0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R5F56609HGFB#30

R5F56609HGFB#30

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP-144_20X20MM

  • 描述:

    * 微控制器 IC

  • 数据手册
  • 价格&库存
R5F56609HGFB#30 数据手册
Features Datasheet RX660 Group R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Renesas MCUs 120-MHz 32-bit RX MCU, on-chip FPU, 709 CoreMark, Supportive of 5V power supply, up to 1-MB flash memory, up to 128-KB SRAM, 32-KB data flash memory, various communications interfaces, including CAN FD, 12-bit A/D converter, 12-bit D/A converter, Analog comparator, RTC, Remote control signal receiver Features ■ 32-bit RXv3 CPU core  Maximum operating frequency: 120 MHz Capable of 709 CoreMark in operation at 120 MHz  A collective register bank save function is available.  Supports the memory protection unit (MPU)  JTAG and FINE (one-line) debugging interfaces ■ Low-power design and architecture  Operation from a single 2.7- to 5.5-V supply  Deep software standby mode with the RTC continuing to run  Four low-power modes ■ On-chip code flash memory     Supports versions with up to 1 Mbyte of ROM No waiting for access in 120-MHz operation User code is programmable by on-board or off-board programming. Programming/erasing as background operations (BGOs) ■ On-chip data flash memory  32 Kbytes, reprogrammable up to 100,000 times  Programming/erasing as background operations (BGOs) ■ On-chip SRAM  128 Kbytes of SRAM (no wait states) ■ External address space  Buses for full-speed data transfer (maximum operating frequency of 40 MHz)  Four CS areas  8- or 16-bit bus space is selectable per area ■ Data transfer  DMACAa: 8 channels  DTCb: 1 channel ■ ELC  Module operation can be initiated by event signals without using interrupts  Linked operation between modules is possible when the CPU is in sleep mode ■ Reset and supply management  Power-on reset (POR)  Low voltage detection (LVD) PLQP0144KA-B PLQP0100KB-B PLQP0080KB-B PLQP0064KB-C PLQP0048KB-B 20 × 20 mm, 0.5 mm pitch 14 × 14 mm, 0.5 mm pitch 12 × 12 mm, 0.5 mm pitch 10 × 10 mm, 0.5 mm pitch 7 × 7 mm, 0.5 mm pitch ■ Various communications interfaces  CAN FD: Compliant with ISO 11898-1:2015, standard frame and extended frame (1 channel)  SCIk, SCIm, and SCIh with multiple functionalities (up to 13 channels) Choose from among asynchronous mode, clock-synchronous mode, smart-card interface mode, simplified SPI, simplified I2C, and extended serial mode.  SCIm with 16-byte transmission and reception FIFOs (up to 2 channels)  The I2C bus interfaces (RIICa) for transfer at up to 400 kbps (fast mode), capable of SMBus operation (2 channels)  RSPId (1 channel) for transfer at up to 30 Mbps ■ Up to 19 extended-function timers  16-bit MTU3a  8-bit TMRb (4 channels), 16-bit CMT (4 channels), 32-bit CMTW (2 channels) ■ 12-bit A/D converter  Single 12-bit unit (24 channels)  Self diagnosis, detection of analog input disconnection ■ Analog Comparator (CMPC): 4 channels ■ 12-bit D/A converter (R12DAb): 2 channels  Usable as a reference voltage for the analog comparator ■ Temperature sensor for measuring temperature within the chip ■ Up to 134 pins for general I/O ports  5-V tolerance, open drain, input pull-up, switchable driving ability ■ Operating temp. range  D-version: –40C to +85C  G-version: –40C to +105C ■ Clock functions  The main clock oscillator is connectable to an 8- to 24-MHz external crystal resonator and usable as the PLL reference clock.  A sub-clock oscillator connectable to a 32.768-kHz crystal resonator  Internal 240-kHz LOCO and HOCO selectable from 16, 18, and 20 MHz  120-kHz clock for the IWDTa ■ Real-time clock  Adjustment functions (30 seconds, leap year, and error)  Real-time clock counting and binary counting modes are selectable  Time capture in response to an event-signal input ■ Independent watchdog timer  120-kHz IWDT-dedicated on-chip oscillator clock operation ■ Useful functions for IEC60730 compliance  Oscillation-stoppage detection, functions for self-diagnosis and detection of disconnection for the A/D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test-assisting function by DOC, and CRCA, etc.  Register write protection function that protects important registers against overwriting ■ Remote control signal receiver R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 1 of 123 RX660 Group 1. Overview 1. Overview 1.1 Outline of Specifications Table 1.1 lists the specifications in outline, and Table 1.2 give a comparison of the functions of products in different packages. Table 1.1 is an outline of maximum specifications, and the peripheral modules and the number of channels of the modules differ depending on the number of pins on the package. For details, see Table 1.2, Comparison of Functions for Different Packages. Table 1.1 Outline of Specifications (1/8) Classification Module/Function Description CPU CPU  Maximum operating frequency: 120 MHz  32-bit RX CPU (RXv3)  Minimum instruction execution time: One instruction per state (cycle of the system clock)  Address space: 4-Gbyte linear  Register set of the CPU General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers  113 instructions Instructions installed as standard: 111 Basic instructions: 77 Single-precision floating-point operation instructions: 11 DSP instructions: 23 Instructions for register bank save function: 2  Addressing modes: 11  Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian  On-chip 32-bit multiplier: 32 × 32 → 64 bits  On-chip divider: 32 / 32 → 32 bits  Barrel shifter: 32 bits FPU  Single precision (32-bit) floating point  Data types and floating-point exceptions in conformance with the IEEE754 standard Register bank save function  Fast collective saving and restoration of the values of CPU registers  16 save register banks Code flash memory      Data flash memory  Capacity: 32 Kbytes  Programming/erasing: 100,000 times Unique ID  12-byte unique ID for the device RAM  Capacity: 128 Kbytes  120 MHz, no-wait access Memory Operating modes R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Capacity: 1 Mbyte/512 Kbytes 120 MHz, no-wait access On-board programming: Four types Off-board programming (parallel programmer mode) Instructions are executable only for the program stored in the TM target area by using the Trusted Memory (TM) function and protection against data reading is realized.  Operating modes by the mode-setting pins at the time of release from the reset state Single-chip mode Boot mode (for the SCI interface) Boot mode (for the FINE interface) User boot mode  Selection of operating mode by register setting Single-chip mode User boot mode On-chip ROM disabled extended mode On-chip ROM enabled extended mode  Endian selectable Page 2 of 123 RX660 Group Table 1.1 1. Overview Outline of Specifications (2/8) Classification Module/Function Description Clock Clock generation circuit  Main clock oscillator, sub-clock oscillator, low-speed/high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator  The peripheral module clocks can be set to frequencies above that of the system clock.  Main-clock oscillation stoppage detection  Separate frequency-division and multiplication settings for the system clock (ICLK), peripheral module clocks (PCLKA, PCLKB, PCLKD), flash-IF clock (FCLK) and external bus clock (BCLK) The CPU and other bus masters run in synchronization with the system clock (ICLK): Up to 120 MHz The following peripheral modules run in synchronization with PCLKA, which runs at up to 120 MHz: MTU, RSPI, SCIs (SCI10 and SCI11), RSCI, and the ECC function control registers in the CAN FD module. Other peripheral modules run in synchronization with PCLKB: Up to 60 MHz ADCLK in the S12AD runs in synchronization with PCLKD: Up to 60 MHz Flash IF run in synchronization with the flash-IF clock (FCLK): Up to 60 MHz Devices connected to the external bus run in synchronization with the external bus clock (BCLK): Up to 40 MHz  Multiplication is possible with using the high-speed on-chip oscillator (HOCO) as a reference clock of the PLL circuit Reset Nine types of reset  RES# pin reset: Generated when the RES# pin is driven low.  Power-on reset: Generated when the RES# pin is driven high and VCC = AVCC0 rises.  Voltage-monitoring 0 reset: Generated when VCC = AVCC0 falls.  Voltage-monitoring 1 reset: Generated when VCC = AVCC0 falls.  Voltage-monitoring 2 reset: Generated when VCC = AVCC0 falls.  Deep software standby reset: Generated in response to an interrupt to trigger release from deep software standby.  Independent watchdog timer reset: Generated when the independent watchdog timer underflows, or a refresh error occurs.  Watchdog timer reset: Generated when the watchdog timer underflows, or a refresh error occurs.  Software reset: Generated by register setting. Power-on reset If the RES# pin is at the high level when power is supplied, an internal reset is generated. After VCC = AVCC0 has exceeded the voltage detection level and the specified period has elapsed, the reset is cancelled. Voltage detection circuit (LVDA) Monitors the voltage being input to the VCC pins and generates an internal reset or internal interrupt in response to the voltage reaching a threshold.  Voltage detection circuit 0 Capable of generating an internal reset The option-setting memory can be used to select enabling or disabling of the reset. Voltage detection level: Selectable from two different levels  Voltage detection circuits 1 and 2 Voltage detection level: Selectable from five different levels Digital filtering (1/2, 1/4, 1/8, and 1/16 LOCO frequency) Capable of generating an internal reset  Two types of timing are selectable for release from reset An internal interrupt can be requested.  Detection of voltage rising above and falling below thresholds is selectable.  Maskable or non-maskable interrupt is selectable Voltage detection monitoring Event linking Low power consumption Low power consumption function  Module stop function  Four low power consumption modes Sleep mode, all-module clock stop mode, software standby mode, and deep software standby mode Interrupt Interrupt controller (ICUF)       R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Peripheral function interrupts: 256 sources External interrupts: 16 (pins IRQ0 to IRQ15) Software interrupts: 2 sources Non-maskable interrupts: 7 sources Sixteen levels specifiable for the order of priority Method of interrupt source selection: The interrupt vectors consist of 256 vectors (128 sources are fixed. The remaining 133 vectors are selected from among the other 128 sources.) Page 3 of 123 RX660 Group Table 1.1 Classification 1. Overview Outline of Specifications (3/8) Module/Function Description External bus extension  The external address space can be divided into four areas (CS0 to CS3), each with independent control of access settings. Capacity of each area: 2 Mbytes (CS0 to CS3) A chip-select signal (CS0# to CS3#) can be output for each area. Each area is specifiable as an 8-, or 16-bit bus space. The data arrangement in each area is selectable as little or big endian (only for data).  Bus format: Separate bus, multiplex bus  Wait control  Write buffer facility DMA DMA controller (DMACAa)  8 channels  Three transfer modes: Normal transfer, repeat transfer, and block transfer  Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions Data transfer controller (DTCb)  Three transfer modes: Normal transfer, repeat transfer, and block transfer  Request sources: External interrupts and interrupt requests from peripheral functions Programmable I/O ports  I/O ports for the 144-pin LFQFP with no JTAG interface and no sub-clock oscillator I/O pins: 133 Input pin: 1 Pull-up resistors: 133 Open-drain outputs: 133 5-V tolerance: 4  I/O ports for the 144-pin LFQFP with a sub-clock oscillator, but no JTAG interface I/O pins: 131 Input pin: 1 Pull-up resistors: 131 Open-drain outputs: 131 5-V tolerance: 4  I/O ports for the 144-pin LFQFP with a JTAG interface, but no sub-clock oscillator I/O pins: 132 Input pin: 1 Pull-up resistors: 132 Open-drain outputs: 132 5-V tolerance: 4  I/O ports for the 144-pin LFQFP with a JTAG interface and a sub-clock oscillator I/O pins: 130 Input pin: 1 Pull-up resistors: 130 Open-drain outputs: 130 5-V tolerance: 4  I/O ports for the 100-pin LFQFP with no JTAG interface and no sub-clock oscillator I/O pins: 91 Input pin: 1 Pull-up resistors: 91 Open-drain outputs: 91 5-V tolerance: 4  I/O ports for the 100-pin LFQFP with a sub-clock oscillator, but no JTAG interface I/O pins: 89 Input pin: 1 Pull-up resistors: 89 Open-drain outputs: 89 5-V tolerance: 4  I/O ports for the 100-pin LFQFP with a JTAG interface, but no sub-clock oscillator I/O pins: 90 Input pin: 1 Pull-up resistors: 90 Open-drain outputs: 90 5-V tolerance: 4 I/O ports R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 4 of 123 RX660 Group Table 1.1 1. Overview Outline of Specifications (4/8) Classification Module/Function Description I/O ports Programmable I/O ports  I/O ports for the 100-pin LFQFP with a JTAG interface and a sub-clock oscillator I/O pins: 88 Input pin: 1 Pull-up resistors: 88 Open-drain outputs: 88 5-V tolerance: 4  I/O ports for the 80-pin LFQFP with no sub-clock oscillator I/O pins: 71 Input pin: 1 Pull-up resistors: 71 Open-drain outputs: 71 5-V tolerance: 4  I/O ports for the 80-pin LFQFP with a sub-clock oscillator I/O pins: 69 Input pin: 1 Pull-up resistors: 69 Open-drain outputs: 69 5-V tolerance: 4  I/O ports for the 64-pin LFQFP with no sub-clock oscillator I/O pins: 55 Input pin: 1 Pull-up resistors: 55 Open-drain outputs: 55 5-V tolerance: 2  I/O ports for the 64-pin LFQFP with a sub-clock oscillator I/O pins: 53 Input pin: 1 Pull-up resistors: 53 Open-drain outputs: 53 5-V tolerance: 2  I/O ports for the 48-pin LFQFP I/O pins: 39 Input pin: 1 Pull-up resistors: 39 Open-drain outputs: 39 5-V tolerance: 2 Event link controller (ELC)  Event signals such as interrupt request signals can be interlinked with the operation of functions such as timer counting, eliminating the need for intervention by the CPU to control the functions.  83 internal event signals can be freely combined for interlinked operation with connected functions.  Event signals from peripheral modules can be used to change the states of output pins (of ports B and E).  Changes in the states of pins (of ports B and E) being used as inputs can be interlinked with the operation of peripheral modules. Timers 8-bit timers (TMRb)  (8 bits × 2 channels) × 2 units  Select from among seven internal clock signals (PCLKB/1, PCLKB/2, PCLKB/8, PCLKB/32, PCLKB/64, PCLKB/1024, PCLKB/8192) and one external clock signal  Capable of output of pulse trains with desired duty cycles or of PWM signals  The 2 channels of each unit can be cascaded to create a 16-bit timer  Generation of triggers for A/D converter conversion  Capable of generating baud-rate clocks for SCI5, SCI6, and SCI12  Capable of generating operating clock for the remote control signal receiver (REMC)  Event linking by the ELC Compare match timer (CMT)  (16 bits × 2 channels) × 2 units  Select from among four internal clock signals (PCLKB/8, PCLKB/32, PCLKB/128, PCLKB/512)  Event linking by the ELC Compare match timer W (CMTW)  (32 bits × 1 channel) × 2 units  Compare-match, input-capture input, and output-comparison output are available.  Select from among four internal clock signals (PCLKB/8, PCLKB/32, PCLKB/128, PCLKB/512)  Interrupt requests can be output in response to compare-match, input-capture, and output-comparison events. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 5 of 123 RX660 Group Table 1.1 1. Overview Outline of Specifications (5/8) Classification Module/Function Timers Watchdog timer (WDTA)  14 bits × 1 channel  Select from among 6 counter-input clock signals (PCLKB/4, PCLKB/64, PCLKB/128, PCLKB/512, PCLKB/2048, PCLKB/8192) Description Independent watchdog timer (IWDTa)  14 bits × 1 channel  Counter-input clock: IWDT-dedicated on-chip oscillator  Dedicated clock/1, dedicated clock/16, dedicated clock/32, dedicated clock/64, dedicated clock/128, dedicated clock/256  Window function: The positions where the window starts and ends are specifiable (the window defines the timing with which refreshing is enabled and disabled).  Event linking by the ELC Multifunction timer pulse unit (MTU3a)  9 channels (16 bits × 8 channels, 32 bits × 1 channel)  Maximum of 28 pulse-input/output and 3 pulse-input possible  Select from among 14 counter-input clock signals for each channel (PCLKA/1, PCLKA/ 2, PCLKA/4, PCLKA/8, PCLKA/16, PCLK/A32, PCLKA/64, PCLKA/256, PCLKA/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD, MTIOC1A) 14 of the signals are available for channel 0, 11 are available for channels 1, 3, 4, 6 to 8, 12 are available for channel 2, and 10 are available for channel 5.  Input capture function  39 output compare/input capture registers  Counter clear operation (synchronous clearing by compare match/input capture)  Simultaneous writing to multiple timer counters (TCNT)  Simultaneous register input/output by synchronous counter operation  Buffered operation  Support for cascade-connected operation  43 interrupt sources  Automatic transfer of register data  Pulse output mode Toggle/PWM/complementary PWM/reset-synchronized PWM  Complementary PWM output mode Outputs non-overlapping waveforms for controlling 3-phase inverters Automatic specification of dead times PWM duty cycle: Selectable as any value from 0% to 100% Delay can be applied to requests for A/D conversion. Non-generation of interrupt requests at peak or trough values of counters can be selected. Double buffer configuration  Reset synchronous PWM mode Three phases of positive and negative PWM waveforms can be output with desired duty cycles.  Phase-counting mode: 16-bit mode (channels 1 and 2); 32-bit mode (channels 1 and 2)  Counter functionality for dead-time compensation  Generation of triggers for A/D converter conversion  A/D converter start triggers can be skipped  Digital filter function for signals on the input capture and external counter clock pins  Event linking by the ELC Port output enable 3 (POE3a)  Control of the high-impedance state of the MTU waveform output pins  5 pins for input from signal sources: POE0#, POE4#, POE8#, POE10#, POE11#  Initiation on detection of short-circuited outputs (detection of simultaneous PWM output to the active level)  Initiation by oscillation-stoppage detection or software  Additional programming of output control target pins is enabled Realtime clock (RTCC)*1       R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Clock sources: Sub clock Selection of the 32-bit binary count in time count/second unit possible Clock and calendar functions Interrupt sources: Alarm interrupt, periodic interrupt, and carry interrupt Time capture function (up to 3 pins) Event linking by the ELC Page 6 of 123 RX660 Group Table 1.1 1. Overview Outline of Specifications (6/8) Classification Module/Function Description Communication function Serial communications interfaces (SCIk, SCIm, SCIh)  13 channels (SCIk: 10 channels + SCIh: 1 channel + SCIm: 2 channels)  SCIk, SCIh, SCIm Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Start-bit detection: Level or edge detection is selectable. Simple I2C Simple SPI 9-bit transfer mode Bit rate modulation Double-speed mode  SCIk, SCIh Average transfer rate clock can be input from TMR timers for SCI5, SCI6, and SCI12 Event linking by the ELC (only on channel 5)  SCIh Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format  SCIm Data can be transmitted or received in sequence by the 16-byte FIFO buffers of the transmission and reception unit  SCIk, SCIm Data match detection Adjustment of the timing of sampling of the RXD signals Serial communications interfaces (RSCI)  2 channels (RSCI10, RSCI11)  Serial communications modes: Asynchronous, clock synchronous, and smart-card interface  Multi-processor function  On-chip baud rate generator allows selection of the desired bit rate  Choice of LSB-first or MSB-first transfer  Start-bit detection: Level or edge detection is selectable.  Simple I2C  Simple SPI  9-bit transfer mode  Bit rate modulation  Double-speed mode  Supports the serial communications protocol, which contains the start frame and information frame  Supports the LIN format  Data can be transmitted or received in sequence by the 32-byte FIFO buffers of the transmission and reception unit  Manchester encoding is supported.  RSCI has some home bus system (HBS) functionality.  Data match detection  Adjustment of the timing of sampling of the RXD signals I2C bus interface (RIICa)  2 channels Communication formats I2C bus format/SMBus format Supports the multi-master  Event linking by the ELC CAN FD module (CANFD)*2 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022  1 channel  Compliance with the ISO11898-1:2015 specification (standard frame and extended frame) Page 7 of 123 RX660 Group Table 1.1 1. Overview Outline of Specifications (7/8) Classification Module/Function Description Communication function Serial peripheral interface (RSPId)  1 channel  RSPI transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) signals enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave  Data formats Switching between MSB first and LSB first The number of bits in each transfer can be changed to any number of bits from 8 to 16, or to 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Transmit/receive data can be swapped in byte units  Buffered structure Double buffers for both transmission and reception  RSPCK can be stopped with the receive buffer full for master reception.  Event linking by the ELC Remote control signal receiver (REMCa)     1 channel Four pattern matching (header, data 0, data 1, and special data detection) 8-byte receive buffer per unit The operating clock can be selected from among the PCLK, sub-clock, and TMR. 12-bit A/D converter (S12ADH)  12 bits (24 channels × 1 unit)  12-bit resolution  Minimum conversion time 0.9 µs per channel (when ADCLK operates at 60 MHz)  Operating mode Scan mode (single scan mode, continuous scan mode, or 3 group scan mode) Group A priority control (only for 3 group scan mode)  Sampling variable Sampling time can be set up for each channel.  Conversion function in order of arbitrarily selected channels (Serial conversion of the same channel cannot be allowed)  Double trigger mode (A/D conversion data duplicated)  Three ways to start A/D conversion Software trigger, synchronous trigger (MTU, TMR, ELC), external trigger  Prioritization in group scanning can be controlled among group A, B, and C.  Digital comparison Method: Comparison to detect voltages above or below thresholds and window comparison Measurement: Comparison of two results of conversion or comparison of a value in the comparison register and a result of conversion  Self-diagnostic function  Detection of analog input disconnection  Event linking by the ELC 12-bit D/A converter (R12DAb)      Comparator C (CMPC)  4 channels  Function to compare the reference voltage and the analog input voltage  Digital filtering Temperature sensor  1 channel  Relative precision: ± 1.0°C  The voltage of the temperature is converted into a digital value by the 12-bit A/D converter. Arithmetic unit for trigonometric functions (TFU)  Sine, cosine, arctangent, x 2 + y 2 Simultaneous calculation of sine and cosine Simultaneous calculation of arctangent and x 2 + y 2 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 2 channels 12-bit resolution Output voltage: 0 V to AVCC0 Capable of providing as a reference voltage for comparator Event linking by the ELC Page 8 of 123 RX660 Group Table 1.1 1. Overview Outline of Specifications (8/8) Classification Module/Function Description Safety Memory protection unit (MPU)  Protection area: Eight areas (max.) can be specified in the range from 0000 0000h to FFFF FFFFh.  Minimum protection unit: 16 bytes  Reading from, writing to, and enabling the execution access can be specified for each area.  An access exception occurs when the detected access is not in the permitted area. Trusted Memory (TM) Function  Programs in the TM target area in the code flash memory are protected against reading  Instruction fetching by the CPU is the only form of access to these areas when the TM function is enabled. Register write protection function  Protects important registers from being overwritten for in case a program runs out of control. CRC calculator (CRCA)  Generation of CRC codes for 8-/32-bit data 8-bit data Selectable from the following three polynomials X8 + X2 + X + 1, X16 + X15 + X2 + 1, X16 + X12 + X5 + 1 32-bit data Selectable from the following two polynomials X32 + X26 + X23 + X22 + X16+ X12 + X11 + X10 + X8+ X7 + X5 + X4 + X2+ X + 1, X32 + X28 + X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 + X13 + X11 + X10 + X9 + X8 + X6 + 1  Generation of CRC codes for use with LSB-first or MSB-first communications is selectable Main clock oscillation stop detection  Main clock oscillation stop detection: Available Clock frequency accuracy measurement circuit (CAC)  Monitors the clock output from the main clock oscillator, sub-clock oscillator, low- and high-speed on-chip oscillators, IWDT-dedicated on-chip oscillator, and PCLKB, and generates interrupts when the setting range is exceeded. Data operation circuit (DOCA)  This handles the comparison, addition, subtraction, comparison in terms of which is larger or smaller, or window comparison of 32-bit values. Operating frequency Up to 120 MHz Power supply voltage VCC = 2.7 to 5.5V AVCC0 = 3.0 to 5.5V (VCC ≤ AVCC0) Operating temperature D-version: –40 to +85°C G-version: –40 to +105°C Package 144-pin LFQFP (PLQP0144KA-B) 100-pin LFQFP (PLQP0100KB-B) 80-pin LFQFP (PLQP0080KB-B) 64-pin LFQFP (PLQP0064KB-C) 48-pin LFQFP (PLQP0048KB-B) Debugging interface JTAG*3 and FINE interfaces Note 1. When the realtime clock is not used, initialize the registers in the realtime clock according to description in section 27.6.7, Initialization Procedure When the Realtime Clock is Not to be Used in the User’s Manual: Hardware. The realtime clock cannot be used in products with no sub-clock oscillator. At this time, disable the realtime clock according to description in section 27.6.7, Initialization Procedure When the Realtime Clock is Not to be Used in the User’s Manual: Hardware. Note 2. The product part number differs according to whether or not the CANFD actually supports the CAN FD protocol. Note 3. The product part number differs according to whether or not the MCU includes a JTAG interface. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 9 of 123 RX660 Group Table 1.2 1. Overview Comparison of Functions for Different Packages Products Functions RX660 Package 144-pin LFQFP 100-pin LFQFP 80-pin LFQFP Code Flash Memory Capacity 1 Mbyte/512 Kbytes Data Flash Memory Capacity 32 Kbytes RAM External bus width DMA DMA controller 16 bits Available Data transfer controller Available Address Space Not available 2 Mbytes × 4 areas Not available Main clock oscillator (MOSC) Available Sub-clock oscillator (SOSC) Timers Available/Not available Multi-function timer pulse unit 3 Ch. 0 to 8 Ch. 0 to 3 Compare match timer Ch. 0 to 2 Ch. 0 to 3 Compare match timer W Ch. 0 and 1 Available/Not available*1 Realtime clock Watchdog timer Available Independent watchdog timer Available Serial communications interfaces (SCIk) Ch. 0 to 9 Ch. 0 to 6, 8, and 9 Serial communications interfaces (SCIm) Ch. 0, 1, 3 to 6, 8, and 9 Ch. 1, 3 to 6, 8, Ch. 1, 3 to 6, and and 9 8 Ch. 10 Ch. 12 Serial communications interfaces (RSCI) Ch. 10 and 11 I2C bus interfaces (RIIC) Ch. 10 Ch. 0 to 2 Ch. 2 Serial peripheral interface (RSPI) 1 channel CAN FD module (CANFD) 1 channel Remote control signal receiver (REMC) Ch. 0 12-bit A/D converter 24 channels Comparator C 17 channels 14 channels 10 channels 1 pin Not available 4 channels Number of channels Number of output pins 2 channels 2 pins 2 pins/1 pin*3 Temperature sensor 2 pins Available CRC calculator (CRCA) Available Data operation circuit (DOCA) Available Clock frequency accuracy measurement circuit (CAC) Available Event link controller (ELC) Available Off-board programming Debugging interfaces Not available*1 Ch. 10 and 11 Serial communications interfaces (SCIh) 12-bit D/A converter*2 Ch. 0 to 5, and 7 Available 8-bit timers Analog Not available Ch. 0 to 7 Port output enable 3 Communication function 48-pin LFQFP 128 Kbytes External bus Oscillator 64-pin LFQFP JTAG interface FINE interface Available Not available Available/Not available Not available Available Note 1. The realtime clock cannot be used in products with no sub-clock oscillator. Disable the realtime clock according to description in section 27.6.7, Initialization Procedure When the Realtime Clock is Not to be Used in the User’s Manual: Hardware. Note 2. The 2-channel analog output of the D/A converters can be used as the input of the comparators in all packages. Note 3. Products with a JTAG interface that are also in the 100-pin LFQFP have a single D/A converter channel. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 10 of 123 RX660 Group 1.2 1. Overview List of Products Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no. Table 1.3 Group List of Products (1/3) Part No. RX660 R5F56609ADFB (D-version) R5F56609BDFB Package Code Flash Memory RAM Capacity Capacity (byte(s)) (byte(s)) Data Flash Memory Capacity (byte(s)) JTAG Sub-clock oscillator CANFD Operating temperature (°C) PLQP0144KA-B 1M 128 K 32 K Not available Not available Available*1 –40 to +85 PLQP0144KA-B 1M 128 K 32 K Not available Not available Available –40 to +85 Available Available*1 –40 to +85 R5F56609CDFB PLQP0144KA-B 1M 128 K 32 K Not available R5F56609DDFB PLQP0144KA-B 1M 128 K 32 K Not available Available Available –40 to +85 R5F56609EDFB PLQP0144KA-B 1M 128 K 32 K Available Not available Available*1 –40 to +85 R5F56609FDFB PLQP0144KA-B 1M 128 K 32 K Available Not available Available –40 to +85 Available Available*1 –40 to +85 R5F56609GDFB PLQP0144KA-B 1M 128 K 32 K Available R5F56609HDFB PLQP0144KA-B 1M 128 K 32 K Available Available Available –40 to +85 R5F56609ADFP PLQP0100KB-B 1M 128 K 32 K Not available Not available Available*1 –40 to +85 R5F56609BDFP PLQP0100KB-B 1M 128 K 32 K Not available Not available Available –40 to +85 Available Available*1 –40 to +85 R5F56609CDFP PLQP0100KB-B 1M 128 K 32 K Not available R5F56609DDFP PLQP0100KB-B 1M 128 K 32 K Not available Available Available –40 to +85 R5F56609EDFP PLQP0100KB-B 1M 128 K 32 K Available Not available Available*1 –40 to +85 R5F56609FDFP PLQP0100KB-B 1M 128 K 32 K Available Not available Available –40 to +85 Available Available*1 –40 to +85 R5F56609GDFP PLQP0100KB-B 1M 128 K 32 K Available R5F56609HDFP PLQP0100KB-B 1M 128 K 32 K Available Available Available –40 to +85 R5F56609ADFN PLQP0080KB-B 1M 128 K 32 K Not available Not available Available*1 –40 to +85 R5F56609BDFN PLQP0080KB-B 1M 128 K 32 K Not available Not available Available –40 to +85 Available Available*1 –40 to +85 R5F56609CDFN PLQP0080KB-B 1M 128 K 32 K Not available R5F56609DDFN PLQP0080KB-B 1M 128 K 32 K Not available Available Available –40 to +85 R5F56609ADFM PLQP0064KB-C 1M 128 K 32 K Not available Not available Available*1 –40 to +85 R5F56609BDFM PLQP0064KB-C 1M 128 K 32 K Not available Not available Available –40 to +85 Available Available*1 –40 to +85 R5F56609CDFM PLQP0064KB-C 1M 128 K 32 K Not available R5F56609DDFM PLQP0064KB-C 1M 128 K 32 K Not available Available Available –40 to +85 R5F56609ADFL PLQP0048KB-B 1M 128 K 32 K Not available Not available Available*1 –40 to +85 R5F56609BDFL PLQP0048KB-B 1M 128 K 32 K Not available Not available Available –40 to +85 R5F56604ADFB PLQP0144KA-B 512 K 128 K 32 K Not available Not available Available*1 –40 to +85 R5F56604BDFB PLQP0144KA-B 512 K 128 K 32 K Not available Not available Available –40 to +85 R5F56604CDFB PLQP0144KA-B 512 K 128 K 32 K Not available Available Available*1 –40 to +85 R5F56604DDFB PLQP0144KA-B 512 K 128 K 32 K Not available Available Available –40 to +85 –40 to +85 R5F56604EDFB PLQP0144KA-B 512 K 128 K 32 K Available Not available Available*1 R5F56604FDFB PLQP0144KA-B 512 K 128 K 32 K Available Not available Available –40 to +85 –40 to +85 R5F56604GDFB PLQP0144KA-B 512 K 128 K 32 K Available Available Available*1 R5F56604HDFB PLQP0144KA-B 512 K 128 K 32 K Available Available Available –40 to +85 –40 to +85 R5F56604ADFP PLQP0100KB-B 512 K 128 K 32 K Not available Not available Available*1 R5F56604BDFP PLQP0100KB-B 512 K 128 K 32 K Not available Not available Available –40 to +85 –40 to +85 –40 to +85 R5F56604CDFP PLQP0100KB-B 512 K 128 K 32 K Not available Available Available*1 R5F56604DDFP PLQP0100KB-B 512 K 128 K 32 K Not available Available Available R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 11 of 123 RX660 Group Table 1.3 1. Overview List of Products (2/3) Package Code Flash Memory RAM Capacity Capacity (byte(s)) (byte(s)) CANFD Operating temperature (°C) RX660 R5F56604EDFP (D-version) R5F56604FDFP PLQP0100KB-B 512 K 128 K 32 K Available Not available Available*1 –40 to +85 PLQP0100KB-B 512 K 128 K 32 K Available Not available Available –40 to +85 R5F56604GDFP PLQP0100KB-B 512 K 128 K 32 K Available Available Available*1 –40 to +85 R5F56604HDFP PLQP0100KB-B 512 K 128 K 32 K Available Available Available –40 to +85 –40 to +85 Group Part No. Data Flash Memory Capacity (byte(s)) JTAG Sub-clock oscillator R5F56604ADFN PLQP0080KB-B 512 K 128 K 32 K Not available Not available Available*1 R5F56604BDFN PLQP0080KB-B 512 K 128 K 32 K Not available Not available Available –40 to +85 –40 to +85 R5F56604CDFN PLQP0080KB-B 512 K 128 K 32 K Not available Available Available*1 R5F56604DDFN PLQP0080KB-B 512 K 128 K 32 K Not available Available Available –40 to +85 –40 to +85 R5F56604ADFM PLQP0064KB-C 512 K 128 K 32 K Not available Not available Available*1 R5F56604BDFM PLQP0064KB-C 512 K 128 K 32 K Not available Not available Available –40 to +85 R5F56604CDFM PLQP0064KB-C 512 K 128 K 32 K Not available Available Available*1 –40 to +85 R5F56604DDFM PLQP0064KB-C 512 K 128 K 32 K Not available Available Available –40 to +85 R5F56604ADFL PLQP0048KB-B 512 K 128 K 32 K Not available Not available Available*1 –40 to +85 R5F56604BDFL PLQP0048KB-B 512 K 128 K 32 K Not available Not available Available –40 to +85 RX660 R5F56609AGFB (G-version) R5F56609BGFB PLQP0144KA-B 1M 128 K 32 K Not available Not available Available*1 –40 to +105 PLQP0144KA-B 1M 128 K 32 K Not available Not available Available –40 to +105 R5F56609CGFB PLQP0144KA-B 1M 128 K 32 K Not available Available Available*1 –40 to +105 R5F56609DGFB PLQP0144KA-B 1M 128 K 32 K Not available Available Available –40 to +105 R5F56609EGFB PLQP0144KA-B 1M 128 K 32 K Available Not available Available*1 –40 to +105 R5F56609FGFB PLQP0144KA-B 1M 128 K 32 K Available Not available Available –40 to +105 R5F56609GGFB PLQP0144KA-B 1M 128 K 32 K Available Available Available*1 –40 to +105 R5F56609HGFB PLQP0144KA-B 1M 128 K 32 K Available Available Available –40 to +105 R5F56609AGFP PLQP0100KB-B 1M 128 K 32 K Not available Not available Available*1 –40 to +105 R5F56609BGFP PLQP0100KB-B 1M 128 K 32 K Not available Not available Available –40 to +105 R5F56609CGFP PLQP0100KB-B 1M 128 K 32 K Not available Available Available*1 –40 to +105 R5F56609DGFP PLQP0100KB-B 1M 128 K 32 K Not available Available Available –40 to +105 R5F56609EGFP PLQP0100KB-B 1M 128 K 32 K Available Not available Available*1 –40 to +105 R5F56609FGFP PLQP0100KB-B 1M 128 K 32 K Available Not available Available –40 to +105 R5F56609GGFP PLQP0100KB-B 1M 128 K 32 K Available Available Available*1 –40 to +105 R5F56609HGFP PLQP0100KB-B 1M 128 K 32 K Available Available Available –40 to +105 R5F56609AGFN PLQP0080KB-B 1M 128 K 32 K Not available Not available Available*1 –40 to +105 R5F56609BGFN PLQP0080KB-B 1M 128 K 32 K Not available Not available Available –40 to +105 R5F56609CGFN PLQP0080KB-B 1M 128 K 32 K Not available Available Available*1 –40 to +105 R5F56609DGFN PLQP0080KB-B 1M 128 K 32 K Not available Available Available –40 to +105 R5F56609AGFM PLQP0064KB-C 1M 128 K 32 K Not available Not available Available*1 –40 to +105 R5F56609BGFM PLQP0064KB-C 1M 128 K 32 K Not available Not available Available –40 to +105 R5F56609CGFM PLQP0064KB-C 1M 128 K 32 K Not available Available Available*1 –40 to +105 R5F56609DGFM PLQP0064KB-C 1M 128 K 32 K Not available Available Available –40 to +105 R5F56609AGFL PLQP0048KB-B 1M 128 K 32 K Not available Not available Available*1 –40 to +105 R5F56609BGFL PLQP0048KB-B 1M 128 K 32 K Not available Not available Available –40 to +105 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 12 of 123 RX660 Group Table 1.3 1. Overview List of Products (3/3) Package Code Flash Memory RAM Capacity Capacity (byte(s)) (byte(s)) CANFD Operating temperature (°C) RX660 R5F56604AGFB (G-version) R5F56604BGFB PLQP0144KA-B 512 K 128 K 32 K Not available Not available Available*1 –40 to +105 PLQP0144KA-B 512 K 128 K 32 K Not available Not available Available –40 to +105 R5F56604CGFB PLQP0144KA-B 512 K 128 K 32 K Not available Available Available*1 –40 to +105 R5F56604DGFB PLQP0144KA-B 512 K 128 K 32 K Not available Available Available –40 to +105 –40 to +105 Group Part No. Data Flash Memory Capacity (byte(s)) JTAG Sub-clock oscillator R5F56604EGFB PLQP0144KA-B 512 K 128 K 32 K Available Not available Available*1 R5F56604FGFB PLQP0144KA-B 512 K 128 K 32 K Available Not available Available –40 to +105 –40 to +105 R5F56604GGFB PLQP0144KA-B 512 K 128 K 32 K Available Available Available*1 R5F56604HGFB PLQP0144KA-B 512 K 128 K 32 K Available Available Available –40 to +105 –40 to +105 R5F56604AGFP PLQP0100KB-B 512 K 128 K 32 K Not available Not available Available*1 R5F56604BGFP PLQP0100KB-B 512 K 128 K 32 K Not available Not available Available –40 to +105 R5F56604CGFP PLQP0100KB-B 512 K 128 K 32 K Not available Available Available*1 –40 to +105 R5F56604DGFP PLQP0100KB-B 512 K 128 K 32 K Not available Available Available –40 to +105 R5F56604EGFP PLQP0100KB-B 512 K 128 K 32 K Available Not available Available*1 –40 to +105 R5F56604FGFP PLQP0100KB-B 512 K 128 K 32 K Available Not available Available –40 to +105 R5F56604GGFP PLQP0100KB-B 512 K 128 K 32 K Available Available Available*1 –40 to +105 R5F56604HGFP PLQP0100KB-B 512 K 128 K 32 K Available Available Available –40 to +105 R5F56604AGFN PLQP0080KB-B 512 K 128 K 32 K Not available Not available Available*1 –40 to +105 R5F56604BGFN PLQP0080KB-B 512 K 128 K 32 K Not available Not available Available –40 to +105 R5F56604CGFN PLQP0080KB-B 512 K 128 K 32 K Not available Available Available*1 –40 to +105 R5F56604DGFN PLQP0080KB-B 512 K 128 K 32 K Not available Available Available –40 to +105 R5F56604AGFM PLQP0064KB-C 512 K 128 K 32 K Not available Not available Available*1 –40 to +105 R5F56604BGFM PLQP0064KB-C 512 K 128 K 32 K Not available Not available Available –40 to +105 R5F56604CGFM PLQP0064KB-C 512 K 128 K 32 K Not available Available Available*1 –40 to +105 R5F56604DGFM PLQP0064KB-C 512 K 128 K 32 K Not available Available Available –40 to +105 –40 to +105 –40 to +105 R5F56604AGFL PLQP0048KB-B 512 K 128 K 32 K Not available Not available Available*1 R5F56604BGFL PLQP0048KB-B 512 K 128 K 32 K Not available Not available Available Note 1. Products with this part number support only CAN 2.0 protocol. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 13 of 123 RX660 Group R 5 F 1. Overview 5 6 6 0 9 A D F B #3 0 Product identification code Packing #1, #3: Tray (LFQFP) Package type, number of pins, and pin pitch FB : LFQFP/144/0.50 FP : LFQFP/100/0.50 FN: LFQFP/80/0.50 FM: LFQFP/64/0.50 FL : LFQFP/48/0.50 D : Operating peripheral temperature: –40 to +85°C G : Operating peripheral temperature: –40 to +105°C A : Without JTAG interface, without sub-clock oscillator, only CAN 2.0 protocol supported B : Without JTAG interface, without sub-clock oscillator, CAN FD protocol supported C : Without JTAG interface, with sub-clock oscillator, only CAN 2.0 protocol supported D : Without JTAG interface, with sub-clock oscillator, CAN FD protocol supported E : With JTAG interface, without sub-clock oscillator, only CAN 2.0 protocol supported F : With JTAG interface, without sub-clock oscillator, CAN FD protocol supported G : With JTAG interface, with sub-clock oscillator, only CAN 2.0 protocol supported H : With JTAG interface, with sub-clock oscillator, CAN FD protocol supported Code flash memory, RAM, and data flash memory capacity 9 : 1 Mbyte/128 Kbytes/32 Kbytes 4 : 512 Kbytes/128 Kbytes/32 Kbytes Group name RX660 Group Series name RX600 Series Type of memory F : Flash memory version Renesas MCU Renesas semiconductor product Figure 1.1 How to Read the Product Part Number R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 14 of 123 RX660 Group 1.3 1. Overview Block Diagram Figure 1.2 shows a block diagram. Data Flash RSCI × 2ch REMC ELC CAC DOC CRC Port 0 MTU × 9ch Port 1 POE3 Port 2 TFU Clock generation circuit Internal main bus 2 MPU WDT Port 6 IWDT Port 7 RTC Port 8 SCIk × 10ch Port 9 SCIm × 2ch Port A SCIh × 1ch DMAC × 8ch Port B CANFD × 1ch Port C RSPI × 1ch Port D 12-bit A/D converter × 24 ch Port E Temperature sensor Port F Comparator C × 4ch Port H 12-bit D/A converter × 2ch Port J Interrupt controller Data transfer controller DMA controller Bus controller Clock frequency accuracy measurement circuit CRC (cyclic redundancy check) calculator Data operation circuit Event link controller Serial communications interface Serial peripheral interface I2C bus interface Port K Port L BSC Port N CANFD: MTU: POE3: TMR: CMT: CMTW: WDT: IWDT: RTC: REMC: TFU: Note: Figure 1.2 Port 5 CMTW × 2ch DTC Internal main bus 1 RX CPU ICU: DTC DMAC: BSC: CAC: CRC: DOC: ELC: SCIk, SCIh, SCIm, RSCI: RSPI: RIIC: Port 4 CMT × 4ch RIIC × 2ch Operand bus ROM Port 3 TMR × 2ch (unit 1) ICU Instruction bus RAM Internal peripheral buses 1 to 6 TMR × 2ch (unit 0) CAN FD module Multi-function timer pulse unit 3 Port output enable 3 8-bit timer Compare match timer Compare match timer W Watchdog timer Independent watchdog timer Realtime clock Remote control signal receiver Arithmetic unit for trigonometric functions Available functions depend on the product. Block Diagram R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 15 of 123 RX660 Group 1.4 1. Overview Pin Functions Table 1.4 lists the pin functions. Table 1.4 Pin Functions (1/5) Classifications Pin Name I/O Description Digital power supply VCC Input Power supply pin. Connect this pin to the system power supply. Connect the pin to VSS via a 0.1-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin. VCL Input Connect this pin to VSS via a 0.47-µF smoothing capacitor used to stabilize the internal power supply. The capacitor should be placed close to the pin. VSS Input Ground pin. Connect it to the system power supply (0 V). XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. BCLK Output Outputs the external bus clock for external devices. Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. Clock XCOUT Output XCIN Input Clock frequency accuracy measurement CACREF Input Reference clock input pin for the clock frequency accuracy measurement circuit Operating mode control MD Input Pin for setting the operating mode. For details on how to use this pin, see section 3.1, Operating Mode Types and Selection in the User’s Manual: Hardware. UB Input User boot mode enable pin RES# Input Reset signal input pin. This LSI enters the reset state when this signal goes low. EMLE Input On-chip emulator enable pin while the JTAG pins are in use If the on-chip emulator is to be used, drive this pin to the high level. If the on-chip emulator is not to be used, drive this pin to the low level. FINED I/O Fine interface pin TRST# Input TMS Input On-chip emulator pins. When the EMLE pin is driven high, these pins are dedicated for the on-chip emulator. TDI Input TCK Input TDO Output TRCLK Output This pin outputs the clock for synchronization with the trace data. TRSYNC TRSYNC1 Output These pins indicate that output from the TRDATA0 to TRDATA7 pins is valid. TRDATA0 TRDATA1 TRDATA2 TRDATA3 TRDATA4 TRDATA5 TRDATA6 TRDATA7 Output These pins output the trace information. Address bus A0 to A20 Output Output pins for the address Data bus D0 to D15 I/O Input and output pins for the bidirectional data bus Multiplexed bus A0/D0 to A15/D15 I/O Address/data multiplexed bus System control On-chip emulator R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 16 of 123 RX660 Group Table 1.4 1. Overview Pin Functions (2/5) Classifications Pin Name I/O Description Bus control RD# Output Strobe signal which indicates that reading from the external bus interface space is in progress WR# Output Strobe signal which indicates that writing to the external bus interface space is in progress, in 1-write strobe mode WR0#, WR1# Output Strobe signals which indicate that either group of data bus pins (D7 to D0 and D15 to D8) is valid in writing to the external bus interface space, in byte strobe mode BC0#, BC1# Output Strobe signals which indicate that either group of data bus pins (D7 to D0 and D15 to D8) is valid in access to the external bus interface space, in 1-write strobe mode ALE Output Address latch signal when address/data multiplexed bus is selected WAIT# Input Input pin for wait request signals in access to the external space CS0# to CS3# Output Select signals for CS areas NMI Input Non-maskable interrupt request pin IRQ0 to IRQ15, IRQ0-DS to IRQ15-DS Input Maskable interrupt request pins MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D I/O The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins MTIOC1A, MTIOC1B I/O The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins MTIOC2A, MTIOC2B I/O The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D I/O The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D I/O The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins MTIC5U, MTIC5V, MTIC5W Input The TGRU5, TGRV5, and TGRW5 input capture input/dead time compensation input pins MTIOC6A, MTIOC6B, MTIOC6C, MTIOC6D I/O The TGRA6 to TGRD6 input capture input/output compare output/PWM output pins MTIOC7A, MTIOC7B, MTIOC7C, MTIOC7D I/O The TGRA7 to TGRD7 input capture input/output compare output/PWM output pins MTIOC8A, MTIOC8B, MTIOC8C, MTIOC8D I/O The TGRA8 to TGRD8 input capture input/output compare output/PWM output pins MTCLKA, MTCLKB, MTCLKC, MTCLKD Input Input pins for external clock signals or for phase counting mode clock signals Port output enable 3 POE0#, POE4#, POE8#, POE10#, POE11# Input Input pins for request signals to place the MTU in the high impedance state 8-bit timer TMO0 to TMO3 Output Compare match output pins TMCI0 to TMCI3 Input Input pins for external clocks to be input to the counter Interrupt Multi-function timer pulse unit 3 Compare match timer W Serial communications interface (SCIk) TMRI0 to TMRI3 Input Input pins for the counter reset TIC0 to TIC3 Input Input pins for CMTW TOC0 to TOC3 Output Output pins for CMTW  Asynchronous mode/clock synchronous mode SCK0 to SCK9 I/O Input/output pins for the clock RXD0 to RXD9 Input Input pins for received data TXD0 to TXD9 Output Output pins for transmitted data CTS0# to CTS9# Input Input pins for controlling the start of transmission and reception RTS0# to RTS9# Output Output pins for controlling the start of transmission and reception R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 17 of 123 RX660 Group Table 1.4 1. Overview Pin Functions (3/5) Classifications Pin Name I/O Description Serial communications interface (SCIk)  Simple SSCL0 to SSCL9 I/O Input/output pins for the I2C clock SSDA0 to SSDA9 I/O Input/output pins for the I2C data I2C mode  Simple SPI mode Serial communications interface (SCIh) SCK0 to SCK9 I/O Input/output pins for the clock SMISO0 to SMISO9 I/O Input/output pins for slave transmission of data SMOSI0 to SMOSI9 I/O Input/output pins for master transmission of data SS0# to SS9# Input Chip-select input pins  Asynchronous mode/clock synchronous mode SCK12 I/O Input/output pin for the clock RXD12 Input Input pin for received data TXD12 Output Output pin for transmitted data CTS12# Input Input pin for controlling the start of transmission and reception RTS12# Output Output pin for controlling the start of transmission and reception SSCL12 I/O Input/output pin for the I2C clock SSDA12 I/O Input/output pin for the I2C data  Simple I2C mode  Simple SPI mode SCK12 I/O Input/output pin for the clock SMISO12 I/O Input/output pin for slave transmission of data SMOSI12 I/O Input/output pin for master transmission of data SS12# Input Chip-select input pin Input Input pin for received data  Extended serial mode RXDX12 Serial communications interface (SCIm) TXDX12 Output Output pin for transmitted data SIOX12 I/O Input/output pin for received or transmitted data  Asynchronous mode/clock synchronous mode SCK10, SCK11 I/O Input/output pins for the clock RXD10, RXD11 Input Input pins for received data TXD10, TXD11 Output Output pins for transmitted data CTS10#, CTS11# Input Input pins for controlling the start of transmission and reception RTS10#, RTS11# Output Output pins for controlling the start of transmission and reception SSCL10, SSCL11 I/O Input/output pins for the I2C clock SSDA10, SSDA11 I/O Input/output pins for the I2C data I/O Input/output pins for the clock  Simple I2C mode  Simple SPI mode SCK10, SCK11 SMISO10, SMISO11 I/O Input/output pins for slave transmission of data SMOSI10, SMOSI11 I/O Input/output pins for master transmission of data SS10#, SS11# Input Chip-select input pins R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 18 of 123 RX660 Group Table 1.4 1. Overview Pin Functions (4/5) Classifications Pin Name I/O Description Serial communications interface (RSCI)  Asynchronous mode/clock synchronous mode SCK010, SCK011 I/O Input/output pins for the clock RXD010, RXD011 Input Input pins for received data TXD010, TXD011 Output Output pins for transmitted data CTS010#, CTS011# Input Input pins for controlling the start of transmission and reception RTS010#, RTS011# Output Output pins for controlling the start of transmission and reception DE010, DE011 Output DriveEnable output pins SSCL010, SSCL011 I/O Input/output pins for the I2C clock SSDA010, SSDA011 I/O Input/output pins for the I2C data SCK010, SCK011 I/O Input/output pins for the clock SMISO010, SMISO011 I/O Input/output pins for slave transmission of data SMOSI010, SMOSI011 I/O Input/output pins for master transmission of data SS010#, SS011# Input Chip-select input pins RXD010, RXD011 Input Input pin for received data TXD010, TXD011, TXDA011, TXDB011 Output Output pins for transmitted data SCL0, SCL2 I/O Input/output pins for clocks. Bus can be directly driven by the N-channel open drain SDA0, SDA2, I/O Input/output pins for data. Bus can be directly driven by the N-channel open drain CRX0 Input Input pins CTX0 Output Output pins RSPCKA I/O Input/output pin for the RSPI clock MOSIA I/O Input/output pin for transmitting data from the RSPI master MISOA I/O Input/output pin for transmitting data from the RSPI slave SSLA0 I/O Input/output pin to select the slave for the RSPI SSLA1 to SSLA3 Output Output pins to select the slave for the RSPI AN000 to AN023 Input Input pins for the analog signals to be processed by the A/D converter ADST0 Output Output pin for A/D conversion status. ADTRG0# Input Input pin for the external trigger signals that start the A/D conversion DA0, DA1 Output Output pins for the analog signals to be processed by the D/A converter  Simple I2C mode  Simple SPI mode  HBS support mode I2C bus interface CAN FD module Serial peripheral interface 12-bit A/D converter 12-bit D/A converter Comparator C Realtime clock Remote control signal receiver (REMC) COMP0 to COMP3 Output Comparator detection result output pins CVREFC0 to CVREFC3 Input Analog reference voltage supply pins for comparator C CMPC00, CMPC10, CMPC20, CMPC30 Input Analog input pins for CMPCn0 (n = 0 to 3) RTCOUT Output Output pin for 1-Hz/64-Hz clock RTCIC0 to RTCIC2 Input Time capture event input pins PMC0 Input Input pin for external pulse signal R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 19 of 123 RX660 Group Table 1.4 1. Overview Pin Functions (5/5) Classifications Pin Name I/O Description Analog power supply AVCC0*1 Input Analog voltage supply pin for the 12-bit A/D converter, 12-bit D/ A converter, comparator C, and temperature sensor. Connect the pin to AVSS0 via a 0.1-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin. AVSS0*1 Input Analog ground pin for the 12-bit A/D converter, 12-bit D/A converter, comparator C, and temperature sensor. Connect the pin to AVCC0 via a 0.1-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin. VREFH0 Input Analog reference voltage supply pin for the 12-bit A/D converter. Connect the pin to VREFL0 via a 0.1-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin. If the 12-bit A/D converter is not to be used, set this pin to its general-purpose function. VREFL0 Input Analog reference ground pin for the 12-bit A/D converter. Connect the pin to VREFH0 via a 0.1-µF multilayer ceramic capacitor. The capacitor should be placed close to the pin. If the 12-bit A/D converter is not to be used, set this pin to its generalpurpose function. I/O ports P00 to P07 I/O 8-bit input/output pins P12 to P17 I/O 6-bit input/output pins P20 to P27 I/O 8-bit input/output pins P30 to P37 I/O 8-bit input/output pins (P35: input pin) P40 to P47 I/O 8-bit input/output pins P50 to P56 I/O 7-bit input/output pins P60 to P67 I/O 8-bit input/output pins P70 to P77 I/O 8-bit input/output pins P80 to P83, P86, P87 I/O 6-bit input/output pins P90 to P93 I/O 4-bit input/output pins PA0 to PA7 I/O 8-bit input/output pins PB0 to PB7 I/O 8-bit input/output pins PC0 to PC7 I/O 8-bit input/output pins PD0 to PD7 I/O 8-bit input/output pins PE0 to PE7 I/O 8-bit input/output pins PF5, PF6, PF7 I/O 3-bit input/output pins PH0 to PH3, PH6, PH7 I/O 6-bit input/output pins PJ1, PJ3 to PJ7 I/O 6-bit input/output pins PK2 to PK5 I/O 4-bit input/output pins PL0, PL1 I/O 2-bit input/output pins PN6, PN7 I/O 2-bit input/output pins Note: Note the following regarding pin names. For details, see section 1.6, List of Pin and Pin Functions. - When a letter “-A”, “-B”, etc. to indicate group membership is appended to the pin name, each pin is recommended to use in combination with the pins in the same group. - When the pin functions have “-DS” appended to their names, they can also be used as triggers for release from deep software standby. Note 1. When neither the 12-bit A/D converter nor temperature sensor is to be used, connect the AVCC0 pin to VCC, and the AVSS0 pin to VSS. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 20 of 123 RX660 Group Pin Assignments PE3 PE4 PE5 PK4 P70 PK5 PE6 PE7 P65 P66 P67 PA0 PA1 PA2 PA3 VSS PA4 VCC PA5 PA6 PA7 PB0 P71 P72 PB1 PB2 PB3 PB4 PB5 PB6 PB7 P73 PL0 PC0 PL1 PC1 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 144-Pin LFQFP (without JTAG Interface, without Sub-clock Oscillator) 107 1.5.1 108 1.5 1. Overview 109 72 P74 PE1 110 71 P75 PE0 111 70 PC2 P64 112 69 P76 P63 113 68 P62 114 67 P77 PC3 P61 PK3 115 66 PC4 116 65 P80 P60 117 64 P81 PK2 118 63 P82 PD7 119 62 PC5 PD6 120 61 PC6 PD5 121 60 PC7 PD4 122 59 PD3 123 58 VCC P83 PD2 124 57 PD1 PD0 125 56 VSS P50 55 P51 P93 127 54 P52 P92 128 53 P53 P91 129 52 P54 PF7 130 51 P55 P90 PF6 131 50 P56 132 49 PH0 P47 133 48 PH1 P46 134 47 PH2 P45 135 46 PH3 P44 136 45 P12 P43 137 44 P13 P42 138 43 P14 P41 PJ7/VREFL0 139 42 P15 140 41 P86 P40 PJ6/VREFH0 AVCC0 141 40 142 39 143 38 P16 P87 P17 P07 144 37 P20 Note: Figure 1.3 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PJ4 PJ3 VCL PJ1 PN6/MD PH7 PH6 RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 P22 P21 11 PJ5 10 9 PF5 PN7 5 P04 P02 8 4 P03 7 3 P06 P01 P00 2 P05 6 1 AVSS0 14 RX660 Group PLQP0144KA-B (Top view) 126 36 PE2 This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.5, List of Pin and Pin Functions (144-Pin LFQFP). Pin Assignment (144-Pin LFQFP (without JTAG Interface, without Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 21 of 123 RX660 Group PE3 PE4 PE5 PK4 P70 PK5 PE6 PE7 P65 P66 P67 PA0 PA1 PA2 PA3 VSS PA4 VCC PA5 PA6 PA7 PB0 P71 P72 PB1 PB2 PB3 PB4 PB5 PB6 PB7 P73 PL0 PC0 PL1 PC1 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 144-Pin LFQFP (without JTAG Interface, with Sub-clock Oscillator) 108 1.5.2 1. Overview PE2 109 72 P74 PE1 110 71 P75 PE0 111 70 PC2 P64 112 69 P76 P63 113 68 P62 114 67 P77 PC3 P61 PK3 115 66 PC4 116 65 P80 P60 117 64 P81 PK2 118 63 P82 PD7 119 62 PC5 PD6 120 61 PC6 PD5 121 60 PC7 PD4 122 59 PD3 123 58 VCC P83 PD2 124 57 PD1 PD0 125 56 VSS P50 55 P51 P93 127 54 P52 P92 128 53 P53 P91 129 52 P54 PF7 130 51 P55 P90 PF6 131 50 P56 132 49 PH0 P47 133 48 PH1 P46 134 47 PH2 P45 135 46 PH3 P44 136 45 P12 P43 137 44 P13 P42 138 43 P14 P41 PJ7/VREFL0 139 42 P15 140 41 P86 P40 PJ6/VREFH0 AVCC0 141 40 142 39 143 38 P16 P87 P17 P07 144 37 P20 Note: Figure 1.4 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PJ4 PJ3 VCL PJ1 PN6/MD XCIN XCOUT RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 P22 36 11 PJ5 P21 10 9 PF5 PN7 5 P04 P02 8 4 P03 7 3 P06 P01 P00 2 P05 6 1 AVSS0 14 RX660 Group PLQP0144KA-B (Top view) 126 This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.5, List of Pin and Pin Functions (144-Pin LFQFP). Pin Assignment (144-Pin LFQFP (without JTAG Interface, with Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 22 of 123 RX660 Group PE3 PE4 PE5 PK4 P70 PK5 PE6 PE7 P65 P66 P67 PA0 PA1 PA2 PA3 VSS PA4 VCC PA5 PA6 PA7 PB0 P71 P72 PB1 PB2 PB3 PB4 PB5 PB6 PB7 P73 PL0 PC0 PL1 PC1 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 144-Pin LFQFP (with JTAG Interface, without Sub-clock Oscillator) 108 1.5.3 1. Overview PE2 109 72 P74 PE1 110 71 P75 PE0 111 70 PC2 P64 112 69 P76 P63 113 68 P62 114 67 P77 PC3 P61 PK3 115 66 PC4 116 65 P80 P60 117 64 P81 PK2 118 63 P82 PD7 119 62 PC5 PD6 120 61 PC6 PD5 121 60 PC7 PD4 122 59 PD3 123 58 VCC P83 PD2 124 57 PD1 PD0 125 56 VSS P50 55 P51 P93 127 54 P52 P92 128 53 P53 P91 129 52 P54 PF7 130 51 P55 P90 PF6 131 50 P56 132 49 PH0 P47 133 48 PH1 P46 134 47 PH2 P45 135 46 PH3 P44 136 45 P12 P43 137 44 P13 P42 138 43 P14 P41 PJ7/VREFL0 139 42 P15 140 41 P86 P40 PJ6/VREFH0 AVCC0 141 40 142 39 143 38 P16 P87 P17 P07 144 37 P20 Note: Figure 1.5 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PJ4 PJ3 VCL PJ1 PN6/MD PH7 PH6 RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 P22 36 11 PJ5 P21 10 9 PF5 EMLE 5 P04 P02 8 4 P03 7 3 P06 P01 P00 2 P05 6 1 AVSS0 14 RX660 Group PLQP0144KA-B (Top view) 126 This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.5, List of Pin and Pin Functions (144-Pin LFQFP). Pin Assignment (144-Pin LFQFP (with JTAG Interface, without Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 23 of 123 RX660 Group PE3 PE4 PE5 PK4 P70 PK5 PE6 PE7 P65 P66 P67 PA0 PA1 PA2 PA3 VSS PA4 VCC PA5 PA6 PA7 PB0 P71 P72 PB1 PB2 PB3 PB4 PB5 PB6 PB7 P73 PL0 PC0 PL1 PC1 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 144-Pin LFQFP (with JTAG Interface, with Sub-clock Oscillator) 108 1.5.4 1. Overview 109 72 P74 PE1 110 71 P75 PE0 111 70 PC2 P64 112 69 P76 P63 113 68 P62 114 67 P77 PC3 P61 PK3 115 66 PC4 116 65 P80 P60 117 64 P81 PK2 118 63 P82 PD7 119 62 PC5 PD6 120 61 PC6 PD5 121 60 PC7 PD4 122 59 PD3 123 58 VCC P83 PD2 124 57 PD1 PD0 125 56 VSS P50 55 P51 P93 127 54 P52 P92 128 53 P53 P91 129 52 P54 PF7 130 51 P55 P90 PF6 131 50 P56 132 49 PH0 P47 133 48 PH1 P46 134 47 PH2 P45 135 46 PH3 P44 136 45 P12 P43 137 44 P13 P42 138 43 P14 P41 PJ7/VREFL0 139 42 P15 140 41 P86 P40 PJ6/VREFH0 AVCC0 141 40 142 39 143 38 P16 P87 P17 P07 144 37 P20 Note: Figure 1.6 11 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 PJ5 PJ4 PJ3 VCL PJ1 PN6/MD XCIN XCOUT RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 P22 P21 10 9 PF5 EMLE 5 P04 P02 8 4 P03 7 3 P06 P01 P00 2 P05 6 1 AVSS0 14 RX660 Group PLQP0144KA-B (Top view) 126 36 PE2 This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.5, List of Pin and Pin Functions (144-Pin LFQFP). Pin Assignment (144-Pin LFQFP (with JTAG Interface, with Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 24 of 123 RX660 Group PE3 PE4 PE5 PE6 PE7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 76 50 PE1 77 49 PC2 PC3 PE0 78 48 PC4 PD7 79 47 PC5 PD6 80 46 PC6 PD5 81 45 PC7 PD4 82 44 P50 PD3 83 43 P51 PD2 84 42 P52 PD1 85 41 P53 PD0 86 40 P54 P47 87 39 P55 P46 88 38 PH0 P45 89 37 PH1 P44 90 36 PH2 P43 91 35 PH3 P42 92 34 P12 P41 93 33 P13 PJ7/VREFL0 94 32 P14 P40 95 31 P15 PJ6/VREFH0 96 30 P16 AVCC0 97 29 P17 P07 98 28 P20 AVSS0 99 27 P21 P05 100 26 P22 Note: Figure 1.7 75 100-Pin LFQFP (without JTAG Interface, without Sub-clock Oscillator) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P03 P04 PJ3 VCL PJ1 PN6/MD PH7 PH6 RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 RX660 Group PLQP0100KB-B (Top view) P06 1.5.5 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.6, List of Pin and Pin Functions (100-Pin LFQFP). Pin Assignment (100-Pin LFQFP (without JTAG Interface, without Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 25 of 123 RX660 Group PE3 PE4 PE5 PE6 PE7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 76 50 PE1 77 49 PC2 PC3 PE0 78 48 PC4 PD7 79 47 PC5 PD6 80 46 PC6 PD5 81 45 PC7 PD4 82 44 P50 PD3 83 43 P51 PD2 84 42 P52 PD1 85 41 P53 PD0 86 40 P54 P47 87 39 P55 P46 88 38 PH0 P45 89 37 PH1 P44 90 36 PH2 P43 91 35 PH3 P42 92 34 P12 P41 93 33 P13 PJ7/VREFL0 94 32 P14 P40 95 31 P15 PJ6/VREFH0 96 30 P16 AVCC0 97 29 P17 P07 98 28 P20 AVSS0 99 27 P21 P05 100 26 P22 Note: Figure 1.8 75 100-Pin LFQFP (without JTAG Interface, with Sub-clock Oscillator) 14 15 16 17 18 19 20 21 22 23 24 25 VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 9 XCOUT 13 8 XCIN P36/EXTAL 7 PN6/MD 12 6 PJ1 VSS 5 VCL 11 4 PJ3 P37/XTAL 3 P04 10 2 RES# 1 P03 RX660 Group PLQP0100KB-B (Top view) P06 1.5.6 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.6, List of Pin and Pin Functions (100-Pin LFQFP). Pin Assignment (100-Pin LFQFP (without JTAG Interface, with Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 26 of 123 RX660 Group PE3 PE4 PE5 PE6 PE7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 76 50 PE1 77 49 PC2 PC3 PE0 78 48 PC4 PD7 79 47 PC5 PD6 80 46 PC6 PD5 81 45 PC7 PD4 82 44 P50 PD3 83 43 P51 PD2 84 42 P52 PD1 85 41 P53 PD0 86 40 P54 P47 87 39 P55 P46 88 38 PH0 P45 89 37 PH1 P44 90 36 PH2 P43 91 35 PH3 P42 92 34 P12 P41 93 33 P13 PJ7/VREFL0 94 32 P14 P40 95 31 P15 PJ6/VREFH0 96 30 P16 AVCC0 97 29 P17 P07 98 28 P20 AVSS0 99 27 P21 P05 100 26 P22 Note: Figure 1.9 75 100-Pin LFQFP (with JTAG Interface, without Sub-clock Oscillator) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P06 P04 PJ3 VCL PJ1 PN6/MD PH7 PH6 RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 RX660 Group PLQP0100KB-B (Top view) EMLE 1.5.7 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.6, List of Pin and Pin Functions (100-Pin LFQFP). Pin Assignment (100-Pin LFQFP (with JTAG Interface, without Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 27 of 123 RX660 Group PE3 PE4 PE5 PE6 PE7 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 76 50 PE1 77 49 PC2 PC3 PE0 78 48 PC4 PD7 79 47 PC5 PD6 80 46 PC6 PD5 81 45 PC7 PD4 82 44 P50 PD3 83 43 P51 PD2 84 42 P52 PD1 85 41 P53 PD0 86 40 P54 P47 87 39 P55 P46 88 38 PH0 P45 89 37 PH1 P44 90 36 PH2 P43 91 35 PH3 P42 92 34 P12 P41 93 33 P13 PJ7/VREFL0 94 32 P14 P40 95 31 P15 PJ6/VREFH0 96 30 P16 AVCC0 97 29 P17 P07 98 28 P20 AVSS0 99 27 P21 P05 100 26 P22 Note: Figure 1.10 75 100-Pin LFQFP (with JTAG Interface, with Sub-clock Oscillator) 14 15 16 17 18 19 20 21 22 23 24 25 VCC P35 P34 P33 P32 P31 P30 P27 P26 P25 P24 P23 9 XCOUT 13 8 XCIN P36/EXTAL 7 PN6/MD 12 6 PJ1 VSS 5 VCL 11 4 PJ3 P37/XTAL 3 P04 10 2 RES# 1 P06 RX660 Group PLQP0100KB-B (Top view) EMLE 1.5.8 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.6, List of Pin and Pin Functions (100-Pin LFQFP). Pin Assignment (100-Pin LFQFP (with JTAG Interface, with Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 28 of 123 RX660 Group PE3 PE4 PE5 PA0 PA1 PA2 PA3 PA4 PA5 PA6 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PE2 61 40 PC2 PE1 62 39 PC3 PE0 63 38 PC4 PD2 64 37 PC5 PD1 65 36 PC6 PD0 66 35 PC7 P47 67 34 P54 P46 68 33 P55 P45 69 32 PH0 P44 70 31 PH1 P43 71 30 PH2 P42 72 29 PH3 P41 73 28 P12 PJ7/VREFL0 74 27 P13 P40 75 26 P14 PJ6/VREFH0 76 25 P15 AVCC0 77 24 P16 P07 78 23 P17 AVSS0 79 22 P20 P05 80 21 P21 Note: Figure 1.11 60 80-Pin LFQFP (without Sub-clock Oscillator) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P06 P04 VCL PJ1 PN6/MD PH7 PH6 RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P32 P31 P30 P27 P26 RX660 Group PLQP0080KB-B (Top view) P03 1.5.9 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.7, List of Pin and Pin Functions (80-Pin LFQFP). Pin Assignment (80-Pin LFQFP (without Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 29 of 123 RX660 Group PE3 PE4 PE5 PA0 PA1 PA2 PA3 PA4 PA5 PA6 VSS PB0 VCC PB1 PB2 PB3 PB4 PB5 PB6 PB7 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 PE2 61 40 PC2 PE1 62 39 PC3 PE0 63 38 PC4 PD2 64 37 PC5 PD1 65 36 PC6 PD0 66 35 PC7 P47 67 34 P54 P46 68 33 P55 P45 69 32 PH0 P44 70 31 PH1 P43 71 30 PH2 P42 72 29 PH3 P41 73 28 P12 PJ7/VREFL0 74 27 P13 P40 75 26 P14 PJ6/VREFH0 76 25 P15 AVCC0 77 24 P16 P07 78 23 P17 AVSS0 79 22 P20 P05 80 21 P21 Note: Figure 1.12 60 80-Pin LFQFP (with Sub-clock Oscillator) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P06 P04 VCL PJ1 PN6/MD XCIN XCOUT RES# P37/XTAL VSS P36/EXTAL VCC P35 P34 P32 P31 P30 P27 P26 RX660 Group PLQP0080KB-B (Top view) P03 1.5.10 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.7, List of Pin and Pin Functions (80-Pin LFQFP). Pin Assignment (80-Pin LFQFP (with Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 30 of 123 RX660 Group Note: Figure 1.13 VSS PB0 VCC PB1 PB3 PB5 PB6 PB7 39 38 37 36 35 34 33 PA3 43 40 PA1 44 PA4 PA0 45 PA6 PE5 46 41 PE4 47 42 PE3 48 64-Pin LFQFP (without Sub-clock Oscillator) PE2 49 32 PC2 PE1 50 31 PC3 PE0 51 30 PC4 P47 52 29 PC5 P46 53 28 PC6 P45 54 27 PC7 P44 55 26 P54 P43 56 25 P55 P42 57 24 PH0 P41 58 23 PH1 PJ7/VREFL0 59 22 PH2 P40 60 21 PH3 PJ6/VREFH0 61 20 P14 AVCC0 62 19 P15 P07 63 18 P16 AVSS0 64 17 P17 12 13 14 15 16 P31 P30 P27 P26 8 VSS P32 7 P37/XTAL 11 6 RES# P35 5 PH6 9 4 PH7 10 3 PN6/MD VCC 2 P36/EXTAL 1 P03 RX660 Group PLQP0064KB-C (Top view) VCL 1.5.11 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.8, List of Pin and Pin Functions (64-Pin LFQFP). Pin Assignment (64-Pin LFQFP (without Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 31 of 123 RX660 Group Note: Figure 1.14 VSS PB0 VCC PB1 PB3 PB5 PB6 PB7 39 38 37 36 35 34 33 PA3 43 40 PA1 44 PA4 PA0 45 PA6 PE5 46 41 PE4 47 42 PE3 48 64-Pin LFQFP (with Sub-clock Oscillator) PE2 49 32 PC2 PE1 50 31 PC3 PE0 51 30 PC4 P47 52 29 PC5 P46 53 28 PC6 P45 54 27 PC7 P44 55 26 P54 P43 56 25 P55 P42 57 24 PH0 P41 58 23 PH1 PJ7/VREFL0 59 22 PH2 P40 60 21 PH3 PJ6/VREFH0 61 20 P14 AVCC0 62 19 P15 P07 63 18 P16 AVSS0 64 17 P17 12 13 14 15 16 P31 P30 P27 P26 8 VSS P32 7 P37/XTAL 11 6 RES# P35 5 XCOUT 9 4 XCIN 10 3 PN6/MD VCC 2 P36/EXTAL 1 P03 RX660 Group PLQP0064KB-C (Top view) VCL 1.5.12 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.8, List of Pin and Pin Functions (64-Pin LFQFP). Pin Assignment (64-Pin LFQFP (with Sub-clock Oscillator)) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 32 of 123 RX660 Group Note: Figure 1.15 PA4 VSS PB0 VCC PB1 PB3 PB5 30 29 28 27 26 25 PA3 33 PA6 PA1 34 31 PE4 35 32 PE3 36 48-Pin LFQFP PE2 37 24 PC4 PE1 38 23 PC5 P47 39 22 PC6 P46 40 21 PC7 P45 41 20 PH0 P42 42 19 PH1 P41 43 18 PH2 PJ7/VREFL0 44 17 PH3 P40 45 16 P14 PJ6/VREFH0 46 15 P15 AVCC0 47 14 P16 AVSS0 48 13 P17 12 P26 P35 11 8 P27 7 VCC 9 6 P36/EXTAL 10 5 VSS P30 4 P31 3 PN6/MD RES# 2 P37/XTAL 1 RX660 Group PLQP0048KB-B (Top view) VCL 1.5.13 1. Overview This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.9, List of Pin and Pin Functions (48-Pin LFQFP). Pin Assignment (48-Pin LFQFP) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 33 of 123 RX660 Group 1.6 1. Overview List of Pin and Pin Functions 1.6.1 144-Pin LFQFP Table 1.5 Pin No. List of Pin and Pin Functions (144-Pin LFQFP) (1/6) 144-Pin LFQFP Power Supply Clock System Control I/O Port 1 AVSS0 Timer Bus (MTU, TMR, RTC, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) 2 P05 3 P06 4 P03 5 P04 6 P02 TMCI1 SCK6 IRQ10 7 P01 TMCI0 RXD6/SMISO6/ SSCL6 IRQ9 8 P00 TMRI0 TXD6/SMOSI6/ SSDA6 IRQ8 9 10 PF5 EMLE*1 IRQ13 DA1 IRQ11 DA0 IRQ4 PN7*2 11 PJ5 12 PJ4 13 14 POE8# CTS2#/RTS2#/SS2# IRQ13 PJ3 MTIOC3C CTS6#/RTS6#/SS6#/ CTS0#/RTS0#/SS0# IRQ11 PJ1 MTIOC3A VCL 15 16 MD/FINED PN6 17 XCIN*3 PH7*4 18 XCOUT*3 PH6*4 19 RES# 20 XTAL 21 VSS 22 EXTAL 23 VCC 24 TRST#*1 P37 IRQ4 P36 IRQ5 P35 NMI P34 MTIOC0A/TMCI3/ POE10# SCK6/SCK0 IRQ4 26 P33 MTIOC0D/TMRI3/ POE4#/POE11# RXD6/SMISO6/ SSCL6/RXD0/ SMISO0/SSCL0/ CRX0-A IRQ3-DS 27 P32 MTIOC0C/TMO3/ TXD6/SMOSI6/ RTCIC2*5/RTCOUT*5/ SSDA6/TXD0/ POE0#/POE10# SMOSI0/SSDA0/ CTX0-A IRQ2-DS 25 A/D, D/A, CMPC 28 TMS*1 P31 MTIOC4D/TMCI2/ RTCIC1*5 CTS1#/RTS1#/SS1# IRQ1-DS 29 TDI*1 P30 MTIOC4B/TMRI3/ RTCIC0*5/POE8# RXD1/SMISO1/ SSCL1 IRQ0-DS COMP3 30 TCK*1 P27 MTIOC2B/TMCI3 SCK1 IRQ7 CVREFC3 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 CS3# Page 34 of 123 RX660 Group Table 1.5 Pin No. 1. Overview List of Pin and Pin Functions (144-Pin LFQFP) (2/6) 144-Pin LFQFP Power Supply Clock System Control I/O Port Bus (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC 31 TDO*1 P26 CS2# MTIOC2A/TMO1 TXD1/SMOSI1/ SSDA1/CTS3#/ RTS3#/SS3# IRQ6 CMPC30 32 P25 CS1# MTIOC4C/MTCLKB RXD3/SMISO3/ SSCL3 IRQ5 ADTRG0# 33 P24 CS0# MTIOC4A/MTCLKA/ TMRI1 SCK3 IRQ12 34 P23 MTIOC3D/MTCLKD TXD3/SMOSI3/ SSDA3/CTS0#/ RTS0#/SS0# IRQ3 35 P22 MTIOC3B/MTCLKC/ TMO0 SCK0 IRQ15 36 P21 MTIOC1B/TMCI0/ MTIOC4A RXD0/SMISO0/ SSCL0 IRQ9 37 P20 MTIOC1A/TMRI0 TXD0/SMOSI0/ SSDA0 IRQ8 38 P17 MTIOC3A/MTIOC3B/ TMO1/POE8#/ MTIOC4B SCK1/TXD3/SMOSI3/ IRQ7 SSDA3/MISOA-C/ SDA2 39 P87 MTIOC4C SMOSI10/SSDA10/ TXD10/TXD010-B/ SMOSI010-B/ SSDA010-B IRQ15 40 P16 MTIOC3C/MTIOC3D/ TMO2/RTCOUT*5 TXD1/SMOSI1/ SSDA1/RXD3/ SMISO3/SSCL3/ MOSIA-C/SCL2 IRQ6 41 P86 MTIOC4D SMISO10/SSCL10/ RXD10/RXD010-B/ SMISO010-B/ SSCL010-B IRQ14 42 P15 MTIOC0B/MTCLKB/ TMCI2 RXD1/SMISO1/ SSCL1/SCK3/ CRX0-C IRQ5 CMPC20 43 P14 MTIOC3A/MTCLKA/ TMRI2 CTS1#/RTS1#/SS1#/ CTX0-C IRQ4 CVREFC2 44 P13 MTIOC0B/TMO3 TXD2/SMOSI2/ SSDA2/SDA0 IRQ3 45 P12 MTIC5U/TMCI1 RXD2/SMISO2/ SSCL2/SCL0 IRQ2 46 PH3 MTIOC4D/TMCI0 47 PH2 MTIOC4C/TMRI0/ TOC1 IRQ1 48 PH1 MTIOC3D/TMO0/TIC1 IRQ0 49 PH0 MTIOC3B/CACREF 50 Timer P56 Communication Interrupt ADTRG0# ADST0 ADTRG0# MTIOC3C SCK7 IRQ6 51 TRDATA3*1 P55 D0[A0/D0]/ WAIT# MTIOC4D/MTIOC4A/ TMO3 TXD7/SMOSI7/ SSDA7/CRX0-D IRQ10 52 TRDATA2*1 P54 ALE/ D1[A1/D1] MTIOC4B/TMCI1 CTS2#/RTS2#/SS2#/ CTX0-D IRQ4 53 P53 BCLK PMC0 IRQ3 54 P52 RD# RXD2/SMISO2/ SSCL2 IRQ2 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 COMP2 Page 35 of 123 RX660 Group Table 1.5 Pin No. 144-Pin LFQFP 1. Overview List of Pin and Pin Functions (144-Pin LFQFP) (3/6) Power Supply Clock System Control I/O Port Timer Bus (MTU, TMR, RTC, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) 55 P51 WR1#/BC1#/ WAIT# SCK2/PMC0 IRQ1 56 P50 WR0#/WR# TXD2/SMOSI2/ SSDA2 IRQ0 57 VSS 58 TRCLK*1 59 VCC 60 UB P83 MTIOC4C SCK10/SS10#/ IRQ3 CTS10#/SCK010-B/ CTS010#-A/SS010#-A PC7 CS0# MTIOC3A/MTCLKB/ TXD8/SMOSI8/ IRQ14 TMO2/CACREF/TOC0 SSDA8/SMOSI10/ SSDA10/TXD10/ TXD010-C/ SMOSI010-C/ SSDA010-C/MISOA-A 61 PC6 D2[A2/D2]/ CS1# MTIOC3C/MTCLKA/ TMCI2/TIC0 RXD8/SMISO8/ IRQ13 SSCL8/SMISO10/ SSCL10/RXD10/ RXD010-C/ SMISO010-C/ SSCL010-C/MOSIA-A 62 PC5 D3[A3/D3]/ CS2#/WAIT# MTIOC3B/MTCLKD/ TMRI2/MTIOC0C SCK8/SCK10/ SCK010-C/ RSPCKA-A/PMC0 IRQ5 63 TRSYNC*1 P82 MTIOC4A SMOSI10/SSDA10/ TXD10/TXD010-A/ SMOSI010-A/ SSDA010-A IRQ2 64 TRDATA1*1 P81 MTIOC3D SMISO10/SSCL10/ RXD10/RXD010-A/ SMISO010-A/ SSCL010-A IRQ9 65 TRDATA0*1 P80 MTIOC3B SCK10/RTS10#/ SCK010-A/ RTS010#-A/DE010-A IRQ8 66 PC4 A20/CS3# MTIOC3D/MTCLKC/ TMCI1/POE0#/ MTIOC0A SCK5/CTS8#/RTS8#/ IRQ12 SS8#/SS10#/CTS10#/ RTS10#/CTS010#-B/ RTS010#-B/ SS010#-B/DE010-B/ SSLA0-A/PMC0 67 PC3 A19 MTIOC4D TXD5/SMOSI5/ SSDA5/PMC0 IRQ11 68 TRDATA7*1 P77 SMOSI11/SSDA11/ TXD11/TXD011-A/ SMOSI011-A/ SSDA011-A IRQ7 69 TRDATA6*1 P76 SMISO11/SSCL11/ RXD11/RXD011-A/ SMISO011-A/ SSCL011-A IRQ14 RXD5/SMISO5/ SSCL5/TXDB011-A/ SSLA3-A IRQ10 SCK11/RTS11#/ SCK011-A/ RTS011#-A/DE011-A IRQ13 70 71 PC2 TRSYNC1*1 P75 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 A18 MTIOC4B A/D, D/A, CMPC Page 36 of 123 RX660 Group Table 1.5 Pin No. 1. Overview List of Pin and Pin Functions (144-Pin LFQFP) (4/6) 144-Pin LFQFP Power Supply Clock System Control I/O Port Bus 72 TRDATA5*1 P74 A20 73 PC1 A17 MTIOC3A SCK5/TXD011-C/ IRQ12 SMOSI011-C/ SSDA011-C/ TXDA011-C/SSLA2-A 74 PL1 75 PC0 A16 MTIOC3C CTS5#/RTS5#/SS5#/ IRQ14 RXD011-C/ SMISO011-C/ SSCL011-C/SSLA1-A 76 PL0 TRDATA4*1 Timer (MTU, TMR, RTC, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) SS11#/CTS11#/ IRQ12 CTS011#-A/SS011#-A P73 CS3# 78 PB7 A15 MTIOC3B TXD9/SMOSI9/ SSDA9/SMOSI11/ SSDA11/TXD11/ TXD011-B/ SMOSI011-B/ SSDA011-B IRQ15 79 PB6 A14 MTIOC3D RXD9/SMISO9/ SSCL9/SMISO11/ SSCL11/RXD11/ RXD011-B/ SMISO011-B/ SSCL011-B IRQ6 80 PB5 A13 MTIOC2A/MTIOC1B/ TMRI1/POE4#/TOC2 SCK9/SCK11/ SCK011-B IRQ13 81 PB4 A12 CTS9#/RTS9#/SS9#/ SS11#/CTS11#/ RTS11#/CTS011#-B/ RTS011#-B/ SS011#-B/DE011-B IRQ4 82 PB3 A11 SCK4/SCK6/PMC0 IRQ3 83 PB2 A10 CTS4#/RTS4#/SS4#/ CTS6#/RTS6#/SS6# IRQ2 84 PB1 A9 TXD4/SMOSI4/ SSDA4/TXD6/ SMOSI6/SSDA6 IRQ4-DS 85 P72 A19/CS2# IRQ10 86 P71 A18/CS1# IRQ1 87 PB0 A8 88 PA7 A7 89 PA6 A6 MTIC5V/MTCLKB/ TMCI3/POE10#/ MTIOC3D/MTIOC6B 90 PA5 A5 MTIOC6B 77 91 A/D, D/A, CMPC IRQ8 MTIOC0A/MTIOC4A/ TMO0/POE11#/TIC2 MTIOC0C/MTIOC4C/ TMCI0 MTIC5W/MTIOC3D RXD4/SMISO4/ SSCL4/RXD6/ SMISO6/SSCL6/ RSPCKA-C IRQ12 MISOA-B IRQ7 CTS5#/RTS5#/SS5#/ CTS12#/RTS12#/ SS12#/MOSIA-B IRQ14 RSPCKA-B IRQ5 COMP1 VCC R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 37 of 123 RX660 Group Table 1.5 Pin No. 144-Pin LFQFP 1. Overview List of Pin and Pin Functions (144-Pin LFQFP) (5/6) Power Supply Clock System Control I/O Port 92 Timer Bus Communication Interrupt (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC PA4 A4 MTIC5U/MTCLKA/ TMRI0/MTIOC4C/ MTIOC7C TXD5/SMOSI5/ SSDA5/TXD12/ SMOSI12/SSDA12/ TXDX12/SIOX12/ SSLA0-B IRQ5-DS CVREFC1/ ADST0 94 PA3 A3 MTIOC0D/MTCLKD/ MTIC5V/MTIOC4D RXD5/SMISO5/ SSCL5 IRQ6-DS CMPC10 95 PA2 A2 MTIOC7A RXD5/SMISO5/ SSCL5/RXD12/ SMISO12/SSCL12/ RXDX12/SSLA3-B IRQ10 96 PA1 A1 MTIOC0B/MTCLKC/ MTIOC7B/MTIOC3B SCK5/SCK12/ SSLA2-B IRQ11 97 PA0 BC0#/A0 MTIOC4A/CACREF/ MTIOC6D SSLA1-B IRQ0 98 P67 MTIOC7C IRQ15 99 P66 MTIOC7D IRQ14 100 P65 101 PE7 D15[A15/D15]/ MTIOC6A/TOC1 D7[A7/D7] 102 PE6 D14[A14/D14]/ MTIOC6C/TIC1 D6[A6/D6] 103 PK5 TXD4/SMOSI4/ SSDA4 93 VSS ADTRG0# IRQ13 CTS4#/RTS4#/SS4# IRQ7 AN015 IRQ6 AN014 104 P70 SCK4 105 PK4 RXD4/SMISO4/ SSCL4 106 PE5 D13[A13/D13]/ MTIOC4C/MTIOC2B D5[A5/D5] IRQ5 AN013/ COMP0 107 PE4 D12[A12/D12]/ MTIOC4D/MTIOC1A/ D4[A4/D4] MTIOC4A/MTIOC7D IRQ12 AN012 108 PE3 D11[A11/D11]/ MTIOC4B/POE8#/ D3[A3/D3] MTIOC1B/TOC3 CTS12#/RTS12#/ SS12# IRQ11 AN011 109 PE2 D10[A10/D10]/ MTIOC4A/MTIOC7A/ D2[A2/D2] TIC3 RXD12/SMISO12/ SSCL12/RXDX12 IRQ7-DS AN010/ CVREFC0 110 PE1 D9[A9/D9]/ D1[A1/D1] MTIOC4C/MTIOC3B TXD12/SMOSI12/ SSDA12/TXDX12/ SIOX12 IRQ9 AN009/ CMPC00 111 PE0 D8[A8/D8]/ D0[A0/D0] MTIOC3D SCK12 IRQ8 AN008 112 P64 D3[A3/D3] IRQ4 113 P63 D2[A2/D2]/ CS3# IRQ3 114 P62 D1[A1/D1]/ CS2# IRQ2 115 P61 D0[A0/D0]/ CS1# 116 PK3 117 P60 118 PK2 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 CTS9#/RTS9#/SS9# IRQ0 IRQ1 RXD9/SMISO9/ SSCL9 CS0# SCK9 IRQ0 TXD9/SMOSI9/ SSDA9 Page 38 of 123 RX660 Group Table 1.5 Pin No. 1. Overview List of Pin and Pin Functions (144-Pin LFQFP) (6/6) 144-Pin LFQFP Power Supply Clock System Control I/O Port Bus (MTU, TMR, RTC, POE, CAC, CMTW) 119 TRDATA3*1 PD7 D7[A7/D7] MTIC5U/POE0# IRQ7 AN023 120 TRDATA2*1 PD6 D6[A6/D6] MTIC5V/POE4#/ MTIOC8A IRQ6 AN022 121 TRCLK*1 PD5 D5[A5/D5] MTIC5W/POE10#/ MTIOC8C IRQ5 AN021 122 TRSYNC*1 PD4 D4[A4/D4] POE11#/MTIOC8B IRQ4 AN020 123 TRDATA1*1 PD3 D3[A3/D3] POE8#/MTIOC8D/ TOC2 IRQ3 AN019 124 TRDATA0*1 PD2 D2[A2/D2] MTIOC4D/TIC2 CRX0-B IRQ2 AN018 125 TRDATA7*1 PD1 D1[A1/D1] MTIOC4B/POE0# CTX0-B IRQ1 AN017 126 TRDATA6*1 PD0 D0[A0/D0] POE4# IRQ0 AN016 127 TRSYNC1*1 P93 A19 POE0# CTS7#/RTS7#/SS7# IRQ11 128 TRDATA5*1 P92 A18 POE4# RXD7/SMISO7/ SSCL7 IRQ10 129 TRDATA4*1 P91 A17 SCK7 IRQ9 A16 TXD7/SMOSI7/ SSDA7 IRQ0 Timer Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC 130 PF7 131 P90 132 PF6 133 P47 IRQ15-DS AN007 134 P46 IRQ14-DS AN006 135 P45 IRQ13-DS AN005 136 P44 IRQ12-DS AN004 137 P43 IRQ11-DS AN003 138 P42 IRQ10-DS AN002 139 P41 IRQ9-DS AN001 IRQ8-DS AN000 IRQ15 ADTRG0# 140 VREFL0 141 142 VREFH0 143 AVCC0 144 Note 1. Note 2. Note 3. Note 4. Note 5. PJ7 P40 PJ6 P07 This pin function is not provided for products with no JTAG interface. This pin function is not provided for products with a JTAG interface. This pin function is not provided for products with no sub-clock oscillator. This pin function is not provided for products with a sub-clock oscillator. This pin function is not available in products with no sub-clock oscillator. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 39 of 123 RX660 Group 1.6.2 1. Overview 100-Pin LFQFP Table 1.6 Pin No. 100-Pin LFQFP List of Pin and Pin Functions (100-Pin LFQFP) (1/5) Power Supply Clock System Control I/O Port 1 2 Timer Bus (MTU, TMR, RTC, POE, CAC, CMTW) Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) EMLE*1 P03*2 IRQ11*2 P04 4 PJ3 MTIOC3C PJ1 MTIOC3A CTS6#/RTS6#/SS6#/ CTS0#/RTS0#/SS0# DA0*2 IRQ11 VCL 6 7 MD/FINED PN6 8 XCIN*3 PH7*4 9 XCOUT*3 PH6*4 10 RES# 11 XTAL 12 VSS 13 EXTAL 14 VCC 15 TRST#*1 P37 IRQ4 P36 IRQ5 P35 NMI P34 MTIOC0A/TMCI3/ POE10# SCK6/SCK0 IRQ4 17 P33 MTIOC0D/TMRI3/ POE4#/POE11# RXD6/SMISO6/ SSCL6/RXD0/ SMISO0/SSCL0/ CRX0-A IRQ3-DS 18 P32 TXD6/SMOSI6/ MTIOC0C/TMO3/ RTCIC2*5/RTCOUT*5/ SSDA6/TXD0/ POE0#/POE10# SMOSI0/SSDA0/ CTX0-A IRQ2-DS 16 A/D, D/A, CMPC P06 3 5 Communication 19 TMS*1 P31 MTIOC4D/TMCI2/ RTCIC1*5 CTS1#/RTS1#/SS1# IRQ1-DS 20 TDI*1 P30 MTIOC4B/TMRI3/ RTCIC0*5/POE8# RXD1/SMISO1/ SSCL1 IRQ0-DS COMP3 21 TCK*1 P27 CS3# MTIOC2B/TMCI3 SCK1 IRQ7 CVREFC3 22 TDO*1 P26 CS2# MTIOC2A/TMO1 TXD1/SMOSI1/ SSDA1/CTS3#/ RTS3#/SS3# IRQ6 CMPC30 23 P25 CS1# MTIOC4C/MTCLKB RXD3/SMISO3/ SSCL3 IRQ5 ADTRG0# 24 P24 CS0# MTIOC4A/MTCLKA/ TMRI1 SCK3 IRQ12 25 P23 MTIOC3D/MTCLKD TXD3/SMOSI3/ SSDA3/CTS0#/ RTS0#/SS0# IRQ3 26 P22 MTIOC3B/MTCLKC/ TMO0 SCK0 IRQ15 27 P21 MTIOC1B/TMCI0/ MTIOC4A RXD0/SMISO0/ SSCL0 IRQ9 28 P20 MTIOC1A/TMRI0 TXD0/SMOSI0/ SSDA0 IRQ8 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 40 of 123 RX660 Group Table 1.6 Pin No. 100-Pin LFQFP 1. Overview List of Pin and Pin Functions (100-Pin LFQFP) (2/5) Power Supply Clock System Control I/O Port Timer Bus Communication Interrupt (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC 29 P17 MTIOC3A/MTIOC3B/ TMO1/POE8#/ MTIOC4B SCK1/TXD3/SMOSI3/ IRQ7 SSDA3/MISOA-C/ SDA2 COMP2 30 P16 MTIOC3C/MTIOC3D/ TMO2/RTCOUT*5 TXD1/SMOSI1/ SSDA1/RXD3/ SMISO3/SSCL3/ MOSIA-C/SCL2 IRQ6 ADTRG0# 31 P15 MTIOC0B/MTCLKB/ TMCI2 RXD1/SMISO1/ SSCL1/SCK3/ CRX0-C IRQ5 CMPC20 32 P14 MTIOC3A/MTCLKA/ TMRI2 CTS1#/RTS1#/SS1#/ CTX0-C IRQ4 CVREFC2 33 P13 MTIOC0B/TMO3 TXD2/SMOSI2/ SSDA2/SDA0 IRQ3 34 P12 MTIC5U/TMCI1 RXD2/SMISO2/ SSCL2/SCL0 IRQ2 35 PH3 MTIOC4D/TMCI0 36 PH2 MTIOC4C/TMRI0/ TOC1 IRQ1 37 PH1 MTIOC3D/TMO0/TIC1 IRQ0 38 PH0 MTIOC3B/CACREF 39 P55 D0[A0/D0]/ WAIT# MTIOC4D/MTIOC4A/ TMO3 CRX0-D IRQ10 40 P54 ALE/ D1[A1/D1] MTIOC4B/TMCI1 CTS2#/RTS2#/SS2#/ CTX0-D IRQ4 41 P53 BCLK PMC0 IRQ3 42 P52 RD# RXD2/SMISO2/ SSCL2 IRQ2 43 P51 WR1#/BC1#/ WAIT# SCK2/PMC0 IRQ1 44 P50 WR0#/WR# TXD2/SMOSI2/ SSDA2 IRQ0 PC7 CS0# MTIOC3A/MTCLKB/ TXD8/SMOSI8/ IRQ14 TMO2/CACREF/TOC0 SSDA8/SMOSI10/ SSDA10/TXD10/ TXD010-C/ SMOSI010-C/ SSDA010-C/MISOA-A 46 PC6 D2[A2/D2]/ CS1# MTIOC3C/MTCLKA/ TMCI2/TIC0 RXD8/SMISO8/ IRQ13 SSCL8/SMISO10/ SSCL10/RXD10/ RXD010-C/ SMISO010-C/ SSCL010-C/MOSIA-A 47 PC5 D3[A3/D3]/ CS2#/WAIT# MTIOC3B/MTCLKD/ TMRI2/MTIOC0C SCK8/SCK10/ SCK010-C/ RSPCKA-A/PMC0 48 PC4 A20/CS3# MTIOC3D/MTCLKC/ TMCI1/POE0#/ MTIOC0A SCK5/CTS8#/RTS8#/ IRQ12 SS8#/SS10#/CTS10#/ RTS10#/CTS010#-B/ RTS010#-B/ SS010#-B/DE010-B/ SSLA0-A/PMC0 49 PC3 A19 MTIOC4D TXD5/SMOSI5/ SSDA5/PMC0 45 UB R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 ADST0 ADTRG0# IRQ5 IRQ11 Page 41 of 123 RX660 Group Table 1.6 Pin No. 100-Pin LFQFP 1. Overview List of Pin and Pin Functions (100-Pin LFQFP) (3/5) Power Supply Clock System Control I/O Port Timer Communication Interrupt Bus (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC 50 PC2 A18 MTIOC4B RXD5/SMISO5/ SSCL5/TXDB011-A/ SSLA3-A 51 PC1 A17 MTIOC3A SCK5/TXD011-C/ IRQ12 SMOSI011-C/ SSDA011-C/ TXDA011-C/SSLA2-A 52 PC0 A16 MTIOC3C CTS5#/RTS5#/SS5#/ IRQ14 RXD011-C/ SMISO011-C/ SSCL011-C/SSLA1-A 53 PB7 A15 MTIOC3B TXD9/SMOSI9/ SSDA9/SMOSI11/ SSDA11/TXD11/ TXD011-B/ SMOSI011-B/ SSDA011-B IRQ15 54 PB6 A14 MTIOC3D RXD9/SMISO9/ SSCL9/SMISO11/ SSCL11/RXD11/ RXD011-B/ SMISO011-B/ SSCL011-B IRQ6 55 PB5 A13 MTIOC2A/MTIOC1B/ TMRI1/POE4#/TOC2 SCK9/SCK11/ SCK011-B IRQ13 56 PB4 A12 CTS9#/RTS9#/SS9#/ SS11#/CTS11#/ RTS11#/CTS011#-B/ RTS011#-B/ SS011#-B/DE011-B IRQ4 57 PB3 A11 SCK4/SCK6/PMC0 IRQ3 58 PB2 A10 CTS4#/RTS4#/SS4#/ CTS6#/RTS6#/SS6# IRQ2 59 PB1 A9 MTIOC0C/MTIOC4C/ TMCI0 TXD4/SMOSI4/ SSDA4/TXD6/ SMOSI6/SSDA6 IRQ4-DS PB0 A8 MTIC5W/MTIOC3D RXD4/SMISO4/ SSCL4/RXD6/ SMISO6/SSCL6/ RSPCKA-C IRQ12 63 PA7 A7 MISOA-B IRQ7 64 PA6 A6 MTIC5V/MTCLKB/ TMCI3/POE10#/ MTIOC3D/MTIOC6B CTS5#/RTS5#/SS5#/ CTS12#/RTS12#/ SS12#/MOSIA-B IRQ14 65 PA5 A5 MTIOC6B RSPCKA-B IRQ5 66 PA4 A4 MTIC5U/MTCLKA/ TMRI0/MTIOC4C/ MTIOC7C TXD5/SMOSI5/ SSDA5/TXD12/ SMOSI12/SSDA12/ TXDX12/SIOX12/ SSLA0-B IRQ5-DS CVREFC1/ ADST0 67 PA3 A3 MTIOC0D/MTCLKD/ MTIC5V/MTIOC4D RXD5/SMISO5/ SSCL5 IRQ6-DS CMPC10 60 COMP1 VCC 61 62 MTIOC0A/MTIOC4A/ TMO0/POE11#/TIC2 IRQ10 VSS R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 42 of 123 RX660 Group Table 1.6 Pin No. 100-Pin LFQFP 1. Overview List of Pin and Pin Functions (100-Pin LFQFP) (4/5) Power Supply Clock System Control I/O Port Timer Communication Interrupt Bus (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) 68 PA2 A2 MTIOC7A RXD5/SMISO5/ SSCL5/RXD12/ SMISO12/SSCL12/ RXDX12/SSLA3-B IRQ10 69 PA1 A1 MTIOC0B/MTCLKC/ MTIOC7B/MTIOC3B SCK5/SCK12/ SSLA2-B IRQ11 70 PA0 BC0#/A0 MTIOC4A/CACREF/ MTIOC6D SSLA1-B IRQ0 71 PE7 D15[A15/D15]/ MTIOC6A/TOC1 D7[A7/D7] 72 PE6 D14[A14/D14]/ MTIOC6C/TIC1 D6[A6/D6] 73 PE5 74 A/D, D/A, CMPC ADTRG0# IRQ7 AN015 IRQ6 AN014 D13[A13/D13]/ MTIOC4C/MTIOC2B D5[A5/D5] IRQ5 AN013/ COMP0 PE4 D12[A12/D12]/ MTIOC4D/MTIOC1A/ D4[A4/D4] MTIOC4A/MTIOC7D IRQ12 AN012 75 PE3 D11[A11/D11]/ MTIOC4B/POE8#/ D3[A3/D3] MTIOC1B/TOC3 CTS12#/RTS12#/ SS12# IRQ11 AN011 76 PE2 D10[A10/D10]/ MTIOC4A/MTIOC7A/ D2[A2/D2] TIC3 RXD12/SMISO12/ SSCL12/RXDX12 IRQ7-DS AN010/ CVREFC0 77 PE1 D9[A9/D9]/ D1[A1/D1] MTIOC4C/MTIOC3B TXD12/SMOSI12/ SSDA12/TXDX12/ SIOX12 IRQ9 AN009/ CMPC00 78 PE0 D8[A8/D8]/ D0[A0/D0] MTIOC3D SCK12 IRQ8 AN008 79 PD7 D7[A7/D7] MTIC5U/POE0# IRQ7 AN023 80 PD6 D6[A6/D6] MTIC5V/POE4#/ MTIOC8A IRQ6 AN022 81 PD5 D5[A5/D5] MTIC5W/POE10#/ MTIOC8C IRQ5 AN021 82 PD4 D4[A4/D4] POE11#/MTIOC8B IRQ4 AN020 83 PD3 D3[A3/D3] POE8#/MTIOC8D/ TOC2 IRQ3 AN019 84 PD2 D2[A2/D2] MTIOC4D/TIC2 CRX0-B IRQ2 AN018 85 PD1 D1[A1/D1] MTIOC4B/POE0# CTX0-B IRQ1 AN017 86 PD0 D0[A0/D0] POE4# IRQ0 AN016 87 P47 IRQ15-DS AN007 88 P46 IRQ14-DS AN006 89 P45 IRQ13-DS AN005 90 P44 IRQ12-DS AN004 91 P43 IRQ11-DS AN003 92 P42 IRQ10-DS AN002 93 P41 IRQ9-DS AN001 IRQ8-DS AN000 IRQ15 ADTRG0# 94 VREFL0 95 VREFH0 97 AVCC0 98 99 PJ7 P40 96 CTS4#/RTS4#/SS4# PJ6 P07 AVSS0 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 43 of 123 RX660 Group Table 1.6 Pin No. 100-Pin LFQFP 100 Note 1. Note 2. Note 3. Note 4. Note 5. 1. Overview List of Pin and Pin Functions (100-Pin LFQFP) (5/5) Power Supply Clock System Control I/O Port Timer Bus (MTU, TMR, RTC, POE, CAC, CMTW) P05 Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) IRQ13 A/D, D/A, CMPC DA1 This pin function is not provided for products with no JTAG interface. This pin function is not provided for products with a JTAG interface. This pin function is not provided for products with no sub-clock oscillator. This pin function is not provided for products with a sub-clock oscillator. This pin function is not available in products with no sub-clock oscillator. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 44 of 123 RX660 Group 1.6.3 1. Overview 80-Pin LFQFP Table 1.7 Pin No. 80-Pin LFQFP List of Pin and Pin Functions (80-Pin LFQFP) (1/4) Power Supply Clock System Control Timer I/O Port 1 P06 2 P03 3 P04 4 (MTU, TMR, RTC, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) IRQ11 A/D, D/A, CMPC DA0 VCL 5 PJ1 6 MD/FINED PN6 7 XCIN*1 PH7*2 8 XCOUT*1 PH6*2 9 RES# 10 XTAL 11 VSS 12 EXTAL 13 VCC MTIOC3A P37 IRQ4 P36 IRQ5 14 P35 15 P34 MTIOC0A/TMCI3/ POE10# 16 P32 TXD6/SMOSI6/ MTIOC0C/TMO3/ RTCIC2*3/RTCOUT*3/ SSDA6/TXD0/ POE0#/POE10# SMOSI0/SSDA0/ CTX0-A 17 P31 MTIOC4D/TMCI2/ RTCIC1*3 CTS1#/RTS1#/SS1# IRQ1-DS 18 P30 MTIOC4B/TMRI3/ RTCIC0*3/POE8# RXD1/SMISO1/ SSCL1 IRQ0-DS COMP3 19 P27 MTIOC2B/TMCI3 SCK1 IRQ7 CVREFC3 20 P26 MTIOC2A/TMO1 TXD1/SMOSI1/ SSDA1/CTS3#/ RTS3#/SS3# IRQ6 CMPC30 21 P21 MTIOC1B/TMCI0/ MTIOC4A RXD0/SMISO0/ SSCL0 IRQ9 22 P20 MTIOC1A/TMRI0 TXD0/SMOSI0/ SSDA0 IRQ8 23 P17 MTIOC3A/MTIOC3B/ TMO1/POE8#/ MTIOC4B SCK1/TXD3/SMOSI3/ IRQ7 SSDA3/MISOA-C/ SDA2 COMP2 24 P16 MTIOC3C/MTIOC3D/ TMO2/RTCOUT*3 TXD1/SMOSI1/ SSDA1/RXD3/ SMISO3/SSCL3/ MOSIA-C/SCL2 IRQ6 ADTRG0# 25 P15 MTIOC0B/MTCLKB/ TMCI2 RXD1/SMISO1/ SSCL1/SCK3/ CRX0-C IRQ5 CMPC20 26 P14 MTIOC3A/MTCLKA/ TMRI2 CTS1#/RTS1#/SS1#/ CTX0-C IRQ4 CVREFC2 27 P13 MTIOC0B/TMO3 SDA0 IRQ3 28 P12 MTIC5U/TMCI1 SCL0 IRQ2 29 PH3 MTIOC4D/TMCI0 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 NMI SCK6/SCK0 IRQ4 IRQ2-DS Page 45 of 123 RX660 Group Table 1.7 Pin No. 80-Pin LFQFP 1. Overview List of Pin and Pin Functions (80-Pin LFQFP) (2/4) Power Supply Clock System Control Timer I/O Port (MTU, TMR, RTC, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) 30 PH2 MTIOC4C/TMRI0/ TOC1 IRQ1 31 PH1 MTIOC3D/TMO0/TIC1 IRQ0 32 PH0 MTIOC3B/CACREF 33 P55 MTIOC4D/MTIOC4A/ TMO3 CRX0-D IRQ10 P54 MTIOC4B/TMCI1 CTX0-D IRQ4 PC7 MTIOC3A/MTCLKB/ TXD8/SMOSI8/ IRQ14 TMO2/CACREF/TOC0 SSDA8/SMOSI10/ SSDA10/TXD10/ TXD010-C/ SMOSI010-C/ SSDA010-C/MISOA-A 36 PC6 MTIOC3C/MTCLKA/ TMCI2/TIC0 RXD8/SMISO8/ IRQ13 SSCL8/SMISO10/ SSCL10/RXD10/ RXD010-C/ SMISO010-C/ SSCL010-C/MOSIA-A 37 PC5 MTIOC3B/MTCLKD/ TMRI2/MTIOC0C SCK8/SCK10/ SCK010-C/ RSPCKA-A/PMC0 38 PC4 MTIOC3D/MTCLKC/ TMCI1/POE0#/ MTIOC0A SCK5/CTS8#/RTS8#/ IRQ12 SS8#/SS10#/CTS10#/ RTS10#/CTS010#-B/ RTS010#-B/ SS010#-B/DE010-B/ SSLA0-A/PMC0 39 PC3 MTIOC4D TXD5/SMOSI5/ SSDA5/PMC0 IRQ11 40 PC2 MTIOC4B RXD5/SMISO5/ SSCL5/TXDB011-A/ SSLA3-A IRQ10 41 PB7 MTIOC3B TXD9/SMOSI9/ SSDA9/SMOSI11/ SSDA11/TXD11/ TXD011-B/ SMOSI011-B/ SSDA011-B IRQ15 42 PB6 MTIOC3D RXD9/SMISO9/ SSCL9/SMISO11/ SSCL11/RXD11/ RXD011-B/ SMISO011-B/ SSCL011-B IRQ6 43 PB5 MTIOC2A/MTIOC1B/ TMRI1/POE4#/TOC2 SCK9/SCK11/ SCK011-B IRQ13 44 PB4 CTS9#/RTS9#/SS9#/ SS11#/CTS11#/ RTS11#/CTS011#-B/ RTS011#-B/ SS011#-B/DE011-B IRQ4 45 PB3 SCK4/SCK6/PMC0 IRQ3 46 PB2 CTS4#/RTS4#/SS4#/ CTS6#/RTS6#/SS6# IRQ2 34 35 UB R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 MTIOC0A/MTIOC4A/ TMO0/POE11#/TIC2 A/D, D/A, CMPC ADST0 ADTRG0# IRQ5 Page 46 of 123 RX660 Group Table 1.7 Pin No. 80-Pin LFQFP 1. Overview List of Pin and Pin Functions (80-Pin LFQFP) (3/4) Power Supply Clock System Control 47 48 Communication Interrupt (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC PB1 MTIOC0C/MTIOC4C/ TMCI0 TXD4/SMOSI4/ SSDA4/TXD6/ SMOSI6/SSDA6 IRQ4-DS COMP1 PB0 MTIC5W/MTIOC3D RXD4/SMISO4/ SSCL4/RXD6/ SMISO6/SSCL6/ RSPCKA-C IRQ12 PA6 MTIC5V/MTCLKB/ TMCI3/POE10#/ MTIOC3D/MTIOC6B CTS5#/RTS5#/SS5#/ CTS12#/RTS12#/ SS12#/MOSIA-B IRQ14 I/O Port VCC 49 50 Timer VSS 51 52 PA5 MTIOC6B RSPCKA-B IRQ5 53 PA4 MTIC5U/MTCLKA/ TMRI0/MTIOC4C/ MTIOC7C TXD5/SMOSI5/ SSDA5/TXD12/ SMOSI12/SSDA12/ TXDX12/SIOX12/ SSLA0-B IRQ5-DS CVREFC1/ ADST0 54 PA3 MTIOC0D/MTCLKD/ MTIC5V/MTIOC4D RXD5/SMISO5/ SSCL5 IRQ6-DS CMPC10 55 PA2 MTIOC7A RXD5/SMISO5/ SSCL5/RXD12/ SMISO12/SSCL12/ RXDX12/SSLA3-B IRQ10 56 PA1 MTIOC0B/MTCLKC/ MTIOC7B/MTIOC3B SCK5/SCK12/ SSLA2-B IRQ11 57 PA0 MTIOC4A/CACREF/ MTIOC6D SSLA1-B IRQ0 58 PE5 MTIOC4C/MTIOC2B IRQ5 AN013/COMP0 59 PE4 MTIOC4D/MTIOC1A/ MTIOC4A/MTIOC7D IRQ12 AN012 60 PE3 MTIOC4B/POE8#/ MTIOC1B/TOC3 CTS12#/RTS12#/ SS12# IRQ11 AN011 61 PE2 MTIOC4A/MTIOC7A/ TIC3 RXD12/SMISO12/ SSCL12/RXDX12 IRQ7-DS AN010/ CVREFC0 62 PE1 MTIOC4C/MTIOC3B TXD12/SMOSI12/ SSDA12/TXDX12/ SIOX12 IRQ9 AN009/ CMPC00 63 PE0 MTIOC3D SCK12 IRQ8 AN008 64 PD2 MTIOC4D/TIC2 CRX0-B IRQ2 AN018 CTX0-B IRQ1 AN017 IRQ0 AN016 ADTRG0# 65 PD1 MTIOC4B/POE0# 66 PD0 POE4# 67 P47 IRQ15-DS AN007 68 P46 IRQ14-DS AN006 69 P45 IRQ13-DS AN005 70 P44 IRQ12-DS AN004 71 P43 IRQ11-DS AN003 72 P42 IRQ10-DS AN002 P41 IRQ9-DS AN001 IRQ8-DS AN000 73 74 75 VREFL0 PJ7 P40 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 47 of 123 RX660 Group Table 1.7 Pin No. 1. Overview List of Pin and Pin Functions (80-Pin LFQFP) (4/4) Timer 80-Pin LFQFP Power Supply Clock System Control I/O Port 76 VREFH0 PJ6 77 AVCC0 78 79 80 (MTU, TMR, RTC, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC P07 IRQ15 ADTRG0# P05 IRQ13 DA1 AVSS0 Note 1. This pin function is not provided for products with no sub-clock oscillator. Note 2. This pin function is not provided for products with a sub-clock oscillator. Note 3. This pin function is not available in products with no sub-clock oscillator. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 48 of 123 RX660 Group 1.6.4 1. Overview 64-Pin LFQFP Table 1.8 Pin No. 64-Pin LFQFP List of Pin and Pin Functions (64-Pin LFQFP) (1/3) Power Supply Clock System Control 1 Timer I/O Port (MTU, TMR, RTC, POE, CAC, CMTW) Communication P03 2 VCL 3 MD/FINED PN6 4 XCIN*1 PH7*2 5 XCOUT*1 PH6*2 6 RES# 7 XTAL 8 VSS 9 EXTAL 10 VCC Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) IRQ11 P37 IRQ4 P36 IRQ5 11 P35 12 P32 TXD6/SMOSI6/ MTIOC0C/TMO3/ RTCIC2*3/RTCOUT*3/ SSDA6/CTX0-A POE0#/POE10# 13 P31 MTIOC4D/TMCI2/ RTCIC1*3 CTS1#/RTS1#/SS1# IRQ1-DS 14 P30 MTIOC4B/TMRI3/ RTCIC0*3/POE8# RXD1/SMISO1/ SSCL1 IRQ0-DS A/D, D/A, CMPC DA0 NMI IRQ2-DS COMP3 15 P27 MTIOC2B/TMCI3 SCK1 IRQ7 CVREFC3 16 P26 MTIOC2A/TMO1 TXD1/SMOSI1/ SSDA1/CTS3#/ RTS3#/SS3# IRQ6 CMPC30 17 P17 MTIOC3A/MTIOC3B/ TMO1/POE8#/ MTIOC4B SCK1/TXD3/SMOSI3/ IRQ7 SSDA3/MISOA-C/ SDA2 COMP2 18 P16 MTIOC3C/MTIOC3D/ TMO2/RTCOUT*3 TXD1/SMOSI1/ SSDA1/RXD3/ SMISO3/SSCL3/ MOSIA-C/SCL2 IRQ6 ADTRG0# 19 P15 MTIOC0B/MTCLKB/ TMCI2 RXD1/SMISO1/ SSCL1/SCK3/ CRX0-C IRQ5 CMPC20 20 P14 MTIOC3A/MTCLKA/ TMRI2 CTS1#/RTS1#/SS1#/ CTX0-C IRQ4 CVREFC2 21 PH3 MTIOC4D/TMCI0 22 PH2 MTIOC4C/TMRI0/ TOC1 IRQ1 23 PH1 MTIOC3D/TMO0/TIC1 IRQ0 24 PH0 MTIOC3B/CACREF 25 P55 MTIOC4D/MTIOC4A/ TMO3 CRX0-D IRQ10 26 P54 MTIOC4B/TMCI1 CTX0-D IRQ4 PC7 MTIOC3A/MTCLKB/ TXD8/SMOSI8/ IRQ14 TMO2/CACREF/TOC0 SSDA8/SMOSI10/ SSDA10/TXD10/ TXD010-C/ SMOSI010-C/ SSDA010-C/MISOA-A 27 UB R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 ADST0 ADTRG0# Page 49 of 123 RX660 Group Table 1.8 Pin No. 64-Pin LFQFP 1. Overview List of Pin and Pin Functions (64-Pin LFQFP) (2/3) Power Supply Clock System Control Timer I/O Port Communication Interrupt (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, D/A, CMPC 28 PC6 MTIOC3C/MTCLKA/ TMCI2/TIC0 RXD8/SMISO8/ IRQ13 SSCL8/SMISO10/ SSCL10/RXD10/ RXD010-C/ SMISO010-C/ SSCL010-C/MOSIA-A 29 PC5 MTIOC3B/MTCLKD/ TMRI2/MTIOC0C SCK8/SCK10/ SCK010-C/ RSPCKA-A/PMC0 30 PC4 MTIOC3D/MTCLKC/ TMCI1/POE0#/ MTIOC0A SCK5/CTS8#/RTS8#/ IRQ12 SS8#/SS10#/CTS10#/ RTS10#/CTS010#-B/ RTS010#-B/ SS010#-B/DE010-B/ SSLA0-A/PMC0 31 PC3 MTIOC4D TXD5/SMOSI5/ SSDA5/PMC0 IRQ11 32 PC2 MTIOC4B RXD5/SMISO5/ SSCL5/TXDB011-A/ SSLA3-A IRQ10 33 PB7 MTIOC3B TXD9/SMOSI9/ SSDA9/SMOSI11/ SSDA11/TXD11/ TXD011-B/ SMOSI011-B/ SSDA011-B IRQ15 34 PB6 MTIOC3D RXD9/SMISO9/ SSCL9/SMISO11/ SSCL11/RXD11/ RXD011-B/ SMISO011-B/ SSCL011-B IRQ6 35 PB5 MTIOC2A/MTIOC1B/ TMRI1/POE4#/TOC2 SCK9/SCK11/ SCK011-B IRQ13 36 PB3 MTIOC0A/MTIOC4A/ TMO0/POE11#/TIC2 SCK4/SCK6/PMC0 IRQ3 37 PB1 MTIOC0C/MTIOC4C/ TMCI0 TXD4/SMOSI4/ SSDA4/TXD6/ SMOSI6/SSDA6 IRQ4-DS PB0 MTIC5W/MTIOC3D RXD4/SMISO4/ SSCL4/RXD6/ SMISO6/SSCL6/ RSPCKA-C IRQ12 41 PA6 MTIC5V/MTCLKB/ TMCI3/POE10#/ MTIOC3D/MTIOC6B CTS5#/RTS5#/SS5#/ CTS12#/RTS12#/ SS12#/MOSIA-B IRQ14 42 PA4 MTIC5U/MTCLKA/ TMRI0/MTIOC4C/ MTIOC7C TXD5/SMOSI5/ SSDA5/TXD12/ SMOSI12/SSDA12/ TXDX12/SIOX12/ SSLA0-B IRQ5-DS CVREFC1/ ADST0 43 PA3 MTIOC0D/MTCLKD/ MTIC5V/MTIOC4D RXD5/SMISO5/ SSCL5 IRQ6-DS CMPC10 44 PA1 MTIOC0B/MTCLKC/ MTIOC7B/MTIOC3B SCK5/SCK12/ SSLA2-B IRQ11 ADTRG0# 38 COMP1 VCC 39 40 IRQ5 VSS R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 50 of 123 RX660 Group Table 1.8 Pin No. 64-Pin LFQFP 1. Overview List of Pin and Pin Functions (64-Pin LFQFP) (3/3) Power Supply Clock System Control Timer I/O Port Communication Interrupt (MTU, TMR, RTC, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) SSLA1-B A/D, D/A, CMPC 45 PA0 MTIOC4A/CACREF/ MTIOC6D 46 PE5 MTIOC4C/MTIOC2B IRQ5 AN013/COMP0 47 PE4 MTIOC4D/MTIOC1A/ MTIOC4A/MTIOC7D IRQ12 AN012 48 PE3 MTIOC4B/POE8#/ MTIOC1B/TOC3 CTS12#/RTS12#/ SS12# IRQ11 AN011 49 PE2 MTIOC4A/MTIOC7A/ TIC3 RXD12/SMISO12/ SSCL12/RXDX12 IRQ7-DS AN010/ CVREFC0 50 PE1 MTIOC4C/MTIOC3B TXD12/SMOSI12/ SSDA12/TXDX12/ SIOX12 IRQ9 AN009/ CMPC00 51 PE0 MTIOC3D SCK12 IRQ8 AN008 52 P47 IRQ15-DS AN007 53 P46 IRQ14-DS AN006 54 P45 IRQ13-DS AN005 55 P44 IRQ12-DS AN004 56 P43 IRQ11-DS AN003 57 P42 IRQ10-DS AN002 58 P41 IRQ9-DS AN001 IRQ8-DS AN000 IRQ15 ADTRG0# 59 VREFL0 60 VREFH0 62 AVCC0 63 64 PJ7 P40 61 IRQ0 PJ6 P07 AVSS0 Note 1. This pin function is not provided for products with no sub-clock oscillator. Note 2. This pin function is not provided for products with a sub-clock oscillator. Note 3. This pin function is not available in products with no sub-clock oscillator. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 51 of 123 RX660 Group 1.6.5 1. Overview 48-Pin LFQFP Table 1.9 Pin No. List of Pin and Pin Functions (48-Pin LFQFP) (1/2) 48-Pin LFQFP Power Supply Clock System Control 1 VCL 2 MD/FINED 3 RES# 4 XTAL 5 VSS 6 EXTAL 7 VCC Timer I/O Port (MTU, TMR, POE, CAC, CMTW) Communication Interrupt (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, CMPC PN6 P37 IRQ4 P36 IRQ5 8 P35 NMI 9 P31 MTIOC4D/TMCI2 CTS1#/RTS1#/SS1# IRQ1-DS 10 P30 MTIOC4B/POE8# RXD1/SMISO1/ SSCL1 IRQ0-DS COMP3 11 P27 MTIOC2B SCK1 IRQ7 CVREFC3 12 P26 MTIOC2A/TMO1 TXD1/SMOSI1/ SSDA1/CTS3#/ RTS3#/SS3# IRQ6 CMPC30 13 P17 MTIOC3A/MTIOC3B/ TMO1/POE8#/ MTIOC4B SCK1/TXD3/SMOSI3/ IRQ7 SSDA3/MISOA-C/ SDA2 COMP2 14 P16 MTIOC3C/MTIOC3D/ TMO2 TXD1/SMOSI1/ SSDA1/RXD3/ SMISO3/SSCL3/ MOSIA-C/SCL2 IRQ6 ADTRG0# 15 P15 MTIOC0B/MTCLKB/ TMCI2 RXD1/SMISO1/ SSCL1/SCK3/ CRX0-C IRQ5 CMPC20 16 P14 MTIOC3A/MTCLKA/ TMRI2 CTS1#/RTS1#/SS1#/ CTX0-C IRQ4 CVREFC2 17 PH3 MTIOC4D/TMCI0 18 PH2 MTIOC4C/TMRI0/ TOC1 IRQ1 19 PH1 MTIOC3D/TMO0/TIC1 IRQ0 20 PH0 MTIOC3B/CACREF PC7 MTIOC3A/MTCLKB/ TXD8/SMOSI8/ IRQ14 TMO2/CACREF/TOC0 SSDA8/SMOSI10/ SSDA10/TXD10/ TXD010-C/ SMOSI010-C/ SSDA010-C/MISOA-A 22 PC6 MTIOC3C/MTCLKA/ TMCI2/TIC0 RXD8/SMISO8/ IRQ13 SSCL8/SMISO10/ SSCL10/RXD10/ RXD010-C/ SMISO010-C/ SSCL010-C/MOSIA-A 23 PC5 MTIOC3B/MTCLKD/ TMRI2/MTIOC0C SCK8/SCK10/ SCK010-C/ RSPCKA-A/PMC0 21 UB R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 ADST0 ADTRG0# IRQ5 Page 52 of 123 RX660 Group Table 1.9 Pin No. 48-Pin LFQFP 1. Overview List of Pin and Pin Functions (48-Pin LFQFP) (2/2) Power Supply Clock System Control Timer I/O Port Communication Interrupt (MTU, TMR, POE, CAC, CMTW) (SCI, RSCI, RSPI, RIIC, CANFD, REMC) (IRQ, NMI) A/D, CMPC 24 PC4 MTIOC3D/MTCLKC/ TMCI1/POE0#/ MTIOC0A SCK5/CTS8#/RTS8#/ IRQ12 SS8#/SS10#/CTS10#/ RTS10#/CTS010#-B/ RTS010#-B/ SS010#-B/DE010-B/ SSLA0-A/PMC0 25 PB5 MTIOC2A/MTIOC1B/ TMRI1/POE4#/TOC2 IRQ13 26 PB3 MTIOC0A/MTIOC4A/ TMO0/POE11#/TIC2 SCK4/SCK6/PMC0 IRQ3 27 PB1 MTIOC0C/MTIOC4C/ TMCI0 TXD4/SMOSI4/ SSDA4/TXD6/ SMOSI6/SSDA6 IRQ4-DS PB0 MTIC5W/MTIOC3D RXD4/SMISO4/ SSCL4/RXD6/ SMISO6/SSCL6/ RSPCKA-C IRQ12 31 PA6 MTIC5V/MTCLKB/ POE10#/MTIOC3D CTS5#/RTS5#/SS5#/ CTS12#/RTS12#/ SS12#/MOSIA-B IRQ14 32 PA4 MTIC5U/MTCLKA/ TMRI0/MTIOC4C/ MTIOC7C TXD5/SMOSI5/ SSDA5/TXD12/ SMOSI12/SSDA12/ TXDX12/SIOX12/ SSLA0-B IRQ5-DS CVREFC1/ ADST0 33 PA3 MTIOC0D/MTCLKD/ MTIC5V/MTIOC4D RXD5/SMISO5/ SSCL5 IRQ6-DS CMPC10 34 PA1 MTIOC0B/MTCLKC/ MTIOC7B/MTIOC3B SCK5/SCK12/ SSLA2-B IRQ11 ADTRG0# 35 PE4 MTIOC4D/MTIOC1A/ MTIOC4A/MTIOC7D IRQ12 AN012 36 PE3 MTIOC4B/POE8#/ MTIOC1B/TOC3 CTS12#/RTS12#/ SS12# IRQ11 AN011 37 PE2 MTIOC4A/MTIOC7A/ TIC3 RXD12/SMISO12/ SSCL12/RXDX12 IRQ7-DS AN010/ CVREFC0 38 PE1 MTIOC4C/MTIOC3B TXD12/SMOSI12/ SSDA12/TXDX12/ SIOX12 IRQ9 AN009/ CMPC00 39 P47 IRQ15-DS AN007 40 P46 IRQ14-DS AN006 41 P45 IRQ13-DS AN005 42 P42 IRQ10-DS AN002 43 P41 IRQ9-DS AN001 IRQ8-DS AN000 28 VCC 29 30 44 COMP1 VSS VREFL0 45 PJ7 P40 46 VREFH0 47 AVCC0 48 AVSS0 PJ6 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 53 of 123 RX660 Group 2. Electrical Characteristics 2. Electrical Characteristics 2.1 Absolute Maximum Ratings Table 2.1 Absolute Maximum Rating Conditions: VSS = AVSS0 = 0 V Item Symbol Value Unit VCC –0.3 to +6.5 V Analog power supply voltage AVCC0*1 –0.3 to +6.5 V Reference power supply voltage VREFH0 –0.3 to AVCC0 + 0.3 (up to 6.5) V Vin –0.3 to +6.5 V Power supply voltage Input voltage P12, P13, P16, P17 P03, P05 to P7, P40 to P47, PJ6, PJ7 –0.3 to AVCC0 + 0.3 (up to 6.5) Other than above –0.3 to VCC + 0.3 (up to 6.5) Junction temperature Tj –40 to +125 °C Storage temperature Tstg –55 to +125 °C Caution: Permanent damage to the LSI may result if absolute maximum ratings are exceeded. Note 1. Insert capacitors of high frequency characteristics between the AVCC0 and AVSS0 pins. Place capacitors of about 0.1 µF as close as possible to every power supply pin and use the shortest and heaviest possible traces. 2.2 Recommended Operating Conditions Table 2.2 Recommended Operating Conditions (1) Item Power supply voltage*1 Analog power supply voltage*1, *2 Input voltage P12, P13, P16, P17 Symbol Min. Typ. Max. Unit VCC 2.7 — 5.5 V VSS — 0 — AVCC0 3.0 — 5.5 AVSS0 — 0 — VREFH0 AVCC0 – 1.0 — AVCC0 VREFL0 — 0 — Vin –0.3 — 5.8 –0.3 — AVCC0 + 0.3 –0.3 — VCC + 0.3 –40 — 85 –40 — 105 P03, P05 to P7, P40 to P47, PJ6, PJ7 Other than above Operating temperature Junction temperature D version Topr G version D version Tj G version –40 — 105 –40 — 125 V V °C °C Note 1. Comply with the following potential condition: VCC ≤ AVCC0 Note 2. For details, see section 38.6.10, Voltage Range of Analog Power Supply Pins in the User’s Manual: Hardware. Table 2.3 Recommended Operating Conditions (2) Item Decoupling capacitance to stabilize the internal voltage Symbol Value CVCL 0.47 μF ± 30%*1 Note 1. Use a multilayer ceramic capacitor whose nominal capacitance is 0.47 μF and a capacitance tolerance is ±30% or better. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 54 of 123 RX660 Group 2.3 2. Electrical Characteristics DC Characteristics Table 2.4 DC Characteristics (1) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Schmitt trigger input voltage IRQ input pin MTU input pin POE input pin TMR input pin CMTW input pin RTC input pin SCI input pin CANFD input pin REMC input pin ADTRG# input pin RES#, NMI RIIC input pin (except for SMBus) Symbol Min. Typ. Max. Unit VIH 0.8 × VCC VIL — — — V — 0.2 × VCC ΔVT 0.06 × VCC — — VIH 0.7 × VCC — — VIL — — 0.3 × VCC ΔVT 0.05 × VCC — — Ports for 5 V tolerant (P12, P13, P16, P17) VIH 0.8 × VCC — — VIL — — 0.2 × VCC Other input pins excluding ports for 5 V tolerant VIH 0.8 × VCC — — VIL — — 0.2 × VCC 0.9 × VCC — — 0.8 × VCC — — High level input MD pin, EMLE voltage EXTAL, RSPI input pin, (except for Schmitt WAIT# trigger input pin) D0 to D15 VIH RIIC (SMBus) Low level input MD pin, EMLE voltage EXTAL, RSPI input pin, (except for Schmitt WAIT# trigger input pin) D0 to D15 RIIC (SMBus) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 VIL 0.7 × VCC — — 2.1 — — — — 0.1 × VCC — — 0.2 × VCC — — 0.3 × VCC — — 0.8 Test Conditions V V Page 55 of 123 RX660 Group Table 2.5 2. Electrical Characteristics DC Characteristics (2) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Output high voltage P03, P05 to P7, P40 to P47, PJ6, PJ7 Symbol Min. Typ. Max. Unit VOH AVCC0 – 0.5 — — V IOH = –1 mA VCC – 0.5 — — — — 0.4 V IOL = 3.0 mA — — 0.6 IOL = 6.0 mA — — 0.5 IOL = 1.0 mA | Iin | — — 1.0 µA Vin = 0 V Vin = VCC | ITSI | — — 5.0 µA — — 1.0 Vin = 0 V Vin = VCC RPU 10 — 100 kΩ AVCC0 = 3.0 to 5.5 V Vin = 0 V 10 — 100 5 — 50 kΩ Vin = VCC = AVCC0 pF Vbias = 0 V Vamp = 20 mV f = 1 MHz Ta = 25°C Other than above Output low voltage RIIC pins VOL Other than above Input leakage current RES#, EMLE Three-state leakage current (off state) RIIC pins Input pull-up resistors Other than above P03, P05 to P7, P40 to P47, PJ6, PJ7 Other than above Input pull-down resistors EMLE RPD Input capacitance RIIC pins Cin — — 16 PJ6, PJ7 — — 12 Other than above — — 8 — 1.25 — Output voltage of the VCL pin R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 VCL Test Conditions VCC = 2.7 to 5.5 V Vin = 0 V V Page 56 of 123 RX660 Group Table 2.6 2. Electrical Characteristics DC Characteristics (3) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Supply current*1 Symbol ICC*2 Full operation Typ. Max. G version Typ. Max. — 68 — 76 Peripheral module clocks are supplied 21 — 21 — Peripheral module clocks are stopped 12 — 12 — CoreMark Peripheral module clocks are stopped 19 — 19 — Sleep mode Peripheral module clocks are supplied 16 36 16 44 7.8 24 7.8 32 12 — 12 — Normal operation Normal operating mode D version All module clock stop mode Reading from the code flash memory while the data flash memory is being programmed Increased by BGO operation*3 Unit Test Conditions mA ICLK = 120 MHz, PCLKA = 120 MHz, PCLKB = 60 MHz, PCLKD = 60 MHz, FCLK = 60 MHz, BCLK = 60 MHz, BCLK pin = 30 MHz Software standby mode 0.9 9 0.9 14 mA Deep software standby mode 15 23 15 32 µA 2.6 — 2.6 — Increase current by operating RTC When a standard CL crystal is in use Note 1. Supply current values are measured when all output pins are unloaded and all input pull-up resistors are disabled. Note 2. ICC depends on the f (ICLK) as follows.  D version ICC max = 0.500 × f + 8 (full operation in normal operating mode) ICC typ = 0.144 × f + 4 (normal operation in normal operating mode) ICC max = 0.234 × f + 8 (sleep mode)  G version ICC max = 0.534 × f + 12 (full operation in normal operating mode) ICC typ = 0.144 × f + 4 (normal operation in normal operating mode) ICC max = 0.267 × f + 12 (sleep mode) Note 3. This is an increase caused by programming/erasing of the data flash memory during execution of the user program from the code flash memory. Table 2.7 DC Characteristics (4) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item A/D Analog power supply current D/A (2 channels) CMPC (4 channels) TEMPS Symbol Typ. Max. Unit AICC 0.9 1.4 mA During conversion Waiting for conversion Waiting Waiting Waiting for conversion During conversion Waiting Waiting 0.6 0.8 Waiting for conversion Waiting for conversion During operation Waiting 0.4 0.5 During conversion Waiting for conversion Waiting During operation 1.0 1.5 When waiting 0.4 7.7 In the module-stop state 0.4 6.5 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 µA Page 57 of 123 RX660 Group Table 2.8 2. Electrical Characteristics DC Characteristics (5) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol Min. Typ. Max. Unit VRAM 2.7 — — V SrVCC 0.02 — 8 ms/V 0.02 — 20 1.0 — — RAM retension voltage VCC ramp rate at power-on At normal startup Voltage monitoring 0 reset enabled at startup*1, *2 VCC ramp rate at power fluctuation dt/dVCC Test Conditions Figure 2.1 When VCC change exceeds VCC ±10% Note 1. When OFS1.LVDAS = 0. Note 2. Settings of the OFS1 register are not read in boot mode or user boot mode, so turn on the power supply voltage with a ramp rate at normal startup. max = 8 ms/V min = 0.02 ms/V Figure 2.1 Table 2.9 max = 20 ms/V VCC Ramp Rate at Power-On Permissible Output Currents Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Permissible output low current (average value per pin) Permissible output low current (max. value per pin) All output pins*1 High drive All output pins*1 Normal drive All output pins*2 Permissible output low current (total) Total of all output pins Permissible output high current (average value per pin) All output pins*1 Permissible output high current (max. value per pin) Permissible output high current (total) Normal drive All output pins*2 All output pins*2 All output pins*1 All output pins*2 Total of all output pins Symbol Min. Typ. Max. Unit IOL — — 2.0 mA — — 3.8 IOL — — 4.0 — — 7.6 ΣIOL — — 80 mA IOH — — –2.0 mA — — –3.8 IOH — — –4.0 — — –7.6 — — –80 High drive Normal drive High drive Normal drive High drive ΣIOH mA mA mA Caution: To protect the LSI’s reliability, the output current values should not exceed the values in this table. Note 1. This is the value when normal driving ability is set with a pin for which normal driving ability is selectable. Note 2. This is the value when high driving ability is set with a pin for which normal driving ability is selectable or the value of the pin to which high driving ability is fixed. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 58 of 123 RX660 Group Table 2.10 2. Electrical Characteristics Standard Output Characteristics (1) Conditions: VCC = AVCC0 = 5.0 V, VSS = AVSS0 = 0 V, Ta = 25°C Item Output high voltage Normal drive output Symbol Min. Typ. Max. Unit VOH — 4.97 — V — 4.94 — IOH = –1.0 mA — 4.87 — IOH = –2.0 mA — 4.74 — IOH = –4.0 mA — 4.98 — IOH = –0.5 mA — 4.97 — IOH = –1.0 mA — 4.94 — IOH = –2.0 mA — 4.87 — — 0.02 — — 0.04 — IOL = 1.0 mA — 0.09 — IOL = 2.0 mA — 0.18 — IOL = 4.0 mA — 0.01 — IOL = 0.5 mA — 0.03 — IOL = 1.0 mA — 0.05 — IOL = 2.0 mA — 0.10 — IOL = 4.0 mA High-drive output Output low voltage Normal drive output VOL High-drive output Table 2.11 Test Conditions IOH = –0.5 mA IOH = –4.0 mA V IOL = 0.5 mA Standard Output Characteristics (2) Conditions: VCC = AVCC0 = 3.3V, VSS = AVSS0 = 0 V, Ta = 25°C Item Output high voltage Normal drive output Symbol Min. Typ. Max. Unit VOH — 3.26 — V — 3.22 — IOH = –1.0 mA — 3.13 — IOH = –2.0 mA — 2.94 — IOH = –4.0 mA — 3.28 — IOH = –0.5 mA — 3.26 — IOH = –1.0 mA — 3.22 — IOH = –2.0 mA — 3.13 — IOH = –4.0 mA High-drive output Output low voltage Normal drive output High-drive output R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 VOL V Test Conditions IOH = –0.5 mA — 0.03 — — 0.06 — IOL = 1.0 mA IOL = 0.5 mA — 0.12 — IOL = 2.0 mA — 0.25 — IOL = 4.0 mA — 0.02 — IOL = 0.5 mA — 0.03 — IOL = 1.0 mA — 0.07 — IOL = 2.0 mA — 0.13 — IOL = 4.0 mA Page 59 of 123 RX660 Group Table 2.12 2. Electrical Characteristics Thermal Resistance Value (Reference) Item Thermal resistance Package 144-pin LFQFP (PLQP0144KA-B) Symbol Max. Unit ja 52.1 °C/W JESD51-2 and JESD51-7 compliant Ta = 105°C °C/W JESD51-2 and JESD51-7 compliant 100-pin LFQFP (PLQP0100KB-B) 80-pin LFQFP (PLQP0080KB-B) 52.0 64-pin LFQFP (PLQP0064KB-C) 50.8 48-pin LFQFP (PLQP0048KB-B) 58.4 144-pin LFQFP (PLQP0144KA-B) Note: 51.3 jt 1.3 100-pin LFQFP (PLQP0100KB-B) 1.3 80-pin LFQFP (PLQP0080KB-B) 1.3 64-pin LFQFP (PLQP0064KB-C) 1.3 48-pin LFQFP (PLQP0048KB-B) 1.8 Test Conditions The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 60 of 123 RX660 Group 2.4 2. Electrical Characteristics AC Characteristics Table 2.13 Operating Frequency Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Operating frequency Item Symbol Min. Typ. Max. Unit Test Conditions System clock (ICLK) f — — 120 MHz Peripheral module clock (PCLKA) — — 120 Peripheral module clock (PCLKB) — — 60 Peripheral module clock (PCLKD) —*1 — 60 Flash-IF clock (FCLK) —*2 — 60 External bus clock (BCLK) — — 60 BCLK pin output — — 40 VCC ≥ 4.5 V, High-drive output is selected in the driving ability control register. — — 32 VCC < 4.5 V, High-drive output is selected in the driving ability control register. Note 1. When the 12-bit A/D converter is to be used, the frequency of PCLKD must be set to at least 8 MHz. Note 2. The FCLK must run at a frequency of at least 4 MHz when the contents of flash memory are to be changed. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 61 of 123 RX660 Group 2. Electrical Characteristics 2.4.1 Reset Timing Table 2.14 Reset Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol Min. Typ. Max. Unit Test Conditions Power-on tRESWP 2.0 — — ms Figure 2.2 Deep software standby mode tRESWD 0.6 — — ms Figure 2.3 Software standby mode tRESWS 0.3 — — ms Programming or erasure of the code flash memory, or programming, erasure or blank checking of the data flash memory tRESWF 200 — — µs Other than above tRESW 200 — — µs Waiting time after release from the RES# pin reset tRESWT 62 — 63 tLcyc Internal reset time (independent watchdog timer reset, watchdog timer reset, software reset) tRESW2 108 — 116 tLcyc RES# pulse width Figure 2.2 VCC RES# tRESWP Internal reset signal (Low is valid) tRESWT Figure 2.2 Reset Input Timing at Power-On tRESWD, tRESWS, tRESWF, tRESW RES# Internal reset signal (Low is valid) tRESWT Figure 2.3 Reset Input Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 62 of 123 RX660 Group 2. Electrical Characteristics 2.4.2 Clock Timing Table 2.15 BCLK Pin Output Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol Min. Typ. Max. Unit BCLK pin output cycle time tBcyc 25 — — ns VCC ≥ 4.5 V BCLK pin output high pulse width tCH ns VCC ≥ 4.5 V BCLK pin output low pulse width tCL 31.25 — — 7.5 — — 10.625 — — 7.5 — — 10.625 — — Test Conditions Figure 2.4 VCC < 4.5 V VCC < 4.5 V ns VCC ≥ 4.5 V VCC < 4.5 V BCLK pin output rising time tCr — — 5 ns BCLK pin output falling time tCf — — 5 ns tBcyc tCH tCf BCLK pin output tCL tCr Test conditions: VOH = 0.7 × VCC, VOL = 0.3 × VCC, C = 30 pF Figure 2.4 BCLK Pin Output Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 63 of 123 RX660 Group Table 2.16 2. Electrical Characteristics EXTAL Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol Min. Typ. Max. Unit EXTAL external clock input cycle time tEXcyc 41.66 — — ns EXTAL external clock input frequency fEXMAIN — — 24 MHz EXTAL external clock input high pulse width tEXH 15.83 — — ns EXTAL external clock input low pulse width tEXL 15.83 — — ns EXTAL external clock rising time tEXr — — 5 ns EXTAL external clock falling time tEXf — — 5 ns Test Conditions Figure 2.5 tEXcyc tEXH tEXL EXTAL external clock input 0.5 × VCC tEXr Figure 2.5 Table 2.17 tEXf EXTAL External Clock Input Timing Main Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Main clock oscillation frequency Min. Typ. Max. Unit fMAIN 8 — 24 MHz ms ms tMAINOSC — — —*1 tMAINOSCWT — — —*2 Main clock oscillator stabilization time (crystal) Main clock oscillation stabilization waiting time (crystal) Symbol Test Conditions Figure 2.6 Note 1. When using a main clock, ask the manufacturer of the oscillator to evaluate its oscillation. Refer to the results of evaluation provided by the manufacturer for the oscillation stabilization time. Note 2. The number of cycles selected by the value of the MOSCWTCR.MSTS[7:0] bits determines the main clock oscillation stabilization waiting time in accord with the formula below. tMAINOSCWT = [(MSTS[7:0] bits × 32) + 10] / fLOCO MOSCCR.MOSTP tMAINOSC Main clock oscillator output tMAINOSCWT OSCOVFSR.MOOVF Main clock Figure 2.6 Main Clock Oscillation Start Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 64 of 123 RX660 Group Table 2.18 2. Electrical Characteristics LOCO and IWDT-Dedicated Low-Speed Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol LOCO clock cycle time LOCO clock oscillation frequency LOCO clock oscillation stabilization waiting time Min. Typ. Max. Unit tLcyc 3.78 4.16 4.63 µs fLOCO 216 (–10%) 240 264 (+10%) kHz tLOCOWT — — 44 µs IWDT-dedicated low-speed clock cycle time tILcyc 7.57 8.33 9.26 µs IWDT-dedicated low-speed clock oscillation frequency fILOCO 108 (–10%) 120 132 (+10%) kHz IWDT-dedicated low-speed clock oscillation stabilization waiting time tILOCOWT — 142 190 µs Test Conditions Figure 2.7 Figure 2.8 LOCOCR.LCSTP On-chip oscillator output tLOCOWT LOCO clock Figure 2.7 LOCO Clock Oscillation Start Timing ILOCOCR.ILCSTP IWDT-dedicated on-chip oscillator output tILOCOWT OSCOVFSR.ILCOVF IWDT-dedicated low-speed clock Figure 2.8 IWDT-dedicated Low-Speed Clock Oscillation Start Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 65 of 123 RX660 Group Table 2.19 2. Electrical Characteristics HOCO Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol Min. Typ. Max. Unit fHOCO 15.84 (–1.0%) 16 16.16 (+1.0%) MHz 17.82 (–1.0%) 18 18.18 (+1.0%) 19.80 (–1.0%) 20 20.20 (+1.0%) 15.68 (–2.0%) 16 16.16 (+1.0%) 17.64 (–2.0%) 18 18.18 (+1.0%) 19.60 (–2.0%) 20 20.20 (+1.0%) 15.960 (–0.25%) 16 16.040 (+0.25%) 17.955 (–0.25%) 18 18.045 (+0.25%) 19.950 (–0.25%) 20 20.050 (+0.25%) tHOCOWT — 105 149 µs Figure 2.9 HOCO clock power supply stabilization time tHOCOP — — 150 µs Figure 2.10 FLL stabilization waiting time tFLLWT — — 1.8 ms HOCO clock oscillation frequency FLL not in use FLL in use HOCO clock oscillation stabilization waiting time fHOCO Test Conditions –20°C ≤ Ta Ta < –20°C MHz Sub-clock frequency precision: ±50 ppm HOCOCR.HCSTP High-speed on-chip oscillator output tHOCOWT OSCOVFSR.HCOVF HOCO clock Figure 2.9 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting the HOCOCR.HCSTP Bit) HOCOPCR.HOCOPCNT HOCOCR.HCSTP tHOCOP Internal power supply for high-speed on-chip oscillator Figure 2.10 High-Speed On-Chip Oscillator Power Supply Control Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 66 of 123 RX660 Group Table 2.20 2. Electrical Characteristics PLL Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item PLL clock oscillation frequency PLL clock oscillation stabilization waiting time Symbol Min. fPLL 120 tPLLWT — Symbol Min. fSUB — Typ. Max. Unit — 240 MHz 259 320 µs Typ. Max. Unit 32.768 — kHz s s Test Conditions Figure 2.11 PLLCR2.PLLEN PLL circuit output tPLLWT OSCOVFSR.PLOVF PLL clock Figure 2.11 Table 2.21 PLL Clock Oscillation Start Timing Sub-Clock Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Sub-clock oscillation frequency Sub-clock oscillation stabilization time Sub-clock oscillation stabilization waiting time tSUBOSC — — *1 tSUBOSCWT — — *2 Test Conditions Figure 2.12 Note 1. When using a sub-clock, ask the manufacturer of the oscillator to evaluate its oscillation. Refer to the results of evaluation provided by the manufacturer for the oscillation stabilization time. Note 2. The number of cycles selected by the value of the SOSCWTCR.SSTS[7:0] bits determines the sub-clock oscillation stabilization waiting time in accord with the formula below. tSUBOSCWT = [(SSTS[7:0] bits × 16384) + 10] / fLOCO SOSCCR.SOSTP tSUBOSC Sub-clock oscillator output tSUBOSCWT OSCOVFSR.SOOVF Sub-clock Figure 2.12 Sub-Clock Oscillation Start Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 67 of 123 RX660 Group 2. Electrical Characteristics 2.4.3 Timing of Recovery from Low Power Consumption Modes Table 2.22 Timing of Recovery from Low Power Consumption Modes (1) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Recovery time from software standby mode *1 Crystal resonator connected to main clock oscillator Symbol Min. Typ. — — Max. tSBYOSCWT*2 tSBYSEQ*3 {(MSTS[7:0] bit × 32) + 76} / 0.216 100 + 7 / fICLK + 2n / fMAIN Main clock oscillator operating tSBYMC Main clock oscillator and PLL circuit operating tSBYPC {(MSTS[7:0] bit × 32) + 138} / 0.216 100 + 7 / fICLK + 2n / fPLL tSBYEX 352 100 + 7 / fICLK + 2n / fEXMAIN Main clock oscillator and PLL circuit operating tSBYPE 639 100 + 7 / fICLK + 2n / fPLL Sub-clock oscillator operating tSBYSC {(SSTS[7:0] bit × 16384) + 13} / 0.216 + 10 / fFCLK 100 + 4 / fICLK + 2n / fSUE High-speed on-chip oscillator operating High-speed on-chip oscillator operating tSBYHO 454 100 + 7 / fICLK + 2n / fHOCO High-speed on-chip oscillator operating and PLL circuit operating tSBYPH 741 100 + 7 / fICLK + 2n / fPLL tSBYLO 338 100 + 7 / fICLK + 2n / fLOCO External clock Main clock input to main oscillator clock oscillator operating Low-speed on-chip oscillator operating*4 Unit Test Conditions µs Figure 2.13 Note 1. The time for recovery from software standby mode is determined by the value obtained by adding the oscillation stabilization waiting time (tSBYOSCWT) and the time required for operations by the software standby release sequencer (tSBYSEQ). Note 2. When several oscillators were running before the transition to software standby, the greatest value of the oscillation stabilization waiting time tSBYOSCWT is selected. Note 3. For n, the greatest value is selected from among the internal clock division settings. Note 4. This condition applies when fICLK:fFCLK = 1:1, 2:1, or 4:1. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 68 of 123 RX660 Group 2. Electrical Characteristics Oscillator (System clock) tSBYOSCWT tSBYSEQ Oscillator (Other than the system clock) ICLK IRQ Software standby mode tSBYMC, tSBYEX, tSBYPC, tSBYPE, tSBYPH, tSBYSC, tSBYHO, tSBYLO When stabilization of the system clock oscillator is slower Oscillator (System clock) tSBYOSCWT tSBYSEQ Oscillator (Other than the system clock) tSBYOSCWT ICLK IRQ Software standby mode tSBYMC, tSBYEX, tSBYPC, tSBYPE, tSBYPH, tSBYSC, tSBYHO, tSBYLO When stabilization of an oscillator other than the system clock is slower Figure 2.13 Software Standby Mode Recovery Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 69 of 123 RX660 Group Table 2.23 2. Electrical Characteristics Timing of Recovery from Low Power Consumption Modes (2) Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Symbol Recovery time from deep software standby mode Waiting time after recovery from deep software standby mode Min. Typ. Max. Unit Test Conditions Figure 2.14 tDSBY — — 0.9 ms tDSBYWT 31 — 32 tLcyc Oscillator IRQ Deep software standby reset (Low is valid) Internal reset (Low is valid) Deep software standby mode tDSBY tDSBYWT Reset exception handling start Figure 2.14 Deep Software Standby Mode Recovery Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 70 of 123 RX660 Group 2. Electrical Characteristics 2.4.4 Control Signal Timing Table 2.24 Control Signal Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Symbol Min.*1 Typ. Max. Unit NMI pulse width tNMIW 200 — — ns 2 × tPBcyc ≤ 200 ns, Figure 2.15 IRQ pulse width tIRQW ns 2 × tPBcyc ≤ 200 ns, Figure 2.16 Item 2 × tPBcyc — — 200 — — 2 × tPBcyc — — Test Conditions*1 2 × tPBcyc > 200 ns, Figure 2.15 2 × tPBcyc > 200 ns, Figure 2.16 Note 1. tPBcyc: PCLKB cycle NMI Figure 2.15 tNMIW tNMIW tIRQW tIRQW NMI Interrupt Input Timing IRQn Figure 2.16 IRQ Interrupt Input Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 71 of 123 RX660 Group 2. Electrical Characteristics 2.4.5 Bus Timing Table 2.25 Bus Timing (1) Conditions: 4.5 V ≤ VCC ≤ 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Symbol Min. Max. Unit Address delay time Item tAD — 12.5 ns Byte control delay time tBCD — 12.5 ns CS# delay time tCSD — 12.5 ns ALE delay time tALED — 12.5 ns RD# delay time tRSD — 12.5 ns Read data setup time tRDS 12.5 — ns Read data hold time tRDH 0 — ns WR# delay time tWRD — 12.5 ns Write data delay time tWDD — 12.5 ns Write data hold time tWDH 0 — ns WAIT# setup time tWTS 12.5 — ns WAIT# hold time tWTH 0 — ns Table 2.26 Test Conditions Figure 2.17 to Figure 2.22 Figure 2.23 Bus Timing (2) Conditions: 2.7 V ≤ VCC < 4.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Symbol Min. Max. Unit Address delay time Item tAD — 25 ns Byte control delay time tBCD — 25 ns CS# delay time tCSD — 25 ns ALE delay time tALED — 25 ns RD# delay time tRSD — 25 ns Read data setup time tRDS 25 — ns Read data hold time tRDH 0 — ns WR# delay time tWRD — 25 ns Write data delay time tWDD — 25 ns Write data hold time tWDH 0 — ns WAIT# setup time tWTS 25 — ns WAIT# hold time tWTH 0 — ns R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Test Conditions Figure 2.17 to Figure 2.22 Figure 2.23 Page 72 of 123 RX660 Group 2. Electrical Characteristics Data cycle Address cycle Ta1 Ta1 Tan TW1 TW2 TW3 TW4 Tend TW5 Tn1 Tn2 BCLK tAD Address bus tAD tRDS tAD tRDH Address bus/ data bus tALED tALED Address latch (ALE) tRSD tRSD Data read (RD#) Figure 2.17 tCSD tCSD Chip select (CS1#) Address/Data Multiplexed Bus Read Access Timing Data cycle Address cycle Ta1 Ta1 Tan TW1 TW2 TW3 TW4 TW5 Tend Tn1 Tn2 Tn3 BCLK tAD Address bus tAD tAD tWDD tWDH Address bus/ data bus tALED tALED Address latch (ALE) tWRD tWRD Data write (WRm#) tCSD Chip select (CS1#) Figure 2.18 tCSD Address/Data Multiplexed Bus Write Access Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 73 of 123 RX660 Group 2. Electrical Characteristics CSRWAIT:2 RDON:1 CSROFF:2 CSON:0 TW1 TW2 Tend Tn1 Tn2 BCLK Byte strobe mode tAD tAD tAD tAD tBCD tBCD tCSD tCSD A20 to A0 1-write strobe mode A20 to A1 BC1# to BC0# Common to both byte strobe mode and 1-write strobe mode CS3# to CS0# tRSD tRSD RD# (Read) tRDS tRDH D15 to D0 (Read) Figure 2.19 External Bus Timing/Normal Read Cycle (Bus Clock Synchronized) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 74 of 123 RX660 Group 2. Electrical Characteristics CSWWAIT:2 WRON:1 WDON:1 *1 CSWOFF:2 WDOFF:1 *1 CSON:0 TW1 TW2 Tend Tn1 Tn2 BCLK Byte strobe mode tAD tAD tAD tAD tBCD tBCD tCSD tCSD A20 to A0 1-write strobe mode A20 to A1 BC1# to BC0# Common to both byte strobe mode and 1-write strobe mode CS3# to CS0# tWRD tWRD WR1# to WR0#, WR# (Write) tWDD tWDH D15 to D0 (Write) Note 1. Be sure to specify WDON and WDOFF as at least one cycle of BCLK. Figure 2.20 External Bus Timing/Normal Write Cycle (Bus Clock Synchronized) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 75 of 123 RX660 Group 2. Electrical Characteristics CSRWAIT:2 CSON:0 CSPRWAIT:2 CSPRWAIT:2 RDON:1 RDON:1 TW1 TW2 Tend CSPRWAIT:2 RDON:1 Tpw1 Tpw2 Tend CSROFF:2 RDON:1 Tpw1 Tpw2 Tend Tpw1 Tpw2 Tend Tn1 Tn2 BCLK Byte strobe mode tAD tAD tAD tAD tAD tAD tAD tAD tAD tAD A20 to A0 1-write strobe mode A20 to A1 tBCD tBCD tCSD tCSD BC1# to BC0# Common to both byte strobe mode and 1-write strobe mode CS3# to CS0# tRSD tRSD tRSD tRSD tRSD tRSD tRSD tRSD RD# (Read) tRDS tRDH tRDS tRDH tRDS tRDH tRDS tRDH D15 to D0 (Read) Figure 2.21 External Bus Timing/Page Read Cycle (Bus Clock Synchronized) CSPWWAIT:2 CSWWAIT:2 WRON:1 WDON:1 *1 WDOFF:1 *1 CSON:0 TW1 TW2 Tend Tdw1 WRON:1 WDON:1 *1 Tpw1 CSPWWAIT:2 WDOFF:1 *1 Tpw2 Tend Tdw1 WRON:1 WDON:1 *1 Tpw1 CSWOFF:2 WDOFF:1 *1 Tpw2 Tend Tn1 Tn2 BCLK Byte strobe mode tAD tAD tAD tAD tAD tAD tAD tAD A20 to A0 1-write strobe mode A20 to A1 tBCD tBCD tCSD tCSD BC1# to BC0# Common to both byte strobe mode and 1-write strobe mode CS3# to CS0# tWRD tWRD tWRD tWRD tWRD tWRD WR1# to WR0#, WR# (Write) tWDD tWDH tWDD tWDH tWDD tWDH D15 to D0 (Write) Note 1. Be sure to specify WDON and WDOFF as at least one cycle of BCLK. Figure 2.22 External Bus Timing/Page Write Cycle (Bus Clock Synchronized) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 76 of 123 RX660 Group 2. Electrical Characteristics CSRWAIT:3 CSWWAIT:3 TW1 TW2 TW3 (Tend) Tend Tn1 Tn2 BCLK A20 to A0 CS3# to CS0# RD# (Read) WR# (Write) External wait tWTS tWTH tWTS tWTH WAIT# Figure 2.23 External Bus Timing/External Wait Control R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 77 of 123 RX660 Group 2.4.6 2. Electrical Characteristics Timing of On-Chip Peripheral Modules 2.4.6.1 I/O Port Table 2.27 I/O Port Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item I/O ports Input data pulse width Symbol Min. Max. Unit*1 Test Conditions tPRW 1.5 — tPBcyc Figure 2.24 Note 1. tPBcyc: PCLKB cycle PCLKB Port tPRW Figure 2.24 I/O Port Input Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 78 of 123 RX660 Group 2. Electrical Characteristics 2.4.6.2 TMR Table 2.28 TMR Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item TMR Timer clock pulse width Single-edge setting Both-edge setting Max. Unit*1 Test Conditions 1.5 — tPBcyc Figure 2.25 2.5 — Symbol Min. tTMCWH, tTMCWL Note 1. tPBcyc: PCLKB cycle PCLKB TMCI0 to TMCI3 tTMCWL Figure 2.25 TMR Clock Input Timing 2.4.6.3 CMTW Table 2.29 tTMCWH CMTW Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item CMTW Input capture input pulse width Single-edge setting Both-edge setting Symbol Min. Max. Unit*1 Test Conditions tCMTWTICW 1.5 — tPBcyc Figure 2.26 2.5 — Note 1. tPBcyc: PCLKB cycle PCLKB Input capture input Figure 2.26 tCMTWICW CMTW Input Capture Input Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 79 of 123 RX660 Group 2. Electrical Characteristics 2.4.6.4 MTU Table 2.30 MTU Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item MTU Input capture input pulse width Timer clock pulse width Symbol Single-edge setting tMTICW Both-edge setting Single-edge setting Both-edge setting Phase counting mode tMTCKWH, tMTCKWL Max. Unit*1 Test Conditions 1.5 — tPAcyc Figure 2.27 2.5 — tPAcyc Figure 2.28 Min. 1.5 — 2.5 — 2.5 — Note 1. tPAcyc: PCLKA cycle PCLKA Input capture input Figure 2.27 tMTICW MTU Input Capture Input Timing PCLKA MTCLKA to MTCLKD, MTIOC1A tMTCKWL Figure 2.28 tMTCKWH MTU Clock Input Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 80 of 123 RX660 Group 2.4.6.5 Table 2.31 2. Electrical Characteristics POE3 POE3 Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item POE Symbol Min. Typ. Unit*1 Max. Test Conditions POEn# input pulse width (n = 0, 4, 8, 10, 11) tPOEW 1.5 — — Output disable time Transition of the POEn# signal level tPOEDI — — 5 PCLKB + 0.24 µs Figure 2.30 When detecting falling edges (ICSRm.POEnM[3:0] = 0000b (m = 1 to 5; n = 0, 4, 8, 10, 11)) Simultaneous conduction of output pins tPOEDO — — 3 PCLKB + 0.2 µs Figure 2.31 Register setting tPOEDS — — 1 PCLKB + 0.2 µs Figure 2.32 Time for access to the register is not included. tPOEDOS — — 21 µs Figure 2.33 Oscillation stop detection tPBcyc Figure 2.29 Note 1. tPBcyc: PCLKB cycle PCLKB POEn# input (n = 0, 4, 8, 10, 11) tPOEW Figure 2.29 POE# Pin Input Timing POEn# input (n = 0, 4, 8, 10, 11) tPOEW Outputs disabled MTU PWM output pins tPOEDI Figure 2.30 Output Disable Time for POE in Response to Transition of the POEn# Signal Level R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 81 of 123 RX660 Group 2. Electrical Characteristics Simultaneous active-level outputs detected*1 Outputs disabled MTU PWM output pins tPOEDO Note 1. Figure 2.31 When the active level is set to low. Output Disable Time for POE in Response to the Simultaneous Conduction of Output Pins Corresponding bit in the SPOER register Outputs disabled MTU PWM output pins tPOEDS Figure 2.32 Output Disable Time for POE in Response to the Register Setting Main clock Oscillation stop detection signal (internal signal) Outputs disabled MTU PWM output pins tPOEDOS Figure 2.33 Output Disable Time for POE in Response to the Oscillation Stop Detection R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 82 of 123 RX660 Group 2.4.6.6 2. Electrical Characteristics A/D Converter Trigger Table 2.32 A/D Converter Trigger Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item A/D converter A/D converter trigger input pulse width Symbol Min. Max. Unit*1 Test Conditions tTRGW 1.5 — tPBcyc Figure 2.34 Note 1. tPBcyc: PCLKB cycle PCLKB ADTRG0# tTRGW Figure 2.34 A/D Converter Trigger Input Timing 2.4.6.7 CAC Table 2.33 CAC Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item*1, *2 CAC CACREF input pulse width tPBcyc ≤ tCAC tPBcyc > tCAC Symbol Min.*1, *2 Max. Unit tCACREF 4.5 tCAC + 3 tPBcyc — ns 5 tCAC + 6.5 tPBcyc — Test Conditions Note 1. tPBcyc: PCLKB cycle Note 2. tCAC: CAC count clock source cycle R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 83 of 123 RX660 Group 2.4.6.8 Table 2.34 2. Electrical Characteristics SCI SCIk, SCIh, and SCIm Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item SCIk, SCIh Input clock cycle Asynchronous Symbol Min. Max. Unit*1 tScyc 4 — tPBcyc 6 — Clock synchronous Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 5 ns Input clock fall time tSCKf — 5 ns tScyc 6 — tPBcyc Asynchronous (SCIh) 8 — Clock synchronous 4 — Output clock cycle SCIm Asynchronous (SCIk) Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rise time tSCKr — 5 ns Output clock fall time tSCKf — 5 ns ns Transmit data delay time Clock synchronous tTXD — 28 — 33 Receive data setup time Clock synchronous tRXS 15 — ns Receive data hold time Clock synchronous tRXH 5 — ns Input clock cycle Asynchronous tScyc 4 — tPAcyc 6 — Clock synchronous tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 5 ns Input clock fall time tSCKf — 5 ns tScyc 6 — tPAcyc 4 — Asynchronous Clock synchronous Figure 2.35 VCC ≥ 4.5 V Figure 2.36 Figure 2.35 Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rise time tSCKr — 5 ns tSCKf — 5 ns tTXD — 15 ns — 20 VCC < 4.5 V — 28 VCC ≥ 4.5 V — 33 VCC < 4.5 V Output clock fall time Transmit data delay time Master Slave Figure 2.36 VCC < 4.5 V Input clock pulse width Output clock cycle Test Conditions Receive data setup time Clock synchronous tRXS 20 — ns Receive data hold time Clock synchronous tRXH 5 — ns VCC ≥ 4.5 V Figure 2.36 Figure 2.36 Note 1. tPBcyc: PCLKB cycle; tPAcyc: PCLKA cycle R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 84 of 123 RX660 Group 2. Electrical Characteristics tSCKW tSCKr tSCKf SCKn (n = 0 to 12) tScyc Figure 2.35 SCK Clock Input Timing SCKn tTXD TXDn tRXS tRXH RXDn (n = 0 to 12) Figure 2.36 SCI Input/Output Timing: Clock Synchronous Mode R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 85 of 123 RX660 Group Table 2.35 2. Electrical Characteristics Simple IIC Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, High-drive output is selected by the drive capacity control register. Symbol Min. Max. Unit Test Conditions tSr — 1000 ns Figure 2.37 SSCL, SSDA input fall time tSf — 300 ns SSCL, SSDA input spike pulse removal time tSP 0 4 × tPcyc ns Data input setup time tSDAS 250 — ns Data input hold time tSDAH 0 — ns SSCL, SSDA capacitive load Cb*1 — 400 pF SSCL, SSDA input rise time tSr — 300 ns SSCL, SSDA input fall time tSf — 300 ns SSCL, SSDA input spike pulse removal time tSP 0 4 × tPcyc ns Data input setup time tSDAS 100 — ns Data input hold time tSDAH 0 — ns SSCL, SSDA capacitive load Cb*1 — 400 pF Item Simple IIC (Standard-mode) SSCL, SSDA input rise time Simple IIC (Fast-mode) Note: tPcyc refers to the period of PCLKA in SCI10 and SCI11, and of PCLKB in SCI0 to SCI9, and SCI12. Note 1. Cb is the total capacitance of the bus lines. VIH SSDA0 to SSDA12 VIL tBUF tSCLH tSTAS tSTAH tSTOS tSP SSCL0 to SSCL12 P*1 S*1 tSCLL tSr tSf tSCL tSDAS tSDAH Note 1. S, P, and Sr indicate the following conditions. S: Start condition P: Stop condition Sr: Restart condition Figure 2.37 P*1 Sr*1 Test conditions VIH = 0.7 × VCC, VIL = 0.3 × VCC VOL = 0.6 V, IOL = 6 mA Simple IIC Bus Interface Input/Output Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 86 of 123 RX660 Group Table 2.36 2. Electrical Characteristics Simple SPI Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Simple SPI Item Symbol Min. Max. Unit SCK clock cycle output (master) tSPcyc 4 — tPcyc 6 — SCK clock cycle input (slave) SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc tSPCKr, tSPCKf — 20 ns Data input setup time tSU 33.3 — ns Data input hold time tH 33.3 — ns SS input setup time tLEAD 1 — tSPcyc SS input hold time tLAG 1 — tSPcyc Data output delay time tOD — 33.3 ns Data output hold time tOH –10 — ns SCK clock rise/fall time Data rise/fall time tDr, tDf — 16.6 ns tSSLr, tSSLf — 16.6 ns Slave access time tSA — 5 tPcyc Slave output release time tREL — 5 tPcyc SS input rise/fall time Note: Test Conditions Figure 2.38 Figure 2.39 to Figure 2.42 Figure 2.41, Figure 2.42 tPcyc refers to the period of PCLKA in SCI10 and SCI11, and of PCLKB in SCI0 to SCI9, and SCI12. tSPCKr tSPCKWH VOH VOH SCKn output (master) VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH SCKn input (slave) VIH VIL (n = 0 to 12) tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.38 Simple SPI Clock Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 87 of 123 RX660 Group 2. Electrical Characteristics tTD SSn# output tLEAD tLAG tSSLr, tSSLf SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU SMISOn input tH MSB IN DATA tDr, tDf SMOSIn output tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 0 to 12) Figure 2.39 Simple SPI Timing (Master, CKPH = 1) tTD SSn# output tLEAD tLAG tSSLr, tSSLf SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU SMISOn input tH MSB IN tOH SMOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = 0 to 12) Figure 2.40 Simple SPI Timing (Master, CKPH = 0) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 88 of 123 RX660 Group 2. Electrical Characteristics tTD SSn# input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tSA tOH SMISOn output tOD MSB OUT tSU SMOSIn input tREL DATA LSB OUT tH MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0 to 12) Figure 2.41 Simple SPI Timing (Slave, CKPH = 1) tTD SSn# input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD SMISOn output MSB OUT tSU SMOSIn input tREL DATA tH MSB IN LSB OUT MSB OUT tDr, tDf DATA LSB IN MSB IN (n = 0 to 12) Figure 2.42 Simple SPI Timing (Slave, CKPH = 0) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 89 of 123 RX660 Group 2.4.6.9 2. Electrical Characteristics RSCI Table 2.37 RSCI Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item RSCI Input clock cycle Asynchronous Symbol Min. Max. Unit*1 tScyc 4 — tPAcyc 2 — Clock synchronous Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 5 ns Input clock fall time tSCKf — 5 ns tScyc 6 — tPAcyc 2 — Output clock cycle Asynchronous Clock synchronous Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rise time tSCKr — 5 ns Output clock fall time Receive data setup time Master tSCKf — 5 ns tRXS –1.5 — ns 3.5 — 2.5 — 11 — 2.5 — Slave Receive data hold time Master tRXH Slave Transmit data delay time Master tTXD Slave Test Conditions Figure 2.43 VCC ≥ 4.5 V Figure 2.44 VCC < 4.5 V Figure 2.44 ns — 4 — 17 ns VCC ≥ 4.5 V — 22 VCC < 4.5 V Figure 2.44 Note 1. tPAcyc: PCLKA cycle; tScyc: SCK cycle tSCKW tSCKr tSCKf SCKn (n = 010, 011) tScyc Figure 2.43 SCK Clock Input Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 90 of 123 RX660 Group 2. Electrical Characteristics SCKn tTXD TXDn tRXS tRXH RXDn (n = 010, 011) Figure 2.44 RSCI Input/Output Timing: Clock Synchronous Mode R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 91 of 123 RX660 Group Table 2.38 2. Electrical Characteristics Simple IIC Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, High-drive output is selected by the drive capacity control register. Simple IIC (Standard-mode) Simple IIC (Fast-mode) Item Symbol Min. Max. Unit Test Conditions SSCL, SSDA input rise time tSr — 1000 ns Figure 2.45 SSCL, SSDA input fall time tSf — 300 ns SSCL, SSDA input spike pulse removal time tSP 0 4 × tPAcyc ns Data input setup time tSDAS 250 — ns Data input hold time tSDAH 0 — ns SSCL, SSDA capacitive load C b* 1 — 400 pF SSCL, SSDA input rise time tSr — 300 ns SSCL, SSDA input fall time tSf — 300 ns SSCL, SSDA input spike pulse removal time tSP 0 4 × tPAcyc ns Data input setup time tSDAS 100 — ns Data input hold time tSDAH 0 — ns SSCL, SSDA capacitive load C b* 1 — 400 pF Note: tPAcyc: PCLKA cycle Note 1. Cb is the total capacitance of the bus lines. VIH SSDA010, SSDA011 VIL tBUF tSCLH tSTAS tSTAH tSTOS tSP SSCL010, SSCL011 P*1 S*1 tSCLL tSr tSf tSCL tSDAS tSDAH Note 1. S, P, and Sr indicate the following conditions. S: Start condition P: Stop condition Sr: Restart condition Figure 2.45 P*1 Sr*1 Test conditions VIH = 0.7 × VCC, VIL = 0.3 × VCC VOL = 0.6 V, IOL = 6 mA Simple IIC Bus Interface Input/Output Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 92 of 123 RX660 Group Table 2.39 2. Electrical Characteristics Simple SPI Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Symbol Min. Max. Unit*1 tSPcyc 2 — tPAcyc 2 — SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc Item Simple SPI SCK clock cycle output (master) SCK clock cycle input (slave) SCK clock rise/fall time Output tSPCKr, tSPCKf — 5 ns — 1 µs 0.5 — ns 2.5 — 11 — Slave 2.5 — Master — 4 — 17 Input Data input setup time Master Data input hold time Master tSU Slave Data output delay time tH tOD Slave Data output hold time Master tOH Slave Data rise/fall time Output tDr, tDf 22 — 0 — ns ns Figure 2.47 to Figure 2.50 VCC ≥ 4.5V VCC < 4.5V ns Figure 2.47 to Figure 2.50 Figure 2.47 to Figure 2.50 — 5 ns 1 — tSA — 5 tPAcyc Slave output release time tREL — 5 tPAcyc SS input setup time tLEAD 1 — tSPcyc SS input hold time tLAG 1 — tSPcyc tSSLr, tSSLf — 1 µs SS input rise/fall time Figure 2.46 Figure 2.47 to Figure 2.50 — Input Slave access time — –1 Test Conditions Figure 2.49, Figure 2.50 Figure 2.47 to Figure 2.50 Note 1. tPAcyc: PCLKA cycle tSPCKr tSPCKWH VOH VOH SCKn output (master) VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH SCKn input (slave) VIH VIL (n = 010, 011) tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.46 Simple SPI Clock Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 93 of 123 RX660 Group 2. Electrical Characteristics tTD SSn# output tLEAD tLAG tSSLr, tSSLf SCKn CPOL = 0 output SCKn CPOL = 1 output tSU SMISOn input tH MSB IN DATA tDr, tDf SMOSIn output tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 010, 011) Figure 2.47 Simple SPI Timing (Master, CPHA = 0) tTD SSn# output tLEAD tLAG tSSLr, tSSLf SCKn CPOL = 0 output SCKn CPOL = 1 output tSU SMISOn input tH MSB IN tOH SMOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = 010, 011) Figure 2.48 Simple SPI Timing (Master, CPHA = 1) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 94 of 123 RX660 Group 2. Electrical Characteristics tTD SSn# input tLEAD tLAG SCKn CPOL = 0 input SCKn CPOL = 1 input tSA tOH SMISOn output tOD MSB OUT tSU SMOSIn input tREL DATA LSB OUT tH MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 010, 011) Figure 2.49 Simple SPI Timing (Slave, CPHA = 0) tTD SSn# input tLEAD tLAG SCKn CPOL = 0 input SCKn CPOL = 1 input tSA tOH tOD SMISOn output MSB OUT tSU SMOSIn input tREL DATA tH MSB IN LSB OUT MSB OUT tDr, tDf DATA LSB IN MSB IN (n = 010, 011) Figure 2.50 Simple SPI Timing (Slave, CPHA = 1) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 95 of 123 RX660 Group 2.4.6.10 Table 2.40 2. Electrical Characteristics RSPI RSPI Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr, Output load conditions: VOH = 0.5 × VCC, VOL = 0.5 × VCC, C = 30 pF, High-drive output is selected by the drive capacity control register. Item RSPI RSPCK clock cycle Symbol Master tSPcyc Slave RSPCK clock high pulse width Master tSPCKWH Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise/ fall time Data input setup time Output Input Master Master 0.4 0.6 tSPcyc (tSPcyc – tSPCKr – tSPCKf) / 2 – 3 — ns tSPcyc ns — 1 µs tSU 6 — ns 11 — VCC < 4.5 V 8.3 — Figure 2.52 to Figure 2.57 0 — ns PCLKA division ratio set to a value other than 1/2 tH tPAcyc — ns 8.3 — Master Data output hold time Master tLEAD tLAG tOD Successive transmission delay time Master MOSI and MISO rise/fall time Output tOH Slave tTD Slave Input 1 8 tSPcyc 4 — tPAcyc 1 8 tSPcyc 4 — tPAcyc — 6.3 ns VCC ≥ 4.5 V — 11.3 VCC < 4.5 V 28 VCC ≥ 4.5 V — 33 0 — 0 — tSPcyc + 2 × tPAcyc 8 × tSPcyc + 2 × tPAcyc Figure 2.52 to Figure 2.57 Figure 2.52 to Figure 2.57 VCC < 4.5 V ns Figure 2.52 to Figure 2.57 ns 4 × tPAcyc — — 5 ns — 1 µs tSSLr, tSSLf — 5 ns — 1 µs tSA — 28 ns — 33 — 28 — 33 tREL VCC ≥ 4.5 V — tDr, tDf Input Output R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 ns tHF Master Slave output release time — PCLKA division ratio set to 1/2 Master Slave access time (tSPcyc – tSPCKr – tSPCKf) / 2 – 3 Figure 2.51 5 Slave SSL rise/fall time — — 0.6 Slave Data output delay time tPAcyc 2 4 Test Conditions*2 — Slave SSL hold time Unit*1 0.4 Slave SSL setup time Max.*1 tSPCKr, tSPCKf Slave Data input hold time Min.*1 VCC ≥ 4.5 V VCC < 4.5 V ns Figure 2.56, Figure 2.57 VCC ≥ 4.5 V VCC < 4.5 V Page 96 of 123 RX660 Group 2. Electrical Characteristics Note 1. tPAcyc: PCLKA cycle Note 2. When a letter “-A”, “-B”, etc. to indicate group membership is appended to the pin name, each pin is recommended to use in combination with the pins in the same group. All RSPI AC timings are measured in combination with the pins in the same group. tSPCKr tSPCKWH VOH VOH RSPCK output (master) VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH RSPCK input (slave) VIL tSPCKf VIH VIH VIL tSPCKWL VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.51 RSPI Clock Timing tTD SSLA0 to SSLA3 output tLEAD tLAG tSSLr, tSSLf RSPCKA CPOL = 0 output RSPCKA CPOL = 1 output tSU MISOA input tH MSB IN tDr, tDf MOSIA output Figure 2.52 DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKA Division Ratio Set to a Value Other Than 1/2) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 97 of 123 RX660 Group 2. Electrical Characteristics tTD SSLA0 to SSLA3 output tLEAD tLAG tSSLr, tSSLf RSPCKA CPOL = 0 output RSPCKA CPOL = 1 output tSU MISOA input tHF MSB IN DATA tDr, tDf MOSIA output Figure 2.53 tHF tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKA Division Ratio Set to 1/2) tTD SSLA0 to SSLA3 output tLEAD tLAG tSSLr, tSSLf RSPCKA CPOL = 0 output RSPCKA CPOL = 1 output tSU MISOA input tH MSB IN tOH MOSIA output Figure 2.54 DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKA Division Ratio Set to a Value Other Than 1/2) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 98 of 123 RX660 Group 2. Electrical Characteristics tTD SSLA0 to SSLA3 output tLEAD tLAG tSSLr, tSSLf RSPCKA CPOL = 0 output RSPCKA CPOL = 1 output tSU MISOA input tHF MSB IN tOH DATA LSB IN tOD MOSIA output Figure 2.55 tH MSB IN tDr, tDf MSB OUT DATA LSB OUT IDLE MSB OUT RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKA Division Ratio Set to 1/2) tTD SSLA0 input tLEAD tLAG RSPCKA CPOL = 0 input RSPCKA CPOL = 1 input tSA tOH MISOA output MSB OUT tSU MOSIA input Figure 2.56 tOD DATA tREL LSB OUT tH MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN RSPI Timing (Slave, CPHA = 0) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 99 of 123 RX660 Group 2. Electrical Characteristics tTD SSLA0 input tLEAD tLAG RSPCKA CPOL = 0 input RSPCKA CPOL = 1 input tSA tOH tOD MISOA output MSB OUT tSU MOSIA input Figure 2.57 tREL DATA tH MSB IN LSB OUT MSB OUT tDr, tDf DATA LSB IN MSB IN RSPI Timing (Slave, CPHA = 1) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 100 of 123 RX660 Group 2. Electrical Characteristics 2.4.6.11 Table 2.41 RIIC RIIC Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, PCLKA = 8 to 120 MHz, PCLKB = 8 to 60 MHz, Ta = Topr Symbol Min.*1 Max. Unit Test Conditions*3 SCL input cycle time tSCL 6(12) × tIICcyc + 1300 — ns Figure 2.58 SCL input high pulse width tSCLH 3(6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3(6) × tIICcyc + 300 — ns SCL, SDA input rise time tSr — 1000 ns SCL, SDA input fall time tSf — 300 ns Item RIIC (Standard-mode, SMBus) RIIC (Fast-mode) SCL, SDA input spike pulse removal time tSP 0 1(4) × tIICcyc ns SDA input bus free time tBUF 3(6) × tIICcyc + 300 — ns Start condition input hold time tSTAH tIICcyc + 300 — ns Restart condition input setup time tSTAS 1000 — ns Stop condition input setup time tSTOS 1000 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load C b* 2 — 400 pF SCL input cycle time tSCL 6(12) × tIICcyc + 600 — ns SCL input high pulse width tSCLH 3(6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3(6) × tIICcyc + 300 — ns SCL, SDA input rise time tSr 20 × (External pull-up voltage/5.5V) 300 ns SCL, SDA input fall time tSf 20 × (External pull-up voltage/5.5V) 300 ns SCL, SDA input spike pulse removal time tSP 0 1(4) × tIICcyc ns SDA input bus free time tBUF 3(6) × tIICcyc + 300 — ns Start condition input hold time tSTAH tIICcyc + 300 — ns Restart condition input setup time tSTAS 300 — ns Stop condition input setup time tSTOS 300 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns *2 — 400 pF SCL, SDA capacitive load Cb Note: tIICcyc: RIIC internal reference clock (IICφ) cycle Note 1. The value within parentheses is applicable when the value of the ICMR3.NF[1:0] bits is 11b while the digital filter is enabled by the setting ICFER.NFE = 1. Note 2. Cb is the total capacitance of the bus lines. Note 3. When VCC ≥ 4.5V, VOLSR.RICVLS = 0 When VCC < 4.5V, VOLSR.RICVLS = 1 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 101 of 123 RX660 Group 2. Electrical Characteristics VIH SDA0, SDA2 VIL tBUF tSCLH tSTAS tSTAH tSTOS tSP SCL0, SCL2 P*1 S*1 tSCLL tSr tSf tSCL tSDAS tSDAH Note 1. S, P, and Sr indicate the following conditions. S: Start condition P: Stop condition Sr: Restart condition Figure 2.58 RIIC Bus Interface Input/Output Timing 2.4.6.12 CANFD Table 2.42 P*1 Sr*1 Test conditions VIH = 0.7 × VCC, VIL = 0.3 × VCC VOL = 0.6 V, IOL = 6 mA CANFD Timing Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Classic CAN mode CAN FD mode Bit rate for communications Symbol Min. Max. Unit — 1 Mbps Bit rate for communications — 1 Bit rate for communications (only for data) — 5 R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 102 of 123 RX660 Group 2.5 2. Electrical Characteristics A/D Conversion Characteristics Table 2.43 12-Bit A/D Conversion Characteristics (1) Conditions: VCC = 2.7 to 5.5 V, 3.0 V ≤ AVCC0 ≤ 5.5 V, AVCC0 – 1.0 ≤ VREFH0 ≤ AVCC0, 3.0 V ≤ VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = Topr, Source impedance = 1.0 kΩ, The VREFH0 and VREFL0 pins are selected as the reference voltage (ADVREFCR.VREFSEL bit = 1). Item Min. Typ. Max. Unit Resolution 12 12 12 Bit Analog input capacitance — — 30 pF 0.90 (0.50)*2 µs Test Conditions AN000 to AN007 Conversion time*1 (Operation at PCLKD = 60 AN008 to AN015 MHz) AN017, AN019, AN021, AN023 — — (0.55)*2 — — Sampling in 33 states 0.95 (0.55)*2 — — Sampling in 33 states AN016, AN018, AN020, AN022 1.05 (0.65)*2 — — Sampling in 39 states 0.95 Offset error — ±1.5 ±5.0 Full-scale error — ±1.5 ±4.5 Quantization error — ±0.5 — Absolute accuracy — ±2.5 ±5.5 DNL differential nonlinearity error — ±1.0 ±1.5 INL integral nonlinearity error — ±1.5 ±2.5 Sampling in 30 states LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. The absolute accuracy includes the quantization error. The offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error does not include the quantization error. Note 1. The conversion time includes the sampling time and the comparison time. The numbers of sampling states is indicated as test conditions for the respective items. Note 2. The value in parentheses indicates the sampling time. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 103 of 123 RX660 Group Table 2.44 2. Electrical Characteristics 12-Bit A/D Conversion Characteristics (2) (144-Pin Products) Conditions: VCC = 2.7 to 5.5 V, 3.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr, Source impedance = 1.0 kΩ, The AVCC0 and AVSS0 pins are selected as the reference voltage (ADVREFCR.VREFSEL bit = 0). Item Min. Typ. Max. Unit Resolution 12 12 12 Bit Analog input capacitance — — 30 pF 0.90 (0.50)*2 µs Test Conditions AN000 to AN007 Conversion time*1 (Operation at PCLKD = 60 AN008 to AN015 MHz) AN017, AN019, AN021, AN023 — — (0.55)*2 — — Sampling in 33 states 0.95 (0.55)*2 — — Sampling in 33 states AN016, AN018, AN020, AN022 1.05 (0.65)*2 — — Sampling in 39 states 1.30 (0.50)*2 time*1 0.95 AN000 to AN007 Conversion (Operation at PCLKD = 30 AN008 to AN015 MHz) AN017, AN019, AN021, AN023 — — 1.39 (0.60)*2 — — Sampling in 18 states 1.39 (0.60)*2 — — Sampling in 18 states AN016, AN018, AN020, AN022 (0.70)*2 — — Operation at PCLKD = 60 MHz — ±4.0 — Operation at PCLKD = 30 MHz — ±1.5 — Operation at PCLKD = 60 MHz — ±2.5 — Operation at PCLKD = 30 MHz — ±1.5 — — ±0.5 — Operation at PCLKD = 60 MHz — ±7.0 — Operation at PCLKD = 30 MHz — ±4.0 — DNL differential nonlinearity error Operation at PCLKD = 60 MHz — ±4.0 — Operation at PCLKD = 30 MHz — ±1.0 — INL integral nonlinearity error Operation at PCLKD = 60 MHz — ±4.0 — Operation at PCLKD = 30 MHz — ±1.5 — Offset error Full-scale error Quantization error Absolute accuracy 1.49 µs Sampling in 30 states Sampling in 15 states Sampling in 21 states LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. The absolute accuracy includes the quantization error. The offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error does not include the quantization error. Note 1. The conversion time includes the sampling time and the comparison time. The numbers of sampling states is indicated as test conditions for the respective items. Note 2. The value in parentheses indicates the sampling time. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 104 of 123 RX660 Group Table 2.45 2. Electrical Characteristics 12-Bit A/D Conversion Characteristics (2) (100-, 80-, and 64-Pin Products) Conditions: VCC = 2.7 to 5.5 V, 3.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr, Source impedance = 1.0 kΩ, The AVCC0 and AVSS0 pins are selected as the reference voltage (ADVREFCR.VREFSEL bit = 0). Item Min. Typ. Max. Unit Resolution 12 12 12 Bit Analog input capacitance — — 30 pF 0.90 (0.50)*2 µs Test Conditions AN000 to AN007 Conversion time*1 (Operation at PCLKD = 60 AN008 to AN015 MHz) AN017, AN019, AN021, AN023 — — (0.55)*2 — — Sampling in 33 states 0.95 (0.55)*2 — — Sampling in 33 states AN016, AN018, AN020, AN022 1.05 (0.65)*2 — — Sampling in 39 states 1.30 (0.50)*2 time*1 0.95 AN000 to AN007 Conversion (Operation at PCLKD = 30 AN008 to AN015 MHz) AN017, AN019, AN021, AN023 — — 1.39 (0.60)*2 — — Sampling in 18 states 1.39 (0.60)*2 — — Sampling in 18 states AN016, AN018, AN020, AN022 (0.70)*2 — — Operation at PCLKD = 60 MHz — ±2.5 — Operation at PCLKD = 30 MHz — ±1.5 — Operation at PCLKD = 60 MHz — ±2.5 — Operation at PCLKD = 30 MHz — ±1.5 — — ±0.5 — Operation at PCLKD = 60 MHz — ±4.5 — Operation at PCLKD = 30 MHz — ±2.5 — DNL differential nonlinearity error Operation at PCLKD = 60 MHz — ±1.5 — Operation at PCLKD = 30 MHz — ±1.0 — INL integral nonlinearity error Operation at PCLKD = 60 MHz — ±2.5 — Operation at PCLKD = 30 MHz — ±1.5 — Offset error Full-scale error Quantization error Absolute accuracy 1.49 µs Sampling in 30 states Sampling in 15 states Sampling in 21 states LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. The absolute accuracy includes the quantization error. The offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error does not include the quantization error. Note 1. The conversion time includes the sampling time and the comparison time. The numbers of sampling states is indicated as test conditions for the respective items. Note 2. The value in parentheses indicates the sampling time. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 105 of 123 RX660 Group Table 2.46 2. Electrical Characteristics 12-Bit A/D Conversion Characteristics (2) (48-Pin Products) Conditions: VCC = 2.7 to 5.5 V, 3.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr, Source impedance = 1.0 kΩ, The AVCC0 and AVSS0 pins are selected as the reference voltage (ADVREFCR.VREFSEL bit = 0). Item Min. Typ. Resolution 12 12 12 Bit Analog input capacitance — — 30 pF 0.90 (0.50)*2 — — µs 0.95 (0.55)*2 — — — ±1.5 — AN000 to AN002, AN005 to Conversion time*1 (Operation at PCLKD = 60 AN007 MHz) AN009 to AN012 Offset error Max. Full-scale error — ±1.5 — Quantization error — ±0.5 — Absolute accuracy — ±2.5 — DNL differential nonlinearity error — ±1.0 — INL integral nonlinearity error — ±1.5 — Unit Test Conditions Sampling in 30 states Sampling in 33 states LSB Note: The characteristics apply when no pin functions other than A/D converter input are used. The absolute accuracy includes the quantization error. The offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error does not include the quantization error. Note 1. The conversion time includes the sampling time and the comparison time. The numbers of sampling states is indicated as test conditions for the respective items. Note 2. The value in parentheses indicates the sampling time. Table 2.47 A/D Internal Reference Voltage Characteristics Conditions: VCC = 2.7 to 5.5 V, 3.0 V ≤ AVCC0 ≤ 5.5 V, AVCC0 – 1.0 ≤ VREFH0 ≤ AVCC0, 3.0 V ≤ VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = Topr Item Min. Typ. Max. Unit A/D internal reference voltage 1.20 1.25 1.30 V Note: Test Conditions The above specification values apply during normal operations. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 106 of 123 RX660 Group 2.6 2. Electrical Characteristics D/A Conversion Characteristics Table 2.48 D/A Conversion Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Min. Typ. Max. Unit Resolution 12 12 12 Bit Absolute accuracy — — ±6.0 LSB 2-MΩ resistive load 10-bit conversion Differential nonlinearity error (DNL) — ±1.0 ±2.0 LSB 2-MΩ resistive load Output resistance (RO) — 5.7 — kΩ Conversion time — — 3 µs 2.7 Test Conditions 20-pF capacitive load Temperature Sensor Characteristics Table 2.49 Temperature Sensor Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Min. Typ. Max. Unit Relative accuracy Item — ±1 — °C Temperature slope — –2.0 — mV/°C Output voltage — 0.63 — V Temperature sensor start time — — 200 µs 3 — — µs Sampling time*1 Test Conditions Ta = 25°C Note 1. Set the S12AD.ADSSTRT register such that the sampling time of the 12-bit A/D converter satisfies this specification. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 107 of 123 RX660 Group 2.8 2. Electrical Characteristics Comparator Characteristics Table 2.50 Comparator Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Input offset voltage Symbol Min. Typ. Max. Unit VIO — 8 40 mV Reference input voltage range Vref 0 — VCC V Analog input voltage rang Vain 0 — VCC V Response time ttot(r) — — 200 ns ttot(f) — — 200 Waiting time for stabilization following switching of the input tcwait 300 — — ns Operation stabilization time tcmp — — 1 μs Reference input voltage Test Conditions VOD = 100 mV CMPCTL.CDFS[1:0] = 00b Figure 2.59 100 mV 100 mV CMPCn0 (analog input voltage) ttot(r) COMPn (output for monitoring the results of comparison) ttot(f) (n = 0 to 3) Figure 2.59 Comparator Response Time R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 108 of 123 RX660 Group 2.9 2. Electrical Characteristics Power-on Reset Circuit and Voltage Detection Circuit Characteristics Table 2.51 Power-on Reset Circuit and Voltage Detection Circuit Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Voltage detection level Symbol Min. Voltage detection circuit (LVD1) Voltage detection circuit (LVD2) Internal reset time Max. Unit V VPOR 2.46 2.58 2.70 Vdet0_1 4.04 4.22 4.40 Vdet0_2 2.71 2.83 2.95 Vdet1_0 4.39 4.57 4.75 Vdet1_1 4.29 4.47 4.65 Vdet1_2 4.14 4.32 4.50 Vdet1_3 2.81 2.93 3.05 Vdet1_4 2.76 2.88 3.00 Vdet2_0 4.39 4.57 4.75 Vdet2_1 4.29 4.47 4.65 Vdet2_2 4.14 4.32 4.50 Vdet2_3 2.81 2.93 3.05 Vdet2_4 2.76 2.88 3.00 tPOR — 15.5 — Power-on reset (POR) Voltage detection circuit (LVD0) Typ. Power-on reset time Test Conditions Figure 2.60 Figure 2.61 Figure 2.62 Figure 2.63 ms Figure 2.60 LVD0 reset time tLVD0 — 0.70 — Figure 2.61 LVD1 reset time tLVD1 — 0.57 — Figure 2.62 LVD2 reset time tLVD2 — 0.57 — Figure 2.63 tVOFF 200 — — µs Figure 2.60, Figure 2.61 tdet — — 200 µs Figure 2.60 to Figure 2.63 LVD operation stabilization time (after LVD is enabled) td(E-A) — — 20 µs Hysteresis width (LVD1 and LVD2) V LVH — 80 — mV Figure 2.62, Figure 2.63 Minimum VCC down time Response delay time Note: The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet1, and Vdet2 for the POR/ LVD. tVOFF VPOR VCC Internal reset signal (Low is valid) tdet Figure 2.60 tPOR tdet tdet tPOR Power-on Reset Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 109 of 123 RX660 Group 2. Electrical Characteristics tVOFF VCC Vdet0 Internal reset signal (Low is valid) tdet Figure 2.61 tdet tLVD0 Voltage Detection Circuit Timing (Vdet0) tVOFF VCC VLVH Vdet1 LVD1E Td(E-A) LVD1 Comparator output LVD1CMPE LVD1MON Internal reset signal (Low is valid) When LVD1RN = L tdet tdet tLVD1 When LVD1RN = H tLVD1 Figure 2.62 Voltage Detection Circuit Timing (Vdet1) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 110 of 123 RX660 Group 2. Electrical Characteristics tVOFF VCC VLVH Vdet2 LVD2E Td(E-A) LVD2 Comparator output LVD2CMPE LVD2MON Internal reset signal (Low is valid) When LVD2RN = L tdet tdet tLVD2 When LVD2RN = H tLVD2 Figure 2.63 Voltage Detection Circuit Timing (Vdet2) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 111 of 123 RX660 Group 2.10 2. Electrical Characteristics Oscillation Stop Detection Timing Table 2.52 Oscillation Stop Detection Circuit Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Ta = Topr Item Detection time Symbol Min. Typ. Max. Unit Test Conditions tdr — — 1 ms Figure 2.64 Main clock or PLL clock tdr OSTDSR.OSTDF LOCO clock ICLK Figure 2.64 Oscillation Stop Detection Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 112 of 123 RX660 Group 2.11 2. Electrical Characteristics Flash Memory Characteristics Table 2.53 Code Flash Memory Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Temperature range for programming/erasure: Ta = Topr Item Programming time NPEC ≤ 100 times Programming time NPEC > 100 times Symbol 20 MHz ≤ FCLK ≤ 60 MHz FCLK = 4 MHz Min. Typ. Max. Min. Typ. Max. Unit 256 bytes tP256 — 0.9 13.2 — 0.4 6 ms 8 Kbytes tP8K — 29 176 — 13 80 ms 32 Kbytes tP32K — 116 704 — 52 320 ms 256 bytes tP256 — 1.1 15.8 — 0.5 7.2 ms 8 Kbytes tP8K — 35 212 — 16 96 ms 32 Kbytes tP32K — 140 848 — 64 384 ms Erasure time NPEC ≤ 100 times 8 Kbytes tE8K — 71 216 — 39 120 ms 32 Kbytes tE32K — 254 864 — 141 480 ms Erasure time NPEC > 100 times 8 Kbytes tE8K — 85 260 — 47 144 ms 32 Kbytes tE32K — 304 1040 — 169 576 ms Reprogramming/erasure cycle*1 NPEC 1000*2 — — 1000*2 — — Times Suspend delay time during programming tSPD — — 264 — — 120 µs First suspend delay time during erasing (in suspend priority mode) tSESD1 — — 216 — — 120 µs Second suspend delay time during erasure (in suspend priority mode) tSESD2 — — 1.7 — — 1.7 ms Suspend delay time during erasure (in erasure priority mode) tSEED — — 1.7 — — 1.7 ms tFD — — 32 — — 20 µs tDRP 20 — — 20 — — Year 10 — — 10 — — Forced stop command Data hold time*3, *4 Test Conditions Ta ≤ 85°C Ta ≤ 105°C Note 1. Definition of program/erase cycle: The program/erase cycle is the number of erasing for each block. When the number of program/erase cycles is n, each block can be erased n times. For instance, when 256-byte program is performed 32 times for different addresses in 8-Kbyte block and then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more than once before the next erase cycle (overwriting is prohibited). Note 2. Characteristics are degraded as the number of program/erase increases. This is the minimum value of program/erase cycles to guarantee all characteristics listed in this table. Note 3. This shows the characteristic when the flash memory writer or self-programming library from Renesas Electronics is in use, and the number of times programming and erasure proceed does not exceed the specified value. Note 4. These values are based on the results of reliability testing. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 113 of 123 RX660 Group Table 2.54 2. Electrical Characteristics Data Flash Memory Characteristics Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 3.0 to 5.5 V, VSS = AVSS0 = 0 V, Temperature range for programming/erasure: Ta = Topr Item Symbol 20 MHz ≤ FCLK ≤ 60 MHz FCLK = 4 MHz Min. Typ. Max. Min. Typ. Max. Unit Programming time 4 bytes tDP4 — 0.36 3.8 — 0.16 1.7 ms Erasure time 64 bytes tDP64 — 3.1 18 — 1.7 10 ms Blank check time 4 bytes tDBC4 — — 84 — — 30 µs 64 bytes tDBC64 — — 280 — — 100 µs 2 Kbytes tDBC2K — — 6160 — — 2200 µs cycle*1 NDPEC 100000 *2 — — 100000 *2 — — Times tDSPD — — 264 — — 120 µs First suspend delay time during erasure (in suspend priority mode) tDSESD1 — — 216 — — 120 µs Second suspend delay time during erasure (in suspend priority mode) tDSESD2 — — 300 — — 300 µs Suspend delay time during erasure (in erasure priority mode) tDSEED — — 300 — — 300 µs tFD — — 32 — — 20 µs tDDRP 20 — — 20 — — Year 10 — — 10 — — Reprogramming/erasure Suspend delay time during programming Forced stop command Data hold time*3, *4 Test Conditions Ta ≤ 85°C Ta ≤ 105°C Note 1. Definition of program/erase cycle: The program/erase cycle is the number of erasing for each block. When the number of program/erase cycles is n, each block can be erased n times. For instance, when 4-byte program is performed 512 times for different addresses in 2-Kbyte block and then the block is erased, the program/erase cycle is counted as one. However, the same address cannot be programmed more than once before the next erase cycle (overwriting is prohibited). Note 2. Characteristics are degraded as the number of program/erase increases. This is the minimum value of program/erase cycles to guarantee all characteristics listed in this table. Note 3. This shows the characteristic when the flash memory writer or self-programming library from Renesas Electronics is in use, and the number of times programming and erasure proceed does not exceed the specified value. Note 4. These values are based on the results of reliability testing. R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 114 of 123 RX660 Group 2. Electrical Characteristics • Suspension during programming FCU command Program Suspend tSPD FSTATR.FRDY Ready Programming pulse Not Ready Ready Programming • Suspension during erasure in suspend priority mode FCU command Erase Suspend Resume Suspend tSESD1 FSTATR.FRDY Ready Erasure pulse Not Ready tSESD2 Ready Erasing Not Ready Erasing • Suspension during erasure in erasure priority mode FCU command Erase Suspend tSEED FSTATR.FRDY Ready Erasure pulse Figure 2.65 Not Ready Ready Erasing Flash Memory Programming/Erasure Suspension Timing R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 115 of 123 RX660 Group Appendix 1. Package Dimensions Appendix 1. Package Dimensions Information on the latest version of the package dimensions or mountings has been displayed in “Packages” on Renesas Electronics Corporation website. JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP144-20x20-0.50 PLQP0144KA-B — 1.2 Unit: mm HD *1 D 108 73 109 E *2 144 HE 72 37 1 36 NOTE 4 Index area NOTE 3 F S 0.25 A1 T c y S A2 A e *3 bp Lp L1 Detail F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol M Min Nom Max D 19.9 20.0 20.1 20.1 E 19.9 20.0 A2  1.4  HD 21.8 22.0 22.2 HE 21.8 22.0 22.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.10 Lp 0.45 0.6 0.75 L1  1.0  Figure A 144-Pin LFQFP (PLQP0144KA-B) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 116 of 123 RX660 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP100-14x14-0.50 PLQP0100KB-B — 0.6 HD Unit: mm *1 D 75 51 *2 E 50 100 HE 76 26 1 25 NOTE 4 Index area NOTE 3 F S y S *3 0.25 Reference Dimensions in millimeters Symbol bp M Min Nom Max D 13.9 14.0 14.1 14.1 E 13.9 14.0 A2  1.4  HD 15.8 16.0 16.2 HE 15.8 16.0 16.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  A1 T c A2 A e NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Lp L1 Detail F Figure B 100-Pin LFQFP (PLQP0100KB-B) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 117 of 123 RX660 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP80-12x12-0.50 PLQP0080KB-B — 0.5 HD Unit: mm *1 D 41 40 80 21 *2 E 61 1 20 HE 60 NOTE 4 Index area NOTE 3 F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol S y S *3 0.25 A1 T c A2 A e Lp L1 bp M Min Nom Max D 11.9 12.0 12.1 12.1 E 11.9 12.0 A2  1.4  HD 13.8 14.0 14.2 HE 13.8 14.0 14.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  Detail F Figure C 80-Pin LFQFP (PLQP0080KB-B) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 118 of 123 RX660 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1 T A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  Figure D 64-Pin LFQFP (PLQP0064KB-C) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 119 of 123 RX660 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP48-7x7-0.50 PLQP0048KB-B — 0.2 HD Unit: mm *1 D 36 25 *2 48 HE 24 E 37 13 1 12 NOTE 4 Index area NOTE 3 F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. S Reference Dimensions in millimeters Symbol y S *3 bp 0.25 M A1 T c A2 A e Lp L1 Detail F Min Nom Max D 6.9 7.0 7.1 E 6.9 7.0 7.1 A2  1.4  HD 8.8 9.0 9.2 HE 8.8 9.0 9.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  Figure E 48-Pin LFQFP (PLQP0048KB-B) R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Page 120 of 123 REVISION HISTORY RX660 Group REVISION HISTORY REVISION HISTORY RX660 Group Datasheet Classifications - Items with Technical Update document number: Changes according to the corresponding issued Technical Update - Items without Technical Update document number: Minor changes that do not require Technical Update to be issued Rev. Date 1.00 Mar 18, 2022 Page — R01DS0393EJ0100 Rev.1.00 Mar 18, 2022 Description Summary Classification First edition, issued Page 121 of 123 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product. Notice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note1) (Note2) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.5.0-1 October 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2022 Renesas Electronics Corporation. All rights reserved.
R5F56609HGFB#30 价格&库存

很抱歉,暂时无法提供与“R5F56609HGFB#30”相匹配的价格&库存,您可以联系我们找货

免费人工找货