0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FA2A1AB3CFJ#AA0

R7FA2A1AB3CFJ#AA0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP-32_7X7MM

  • 描述:

    R7FA2A1AB3CFJ#AA0

  • 数据手册
  • 价格&库存
R7FA2A1AB3CFJ#AA0 数据手册
Datasheet 32 Cover Renesas RA2A1 Group Datasheet 32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). www.renesas.com Rev.1.10 Mar 2020 Features RA2A1 Group Datasheet Ultra-low power 48-MHz Arm® Cortex®-M23 core, up to 256-KB code flash memory, 32-KB SRAM, Capacitive Touch Sensing Unit, 16-bit A/D Converter, 24-bit sigma-delta A/D Converter, 12-bit D/A Converter, 8-bit D/A Converter, Operational Amplifier, security and safety features. Features ■ Arm Cortex-M23 Core      Armv8-M architecture Maximum operating frequency: 48 MHz Arm Memory Protection Unit (Arm MPU) with 8 regions Debug and Trace: DWT, FPB, and CoreSight™ MTB-M23 CoreSight Debug Port: SW-DP ■ Memory        Up to 256-KB code flash memory 8-KB data flash memory (100,000 program/erase (P/E) cycles) Up to 32-KB SRAM Flash Cache (FCACHE) Memory Protection Unit (MPU) Memory Mirror Function (MMF) 128-bit unique ID ■ Connectivity  USB 2.0 Full-Speed (USBFS) module - On-chip transceiver with voltage regulator - Compliant with USB Battery Charging Specification 1.2  Serial Communications Interface (SCI) × 3 - UART - Simple IIC - Simple SPI  Serial Peripheral Interface (SPI) × 2  I2C bus interface (IIC) × 2  Controller Area Network (CAN) module ■ Analog  16-bit A/D Converter (ADC16) - 1.2 Msps - Differential input mode - Single-ended input mode  24-bit Sigma-Delta A/D Converter (SDADC24) - 15.6 ksps - Differential input mode - Single-ended input mode  12-bit D/A Converter (DAC12)  8-bit D/A Converter (DAC8) × 2  High-Speed Analog Comparator (ACMPHS)  Low-Power Analog Comparator (ACMPLP) × 2  Operational Amplifier (OPAMP) × 3  Temperature Sensor (TSN) ■ Timers     General PWM Timer 32-bit (GPT32) General PWM Timer 16-bit (GPT16) × 6 Asynchronous General-Purpose Timer (AGT) × 2 Watchdog Timer (WDT) ■ System and Power Management        Low power modes Realtime Clock (RTC) Event Link Controller (ELC) Data Transfer Controller (DTC) Key Interrupt Function (KINT) Power-on reset Low Voltage Detection (LVD) with voltage settings ■ Security and Encryption  AES128/256  True Random Number Generator (TRNG) ■ Human Machine Interface (HMI)  Capacitive Touch Sensing Unit (CTSU) ■ Multiple Clock Sources  Main clock oscillator (MOSC) (1 to 20 MHz when VCC = 2.4 to 5.5 V) (1 to 8 MHz when VCC = 1.8 to 5.5 V) (1 to 4 MHz when VCC = 1.6 to 5.5 V)  Sub-clock oscillator (SOSC) (32.768 kHz)  High-speed on-chip oscillator (HOCO) (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)  Middle-speed on-chip oscillator (MOCO) (8 MHz)  Low-speed on-chip oscillator (LOCO) (32.768 kHz)  IWDT-dedicated on-chip oscillator (15 kHz)  Clock trim function for HOCO/MOCO/LOCO  Clock out support ■ General Purpose I/O Ports  Up to 49 input/output pins - Up to 3 CMOS input - Up to 46 CMOS input/output - Up to 9 input/output 5 V tolerant - Up to 3 high current (20 mA) ■ Operating Voltage  VCC: 1.6 to 5.5 V ■ Operating Temperature and Packages  Ta = -40°C to +85°C - 36-pin BGA (5 mm × 5 mm, 0.8 mm pitch)  Ta = -40°C to +105°C - 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) - 32-pin LQFP (7 mm × 7 mm, 0.8 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch) - 40-pin QFN (6 mm × 6 mm, 0.5 mm pitch) ■ Safety              Error Correction Code (ECC) in SRAM SRAM parity error check Flash area protection ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC) calculator Data Operation Circuit (DOC) Port Output Enable for GPT (POEG) Independent Watchdog Timer (IWDT) GPIO readback level detection Register write protection Main oscillator stop detection Illegal memory access R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 2 of 100 RA2A1 Datasheet 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development. The MCU in this series incorporates an energy-efficient Arm Cortex®-M23 32-bit core that is particularly well suited for cost-sensitive and low-power applications, with the following features:  Up to 256-KB code flash memory  32-KB SRAM  16-bit A/D Converter (ADC16)  24-bit Sigma-Delta A/D Converter (SDADC24)  12-bit D/A Converter (DAC12)  8-bit D/A Converter (DAC8)  Operational Amplifier (OPAMP) with configurable switches  Security features. 1.1 Table 1.1 Function Outline Arm core Feature Functional description Arm Cortex-M23 core  Maximum operating frequency: up to 48 MHz  Arm Cortex-M23 core: - Revision: r1p0-00rel0 - Armv8-M architecture profile - Single-cycle integer multiplier - 17-cycle integer divider.  Arm Memory Protection Unit (Arm MPU): - Armv8 Protected Memory System Architecture - 8 protect regions.  SysTick timer: - Driven by SYSTICCLK (LOCO) or ICLK. Table 1.2 Memory Feature Functional description Code flash memory 256 KB of code flash memory. See section 43, Flash Memory in User’s Manual. Data flash memory 8 KB of data flash memory. See section 43, Flash Memory in User’s Manual. Memory Mirror Function (MMF) The Memory Mirror Function (MMF) can be configured to mirror the desired application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. Your application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User’s Manual. Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 7, Option-Setting Memory in User’s Manual. SRAM On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). See section 42, SRAM in User’s Manual. Table 1.3 System (1 of 2) Feature Functional description Operating modes Two operating modes:  Single-chip mode  SCI or USB boot mode. See section 3, Operating Modes in User’s Manual. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 3 of 100 RA2A1 Datasheet Table 1.3 1. Overview System (2 of 2) Feature Functional description Resets 13 resets:  RES pin reset  Power-on reset  Independent watchdog timer reset  Watchdog timer reset  Voltage monitor 0 reset  Voltage monitor 1 reset  Voltage monitor 2 reset  SRAM parity error reset  SRAM ECC error reset  Bus master MPU error reset  Bus slave MPU error reset  CPU stack pointer error reset  Software reset. See section 6, Resets in User’s Manual. Low Voltage Detection (LVD) The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin and the detection level can be selected using a software program. See section 8, Low Voltage Detection (LVD) in User’s Manual. Clocks  Main clock oscillator (MOSC)  Sub-clock oscillator (SOSC)  High-speed on-chip oscillator (HOCO)  Middle-speed on-chip oscillator (MOCO)  Low-speed on-chip oscillator (LOCO)  IWDT-dedicated on-chip oscillator  Clock out support. See section 9, Clock Generation Circuit in User’s Manual. Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock to be used as a measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC module. The ICU also controls NMI interrupts. See section 13, Interrupt Controller Unit (ICU) in User’s Manual. Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 19, Key Interrupt Function (KINT) in User’s Manual. Low power modes Power consumption can be reduced in multiple ways, such as by setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. See section 11, Low Power Modes in User’s Manual. Register write protection The register write protection function protects important registers from being overwritten due to software errors. See section 12, Register Write Protection in User’s Manual. Memory Protection Unit (MPU) Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided for memory protection. See section 15, Memory Protection Unit (MPU) in User’s Manual. Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and used as the condition to detect when the system runs out of control. See section 24, Watchdog Timer (WDT) in User’s Manual. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the count value in the registers. See section 25, Independent Watchdog Timer (IWDT) in User’s Manual. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 4 of 100 RA2A1 Datasheet Table 1.4 1. Overview Event Link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 17, Event Link Controller (ELC) in User’s Manual. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 16, Data Transfer Controller (DTC) in User’s Manual. Table 1.6 Timers Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with one channel and a 16-bit timer with six channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 21, General PWM Timer (GPT) in User’s Manual. Port Output Enable for GPT (POEG) Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 20, Port Output Enable for GPT (POEG) in User’s Manual. Asynchronous General Purpose Timer (AGT) The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and they can be accessed with the AGT register. See section 22, Asynchronous General Purpose Timer (AGT) in User’s Manual. Realtime Clock (RTC) The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 23, Realtime Clock (RTC) in User’s Manual. Table 1.7 Communication interfaces (1 of 2) Feature Functional description Serial Communications Interface (SCI) The Serial Communication Interface (SCI) is configurable to five asynchronous and synchronous serial interfaces:  Asynchronous interfaces (UART and asynchronous communications interface adapter (ACIA))  8-bit clock synchronous interface  Simple IIC (master-only)  Simple SPI  Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCI0 has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 27, Serial Communications Interface (SCI) in User’s Manual. I2C bus interface (IIC) The 2-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C (Inter-Integrated Circuit) bus interface functions. See section 28, I2C Bus Interface (IIC) in User’s Manual. Serial Peripheral Interface (SPI) Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices. See section 30, Serial Peripheral Interface (SPI) in User’s Manual. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 5 of 100 RA2A1 Datasheet Table 1.7 1. Overview Communication interfaces (2 of 2) Feature Functional description Controller Area Network (CAN) module The Controller Area Network (CAN) module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 29, Controller Area Network (CAN) Module in User’s Manual. USB 2.0 Full-Speed (USBFS) module The USB 2.0 Full-Speed (USBFS) module can operate as a device controller. The module supports full-speed and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of five pipes. Pipe 0 and pipe 4 to pipe 7 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. The MCU supports Battery Charging Specification revision 1.2. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply 3.3 V. See section 26, USB 2.0 Full-Speed Module (USBFS) in User’s Manual. Table 1.8 Analog (1 of 2) Feature Functional description 16-bit A/D Converter (ADC16) A successive approximation 16-bit A/D Converter (ADC16) is provided. Up to 17 single-ended/ 4 differential analog input channels are selectable. Reference voltage of SDADC24, temperature sensor output, and internal reference voltage are selectable for conversion. The calibration function calculates capacitor array DAC and gain/offset correction values under the usage conditions to enable accurate A/D conversion. See section 32, 16-Bit A/D Converter (ADC16) in User’s Manual. 24-bit Sigma-Delta A/D Converter (SDADC24) A 24-bit Sigma-Delta A/D Converter (SDADC24) with a programmable gain instrumentation amplifier is provided. Up to 10 single-ended/5 differential analog input channels are selectable. The 2 single-ended/1 differential analog input channels of these analog input channels are inputs from internal OPAMP. Analog input multiplexer is input to the sigma-delta A/D converter by the programmable gain instrumentation amplifier (PGA). The A/D conversion result is filtered by the SINC3 digital filter, and then stored in an output register. The calibration function calculates gain error and offset error correction values under the usage conditions to enable accurate A/D conversion. See section 33, 24-Bit Sigma-Delta A/D Converter (SDADC24) in User’s Manual. 12-bit D/A Converter (DAC12) A 12-bit D/A Converter (DAC12) is provided. See section 34, 12-Bit D/A Converter (DAC12) in User’s Manual. 8-bit D/A Converter (DAC8) An 8-bit D/A Converter (DAC8) is provided. See section 35, 8-Bit D/A Converter (DAC8) in User’s Manual. Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC16 for conversion and can be further used by the end application. See section 36, Temperature Sensor (TSN) in User’s Manual. High-Speed Analog Comparator (ACMPHS) The High-Speed Analog Comparator (ACMPHS) compares a reference voltage with an analog input voltage. The comparison result can be read by software and also be output externally. The reference voltage can be selected from either an input to the IVREFi (i = 0 to 2) pin, an output from internal D/A converter, or from the internal reference voltage (Vref) generated internally in the MCU. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 38, HighSpeed Analog Comparator (ACMPHS) in User’s Manual. Low-Power Analog Comparator (ACMPLP) The Low-Power Analog Comparator (ACMPLP) compares a reference voltage with an analog input voltage. The comparison result can be read by software and also be output externally. The reference voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin, an internal 8-bit D/A converter output, or the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Setting lowspeed mode increases the response delay time, but decreases current consumption. See section 39, Low-Power Analog Comparator (ACMPLP) in User’s Manual. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 6 of 100 RA2A1 Datasheet Table 1.8 1. Overview Analog (2 of 2) Feature Functional description Operational Amplifier (OPAMP) The Operational Amplifier (OPAMP) can be used to amplify small analog input voltages and output the amplified voltages. A total of three differential operational amplifier units with two input pins and one output pin are provided. All units have switches that can select input signals. Additionally, operational amplifier 0 has a switch that can select the output pin. See section 37, Operational Amplifier (OPAMP) in User’s Manual. Table 1.9 Human machine interfaces Feature Functional description Capacitive Touch Sensing Unit (CTSU) The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do not come into direct contact with the electrodes. See section 40, Capacitive Touch Sensing Unit (CTSU) in User’s Manual. Table 1.10 Data processing Feature Functional description Cyclic Redundancy Check (CRC) calculator The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generating polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 31, Cyclic Redundancy Check (CRC) Calculator in User’s Manual. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 41, Data Operation Circuit (DOC) in User’s Manual. Table 1.11 Security Feature Functional description AES See section 44, AES Engine in User’s Manual. True Random Number Generator (TRNG) See section 45, True Random Number Generator (TRNG) in User’s Manual. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 7 of 100 RA2A1 Datasheet 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the features. Memory 256 KB code flash Bus Arm Cortex-M23 MPU MPU System POR/LVD 8 KB data flash Reset NVIC 32 KB SRAM Mode control System timer Test and DBG I/F DTC Timers (H/M/L) OCO Power control DMA GPT32 × 1 GPT16 × 6 Clocks MOSC/SOSC Communication interfaces ICU CAC KINT Register write protection Human machine interfaces CTSU SCI × 3 CAN × 1 AGT × 2 IIC × 2 RTC SPI × 2 USBFS with Battery Charging revision1.2 WDT/IWDT Event link Data processing Analog ELC CRC ADC16 TSN OPAMP × 3 Security DOC DAC12 × 1 DAC8 × 2 ACMPHS × 1 ACMPLP × 2 SDADC24 AES + TRNG Figure 1.1 Block diagram R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 8 of 100 RA2A1 Datasheet 1.3 1. Overview Part Numbering Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a list of products. R7FA2A1AB3C FM#AA 0 Production identification code Packaging, Terminal material (Pb-free) #AA: Tray/Sn (Tin) only #AC: Tray/others Package type FM: LQFP 64 pins FJ: LQFP 32 pins BT: BGA 36 pins NE: QFN 48 pins NF: QFN 40 pins Quality Grade Operating temperature 2: -40°C to 85°C 3: -40°C to 105°C Code flash memory size B: 256 KB Feature set Group number Series name RA family Flash memory Renesas microcontroller Figure 1.2 Table 1.12 Part numbering scheme Product list Product part number Orderable part number Package code Code flash Data flash SRAM 256 KB 8 KB 32 KB Operating temperature R7FA2A1AB3CFM R7FA2A1AB3CFM#AA0 PLQP0064KB-C R7FA2A1AB3CNE R7FA2A1AB3CNE#AC0 PWQN0048KB-A -40 to +105°C R7FA2A1AB3CNF R7FA2A1AB3CNF#AC0 PWQN0040KC-A -40 to +105°C R7FA2A1AB2CBT R7FA2A1AB2CBT#AC0 PLBG0036GA-A -40 to +85°C R7FA2A1AB3CFJ R7FA2A1AB3CFJ#AA0 PLQP0032GB-A -40 to +105°C R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 -40 to +105°C Page 9 of 100 RA2A1 Datasheet 1.4 1. Overview Function Comparison Table 1.13 Function comparison Part numbers R7FA2A1AB3CFM R7FA2A1AB3CNE R7FA2A1AB3CNF R7FA2A1AB2CBT R7FA2A1AB3CFJ Pin count 64 48 40 36 32 Package LQFP QFN QFN BGA LQFP Code flash memory 256 KB Data flash memory 8 KB SRAM 32 KB Parity 16 KB ECC System 16 KB CPU clock 48 MHz Sub-clock oscillator Yes ICU KINT No Yes 8 6 4 Event control ELC Yes DMA DTC Yes Timers GPT32 GPT16 6 4 3 4 1 2 2 RTC Yes WDT/IWDT Yes SCI 3 IIC 2 SPI 2 CAN Yes USBFS Analog 3 1 6 AGT Communication 4 Yes No ADC16 17 (4*1) 12 (3*1) 8 (1*1) 5 (1*1) 5 (1*1) SDADC24 8 (4*1) 6 (3*1) 4 (2*1) 2 (1*1) 2 (1*1) DAC12 DAC8 1 2*2 2 ACMPHS ACMPLP OPAMP 2 3 2 TSN HMI CTSU Data processing CRC 2*3 1 1 1 1 9 11 Yes 26 16 DOC Security 11 Yes Yes AES and TRNG Note 1. The number of channels of the differential analog input. Note 2. Pin output function of DA8_1 cannot be used. Note 3. Pin output function of DA8_0 and DA8_1 cannot be used. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 10 of 100 RA2A1 Datasheet 1.5 1. Overview Pin Functions Table 1.14 Pin functions (1 of 4) Function Signal I/O Description Power supply VCC Input Power supply pin. Connect this pin to the system power supply. Connect it to VSS by a 0.1-μF capacitor. Place the capacitor close to the pin. VCL I/O Connect this pin to VSS through a smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect to the system power supply (0 V). XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output Clock Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. CLKOUT Output Clock output pin Operating mode control MD Input Pins for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin On-chip debug SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin Interrupt NMI Input Non-maskable interrupt request pin IRQ0 to IRQ7 Input Maskable interrupt request pins GPT GTETRGA, GTETRGB Input External trigger input pin GTIOC0A to GTIOC6A, GTIOC0B to GTIOC6B I/O Input capture, output compare, or PWM output pin GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V AGT RTC GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) AGTEE0, AGTEE1 Input External event input enable AGTIO0, AGTIO1 I/O External event input and pulse output AGTO0, AGTO1 Output Pulse output AGTOA0, AGTOA1 Output Output compare match A output AGTOB0, AGTOB1 Output Output compare match B output RTCOUT Output Output pin for 1-Hz/64-Hz clock R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 11 of 100 RA2A1 Datasheet 1. Overview Table 1.14 Pin functions (2 of 4) Function Signal I/O Description SCI SCK0, SCK1, SCK9 I/O Input/output pins for the clock (clock synchronous mode) RXD0, RXD1, RXD9 Input Input pins for received data (asynchronous mode/clock synchronous mode) TXD0, TXD1, TXD9 Output Output pins for transmitted data (asynchronous mode/clock synchronous mode) CTS0_RTS0, CTS1_RTS1, CTS9_RTS9 I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low SCL0, SCL1, SCL9 I/O Input/output pins for the IIC clock (simple IIC) SDA0, SDA1, SDA9 I/O Input/output pins for the IIC data (simple IIC) SCK0, SCK1, SCK9 I/O Input/output pins for the clock (simple SPI) MISO0, MISO1, MISO9 I/O Input/output pins for slave transmission of data (simple SPI) MOSI0, MOSI1, MOSI9 I/O Input/output pins for master transmission of data (simple SPI) SS0, SS1, SS9 Input Chip-select input pins (simple SPI), active-low IIC SCL0, SCL1 I/O Input/output pins for clock SDA0, SDA1 I/O Input/output pins for data SPI RSPCKA, RSPCKB I/O Clock input/output pin MOSIA, MOSIB I/O Inputs or outputs data output from the master CAN USBFS MISOA, MISOB I/O Inputs or outputs data output from the slave SSLA0, SSLB0 I/O Input or output pin for slave selection SSLA1 to SSLA3, SSLB1 to SSLB3 Output Output pin for slave selection CRX0 Input Receive data CTX0 Output Transmit data VSS_USB Input Ground pins VCC_USB_LDO Input Power supply pin for USB LDO regulator VCC_USB I/O Input: Power supply pin for USB transceiver. Output: USB LDO regulator output pin. This pin should be connected to an external capacitor. USB_DP I/O D+ I/O pin of the USB on-chip transceiver. This pin should be connected to the D+ pin of the USB bus. USB_DM I/O D- I/O pin of the USB on-chip transceiver. This pin should be connected to the D- pin of the USB bus. USB_VBUS Input USB cable connection monitor pin. This pin should be connected to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a device controller. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 12 of 100 RA2A1 Datasheet 1. Overview Table 1.14 Pin functions (3 of 4) Function Signal I/O Description Analog power supply AVCC0 Input Analog voltage supply pin for the ADC16, DAC12, DAC8, ACMPHS, ACMPLP, and OPAMP AVSS0 Input Analog ground pin for the ADC16, DAC12, DAC8, ACMPHS, ACMPLP, and OPAMP AVCC1 Input Analog voltage supply pin for the SDADC24 AVSS1 Input Analog ground pin for the SDADC24 VREFH0 Input Analog reference voltage supply pin for the ADC16. Connect this pin to AVCC0 when not using the ADC16. VREFL0 Input Analog reference ground pin for the ADC16. Connect this pin to AVSS0 when not using the ADC16. VREFH Input Analog reference voltage supply pin for the DAC12 VREFL Input Analog reference ground pin for the DAC12 AN000 to AN008, AN016 to AN023 Input Input pins for the analog signals to be processed by the A/D converter ADTRG0 Input Input pins for the external trigger signals that start the A/D conversion, active-low ANSD0P to ANSD3P Input Input pins for the analog signals to be processed by the SDADC24 ANSD0N to ANSD3N Input Input pins for the analog signals to be processed by the SDADC24 ADC16 SDADC24 ADREG Output Regulator capacitance for the SDADC24 SBIAS Output Sensor power supply VREFI Input External reference voltage supply pin for the SDADC24 DAC12 DA12_0 Output Output pin for the analog signals to be processed by the 12-bit D/A converter DAC8 DA8_0, DA8_1 Output Output pins for the analog signals to be processed by the 8-bit D/A converter Comparator output VCOUT Output Comparator output pin ACMPHS IVREF0 to IVREF2 Input ACMPLP OPAMP CTSU KINT Reference voltage input pin IVCMP0 to IVCMP2 Input Analog voltage input pin CMPREF0, CMPREF1 Input Reference voltage input pins CMPIN0, CMPIN1 Input Analog voltage input pins AMP0+ to AMP2+ Input Analog voltage input pins AMP0- to AMP2- Input Analog voltage input pins AMP0O to AMP2O Output Analog voltage output pins TS00 to TS25 Input Capacitive touch detection pins (touch pins) TSCAP - Secondary power supply pin for the touch driver KR00 to KR07 Input Key interrupt input pins R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 13 of 100 RA2A1 Datasheet 1. Overview Table 1.14 Pin functions (4 of 4) Function Signal I/O Description I/O ports P000 to P003, P012 to P015 I/O General-purpose input/output pins P100 to P112 I/O General-purpose input/output pins P200 Input General-purpose input pin P201, P204 to P206, P212, P213 I/O General-purpose input/output pins P214, P215 Input General-purpose input pins P300 to P304 I/O General-purpose input/output pins P400 to P403, P407 to P411 I/O General-purpose input/output pins P500 to P502 I/O General-purpose input/output pins P914, P915 I/O General-purpose input/output pins 1.6 Pin Assignments Figure 1.3 P100 P101 P102 P103 P104 P105 P106 P107 AVSS1 AVCC1 SBIAS/VREFI ADREG P112 P111 P110 P108/SWDIO 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 Figure 1.3 to Figure 1.7 show the pin assignments. P500 49 32 P300/SWCLK P501 50 31 P301 P502 51 30 P302 P015 52 29 P303 P014/VREFL 53 28 P304 P013/VREFH 54 27 P200 P012 55 26 P201/MD AVCC0 56 25 RES AVSS0 57 24 P204 VREFL0 58 23 P205 VREFH0 59 22 P206 P003 60 21 VCC_USB_LDO P002 61 20 VCC_USB P001 62 19 P914/USB_DP P000 63 18 P915/USB_DM P109 64 17 VSS_USB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P400 P401 P402 P403 VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P411 P410 P409 P408 P407 R7FA2A1AB3CFM Pin assignment for LQFP 64-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 14 of 100 25 26 27 28 29 30 31 32 P102 P103 P104 P105 AVSS1 AVCC1 SBIAS/VREFI ADREG P110 P108/SWDIO 33 34 35 37 24 38 23 39 22 40 21 41 20 42 19 R7FA2A1AB3CNE 43 18 12 11 10 9 8 P300/SWCLK P301 P302 P200 P201/MD RES P206 VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM VSS_USB P400 P401 VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P409 P408 P407 7 13 6 14 48 5 15 47 4 16 46 3 17 45 2 44 1 P500 P501 P502 P015 P014/VREFL P013/VREFH AVCC0 AVSS0 VREFL0 VREFH0 P000 P109 P100 P101 1. Overview 36 RA2A1 Datasheet 21 22 23 24 25 26 27 P101 P102 P103 AVSS1 AVCC1 SBIAS/VREFI ADREG P110 P108/SWDIO 28 29 31 20 32 19 33 18 34 17 35 36 R7FA2A1AB3CNF 16 15 10 9 8 7 P300/SWCLK P301 P200 P201/MD RES VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM VSS_USB P400 VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P408 P407 6 11 5 12 40 4 13 39 3 14 38 2 37 1 P500 P501 P502 P013 AVCC0 AVSS0 VREFL0 VREFH0 P000 P109 P100 Pin assignment for QFN 48-pin 30 Figure 1.4 Figure 1.5 Pin assignment for QFN 40-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 15 of 100 RA2A1 Datasheet 1. Overview R7FA2A1AB2CBT Figure 1.7 B C D E F 6 P500 P100 P101 SBIAS /VREFI P108 /SWDIO P300 /SWCLK 6 5 P501 AVCC1 AVSS1 ADREG P200 VCC_USB 5 4 P502 AVCC0 P110 P301 P201/MD P915 /USB_DM 4 3 VREFL0 AVSS0 P000 P400 VCC_USB P914 _LDO /USB_DP 3 2 VREFH0 P214 /XCOUT P109 1 VCL P215 /XCIN P213 /XTAL A B C VSS VCC RES 2 P212 /EXTAL P408 P407 1 D E F /VSS_USB P100 P101 AVSS1 AVCC1 SBIAS/VREFI ADREG P110 P108/SWDIO 24 23 22 21 20 19 18 17 Pin assignment for BGA 36-pin (top view, pad side down) P500 25 16 P501 26 15 P300/SWCLK P301 P502 27 14 P200 AVCC0 28 13 P201/MD AVSS0 29 12 RES VREFL0 30 11 P204 VREFH0 31 10 P205 P109 32 9 P206 2 3 4 5 6 7 VSS P213/XTAL P212/EXTAL VCC P408 P407 8 1 VCL R7FA2A1AB3CFJ P400 Figure 1.6 A Pin assignment for LQFP 32-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 16 of 100 RA2A1 Datasheet Pin Lists Interrupt - - P401 AGTEE1 GTIU_A GTIOC4 _A A_A - - - P402 GTIV_A 4 - - - - P403 GTIW_A GTIOC0 B_C 5 3 2 A1 2 VCL 6 4 3 B1 - XCIN P215 7 5 4 B2 - XCOUT P214 8 6 5 D2 3 VSS 9 7 6 C1 4 XTAL P213 AGTEE1 GTETR _B GA_B GTIOC0 A_B RXD1_D/ MISO1_D/ SCL1_D IRQ2_B 10 8 7 D1 5 EXTAL P212 AGTIO0 GTETR _A GB_B GTIOC0 B_B TXD1_D/ MOSI1_D/ SDA1_D IRQ3_B 11 9 8 E2 6 VCC 12 - - - - P411 GTIOC5 A_A TXD0_F/ MOSI0_F/ SDA0_F/ RXD1_B/ MISO1_B/ SCL1_B SSLA3_A TS04 13 - - - - P410 GTIOC5 B_A CTS0_RT S0_A/ SS0_A/ TXD1_B/ MOSI1_B/ SDA1_B SSLA2_A TS05 14 10 - - - P409 AGTO1_ A GTIOC0 A_C CTX0_B SCK0_A/ SCL0_B CTS1_RT S1_B/ SS1_B SSLA1_A TSCAP_E IRQ7_A 15 11 9 E1 7 P408 AGTO0_ GTOUU GTIOC0 A P_A A_A CRX0_B RXD0_A/ SDA0_B MISO0_A/ SCL0_A/ TXD1_C/ MOSI1_C/ SDA1_C SSLA0_A 16 12 10 F1 8 CACREF P407 _B AGTIO0 GTOUL _C O_A USB_VB US/ CTX0_D TXD0_A/ SCL0_A MOSI0_A/ SDA0_A/ TXD9_A/ MOSI9_A/ SDA9_A RSPCKB _B TSCAP_D IRQ1_B 17 13 11 D2 - VSS_USB 18 14 12 F4 - P915 USB_DM 19 15 13 F3 - P914 USB_DP 20 16 14 F5 - VCC_US B 21 17 15 E3 - VCC_US B_LDO 22 18 - - 9 P206 AGTIO0 GTOVU _B P_A GTIOC3 A_A CTS0_RT SCL1_B S0_C/ SS0_C/ TXD1_A/ MOSI1_A/ SDA1_A SSLB0_A TS07 IRQ6_A 23 - - - 10 P205 GTOVL O_A GTIOC3 B_A TXD0_C/ SDA1_B MOSI0_C/ SDA0_C/ CTS1_RT S1_A/ SS1_A MISOB_B TS08 IRQ0_C 24 - - - 11 P204 RXD0_C/ MISO0_C/ SCL0_C/ SCK9_B MOSIB_B TS09 25 19 16 F2 12 RES 26 20 17 E4 13 MD 27 21 18 E5 14 P200 28 - - - - P304 GTIOC6 A_A CTX0_A SCK0_B/ TXD9_C/ MOSI9_C/ SDA9_C MISOA_B TS10 KR07 29 - - - - P303 GTIOC6 B_A CRX0_A CTS0_RT S0_B/ SS0_B/ SCK1_A MOSIA_B TS11 KR06 30 22 - - - CACREF P302 _A TXD0_B/ MOSI0_B/ SDA0_B/ RXD1_A/ MISO1_A/ SCL1_A RSPCKB _A TS12 KR05/ IRQ4_B GTIOC0 A_D GTIOC0 B_A CTSU - - OPAMP 2 3 DAC12, DAC8 2 GTIOC1 RTCOUT A_A _C ADC16 AGTEE0 GTETR _A GA_A SPI P400 IIC 1 SCI D3 USBFS, CAN 1 RTC 1 GPT LQFP32 1 AGT BGA36 ACMPHS, ACMPLP HMI SDADC24 Analogs QFN40 GPT_OPS, POEG Communication Interfaces QFN48 I/O ports Timers LQFP64 Pin number Power, System, Clock, Debug, CAC 1.7 1. Overview CTS0_RT SDA1_A S0_D/ SS0_D/ RXD1_C/ MISO1_C/ SCL1_C MOSIA_A CMPIN0 TS00 KR02/ IRQ0_A SCK0_D/ SDA0_C SCK9_A SSLB1_A VCOUT_ B TS01 KR03/ IRQ5_B CTS9_RT S9_C/ SS9_C SSLB2_A TS02 SCK1_B SSLB3_A TS03 CMPIN1 TS06 IRQ1_A P201 NMI AGTOA1 GTOVL _A O_B R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 GTIOC3 B_B Page 17 of 100 1. Overview Interrupt SWCLK P300 17 SWDIO P108 34 26 22 C4 18 CLKOUT_ P110 A 35 - - - - P111 36 - - - - CLKOUT_ P112 B 37 27 23 D5 19 ADREG 38 28 24 D6 20 SBIAS/ VREFI 39 29 25 B5 21 AVCC1 40 30 26 C5 22 AVSS1 41 - - - - P107 AN023 ANSD3N 42 - - - - P106 AN022 ANSD3P 43 31 - - - P105 MOSIB_C AN021 ANSD2N TS18 IRQ7_C 44 32 - - - P104 MISOB_C AN020 ANSD2P TS19 IRQ6_C 45 33 27 - - P103 GTIOC6 A_B RSPCKB AN019 _C ANSD1N TS20 46 34 28 - - P102 GTIOC6 B_B CTS9_RT S9_D/ SS9_D SSLB0_C AN018 ANSD1P TS21 47 35 29 C6 23 P101 GTIOC5 A_B RXD9_C/ MISO9_C/ SCL9_C AN017 ANSD0N IVREF2 TS22 IRQ5_C 48 36 30 B6 24 P100 GTIOC5 B_B TXD9_D/ MOSI9_D/ SDA9_D AN016 ANSD0P IVCMP2 TS23 IRQ4_C 49 37 31 A6 25 P500 GTIOC5 A_C RXD0_D/ MISO0_D/ SCL0_D AN000 50 38 32 A5 26 P501 GTIOC5 B_C TXD0_E/ MOSI0_E/ SDA0_E AN001 51 39 33 A4 27 P502 CTS0_RT S0_E/ SS0_E AN002 52 40 - - - 53 41 - - - VREFL P014 GTIOC6 A_C AN004 54 42 34 - - VREFH P013 GTIOC6 B_C AN005 55 - - - - 56 43 35 B4 28 AVCC0 57 44 36 B3 29 AVSS0 58 45 37 A3 30 VREFL0 59 46 38 A2 31 VREFH0 60 - - - 61 - - 62 - 63 64 AGTOB0 GTOWL GTIOC2 _A O_A B_B CTX0_C TXD0_D/ SDA1_D MOSI0_D/ SDA0_D/ RXD9_B/ MISO9_B/ SCL9_B RSPCKA ADTRG0_ _A A RTCOUT _B TS13 TSCAP_A IRQ2_A RSPCKA _B TS14 SDA1_C SSLA0_B TSCAP_B IRQ7_B DA12_0 AN008 - P003 AN006 - - P002 AN007 - - - P001 47 39 C3 - P000 AGTIO1 _A 48 40 C2 32 P109 AGTOA0 GTETR _A GB_A IRQ6_B IVCMP0 AMP0+ TS24 IRQ3_C IVREF0 AMP0- TS25 IRQ2_C AMP0O AN003 P012 Note: CMPREF 1 KR04/ IRQ5_A SCL1_C P015 RTCOUT _D CTSU 16 E6 MOSIB_A OPAMP F6 21 RXD0_B/ SDA0_A MISO0_B/ SCL0_B/ CTS9_RT S9_B/ SS9_B DAC12, DAC8 20 25 ADC16 24 33 AGTOB1 GTOWU GTIOC2 RTCOUT _A P_A A_B _A SPI 32 P301 IIC 15 SCI D4 USBFS, CAN 19 RTC 23 GPT LQFP32 31 AGT BGA36 ACMPHS, ACMPLP HMI SDADC24 Analogs QFN40 GPT_OPS, POEG Communication Interfaces QFN48 I/O ports Timers LQFP64 Pin number Power, System, Clock, Debug, CAC RA2A1 Datasheet IRQ1_C AMP1O DA8_0 IVREF1 AMP1- IVCMP1 AMP1+ AMP2O AMP2DA8_1 AMP2+ CTS9_RT S9_A/ SS9_A RSPCKB _D TS15 IRQ0_B GTIOC4 B_B RXD9_A/ SCL0_C MISO9_A/ SCL9_A MISOB_A TS16 KR00/ IRQ4_A GTIOC1 B_B SCK0_C/ SCL1_A TXD9_B/ MOSI9_B/ SDA9_B MISOA_A ADTRG0_ B TS17 KR01/ IRQ3_A CMPREF 0/ VCOUT_ A Several pin names have the added suffix of _A, _B, _C, _D, _E and _F. The suffix can be ignored when assigning functionality. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 18 of 100 RA2A1 Datasheet 2. 2. Electrical Characteristics Electrical Characteristics Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  VCC*1 = AVCC0 = AVCC1 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5 V  VREFH = VREFH0 = 1.6 to AVCC0  VSS = AVSS0 = AVSS1 = VREFL = VREFL0 = VSS_USB = 0 V  Ta = Topr. Note 1. Note 2. The typical condition is set to VCC = 3.3 V. When USBFS is not used. Figure 2.1 shows the timing conditions. For example, P300 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30 pF Figure 2.1 Input or output timing measurement conditions The measurement conditions for the timing specifications of each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities of each pin to meet the conditions of your system. Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the A/C specification of each function is not guaranteed. 2.1 Absolute Maximum Ratings Table 2.1 Absolute maximum ratings (1 of 2) Parameter Symbol Value Unit Power supply voltage VCC -0.5 to +6.5 V 5 V-tolerant ports*1 Vin -0.3 to +6.5 V P002, P003, P012 to P015, P500 to P502 Vin -0.3 to AVCC0 + 0.3 V P100 to P107 Vin -0.3 to AVCC1 + 0.3 V Others Vin -0.3 to VCC + 0.3 V VREFH0 -0.3 to +6.5 V VREFH -0.3 to +6.5 V -0.3 to AVCC1 + 0.3 V -0.5 to +6.5 V Input voltage Reference power supply voltage VREFI Analog power supply voltage R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 AVCC0, AVCC1*5 Page 19 of 100 RA2A1 Datasheet Table 2.1 2. Electrical Characteristics Absolute maximum ratings (2 of 2) Parameter Symbol Value Unit USB power supply voltage VCC_USB -0.5 to +6.5 V Analog input voltage VCC_USB_LDO -0.5 to +6.5 V VAN -0.3 to AVCC0 + 0.3 V When AN016 to AN023 are used -0.3 to AVCC1 + 0.3 V When ANSD0P to ANSD3P and ANSD0N to ANSD3N are used -0.3 to AVCC1 + 0.3 V When AN000 to AN008 are used Operating temperature*2 *3 *4 Topr -40 to +85 -40 to +105 °C Storage temperature Tstg -55 to +125 °C Note 1. Note 2. Note 3. Note 4. Note 5. Ports P000, P111, P112, P205, P206, P301, P401, P407, and P409 are 5 V tolerant. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements. See section 2.2.1, Tj/Ta Definition. Contact Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. Use AVCC0 and AVCC1 under the same conditions: AVCC0 = AVCC1 Caution: Table 2.2 Permanent damage to the MCU may result if absolute maximum ratings are exceeded. To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the AVCC1 and AVSS1 pins, between the VCC_USB and VSS_USB pins, between the VREFH and VREFL pins, and between the VREFH0 and VREFL0 pins when VREFH0 is selected as the high potential reference voltage for the ADC16. Place capacitors of the following value as close as possible to every power supply pin and use the shortest and heaviest possible traces: - VCC and VSS: about 0.1 μF - AVCC0 and AVSS0: about 0.1 μF - AVCC1 and AVSS1: about 0.1 μF - VREFH and VREFL: about 0.1 μF - VREFH0 and VREFL0: about 10 μF. Also, connect capacitors as stabilization capacitance. Connect the VCL pin to a VSS pin by a 4.7 μF capacitor. Connect the VREFH0 pin to a VREFL0 pin by 1 µF (-25% to +25%) capacitor when VREFADC is selected as the high potential reference voltage of the ADC16. Connect the ADREG pin to a AVSS1 pin by a 0.47 µF (-50% to +20%) capacitor. Connect the SBIAS/VREFI pin to a AVSS1 pin by a 0.22 µF (-20% to +20%) capacitor. Every capacitor must be placed close to the pin. Recommended operating conditions (1 of 2) Parameter Symbol Value Min Typ Max Unit Power supply voltages VCC*1, *2 When USBFS is not used 1.6 - 5.5 V When USBFS is used VCC_USB USB Regulator Disable - 3.6 V When USBFS is used VCC_USB USB Regulator _LDO Enable - 5.5 V 0 - V VSS R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 - Page 20 of 100 RA2A1 Datasheet Table 2.2 2. Electrical Characteristics Recommended operating conditions (2 of 2) Parameter Symbol Value Min Typ Max Unit USB power supply voltages VCC_USB When USBFS is not used - VCC - V When USBFS is used 3.0 USB Regulator Disable (Input) 3.3 3.6 V When USBFS is not used - VCC - V When USBFS is used USB Regulator Disable - VCC - V - 5.5 V VCC_USB_LDO When USBFS is used 3.8 USB Regulator Enable Analog power supply voltages VSS_USB - 0 - V AVCC0*1, *2 1.6 - 5.5 V AVSS0 - 0 - V AVCC1*1, *2 - AVCC0 - V AVSS1 - 0 - V 1.7 - AVCC0 V VREFH0 When used as ADC16 Reference VREFL0 VREFH When used as DAC12 Reference VREFL VREFI Note 1. Note 2. Note 3. When used as SDADC24 Reference*3 - 0 - V 1.7 - AVCC0 V - 0 - V 0.8 - 2.4 V Use AVCC0, AVCC1, and VCC under the following conditions: AVCC0, AVCC1, and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 = AVCC1 ≥ 2.2 V. AVCC0 = AVCC1 = VCC when VCC < 2.2 V or AVCC0 = AVCC1 < 2.2 V. When powering on the VCC and AVCC0 and AVCC1 pins, power them on at the same time or the VCC pin first and then the AVCC0 and AVCC1 pins. The condition when using external input for the reference voltage of SDADC24. 2.2 DC Characteristics 2.2.1 Tj/Ta Definition Table 2.3 DC characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C Parameter Symbol Typ Max Unit Test conditions Permissible junction temperature Tj - 125 °C High-speed mode Middle-speed mode Low-voltage mode Low-speed mode SubOSC-speed mode 105*1 Note: Note 1. Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise it is 125°C. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 21 of 100 RA2A1 Datasheet 2.2.2 2. Electrical Characteristics I/O VIH, VIL Table 2.4 I/O VIH, VIL Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V Symbol Min Typ Max Unit Test Conditions VIH VCC × 0.7 - 5.8 V - VIL - - VCC × 0.3 ΔVT VCC × 0.05 - - RES, NMI Other peripheral input pins excluding IIC VIH VCC × 0.8 - - VIL - - VCC × 0.2 ΔVT VCC × 0.1 - - IIC (SMBus)*2 VIH 2.2 - - VCC = 3.6 to 5.5 V VIH 2.0 - - VCC =2.7 to 3.6 V VIL - - 0.8 VCC = 2.7 to 5.5 V VIH VCC × 0.8 - 5.8 - VIL - - VCC × 0.2 P002, P003, P012 to P015, P500 to P502 VIH AVCC0 × 0.8 - - VIL - - AVCC0 × 0.2 P100 to P107 VIH AVCC1 × 0.8 - - VIL - - AVCC1 × 0.2 VIH VCC_USB × 0.8 - VCC_USB + 0.3 VIL - - VCC_USB × 0.2 VIH VCC × 0.8 - - VIL - - VCC × 0.2 Parameter Schmitt trigger input voltage Input voltage (except for Schmitt trigger input pin) IIC (except for SMBus)*1 5 V-tolerant ports*3 P914, P915 EXTAL Input ports pins except for P002, P003, P012 to P015, P100 to P107, P500 to P502, P914, P915 Note 1. Note 2. Note 3. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_C, SCL1_B, SCL1_C, SDA1_B, SDA1_C (total 9 pins) SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SDA0_C, SCL1_A, SCL1_B, SCL1_C, SDA1_A, SDA1_B, SDA1_C, SDA1_D (total 13 pins) P000, P111, P112, P205, P206, P301, P401, P407, P409 (total 9 pins) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 22 of 100 RA2A1 Datasheet 2.2.3 2. Electrical Characteristics I/O IOH, IOL Table 2.5 I/O IOH, IOL Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V Parameter Permissible output current (average value per pin) Ports P212, P213 Ports P407, P408, P409 Symbol Min Typ IOH - IOL - IOH - IOL - Middle drive for IIC Fast mode and SPI*4 IOH - IOL - Middle drive*2 VCC = 3.0 to 5.5 V IOH Low drive*1 Other output Ports P212, P213 Ports P407, P408, P409 Permissible output current (max value total pins) mA - -4.0 mA - 4.0 mA - -8.0 mA - 8.0 mA - - -20.0 mA - 20.0 mA - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA Middle drive for IIC Fast mode and SPI*4 IOH - - -8.0 mA IOL - - 8.0 mA Middle drive*2 VCC = 3.0 to 5.5 V IOH - - -20.0 mA Low drive*1 drive*2 Low drive*1 IOL - - 20.0 mA IOH - - -4.0 mA IOL - - 4.0 mA Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA Middle drive*2 IOH - - -8.0 mA IOL - - 8.0 mA ΣIOH (max) - - -30 mA ΣIOL (max) - - 30 mA Total of ports P100 to P107 ΣIOH (max) - - -30 mA ΣIOL (max) - - 30 mA ΣIOH - - -4.0 mA ΣIOL - - 4.0 mA ΣIOH (max) - - -60 mA ΣIOL (max) - - 60 mA Total of all output Note 5. mA 4.0 Total of ports P002, P003, P012 to P015, P500 to P502 Total of ports P914, P915 Note 1. Note 2. Note 3. Note 4. -4.0 - - Ports P914, P915 Other output pins*3 - IOL Middle Permissible output current (max value per pin) Unit IOH Ports P914, P915 pins*3 Max pin*5 This is the value when low driving ability is selected with the Port Drive Capability bit in the PmnPFS register. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Except for Ports P200, P214, P215, which are input ports. This is the value when middle driving ability for IIC Fast mode and SPI is selected with the Port Drive Capability bit in PmnPFS register. For details on the permissible output current used with CTSU, see section 2.12, CTSU Characteristics. Caution: To protect the reliability of the MCU, the output current values should not exceed the values in Table 2.5. The average output current indicates the average current value measured during 100 μs. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 23 of 100 RA2A1 Datasheet 2.2.4 2. Electrical Characteristics I/O VOH, VOL, and Other Characteristics Table 2.6 I/O VOH, VOL (1) Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 4.0 to 5.5 V Parameter Output voltage IIC*1 Ports P407, P408, P409 Low drive Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. Max Unit Test conditions VOL - - 0.4 V VOL*2,*5 - - 0.6 IOL = 6.0 mA IOL = 3.0 mA VCC - 0.8 - - IOH = -2.0 mA - - 0.8 IOL = 2.0 mA VOH VCC - 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA VOH VCC - 1.0 - - IOH = -20 mA VOL - - 1.0 IOL = 20 mA Low drive VOH AVCC0 - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA Middle drive VOH AVCC0 - 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA Low drive VOH AVCC1 - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA Middle drive VOH AVCC1 - 0.8 - - IOH = -4.0 mA drive*2,*3 Ports P914, P915 Other output pins*4 Typ VOH Middle Ports P100 to P107 Min VOL Middle drive for IIC Fast mode and SPI*5 Ports P002, P003, P012 to P015, P500 to P502 Symbol VOL - - 0.8 IOL = 4.0 mA VOH VCC_USB - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA Low drive VOH VCC - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA Middle drive*6 VOH VCC - 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SDA0_C, SCL1_A, SCL1_B, SCL1_C, SDA1_A, SDA1_B, SDA1_C, SDA1_D (total 13 pins). This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Based on characterization data, not tested in production. Except for P200, P214, P215, which are input ports. This is the value when middle driving ability for IIC and SPI is selected with the Port Drive Capability bit in PmnPFS register for P407, P408, and P409. Except for P212, P213. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 24 of 100 RA2A1 Datasheet Table 2.7 2. Electrical Characteristics I/O VOH, VOL (2) Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 2.7 to 4.0 V Parameter Output voltage Symbol Min Typ Max Unit Test conditions VOL - - 0.4 V IOL = 3.0 mA VOL*2,*5 - - 0.6 IOL = 6.0 mA Low drive VOH VCC - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA Middle drive for IIC Fast mode and SPI*5 VOH VCC - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA Middle drive*2,*3 VOH VCC - 1.0 - - IOH = -20 mA VCC = 3.3 V VOL - - 1.0 IOL = 20 mA VCC = 3.3 V VOH AVCC0 - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH AVCC0 - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA IIC*1 Ports P407, P408, P409 Ports P002, P003, P012 to P015, P500 to P502 Ports P100 to P107 Low drive Middle drive Low drive Middle drive Ports P914, P915 Other output pins*4 Low drive Middle Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. drive*6 VOH AVCC1 - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH AVCC1 - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA VOH VCC_USB - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH VCC - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH VCC - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SDA0_C, SCL1_A, SCL1_B, SCL1_C, SDA1_A, SDA1_B, SDA1_C, SDA1_D (total 13 pins). This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Based on characterization data, not tested in production. Except for P200, P214, P215, which are input ports. This is the value when middle driving ability for IIC and SPI is selected with the Port Drive Capability bit in PmnPFS register for P407, P408, and P409. Except for P212, P213. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 25 of 100 RA2A1 Datasheet Table 2.8 2. Electrical Characteristics I/O VOH, VOL (3) Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V Parameter Output voltage Ports P407, P408, P409 Ports P002, P003, P012 to P015, P500 to P502 Ports P100 to P107 Symbol Min Typ Max Unit Test conditions Low drive VOH VCC - 0.3 - - V IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA Middle drive for IIC Fast mode and SPI*2 VOH VCC - 0.3 - - IOH = -1.0 mA VOL - - 0.3 IOL = 1.0 mA Low drive VOH AVCC0 - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA Middle drive VOH AVCC0 - 0.3 - - IOH = -1.0 mA VOL - - 0.3 IOL = 1.0 mA Low drive VOH AVCC0 - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA Middle drive VOH AVCC0 - 0.3 - - IOH = -1.0 mA VOL - - 0.3 IOL = 1.0 mA Ports P914, P915 Other output pins*1 Low drive Middle drive*3 VOH VCC_USB - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA VOH VCC - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA VOH VCC - 0.3 - - IOH = -1.0 mA VOL - - 0.3 IOL = 1.0 mA Note 1. Except for ports P200, P214, P215, which are input ports. Note 2. This is the value when middle driving ability for IIC and SPI is selected with the Port Drive Capability bit in the PmnPFS register for P407, P408, and P409. Note 3. Except for P212, P213. Table 2.9 I/O other characteristics Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Input leakage current RES, ports P200, P214, P215 | Iin | - - 1.0 μA Vin = 0 V Vin = VCC Three-state leakage current (off state) 5 V-tolerant ports | ITSI | - - 1.0 μA Vin = 0 V Vin = 5.8 V - - 1.0 Other ports Vin = 0 V Vin = VCC Input pull-up resistor All ports (except for P200, P214, P215, P914, P915) RU 10 20 50 kΩ Vin = 0 V Input capacitance P012 to P015, P200, P502, P914, P915 Cin - - 30 pF - - 15 Vin = 0 V f = 1 MHz Ta = 25°C Other input pins R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 26 of 100 RA2A1 Datasheet 2.2.5 2. Electrical Characteristics Output Characteristics for I/O Pins (Low Drive Capacity) IOH/IOL vs VOH/VOL 60 50 VCC = 5.5 V 40 30 IOH/IOL [mA] 20 VCC = 3.3 V 10 VCC = 2.7 V VCC = 1.6 V 0 VCC = 1.6 V -10 VCC = 2.7 V -20 VCC = 3.3 V -30 -40 -50 VCC = 5.5 V -60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.2 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when low drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 3 Ta = -40C Ta = 25C Ta = 105C 2 IOH/IOL [mA] 1 0 -1 Ta = 105C Ta = 25C Ta = -40C -2 -3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH/VOL [V] Figure 2.3 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data, except for P914 and P915) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 27 of 100 RA2A1 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 20 15 Ta = -40C Ta = 25C Ta = 105C IOH/IOL [mA] 10 5 0 -5 Ta = 105C -10 Ta = 25C Ta = -40C -15 -20 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.4 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 30 Ta = -40C Ta = 25C Ta = 105C 20 IOH/IOL [mA] 10 0 -10 Ta = 105C Ta = 25C -20 Ta = -40C -30 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.5 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data, except for P914 and P915) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 28 of 100 RA2A1 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 60 Ta = -40C Ta = 25C 40 Ta = 105C IOH/IOL [mA] 20 0 -20 Ta = 105C -40 Ta = 25C Ta = -40C -60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.6 2.2.6 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected (reference data, except for P914 and P915) Output Characteristics for I/O Pins (Middle Drive Capacity) IOH/IOL vs VOH/VOL IOH/IOL [mA] 140 120 100 VCC = 5.5 V 80 60 40 20 VCC = 3.3 V VCC = 2.7 V VCC = 1.6 V 0 -20 -40 VCC = 1.6 V VCC = 2.7 V VCC = 3.3 V -60 -80 -100 -120 VCC = 5.5 V -140 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.7 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected (reference data, except for P914 and P915) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 29 of 100 RA2A1 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 6 Ta = -40C Ta = 25C Ta = 105C 4 IOH/IOL [mA] 2 0 -2 Ta = 105C -4 Ta = 25C Ta = -40C -6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH/VOL [V] Figure 2.8 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 40 Ta = -40C Ta = 25C 30 Ta = 105C IOH/IOL [mA] 20 10 0 -10 -20 Ta = 105C Ta = 25C -30 Ta = -40C -40 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.9 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data, except for P914 and P915) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 30 of 100 RA2A1 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 60 Ta = -40C Ta = 25C 40 Ta = 105C IOH/IOL [mA] 20 0 -20 Ta = 105C -40 Ta = 25C Ta = -40C -60 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.10 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 140 120 Ta = -40C Ta = 25C IOH/IOL [mA] 100 80 60 Ta = 105C 40 20 0 -20 -40 -60 -80 -100 Ta = 105C Ta = 25C -120 -140 Ta = -40C 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.11 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data, except for P914 and P915) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 31 of 100 RA2A1 Datasheet 2.2.7 2. Electrical Characteristics Output Characteristics for P407, P408 and P409 I/O Pins (Middle Drive Capacity) IOH/IOL vs VOH/VOL IOH/IOL [mA] 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 VCC = 5.5 V VCC = 3.3 V VCC = 2.7 V VCC = 2.7 V VCC = 3.3 V VCC = 5.5 V 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.12 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected (reference data) IOH/IOL vs VOH/VOL 60 Ta = -40C Ta = 25C Ta = 105C 40 IOH/IOL [mA] 20 0 -20 Ta = 105C -40 Ta = 25C Ta = -40C -60 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.13 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 32 of 100 RA2A1 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 100 80 Ta = -40C Ta = 25C 60 Ta = 105C IOH/IOL [mA] 40 20 0 -20 -40 Ta = 105C -60 Ta = 25C -80 Ta = -40C -100 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.14 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data) IOH/IOL vs VOH/VOL 220 180 Ta = -40C Ta = 25C 140 Ta = 105C IOH/IOL [mA] 100 60 20 -20 -60 -100 -140 Ta = 105C Ta = 25C -180 Ta = -40C -220 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.15 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 33 of 100 RA2A1 Datasheet 2.2.8 2. Electrical Characteristics Output Characteristics for IIC I/O Pins IOL vs VOL 120 110 VCC = 5.5 V (Middle drive) 100 90 IOL [mA] 80 70 60 50 VCC = 3.3 V (Middle drive) VCC = 5.5 V (Low drive) 40 VCC = 2.7 V (Middle drive) 30 20 VCC = 3.3 V (Low drive) 10 VCC = 2.7 V (Low drive) 0 0 1 2 3 4 5 6 VOL [V] Figure 2.16 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 34 of 100 RA2A1 Datasheet 2.2.9 Table 2.10 2. Electrical Characteristics Operating and Standby Current Operating and standby current (1) (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Symbol Typ*10 Max Unit Test Conditions ICC 5.2 - mA *7, *11 ICLK = 32 MHz 3.8 - ICLK = 16 MHz 2.3 - ICLK = 8 MHz 1.6 - ICLK = 48 MHz 12.1 - ICLK = 32 MHz 8.3 - ICLK = 16 MHz 4.6 - ICLK = 8 MHz 2.8 - ICLK = 48 MHz 12.6 - *9, *11 ICLK = 32 MHz 10.9 - *8, *11 Parameter Supply current*1 High-speed mode*2 Normal mode All peripheral clocks disabled, while (1) code executing from flash*5 All peripheral clocks disabled, CoreMark code executing from flash*5 All peripheral clocks enabled, while (1) code executing from flash*5 Sleep mode ICLK = 48 MHz ICLK = 16 MHz 5.9 - ICLK = 8 MHz 3.4 - All peripheral clocks enabled, code executing from flash*5 ICLK = 48 MHz - 28.5 *9, *11 All peripheral clocks disabled*5 ICLK = 48 MHz 2.7 - *7 ICLK = 32 MHz 2.1 - ICLK = 16 MHz 1.5 - ICLK = 8 MHz 1.1 - ICLK = 48 MHz 9.8 - *9 ICLK = 32 MHz 8.9 - *8 All peripheral clocks enabled*5 ICLK = 16 MHz 5.0 - ICLK = 8 MHz 2.9 - 2.5 - 1.6 - 1.3 - Increase during BGO operation*6 Middle-speed mode*2 Normal mode Sleep mode All peripheral clocks disabled, while (1) code executing from flash*5 ICLK = 12 MHz All peripheral clocks disabled, CoreMark code executing from flash*5 ICLK = 12 MHz 3.4 - ICLK = 8 MHz 2.6 - All peripheral clocks enabled, while (1) code executing from flash*5 ICLK = 12 MHz 4.3 - ICLK = 8 MHz 3.1 - All peripheral clocks enabled, code executing from flash*5 ICLK = 12 MHz - 12.6 All peripheral clocks disabled*5 ICLK = 12 MHz 1.0 - ICLK = 8 MHz 0.9 - All peripheral clocks enabled*5 ICLK = 12 MHz 3.6 - Increase during BGO operation*6 R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 ICLK = 8 MHz ICLK = 8 MHz ICC 2.7 - 2.5 - mA *7, *11 *8, *11 *7 *8 - Page 35 of 100 RA2A1 Datasheet Table 2.10 2. Electrical Characteristics Operating and standby current (1) (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Parameter Supply current*1 Low-speed mode*3 Normal mode Sleep mode Low-voltage mode*3 Normal mode Sleep mode Suboscspeed mode*4 Normal mode Sleep mode Symbol Typ*10 Max Unit Test Conditions ICC 0.3 - mA *7, *11 All peripheral clocks disabled, while (1) code executing from flash*5 ICLK = 1 MHz All peripheral clocks disabled, CoreMark code executing from flash*5 ICLK = 1 MHz 0.4 - All peripheral clocks enabled, while (1) code executing from flash*5 ICLK = 1 MHz 0.5 - All peripheral clocks enabled, code executing from flash*5 ICLK = 1 MHz - 2.5 All peripheral clocks disabled*5 ICLK = 1 MHz 0.2 - *7 All peripheral clocks enabled*5 ICLK = 1 MHz 0.4 - *8 All peripheral clocks disabled, while (1) code executing from flash*5 ICLK = 4 MHz 1.5 - All peripheral clocks disabled, CoreMark code executing from flash*5 ICLK = 4 MHz 2.2 - All peripheral clocks enabled, while (1) code executing from flash*5 ICLK = 4 MHz 2.5 - All peripheral clocks enabled, code executing from flash*5 ICLK = 4 MHz - 7.0 All peripheral clocks disabled*5 ICLK = 4 MHz 1.3 - *7 All peripheral clocks enabled*5 ICLK = 4 MHz 2.3 - *8 All peripheral clocks disabled, while (1) code executing from flash*5 ICLK = 32.768 kHz 6.5 - All peripheral clocks enabled, while (1) code executing from flash*5 ICLK = 32.768 kHz 12.1 - All peripheral clocks enabled, code executing from flash*5 ICLK = 32.768 kHz - 190.0 All peripheral clocks disabled*5 ICLK = 32.768 kHz 4.5 - *8 All peripheral clocks enabled*5 ICLK = 32.768 kHz 10.2 - *8 ICC ICC *8, *11 mA *7, *11 *8, *11 μA *8, *11 Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state. Note 2. The clock source is HOCO. Note 3. The clock source is MOCO. Note 4. The clock source is the sub-clock oscillator. Note 5. This does not include BGO operation. Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution. Note 7. FCLK, PCLKB, and PCLKD are set to divided by 64. Note 8. FCLK, PCLKB, and PCLKD are the same frequency as that of ICLK. Note 9. FCLK and PCLKB are set to be divided by 2 and PCLKD is the same frequency as that of ICLK. Note 10. VCC = 3.3 V. Note 11. The flash cache is operating. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 36 of 100 RA2A1 Datasheet 2. Electrical Characteristics ICC (mA) 30 25 Ta = 105Ԩ, ICLK = 48MHz*2 20 Ta = 105Ԩ, ICLK = 32MHz*2 15 Ta = 25Ԩ, ICLK = 48MHz*1 Ta = 105Ԩ, ICLK = 16MHz*2 Ta = 25Ԩ, ICLK = 32MHz*1 10 Ta = 105Ԩ, ICLK = 8MHz*2 Ta = 25Ԩ, ICLK = 16MHz*1 Ta = 105Ԩ, ICLK = 4MHz*2 Ta = 25Ԩ, ICLK = 8MHz*1 Ta = 25Ԩ, ICLK = 4MHz*1 5 0 㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 VCC (V) 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻢㻚㻜 Ta = 25Ԩ, ICLK = 48MHz *1 Ta = 105Ԩ, ICLK = 48MHz *2 Ta = 25Ԩ, ICLK = 32MHz *1 Ta = 105Ԩ, ICLK = 32MHz *2 Ta = 25Ԩ, ICLK = 16MHz *1 Ta = 105Ԩ, ICLK = 16MHz *2 Ta = 25Ԩ, ICLK = 8MHz *1 Ta = 105Ԩ, ICLK = 8MHz *2 Ta = 25Ԩ, ICLK = 4MHz *1 Ta = 105Ԩ, ICLK = 4MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.17 Voltage dependency in high-speed operating mode (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 37 of 100 RA2A1 Datasheet 2. Electrical Characteristics 10 9 Ta = 105Ԩ, ICLK = 12MHz*2 8 ICC (mA) 7 Ta = 105Ԩ, ICLK = 8MHz*2 6 5 Ta = 25Ԩ, ICLK = 12MHz*1 Ta = 105Ԩ, ICLK = 4MHz*2 Ta = 25Ԩ, ICLK = 8MHz*1 4 3 2 Ta = 25Ԩ, ICLK = 4MHz*1 Ta = 105Ԩ, ICLK = 1MHz*2 Ta = 25Ԩ, ICLK = 1MHz*1 1 0 㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 VCC (V) 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻢㻚㻜 Ta = 25Ԩ, ICLK = 12MHz *1 Ta = 105Ԩ, ICLK = 12MHz *2 Ta = 25Ԩ, ICLK = 8MHz *1 Ta = 105Ԩ, ICLK = 8MHz *2 Ta = 25Ԩ, ICLK = 4MHz *1 Ta = 105Ԩ, ICLK = 4MHz *2 Ta = 25Ԩ, ICLK = 1MHz *1 Ta = 105Ԩ, ICLK = 1MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.18 Voltage dependency in middle-speed operating mode (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 38 of 100 RA2A1 Datasheet 2. Electrical Characteristics 1.6 1.4 Ta = 105Ԩ, ICLK = 1MHz*2 ICC (mA) 1.2 1.0 0.8 0.6 Ta = 25Ԩ, ICLK = 1MHz*1 0.4 0.2 0.0 㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 VCC (V) Ta = 25Ԩ, ICLK = 1MHz *1 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻢㻚㻜 Ta = 105Ԩ, ICLK = 1MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.19 Voltage dependency in low-speed operating mode (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 39 of 100 RA2A1 Datasheet 2. Electrical Characteristics 5.0 4.5 Ta = 105Ԩ, ICLK = 4MHz*2 4.0 ICC (mA) 3.5 3.0 2.5 Ta = 25Ԩ, ICLK = 4MHz*1 Ta = 105Ԩ, ICLK = 1MHz*2 2.0 1.5 Ta = 25Ԩ, ICLK = 1MHz*1 1.0 0.5 0.0 㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 VCC (V) 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻢㻚㻜 Ta = 25Ԩ, ICLK = 4MHz *1 Ta = 105Ԩ, ICLK = 4MHz *2 Ta = 25Ԩ, ICLK = 1MHz *1 Ta = 105Ԩ, ICLK = 1MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.20 Voltage dependency in low-voltage operating mode (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 40 of 100 RA2A1 Datasheet 2. Electrical Characteristics 180 160 Ta = 105Ԩ, ICLK = 32kHz*2 140 Ta = 25Ԩ, ICLK = 32kHz*1 ICC(MA) 120 100 80 60 40 20 Ta = 25Ԩ, ICLK = 32kHz*1*3 0 㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 VCC (V) 㻠㻚㻡 Ta = 25Ԩ, ICLK = 32kHz *1 㻡㻚㻜 㻡㻚㻡 㻢㻚㻜 Ta = 105Ԩ, ICLK = 32kHz *2 Ta = 25Ԩ, ICLK = 32kHz *1*3 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Note 3. MOCO and DAC are stopped. Figure 2.21 Table 2.11 Voltage dependency in subosc-speed operating mode (reference data) Operating and standby current (2) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Symbol Typ*3 Max Unit Test conditions ICC 0.5 2.0 μA - Ta = 55°C 0.8 7.0 Ta = 85°C 1.8 17.0 Ta = 105°C 4.4 45.0 Increment for RTC operation with low-speed on-chip oscillator*4 0.4 - - Increment for RTC operation with sub-clock oscillator*4 0.5 - SOMCR.SODRV[1:0] are 11b (Low power mode 3) 1.3 - SOMCR.SODRV[1:0] are 00b (normal mode) Parameter Supply current*1 Note 1. Note 2. Note 3. Note 4. Software Standby mode*2 Ta = 25°C Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS transistors are in the off state. The IWDT and LVD are not operating. VCC = 3.3 V. Includes the low-speed on-chip oscillator or sub-oscillation circuit current. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 41 of 100 RA2A1 Datasheet 2. Electrical Characteristics 100 ICC (MA) 10 1 0.1 㻙㻠㻜 㻙㻞㻜 㻜 㻞㻜 㻠㻜 㻢㻜 㻤㻜 㻝㻜㻜 Ta (Ԩ) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.22 Temperature dependency in Software Standby mode (reference data) 10 ICC(MA) Normal drive capacity*1 Low drive capacity*1 1 0 㻙㻠㻜 㻙㻞㻜 㻜 㻞㻜 㻠㻜 㻢㻜 㻤㻜 㻝㻜㻜 Ta (Ԩ) Low drive capacity*1 Note: Normal drive capacity*1 Average value of the tested middle samples during product evaluation. Figure 2.23 Temperature dependency of RTC operation (reference data) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 42 of 100 RA2A1 Datasheet Table 2.12 2. Electrical Characteristics Operating and standby current (3) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Symbol Min Typ Max Unit Test conditions IAVCC0 - - 1.5 mA - - - 1.6 mA - - - 0.9 mA - - - 2.0 μA - - - 1.29 mA - - - 1.06 mA GSET1 = 8, or GTOTAL = 24,32 - - 0.9 mA GSET1, GTOTAL = the others - - 1.0 μA - - - 80 μA - - - 60 nA - - - 650 μA - - - 100 nA - IREFI - - 30 μA External VREF mode Temperature Sensor (TSN) operating current ITNS - 75 - μA - Low-power Analog Comparator (ACMPLP) operating current ICMPLP - 15 - μA - Parameter Analog power supply current During 16-bit A/D conversion During 8-bit D/A conversion (per channel) *1 During 12-bit D/A conversion (per channel) *1 Waiting for 16-bit A/D, 8-bit D/A and 12-bit D/A conversion (all units) *5 During 24-bit sigma-delta A/D conversion (at normal mode) IAVCC1 During 24-bit sigma-delta A/D conversion (at low-power conversion) Waiting for 24-bit sigma-delta A/D conversion*6 Reference power supply current During 16-bit A/D conversion IREFH0 Waiting for 16-bit A/D conversion During 12-bit D/A conversion IREFH Waiting for 12-bit D/A conversion During 24-bit sigma-delta A/D conversion Window comparator (high-speed mode) Comparator (high-speed mode) - 10 - μA - Comparator (low-speed mode) - 2 - μA - High-speed analog comparator (ACMPHS) operating current ICPMHS - 70 100 μA AVCC0 ≥ 2.7 V Operational Amplifier (OPAMP) operating current IAMP - 10 16 μA - 2 unit operating - 19 30 μA - 3 unit operating - 28 44 μA - 1 unit operating - 280 360 μA - 2 unit operating - 530 690 μA - 3 unit operating - 770 1020 μA - Low power mode Middle speed mode High speed mode 1 unit operating 1 unit operating - 0.74 0.91 mA - 2 unit operating - 1.41 1.74 mA - 3 unit operating - 2.07 2.57 mA - Internal reference voltage for ADC16 operating current IVREFADC - 65 130 μA - USBFS operating current During USB communication under the following settings and conditions:  Function controller is in Full-Speed mode and - Bulk OUT transfer is (64 bytes) × 1 - Bulk IN transfer is (64 bytes) × 1  Host device is connected by a 1-meter USB cable from the USB port. IUSBF*2 - 3.6 (VCC) 1.1 (VCC_USB)*4 - mA - During suspended state under the following setting and conditions:  Function controller is in Full-Speed mode (the USB_DP pin is pulled up)  Software Standby mode  Host device is connected through a 1-meter USB cable from the USB port. ISUSP*3 - 0.35 (VCC) 170 (VCC_USB)*4 - μA - Note 1. Note 2. Note 3. Note 4. Note 5. The reference power supply current is included in the power supply current value for D/A conversion. Current is consumed only by the USBFS. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU in the suspended state. When VCC = VCC_USB = 3.3 V. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC160 module-stop bit) is in the module-stop R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 43 of 100 RA2A1 Datasheet Note 6. 2. Electrical Characteristics state. When the MCU is in the MSTPCRD.MSTPD17 (SDADC24 module-stop bit) is in the module-stop state. 2.2.10 VCC Rise and Fall Gradient and Ripple Frequency Table 2.13 Rise and fall gradient characteristics Conditions: VCC = AVCC0 = AVCC1 = 0 to 5.5 V Parameter Power-on VCC rising gradient Voltage monitor 0 reset disabled at startup Voltage monitor 0 reset enabled at Symbol Min Typ Max Unit Test conditions SrVCC 0.02 - 2 ms/V - startup*1, *2 - SCI/USB boot mode*2 Note 1. Note 2. 2 When OFS1.LVDAS = 0. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit. Table 2.14 Rising and falling gradient and ripple frequency characteristics Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V). When the VCC change exceeds VCC ± 10%, the allowable voltage change rising and falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Unit Test conditions Allowable ripple frequency fr(VCC) - - 10 kHz Figure 2.24 Vr (VCC) ≤ VCC × 0.2 - - 1 MHz Figure 2.24 Vr (VCC) ≤ VCC × 0.08 - - 10 MHz Figure 2.24 Vr (VCC) ≤ VCC × 0.06 1.0 - - ms/V When VCC change exceeds VCC ± 10% Allowable voltage change rising and falling gradient dt/dVCC 1 / fr(VCC) VCC Figure 2.24 Vr(VCC) Ripple waveform R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 44 of 100 RA2A1 Datasheet 2.3 2. Electrical Characteristics AC Characteristics 2.3.1 Table 2.15 Frequency Operation frequency in high-speed operating mode Conditions: VCC = AVCC0 = AVCC1 = 2.4 to 5.5 V Symbol Min Typ Max*7 Unit f 0.032768 - 48 MHz 2.4 to 2.7 V 0.032768 - 16 2.7 to 5.5 V 0.032768 - 32 2.4 to 2.7 V 0.032768 - 16 2.7 to 5.5 V - - 32 2.4 to 2.7 V - - 16 2.7 to 5.5 V - - 64*4 2.4 to 2.7 V - - 16 Parameter Operation frequency System clock (ICLK)*6 FlashIF clock 2.7 to 5.5 V (FCLK)*1,*2,*6 Peripheral module clock Peripheral module clock (PCLKB)*5,*6 (PCLKD)*3,*6 Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use. Note 4. The upper-limit frequency of PCLKD is 32 MHz when the ADC16 is in use. Note 5. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use. Note 6. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD, and FCLK. Note 7. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.20, Clock timing. Table 2.16 Operation frequency in middle-speed mode Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V Symbol Min Typ Max*6 Unit f 0.032768 - 12 MHz 2.4 to 2.7 V 0.032768 - 12 1.8 to 2.4 V 0.032768 - 8 2.7 to 5.5 V 0.032768 - 12 2.4 to 2.7 V 0.032768 - 12 1.8 to 2.4 V 0.032768 - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 Parameter Operation frequency System clock FlashIF clock (ICLK)*5 2.7 to 5.5 V (FCLK)*1,*2,*5 Peripheral module clock (PCLKB)*4,*5 Peripheral module clock (PCLKD)*3,*5 Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of FCLK must be ± 3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use. Note 4. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use. Note 5. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 45 of 100 RA2A1 Datasheet 2. Electrical Characteristics PCLKB, PCLKD, and FCLK. Note 6. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.20, Clock timing. Table 2.17 Operation frequency in low-speed mode Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V Parameter Operation frequency Note 3. Note 4. Note 5. Note 6. Min Typ Max*6 Unit f 0.032768 - 1 MHz System clock (ICLK)*5 1.8 to 5.5 V FlashIF clock (FCLK) *1,*2,*5 1.8 to 5.5 V 0.032768 - 1 Peripheral module clock (PCLKB)*4,*5 1.8 to 5.5 V - - 1 (PCLKD)*3,*5 1.8 to 5.5 V - - 1 Peripheral module clock Note 1. Note 2. Symbol The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. The frequency accuracy of FCLK must be ± 3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD, and FCLK. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.20, Clock timing. Table 2.18 Operation frequency in low-voltage mode Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Parameter Operation frequency Note 2. Note 3. Note 4. Note 5. Note 6. Min Typ Max*6 Unit f 0.032768 - 4 MHz System clock (ICLK)*5 1.6 to 5.5 V FlashIF clock (FCLK)*1,*2,*5 1.6 to 5.5 V 0.032768 - 4 Peripheral module clock (PCLKB)*4,*5 1.6 to 5.5 V - - 4 (PCLKD)*3,*5 1.6 to 5.5 V - - 4 Peripheral module clock Note 1. Symbol The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD, and FCLK. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.20, Clock timing. Table 2.19 Operation frequency in Subosc-speed mode Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V Parameter Operation frequency System clock (ICLK)*4 FlashIF clock Min Typ Max Unit f 27.8528 32.768 37.6832 kHz 1.8 to 5.5 V 27.8528 32.768 37.6832 Peripheral module clock (PCLKB)*3,*4 1.8 to 5.5 V - - 37.6832 (PCLKD)*2,*4 1.8 to 5.5 V - - 37.6832 Peripheral module clock Note 1. Note 2. Note 3. Note 4. 1.8 to 5.5 V (FCLK)*1,*4 Symbol Programming and erasing the flash memory is not possible. The ADC16 cannot be used. The SDADC24 cannot be used. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD, and FCLK. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 46 of 100 RA2A1 Datasheet 2.3.2 Table 2.20 2. Electrical Characteristics Clock Timing Clock timing (1 of 2) Parameter Symbol Min Typ Max Unit Test conditions EXTAL external clock input cycle time tXcyc 50 - - ns Figure 2.25 EXTAL external clock input high pulse width tXH 20 - - ns EXTAL external clock input low pulse width tXL 20 - - ns EXTAL external clock rising time tXr - - 5 ns EXTAL external clock falling time tXf - - 5 ns tEXWT 0.3 - - μs - fEXTAL - - 20 MHz 2.4 ≤ VCC ≤ 5.5 - - 8 1.8 ≤ VCC < 2.4 - - 1 1.6 ≤ VCC < 1.8 1 - 20 1 - 8 EXTAL external clock input wait time*1 EXTAL external clock input frequency Main clock oscillator oscillation frequency fMAIN MHz 2.4 ≤ VCC ≤ 5.5 1.8 ≤ VCC < 2.4 1.6 ≤ VCC < 1.8 1 - 4 fLOCO 27.8528 32.768 37.6832 kHz LOCO clock oscillation stabilization time tLOCO - - 100 μs Figure 2.26 IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz - MOCO clock oscillation frequency fMOCO 6.8 8 9.2 MHz - MOCO clock oscillation stabilization time tMOCO - - 1 μs - HOCO clock oscillation frequency fHOCO24 23.64 24 24.36 MHz Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 22.68 24 25.32 Ta = -40 to 85°C 1.6 ≤ VCC < 1.8 23.76 24 24.24 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 23.52 24 24.48 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 31.52 32 32.48 Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 30.24 32 33.76 Ta = -40 to 85°C 1.6 ≤ VCC < 1.8 31.68 32 32.32 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 31.36 32 32.64 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 47.28 48 48.72 Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 47.52 48 48.48 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 47.04 48 48.96 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 63.04 64 64.96 Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5 63.36 64 64.64 Ta = -20 to 85°C 2.4 ≤ VCC ≤ 5.5 62.72 64 65.28 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 tHOCO24 tHOCO32 - - 37.1 LOCO clock oscillation frequency fHOCO32 fHOCO48*3 fHOCO64*4 HOCO clock oscillation stabilization time*5, *6 Except low-voltage mode Low-voltage mode Sub-clock oscillator oscillation frequency R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 tHOCO48 - - 43.3 tHOCO64 - - 80.6 tHOCO24 tHOCO32 tHOCO48 tHOCO64 - - 100.9 fSUB - 32.768 - - μs Figure 2.27 kHz - Page 47 of 100 RA2A1 Datasheet Table 2.20 2. Electrical Characteristics Clock timing (2 of 2) Parameter Symbol Min Typ Max Unit Test conditions Sub-clock oscillation stabilization time*2 tSUBOSC - 0.5 - s Figure 2.28 Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. Time until the clock can be used after the Main Clock Oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V. This is a characteristic when the HOCOCR.HCSTP bit is cleared to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed. tXcyc tXL tXH EXTAL external clock input VCC × 0.5 tXr Figure 2.25 tXf EXTAL external clock input timing LOCOCR.LCSTP tLOCO LOCO clock oscillator output Figure 2.26 LOCO clock oscillation start timing HOCOCR.HCSTP tHOCOx*1 HOCO clock Note 1. Figure 2.27 x = 24, 32, 48, 64 HOCO clock oscillation start timing (started by setting the HOCOCR.HCSTP bit) SOSCCR.SOSTP tSUBOSC Sub-clock oscillator output Figure 2.28 Sub-clock oscillation start timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 48 of 100 RA2A1 Datasheet 2.3.3 Table 2.21 2. Electrical Characteristics Reset Timing Reset timing Symbol Min Typ Max Unit Test conditions At power-on tRESWP 3 - - ms Figure 2.29 Not at power-on tRESW 30 - - μs Figure 2.30 tRESWT - 0.7 - ms Figure 2.29 - 0.3 - - 0.5 - ms Figure 2.30 - 0.1 - - 0.6 - ms Figure 2.31 - 0.15 - Parameter RES pulse width enabled*1 Wait time after RES cancellation (at power-on) LVD0 Wait time after RES cancellation (during powered-on state) LVD0 enabled*1 Wait time after internal reset cancellation (Watchdog timer reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset, software reset) LVD0 enabled*1 LVD0 disabled*2 tRESWT2 LVD0 disabled*2 LVD0 tRESWT3 disabled*2 Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1. VCC RES tRESWP Internal reset tRESWT Figure 2.29 Reset input timing at power-on tRESW RES Internal reset tRESWT2 Figure 2.30 Reset input timing (1) tRESWIW, tRESWIR Independent watchdog timer reset Software reset Internal reset tRESWT3 Figure 2.31 Reset input timing (2) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 49 of 100 RA2A1 Datasheet 2.3.4 2. Electrical Characteristics Wakeup Time Table 2.22 Timing of recovery from low power modes (1) Parameter Recovery time from Software Standby mode*1 Note 1. Note 2. Note 3. Note 4. Note 5. High-speed mode Typ Max Unit Test conditions Figure 2.32 Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (20 MHz)*2 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (20 MHz)*3 tSBYEX - 14 25 μs System clock source is HOCO*4 (HOCO clock is 32 MHz) tSBYHO - 43 52 μs System clock source is HOCO*4 (HOCO clock is 48 MHz) tSBYHO - 44 52 μs System clock source is HOCO*5 (HOCO clock is 64 MHz) tSBYHO - 82 110 μs System clock source is MOCO tSBYMO - 16 25 μs Timing of recovery from low power modes (2) Parameter Recovery time from Software Standby mode*1 Note 2. Note 3. Note 4. Min The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h. Table 2.23 Note 1. Symbol Middle-speed mode Symbol Min Typ Max Unit Test conditions Figure 2.32 Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (12 MHz)*2 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (12 MHz)*3 tSBYEX - 2.9 10 μs System clock source is HOCO*4 tSBYHO - 38 50 μs System clock source is MOCO (8 MHz) tSBYMO - 3.5 5.5 μs The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. The system clock is 12 MHz. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 50 of 100 RA2A1 Datasheet Table 2.24 2. Electrical Characteristics Timing of recovery from low power modes (3) Parameter Recovery time from Software Standby mode*1 Low-speed mode Note 2. Note 3. Unit Test conditions Figure 2.32 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (1 MHz)*3 tSBYEX - 28 50 μs tSBYMO - 25 35 μs Timing of recovery from low power modes (4) Recovery time from Software Standby mode*1 Low-voltage mode Crystal resonator connected to main clock oscillator System clock source is main clock oscillator External clock input to main clock oscillator System clock source is main clock oscillator Symbol Min Typ Max Unit Test conditions tSBYMC - 2 3 ms Figure 2.32 tSBYEX - 108 130 μs tSBYHO - 108 130 μs (4 MHz)*2 (4 MHz)*3 System clock source is HOCO (4 MHz) The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Table 2.26 Timing of recovery from low power modes (5) Symbol Min Typ Max Unit Test conditions System clock source is sub-clock oscillator (32.768 kHz) tSBYSC - 0.85 1 ms Figure 2.32 System clock source is LOCO (32.768 kHz) tSBYLO - 0.85 1.2 ms Parameter Recovery time from Software Standby mode*1 Note 1. Max System clock source is main clock oscillator (1 MHz)*2 Parameter Note 2. Note 3. Typ The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Table 2.25 Note 1. Min Crystal resonator connected to main clock oscillator System clock source is MOCO (1 MHz) Note 1. Symbol Subosc-speed mode The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 51 of 100 RA2A1 Datasheet 2. Electrical Characteristics Oscillator ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYMO, tSBYHO Oscillator ICLK IRQ Software Standby mode tSBYSC, tSBYLO Figure 2.32 Software Standby mode cancellation timing Table 2.27 Timing of recovery from low power modes (6) Parameter Recovery time from Software Standby mode to Snooze mode Symbol Min Typ Max Unit Test conditions High-speed mode System clock source is HOCO tSNZ - 36 45 μs Figure 2.33 Middle-speed mode System clock source is MOCO (8 MHz) tSNZ - 1.3 3.6 μs Low-speed mode System clock source is MOCO (1 MHz) tSNZ - 10 13 μs Low-voltage mode System clock source is HOCO (4 MHz) tSNZ - 87 110 μs Oscillator ICLK (except DTC, SRAM) ICLK (to DTC, SRAM)*1 PCLK IRQ Software Standby mode Snooze mode tSNZ Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.33 Recovery timing from Software Standby mode to Snooze mode R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 52 of 100 RA2A1 Datasheet 2.3.5 2. Electrical Characteristics NMI and IRQ Noise Filter Table 2.28 NMI and IRQ noise filter Parameter Symbol Min NMI pulse width tNMIW 200 tPcyc × 2*1 200 tNMICK × IRQ pulse width tIRQW Max Unit Test conditions - - ns NMI digital filter disabled - - - - - - 200 - - tPcyc × 2*1 - - 200 - - - - tIRQCK × Note: Note: Note 1. Note 2. Note 3. 3.5*2 Typ 3.5*3 tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns NMI digital filter enabled tNMICK × 3 ≤ 200 ns tNMICK × 3 > 200 ns ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns tIRQCK × 3 > 200 ns 200 ns minimum in Software Standby mode. If the clock source is switched, add 4 clock cycles of the switched source. tPcyc indicates the PCLKB cycle. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7). NMI tNMIW Figure 2.34 NMI interrupt input timing IRQ tIRQW Figure 2.35 IRQ interrupt input timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 53 of 100 RA2A1 Datasheet 2.3.6 2. Electrical Characteristics I/O Ports, POEG, GPT, AGT, KINT, and ADC16 Trigger Timing Note: Table 2.29 I/O Ports, POEG, GPT, AGT, KINT, and ADC16 trigger timing Parameter Symbol Min Max Unit Test conditions I/O Ports Input data pulse width tPRW 1.5 - tPcyc Figure 2.36 POEG POEG input trigger pulse width tPOEW 3 - tPcyc Figure 2.37 GPT Input capture pulse width tGTICW 1.5 - tPDcyc Figure 2.38 2.5 - 250 - ns Figure 2.39 Single edge Dual edge AGT AGTIO, AGTEE input cycle AGTIO, AGTEE input high-level width, low-level width 2.7 V ≤ VCC ≤ 5.5 V tACYC*1 2.4 V ≤ VCC < 2.7 V 500 - ns 1.8 V ≤ VCC < 2.4 V 1000 - ns 1.6 V ≤ VCC < 1.8 V 2000 - ns 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V tACKWH, tACKWL 1.8 V ≤ VCC < 2.4 V 1.6 V ≤ VCC < 1.8 V AGTIO, AGTO, AGTOA, AGTOB output cycle 100 - ns 200 - ns 400 - ns 800 - ns 62.5 - ns 2.4 V ≤ VCC < 2.7 V 125 - ns 1.8 V ≤ VCC < 2.4 V 250 - ns 1.6 V ≤ VCC < 1.8 V 500 - ns 2.7 V ≤ VCC ≤ 5.5 V tACYC2 Figure 2.39 ADC16 16-bit A/D converter trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.40 KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.41 Note: tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle. Note 1. Constraints on input cycle: When not switching the source clock: tPcyc × 2 < tACYC should be satisfied. When switching the source clock: tPcyc × 6 < tACYC should be satisfied. Port tPRW Figure 2.36 I/O ports input timing POEG input trigger tPOEW Figure 2.37 POEG input trigger timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 54 of 100 RA2A1 Datasheet 2. Electrical Characteristics Input capture tGTICW Figure 2.38 GPT input capture timing tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.39 AGT I/O timing ADTRG0 tTRGW Figure 2.40 ADC16 trigger input timing KR00 to KR07 tKR Figure 2.41 2.3.7 Key interrupt input timing CAC Timing Table 2.30 CAC timing Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Parameter CAC CACREF input pulse width tPcyc *1 ≤ tcac*2 tPcyc*1 Note 1. > tcac*2 Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tcac + 3 × tPcyc - - ns - 5 × tcac + 6.5 × tPcyc - - ns tPcyc: PCLKB cycle. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 55 of 100 RA2A1 Datasheet Note 2. 2. Electrical Characteristics tcac: CAC count clock source cycle. 2.3.8 SCI Timing Table 2.31 SCI timing (1) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Parameter SCI Input clock cycle Symbol Asynchronous tScyc Clock synchronous Max Unit*1 Test conditions tPcyc Figure 2.42 4 - 6 - Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr - 20 ns tSCKf - 20 ns tScyc 6 - tPcyc 4 - 0.4 0.6 tScyc 1.8 V ≤ VCC ≤ 5.5 V tSCKr - 20 ns 1.6 V ≤ VCC < 1.8 V - 30 1.8 V ≤ VCC ≤ 5.5 V tSCKf - 20 1.6 V ≤ VCC < 1.8 V - 30 Input clock fall time Output clock cycle Asynchronous Clock synchronous Output clock pulse width Output clock rise time Output clock fall time Transmit data delay (master) Clock synchronous Transmit data delay (slave) Clock synchronous tSCKW 1.8 V ≤ VCC ≤ 5.5 V tTXD - 40 1.6 V ≤ VCC < 1.8 V - 45 2.7 V ≤ VCC ≤ 5.5 V - 55 2.4 V ≤ VCC < 2.7 V - 60 1.8 V ≤ VCC < 2.4 V - 100 1.6 V ≤ VCC < 1.8 V Receive data setup time (master) Note 1. Min Clock synchronous - 125 45 - 2.4 V ≤ VCC < 2.7 V 55 - 1.8 V ≤ VCC < 2.4 V 90 - 2.7 V ≤ VCC ≤ 5.5 V tRXS 1.6 V ≤ VCC < 1.8 V 110 - 2.7 V ≤ VCC ≤ 5.5 V 40 - ns ns ns ns Receive data setup time (slave) Clock synchronous 45 - Receive data hold time (master) Clock synchronous tRXH 5 - ns Receive data hold time (slave) Clock synchronous tRXH 40 - ns 1.6 V ≤ VCC < 2.7 V Figure 2.43 ns tPcyc: PCLKB cycle. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 56 of 100 RA2A1 Datasheet 2. Electrical Characteristics tSCKW tSCKr tSCKf SCKn (n = 0, 1, 9) tScyc Figure 2.42 SCK clock input timing SCKn tTXD TXDn tRXS tRXH RXDn n = 0, 1, 9 Figure 2.43 SCI input/output timing in clock synchronous mode R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 57 of 100 RA2A1 Datasheet Table 2.32 2. Electrical Characteristics SCI timing (2) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V Parameter Symbol Min Max Unit*1 Test conditions Simple SPI tSPcyc 4 65536 tPcyc Figure 2.44 6 65536 SCK clock cycle output (master) SCK clock cycle input (slave) SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc tSPCKr, tSPCKf - 20 ns - 30 tSU 45 - 2.4 V ≤ VCC < 2.7 V 55 - 1.8 V ≤ VCC < 2.4 V 80 - 1.6 V ≤ VCC < 1.8 V 110 - 2.7 V ≤ VCC ≤ 5.5 V 40 - 1.6 V ≤ VCC < 2.7 V 45 - 33.3 - 40 - SCK clock rise and fall time 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V Data input setup time Master Slave Data input hold time 2.7 V ≤ VCC ≤ 5.5 V Master tH Slave tLEAD 1 - tSPcyc SS input hold time tLAG 1 - tSPcyc tOD - 40 ns Data output hold time Master 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V - 50 Slave 2.4 V ≤ VCC ≤ 5.5 V - 65 1.8 V ≤ VCC < 2.4 V - 100 1.6 V ≤ VCC < 1.8 V - 125 -10 - 2.4 V ≤ VCC < 2.7 V -20 - 1.8 V ≤ VCC < 2.4 V -30 - 1.6 V ≤ VCC < 1.8 V -40 - -10 - - 20 1.6 V ≤ VCC < 1.8 V - 30 1.8 V ≤ VCC ≤ 5.5 V - 20 1.6 V ≤ VCC < 1.8 V - 30 Master 2.7 V ≤ VCC ≤ 5.5 V tOH Slave Data rise and fall time Master Slave 1.8 V ≤ VCC ≤ 5.5 V tDr, tDf Figure 2.45 to Figure 2.48 ns SS input setup time Data output delay Simple SPI ns ns ns Slave access time tSA - 6 tPcyc Slave output release time tREL - 6 tPcyc Figure 2.48 Note 1. tPcyc: PCLKB cycle. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 58 of 100 RA2A1 Datasheet 2. Electrical Characteristics tSPCKr tSPCKWH VOH SCKn master select output VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH SCKn slave select input VIL (n = 0, 1, 9) tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.44 SCI simple SPI mode clock timing SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 0, 1, 9) Figure 2.45 SCI simple SPI mode timing (master, CKPH = 1) SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH MOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = 0, 1, 9) Figure 2.46 SCI simple SPI mode timing (master, CKPH = 0) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 59 of 100 RA2A1 Datasheet 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tSA tOH MISOn output tOD MSB OUT tSU MOSIn input DATA tREL LSB OUT tH MSB IN MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0, 1, 9) Figure 2.47 SCI simple SPI mode timing (slave, CKPH = 1) tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input tREL LSB OUT DATA tH MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0, 1, 9) Figure 2.48 Table 2.33 SCI simple SPI mode timing (slave, CKPH = 0) SCI timing (3) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V Parameter Simple IIC (Standard mode) Symbol Min Max Unit Test conditions SDA input rise time tSr - 1000 ns Figure 2.49 SDA input fall time tSf - 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc*1 ns Data input setup time tSDAS 250 - ns Data input hold time tSDAH 0 - ns - 400 pF SCL, SDA capacitive load R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Cb *2 Page 60 of 100 RA2A1 Datasheet Table 2.33 2. Electrical Characteristics SCI timing (3) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V Parameter Simple IIC (Fast mode) Symbol Min Max Unit Test conditions SDA input rise time tSr - 300 ns Figure 2.49 SDA input fall time tSf - 300 SDA input spike pulse removal time tSP 0 4× Data input setup time tSDAS 100 - ns Data input hold time tSDAH 0 - ns - 400 pF SCL, SDA capacitive load Note 1. Note 2. ns tIICcyc*1 Cb *2 ns tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits. Cb indicates the total capacity of the bus line. VIH SDAn VIL tSr tSf tSP SCLn (n = 0, 1, 9) P*1 S*1 P*1 Sr*1 tSDAH tSDAS Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.49 SCI simple IIC mode timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 61 of 100 RA2A1 Datasheet 2.3.9 Table 2.34 2. Electrical Characteristics SPI Timing SPI timing (1 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Symbol Min Max Unit*1 Test conditions tSPcyc 2 4096 tPcyc 6 4096 Figure 2.50 C = 30 pF (tSPcyc - tSPCKr - tSPCKf) / 2 - 3 - 3 × tPcyc - (tSPcyc - tSPCKr - tSPCKf) / 2 - 3 - 3 × tPcyc - - 10 - 15 1.8 V ≤ VCC ≤ 2.4 V - 20 1.6 V ≤ VCC < 1.8 V - 30 - 1 µs 10 - ns 2.4 V ≤ VCC ≤ 5.5 V 10 - 1.8 V ≤ VCC < 2.4 V 15 - Parameter SPI RSPCK clock cycle Master Slave RSPCK clock high pulse width Master tSPCKWH Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V tSPCKr, tSPCKf Input Data input setup time Master Slave tSU 1.6 V ≤ VCC < 1.8 V Data input hold time SSL setup time ns 20 - tHF 0 - Master (RSPCK is not PCLKB/2) tH tPcyc - Slave tH 20 - tLEAD -30 + N × tSpcyc*2 - -50 + N × tSpcyc*2 - 6 × tPcyc - ns -30 + N × tSpcyc*3 - ns Master 1.8 V ≤ VCC ≤ 5.5 V Slave Master tLAG Master Slave - ns 14 ns 2.4 V ≤ VCC < 2.7 V - 20 1.8 V ≤ VCC < 2.4 V - 25 tOD 1.6 V ≤ VCC < 1.8 V - 30 2.7 V ≤ VCC ≤ 5.5 V - 50 2.4 V ≤ VCC < 2.7 V - 60 1.8 V ≤ VCC < 2.4 V - 85 1.6 V ≤ VCC < 1.8 V Data output hold time Master Successive transmission delay Master tOH Slave Slave R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 ns - 2.7 V ≤ VCC ≤ 5.5 V tTD - 110 0 - 0 - tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc 6 × tPcyc - Figure 2.51 to Figure 2.56 C = 30 pF ns 6 × tPcyc Slave Data output delay ns Master (RSPCK is PCLKB/2) 1.6 V ≤ VCC < 1.8 V SSL hold time ns ns ns Page 62 of 100 RA2A1 Datasheet Table 2.34 2. Electrical Characteristics SPI timing (2 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Symbol Min Max Unit*1 Test conditions tDr, tDf - 10 ns 2.4 V ≤ VCC < 2.7 V - 15 1.8 V ≤ VCC < 2.4 V - 20 Figure 2.51 to Figure 2.56 C = 30 pF 1.6 V ≤ VCC < 1.8 V - 30 - 1 µs - 10 ns - 15 1.8 V ≤ VCC < 2.4 V - 20 1.6 V ≤ VCC < 1.8 V - 30 - 1 µs - 2 × tPcyc + 100 ns - 2 × tPcyc + 140 Parameter SPI MOSI and MISO rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V Input SSL rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V tSSLr, tSSLf Input Slave access time 2.4 V ≤ VCC ≤ 5.5 V tSA 1.8 V ≤ VCC < 2.4 V 1.6 V ≤ VCC < 1.8 V Slave output release time Note 1. Note 2. Note 3. - 2 × tPcyc + 180 - 2 × tPcyc + 100 1.8 V ≤ VCC < 2.4 V - 2 × tPcyc + 140 1.6 V ≤ VCC < 1.8 V - 2 × tPcyc + 180 2.4 V ≤ VCC ≤ 5.5 V tREL Figure 2.55 and Figure 2.56 C = 30 pF ns tPcyc: PCLKB cycle. N is set as an integer from 1 to 8 by the SPCKD register. N is set as an integer from 1 to 8 by the SSLND register. tSPCKr tSPCKWH RSPCKn master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH RSPCKn slave select input (n = A or B) Figure 2.50 VIH VIL tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC SPI clock timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 63 of 100 RA2A1 Datasheet 2. Electrical Characteristics tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = A or B) Figure 2.51 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2) tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU tHF MISOn input MSB IN tDr, tDf MOSIn output tHF tOH MSB OUT LSB IN DATA MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = A or B) Figure 2.52 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 64 of 100 RA2A1 Datasheet 2. Electrical Characteristics tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH DATA LSB IN tOD MOSIn output MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = A or B) Figure 2.53 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to any value other than 1/2) tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tOH MOSIn output tH DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = A or B) Figure 2.54 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 65 of 100 RA2A1 Datasheet 2. Electrical Characteristics tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output tOD MSB OUT tSU MOSIn input tREL DATA LSB OUT tH MSB IN MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = A or B) Figure 2.55 SPI timing (slave, CPHA = 0) tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input MISOn output tSA tOH tOD LSB OUT (Last data) MSB OUT tSU MOSIn input tREL tH MSB IN LSB OUT DATA MSB OUT tDr, tDf DATA LSB IN MSB IN (n = A or B) Figure 2.56 SPI timing (slave, CPHA = 1) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 66 of 100 RA2A1 Datasheet 2.3.10 2. Electrical Characteristics IIC Timing Table 2.35 IIC timing Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V Parameter IIC (Standard mode, SMBus) IIC (Fast mode) Note: Note 1. SCL input cycle time Symbol Min*1 Max Unit Test conditions tSCL 6 (12) × tIICcyc + 1300 - ns Figure 2.57 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr - 1000 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (when wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time (when wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time (when wakeup function is disabled) tSTAH tIICcyc + 300 - ns START condition input hold time (when wakeup function is enabled) tSTAH 1 (5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 1000 - ns STOP condition input setup time tSTOS 1000 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF SCL input cycle time tSCL 6 (12) × tIICcyc + 600 - ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr - 300 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 - ns START condition input hold time (When wakeup function is enabled) tSTAH 1 (5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 300 - ns STOP condition input setup time tSTOS 300 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF Figure 2.57 tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 67 of 100 RA2A1 Datasheet 2. Electrical Characteristics VIH SDA0 and SDA1 VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCL0 and SCL1 P*1 S*1 P*1 Sr*1 tSCLL tSf tSr tSCL tSDAS tSDAH Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.57 2.3.11 I2C bus interface input/output timing CLKOUT Timing Table 2.36 CLKOUT timing Parameter CLKOUT CLKOUT pin output cycle*1 CLKOUT pin high pulse CLKOUT pin low pulse width*2 width*2 CLKOUT pin output rise time CLKOUT pin output fall time Note 1. Note 2. 2.7 V ≤ VCC ≤ 5.5 V Symbol Min Max Unit Test conditions tCcyc ns Figure 2.58 62.5 - 1.8 V ≤ VCC < 2.7 V 125 - 1.6 V ≤ VCC < 1.8 V 250 - 15 - 1.8 V ≤ VCC < 2.7 V 2.7 V ≤ VCC ≤ 5.5 V 30 - 1.6 V ≤ VCC < 1.8 V 150 - 2.7 V ≤ VCC ≤ 5.5 V tCH 15 - 1.8 V ≤ VCC < 2.7 V 30 - 1.6 V ≤ VCC < 1.8 V 150 - 2.7 V ≤ VCC ≤ 5.5 V tCL tCr - 12 1.8 V ≤ VCC < 2.7 V - 25 1.6 V ≤ VCC < 1.8 V - 50 2.7 V ≤ VCC ≤ 5.5 V tCf - 12 1.8 V ≤ VCC < 2.7 V - 25 1.6 V ≤ VCC < 1.8 V - 50 ns ns ns ns When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, specifications in Table 2.36 should be satisfied with 45% to 55% of input duty cycle. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b). R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 68 of 100 RA2A1 Datasheet 2. Electrical Characteristics tCcyc tCH tCf CLKOUT tCr tCL Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 2.58 2.4 CLKOUT output timing USB Characteristics 2.4.1 Table 2.37 USBFS Timing USB characteristics Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 3.0 to 3.6 V, Ta = -20 to +85°C Parameter Input characteristics Output characteristics Symbol Min Max Unit Test conditions Input high level voltage VIH 2.0 - V - Input low level voltage VIL - 0.8 V - Differential input sensitivity VDI 0.2 - V | USB_DP - USB_DM | Differential common mode range VCM 0.8 2.5 V - Output high level voltage VOH 2.8 VCC_USB V IOH = -200 μA Output low level voltage VOL 0.0 0.3 V IOL = 2 mA Cross-over voltage VCRS 1.3 2.0 V tr 4 20 ns Figure 2.59, Figure 2.60, Figure 2.61 75 300 Rise time FS LS Fall time FS tf LS Rise/fall time ratio FS tr/tf LS 4 20 75 300 90 111.11 ns % 80 125 Output resistance ZDRV 28 44 Ω (Adjusting the resistance of external elements is not required.) VBUS characteristics VBUS input voltage VIH VCC × 0.8 - V - VIL - VCC × 0.2 V - Pull-up, pull-down Pull-down resistor RPD 14.25 24.80 kΩ - Pull-up resistor RPUI 0.9 1.575 kΩ During idle state RPUA 1.425 3.09 kΩ During reception Battery charging specification version 1.2 D+ sink current IDP_SINK 25 175 μA - D- sink current IDM_SINK 25 175 μA - DCD source current IDP_SRC 7 13 μA - Data detection voltage VDAT_REF 0.25 0.4 V - D+ source voltage VDP_SRC 0.5 0.7 V Output current = 250 μA D- source voltage VDM_SRC 0.5 0.7 V Output current = 250 μA R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 69 of 100 RA2A1 Datasheet 2. Electrical Characteristics USB_DP, USB_DM 90% VCRS 90% 10% 10% tr Figure 2.59 tf USB_DP and USB_DM output timing Observation point USB_DP 50 pF USB_DM 50 pF Figure 2.60 Test circuit for Full-Speed (FS) connection Observation point USB_DP 200 pF to 600 pF 3.6 V 1.5 K USB_DM 200 pF to 600 pF Observation point Figure 2.61 2.4.2 Table 2.38 Test circuit for Low-Speed (LS) connection USB External Supply USB regulator Parameter VCC_USB supply current Min Typ Max Unit Test conditions 3.8 V ≤ VCC_USB_LDO < 4.5 V - - 50 mA - 4.5 V ≤ VCC_USB_LDO ≤ 5.5 V - - 100 mA - 3.0 - 3.6 V - VCC_USB supply voltage R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 70 of 100 RA2A1 Datasheet 2.5 2. Electrical Characteristics ADC16 Characteristics Table 2.39 16-bit A/D conversion, power supply, and input range conditions Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions High-potential reference voltage 1.5 3.3 AVCC0 V - Low-potential reference voltage - AVSS0 - V - Analog input voltage range 0 - VREFH0 V - Input common-mode range Acm 0 VREFH0/2 VREFH0 V Differential analog input Analog input capacitance*2 Cs - - 4.3 pF - Analog input resistance*1 Rs - - 0.7 kΩ High-precision channel 2.7 V ≤ AVCC0 ≤ 5.5 V - - 1.5 High-precision channel 1.7 V ≤ AVCC0 < 2.7 V - - 2.5 Normal-precision channel 2.7 V ≤ AVCC0 ≤ 5.5 V - - 3.8 Normal-precision channel 1.7 V ≤ AVCC0 < 2.7 V Note 1. Note 2. These values are based on simulation. They are not production tested. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Figure 2.62 shows the equivalent circuit for analog input. MCU Analog input ANn Rs ADC16 Vi Cin Figure 2.62 Table 2.40 Cs Equivalent circuit for analog input 16-bit A/D conversion, timing parameters (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Symbol Min Typ Max Unit Test conditions Frequency ADCLK 1 - 32 MHz 3.0 V ≤ AVCC0 ≤ 5.5 V, 3.0 V ≤ VREFH0 1 - 24 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 1 - 16 2.4 ≤ AVCC0 ≤ 5.5 V, 1.5 V ≤ VREFH0 1 - 8 1.8 V ≤ AVCC0 ≤ 5.5 V, 1.5 V ≤ VREFH0 1 - 4 1.7 V ≤ AVCC0 ≤ 5.5 V, 1.5 V ≤ VREFH0 - - 1 / (tSPL + 18 / ADCLK) Conversion rate R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Fs S/s - Page 71 of 100 RA2A1 Datasheet Table 2.40 2. Electrical Characteristics 16-bit A/D conversion, timing parameters (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Sampling time*1 Permissible signal source impedance Max = 0.5 kΩ Settling time*1 Note 1. Symbol Min Typ Max Unit Test conditions tSPL 0.25 - - μs High-precision channel 2.7 V ≤ AVCC0 ≤ 5.5 V 3 - - High-precision channel 1.7 V ≤ AVCC0 < 2.7 V 3 - - Normal-precision channel 2.7 V ≤ AVCC0 ≤ 5.5 V 10 - - Normal-precision channel 1.7 V ≤ AVCC0 < 2.7 V - - 1 - - 3.2 1.8 V ≤ AVCC0 < 2.7 V - - 8.9 1.7 V ≤ AVCC0 < 1.8 V tSTART μs 2.7 V ≤ AVCC0 ≤ 5.5 V These values are based on simulation. They are not production tested. Table 2.41 16-bit A/D conversion, linearity parameters Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V External clock input used. Reference voltage range applied to the VREFH0 and VREFL0. Parameter Symbol Min Typ Max Unit Test conditions Resolution - - 16 - Bit - Integral non-linearity *1 INL - ±4 ±8 LSB 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 Differential non-linearity*1 DNL - -1 to +2 - LSB - Offset error*1 Ofst - ±4 - LSB - Gerr - - ±0.1 % 2.7 V ≤ VREFH0 - Gain error*1 Note: Note 1. ± 16 1.7 V ≤ AVCC0 < 2.7 V The characteristics apply when no pin functions other than 16-bit A/D converter input are used. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors. These values are based on simulation. They are not production tested. Table 2.42 16-bit A/D conversion, dynamic parameters (1) (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V External clock input used. Reference voltage range applied to VREFH0 and VREFL0. Parameter Signal-to-noise and distortion*2 R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Symbol Min Typ Max Unit Test conditions SINAD 67 81 - dB Differential input, Fin = 1 kHz, VREFH0 = 1.7 V to 5.5 V, AVCC0 = 1.7 V to 5.5 V 78 81 - Differential input, Fin = 1 kHz, VREFH0 = 3.3 V, AVCC0 = 3.3 V - 92 - Differential input, Fin = 1 kHz, VREFH0 = 3.3 V, AVCC0 = 3.3 V, ADADC.ADC[2:0] = 101b 61 75 - Single input, Fin = 1 kHz, VREFH0 = 1.7 V to 5.5 V, AVCC0 = 1.7 V to 5.5 V 72 75 - Single input, Fin = 1 kHz, VREFH0 = 3.3 V, AVCC0 = 3.3 V Page 72 of 100 RA2A1 Datasheet Table 2.42 2. Electrical Characteristics 16-bit A/D conversion, dynamic parameters (1) (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V External clock input used. Reference voltage range applied to VREFH0 and VREFL0. Parameter Effective number of bits*2 Total harmonic distortion*1, *2 Common mode rejection ratio*2 Note: Note 1. Note 2. Symbol Min Typ Max Unit Test conditions ENOB 11 13.2 - bit Differential input, Fin = 1 kHz, VREFH0 = 1.7 V to 5.5 V, AVCC0 = 1.7 V to 5.5 V 12.7 13.2 - Differential input, Fin = 1 kHz, VREFH0 = 3.3 V, AVCC0 = 3.3 V - 15 - Differential input, Fin = 1 kHz, VREFH0 = 3.3 V, AVCC0 = 3.3 V, ADADC.ADC[2:0] = 101b 10 12.2 - Single input, Fin = 1 kHz, VREFH0 = 1.7 V to 5.5 V, AVCC0 = 1.7 V to 5.5 V 11.7 12.2 - Single input, Fin = 1 kHz, VREFH0 = 3.3 V, AVCC0 = 3.3 V - -100 - - -90 - - 100 - THD CMRR dB Differential input, Fin = 1 kHz, AVCC0 = 3.3 V Single input, Fin = 1 kHz, AVCC0 = 3.3 V dB Differential input, Acm = 0 to VREFH0 at 1 kHz, AVCC0 = 3.3 V The characteristics apply when no pin functions other than 16-bit A/D converter input are used. THD = HD2 + HD3 + HD4 + HD5. These values are based on simulation. They are not production tested. Table 2.43 16-bit A/D conversion, dynamic parameters (2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V External clock input used. Parameter Symbol Min Typ Max Unit Test conditions Signal-to-noise and distortion*1 SINAD - 78.6 - dB Differential input, Fin = 1 kHz, AVCC0 = 3.3 V, VREFADC output = 2.5 V - 76.6 - Differential input, Fin = 1 kHz, AVCC0 = 3.3 V, VREFADC output = 2.0 V - 74.2 - Differential input, Fin = 1 kHz, AVCC0 = 3.3 V, VREFADC output = 1.5 V - 12.8 - - 12.4 - Differential input, Fin = 1 kHz, AVCC0 = 3.3 V, VREFADC output = 2.0 V - 12.0 - Differential input, Fin = 1 kHz, AVCC0 = 3.3 V, VREFADC output = 1.5 V Effective number of bits*1 Note: Note 1. ENOB bit Differential input, Fin = 1 kHz, AVCC0 = 3.3 V, VREFADC output = 2.5 V The characteristics apply when no pin functions other than 16-bit A/D converter input are used. These values are based on simulation. They are not production tested. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 73 of 100 RA2A1 Datasheet Table 2.44 2. Electrical Characteristics 16-bit A/D converter channel classification Classification Channel Conditions High-precision channel AN000 to AN008 AVCC0 = 1.7 to 5.5 V Normal-precision channel AN016 to AN023 Internal reference voltage input channel Internal reference voltage AVCC0 = 2.0 to 5.5 V Temperature sensor input channel Temperature sensor output AVCC0 = 2.0 to 5.5 V Table 2.45 Internal reference voltage for 16-bit ADC (VREFADC) characteristics Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V Parameter Min Typ Max Unit Test conditions Output voltage range 1.41 1.5 1.59 V VREFAMPCNT.VREFADCG[1:0] = 00b AVCC0  1.7 V 1.88 2 2.12 VREFAMPCNT.VREFADCG[1:0] = 10b AVCC0  2.2 V 2.35 2.5 2.65 VREFAMPCNT.VREFADCG[1:0] = 11b AVCC0  2.7 V - - 150 μs VREFAMPCNT.BGREN = 1 - - 1500 μs VREFAMPCNT.VREFADCEN = 1 BGR stabilization time*2 (after BGR is enabled) VREF AMP stabilization enabled) time*2 (after VREFAMP is Detect over current*2 - 20 40 mA - Load capacitance*1 0.75 1 1.25 μF - Note 1. Note 2. Connect capacitors as stabilization capacitance between the VREFH0 and VREFL0 pins when VREFADC is used. These values are based on simulation. They are not production tested. Table 2.46 A/D internal reference voltage characteristics Conditions: VCC = AVCC0 = AVCC1 = VREFH0 = 2.0 to 5.5 V*1 Parameter Internal reference voltage input Sampling Note 1. Note 2. Note 3. 2.6 channel*2 time*3 Min Typ Max Unit Test conditions 1.36 1.43 1.50 V - 5.0 - - μs - The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V. The 16-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 16-bit A/D converter. This is a parameter for ADC16 when the internal reference voltage is selected for an analog input channel in ADC16. SDADC24 Characteristics Table 2.47 Analog inputs characteristics (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Symbol Min Typ Max Unit Test conditions Full-scale range FSR - ± 0.8 / GTOTAL - V - Differential input voltage range VID -0.8 / GTOTAL - 0.8 / GTOTAL V VID = ANSDnP - ANSDnN, or AMP0O - AMP1O (n = 0 to 3), dOFR = 0 mV Input voltage range VI 0.2 - 1.8 V VI = ANSDnP, ANSDnN, AMP0O, or AMP1O (n = 0 to 3) Common mode Input voltage range VCOM 0.2 + (|VID|  GSET1) / 2 1.0 1.8 - (|VID|  GSET1) / 2 V dOFR = 0 mV Analog input in differential input mode R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 74 of 100 RA2A1 Datasheet Table 2.47 2. Electrical Characteristics Analog inputs characteristics (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Analog Input in single-ended input mode Note 1. Input voltage range*1 Symbol Min Typ Max Unit Test conditions VI 0.2 - 1.8 V VI = ANSDnP, ANSDnN, AMP0O, or AMP1O (n = 0 to 3), VCOM = 1.0 V, dOFR = 0 mV, GSET1 = 1, GSET2 = 1, OSR = 256 The single-ended input mode supports only dOFR = 0 mV, GSET1 = 1, GSET2 = 1 and OSR = 256. Table 2.48 Programmable gain instrumentation amplifier and sigma-delta A/D converter (1) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Symbol Min Typ Max Unit Test conditions Resolution RES - 24 - bits - Fos - 1 - MHz - - 0.125 - fDATA1 0.48828 - 15.625 ksps Normal A/D conversion mode fDATA2 61.03615 - 1953.125 sps Low-power A/D conversion mode GTOTAL 1 - 32 V/V GTOTAL = GSET1 × GSET2 Over sampling frequency Normal A/D conversion mode Low-power A/D conversion mode Output data rate Gain Setting range 1st Gain Setting range GSET1 - 1, 2, 3, 4, 8 - V/V - 2nd Gain Setting range GSET2 - 1, 2, 4, 8 - V/V - Offset adjust bit range dOFB - 5 - bits - Offset adjust range dOFR -164.06 / GSET1 - +164.06 / GSET1 mV Referred to input Offset adjust step dOFS - mV Referred to input Table 2.49 350 / 32 / GSET1 - Programmable gain instrumentation amplifier and sigma-delta A/D converter (2) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V The electrical specifications are applied at differential input mode, external clock input used, FOS = 1 MHz, dOFR = 0 mV, unless otherwise specified. Parameter Signal to Noise VID = 0 V Ratio*1,*3 Signal to Noise and Distortion Ratio*1, *2,*3 fin = 50 Hz Note: Note 1. Note 2. Note 3. Symbol Min Typ Max Unit Test conditions SNR 83 86 - dB GSET1 = 1, GSET2 = 1 OSR = 256 81 84 - dB GSET1 = 8, GSET2 = 4 OSR = 1024 82 85 - dB GSET1 = 1, GSET2 = 1 OSR = 256 79 82 - dB GSET1 = 8, GSET2 = 4 OSR = 1024 74 80 - dB GSET1 = 1, GSET2 = 1 OSR = 256, Single-ended input mode SINAD The characteristics apply when no pin functions other than 24-bit sigma-delta A/D converter input are used. SNR and SINAD are the ratio to Full-Scale Range (FSR) of analog inputs. These do not include the noise of analog inputs. When VID is equal to ± 0.8 / GTOTAL actually, the digital output may overflow due to Gain Error (EG), Offset Error (EOS), and so forth. As a result, SINAD is degraded. See Table 33.7 of 24-Bit Sigma-Delta A/D Converter (SDADC24) in User’s Manual for the relation between analog input and digital output. Not production tested but is guaranteed by the design and characterization. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 75 of 100 RA2A1 Datasheet 2. Electrical Characteristics SNR vs OSR  (Differential input mode, typical condition) 100 Signal to Noise Ratio (dB) 95   90   85 80 75 70 65 60 64 128 256 512 1024 2048 Oversampling Ratio (OSR) GSET1 = 1, GSET2 = 1 Figure 2.63 GSET1 = 8, GSET2 = 4 SNR vs. OSR (reference data) Signal to Noise and Distortion Ratio (dB) SINAD vs OSR  (Differential input mode, typical condition) 95   90 85 80 75 70   65   60   64 128 256 512 1024 2048 Oversampling Ratio (OSR) GSET1 = 1, GSET2 = 1 Figure 2.64 Table 2.50 GSET1 = 8, GSET2 = 4 SINAD vs. OSR (reference data) Programmable gain instrumentation amplifier and sigma-delta A/D converter (3) (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V The electrical specifications are applied at the differential input mode, with external clock input used, Fos = 1 MHz, OSR = 256, and dOFR = 0 mV, unless otherwise specified. Parameter error*2 Gain (excluding SINC3 frequency response characteristic) Symbol Min Typ Max Unit Test conditions EG -0.5 - 0.5 % After internal calibration, excluding SBIAS error or VREFI error, GSET1 = 1, GSET2 = 1 -3 - 3 R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Single-ended input mode, excluding SBIAS error or VREFI error, GSET1 = 1, GSET2 = 1 Page 76 of 100 RA2A1 Datasheet Table 2.50 2. Electrical Characteristics Programmable gain instrumentation amplifier and sigma-delta A/D converter (3) (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V The electrical specifications are applied at the differential input mode, with external clock input used, Fos = 1 MHz, OSR = 256, and dOFR = 0 mV, unless otherwise specified. Parameter Symbol Min Typ Max Unit Test conditions Gain drift*1, *2 dEG - 6 22 ppm/°C Excluding SBIAS error or VREFI error, GSET1 = 1, GSET2 = 1 Offset error*2 EOS -1 - 1 mV After internal calibration, GSET1 = 1, GSET2 = 1, referred to input -50 - 50 - 2 6 - - 120 Offset drift*1, *2 dEOS Single-ended input mode, including SBIAS error, GSET1 = 1, GSET2 = 1, referred to input μV/°C Referred to input Single-ended input mode, including SBIAS error, GSET1 = 1, GSET2 = 1 Integral non-linearity*2 INL - 15 - ppm of FSR Input = DC, OSR = 2048 Common mode Rejection ratio*2 CMRR - 80 - dB VCOM = 1.0 ± 0.8 V, fin = 50 Hz, GSET1 = 1, GSET2 = 1 Power supply Rejection ratio*2 PSRR - 70 - dB AVCC1 = 5.0 V + 0.1 Vpp_ripple, fin = 50 Hz, GSET1 = 1, GSET2 = 1, excluding SBIAS error or VREFI error Input absolute current*2 IIN - 2 - nA VI = 1 V Input offset current*2 IINOFR - 1 - nA VID = 0 V, VCOM = 1 V ZIN - 500 - Mohm VID = 1 V, VCOM = 1 V dOFGE -5 - 5 % Including SBIAS error, dOFR ≠ 0 mV dOFINL -0.5 - 0.5 LSB dOFR ≠ 0 mV Input impedance*2 Offset adjust gain error*2 Offset adjust integral non-linearity*2 Note: Note 1. Note 2. The characteristics apply when no pin functions other than 24-bit sigma-delta A/D converter input are used. Gain drift is calculated by (Max (EG (T (-40°C) to T (125°C))) - Min (EG (T (-40°C) to T (125°C)))) / (125°C - (-40°C)) Offset drift is calculated by (Max (EOS (T (-40°C) to T (125°C))) - Min (EOS (T (-40°C) to T (125°C)))) / (125°C - (-40°C)). Not production tested but is guaranteed by the design and characterization. Table 2.51 2.1 V LDO linear regulator for ADC (ADREG) characteristics Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Connect the ADREG pin to a AVSS1 pin by a 0.47 μF (-50% to +20%) capacitor. Parameter Symbol Min Typ Max Unit Test conditions ADREG output voltage VADREG - 2.1 - V - Table 2.52 ADC external reference voltage (VREFI) characteristics Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Symbol Min Typ Max Unit Test conditions External reference voltage range*1 VREFI 0.8 - 2.4 V SDADCSTC1.VREFSEL = 1 External reference voltage step VRSTEP - 0.2 - V SDADCSTC1.VREFSEL = 1 External reference voltage accuracy VRA -3 - 3 % SDADCSTC1.VREFSEL = 1 Note 1. Select the reference voltage input value with STC1.VSBIAS[3:0]. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 77 of 100 RA2A1 Datasheet Table 2.53 2. Electrical Characteristics Sensor bias (SBIAS) characteristics Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Connect the SBIAS/VREFI pin to a AVSS1 pin by a 0.22 μF (-20% to +20%) Parameter Symbol Min Typ Max Unit Test conditions Output voltage range*2 SBIAS 0.8 - 2.2 V - Output voltage step SVSTEP - 0.2 - V - Output voltage accuracy*1 SVA -3 - 3 % SIOUT = 1 mA Output current*1 SIOUT - - 10 mA - Short current*1 SISHORT - 35 65 mA SBIAS = 0 V Load regulation*1 SLR - - 15 mV 1 mA ≤ SIOUT ≤ 5 mA - - 20 mV 1 mA ≤ SIOUT ≤ 10 mA Power supply rejection ratio*1 SPSRR - 50 - dB AVCC1 = 5.0 V + 0.1 Vpp_ripple, f = 100 Hz, SIOUT = 2.5 mA Transition time of one step*1,*3 STTS - - 80 μs SBIAS < SVA ± 3% 1 mA ≤ SIOUT ≤ SIOUT_MAX Note 1. Note 2. Note 3. Not production tested but is guaranteed by the design and characterization. Select the reference voltage output value for the sensor with STC1.VSBIAS[3:0]. The load current of more than 1 mA is required because the output stage of SBIAS is Pch open drain. When the original load current is small, additional external load resistance is required. 2.7 DAC12 Characteristics Table 2.54 12-bit D/A conversion characteristics Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VREFH = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL = 0 V Parameter Min Typ Max Unit Test conditions - - 12 bit - - - 100 μs - - - 50 μs - DAC Ref. = AVCC or VREFH  2.7 V - - 1.0 μs Cload = 38 pF, @ 1 LSB step Cload = 8 pF, @ full range DAC Ref. = AVCC or VREFH < 2.7 V - - 1.2 Resolution Charge pump stabilization time*1 SW stabilization time*1 Conversion Wake-up time*1 time*1 Absolute accuracy DNL differential non-linearity error DAC Ref. = AVCC or VREFH  2.7 V DAC Ref. = AVCC or VREFH < 2.7 V - - - 1.0 μs - - - ± 12 LSB 2-MΩ resistive load - - ±1.0 LSB - - - ±2.0 INL integral non-linearity error - - ±7.0 LSB - RO output resistance - 3.5 - kΩ - Load resistance Load capacitance Note 1. 2.8 - 2 2 - MΩ - 1 LSB step - 38 - pF - Full range - 8 - - These values are based on simulation. They are not production tested. DAC8 Characteristics Table 2.55 8-bit D/A conversion characteristics (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Resolution Charge pump stabilization time*1 R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Min Typ Max Unit Test conditions - - 8 bit - - - 100 μs - Page 78 of 100 RA2A1 Datasheet Table 2.55 2. Electrical Characteristics 8-bit D/A conversion characteristics (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Min Typ Max Unit Test conditions Switch stabilization time*1 - - 50 μs - - - 3.0 μs 35-pF capacitive load Conversion time*1 AVCC0 = 2.7 to 5.5 V AVCC0 = 1.7 to 2.7 V - - 6.0 μs Absolute accuracy AVCC0 = 2.7 to 5.5 V - - ± 3.0 LSB 2-MΩ resistive load AVCC0 = 1.7 to 2.7 V - - ± 3.5 LSB 4-MΩ resistive load kΩ - AVCC0 = 2.7 to 5.5 V - - ± 2.0 AVCC0 = 1.7 to 2.7 V - - ± 2.5 - 7.4 - RO output resistance Note 1. 2.9 These values are based on simulation. They are not production tested. TSN Characteristics Table 2.56 TSN characteristics Conditions: VCC = AVCC0 = AVCC1 = 2.0 to 5.5 V Parameter Symbol Relative accuracy - Min Typ Max Unit Test conditions - ± 1.5 - °C 2.4 V or above - ± 2.0 - °C Below 2.4 V - -3.65 - mV/°C - Temperature slope - Output voltage (at 25°C) - - 1.05 - V VCC = 3.3 V Temperature sensor start time tSTART - - 5 μs - Sampling time - 5 - - μs 2.10 OSC Stop Detect Characteristics Table 2.57 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr - - 1 ms Figure 2.65 Main clock OSTDSR.OSTDF tdr MOCO clock ICLK Figure 2.65 Oscillation stop detection timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 79 of 100 RA2A1 Datasheet 2.11 2. Electrical Characteristics POR and LVD Characteristics Table 2.58 Power-on reset circuit and voltage detection circuit characteristics (1) Parameter Voltage detection level*1 Symbol Min Typ Max Unit Test Conditions Power-on reset (POR) VPOR 1.27 1.42 1.57 V Figure 2.66, Figure 2.67 Voltage detection circuit (LVD0)*2 Vdet0_0 3.68 3.85 4.00 V Vdet0_1 2.68 2.85 2.96 Figure 2.68 At falling edge VCC Vdet0_2 2.38 2.53 2.64 Vdet0_3 1.78 1.90 2.02 V Figure 2.69 At falling edge VCC V Figure 2.70 At falling edge VCC Voltage detection circuit (LVD1)*3 Voltage detection circuit Note 1. Note 2. Note 3. Note 4. (LVD2)*4 Vdet0_4 1.60 1.69 1.82 Vdet1_0 4.13 4.29 4.45 Vdet1_1 3.98 4.16 4.30 Vdet1_2 3.86 4.03 4.18 Vdet1_3 3.68 3.86 4.00 Vdet1_4 2.98 3.10 3.22 Vdet1_5 2.89 3.00 3.11 Vdet1_6 2.79 2.90 3.01 Vdet1_7 2.68 2.79 2.90 Vdet1_8 2.58 2.68 2.78 Vdet1_9 2.48 2.58 2.68 Vdet1_A 2.38 2.48 2.58 Vdet1_B 2.10 2.20 2.30 Vdet1_C 1.84 1.96 2.05 Vdet1_D 1.74 1.86 1.95 Vdet1_E 1.63 1.75 1.84 Vdet1_F 1.60 1.65 1.73 Vdet2_0 4.11 4.31 4.48 Vdet2_1 3.97 4.17 4.34 Vdet2_2 3.83 4.03 4.20 Vdet2_3 3.64 3.84 4.01 These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 80 of 100 RA2A1 Datasheet Table 2.59 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (2) Parameter Symbol Min Typ Max Unit Test Conditions LVD0: enable tPOR - 1.7 - ms - LVD0: disable tPOR - 1.3 - ms - LVD0: enable*1 tLVD0,1,2 - 0.6 - ms - LVD0: disable*2 tLVD1,2 - 0.2 - ms - Response delay*3 tdet - - 350 μs Figure 2.66, Figure 2.67 Minimum VCC down time tVOFF 450 - - μs Figure 2.66, VCC = 1.0 V or above Power-on reset enable time tW (POR) 1 - - ms Figure 2.67, VCC = below 1.0 V LVD operation stabilization time (after LVD is enabled) Td (E-A) - - 300 μs Figure 2.69, Figure 2.70 Hysteresis width (POR) VPORH - 110 - mV - Hysteresis width (LVD0, LVD1 and LVD2) VLVH - 60 - mV - 100 - Vdet1_0 to Vdet1_2 selected - 60 - Vdet1_3 to Vdet1_9 selected - 50 - Vdet1_A to Vdet1_B selected - 40 - Vdet1_C to Vdet1_F selected - 60 - LVD2 selected Wait time after power-on reset cancellation Wait time after voltage monitor 0,1,2 reset cancellation Note 1. Note 2. Note 3. LVD0 selected When OFS1.LVDAS = 0. When OFS1.LVDAS = 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. tVOFF VCC VPOR 1.0 V Internal reset signal (active-low) tdet Figure 2.66 tdet tPOR Voltage detection reset timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 81 of 100 RA2A1 Datasheet 2. Electrical Characteristics VPOR VCC 1.0 V tw(POR) Internal reset signal (active-low) *1 tdet tPOR Note 1. tw(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When VCC turns on, maintain tw(POR) for 1.0 ms or more. Figure 2.67 Power-on reset timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.68 tdet tLVD0 Voltage detection circuit timing (Vdet0) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 82 of 100 RA2A1 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E Td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.69 Voltage detection circuit timing (Vdet1) tVOFF VCC VLVH Vdet2 LVCMPCR.LVD2E LVD2 Comparator output Td(E-A) LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.70 Voltage detection circuit timing (Vdet2) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 83 of 100 RA2A1 Datasheet 2.12 2. Electrical Characteristics CTSU Characteristics Table 2.60 CTSU characteristics Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF - TS pin capacitive load Cbase - - 50 pF - Permissible output high current ΣIOH - - -24 mA When the mutual capacitance method is applied and TS07 to TS14 are not used for transmit channel - - -14 2.13 When the mutual capacitance method is applied and TS07 to TS14 are used for transmit channel Comparator Characteristics Table 2.61 ACMPHS characteristics Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Symbol Min Typ Max Unit Test conditions Input offset voltage VIOCMP - ±5 ± 40 mV - Input voltage range VICPM 0 - AVCC0 V - Internal reference voltage input*3 Vref 1.36 1.43 1.50 V AVCC0 ≥ 2.0 V Input signal cycle tPCMP 10 - - μs - Output delay time Td - 50 100 ns Input amplitude ± 100 mV Stabilization wait time during input channel switching*1 TWAIT 300 - - ns Input amplitude ± 100 mV Operation stabilization wait time*2 Tcmp 1 - - μs 3.3 V ≤ AVCC0 ≤ 5.5 V 3 - - μs 2.7 V ≤ AVCC0  3.3 V Note 1. Note 2. Note 3. Period from when the comparator input channel is switched until the switched result reflects in its output. Period from when comparator operation is enabled (CPMCTL.HCMPON = 1) until the comparator satisfies the DC/AC characteristics. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V. Table 2.62 ACMPLP characteristics Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Input voltage range Symbol IVREF0 Typ Max 1.4*1 Unit Test conditions V - 0 - VCC - IVREF1 (Standard mode) 0 - VCC - 1.4 V IVREF1 (Window mode) 1.4*1 - VCC V IVCMP0, IVCMP1 VREF Min VI 0 - VCC V Internal reference voltage*2 - 1.36 1.43 1.50 V VCC ≥ 2.0 V Output delay Td - - 1.2 μs Comparator high-speed mode (Window mode) - - 2.0 μs VCC = 3.0 V Slew rate of input signal > 50 mV/μs Comparator low-speed mode (Standard mode) - - 5.0 μs Comparator high-speed mode (Standard mode) R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 84 of 100 RA2A1 Datasheet Table 2.62 2. Electrical Characteristics ACMPLP characteristics Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Offset voltage Symbol Min Typ Max Unit Test conditions - - - 50 mV - Comparator high-speed mode (Window mode) - - 60 mV Comparator low-speed mode (Standard mode) - - 40 mV 100 - - μs Comparator high-speed mode (Standard mode) Operation stabilization wait time Note 1. Note 2. 2.14 Tcmp - In window mode, be sure to satisfy the following condition: VIVREF1 - VIVREF0  0.2 V. The internal reference voltage cannot be selected for input channels when VCC < 2.0 V. OPAMP Characteristics Table 2.63 OPAMP characteristics (1 of 3) Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Symbol Conditions Supply voltage range AVCC0 Charge pump stabilization time*1 Min Typ Max Unit Low power mode 1.7 - 5.5 V Middle-speed mode 2.1 - 5.5 V High-speed mode 2.4 - 5.5 V - - - - 100 μs SW stabilization time*1 - - - - 50 μs Input voltage range Vicm1 Low power mode AVSS0 - AVCC0 V Vicm2 Middle-speed mode Vicm3 High-speed mode Volh1 Low power mode, Ilode = 100 μA AVSS0 - AVCC0 V Volh2 Middle-speed mode, Iload = 100 μA Volh3 High-speed mode, Iload = 100 μA Voffadj2l Middle-speed mode, Vin = 0.1 V, Tj = 25°C -3 - 3 mV Voffadj2h Middle-speed mode, Vin = AVCC0 - 0.1 V, Tj = 25°C Voffadj3l High-speed mode, Vin = 0.1 V, Tj = 25°C Voffadj3h High-speed mode, Vin = AVCC0 - 0.1 V, Tj = 25°C Output voltage range Input offset trimming range*1 R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 85 of 100 RA2A1 Datasheet Table 2.63 2. Electrical Characteristics OPAMP characteristics (2 of 3) Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Input offset*1 Offset drift*1 Open gain*1 Gain bandwidth Phase Gain product*1 margin*1 margin*1 Input noise density*1 R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Symbol Conditions Min Typ Max Unit Vioff1a Low power mode, Vin < AVCC0 - 1.0 V -5.0 - 5.0 mV Vioff1b Low power mode, Vin ≥ AVCC0 - 1.0 V -8.0 - 8.0 Vioff2a Middle-speed mode, Vin < AVCC0 - 1.2 V -3.0 - 3.0 Vioff2b Middle-speed mode, Vin ≥ AVCC0 - 1.2 V -3.0 - 3.0 Vioff3a High-speed mode, Vin < AVCC0 - 1.2 V -2.5 - 2.5 Vioff3b High-speed mode, Vin ≥ AVCC0 - 1.2 V -2.5 - 2.5 Drift1a Low power mode, Vin < AVCC0 - 1.0 V -70 - 70 Drift1b Low power mode, Vin ≥ AVCC0 - 1.0 V -70 - 70 Drift2a Middle-speed mode, Vin < AVCC0 - 1.2 V -30 - 30 Drift2b Middle-speed mode, Vin ≥ AVCC0 - 1.2 V -30 - 30 Drift3a High-speed mode, Vin < AVCC0 - 1.2 V -30 - 30 Drift3b High-speed mode, Vin ≥ AVCC0 - 1.2 V -30 - 30 Av1 Low power mode 70 130 - Av2 Middle-speed mode 70 120 - Av3 High-speed mode 60 130 - GBW1 Low power mode - 90 - kHz GBW2 Middle-speed mode - 2 - MHz GBW3 High-speed mode - 4.8 - MHz PM1 Low power mode 35 - - deg PM2 Middle-speed mode 35 - - PM3 High-speed mode 35 - - GM1 Low power mode 10 - - GM2 Middle-speed mode 10 - - GM3 High-speed mode 10 - - Vind11 Low power mode, f = 10 Hz - 860 - Vind12 Low power mode, f = 1 kHz - 260 - Vind21 Middle-speed mode, f = 1 kHz - 50 - Vind22 Middle-speed mode, f = 100 kHz - 30 - Vind31 High-speed mode, f = 1 kHz - 40 - Vind32 High-speed mode, f = 100 kHz - 20 - μV/°C dB dB nV/√Hz Page 86 of 100 RA2A1 Datasheet Table 2.63 2. Electrical Characteristics OPAMP characteristics (3 of 3) Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V Parameter Power supply rejection ratio*1 Common mode rejection Settling Slew ratio*1 time*1 rate*1 Symbol Conditions Min Typ Max Unit PSRR1 Low power mode - 90 - dB PSRR2 Middle-speed mode - 90 - PSRR3 High-speed mode - 90 - CMRR1 Low power mode - 90 - CMRR2 Middle-speed mode - 90 - CMRR3 High-speed mode - 90 - Tset1 Low power mode - 70 200 Tset2 Middle-speed mode - 2.8 8 Tset3 High-speed mode - 1.2 3.2 dB μS SR1 Low power mode 0.02 0.05 - SR2 Middle-speed mode 0.8 1.3 - SR3 High-speed mode 1.8 3.0 - Tturn1 Low power mode, AMPENx = 0 → 1, IREFEN = 0 → 1 - 80 220 Tturn2 Middle-speed mode, AMPENx = 0 → 1, IREFEN = 0 → 1 - 3 10 Tturn3 High-speed mode, AMPENx = 0 → 1, IREFEN = 0 → 1 - 1.3 4 Vioffst2 Middle-speed mode, Vin < AVCC0 - 1.2 V 0.3 0.459 0.58 Middle-speed mode, Vin ≥ AVCC0 - 1.2 V 0.24 - 0.56 High-speed mode, Vin < AVCC0 - 1.2 V 0.35 0.52 0.65 High-speed mode, Vin ≥ AVCC0 - 1.2 V 0.28 - 0.61 Tturn_tm2 Middle-speed mode - - 1.5 Tturn_tm3 High-speed mode - - 1 Load current IIoad - - - 100 μA Load capacitance CL - - - 20 pF Turn on time*1 Input offset trimming step*1 Vioffst3 Wait time after trimming*1 Note 1. 2.15 mV/code μS Flash Memory Characteristics Code Flash Memory Characteristics Table 2.64 Code flash characteristics (1) Parameter Reprogramming/erasure Data hold time Note 2. Note 3. μS These values are based on simulation. They are not production tested. 2.15.1 Note 1. V/μS cycle*1 After 1000 times NPEC Symbol Min Typ Max Unit Conditions NPEC 1000 - - Times - tDRP 20*2, *3 - - Year Ta = +85°C The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled (overwriting is prohibited). Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics. This result is obtained from reliability testing. R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 87 of 100 RA2A1 Datasheet Table 2.65 2. Electrical Characteristics Code flash characteristics (2) High-speed operating mode Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V FCLK = 1 MHz Parameter Symbol Min Typ FCLK = 32 MHz Max Min Typ Max Unit Programming time 8-byte tP8 - 116 998 - 54 506 μs Erasure time 2-KB tE2K - 9.03 287 - 5.67 222 ms Blank check time 8-byte tBC8 - - 56.8 - - 16.6 μs 2-KB tBC2K - - 1899 - - 140 μs Erase suspended time tSED - - 22.5 - - 10.7 μs Startup area switching setting time tSAS - 21.9 585 - 12.1 447 ms Access window time tAWS - 21.9 585 - 12.1 447 ms OCD/serial programmer ID setting time tOSIS - 21.9 585 - 12.1 447 ms Flash memory mode transition wait time 1 tDIS 2 - - 2 - - μs Flash memory mode transition wait time 2 tMS 5 - - 5 - - μs Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Table 2.66 Code flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, Ta = -40 to +85°C FCLK = 1 MHz Parameter FCLK = 8 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 8-byte tP8 - 157 1411 - 101 966 μs Erasure time 2-KB tE2K - 9.10 289 - 6.10 228 ms Blank check time 8-byte tBC8 - - 87.7 - - 52.5 μs 2-KB tBC2K - - 1930 - - 414 μs Erase suspended time tSED - - 32.7 - - 21.6 μs Startup area switching setting time tSAS - 22.8 592 - 14.2 465 ms Access window time tAWS - 22.8 592 - 14.2 465 ms OCD/serial programmer ID setting time tOSIS - 22.8 592 - 14.2 465 ms Flash memory mode transition wait time 1 tDIS 2 - - 2 - - μs Flash memory mode transition wait time 2 tMS 720 - - 720 - - ns Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. 2.15.2 Table 2.67 Data Flash Memory Characteristics Data flash characteristics (1) Parameter Reprogramming/erasure Data hold time cycle*1 After 10000 times of NDPEC After 100000 times of NDPEC After 1000000 times of NDPEC R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Symbol Min Typ Max Unit Conditions NDPEC 100000 1000000 tDDRP 20*2, *3 - - Times - - Year 5*2, *3 Ta = +85°C - - Year - 1*2, *3 - Year Ta = +25°C Page 88 of 100 RA2A1 Datasheet Note 1. Note 2. Note 3. 2. Electrical Characteristics The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.) Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics. These results are obtained from reliability testing. Table 2.68 Data flash characteristics (2) High-speed operating mode Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V FCLK = 4 MHz Parameter Symbol Min Typ FCLK = 32 MHz Max Min Typ Max Unit Programming time 1-byte tDP1 - 52.4 463 - 42.1 387 μs Erasure time 1-KB tDE1K - 8.98 286 - 6.42 237 ms Blank check time 1-byte tDBC1 - - 24.3 - - 16.6 μs tDBC1K - - 1872 - - 512 μs Suspended time during erasing 1-KB tDSED - - 13.0 - - 10.7 μs Data flash STOP recovery time tDSTOP 5 - - 5 - - μs Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Table 2.69 Data flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, Ta = -40 to +85°C FCLK = 4 MHz Parameter Symbol Min Typ FCLK = 8 MHz Max Min Typ Max Unit Programming time 1-byte tDP1 - 94.7 886 - 89.3 849 μs Erasure time 1-KB tDE1K - 9.59 299 - 8.29 273 ms Blank check time 1-byte tDBC1 - - 56.2 - - 52.5 μs tDBC1K - - 2.17 - - 1.51 ms Suspended time during erasing 1-KB tDSED - - 23.0 - - 21.7 μs Data flash STOP recovery time tDSTOP 720 - - 720 - - ns Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. 2.15.3 Table 2.70 Serial Wire Debug (SWD) SWD characteristics (1) (1 of 2) Conditions: VCC = AVCC0 = AVCC1 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 80 - - ns Figure 2.71 SWCLK clock high pulse width tSWCKH 35 - - ns SWCLK clock low pulse width tSWCKL 35 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 89 of 100 RA2A1 Datasheet Table 2.70 2. Electrical Characteristics SWD characteristics (1) (2 of 2) Conditions: VCC = AVCC0 = AVCC1 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWDIO setup time tSWDS 16 - - ns Figure 2.72 SWDIO hold time tSWDH 16 - - ns SWDIO data delay time tSWDD 2 - 70 ns Table 2.71 SWD characteristics (2) Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 2.4 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 250 - - ns Figure 2.71 SWCLK clock high pulse width tSWCKH 120 - - ns SWCLK clock low pulse width tSWCKL 120 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns SWDIO setup time tSWDS 50 - - ns SWDIO hold time tSWDH 50 - - ns SWDIO data delay time tSWDD 2 - 150 ns Figure 2.72 tSWCKcyc tSWCKH tSWCKf SWCLK tSWCKL Figure 2.71 tSWCKr SWD SWCLK timing SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.72 SWD input/output timing R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 90 of 100 RA2A1 Datasheet Appendix 1. Package Dimensions Appendix 1.Package Dimensions Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas Electronics Corporation website. JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1 T A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 1.1 LQFP 64-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 91 of 100 RA2A1 Datasheet Appendix 1. Package Dimensions JEITA Package Code P-LQFP32-7x7-0.80 RENESAS Code PLQP0032GB-A Previous Code 32P6U-A MASS[Typ.] 0.2g HD *1 D 24 17 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 16 25 bp c c1 *2 E HE b1 Reference Symbol 32 9 1 ZE Terminal cross section 8 ZD c A F A2 Index mark A1 S L D E A2 HD HE A A1 bp b1 c c1 L1 y S e Figure 1.2 *3 Detail F bp x e x y ZD ZE L L1 Dimension in Millimeters Min Nom Max 6.9 7.0 7.1 6.9 7.0 7.1 1.4 8.8 9.0 9.2 8.8 9.0 9.2 1.7 0.1 0.2 0 0.32 0.37 0.42 0.35 0.09 0.145 0.20 0.125 0° 8° 0.8 0.20 0.10 0.7 0.7 0.3 0.5 0.7 1.0 LQFP 32-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 92 of 100 RA2A1 Datasheet JEITA Package Code P-LFBGA36-5x5-0.80 Appendix 1. Package Dimensions RENESAS Code PLBG0036GA-A Previous Code 36FHE MASS[Typ.] 0.1g w S B b D w S A S ZD A AB e A1 A e F E B E D C 1 x4 v 2 3 4 5 6 Reference Symbol Index mark (Laser mark) Figure 1.3 A ZE y S B Index mark S D E v w A A1 e b x y ZD ZE Dimension in Millimeters Min Nom Max 5.0 5.0 0.15 0.20 1.4 0.3 0.35 0.4 0.8 0.4 0.45 0.5 0.08 0.10 0.5 0.5 BGA 36-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 93 of 100 RA2A1 Datasheet Appendix 1. Package Dimensions JEITA Package code P-HWQFN48-7x7-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0048KB-A 48PJN-A P48K8-50-5B4-6 0.13 D 25 36 DETAIL OF A PART 24 37 E A A1 13 48 c2 12 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 12 1 13 48 Dimension in Millimeters Min Nom Max D 6.95 7.00 7.05 E 6.95 7.00 7.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.30 24 36 25 ZD e b x M 0.40 0.50 x 0.05 y 0.05 0.75 ZE 37 0.30 0.50 ZD ZE 0.25 c2 0.75 0.15 0.20 D2 5.50 E2 5.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. Figure 1.4 QFN 48-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 94 of 100 RA2A1 Datasheet Appendix 1. Package Dimensions JEITA Package code P-HWQFN40-6x6-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0040KC-A P40K8-50-4B4-5 0.09 D 21 30 DETAIL OF A PART 20 31 E 40 A A1 11 c2 10 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 10 11 40 Dimension in Millimeters Min Nom Max D 5.95 6.00 6.05 E 5.95 6.00 6.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 ZE 20 31 30 21 ZD e b Figure 1.5 x M 0.25 0.30 0.50 0.30 0.40 0.50 x 0.05 y 0.05 ZD 0.75 ZE 0.75 c2 0.15 0.20 D2 4.50 E2 4.50 0.25 S AB QFN 40-pin R01DS0354EJ0110 Rev.1.10 Mar 16, 2020 Page 95 of 100 Revision History Rev. Date 1.00 Oct 8, 2019 1.10 Mar 16, 2020 RA2A1 Group Datasheet Summary First release Updated for 1.10 Proprietary Notice All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas. Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited. CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium. Magic Packet™ is a trademark of Advanced Micro Devices, Inc. SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders. Colophon RA2A1 Microcontroller Group Datasheet Publication Date: Rev.1.10 Mar 16, 2020 Published by: Renesas Electronics Corporation Address List General Precautions 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during poweroff state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338 © 20 Renesas Electronics Corporation. All rights reserved. Colophon .0 Back cover Renesas RA Family RA2A1 Group R01DS0354EJ0110
R7FA2A1AB3CFJ#AA0 价格&库存

很抱歉,暂时无法提供与“R7FA2A1AB3CFJ#AA0”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R7FA2A1AB3CFJ#AA0
    •  国内价格
    • 1+37.82247
    • 10+32.98061
    • 30+30.03092
    • 100+27.55815

    库存:1

    R7FA2A1AB3CFJ#AA0
    •  国内价格 香港价格
    • 1+49.563621+5.92762
    • 10+37.9360210+4.53700
    • 25+35.0218125+4.18848
    • 80+32.2584580+3.85799
    • 250+30.29869250+3.62361
    • 500+29.37934500+3.51366
    • 1000+28.622811000+3.42318
    • 2500+27.824162500+3.32766

    库存:1229