µA ILIMIT — — 30 mA Test Conditions Page 83 of 100 RX23E-A Group Table 2.64 2. Electrical Characteristics Low Power-Supply Voltage Detector Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Detection voltage (LVDET0) DET0LVL = 0 Symbol Min. Typ. Max. Unit VDET0 1.88 2.00 2.12 V 1.74 1.86 1.98 DET0LVL = 1 Non-responsive period (LVDET0) tDET0 — — 20 µs Detection voltage (LVDET1) VDET1 2.75 2.91 3.07 V DET1LVL[1:0] = 01b 2.65 2.82 2.99 DET1LVL[1:0] = 10b 3.60 3.80 4.00 DET1LVL[1:0] = 11b 3.50 3.70 3.90 — — 20 DET1LVL[1:0] = 00b Non-responsive period (LVDET1) Table 2.65 tDET1 Test Conditions Negative-going AVCC0 Negative-going AVCC0 µs Input Voltage Fault Detector Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Symbol Min. Upper detection level for the analog input voltage VIDETH Lower detection level for the analog input voltage VIDETL — tIDET — Non-responsive period Table 2.66 Typ. Max. Unit — V AVSS0 – 0.2 AVSS0 – 0.05 V — 20 µs AVCC0 + 0.05 AVCC0 + 0.2 Test Conditions Reference Voltage Fault Detector Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Symbol Min. Typ. Max. Unit Detection level for external reference voltage differential Item VRDET 0.70 0.85 1.00 V Upper detection level for the external reference voltage VRDETH AVCC0 – 0.5 AVCC0 – 0.4 — V Lower detection level for the external reference voltage VRDETL — AVSS0 + 0.4 AVSS0 + 0.5 V tRDET — — 20 µs Non-responsive period Table 2.67 Test Conditions Excitation Current Source Disconnect Detector Characteristics Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = –40 to +105°C Item Symbol Detection level for disconnection of the excitation current source VIEXCDET Non-responsive period tIEXCDET R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Min. Typ. AVCC0 – 0.18 AVCC0 – 0.06 — — Max. Unit — V 20 µs Test Conditions Page 84 of 100 RX23E-A Group 2. Electrical Characteristics 2.504 10 2.503 8 2.501 Occurrence Output voltage [V] 2.502 2.500 2.499 6 4 2.498 2 2.497 2.496 –50 –25 0 25 50 75 100 0 –0.15 125 –0.10 –0.05 Figure 2.98 Temperature Dependence of Output Voltage of Voltage Reference (AVCC0 = 5.0 V) Figure 2.99 0.05 0.10 0.15 Initial Accuracy of Voltage Reference (AVCC0 = 5.0 V, 30 samples) 2.0 1.003 1.5 Temperature error [°C] 1.002 VREFOUT (normalized) 0.00 Inital accuracy [%] Temperature [°C] 1.001 1.000 0.999 0.998 1.0 0.5 0.0 –0.5 –1.0 –1.5 0.997 –15 –10 –5 0 5 10 –2.0 –50 15 IL [mA] Figure 2.100 –25 0 25 50 75 100 125 Temperature [°C] Load Regulation of Voltage Reference (AVCC0 = 5.0 V, Ta = 25°C) Figure 2.101 1.5 Accuracy of Temperature Sensor (AVCC0 = 5.0 V) 30 Occurrence Initial accuracy [%] 1.0 0.5 0.0 10 –0.5 IEXC = 50 µA IEXC = 100 µA IEXC = 250 µA IEXC = 500 µA IEXC = 750 µA IEXC = 1000 µA –1.0 –1.5 –50 20 –25 0 25 50 75 100 125 0 –2.0 –1.6 –1.2 –0.8 –0.4 0.0 Initial accuracy [%] Temperature [°C] Figure 2.102 Temperature Dependence of Output Current of Excitation Current Source (AVCC0 = 5.0 V) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 0.4 0.8 1.2 1.6 2.0 Figure 2.103 Initial Accuracy of Output Current of Excitation Current Source (AVCC0 = 5.0 V, Ta = 25°C, IEXC = 250 µA, 93 samples) Page 85 of 100 RX23E-A Group 2. Electrical Characteristics 50 0.4 IEXC = 50 µA IEXC = 100 µA IEXC = 250 µA IEXC = 500 µA IEXC = 750 µA IEXC = 1000 µA 0.3 Current matching [%] Occurrence 40 30 20 10 0.2 0.1 0.0 –0.1 –0.2 –0.3 0 –0.6 –0.4 –0.2 0.0 0.2 0.4 –0.4 –50 0.6 –25 0 Current matching [%] Figure 2.104 Matching of Output Current of Excitation Current Source (AVCC0 = 5.0 V, Ta = 25°C, IEXC = 250 µA, 93 samples) Figure 2.105 25 50 75 Temperature [°C] 100 125 Temperature Dependence of Matching of Output Current of Excitation Current Source (AVCC0 = 5.0 V) 5 IEXC = 50 µA IEXC = 250 µA IEXC error (%) IEXC = 1000 µA 0 –5 –10 3.0 3.5 4.0 4.5 5.0 5.5 Output voltage [V] Figure 2.106 IEXC Accuracy vs Compliance Voltage (AVCC0 = 5.0 V, Ta = 25°C) 1.0 REF0P 0.8 REF0N 0.6 8 4 0 –4 Input current [µA] Input current [µA] 20 16 12 REF0P REF0N –8 –12 –16 –20 0.4 0.2 0.0 –0.2 –0.4 –0.6 –0.8 –50 –25 0 25 50 75 100 125 –1.0 –50 Temperature [°C] Figure 2.107 Temperature Dependence of External Reference Input Current (AVCC0 = 5.0 V, Reference Buffer Disabled) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 –25 0 25 50 75 100 125 Temperature [°C] Figure 2.108 Temperature Dependence of External Reference Input Current (AVCC0 = 5.0 V, Reference Buffer Enabled) Page 86 of 100 RX23E-A Group 2.11 2. Electrical Characteristics 12-Bit A/D Conversion Characteristics VREFH0 VREFH0 5.5 5.5 5.0 5.0 4.0 A/D Conversion Characteristics (1) 4.0 A/D Conversion Characteristics (3) 3.0 2.7 2.4 A/D Conversion Characteristics (2) 3.0 2.7 2.4 A/D Conversion Characteristics (4) 2.0 2.0 1.8 A/D Conversion Characteristics (5) 1.0 1.0 2.4 2.7 1.0 2.0 3.0 5.5 4.0 1.8 AVCC0 5.0 1.0 ADCSR.ADHSC = 0 Figure 2.109 Table 2.68 2.4 2.7 2.0 3.0 5.5 4.0 AVCC0 5.0 ADCSR.ADHSC = 1 AVCC0 to VREFH0 Voltage Range 12-Bit A/D Conversion Characteristics (1) Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 0.3 kΩ Item Frequency Resolution Min. Typ. Max. Unit 1 — 32 MHz Test Conditions — — 12 Bit 1.41 — — µs ADCSR.ADHSC bit = 0 ADSSTRn = 0Dh Analog input capacitance Cs — — 25 pF Pin capacitance included Analog input resistance — — 2.5 kΩ Conversion time*1 (Operation at PCLKD = 32 MHz) Rs Analog input effective range 0 — VREFH0 V Offset error — ±0.5 ±4.5 LSB Full-scale error — ±0.75 ±4.50 LSB Quantization error — ± 0.5 — LSB Absolute accuracy — ±1.25 ±5.00 LSB DNL differential nonlinearity error — ±1.0 — LSB INL integral nonlinearity error — ±1.0 ±3.0 LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 87 of 100 RX23E-A Group Table 2.69 2. Electrical Characteristics 12-Bit A/D Conversion Characteristics (2) Conditions: 2.4 V ≤ VCC ≤ 5.5 V, 2.4 V ≤ AVCC0 ≤ 5.5 V, 2.4 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 1.3 kΩ Item Min. Typ. Max. Unit Test Conditions Frequency 1 — 16 MHz Resolution — — 12 Bit 2.82 — — µs ADCSR.ADHSC bit = 0 ADSSTRn = 0Dh Pin capacitance included Conversion time*1 (Operation at PCLKD = 16 MHz) Analog input capacitance Cs — — 25 pF Analog input resistance Rs — — 2.5 kΩ Analog input effective range 0 — VREFH0 V Offset error — ±0.5 ±4.5 LSB Full-scale error — ±0.75 ±4.50 LSB Quantization error — ±0.5 — LSB Absolute accuracy — ±1.25 ±5.00 LSB DNL differential nonlinearity error — ±1.0 — LSB INL integral nonlinearity error — ±1.0 ±4.5 LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. Table 2.70 12-Bit A/D Conversion Characteristics (3) Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 1.1 kΩ Item Min. Typ. Max. Unit 1 — 27 MHz — — 12 Bit Conversion (Operation at PCLKD = 27 MHz) 3 — — µs ADCSR.ADHSC bit = 1 ADSSTRn = 28h Analog input capacitance Cs — — 25 pF Pin capacitance included Analog input resistance Rs — — 2.5 kΩ Analog input effective range 0 — VREFH0 V Offset error — ±0.5 ±4.5 LSB Full-scale error — ±0.75 ±4.50 LSB Quantization error — ±0.5 — LSB Absolute accuracy — ±1.25 ±5.00 LSB DNL differential nonlinearity error — ±1.0 — LSB INL integral nonlinearity error — ±1.0 ±3.0 LSB Frequency Resolution time*1 Test Conditions Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 88 of 100 RX23E-A Group Table 2.71 2. Electrical Characteristics 12-Bit A/D Conversion Characteristics (4) Conditions: 2.4 V ≤ VCC ≤ 5.5 V, 2.4 V ≤ AVCC0 ≤ 5.5 V, 2.4 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 2.2 kΩ Item Min. Typ. Max. Unit Test Conditions Frequency 1 — 16 MHz Resolution — — 12 Bit 5.06 — — µs ADCSR.ADHSC bit = 1 ADSSTRn = 28h Pin capacitance included Conversion time*1 (Operation at PCLKD = 16 MHz) Analog input capacitance Cs — — 25 pF Analog input resistance Rs — — 2.5 kΩ Analog input effective range 0 — VREFH0 V Offset error — ±0.5 ±4.5 LSB Full-scale error — ±0.75 ±4.50 LSB Quantization error — ±0.5 — LSB Absolute accuracy — ±1.25 ±5.00 LSB DNL differential nonlinearity error — ±1.0 — LSB INL integral nonlinearity error — ±1.0 ±3.0 LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. Table 2.72 12-Bit A/D Conversion Characteristics (5) Conditions: 1.8 V ≤ VCC ≤ 5.5 V, 1.8 V ≤ AVCC0 ≤ 5.5 V, 1.8 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = –40 to +105°C, Source impedance = 5 kΩ Item Frequency Resolution time*1 Conversion (Operation at PCLKD = 8 MHz) Min. Typ. Max. Unit 1 — 8 MHz — — 12 Bit 10.13 — — µs ADCSR.ADHSC bit = 1 ADSSTRn = 28h Pin capacitance included Analog input capacitance Cs — — 25 pF Analog input resistance Rs — — 2.5 kΩ Analog input effective range 0 — VREFH0 V Offset error — ±1.0 ±7.5 LSB Full-scale error — ±1.5 ±7.5 LSB Quantization error — ±0.5 — LSB Absolute accuracy — ±3.0 ±8.0 LSB DNL differential nonlinearity error — ±1.0 — LSB INL integral nonlinearity error — ±1.25 ±3.00 LSB Test Conditions Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 89 of 100 RX23E-A Group Table 2.73 2. Electrical Characteristics 12-Bit A/D Converter Channel Classification Classification Channel Analog input channel Conditions AN000 to AN005 Remarks AVCC0 = 1.8 to 5.5 V MCU R0 Rs 12b - ADC Cs Figure 2.110 Equivalent Circuit R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 90 of 100 RX23E-A Group 2. Electrical Characteristics FFFh Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy 000h Offset error 0 Figure 2.111 Analog input voltage VREFH0 (full-scale) Illustration of A/D Converter Characteristic Terms Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages. If analog input voltage is 6 mV, absolute accuracy = ±5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 91 of 100 RX23E-A Group 2. Electrical Characteristics Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. Offset error Offset error is the difference between a transition point of the ideal first output code and the actual first output code. Full-scale error Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 92 of 100 RX23E-A Group 2.12 2. Electrical Characteristics Usage Notes 2.12.1 Connecting VCL Capacitor and Bypass Capacitors This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU automatically to the optimum level. A 4.7-µF capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and the VSS pin. Figure 2.112 and Figure 2.113 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor as closer to the MCU power supply pins as possible. Use a recommended value of 0.1 µF as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User’s Manual: Hardware. For the capacitors related to analog modules, also see section 33, Analog Front End (AFE), and section 35, 12-Bit A/D Converter (S12ADE) in the User’s Manual: Hardware. For notes on designing the printed circuit board, see the descriptions of the application note, the Hardware Design Guide (R01AN1411EJ). The latest version can be downloaded from the Renesas Electronics website. 25 26 27 28 29 31 VCC 30 38 VSS 32 37 AVCC0 33 35 AVSS0 34 36 Bypass Bypass capacitor capacitor 0.1 µF 0.1 µF 24 23 39 22 40 RX23E-A Group PLQP0048KB-B (48-pin LFQFP) (Top view) 41 42 43 44 45 21 20 19 18 17 16 46 12 13 11 10 VCL 9 VCC 8 7 VSS 6 14 5 3 AVSS0 2 1 48 4 AVCC0 15 47 Bypass capacitor 0.1 µF Bypass capacitor 0.1 µF Note: Figure 2.112 External capacitor for power supply stabilization 4.7 µF Do not apply the power supply voltage to the VCL pin. Use a 4.7-µF multilayer ceramic capacitor for the VCL pin and place it close to the pin. A recommended value is shown for the capacitance of the bypass capacitors. Connecting Capacitors (48 Pins) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 93 of 100 RX23E-A Group 2. Electrical Characteristics 21 22 23 25 VCC 24 Bypass capacitor 0.1 µF VSS 26 AVSS0 28 31 AVCC0 27 29 30 Bypass capacitor 0.1 µF 20 32 18 17 16 15 14 13 10 VCL 8 11 9 VCC 7 VSS 12 6 40 5 39 4 38 3 37 AVCC0 36 AVSS0 35 RX23E-A Group PWQN0040KC-A (40-pin HWQFN) (Top view) 2 34 19 1 33 Bypass capacitor 0.1 µF Bypass capacitor 0.1 µF Note: Figure 2.113 External capacitor for power supply stabilization 4.7 µF Do not apply the power supply voltage to the VCL pin. Use a 4.7-µF multilayer ceramic capacitor for the VCL pin and place it close to the pin. A recommended value is shown for the capacitance of the bypass capacitors. Connecting Capacitors (40 Pins) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 94 of 100 RX23E-A Group Appendix 1. Package Dimensions Appendix 1. Package Dimensions Information on the latest version of the package dimensions or mountings has been displayed in “Packages” on Renesas Electronics Corporation website. Figure A 48-Pin LFQFP (PLQP0048KB-B) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 95 of 100 RX23E-A Group Appendix 1. Package Dimensions JEITA Package code P-HWQFN40-6x6-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0040KC-A P40K8-50-4B4-5 0.09 D 21 30 DETAIL OF A PART 20 31 E 40 A A1 11 c2 10 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 10 11 40 Dimension in Millimeters Min Nom Max D 5.95 6.00 6.05 E 5.95 6.00 6.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 ZE 20 31 30 21 ZD e b Figure B x M 0.25 0.30 0.50 0.30 0.40 0.50 x 0.05 y 0.05 ZD 0.75 ZE 0.75 c2 0.15 0.20 D2 4.50 E2 4.50 0.25 S AB 40-Pin HWQFN (PWQN0040KC-A) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 96 of 100 RX23E-A Group Appendix 1. Package Dimensions JEITA Package code RENESAS code MASS(TYP.)[g] P-HWQFN040-6x6-0.50 PWQN0040KD-A 0.08 2X aaa C 30 21 31 20 D INDEX AREA (D/2 X E/2) 40 11 2X aaa C 10 1 B A E ccc C C SEATING PLANE A (A3) A1 b(40X) e 40X eee C bbb ddd E2 1 fff C A B fff C A B C C A B 10 EXPOSED 11 DIE PAD 40 Reference Symbol Dimension in Millimeters Min. A 䠉 䠉 0.80 0.00 0.02 0.05 0.203 REF. A3 0.18 D 31 20 30 21 L(40X) Figure C K(40X) Max. A1 b D2 Nom. 0.25 0.30 6.00 BSC E 6.00 BSC e 0.50 BSC L 0.30 0.40 K 0.20 䠉 䠉 D2 4.45 4.50 4.55 E2 4.45 4.50 4.55 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 0.50 40-Pin HWQFN (PWQN0040KD-A) R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 97 of 100 REVISION HISTORY RX23E-A Group REVISION HISTORY REVISION HISTORY RX23E-A Group Datasheet Classifications - Items with Technical Update document number: Changes according to the corresponding issued Technical Update - Items without Technical Update document number: Minor changes that do not require Technical Update to be issued Rev. Date 1.00 1.10 Aug 30, 2019 Oct 09, 2020 Description Page Summary — First edition, issued 1. Overview 7 Table 1.3 List of Products, changed 8 Figure 1.1 How to Read the Product Part Number, changed 2. Electrical Characteristics 51 to 63 2.4.5 Timing of On-Chip Peripheral Modules, Layout changed Classification All trademarks and registered trademarks are the property of their respective owners. R01DS0330EJ0110 Rev.1.10 Oct 09, 2020 Page 98 of 100 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 2. devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 3. level at which resetting is specified. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 4. elements. Follow the guideline for input signal during power-off state as described in your product documentation. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 5. become possible. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 6. produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 7. input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 8. addresses as the correct operation of the LSI is not guaranteed. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note1) (Note2) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
R5F523E5ADFL#10 价格&库存

很抱歉,暂时无法提供与“R5F523E5ADFL#10”相匹配的价格&库存,您可以联系我们找货

免费人工找货