0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FA2L1A93CFM#AA0

R7FA2L1A93CFM#AA0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    ARM® Cortex®-M23 RA2L1 微控制器 IC 32 位单核 48MHz 128KB(128K x 8) 闪存 LQFP64_10X10MM

  • 数据手册
  • 价格&库存
R7FA2L1A93CFM#AA0 数据手册
Datasheet R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 RA2L1 Group Renesas Microcontrollers Ultra low power 48 MHz Arm® Cortex®-M23 core, up to 256-KB code flash memory, 32 KB SRAM, Capacitive Sensing Unit (CTSU2), 12-bit A/D Converter, 12-bit D/A Converter, Security and Safety features. Features ■ Arm Cortex-M23 Core ● ● ● ● ● Armv8-M architecture Maximum operating frequency: 48 MHz Arm Memory Protection Unit (Arm MPU) with 8 regions Debug and Trace: DWT, FPB, CoreSight™ MTB-M23 CoreSight Debug Port: SW-DP ■ Memory ● ● ● ● ● Up to 256-KB code flash memory 8-KB data flash memory (100,000 program/erase (P/E) cycles) 32 KB SRAM Memory protection units 128-bit unique ID ■ Connectivity ● Serial Communications Interface (SCI) × 5 – Asynchronous interfaces – 8-bit clock synchronous interface – Simple IIC – Simple SPI – Smart card interface ● Serial Peripheral Interface (SPI) × 2 ● I2C bus interface (IIC) × 2 ● CAN module (CAN) ● ● ● ● ● Middle-speed on-chip oscillator (MOCO) (8 MHz) Low-speed on-chip oscillator (LOCO) (32.768 kHz) Clock trim function for HOCO/MOCO/LOCO IWDT-dedicated on-chip oscillator (15 kHz) Clock out support ■ Up to 85 pins for general I/O ports ● 5-V tolerance, open drain, input pull-up ■ Operating Voltage ● VCC: 1.6 to 5.5 V ■ Operating Temperature and Packages ● Ta = -40℃ to +85℃ – 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch) – 80-pin LQFP (12 mm × 12 mm, 0.5 mm pitch) – 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) – 48-pin LQFP (7 mm × 7 mm, 0.50 mm pitch) – 48-pin HWQFN (7 mm × 7 mm, 0.50 mm pitch) ● Ta = -40℃ to +105℃ – 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch) – 80-pin LQFP (12 mm × 12 mm, 0.5 mm pitch) – 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) – 48-pin LQFP (7 mm × 7 mm, 0.50 mm pitch) – 48-pin HWQFN (7 mm × 7 mm, 0.50 mm pitch) ■ Analog ● ● ● ● 12-bit A/D Converter (ADC12) 12-bit D/A Converter (DAC12) Low-Power Analog Comparator (ACMPLP) × 2 Temperature Sensor (TSN) ■ Timers ● ● ● ● General PWM Timer 32-bit (GPT32) × 4 General PWM Timer 16-bit (GPT16) × 6 Low Power Asynchronous General Purpose Timer (AGT) × 2 Watchdog Timer (WDT) ■ Safety ● ● ● ● ● ● ● ● ● ● ● ● ● ECC in SRAM SRAM parity error check Flash area protection ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC) calculator Data Operation Circuit (DOC) Port Output Enable for GPT (POEG) Independent Watchdog Timer (IWDT) GPIO readback level detection Register write protection Main oscillator stop detection Illegal memory access ■ Security and Encryption ● AES128/256 ● True Random Number Generator (TRNG) ■ System and Power Management ● ● ● ● ● ● ● ● Low power modes Switching regulator Realtime Clock (RTC) Event Link Controller (ELC) Data Transfer Controller (DTC) Key Interrupt Function (KINT) Power-on reset Low Voltage Detection (LVD) with voltage settings ■ Human Machine Interface (HMI) ● Capacitive Sensing Unit (CTSU2) ■ Multiple Clock Sources ● Main clock oscillator (MOSC) (1 to 20 MHz) ● Sub-clock oscillator (SOSC) (32.768 kHz) ● High-speed on-chip oscillator (HOCO) (24/32/48/64 MHz) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 1 of 113 RA2L1 Datasheet 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability. The MCU in this series incorporates an energy-efficient Arm Cortex®-M23 32-bit core, that is particularly well suited for cost-sensitive and low-power applications, with the following features: ● Up to 256-KB code flash memory ● 32-KB SRAM ● 12-bit A/D Converter (ADC12) ● 12-bit D/A Converter (DAC12) ● Security features 1.1 Table 1.1 Function Outline Arm core Feature Functional description Arm Cortex-M23 core Table 1.2 ● Maximum operating frequency: up to 48 MHz ● Arm Cortex-M23 core: – Revision: r1p0-00rel0 – Armv8-M architecture profile – Single-cycle integer multiplier – 19-cycle integer divider ● Arm Memory Protection Unit (Arm MPU): – Armv8 Protected Memory System Architecture – 8 protect regions ● SysTick timer: – Driven by SYSTICCLK (LOCO) or ICLK Memory Feature Functional description Code flash memory Maximum 256 KB of code flash memory. Data flash memory 8 KB of data flash memory. Option-setting memory The option-setting memory determines the state of the MCU after a reset. SRAM On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). Table 1.3 System (1 of 2) Feature Functional description Operating modes Two operating modes: ● Single-chip mode ● SCI boot mode Resets The MCU provides 13 resets. Low Voltage Detection (LVD) The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The detection level can be selected by register settings. The LVD module consists of three separate voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD registers allow your application to configure detection of VCC changes at various voltage thresholds. Clocks R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 ● ● ● ● ● ● ● Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) IWDT-dedicated on-chip oscillator (IWDTLOCO) Clock out support Page 2 of 113 RA2L1 Datasheet Table 1.3 1. Overview System (2 of 2) Feature Functional description Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts. Key Interrupt Function (KINT) The key interrupt function (KINT) generates the key interrupt by detecting rising or falling edge on the key interrupt input pins. Low power modes Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. Register write protection The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR). Memory Protection Unit (MPU) The MCU has four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided. Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt or watchdog timer reset. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers. Table 1.4 Event link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. Table 1.6 Timers (1 of 2) Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 4 channels and a 16-bit timer with GPT16 × 6 channels. PWM waveforms can be generated by controlling the up-counter, downcounter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. Port Output Enable for GPT (POEG) The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state Low power Asynchronous General Purpose Timer (AGT) The Low Power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 3 of 113 RA2L1 Datasheet Table 1.6 1. Overview Timers (2 of 2) Feature Functional description Realtime Clock (RTC) The RTC has two operation modes, normal operation mode and low-consumption clock mode. In each of the operation mode, the RTC has two counting modes, calendar count mode and binary count mode, that are used by switching register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. Table 1.7 Communication interfaces Feature Functional description Serial Communications Interface (SCI) The Serial Communications Interface (SCI) × 5 channels have asynchronous and synchronous serial interfaces: ● Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) ● 8-bit clock synchronous interface ● Simple IIC (master-only) ● Simple SPI ● Smart card interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn (n = 0) has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. I2C bus interface (IIC) The I2C bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset of the NXP I2C (Inter-Integrated Circuit) bus interface functions. Serial Peripheral Interface (SPI) The Serial Peripheral Interface (SPI) has 2 channels. The SPI provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices. Control Area Network (CAN) The Controller Area Network (CAN) module uses a message-based protocol to receive and transmit data between multiple slaves and masters in electromagnetically noisy applications. The module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN module requires an additional external CAN transceiver. Table 1.8 Analog Feature Functional description 12-bit A/D Converter (ADC12) A 12-bit successive approximation A/D converter is provided. Up to 19 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. 12-bit D/A Converter (DAC12) A 12-bit D/A converter (DAC12) is provided. Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is fairly linear. The output voltage is provided to the ADC12 for conversion and can be further used by the end application. Low-Power Analog Comparator (ACMPLP) The Low-Power Analog Comparator (ACMPLP) compares a reference input voltage with an analog input voltage. Comparator channels ACMPLP0 and ACMPLP1 are independent of each other. The comparison result of the reference input voltage and analog input voltage can be read by software. The comparison result can also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Setting low-speed mode increases the response delay time, but decreases current consumption. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 4 of 113 RA2L1 Datasheet Table 1.9 1. Overview Human machine interfaces Feature Functional description Capacitive Sensing Unit (CTSU2) The Capacitive Sensing Unit (CTSU2) measures the electrostatic capacitance of the sensor. Changes in the electrostatic capacitance are determined by software that enables the CTSU to detect whether a finger is in contact with the sensor. The electrode surface of the sensor is usually enclosed with a dielectric film so that a finger does not come into direct contact with the electrode. Table 1.10 Data processing Feature Functional description Cyclic Redundancy Check (CRC) calculator The Cyclic Redundancy Check (CRC) generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available. The snoop function allows to monitor the access to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated. Table 1.11 I/O ports Feature I/O ports R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Functional description ● I/O ports for the 100-pin LQFP – I/O pins: 82 – Input pins: 3 – Pull-up resistors: 82 – N-ch open-drain outputs: 65 – 5-V tolerance: 5 ● I/O ports for the 80-pin LQFP – I/O pins: 66 – Input pins: 3 – Pull-up resistors: 66 – N-ch open-drain outputs: 51 – 5-V tolerance: 5 ● I/O ports for the 64-pin LQFP – I/O pins: 50 – Input pins: 3 – Pull-up resistors: 50 – N-ch open-drain outputs: 37 – 5-V tolerance: 5 ● I/O ports for the 48-pin LQFP/HWQFN – I/O pins: 34 – Input pins: 3 – Pull-up resistors: 34 – N-ch open-drain outputs: 23 – 5-V tolerance: 4 Page 5 of 113 RA2L1 Datasheet 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features. Memory 256-KB code flash Bus Arm Cortex-M23 MPU MPU System POR/LVD MOSC/SOSC 8-KB data flash Reset NVIC 32-KB SRAM Mode control System timer Test and DBG Interface DTC Timers (H/M/L) OCO Power control DMA GPT32 × 4 GPT16 × 6 Clocks Communication interfaces ICU CAC KINT Register write protection Human machine interfaces CTSU SCI × 5 AGT × 2 IIC × 2 RTC SPI × 2 CAN × 1 WDT/IWDT Event link Data processing Analogs ELC CRC ADC12 TSN Security DOC DAC12 × 1 ACMPLP × 2 AES + TRNG Figure 1.1 1.3 Block diagram Part Numbering Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a list of products. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 6 of 113 RA2L1 Datasheet 1. Overview R 7 F A2 L 1 AB 3 C F P # A A 0 Production identification code Terminal material (Pb-free) A: Sn(Tin) only C: Others Packaging A: Tray B: Tray(Full carton) H: Tape and reel Package type FP: LQFP 100 pins FN: LQFP 80 pins FM: LQFP 64 pins FL: LQFP 48 pins NE: HWQFN 48 pins Quality Grade C: Industrial applications D: Consumer applications Operating temperature 2: -40°C to 85°C 3: -40°C to 105°C Code flash memory size B: 256 KB 9: 128 KB Feature set Group number Series name RA family Flash memory Renesas microcontroller Note: Check the order screen for each product on the Renesas website for valid symbols after the #. Figure 1.2 Part numbering scheme R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 7 of 113 RA2L1 Datasheet Table 1.12 1. Overview Product list Product part number Package code Code flash Data flash SRAM Operating temperature R7FA2L1AB3CFP PLQP0100KB-B 256 KB 8 KB 32 KB -40 to +105°C R7FA2L1AB3CFN PLQP0080KB-B R7FA2L1AB3CFM PLQP0064KB-C PLQP0064KL-A R7FA2L1AB3CFL PLQP0048KB-B PLQP0048KL-A R7FA2L1AB3CNE PWQN0048KC-A R7FA2L1AB2DFP PLQP0100KB-B R7FA2L1AB2DFN PLQP0080KB-B R7FA2L1AB2DFM PLQP0064KB-C PLQP0064KL-A R7FA2L1AB2DFL PLQP0048KB-B PLQP0048KL-A R7FA2L1AB2DNE PWQN0048KC-A R7FA2L1A93CFP PLQP0100KB-B R7FA2L1A93CFN PLQP0080KB-B R7FA2L1A93CFM PLQP0064KB-C PLQP0064KL-A R7FA2L1A93CFL PLQP0048KB-B PLQP0048KL-A R7FA2L1A93CNE PWQN0048KC-A R7FA2L1A92DFP PLQP0100KB-B R7FA2L1A92DFN PLQP0080KB-B R7FA2L1A92DFM PLQP0064KB-C PLQP0064KL-A R7FA2L1A92DFL PLQP0048KB-B PLQP0048KL-A R7FA2L1A92DNE PWQN0048KC-A R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 -40 to +85°C 128 KB 8 KB 32 KB -40 to +105°C -40 to +85°C Page 8 of 113 RA2L1 Datasheet 1.4 1. Overview Function Comparison Table 1.13 Function comparison R7FA2L1A BxxFP Parts number Pin count R7FA2L1A 9xxFP R7FA2L1A BxxFN 100 Package Code flash memory R7FA2L1A 9xxFN R7FA2L1A BxxFM 80 64 LQFP LQFP LQFP LQFP LQFP 256 KB 128 KB 256 KB 128 KB 256 KB 128 KB 8 KB SRAM 32 KB Parity 16 KB ECC 16 KB CPU clock 48 MHz Sub-clock oscillator Yes ICU Yes KINT Yes DMA DTC Yes Timers GPT32 256 KB 128 KB 4 GPT16 6 3 AGT 2 RTC Yes WDT/IWDT Yes Communicatio SCI n IIC 5 SPI 2 CAN Yes 2 19 17 13 DAC12 1 ACMPLP 2 TSN 9 Yes HMI CTSU Data processing CRC Yes DOC Yes 32 30 Security I/O ports LQFP/QFN 5 ELC ADC12 LQFP/QFN 8 Event control Analog R7FA2L1A 9xxFL R7FA2L1A 9xxNE 48 LQFP Data flash memory System R7FA2L1A 9xxFM R7FA2L1A BxxFL R7FA2L1A BxxNE 20 AES and TRNG I/O pins 82 66 50 34 Input pins 3 3 3 3 Pull-up resistors 82 66 50 34 N-ch opendrain outputs 65 51 37 23 5-V tolerance 5 5 5 4 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 9 of 113 RA2L1 Datasheet 1.5 1. Overview Pin Functions Table 1.14 Pin functions (1 of 3) Function Signal I/O Description Power supply VCC Input Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1-µF capacitor. Place the capacitor close to the pin. VCL I/O Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect it to the system power supply (0 V). VCC_DCDC Input Switching regulator power supply pin VLO I/O Switching regulator pin VSS_DCDC Input Switching regulator ground pin. Connect it to the system power supply (0 V). XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output CLKOUT Output Clock output pin Operating mode control MD Input Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin On-chip debug SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin NMI Input Non-maskable interrupt request pin IRQ0 to IRQ7 Input Maskable interrupt request pins GTETRGA, GTETRGB Input External trigger input pins GTIOCnA (n = 0 to 9), GTIOCnB (n = 0 to 9) I/O Input capture, output compare, or PWM output pins GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) AGTEE0, AGTEE1 Input External event input enable signals AGTIO0, AGTIO1 I/O External event input and pulse output pins AGTO0, AGTO1 Output Pulse output pins AGTOA0, AGTOA1 Output Output compare match A output pins AGTOB0, AGTOB1 Output Output compare match B output pins Clock Interrupt GPT AGT R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. Page 10 of 113 RA2L1 Datasheet Table 1.14 1. Overview Pin functions (2 of 3) Function Signal I/O Description RTC RTCOUT Output Output pin for 1-Hz or 64-Hz clock SCI SCKn (n = 0 to 3, 9) I/O Input/output pins for the clock (clock synchronous mode) RXDn (n = 0 to 3, 9) Input Input pins for received data (asynchronous mode/clock synchronous mode) TXDn (n = 0 to 3, 9) Output Output pins for transmitted data (asynchronous mode/clock synchronous mode) CTSn_RTSn (n = 0 to 3, 9) I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), activelow. SCLn (n = 0 to 3, 9) I/O Input/output pins for the IIC clock (simple IIC mode) SDAn (n = 0 to 3, 9) I/O Input/output pins for the IIC data (simple IIC mode) SCKn (n = 0 to 3, 9) I/O Input/output pins for the clock (simple SPI mode) MISOn (n = 0 to 3, 9) I/O Input/output pins for slave transmission of data (simple SPI mode) MOSIn (n = 0 to 3, 9) I/O Input/output pins for master transmission of data (simple SPI mode) SSn (n = 0 to 3, 9) Input Chip-select input pins (simple SPI mode), active-low SCLn (n = 0, 1) I/O Input/output pins for the clock SDAn (n = 0, 1) I/O Input/output pins for data RSPCKA, RSPCKB I/O Clock input/output pin MOSIA, MOSIB I/O Input or output pins for data output from the master MISOA, MISOB I/O Input or output pins for data output from the slave SSLA0, SSLB0 I/O Input or output pin for slave selection SSLA1 to SSLA3, SSLB1 to SSLB3 Output Output pins for slave selection CRX0 Input Receive data CTX0 Output Transmit data AVCC0 Input Analog voltage supply pin for the ADC12, DAC12 AVSS0 Input Analog ground pin for the ADC12, DAC12 VREFH0 Input Analog reference voltage supply pin for the ADC12. Connect this pin to AVCC0 when not using the ADC12. VREFL0 Input Analog reference ground pin for the ADC12. Connect this pin to AVSS0 when not using the ADC12. AN000 to AN014, AN017 to AN020 Input Input pins for the analog signals to be processed by the A/D converter. ADTRG0 Input Input pin for the external trigger signals that start the A/D conversion, active-low. DAC12 DA0 Output Output pin for the analog signals processed by the D/A converter. ACMPLP VCOUT Output Comparator output pin CMPREF0, CMPREF1 Input Reference voltage input pins CMPIN0, CMPIN1 Input Analog voltage input pins IIC SPI CAN Analog power supply ADC12 CTSU KINT TS00, TS02-CFC, TS04 Input to TS07, TS08-CFC to TS16-CFC, TS17, TS18, TS21 to TS25, TS26-CFC to TS35-CFC Capacitive touch detection pins (touch pins) TSCAP — Secondary power supply pin for the touch driver KR00 to KR07 Input Key interrupt input pins R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 11 of 113 RA2L1 Datasheet Table 1.14 1. Overview Pin functions (3 of 3) Function Signal I/O Description I/O ports P000 to P008, P010 to P015 I/O General-purpose input/output pins P100 to P115 I/O General-purpose input/output pins P200 Input General-purpose input pin P201 to P208, P212, P213 I/O General-purpose input/output pins P214, P215 Input General-purpose input pins P300 to P307 I/O General-purpose input/output pins P400 to P415 I/O General-purpose input/output pins P500 to P505 I/O General-purpose input/output pins P600 to P603, P608 to P610 I/O General-purpose input/output pins P708, P714 I/O General-purpose input/output pins P808, P809 I/O General-purpose input/output pins R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 12 of 113 RA2L1 Datasheet 1.6 1. Overview Pin Assignments Figure 1.3 P101 P102 P103 P104 P105 P106 P107 P600 P601 P602 P603 VSS VCC P610 P609 P608 P115 P114 P113 P112 P111 P110 P109 P108/SWDIO 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P100 74 75 Figure 1.3 to Figure 1.7 show the pin assignments from the top view. P500 76 50 P501 77 49 P300/SWCLK P301 P502 78 48 P302 P503 79 47 P303 P504 80 46 P809 P505 81 45 P808 VCC 82 44 P304 VSS 83 43 P305 P015 84 42 P306 P014 85 41 P307 P013 86 40 P200 P012 87 39 P201/MD AVCC0 88 38 RES AVSS0 89 37 VCC P011/VREFL0 90 36 VSS P010/VREFH0 91 35 P202 P008 92 34 P203 P007 93 33 P204 P006 94 32 P205 P005 95 31 P206 P004 96 30 P207 P003 97 29 P208 P002 98 28 VCC_DCDC P001 99 27 VLO P000 100 26 VSS_DCDC 14 15 16 17 18 19 20 21 22 23 24 25 P212/EXTAL VCC P708 P415 P414 P413 P412 P411 P410 P409 P408 P407 9 VCL 13 8 P714 P213/XTAL 7 P406 12 6 P405 VSS 5 P404 P214/XCOUT 4 P403 11 3 P402 P215/XCIN 2 10 1 P400 P401 R7FA2L1AB3CFP Pin assignment for LQFP 100-pin (top view) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 13 of 113 Figure 1.5 P104 P105 P106 P107 P600 P601 VSS VCC P115 P114 P113 P112 P111 P110 P109 P108/SWDIO 56 55 54 53 52 51 49 47 46 45 44 43 42 41 48 P103 57 50 P101 P102 58 P100 59 P500 61 40 P501 62 39 P301 P502 63 38 P302 P503 64 37 P303 P504 65 36 P809 P015 66 35 P808 P014 67 34 P304 P013 68 33 P305 P012 69 32 P306 AVCC0 70 31 P200 AVSS0 71 30 P201/MD P011/VREFL0 72 29 RES P010/VREFH0 73 28 P204 P006 74 27 P205 P005 75 26 P206 P004 76 25 P207 P003 77 24 P208 P002 78 23 VCC_DCDC P001 79 22 VLO P000 80 21 VSS_DCDC 12 13 14 15 16 17 18 19 20 P212/EXTAL VCC P708 P415 P411 P410 P409 P408 P407 P113 P112 P111 P110 P109 P108/SWDIO 37 36 35 34 33 P214/XCOUT VCC 9 P215/XCIN 38 8 39 7 VCL VSS 6 P714 40 5 11 4 P403 P406 VSS 3 P402 P213/XTAL 2 10 1 P400 P401 R7FA2L1AB3CFN P300/SWCLK P101 P102 P103 P104 P105 P106 P107 47 46 45 44 43 42 41 P100 48 Pin assignment for LQFP 80-pin (top view) P500 49 32 P300/SWCLK P501 50 31 P301 P502 51 30 P302 P015 52 29 P303 P014 53 28 P304 P013 54 27 P200 P012 55 26 P201/MD AVCC0 56 25 RES R7FA2L1AB3CFM 12 13 14 15 16 P410 P409 P408 P407 VSS_DCDC P411 17 11 64 10 VLO P000 VCC 18 P212/EXTAL 63 9 VCC_DCDC P001 P213/XTAL 19 8 62 VSS P208 P002 7 20 P214/XCOUT 61 6 P207 P003 P215/XCIN 21 5 60 VCL P206 P004 4 22 P403 59 3 P205 P010/VREFH0 2 P204 23 P401 24 58 P402 57 1 AVSS0 P011/VREFL0 P400 Figure 1.4 1. Overview 60 RA2L1 Datasheet Pin assignment for LQFP 64-pin (top view) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 14 of 113 P103 P104 VSS VCC P112 P111 P110 P109 P108/SWDIO 32 31 30 29 28 27 26 25 P101 P102 33 24 P300/SWCLK 38 23 P301 P014 39 22 P302 P013 40 21 P200 P012 41 20 P201/MD 19 RES 18 P206 P207 42 43 R7FA2L1AB3CFL 8 9 10 11 12 P212/EXTAL VCC P409 P408 P407 VSS_DCDC 7 13 P213/XTAL 48 6 VLO P000 5 14 VSS 47 P215/XCIN VCC_DCDC P001 P214/XCOUT 15 4 46 3 P208 P002 VCL 16 2 45 1 P010/VREFH0 P401 44 P400 P011/VREFL0 17 P500 37 P015 38 P014 P102 P103 P104 VSS VCC P112 P111 P110 34 33 32 31 30 29 28 27 P109 25 P108/SWDIO P101 26 P100 36 35 Pin assignment for LQFP 48-pin (top view) 24 P300/SWCLK 23 P301 39 22 P302 P013 40 21 P200 P012 41 20 P201/MD AVCC0 42 19 RES AVSS0 43 18 P206 P011/VREFL0 44 17 P207 P010/VREFH0 45 16 P208 P002 46 15 VCC_DCDC P001 47 14 VLO P000 48 13 VSS_DCDC exposed die pad 1 2 3 4 5 6 7 8 9 10 11 12 P401 VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P409 P408 P407 R7FA2L1AB3CNE P400 INDEX MARK Figure 1.7 34 37 P015 AVSS0 Note: P100 P500 AVCC0 Figure 1.6 35 1. Overview 36 RA2L1 Datasheet Exposed die pad is recommended to connect to VSS. Pin assignment for QFN 48-pin (top view) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 15 of 113 RA2L1 Datasheet Pin Lists Pin list (1 of 4) Interrupt CTSU DAC12 SPI ACMPLP HMI ADC12 Analogs IIC RTC GPT AGT I/O ports Power, System, Clock, Debug, CAC LQFP48/QFN48 LQFP64 LQFP80 LQFP100 Communication interfaces GPT_OPS, POEG Timers Num. SCI Table 1.15 CAN 1.7 1. Overview 1 1 1 1 CACREF _C P400 AGTIO1_ C — GTIOC6A _A — — SCK0_B/ SCK1_B SCL0_A — — — — — IRQ0_A 2 2 2 2 — P401 — GTETRG A_B GTIOC6B _A — CTX0_B CTS0_RT S0_B/ SS0_B/ TXD1_B/ MOSI1_B/ SDA1_B SDA0_A — — — — — IRQ5 3 3 3 — — P402 AGTIO0_ E/ AGTIO1_ D — — — CRX0_B RXD1_B/ MISO1_B/ SCL1_B — — — — — TS18 IRQ4 4 4 4 — — P403 AGTIO0_ F/ AGTIO1_ E — GTIOC3A _B — — CTS1_RT S1_B/ SS1_B — — — — — TS17 — 5 — — — — P404 — — GTIOC3B _B — — — — — — — — — — 6 — — — — P405 — — GTIOC1A _B — — — — — — — — — — 7 5 — — — P406 — — GTIOC1B _B — — — — — — — — — — 8 6 — — — P714 — — — — — — — — — — — — — 9 7 5 3 VCL — — — — — — — — — — — — — — 10 8 6 4 XCIN P215 — — — — — — — — — — — — — 11 9 7 5 XCOUT P214 — — — — — — — — — — — — — 12 10 8 6 VSS — — — — — — — — — — — — — — 13 11 9 7 XTAL P213 — GTETRG A_D GTIOC0A _D — — TXD1_A/ MOSI1_A/ SDA1_A — — — — — — IRQ2_B 14 12 10 8 EXTAL P212 AGTEE1 GTETRG B_D GTIOC0B _D — — RXD1_A/ MISO1_A/ SCL1_A — — — — — — IRQ3_B 15 13 11 9 VCC — — — — — — — — — — — — — — 16 14 — — — P708 — — — — — RXD1_D/ MISO1_D /SCL1_D — SSLA3_B — — — — — 17 15 — — — P415 — — GTIOC0A _C — — — — SSLA2_B — — — — — 18 — — — — P414 — — GTIOC0B _C — — — — SSLA1_B — — — — — 19 — — — — P413 — GTOUUP _B — — — CTS0_RT S0_E/ SS0_E — SSLA0_B — — — — — 20 — — — — P412 — GTOULO _B — — — SCK0_E — RSPCKA _B — — — — — 21 16 12 — — P411 AGTOA1 GTOVUP _B GTIOC9A _A — — TXD0_B/ MOSI0_B/ SDA0_B/ CTS3_RT S3_A/ SS3_A — MOSIA_B — — — TS07 IRQ4_B 22 17 13 — — P410 AGTOB1 GTOVLO _B GTIOC9B _A — — RXD0_B/ MISO0_B/ SCL0_B/ SCK3_A — MISOA_B — — — TS06 IRQ5_B 23 18 14 10 — P409 — GTOWUP _B GTIOC5A _B — — TXD3_A/ MOSI3_A/ SDA3_A — — — — — TS05 IRQ6_B 24 19 15 11 — P408 — GTOWLO _B GTIOC5B _B — — CTS1_RT S1_D/ SS1_D/ RXD3_A/ MISO3_A/ SCL3_A SCL0_C — — — — TS04 IRQ7_B 25 20 16 12 — P407 AGTIO0_ C — — RTCOUT — CTS0_RT S0_D/ SS0_D SDA0_B SSLB3_A ADTRG0_ B — — — — R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 16 of 113 RA2L1 Datasheet Pin list (2 of 4) Interrupt CTSU DAC12 ACMPLP HMI ADC12 IIC SCI RTC GPT Analogs SPI Communication interfaces GPT_OPS, POEG AGT I/O ports Power, System, Clock, Debug, CAC LQFP48/QFN48 LQFP64 Timers LQFP80 LQFP100 Num. CAN Table 1.15 1. Overview 26 21 17 13 VSS_DC DC — — — — — — — — — — — — — — 27 22 18 14 VLO — — — — — — — — — — — — — — 28 23 19 15 VCC_DC DC — — — — — — — — — — — — — — 29 24 20 16 — P208 AGTOB0_ A — — — — — — — — — — — — 30 25 21 17 — P207 — — — — — — — — — — — — — 31 26 22 18 — P206 — GTIU_A — — — RXD0_D/ MISO0_D /SCL0_D SDA1_A SSLB1_A — — — — IRQ0 32 27 23 — CLKOUT_ A P205 AGTO1 GTIV_A GTIOC4A _B — — TXD0_D/ MOSI0_D /SDA0_D/ CTS9_RT S9_A/ SS9_A SCL1_A SSLB0_A — — — — IRQ1 33 28 24 — CACREF _A P204 AGTIO1_ A GTIW_A GTIOC4B _B — — SCK0_D/ SCK9_A SCL0_B RSPCKB _A — — — TS00 — 34 — — — — P203 — — — — — CTS2_RT S2_A/ SS2_A/ TXD9_A/ MOSI9_A/ SDA9_A — MOSIB_A — — — — — 35 — — — — P202 — — — — — SCK2_A/ RXD9_A/ MISO9_A/ SCL9_A — MISOB_A — — — — — 36 — — — VSS — — — — — — — — — — — — — — 37 — — — VCC — — — — — — — — — — — — — — 38 29 25 19 RES — — — — — — — — — — — — — — 39 30 26 20 MD P201 — — — — — — — — — — — — — 40 31 27 21 — P200 — — — — — — — — — — — — NMI 41 — — — — P307 — — — — — — — — — — — — — 42 32 — — — P306 — — — — — — — — — — — — — 43 33 — — — P305 — — — — — — — — — — — — — 44 34 28 — — P304 — — GTIOC7A _A — — — — — — — — — — 45 35 — — — P808 — — — — — — — — — — — — — 46 36 — — — P809 — — — — — — — — — — — — — 47 37 29 — — P303 — — GTIOC7B _A — — — — — — — — TS02CFC — 48 38 30 22 — P302 — GTOUUP _A GTIOC4A _A — — TXD2_A/ MOSI2_A/ SDA2_A — SSLB3_B — — — TS08CFC IRQ5_A 49 39 31 23 — P301 AGTIO0_ D GTOULO _A GTIOC4B _A — — RXD2_A/ MISO2_A/ SCL2_A/ CTS9_RT S9_D/ SS9_D — SSLB2_B — — — TS09CFC IRQ6_A 50 40 32 24 SWCLK P300 — GTOUUP _C GTIOC0A _A — — — — SSLB1_B — — — — — 51 41 33 25 SWDIO P108 — GTOULO _C GTIOC0B _A — — CTS9_RT S9_B/ SS9_B — SSLB0_B — — — — — 52 42 34 26 CLKOUT_ B P109 — GTOVUP _A GTIOC1A _A — CTX0_A SCK1_E/ TXD9_B/ MOSI9_B/ SDA9_B — MOSIB_B — — — TS10CFC — 53 43 35 27 — P110 — GTOVLO _A GTIOC1B _A — CRX0_A CTS2_RT S2_B/ SS2_B/ RXD9_B/ MISO9_B/ SCL9_B — MISOB_B — — VCOUT TS11CFC IRQ3_A 54 44 36 28 — P111 AGTOA0 — GTIOC3A _A — — SCK2_B/ SCK9_B — RSPCKB _B — — — TS12CFC IRQ4_A R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 17 of 113 RA2L1 Datasheet Pin list (3 of 4) Analogs HMI AGTOB0 — GTIOC3B _A — — SCK1_D/ TXD2_B/ MOSI2_B/ SDA2_B — SSLB0_C — — — TSCAP-C — 56 46 38 — — P113 — — GTIOC2A _C — — — — — — — — TS27CFC — 57 47 — — — P114 — — GTIOC2B _C — — — — — — — — TS29CFC — 58 48 — — — P115 — — GTIOC4A _C — — — — — — — — TS35CFC — 59 — — — — P608 — — GTIOC4B _C — — — — — — — — — — 60 — — — — P609 — — GTIOC5A _C — — — — — — — — — — 61 — — — — P610 — — GTIOC5B _C — — — — — — — — — — 62 49 39 30 VCC — — — — — — — — — — — — — — 63 50 40 31 VSS — — — — — — — — — — — — — — 64 — — — — P603 — — GTIOC7A _B — — CTS9_RT S9_C/ SS9_C — — — — — — — 65 — — — — P602 — — GTIOC7B _B — — TXD9_C/ MOSI9_C /SDA9_C — — — — — — — 66 51 — — — P601 — — GTIOC6A _C — — RXD9_C/ MISO9_C /SCL9_C — — — — — — — 67 52 — — — P600 — — GTIOC6B _C — — SCK9_C — — — — — — — 68 53 41 — — P107 — — GTIOC8A _A — — — — — — — — — KR07 69 54 42 — — P106 — — GTIOC8B _A — — — — SSLA3_A — — — — KR06 70 55 43 — — P105 — GTETRG A_C GTIOC1A _C — — — — SSLA2_A — — — TS34CFC KR05/ IRQ0_B 71 56 44 32 — P104 — GTETRG B_B GTIOC1B _C — — RXD0_C/ MISO0_C /SCL0_C — SSLA1_A — — — TS13CFC KR04/ IRQ1_B 72 57 45 33 — P103 — GTOWUP _A GTIOC2A _A — CTX0_C CTS0_RT S0_A/ SS0_A — SSLA0_A — — CMPREF 1 TS14CFC KR03 73 58 46 34 — P102 AGTO0 GTOWLO _A GTIOC2B _A — CRX0_C SCK0_A/ TXD2_D/ MOSI2_D /SDA2_D — RSPCKA _A ADTRG0_ A — CMPIN1 TS15CFC KR02 74 59 47 35 — P101 AGTEE0 GTETRG B_A GTIOC5A _A — — TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RT S1_A/ SS1_A SDA1_B MOSIA_A — — CMPREF 0 TS16CFC KR01/ IRQ1_A 75 60 48 36 — P100 AGTIO0_ A GTETRG A_A GTIOC5B _A — — RXD0_A/ MISO0_A/ SCL0_A/ SCK1_A SCL1_B MISOA_A — — CMPIN0 TS26CFC KR00/ IRQ2_A 76 61 49 37 — P500 — GTIU_B GTIOC2A _B — — — — — — — — — — 77 62 50 — — P501 — GTIV_B GTIOC2B _B — — TXD1_C/ MOSI1_C /SDA1_C — — AN017 — — — — 78 63 51 — — P502 — GTIW_B GTIOC3B _C — — RXD1_C/ MISO1_C /SCL1_C — — AN018 — — — — 79 64 — — — P503 — GTETRG A_E — — — SCK1_C — — AN019 — — — — 80 65 — — — P504 — GTETRG B_E — — — CTS1_RT S1_C/ SS1_C — — AN020 — — — — 81 — — — — P505 — — — — — — — — — — — — — 82 — — — VCC — — — — — — — — — — — — — — R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 CTSU SPI IIC SCI RTC Interrupt P112 DAC12 — ADC12 29 CAN 37 GPT 45 LQFP64 55 LQFP80 AGT GPT_OPS, POEG Communication interfaces I/O ports Power, System, Clock, Debug, CAC Timers LQFP48/QFN48 LQFP100 Num. ACMPLP Table 1.15 1. Overview Page 18 of 113 RA2L1 Datasheet Pin list (4 of 4) Interrupt CTSU DAC12 ACMPLP HMI ADC12 IIC SCI RTC GPT Analogs SPI Communication interfaces GPT_OPS, POEG AGT I/O ports Power, System, Clock, Debug, CAC LQFP48/QFN48 LQFP64 Timers LQFP80 LQFP100 Num. CAN Table 1.15 1. Overview 83 — — — VSS — — — — — — — — — — — — — — 84 66 52 38 — P015 — — — — — — — — AN010 — — TS28CFC IRQ7_A 85 67 53 39 — P014 — — — — — — — — AN009 DA0 — — — 86 68 54 40 — P013 — — — — — — — — AN008 — — TS33CFC — 87 69 55 41 — P012 — — — — — — — — AN007 — — TS32CFC — 88 70 56 42 AVCC0 — — — — — — — — — — — — — — 89 71 57 43 AVSS0 — — — — — — — — — — — — — — 90 72 58 44 VREFL0 P011 — — — — — — — — AN006 — — TS31CFC — 91 73 59 45 VREFH0 P010 — — — — — — — — AN005 — — TS30CFC — 92 — — — — P008 — — — — — — — — AN014 — — — — 93 — — — — P007 — — — — — — — — AN013 — — — — 94 74 — — — P006 — — — — — — — — AN012 — — — — 95 75 — — — P005 — — — — — — — — AN011 — — — — 96 76 60 — — P004 — — — — — — — — AN004 — — TS25 IRQ3 97 77 61 — — P003 — — — — — — — — AN003 — — TS24 — 98 78 62 46 — P002 — — — — — — — — AN002 — — TS23 IRQ2 99 79 63 47 — P001 — — — — — — — — AN001 — — TS22 IRQ7 100 80 64 48 — P000 — — — — — — — — AN000 — — TS21 IRQ6 Note: Several pin names have the added suffix of _A, _B, _C, _D, _E and _F. The suffix can be ignored when assigning functionality. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 19 of 113 RA2L1 Datasheet 2. 2. Electrical Characteristics Electrical Characteristics Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions: VCC*1 = AVCC0 = VCC_DCDC*2 = 1.6 to 5.5 V, VREFH0 = 1.6 V to AVCC0 VSS = AVSS0 = VREFL0 = 0 V, Ta = Topr Note 1. The typical condition is set to VCC = 3.3 V. Note 2. When VCC_DCDC is used. VCC = AVCC0 = VCC_DCDC = 2.4 to 5.5 V. Figure 2.1 shows the timing conditions. For example, P300 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30 pF Figure 2.1 Input or output timing measurement conditions The measurement conditions of the timing specifications for each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities for each pin to meet the conditions of your system. Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the AC characteristics of each function are not guaranteed. 2.1 Absolute Maximum Ratings Table 2.1 Absolute maximum ratings (1 of 2) Parameter Symbol Value Unit Power supply voltage VCC -0.5 to +6.5 V 5V-tolerant ports*1 Vin -0.3 to +6.5 V P000 to P008, P010 to P015 Vin -0.3 to AVCC0 + 0.3 V Others Vin -0.3 to VCC + 0.3 V Reference power supply voltage VREFH0 -0.3 to +6.5 V Analog power supply voltage AVCC0 -0.5 to +6.5 V Switching regulator power supply voltage VCC_DCDC -0.5 to +6.5 V Analog input voltage VAN -0.3 to AVCC0 + 0.3 V -0.3 to VCC + 0.3 V Input voltage When AN000 to AN014 are used When AN017 to AN020 are used R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 20 of 113 RA2L1 Datasheet Table 2.1 2. Electrical Characteristics Absolute maximum ratings (2 of 2) Parameter Symbol Value Unit Operating temperature*2 *3 *4 Topr -40 to +85 -40 to +105 °C Storage temperature Tstg -55 to +125 °C Note 1. Ports P205, P206, P400, P401, and P407 are 5V-tolerant. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements. Note 2. See section 2.2.1. Tj/Ta Definition. Note 3. Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. Note 4. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded. To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, and between the VREFH0 and VREFL0 pins when VREFH0 is selected as the high potential reference voltage for the ADC12. Place capacitors of the following value as close as possible to every power supply pin and use the shortest and heaviest possible traces: ● VCC and VSS: about 0.1 µF ● AVCC0 and AVSS0: about 0.1 µF ● VREFH0 and VREFL0: about 0.1 µF Also, connect capacitors as stabilization capacitance. Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. Connect the VCC_DCDC pin to a VSS_DCDC pin by a 1.0 µF capacitor. Each capacitor must be placed close to the pin. Table 2.2 Recommended operating conditions Parameter Symbol Min Typ Max Unit Power supply voltages VCC*1 *2 1.6 — 5.5 V VSS — 0 — V Switching regulator power supply voltage VCC_DCDC 2.4 — 5.5 V Analog power supply voltages AVCC0*1 *2 VCC_DCDC = VCC 1.6 — 5.5 V AVSS0 — 0 — V 1.6 — AVCC0 V — 0 — VREFH0 When used as ADC12 Reference VREFL0 V Note 1. Use AVCC0 and VCC under the following conditions: AVCC0 = VCC Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pins. When powering off the VCC and AVCC0 pins, power them off at the same time or the AVCC0 pin first and then the VCC pins. 2.2 DC Characteristics 2.2.1 Table 2.3 Tj/Ta Definition DC characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C Parameter Symbol Typ Max Unit Test conditions Permissible junction temperature Tj — 125 °C High-speed mode Middle-speed mode Low-speed mode Subosc-speed mode 105*1 Note: Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise it is 125°C. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 21 of 113 RA2L1 Datasheet 2.2.2 2. Electrical Characteristics I/O VIH, VIL Table 2.4 I/O VIH, VIL Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Typ Max Unit Test Conditions VIH VCC × 0.7 — 5.8 V — VIL — — VCC × 0.3 ΔVT VCC × 0.10 — — VCC = 2.7 V to 5.5 V VCC × 0.05 — — VCC = 1.6 V to 2.7 V VIH VCC × 0.8 — — — VIL — — VCC × 0.2 ΔVT VCC × 0.10 — — VCC = 2.7 V to 5.5 V VCC × 0.05 — — VCC = 1.6 V to 2.7 V VIH 2.2 — — VCC = 3.6 to 5.5 V VIH 2.0 — — VCC = 2.7 to 3.6 V VIL — — 0.8 VCC = 3.6 to 5.5 V VIL — — 0.5 VCC = 2.7 to 3.6 V VIH VCC × 0.8 — 5.8 — VIL — — VCC × 0.2 P000 to P008, P010 to P015 VIH AVCC0 × 0.8 — — VIL — — AVCC0 × 0.2 EXTAL Input ports pins except for P000 to P008, P010 to P015 VIH VCC × 0.8 — — VIL — — VCC × 0.2 Parameter Schmitt trigger input voltage IIC (except for SMBus)*1 RES, NMI Other peripheral input pins excluding IIC Input voltage (except for Schmitt trigger input pin) IIC (SMBus)*2 5V-tolerant ports*3 Note 1. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A (total 5 pins) Note 2. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SCL1_A, SCL1_B, SDA1_A, SDA1_B (total 9 pins) Note 3. P205, P206, P400, P401, P407 (total 5 pins) 2.2.3 Table 2.5 I/O IOH, IOL I/O IOH, IOL (1 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (average value per pin) Symbol Min Typ Max Unit Ports P000 to P008, P010 to P015, P205, IOH P206, P212, P213, P400, P401, P407 IOL — — -4.0 mA — — 8.0 mA IOH — — -4.0 mA IOL — — 20.0 mA Other output pins*1 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Test conditions Page 22 of 113 RA2L1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (2 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value per pin) Symbol Typ Max Unit Ports P000 to P008, P010 to P015, P205, IOH P206, P212, P213, P400, P401, P407 IOL — — -4.0 mA — — 8.0 mA IOH — — -4.0 mA IOL — — 20.0 mA ΣIOH (max) — — -30 mA AVCC0 = 2.7 to 5.5 V — — -8 mA AVCC0 = 1.8 to 2.7 V — — -4 mA AVCC0 = 1.6 to 1.8 V — — 50 mA AVCC0 = 2.7 to 5.5 V — — 4 mA AVCC0 = 1.8 to 2.7 V — — 2 mA AVCC0 = 1.6 to 1.8 V — — -8.0 mA VCC = 2.7 to 5.5 V — — -2 mA VCC = 1.8 to 2.7 V — — -1 mA VCC = 1.6 to 1.8 V — — 16.0 mA VCC = 2.7 to 5.5 V — — 1.2 mA VCC = 1.8 to 2.7 V — — 0.6 mA VCC = 1.6 to 1.8 V — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V Other output Permissible output current (max value total pins)*2 Test conditions Min pins*1 Total of ports P000 to P008, P010 to P015 ΣIOL (max) Total of ports P212, P213 ΣIOH ΣIOL Total of ports P400 to P415, P708, P714 100 pin products ΣIOH (max) ΣIOL (max) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 23 of 113 RA2L1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (3 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 Total of ports P201 to P208, P303 to P307, P808, P809 100 pin products Min Typ Max Unit ΣIOH (max) — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V ΣIOL (max) Total of ports P108 to P115, P300 to P302, P600 to P603, P608 to P610 100 pin products ΣIOH (max) ΣIOL (max) Total of ports P100 to P107, P500 to P505 100 pin products ΣIOH (max) ΣIOL (max) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Test conditions Symbol Page 24 of 113 RA2L1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (4 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 Total of all output pin Total of ports P204 to P208, P400 to P403, P406 to P411, P415, P708, P714 100 pin products 80 pin products Min Typ Max Unit ΣIOH (max) — — -100 mA ΣIOL (max) — — 100 mA ΣIOH (max) — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V ΣIOH (max) — — -60 mA ΣIOL (max) — — 100 mA ΣIOL (max) Total of ports P100 to P115, P201, P300 to P306, P500 to P504, P600, P601, P808, P809 80 pin products ΣIOH (max) ΣIOL (max) Total of all output pin R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 80 pin products Test conditions Symbol Page 25 of 113 RA2L1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (5 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 Total of ports P204 to P208, P400 to P403, P407 to P411 64 pin products Min Typ Max Unit ΣIOH (max) — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V ΣIOH (max) — — -60 mA ΣIOL (max) — — 100 mA ΣIOL (max) Total of ports P100 to P113, P201, P300 to P304, P500 to P502 64 pin products ΣIOH (max) ΣIOL (max) Total of all output pin R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 64 pin products Test conditions Symbol Page 26 of 113 RA2L1 Datasheet Table 2.5 2. Electrical Characteristics I/O IOH, IOL (6 of 6) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Permissible output current (max value total pins)*2 Total of ports P206 to P208, P400, P401, P407 to P409 48 pin products Min Typ Max Unit ΣIOH (max) — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V — — -30 mA VCC = 2.7 to 5.5 V — — -8 mA VCC = 1.8 to 2.7 V — — -4 mA VCC = 1.6 to 1.8 V — — 50 mA VCC = 2.7 to 5.5 V — — 4 mA VCC = 1.8 to 2.7 V — — 2 mA VCC = 1.6 to 1.8 V ΣIOH (max) — — -60 mA ΣIOL (max) — — 100 mA ΣIOL (max) Total of ports P100 to P104, P108 to P112,P201, P300 to P302, P500 48 pin products ΣIOH (max) ΣIOL (max) Total of all output pin 48 pin products Test conditions Symbol Note 1. Except for Ports P200, P214, and P215, which are input ports. Note 2. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%). Total output current of pins = (IOH × 0.7)/(n × 0.01) Where n = 80% and IOH = −30.0 mA Total output current of pins = (−30.0 × 0.7)/(80 × 0.01) ≅ −26.2 mA However, the current that is allowed to flow into one pin does not vary depending on the duty factor. Caution: To protect the reliability of the MCU, the output current values should not exceed the values in Table 2.5. 2.2.4 Table 2.6 I/O VOH, VOL, and Other Characteristics I/O VOH, VOL (1) Conditions: VCC = AVCC0 = 4.0 to 5.5 V Parameter Output voltage Symbol Min Typ Max Unit Test conditions Ports P000 to P008, P010 to P015 VOH AVCC0 - 0.8 — — V IOH = -4.0 mA Output pins except for P000 to P008 and P010 to P015*1 VOH VCC - 0.8 — — IOH = -4.0 mA Ports P000 to P008, P010 to P015 VOL — — 0.8 IOL = 8.0 mA Ports P205, P206, P212, P213, P400, P401, P407 VOL — — 0.8 IOL = 8.0 mA Output pins except for P000 to P008, P010 to P015, P205, P206, P212, P213, P400, P401, and P407*1 VOL — — 1.2 IOL = 20.0 mA R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 27 of 113 RA2L1 Datasheet 2. Electrical Characteristics Note 1. Except for Ports P200, P214, and P215, which are input ports. Table 2.7 I/O VOH, VOL (2) Conditions: VCC = AVCC0 = 2.7 to 4.0 V Parameter Output voltage Symbol Min Typ Max Unit Test conditions Ports P000 to P008, P010 to P015 VOH AVCC0 - 0.8 — — V IOH = -4.0 mA Output pins except for P000 to P008 and P010 to P015*1 VOH VCC - 0.8 — — IOH = -4.0 mA Ports P000 to P008, P010 to P015 VOL — — 0.8 IOL = 8.0 mA Output pins except for P000 to P008 and P010 to P015*1 VOL — — 0.8 IOL = 8.0 mA Note 1. Except for Ports P200, P214, and P215, which are input ports. Table 2.8 I/O VOH, VOL (3) Conditions: VCC = AVCC0 = 1.6 to 2.7 V Parameter Output voltage Ports P000 to P008, P010 to P015 Output pins except for P000 to P008 and P010 to P015*1 Ports P000 to P008, P010 to P015 Output pins except for P000 to P008 and P010 to P015*1 Symbol Min Typ Max Unit Test conditions VOH AVCC0 - 0.5 — — V IOH = -1.0 mA AVCC0 = 1.8 to 2.7 V AVCC0 - 0.5 — — IOH = -0.5 mA AVCC0 = 1.6 to 1.8 V VCC - 0.5 — — IOH = -1.0 mA VCC = 1.8 to 2.7 V VCC - 0.5 — — IOH = -0.5 mA VCC = 1.6 to 1.8 V — — 0.4 IOL = 0.6 mA AVCC0 = 1.8 to 2.7 V — — 0.4 IOL = 0.3 mA AVCC0 = 1.6 to 1.8 V — — 0.4 IOL = 0.6 mA VCC = 1.8 to 2.7 V — — 0.4 IOL = 0.3 mA VCC = 1.6 to 1.8 V VOH VOL VOL Note 1. Except for Ports P200, P214, and P215, which are input ports. Table 2.9 I/O other characteristics Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Input leakage current RES, ports P200, P214, P215 | Iin | — — 1.0 µA Vin = 0 V Vin = VCC Three-state leakage current (off state) 5V-tolerant ports*1 | ITSI | — — 1.0 µA Vin = 0 V Vin = 5.8 V — — 1.0 Other ports (except for P200, P214, P215, and 5V-tolerant ports) Vin = 0 V Vin = VCC Input pull-up resistor All ports (except for P200, P214, P215) RU 10 20 100 kΩ Vin = 0 V Input capacitance P200 Cin — — 30 pF — — 15 Vin = 0 V f = 1 MHz Ta = 25°C Other input pins Note 1. P205, P206, P400, P401, and P407 (total 5 pins) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 28 of 113 RA2L1 Datasheet 2.2.5 Table 2.10 2. Electrical Characteristics Operating and Standby Current Operating and standby current (1) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V LDO mode DCDC mode*12 Symbol Typ*10 Max Typ*10 Max Unit Test Conditions ICC 5.50 — 3.05 — mA *7 *11 ICLK = 32 MHz 3.65 — 2.20 — ICLK = 16 MHz 2.20 — 1.35 — ICLK = 8 MHz 1.45 — 0.90 — All peripheral clocks enabled, code executing from flash*5 ICLK = 48 MHz — 14.5 — 12.5 *9 *11 All peripheral clocks disabled*5 ICLK = 48 MHz 1.05 — 0.65 — *7 ICLK = 32 MHz 0.85 — 0.55 — *7 ICLK = 16 MHz 0.70 — 0.45 — ICLK = 8 MHz 0.60 — 0.35 — ICLK = 48 MHz 4.85 — 2.95 — *9 ICLK = 32 MHz 4.68 — 2.85 — *8 ICLK = 16 MHz 2.55 — 1.55 — ICLK = 8 MHz 1.50 — 0.95 — 2.1 — 1.95 — 2.80 — 1.65 — ICLK = 4 MHz 0.90 — 0.55 — All peripheral clocks enabled, code executing from flash*5 ICLK = 24 MHz — 10.0 — 8.8 *8 All peripheral clocks disabled*5 ICLK = 24 MHz 0.70 — 0.45 — *7 Parameter Supply current*1 Highspeed mode*2 Normal mode Sleep mode All peripheral clocks disabled, CoreMark code executing from flash*5 All peripheral clocks enabled*5 ICLK = 48 MHz Increase during BGO operation*6 Supply current*1 Middlespeed mode*2 Normal mode Sleep mode All peripheral clocks disabled, CoreMark code executing from flash*5 All peripheral clocks enabled*5 ICLK = 24 MHz ICLK = 4 MHz 0.55 — 0.35 — ICLK = 24 MHz 3.50 — 2.10 — ICLK = 4 MHz 0.95 — 0.60 — 2.00 — 1.65 — Increase during BGO operation*6 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 ICC *7 — mA *7 *8 — Page 29 of 113 RA2L1 Datasheet Table 2.10 2. Electrical Characteristics Operating and standby current (1) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 Lowspeed mode*3 Normal mode Sleep mode Subosc- Normal speed mode mode*4 Sleep mode LDO mode DCDC mode*12 Symbol Typ*10 Max Typ*10 Max Unit Test Conditions ICC 0.33 — — — mA *7 All peripheral clocks disabled, CoreMark code executing from flash*5 ICLK = 2 MHz All peripheral clocks enabled, code executing from flash*5 ICLK = 2 MHz — 3.1 — — *8 All peripheral clocks disabled*5 ICLK = 2 MHz 0.13 — — — *7 All peripheral clocks enabled*5 ICLK = 2 MHz 0.35 — — — *8 All peripheral clocks enabled, code executing from flash*5 ICLK = 32.768 kHz — 540 — — All peripheral clocks disabled*5 ICLK = 32.768 kHz 2.00 — — — *8 All peripheral clocks enabled*5 ICLK = 32.768 kHz 5.85 — — — *8 ICC µA *8 Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state. In LDO mode, the supply current is total current flowing into VCC. In DCDC mode, the supply current is total current flowing into VCC and VCC_DCDC. Note 2. The clock source is HOCO. Note 3. The clock source is MOCO. Note 4. The clock source is the sub-clock oscillator. Note 5. This does not include BGO and A/D operation. Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution. Note 7. PCLKB and PCLKD are set to divided by 64. Note 8. PCLKB and PCLKD are the same frequency as that of ICLK. Note 9. PCLKB are set to be divided by 2 and PCLKD is the same frequency as that of ICLK. Note 10. VCC = 3.3 V. Note 11. The prefetch is operating. Note 12. VCC = AVCC0 = VCC_DCDC = 2.4 to 5.5 V R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 30 of 113 RA2L1 Datasheet Table 2.11 2. Electrical Characteristics Operating and standby current (2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Typ*3 Max Unit Test conditions ICC 0.30 2.2 µA — Ta = 55°C 0.65 5.3 Ta = 85°C 2.0 20 Ta = 105°C 4.0 70 0.25 2.2 0.6 5.3 Ta = 85°C 1.8 20 Ta = 105°C 3.65 70 Increment for RTC operation with low-speed onchip oscillator*4 0.30 — — Increment for RTC operation in normal operation mode with sub-clock oscillator*4 0.20 — SOMCR.SODRV[1:0] are 11b (Low power mode 3) RCR4.ROPSEL is 0 (RTC operation in normal operation mode) 0.95 — SOMCR.SODRV[1:0] are 00b (normal mode) RCR4.ROPSEL is 0 (RTC operation in normal operation mode) 0.11 — SOMCR.SODRV[1:0] are 11b (Low power mode 3) RCR4.ROPSEL is 1 (RTC operation in low-consumption clock mode) 0.90 — SOMCR.SODRV[1:0] are 00b (normal mode) RCR4.ROPSEL is 1 (RTC operation in low-consumption clock mode) Parameter Supply Software current*1 Standby mode*2 All SRAMs(0x2000_40 00 to 0x2000_7FFF) are on Ta = 25°C Only 8KB SRAM Ta = 25°C (0x2000_4000 to 0x2000_5FFF) is on Ta = 55°C Increment for RTC operation in low-consumption clock mode with sub-clock oscillator*4 Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS transistors are in the off state. The supply current is total current flowing into VCC. Note 2. The IWDT and LVD are not operating. Note 3. VCC = 3.3 V. Note 4. Includes the low-speed on-chip oscillator or sub-oscillation circuit current. Table 2.12 Operating and standby current (3) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Analog power supply current Reference power supply current Symbol Min Typ Max Unit Test conditions IAVCC0 — — 1.44 mA — During 12-bit A/D conversion (at low-power A/D conversion mode) — — 0.78 mA — During 12-bit D/A conversion*1 — — 0.8 mA — Waiting for 12-bit A/D and 12-bit D/A conversion (all units)*2 — — 1.0 µA — — — 120 µA — — — 60 nA — — 95 — µA — During 12-bit A/D conversion (at high-speed A/D conversion mode) During 12-bit A/D conversion IREFH0 Waiting for 12-bit A/D conversion Temperature Sensor (TSN) operating current R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 ITNS Page 31 of 113 RA2L1 Datasheet Table 2.12 2. Electrical Characteristics Operating and standby current (3) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Low-power Analog Comparator (ACMPLP) operating current Symbol Min Typ Max Unit Test conditions ICMPLP — 12 — µA — Comparator (high-speed mode) — 6.4 — µA — Comparator (low-speed mode) — 1.8 — µA — Window comparator (high-speed mode) Note 1. The reference power supply current is included in the power supply current value for D/A conversion. Note 2. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC120 module-stop bit) is in the module-stop state. 2.2.6 VCC Rise and Fall Gradient and Ripple Frequency Table 2.13 Rise and fall gradient characteristics Conditions: VCC = AVCC0 = 0 to 5.5 V Parameter Power-on VCC rising gradient Voltage monitor 0 reset disabled at startup Voltage monitor 0 reset enabled at Symbol Min Typ Max Unit Test conditions SrVCC 0.02 — 2 ms/V — — startup*1 *2 2 SCI boot mode*2 Note 1. When OFS1.LVDAS = 0. Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit. Table 2.14 Rising and falling gradient and ripple frequency characteristics Conditions: VCC = AVCC0 = 1.6 to 5.5 V The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V). When the VCC change exceeds VCC ± 10%, the allowable voltage change rising and falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Unit Test conditions Allowable ripple frequency fr(VCC) — — 10 kHz Figure 2.2 Vr (VCC) ≤ VCC × 0.2 — — 1 MHz Figure 2.2 Vr (VCC) ≤ VCC × 0.08 — — 10 MHz Figure 2.2 Vr (VCC) ≤ VCC × 0.06 1.0 — — ms/V When VCC change exceeds VCC ± 10% Allowable voltage change rising and falling gradient dt/dVCC 1 / fr(VCC) VCC Figure 2.2 2.3 Vr(VCC) Ripple waveform AC Characteristics R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 32 of 113 RA2L1 Datasheet 2.3.1 Table 2.15 2. Electrical Characteristics Frequency Operation frequency in high-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency System clock 1.8 to 5.5 V (ICLK)*1*2 Max*4 Unit 0.032768 — 48 MHz Symbol Min f Typ Peripheral module clock (PCLKB) 1.8 to 5.5 V — — 32 Peripheral module clock (PCLKD)*3 1.8 to 5.5 V — — 64 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use. Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.19. Table 2.16 Operation frequency in middle-speed mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Max*4 Unit 0.032768 — 24 MHz 1.6 to 1.8 V 0.032768 — 4 Parameter Operation frequency System clock 1.8 to 5.5 V (ICLK)*1*2 Peripheral module clock (PCLKB) Peripheral module clock (PCLKD)*3 Symbol Min f Typ 1.8 to 5.5 V — — 24 1.6 to 1.8 V — — 4 1.8 to 5.5 V — — 24 1.6 to 1.8 V — — 4 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use. Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.19. Table 2.17 Operation frequency in low-speed mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Operation frequency System clock 1.6 to 5.5 V (ICLK)*1*2 Max*4 Unit 0.032768 — 2 MHz Symbol Min f Typ Peripheral module clock (PCLKB) 1.6 to 5.5 V — — 2 Peripheral module clock (PCLKD)*3 1.6 to 5.5 V — — 2 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use. Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed operation, see Table 2.19. Table 2.18 Operation frequency in Subosc-speed mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Operation frequency Min Typ Max Unit f 27.8528 32.768 37.6832 kHz 1.6 to 5.5 V — — 37.6832 1.6 to 5.5 V — — 37.6832 1.6 to 5.5 V System clock (ICLK)*1 Peripheral module clock (PCLKB) Peripheral module clock Symbol (PCLKD)*2 Note 1. Programming and erasing the flash memory is not possible. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 33 of 113 RA2L1 Datasheet 2. Electrical Characteristics Note 2. The ADC12 cannot be used. 2.3.2 Table 2.19 Clock Timing Clock timing Parameter Symbol Min Typ Max Unit Test conditions EXTAL external clock input cycle time tXcyc 50 — — ns Figure 2.3 EXTAL external clock input high pulse width tXH 20 — — ns EXTAL external clock input low pulse width tXL 20 — — ns EXTAL external clock rising time tXr — — 5 ns EXTAL external clock falling time tXf — — 5 ns EXTAL external clock input wait time*1 tEXWT 0.3 — — µs — EXTAL external clock input frequency fEXTAL — — 20 MHz 1.8 ≤ VCC ≤ 5.5 — — 4 1 — 20 1 — 4 Main clock oscillator oscillation frequency fMAIN 1.6 ≤ VCC < 1.8 MHz 1.8 ≤ VCC ≤ 5.5 1.6 ≤ VCC < 1.8 LOCO clock oscillation frequency fLOCO 27.8528 32.768 37.6832 kHz — LOCO clock oscillation stabilization time tLOCO — — 100 µs Figure 2.4 IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz — MOCO clock oscillation frequency fMOCO 6.8 8 9.2 MHz — MOCO clock oscillation stabilization time tMOCO — — 1 µs — fHOCO24 23.76 24 24.24 MHz Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 fHOCO32 31.68 32 32.32 Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 fHOCO48 47.52 48 48.48 Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 fHOCO64 63.36 64 64.64 Ta = -40 to 105°C 1.6 ≤ VCC ≤ 5.5 HOCO clock oscillation stabilization time*3 *4 tHOCO24 tHOCO32 tHOCO48 tHOCO64 — 1.9 — µs Figure 2.5 Sub-clock oscillator oscillation frequency fSUB — 32.768 — kHz — Sub-clock oscillation stabilization time*2 tSUBOSC — 0.5 — s Figure 2.6 HOCO clock oscillation frequency*5 Note 1. Time until the clock can be used after the Main Clock Oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable. Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer. Note 3. This is a characteristic when the HOCOCR.HCSTP bit is set to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs. Note 4. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed. Note 5. Accuracy at production test. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 34 of 113 RA2L1 Datasheet 2. Electrical Characteristics tXcyc tXH tXL EXTAL external clock input VCC × 0.5 tXr Figure 2.3 tXf EXTAL external clock input timing LOCOCR.LCSTP tLOCO LOCO clock oscillator output Figure 2.4 LOCO clock oscillation start timing HOCOCR.HCSTP tHOCOx*1 HOCO clock Note: Figure 2.5 x = 24, 32, 48, 64 HOCO clock oscillation start timing (started by setting the HOCOCR.HCSTP bit) SOSCCR.SOSTP tSUBOSC Sub-clock oscillator output Figure 2.6 Sub-clock oscillation start timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 35 of 113 RA2L1 Datasheet 2.3.3 Table 2.20 2. Electrical Characteristics Reset Timing Reset timing Symbol Min Typ Max Unit Test conditions At power-on tRESWP 10 — — ms Figure 2.7 Not at power-on tRESW 30 — — µs Figure 2.8 tRESWT — 0.9 — ms Figure 2.7 — 0.2 — — 0.9 — ms Figure 2.8 — 0.2 — — 0.9 — ms Figure 2.9 — 0.15 — Parameter RES pulse width Wait time after RES cancellation (at power-on) LVD0 enabled*1 LVD0 disabled*2 Wait time after RES cancellation (during LVD0 enabled*1 powered-on state) LVD0 disabled*2 tRESWT2 Wait time after internal reset cancellation (Watchdog timer reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset, software reset) tRESWT3 LVD0 enabled*1 LVD0 disabled*2 Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1. VCC RES tRESWP Internal reset tRESWT Figure 2.7 Reset input timing at power-on tRESW RES Internal reset tRESWT2 Figure 2.8 Reset input timing (1) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 36 of 113 RA2L1 Datasheet 2. Electrical Characteristics tRESWIW, tRESWIR Independent watchdog timer reset Software reset Internal reset tRESWT3 Figure 2.9 2.3.4 Table 2.21 Reset input timing (2) Wakeup Time Timing of recovery from low power modes (1) Parameter Recovery time from Software Standby mode*1 Highspeed mode Symbol Min Typ Max Unit Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (20 MHz)*2 tSBYMC — 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (20 MHz)*3 tSBYEX — 2.4 3.1 µs System clock source is HOCO (HOCO clock is 32 MHz) tSBYHO — 4.9 6.2 µs System clock source is HOCO (HOCO clock is 48 MHz) tSBYHO — 4.8 6 µs System clock source is HOCO (HOCO clock is 64 MHz) tSBYHO — 4.9 6.2 µs System clock source is MOCO (8 MHz) tSBYMO — 4 5 µs Test conditions Figure 2.10 Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 37 of 113 RA2L1 Datasheet Table 2.22 2. Electrical Characteristics Timing of recovery from low power modes (2) Parameter Recovery time from Software Standby mode*1 Middlespeed mode Symbol Min Typ Max Unit Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (20 MHz)*2 tSBYMC — 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (20 MHz)*3 VCC = 1.8 V to 5.5 V tSBYEX — 2.4 3.1 µs — 11.7 13 — 5.2 6.5 — 13.2 15 — 4 5 — 7.2 9 System clock source is main clock oscillator (20 MHz)*3 VCC = 1.6 V to 1.8 V System clock source is HOCO*4 VCC = 1.8 V to 5.5 V tSBYHO VCC = 1.6 V to 1.8 V System clock source is MOCO (8 MHz) VCC = 1.8 V to 5.5 V tSBYMO VCC = 1.6 V to 1.8 V Test conditions Figure 2.10 µs µs Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00. Note 4. The system clock is 24 MHz. Table 2.23 Timing of recovery from low power modes (3) Parameter Recovery time from Software Standby mode*1 Symbol Min Typ Max Unit Test conditions System clock source is main clock oscillator (2 MHz)*2 tSBYMC — 2 3 ms Figure 2.10 System clock source is main clock oscillator (2 MHz)*3 tSBYEX — 14.5 16 µs System clock source is MOCO (2 MHz) tSBYMO — 12 15 µs Low-speed Crystal mode resonator connected to main clock oscillator External clock input to main clock oscillator Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00. Table 2.24 Timing of recovery from low power modes (4) Parameter Recovery time from Software Standby mode*1 Subosc-speed mode Symbol Min Typ Max Unit Test conditions System clock source is sub-clock oscillator (32.768 kHz) tSBYSC — 0.85 1 ms Figure 2.10 System clock source is LOCO (32.768 kHz) tSBYLO — 0.85 1.2 ms Note 1. The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 38 of 113 RA2L1 Datasheet 2. Electrical Characteristics Oscillator ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYMO, tSBYHO Oscillator ICLK IRQ Software Standby mode tSBYSC, tSBYLO Figure 2.10 Software Standby mode cancellation timing Table 2.25 Timing of recovery from low power modes (5) Parameter Recovery time from Software Standby mode to Snooze mode Symbol Min Typ Max Unit Test conditions High-speed mode System clock source is HOCO tSNZ — 4.1 5.2 µs Figure 2.11 Middle-speed mode System clock source is HOCO (24 MHz) VCC = 1.8 V to 5.5 V tSNZ — 4.2 5.3 µs Middle-speed mode System clock source is HOCO (24 MHz) VCC = 1.6 V to 1.8 V tSNZ — 8.3 10 µs Low-speed mode System clock source is MOCO (2 MHz) tSNZ — 6.7 8.0 µs R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 39 of 113 RA2L1 Datasheet 2. Electrical Characteristics Oscillator ICLK (except DTC, SRAM) ICLK (to DTC, SRAM)*1 PCLK IRQ Software Standby mode Snooze mode tSNZ Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.11 2.3.5 Recovery timing from Software Standby mode to Snooze mode NMI and IRQ Noise Filter Table 2.26 NMI and IRQ noise filter Parameter Symbol Min NMI pulse width tNMIW 200 IRQ pulse width Note: Note: Note 1. Note 2. Note 3. Typ Max Unit Test conditions — — ns NMI digital filter disabled — — 200 — — tNMICK × 3.5*2 — — 200 — — tPcyc × 2*1 — — 200 — — tIRQCK × 3.5*3 — — tPcyc × tIRQW 2*1 tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns NMI digital filter enabled tNMICK × 3 ≤ 200 ns tNMICK × 3 > 200 ns ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns tIRQCK × 3 > 200 ns 200 ns minimum in Software Standby mode. If the clock source is being switched it is needed to add 4 clock cycle of switched source. tPcyc indicates the PCLKB cycle. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7). NMI tNMIW Figure 2.12 NMI interrupt input timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 40 of 113 RA2L1 Datasheet 2. Electrical Characteristics IRQ tIRQW Figure 2.13 2.3.6 Table 2.27 IRQ interrupt input timing I/O Ports, POEG, GPT, AGT, KINT, and ADC12 Trigger Timing I/O Ports, POEG, GPT, AGT, KINT, and ADC12 trigger timing Parameter I/O Ports Input data pulse width POEG POEG input trigger pulse width GPT Input capture pulse width 2.7 V ≤ VCC ≤ 5.5 V Symbol Min Max Unit Test conditions tPRW 2 — tPcyc Figure 2.14 2.4 V ≤ VCC < 2.7 V 3 1.6 V ≤ VCC < 2.4 V 4 tPOEW 3 — tPcyc Figure 2.15 tGTICW 1.5 — tPDcyc Figure 2.16 2.5 — 250 — ns Figure 2.17 2000 — ns 100 — ns 800 — ns 62.5 — ns 2.4 V ≤ VCC < 2.7 V 125 — ns 1.8 V ≤ VCC < 2.4 V 250 — ns Single edge Dual edge AGT AGTIO, AGTEE input cycle 1.8 V ≤ VCC ≤ 5.5 V tACYC*1 1.6 V ≤ VCC < 1.8 V AGTIO, AGTEE input high-level width, low-level width 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V tACKWH, tACKWL AGTIO, AGTO, AGTOA, AGTOB output cycle 2.7 V ≤ VCC ≤ 5.5 V tACYC2 1.6 V ≤ VCC < 1.8 V Figure 2.17 500 — ns ADC12 12-bit A/D converter trigger input pulse width tTRGW 1.5 — tPcyc Figure 2.18 KINT KRn (n = 00 to 07) pulse width tKR 250 — ns Figure 2.19 Note 1. Constraints on AGTIO input: tPcyc × 2 (tPcyc: PCLKB cycle) < tACYC. Port tPRW Figure 2.14 I/O ports input timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 41 of 113 RA2L1 Datasheet 2. Electrical Characteristics POEG input trigger tPOEW Figure 2.15 POEG input trigger timing Input capture tGTICW Figure 2.16 GPT input capture timing tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.17 AGT I/O timing ADTRG0 tTRGW Figure 2.18 ADC12 trigger input timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 42 of 113 RA2L1 Datasheet 2. Electrical Characteristics KRn tKR Note: n = 00 to 07 Figure 2.19 2.3.7 Table 2.28 Key interrupt input timing CAC Timing CAC timing Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter CAC CACREF input pulse width tPcyc*1 ≤ tCAC*2 tPcyc*1 > tCAC*2 Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tCAC + 3 × tPcyc — — ns — 5 × tCAC + 6.5 × tPcyc — — ns Note 1. tPcyc: PCLKB cycle. Note 2. tCAC: CAC count clock source cycle. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 43 of 113 RA2L1 Datasheet 2.3.8 2. Electrical Characteristics SCI Timing Table 2.29 SCI timing (1) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Max Unit Test conditions tScyc 125 — ns Figure 2.20 2.4 V ≤ VCC < 2.7 V 250 — 1.8 V ≤ VCC < 2.4 V 500 — 1.6 V ≤ VCC < 1.8 V 1000 — 2.7 V ≤ VCC ≤ 5.5 V 187.5 — 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — Parameter SCI Input clock cycle Asynchronous Clock synchronous 2.7 V ≤ VCC ≤ 5.5 V Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 20 ns Input clock fall time tSCKf — 20 ns tScyc 187.5 — ns 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — 2.7 V ≤ VCC ≤ 5.5 V 125 — 2.4 V ≤ VCC < 2.7 V 250 — 1.8 V ≤ VCC < 2.4 V 500 — 1.6 V ≤ VCC < 1.8 V 1000 — tSCKW 0.4 0.6 tScyc tSCKr — 20 ns — 30 — 20 — 30 Output clock cycle Asynchronous Clock synchronous 2.7 V ≤ VCC ≤ 5.5 V Output clock pulse width Output clock rise time 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V Output clock fall time 1.8 V ≤ VCC ≤ 5.5 V tSCKf 1.6 V ≤ VCC < 1.8 V Transmit data delay time (master) Clock synchronous 1.8 V ≤ VCC ≤ 5.5 V — 40 1.6 V ≤ VCC < 1.8 V — 45 Transmit data delay time (slave) Clock synchronous 2.7 V ≤ VCC ≤ 5.5 V — 55 2.4 V ≤ VCC < 2.7 V — 60 1.8 V ≤ VCC < 2.4 V — 100 1.6 V ≤ VCC < 1.8 V — 125 45 — 2.4 V ≤ VCC < 2.7 V 55 — 1.8 V ≤ VCC < 2.4 V 90 — 1.6 V ≤ VCC < 1.8 V 110 — 2.7 V ≤ VCC ≤ 5.5 V 40 — 1.6 V ≤ VCC < 2.7 V 45 — Receive data setup time (master) Clock synchronous 2.7 V ≤ VCC ≤ 5.5 V tTXD tRXS ns ns ns ns Receive data setup time (slave) Clock synchronous Receive data hold time (master) Clock synchronous tRXH 5 — ns Receive data hold time (slave) Clock synchronous tRXH 40 — ns R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Figure 2.21 ns Page 44 of 113 RA2L1 Datasheet 2. Electrical Characteristics tSCKW tSCKr tSCKf SCKn tScyc Note: n = 0 to 3, 9 Figure 2.20 SCK clock input timing SCKn tTXD TXDn tRXS tRXH RXDn Note: n = 0 to 3, 9 Figure 2.21 SCI input/output timing in clock synchronous mode R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 45 of 113 RA2L1 Datasheet Table 2.30 2. Electrical Characteristics SCI timing (2) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Max Unit*1 Test conditions tSPcyc 125 — ns Figure 2.22 2.4 V ≤ VCC < 2.7 V 250 — 1.8 V ≤ VCC < 2.4 V 500 — 1.6 V ≤ VCC < 1.8 V 1000 — 2.7 V ≤ VCC ≤ 5.5 V 187.5 — 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — Parameter Simple SPI SCK clock cycle output (master) SCK clock cycle input (slave) 2.7 V ≤ VCC ≤ 5.5 V SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc — 20 ns 1.6 V ≤ VCC < 1.8 V tSPCKr, tSPCKf — 30 2.7 V ≤ VCC ≤ 5.5 V tSU 45 — 2.4 V ≤ VCC < 2.7 V 55 — 1.8 V ≤ VCC < 2.4 V 80 — 1.6 V ≤ VCC < 1.8 V 110 — 2.7 V ≤ VCC ≤ 5.5 V 40 — 1.6 V ≤ VCC < 2.7 V 45 — 33.3 — SCK clock rise and fall time Data input setup time Master Slave Data input hold time 1.8 V ≤ VCC ≤ 5.5 V Master tH 40 — tLEAD 1 — tSPcyc SS input hold time tLAG 1 — tSPcyc tOD — 40 ns 1.6 V ≤ VCC < 1.8 V — 50 2.4 V ≤ VCC ≤ 5.5 V — 65 1.8 V ≤ VCC < 2.4 V — 100 1.6 V ≤ VCC < 1.8 V — 125 -10 — 2.4 V ≤ VCC < 2.7 V -20 — 1.8 V ≤ VCC < 2.4 V -30 — 1.6 V ≤ VCC < 1.8 V -40 — -10 — — 20 1.6 V ≤ VCC < 1.8 V — 30 1.8 V ≤ VCC ≤ 5.5 V — 20 1.6 V ≤ VCC < 1.8 V — 30 Master Slave Data output hold time Master 1.8 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V tOH Slave Data rise and fall time Master Slave R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 1.8 V ≤ VCC ≤ 5.5 V tDr, tDf Figure 2.23 to Figure 2.26 ns SS input setup time Data output delay time Slave ns ns ns Page 46 of 113 RA2L1 Datasheet Table 2.30 2. Electrical Characteristics SCI timing (2) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Symbol Min Max Unit*1 Test conditions tSA — 6 tPcyc Figure 2.26 24 MHz ≤ PCLKB ≤ 32 MHz — 7 PCLKB < 24 MHz — 6 — 6 — 6 24 MHz ≤ PCLKB ≤ 32 MHz — 7 PCLKB < 24 MHz — 6 — 6 Parameter Simple SPI Slave access time 2.4 V ≤ VCC ≤ 5.5 V 1.8 V ≤ VCC < 2.4 V 1.6 V ≤ VCC < 1.8 V Slave output release time 2.4 V ≤ VCC ≤ 5.5 V 1.8 V ≤ VCC < 2.4 V tREL 1.6 V ≤ VCC < 1.8 V tPcyc Note 1. tPcyc: PCLKB cycle. tSPCKr tSPCKWH SCKn master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH SCKn slave select input VIH VIL tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Note: n = 0 to 3, 9 Figure 2.22 SCI simple SPI mode clock timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 47 of 113 RA2L1 Datasheet 2. Electrical Characteristics SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output Note: tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n = 0 to 3, 9 Figure 2.23 SCI simple SPI mode timing (master, CKPH = 1) SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH MOSIn output Note: DATA LSB IN tDr, tDf tOD MSB OUT MSB IN DATA LSB OUT IDLE MSB OUT n = 0 to 3, 9 Figure 2.24 SCI simple SPI mode timing (master, CKPH = 0) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 48 of 113 RA2L1 Datasheet 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tOH tSA MISOn output MSB OUT tSU MOSIn input Note: tOD DATA tREL LSB OUT MSB IN MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n = 0 to 3, 9 Figure 2.25 SCI simple SPI mode timing (slave, CKPH = 1) tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input Note: tREL DATA MSB OUT tDr, tDf tH MSB IN LSB OUT DATA LSB IN MSB IN n = 0 to 3, 9 Figure 2.26 SCI simple SPI mode timing (slave, CKPH = 0) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 49 of 113 RA2L1 Datasheet Table 2.31 2. Electrical Characteristics SCI timing (3) Conditions: VCC = AVCC0 = 2.7 to 5.5 V Parameter Simple IIC (Standard mode) Simple IIC (Fast mode) Symbol Min Max Unit Test conditions SDA input rise time tSr — 1000 ns Figure 2.27 SDA input fall time tSf — 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc*1 ns Data input setup time tSDAS 250 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*2 — 400 pF SDA input rise time tSr — 300 ns SDA input fall time tSf — 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc*1 ns Data input setup time tSDAS 100 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*2 — 400 pF Figure 2.27 Note 1. tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits. Note 2. Cb indicates the total capacity of the bus line. VIH SDAn VIL tSr tSf tSP SCLn P*1 P*1 Sr*1 S*1 tSDAH tSDAS Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA Note: n = 0 to 3, 9 Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.27 SCI simple IIC mode timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 50 of 113 RA2L1 Datasheet 2.3.9 Table 2.32 2. Electrical Characteristics SPI Timing SPI timing (1 of 3) Symbol Min Max Unit*1 tSPcyc 62.5 — ns 2.4 V ≤ VCC < 2.7 V 125 — 1.8 V ≤ VCC < 2.4 V 250 — 1.6 V ≤ VCC < 1.8 V 500 — 2.7 V ≤ VCC ≤ 5.5 V 187.5 — 2.4 V ≤ VCC < 2.7 V 375 — 1.8 V ≤ VCC < 2.4 V 750 — 1.6 V ≤ VCC < 1.8 V 1500 — (tSPcyc tSPCKr tSPCKf) / 2 3 — 3 × tPcyc — (tSPcyc tSPCKr tSPCKf) / 2 3 — 3 × tPcyc — — 10 — 15 1.8 V ≤ VCC ≤ 2.4 V — 20 1.6 V ≤ VCC < 1.8 V — 30 — 0.1 Parameter SPI RSPCK clock cycle Master Slave RSPCK clock high pulse width 2.7 V ≤ VCC ≤ 5.5 V Master tSPCKWH Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V Input R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 tSPCKr, tSPCKf Test conditions Figure 2.28 C = 30 pF ns ns ns µs/V Page 51 of 113 RA2L1 Datasheet Table 2.32 2. Electrical Characteristics SPI timing (2 of 3) Symbol Min Max Unit*1 tSU 10 — ns 30 — 10 — 55 — 8 MHz < PCLKB ≤ 16 MHz 30 — PCLKB ≤ 8 MHz 10 — 1.6 V ≤ VCC < 1.8 V 10 — 2.4 V ≤ VCC ≤ 5.5 V 10 — 1.8 V ≤ VCC < 2.4 V 15 — 1.6 V ≤ VCC < 1.8 V 20 — Parameter SPI Data input setup time Master 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V 16 MHz < PCLKB ≤ 32 MHz PCLKB ≤ 16 MHz 1.8 V ≤ VCC < 2.4 V 16 MHz < PCLKB ≤ 32 MHz Slave Data input hold time SPI SSL setup time Master (RSPCK is PCLKB/2) tHF 0 — Master (RSPCK is not PCLKB/2) tH tPcyc — Slave tH 20 — tLEAD -30 + N × tSPcyc*2 — -50 + N × tSPcyc*2 — 6 × tPcyc — ns -30 + N × tSPcyc*3 — ns 6 × tPcyc — ns — 14 ns 2.4 V ≤ VCC < 2.7 V — 20 1.8 V ≤ VCC < 2.4 V — 25 1.6 V ≤ VCC < 1.8 V — 30 2.7 V ≤ VCC ≤ 5.5 V — 50 2.4 V ≤ VCC < 2.7 V — 60 1.8 V ≤ VCC < 2.4 V — 85 1.6 V ≤ VCC < 1.8 V — 110 0 — 0 — tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc 6 × tPcyc — Master 1.8 V ≤ VCC ≤ 5.5 V 1.6 V ≤ VCC < 1.8 V Slave SSL hold time Master tLAG Slave Data output delay time Master Slave Data output hold time 2.7 V ≤ VCC ≤ 5.5 V Master tOD tOH Slave Successive Master transmission delay time Slave R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 tTD Test conditions Figure 2.29 to Figure 2.34 C = 30 pF ns ns ns ns Page 52 of 113 RA2L1 Datasheet Table 2.32 2. Electrical Characteristics SPI timing (3 of 3) Symbol Min Max Unit*1 tDr, tDf — 10 ns 2.4 V ≤ VCC < 2.7 V — 15 1.8 V ≤ VCC < 2.4 V — 20 1.6 V ≤ VCC < 1.8 V — 30 — 1 µs — 10 ns — 15 1.8 V ≤ VCC < 2.4 V — 20 1.6 V ≤ VCC < 1.8 V — 30 — 1 µs — 2 × tPcyc + 100 ns 1.8 V ≤ VCC < 2.4 V — 2 × tPcyc + 140 1.6 V ≤ VCC < 1.8 V — 2 × tPcyc + 180 — 2 × tPcyc + 100 1.8 V ≤ VCC < 2.4 V — 2 × tPcyc + 140 1.6 V ≤ VCC < 1.8 V — 2 × tPcyc + 180 Parameter SPI MOSI and MISO rise and fall time Output 2.7 V ≤ VCC ≤ 5.5 V Input SSL rise and Output fall time 2.7 V ≤ VCC ≤ 5.5 V tSSLr, tSSLf 2.4 V ≤ VCC < 2.7 V Input Slave access time Slave output release time 2.4 V ≤ VCC ≤ 5.5 V tSA 2.4 V ≤ VCC ≤ 5.5 V tREL Test conditions Figure 2.29 to Figure 2.34 C = 30 pF Figure 2.33 and Figure 2.34 C = 30 pF ns Note 1. tPcyc: PCLKB cycle. Note 2. N is set as an integer from 1 to 8 by the SPCKD register. Note 3. N is set as an integer from 1 to 8 by the SSLND register. tSPCKr tSPCKWH RSPCKn master select output VOH VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH RSPCKn slave select input VIH VIL tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Note: n = A or B Figure 2.28 SPI clock timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 53 of 113 RA2L1 Datasheet 2. Electrical Characteristics tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output Note: tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n = A or B i = 0, 1 Figure 2.29 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2) tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tDr, tDf MOSIn output Note: tHF tOH MSB OUT LSB IN DATA MSB IN tOD DATA LSB OUT IDLE MSB OUT n = A or B i = 0, 1 Figure 2.30 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 54 of 113 RA2L1 Datasheet 2. Electrical Characteristics tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH LSB IN MSB OUT MSB IN tDr, tDf tOD MOSIn output Note: DATA DATA LSB OUT IDLE MSB OUT n = A or B i = 0, 1 Figure 2.31 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to any value other than 1/2) tTD SSLni output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tOH MOSIn output Note: tH DATA LSB IN tDr, tDf tOD MSB OUT MSB IN DATA LSB OUT IDLE MSB OUT n = A or B i = 0, 1 Figure 2.32 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 55 of 113 RA2L1 Datasheet 2. Electrical Characteristics tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input Note: tOD DATA tREL LSB OUT MSB IN MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n = A or B Figure 2.33 SPI timing (slave, CPHA = 0) tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input Note: tREL DATA MSB OUT tDr, tDf tH MSB IN LSB OUT DATA LSB IN MSB IN n = A or B Figure 2.34 SPI timing (slave, CPHA = 1) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 56 of 113 RA2L1 Datasheet 2.3.10 2. Electrical Characteristics IIC Timing Table 2.33 IIC timing Conditions: VCC = AVCC0 = 2.7 to 5.5 V Symbol Min*1 Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 — ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA input rise time tSr — 1000 ns SCL, SDA input fall time tSf — 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (when wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 — ns SDA input bus free time (when wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 — ns START condition input hold time tSTAH (when wakeup function is disabled) tIICcyc + 300 — ns START condition input hold time (when wakeup function is enabled) tSTAH 1 (5) × tIICcyc + tPcyc + 300 — ns Repeated START condition input setup time tSTAS 1000 — ns STOP condition input setup time tSTOS 1000 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb — 400 pF SCL input cycle time tSCL 6 (12) × tIICcyc + 600 — ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA input rise time tSr — 300 ns SCL, SDA input fall time tSf — 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 — ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc+ 300 — ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 — ns START condition input hold time tSTAH (When wakeup function is enabled) 1 (5) × tIICcyc + tPcyc + 300 — ns Repeated START condition input setup time tSTAS 300 — ns STOP condition input setup time tSTOS 300 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb — 400 pF Parameter IIC (standard mode, SMBus) IIC (Fast mode) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Figure 2.35 Figure 2.35 Page 57 of 113 RA2L1 Datasheet 2. Electrical Characteristics Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. VIH SDAn VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCLn P*1 tSf P*1 Sr*1 S*1 tSCLL tSr tSCL tSDAS tSDAH Note: n = 0, 1 Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.35 2.3.11 Table 2.34 I2C bus interface input/output timing CLKOUT Timing CLKOUT timing Parameter CLKOUT CLKOUT pin output cycle*1 CLKOUT pin high pulse width*2 CLKOUT pin low pulse width*2 CLKOUT pin output rise time CLKOUT pin output fall time Symbol Min Max Unit Test conditions tCcyc 62.5 — ns Figure 2.36 1.8 V ≤ VCC < 2.7 V 125 — 1.6 V ≤ VCC < 1.8 V 250 — 15 — 1.8 V ≤ VCC < 2.7 V 30 — 1.6 V ≤ VCC < 1.8 V 150 — 15 — 1.8 V ≤ VCC < 2.7 V 30 — 1.6 V ≤ VCC < 1.8 V 150 — — 12 1.8 V ≤ VCC < 2.7 V — 25 1.6 V ≤ VCC < 1.8 V — 50 — 12 1.8 V ≤ VCC < 2.7 V — 25 1.6 V ≤ VCC < 1.8 V — 50 2.7 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V 2.7 V ≤ VCC ≤ 5.5 V tCH tCL tCr tCf ns ns ns ns Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, specifications in Table 2.34 should be satisfied with 45% to 55% of input duty cycle. Note 2. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b). R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 58 of 113 RA2L1 Datasheet 2. Electrical Characteristics tCcyc tCH tCf CLKOUT tCr tCL Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 2.36 2.4 CLKOUT output timing ADC12 Characteristics VREFH0 VREFH0 5.5 5.5 A/D Conversion Characteristics (1) 5.0 A/D Conversion Characteristics (2) 4.0 3.0 2.7 2.4 A/D Conversion Characteristics (3) 5.0 3.0 2.7 2.4 2.0 2.0 1.8 1.6 1.0 1.0 2.4 2.7 1.0 2.0 3.0 5.5 4.0 A/D Conversion Characteristics (4) 4.0 A/D Conversion Characteristics (5) A/D Conversion Characteristics (6) A/D Conversion Characteristics (7) 1.8 AVCC0 5.0 1.0 2.4 2.7 1.6 2.0 ADCSR.ADHSC = 0 3.0 5.5 4.0 AVCC0 5.0 ADCSR.ADHSC = 1 Figure 2.37 AVCC0 to VREFH0 voltage range Table 2.35 A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 4.5 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 64 MHz ADACSR.ADSAC = 0 48 MHz ADACSR.ADSAC = 1 — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 1.3*3 kΩ High-precision channel — — 5.0*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 59 of 113 RA2L1 Datasheet Table 2.35 2. Electrical Characteristics A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 4.5 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Conversion time*1 (Operation at PCLKD = 64 MHz) Conversion time*1 (Operation at PCLKD = 48 MHz) Min Typ Max Unit Test conditions Permissible signal source impedance Max. = 0.3 kΩ 0.70 (0.211)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0D ADACSR.ADSAC = 0 1.34 (0.852)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x36 ADACSR.ADSAC = 0 Permissible signal source impedance Max. = 0.3 kΩ 0.67 (0.219)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 1.29 (0.844)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x28 ADACSR.ADSAC = 1 — ±1.0 ±4.5 LSB High-precision channel ±6.0 LSB Other than specified ±4.5 LSB High-precision channel ±6.0 LSB Other than specified Offset error Full-scale error — ±1.0 Quantization error — ±0.5 — LSB — Absolute accuracy — ±2.5 ±5.0 LSB High-precision channel ±8.0 LSB Other than specified DNL differential nonlinearity error — ±1.0 — LSB — INL integral nonlinearity error — ±1.5 ±3.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.36 A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 48 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 1.9*3 kΩ High-precision channel — — 6.0*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 60 of 113 RA2L1 Datasheet Table 2.36 2. Electrical Characteristics A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Conversion time*1 (Operation at PCLKD = 48 MHz) Permissible signal source impedance Max. = 0.3 kΩ Offset error Full-scale error Min Typ Max Unit Test conditions 0.67 (0.219)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 1.29 (0.844)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x28 ADACSR.ADSAC = 1 — ±1.0 ±5.5 LSB High-precision channel ±7.0 LSB Other than specified ±5.5 LSB High-precision channel ±7.0 LSB Other than specified — ±1.0 Quantization error — ±0.5 — LSB — Absolute accuracy — ±2.5 ±6.0 LSB High-precision channel ±9.0 LSB Other than specified DNL differential nonlinearity error — ±1.0 — LSB — INL integral nonlinearity error — ±1.5 ±3.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.37 A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min PCLKD (ADCLK) frequency 1 Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution time*1 Conversion (Operation at PCLKD = 32 MHz) Permissible signal source impedance Max. = 1.3 kΩ R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Max Unit Test conditions — 32 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 2.2*3 kΩ High-precision channel — — 7.0*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 1.00 (0.328)*4 — — µs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 1.94 (1.266)*4 — — µs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0x28 ADACSR.ADSAC = 1 Page 61 of 113 RA2L1 Datasheet Table 2.37 2. Electrical Characteristics A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Offset error — Full-scale error — ±1.0 ±1.0 Max Unit Test conditions ±5.5 LSB High-precision channel ±7.0 LSB Other than specified ±5.5 LSB High-precision channel ±7.0 LSB Other than specified Quantization error — ±0.5 — LSB — Absolute accuracy — ±2.50 ±6.0 LSB High-precision channel ±9.0 LSB Other than specified DNL differential nonlinearity error — ±1.0 — LSB — INL integral nonlinearity error — ±1.5 ±3.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.38 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter PCLKD (ADCLK) frequency Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution time*1 Conversion (Operation at PCLKD = 24 MHz) Permissible signal source impedance Max. = 1.1 kΩ Offset error Full-scale error Quantization error R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Min Typ Max Unit Test conditions 1 — 24 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 1.9*3 kΩ High-precision channel — — 6*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 1.58 (0.438)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 2.0 (0.854)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±6.0 LSB High-precision channel ±7.5 LSB Other than specified ±6.0 LSB High-precision channel ±7.5 LSB Other than specified — LSB — — — ±1.25 ±1.25 ±0.5 Page 62 of 113 RA2L1 Datasheet Table 2.38 2. Electrical Characteristics A/D conversion characteristics (4) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Absolute accuracy — ±3.25 ±7.0 LSB High-precision channel ±10.0 LSB Other than specified DNL differential nonlinearity error — ±1.5 — LSB — INL integral nonlinearity error — ±1.75 ±4.0 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.39 A/D conversion characteristics (5) in low-power A/D conversion mode Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V*5, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 16 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 2.2*3 kΩ High-precision channel — — 7*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 2.38 (0.656)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 3.0 (1.281)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±6.0 LSB High-precision channel ±7.5 LSB Other than specified ±6.0 LSB High-precision channel ±7.5 LSB Other than specified Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 16 MHz) Permissible signal source impedance Max. = 2.2 kΩ Offset error Full-scale error — ±1.25 ±1.25 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.25 ±7.0 LSB High-precision channel ±10.0 LSB Other than specified DNL differential nonlinearity error — ±1.5 — LSB — INL integral nonlinearity error — ±1.75 ±4.0 LSB — Note: The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 63 of 113 RA2L1 Datasheet 2. Electrical Characteristics Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Note 3. Reference data. Note 4. ( ) lists sampling time. Note 5. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Table 2.40 A/D conversion characteristics (6) in low-power A/D conversion mode Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V*5 (AVCC0 = VCC when VCC < 2.0 V), VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 8 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 6*3 kΩ High-precision channel — — 14*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 4.75 (1.313)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 6.0 (2.563)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±7.5 LSB High-precision channel ±10.0 LSB Other than specified ±7.5 LSB High-precision channel ±10.0 LSB Other than specified Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 8 MHz) Permissible signal source impedance Max. = 5 kΩ Offset error Full-scale error — ±1.25 ±1.5 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.75 ±9.5 LSB High-precision channel ±13.5 LSB Other than specified DNL differential nonlinearity error — ±2.0 — LSB — INL integral nonlinearity error — ±2.25 ±4.5 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 64 of 113 RA2L1 Datasheet Table 2.41 2. Electrical Characteristics A/D conversion characteristics (7) in low-power A/D conversion mode Conditions: VCC = AVCC0 = VREFH0 = 1.6 to 5.5 V*5 (AVCC0 = VCC when VCC < 2.0 V), VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions PCLKD (ADCLK) frequency 1 — 4 MHz — — — 9*3 pF High-precision channel — — 10*3 pF Normal-precision channel — — 12*3 kΩ High-precision channel — — 28*3 kΩ Normal-precision channel 0 — VREFH0 V — — — 12 Bit — 9.5 (2.625)*4 — — µs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x0A ADACSR.ADSAC = 1 12.0 (5.125)*4 — — µs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0x14 ADACSR.ADSAC = 1 — ±1.25 ±7.5 LSB High-precision channel ±10.0 LSB Other than specified ±7.5 LSB High-precision channel ±10.0 LSB Other than specified Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Resolution Conversion time*1 (Operation at PCLKD = 4 MHz) Permissible signal source impedance Max. = 9.9 kΩ Offset error Full-scale error — ±1.5 Quantization error — ±0.5 — LSB — Absolute accuracy — ±3.75 ±9.5 LSB High-precision channel ±13.5 LSB Other than specified DNL differential nonlinearity error — ±2.0 — LSB — INL integral nonlinearity error — ±2.25 ±4.5 LSB — Note: Note 1. Note 2. Note 3. Note 4. Note 5. The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics. Reference data. ( ) lists sampling time. When VREFH0 < AVCC0, the MAX. values are as follows. Absolute accuracy/Offset error/Full-scale error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec. INL integral non-linearity error: For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec. Figure 2.38 shows the equivalent circuit for analog input. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 65 of 113 RA2L1 Datasheet 2. Electrical Characteristics MCU Analog input ANn Rs ADC12 Vi Cin Note: Cs Terminal leakage current is not shown in this figure. Figure 2.38 Equivalent circuit for analog input Table 2.42 12-bit A/D converter channel classification Classification Channel Conditions Remarks AVCC0 = 1.6 to 5.5 V Pins AN000 to AN014 cannot be used as general I/O, TS transmission, when the A/D converter is in use. High-precision channel AN000 to AN014 Normal-precision channel AN017 to AN020 Internal reference voltage input channel Internal reference voltage AVCC0 = 1.8 to 5.5 V — Temperature sensor input channel Temperature sensor output AVCC0 = 1.8 to 5.5 V — Input channel from CTSU CTSU TSCAP voltage AVCC0 = 1.6 to 5.5 V — Table 2.43 A/D internal reference voltage characteristics Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V*1 Parameter Min Typ Max Unit Test conditions Internal reference voltage input channel*2 1.42 1.48 1.54 V — PCLKD (ADCLK) frequency*3 1 — 2 MHz — Sampling time*4 5.0 — — µs — Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 1.8 V. Note 2. The 12-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 12-bit A/D converter. Note 3. When the internal reference voltage is selected as the high-potential reference voltage. Note 4. When the internal reference voltage is converted. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 66 of 113 RA2L1 Datasheet 2. Electrical Characteristics 0xFFF Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy Offset error 0x000 0 Figure 2.39 Analog input voltage VREFH0 (full-scale) Illustration of 12-bit A/D converter characteristic terms Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. Offset error Offset error is the difference between the transition point of the ideal first output code and the actual first output code. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 67 of 113 RA2L1 Datasheet 2. Electrical Characteristics Full-scale error Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code. 2.5 DAC12 Characteristics Table 2.44 12-bit D/A conversion characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Reference voltage = AVCC0 or AVSS0 selected Parameter Min Typ Max Unit Test conditions Resolution — — 12 bit — Resistive load 30 — — kΩ — Capacitive load — — 50 pF — Output voltage range 0.35 — AVCC0-0.47 V — DNL differential nonlinearity error — ±0.5 ±2.0 LSB — INL integral nonlinearity error — ±2.0 ±8.0 LSB — Offset error — — ±30 mV — Full-scale error — — ±30 mV — Output impedance — 5 — Ω — Conversion time — — 30 µs — Gain error Full-scale error Upper output limit Integral nonlinearity error (INL) Offset error Output analog voltage 1-LSB width for ideal D/A conversion characteristic Ideal output voltage Differential nonlinearity error (DNL) *1 Lower output limit Actual D/A conversion characteristic Offset error Ideal output voltage 0x000 D/A converter input code 0xFFF Note 1. Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed. Figure 2.40 Illustration of D/A converter characteristic terms R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 68 of 113 RA2L1 Datasheet 2. Electrical Characteristics Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion characteristics and the width of the actual output voltage. Offset error Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the ideal output voltage based on the input code. Full-scale error Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the ideal output voltage based on the input code. 2.6 TSN Characteristics Table 2.45 TSN characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Relative accuracy — — ± 1.5 — °C 2.4 V or above — ± 2.0 — °C Below 2.4 V Temperature slope — — -3.3 — mV/°C — Output voltage (at 25°C) — — 1.05 — V VCC = 3.3 V Temperature sensor start time tSTART — — 5 µs — Sampling time — 5 — — µs 2.7 OSC Stop Detect Characteristics Table 2.46 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr — — 1 ms Figure 2.41 Main clock OSTDSR.OSTDF tdr MOCO clock ICLK Figure 2.41 Oscillation stop detection timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 69 of 113 RA2L1 Datasheet 2.8 2. Electrical Characteristics POR and LVD Characteristics Table 2.47 Power-on reset circuit and voltage detection circuit characteristics (1) (1 of 2) Parameter Voltage detection level*1 Power-on reset (POR) Voltage detection circuit (LVD0)*2 Symbol Min Typ Max Unit Test Conditions When power supply rise VPOR 1.47 1.51 1.55 V Figure 2.42 When power supply fall VPDR 1.46 1.50 1.54 When power supply rise Vdet0_0 3.74 3.91 4.06 3.68 3.85 4.00 2.73 2.9 3.01 2.68 2.85 2.96 2.44 2.59 2.70 2.38 2.53 2.64 1.83 1.95 2.07 1.78 1.90 2.02 1.66 1.75 1.88 1.60 1.69 1.82 4.23 4.39 4.55 4.13 4.29 4.45 4.07 4.25 4.39 3.98 4.16 4.30 3.97 4.14 4.29 3.86 4.03 4.18 3.74 3.92 4.06 3.68 3.86 4.00 3.05 3.17 3.29 2.98 3.10 3.22 2.95 3.06 3.17 2.89 3.00 3.11 2.86 2.97 3.08 2.79 2.90 3.01 2.74 2.85 2.96 2.68 2.79 2.90 When power supply fall When power supply rise Vdet0_1 When power supply fall When power supply rise Vdet0_2 When power supply fall When power supply rise Vdet0_3 When power supply fall When power supply rise Vdet0_4 When power supply fall Voltage detection level*1 Voltage detection circuit (LVD1)*3 When power supply rise Vdet1_0 When power supply fall When power supply rise Vdet1_1 When power supply fall When power supply rise Vdet1_2 When power supply fall When power supply rise Vdet1_3 When power supply fall When power supply rise Vdet1_4 When power supply fall When power supply rise Vdet1_5 When power supply fall When power supply rise Vdet1_6 When power supply fall When power supply rise When power supply fall R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Vdet1_7 Figure 2.43 V Figure 2.44 At falling edge VCC V Figure 2.45 At falling edge VCC Page 70 of 113 RA2L1 Datasheet Table 2.47 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (1) (2 of 2) Parameter Voltage detection level*1 Voltage detection circuit (LVD1)*3 When power supply rise Symbol Min Typ Max Unit Test Conditions Vdet1_8 2.63 2.75 2.85 V 2.58 2.68 2.78 Figure 2.45 At falling edge VCC 2.54 2.64 2.75 2.48 2.58 2.68 2.43 2.53 2.63 2.38 2.48 2.58 2.16 2.26 2.36 2.10 2.20 2.30 1.88 2 2.09 1.84 1.96 2.05 1.78 1.9 1.99 1.74 1.86 1.95 1.67 1.79 1.88 1.63 1.75 1.84 1.65 1.7 1.78 1.60 1.65 1.73 4.20 4.40 4.57 V 4.11 4.31 4.48 Figure 2.46 At falling edge VCC 4.05 4.25 4.42 3.97 4.17 4.34 3.91 4.11 4.28 3.83 4.03 4.20 3.71 3.91 4.08 3.64 3.84 4.01 When power supply fall When power supply rise Vdet1_9 When power supply fall When power supply rise Vdet1_A When power supply fall When power supply rise Vdet1_B When power supply fall When power supply rise Vdet1_C When power supply fall When power supply rise Vdet1_D When power supply fall When power supply rise Vdet1_E When power supply fall When power supply rise Vdet1_F When power supply fall Voltage detection level*1 Voltage detection circuit (LVD2)*4 When power supply rise Vdet2_0 When power supply fall When power supply rise Vdet2_1 When power supply fall When power supply rise Vdet2_2 When power supply fall When power supply rise Vdet2_3 When power supply fall Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection. Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL0[2:0] bits. Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits. Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits. Table 2.48 Power-on reset circuit and voltage detection circuit characteristics (2) (1 of 2) Parameter Symbol Min Typ Max Unit Test Conditions Wait time after power-on reset cancellation LVD0: enable tPOR — 4.3 — ms — LVD0: disable tPOR — 3.7 — ms — Wait time after voltage monitor 0, 1, 2 reset cancellation LVD0: enable*1 tLVD0,1,2 — 1.4 — ms — LVD0: disable*2 tLVD1,2 — 0.7 — ms — Power-on reset response delay time*3 tdet — — 500 µs Figure 2.42, Figure 2.43 LVD0 response delay time*3 tdet — — 500 µs Figure 2.44 LVD1 response delay time*3 tdet — — 350 µs Figure 2.45 LVD2 response delay time*3 tdet — — 600 µs Figure 2.46 Minimum VCC down time tVOFF 500 — — µs Figure 2.42, VCC = 1.0 V or above Power-on reset enable time tW (POR) 1 — — ms Figure 2.43, VCC = below 1.0 V R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 71 of 113 RA2L1 Datasheet Table 2.48 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (2) (2 of 2) Parameter Symbol Min Typ Max Unit Test Conditions LVD1 operation stabilization time (after LVD1 is enabled) Td (E-A) — — 300 µs Figure 2.45 LVD2 operation stabilization time (after LVD2 is enabled) Td (E-A) — — 1200 µs Figure 2.46 Hysteresis width (POR) VPORH — 10 — mV — Hysteresis width (LVD0, LVD1 and LVD2) VLVH — 60 — mV LVD0 selected — 110 — Vdet1_0 to Vdet1_2 selected — 70 — Vdet1_3 to Vdet1_9 selected — 60 — Vdet1_A to Vdet1_B selected — 50 — Vdet1_C to Vdet1_F selected — 90 — LVD2 selected Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1. Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. tVOFF VCC VPOR 1.0 V Internal reset signal (active-low) tdet Figure 2.42 tdet tPOR Voltage detection reset timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 72 of 113 RA2L1 Datasheet 2. Electrical Characteristics VPOR VCC 1.0 V tw(POR) Internal reset signal (active-low) *1 tdet tPOR Note 1. tw(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When VCC turns on, maintain tw(POR) for 1.0 ms or more. Figure 2.43 Power-on reset timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.44 tdet tLVD0 Voltage detection circuit timing (Vdet0) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 73 of 113 RA2L1 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E Td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.45 Voltage detection circuit timing (Vdet1) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 74 of 113 RA2L1 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet2 LVCMPCR.LVD2E Td(E-A) LVD2 Comparator output LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.46 2.9 Voltage detection circuit timing (Vdet2) CTSU Characteristics Table 2.49 CTSU characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF — 2.10 Comparator Characteristics Table 2.50 ACMPLP characteristics (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Min Typ Max Unit Test conditions Reference voltage range VREF 0 — VCC-1.4 V — Input voltage range VI 0 — VCC V — Internal reference voltage*1 — 1.34 1.44 1.54 V — Output delay time Td — — 1.2 µs VCC = 3.0 V Low-speed mode — — 9 µs Window mode — — 2 µs Offset voltage High-speed mode High-speed mode — — — 50 mV — Low-speed mode — — — 40 mV — Window mode — — — 60 mV — R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 75 of 113 RA2L1 Datasheet Table 2.50 2. Electrical Characteristics ACMPLP characteristics (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Min Typ Internal reference voltage for window mode VRFH — VRFL Tcmp Operation stabilization wait time High-speed mode Low-speed mode Max Unit Test conditions 0.76 × VCC — V — — 0.24 × VCC — V — 100 — — µs — 200 — — Note 1. The internal reference voltage can be selected as ACMPLP reference voltage only when 2.94 V ≤ VCC ≤ 5.50 V. Output voltage Td Td +100 mV Reference voltage Input voltage -100 mV Figure 2.47 2.11 Output delay time Flash Memory Characteristics 2.11.1 Table 2.51 Code Flash Memory Characteristics Code flash characteristics (1) Parameter Symbol Min Typ Max Unit Conditions Reprogramming/erasure cycle*1 NPEC 1000 — — Times — Data hold time After 1000 times NPEC tDRP 20*2 *3 — — Year Ta = +85°C Ta = +105°C Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 512 times for different addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled (overwriting is prohibited). Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics. Note 3. This result is target spec, may changed after reliability testing. Table 2.52 Code flash characteristics (2) (1 of 2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 1 MHz Parameter ICLK = 48 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 4-byte tP4 — 86 732 — 34 321 µs Erasure time 2-KB tE2K — 12.5 355 — 5.6 215 ms Blank check time 4-byte tBC4 — — 46.5 — — 8.3 µs 2-KB tBC2K — — 3681 — — 240 µs tSED — — 22.3 — — 10.5 µs Erase suspended time R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 76 of 113 RA2L1 Datasheet Table 2.52 2. Electrical Characteristics Code flash characteristics (2) (2 of 2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 1 MHz ICLK = 48 MHz Parameter Symbol Min Typ Max Min Typ Max Unit Access window information program Start-up area selection and security setting time tAWSSAS — 21.2 570 — 11.4 423 ms OCD/serial programmer ID setting time*1 tOSIS — 84.7 2280 — 45.3 1690 ms Flash memory mode transition wait time 1 tDIS 2 — — 2 — — µs Flash memory mode transition wait time 2 tMS 15 — — 15 — — µs Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. Total time of four commands. Table 2.53 Code flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V ICLK = 8 MHz*2 ICLK = 1 MHz Parameter Symbol Min Typ Max Min Typ Max Unit Programming time 4-byte tP4 — 86 732 — 39 356 µs Erasure time 2-KB tE2K — 12.5 355 — 6.2 227 ms Blank check time 4-byte tBC4 — — 46.5 — — 11.3 µs 2-KB tBC2K — — 3681 — — 534 µs Erase suspended time tSED — — 22.3 — — 11.7 µs Access window information program Start-up area selection and security setting time tAWSSAS — 21.2 570 — 12.2 435 ms OCD/serial programmer ID setting time*1 tOSIS — 84.7 2280 — 48.7 1740 ms Flash memory mode transition wait time 1 tDIS 2 — — 2 — — µs Flash memory mode transition wait time 2 tMS 15 — — 15 — — µs Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. Total time of four commands. Note 2. When 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V Table 2.54 Code flash characteristics (4) (1 of 2) Low-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V ICLK = 1 MHz Parameter ICLK = 2 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 4-byte tP4 — 86 732 — 57 502 µs Erasure time 2-KB tE2K — 12.5 355 — 8.8 280 ms R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 77 of 113 RA2L1 Datasheet Table 2.54 2. Electrical Characteristics Code flash characteristics (4) (2 of 2) Low-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V ICLK = 1 MHz Parameter ICLK = 2 MHz Symbol Min Typ Max Min Typ Max Unit 4-byte tBC4 — — 46.5 — — 23.3 µs 2-KB tBC2K — — 3681 — — 1841 µs Erase suspended time tSED — — 22.3 — — 16.2 µs Access window information program Start-up area selection and security setting time tAWSSAS — 21.2 570 — 15.9 491 ms OCD/serial programmer ID setting time*1 tOSIS — 84.7 2280 — 63.5 1964 ms Flash memory mode transition wait time 1 tDIS 2 — — 2 — — µs Flash memory mode transition wait time 2 tMS 15 — — 15 — — µs Blank check time Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. Total time of four commands. 2.11.2 Table 2.55 Data Flash Memory Characteristics Data flash characteristics (1) Parameter Symbol Min Typ Max Unit Conditions Reprogramming/erasure cycle*1 NDPEC 100000 1000000 — Times — Data hold time tDDRP 20*2 *3 — — Year After 100000 times of NDPEC 5*2 *3 — — Year Ta = +85°C Ta = +105°C After 1000000 times of NDPEC — 1*2 *3 — Year After 10000 times of NDPEC Ta = +25°C Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,024 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.) Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics. Note 3. These results are target spec, may changed after reliability testing. Table 2.56 Data flash characteristics (2) High-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V ICLK = 4 MHz Parameter ICLK = 48 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 — 45 404 — 34 321 µs Erasure time 1-KB tDE1K — 8.8 280 — 6.1 224 ms Blank check time 1-byte tDBC1 — — 15.2 — — 8.3 µs 1-KB tDBC1K — — 1832 — — 466 µs Suspended time during erasing tDSED — — 13.2 — — 10.5 µs Data flash STOP recovery time tDSTOP 250 — — 250 — — ns Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 78 of 113 RA2L1 Datasheet Note: 2. Electrical Characteristics The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Table 2.57 Data flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V ICLK = 8 MHz*1 ICLK = 4 MHz Parameter Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 — 45 404 — 39 356 µs Erasure time 1-KB tDE1K — 8.8 280 — 7.3 248 ms Blank check time 1-byte tDBC1 — — 15.2 — — 11.3 µs 1-KB tDBC1K — — 1.84 — — 1.06 ms Suspended time during erasing tDSED — — 13.2 — — 11.7 µs Data flash STOP recovery time tDSTOP 250 — — 250 — — ns Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 1. When 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V Table 2.58 Data flash characteristics (4) Low-speed operating mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V ICLK = 1 MHz Parameter ICLK = 2 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 — 86 732 — 57 502 µs Erasure time 1-KB tDE1K — 19.7 504 — 12.4 354 ms Blank check time 1-byte tDBC1 — — 46.5 — — 23.3 µs 1-KB tDBC1K — — 7.3 — — 3.66 ms Suspended time during erasing tDSED — — 22.3 — — 16.2 µs Data flash STOP recovery time tDSTOP 250 — — 250 — — ns Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 2 MHz, the frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. 2.11.3 Table 2.59 Serial Wire Debug (SWD) SWD characteristics (1) Conditions: VCC = AVCC0 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 80 — — ns Figure 2.48 SWCLK clock high pulse width tSWCKH 35 — — ns SWCLK clock low pulse width tSWCKL 35 — — ns SWCLK clock rise time tSWCKr — — 5 ns SWCLK clock fall time tSWCKf — — 5 ns SWDIO setup time tSWDS 16 — — ns SWDIO hold time tSWDH 16 — — ns SWDIO data delay time tSWDD 2 — 70 ns R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Figure 2.49 Page 79 of 113 RA2L1 Datasheet Table 2.60 2. Electrical Characteristics SWD characteristics (2) Conditions: VCC = AVCC0 = 1.6 to 2.4 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 250 — — ns Figure 2.48 SWCLK clock high pulse width tSWCKH 120 — — ns SWCLK clock low pulse width tSWCKL 120 — — ns SWCLK clock rise time tSWCKr — — 5 ns SWCLK clock fall time tSWCKf — — 5 ns SWDIO setup time tSWDS 50 — — ns SWDIO hold time tSWDH 50 — — ns SWDIO data delay time tSWDD 2 — 170 ns Figure 2.49 tSWCKcyc tSWCKH tSWCKf SWCLK tSWCKL Figure 2.48 tSWCKr SWD SWCLK timing SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.49 SWD input/output timing R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 80 of 113 RA2L1 Datasheet 2.12 Table 2.61 2. Electrical Characteristics DCDC Characteristics DCDC characteristics Conditions: VCC = AVCC0 = VCC_DCDC = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions DCDC output Voltage — 1.42 1.50 1.58 V — Power switching stabilization time — — — 22 µs Switch from LDO power to DCDC power — — — 60 µs Switch from DCDC power to LDO power — — — 60 µs Switch from DCDC power to LDO power in the LC boost mode R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 81 of 113 RA2L1 Datasheet Appendix 1. Table 1.1 Appendix 1. Port States in each Processing Mode Port States in each Processing Mode Port states in each processing mode (1 of 4) Port name Reset Software Standby Mode P000/AN000/TS21/IRQ6 Hi-Z Keep-O*1 P001/AN001/TS22/IRQ7 Hi-Z Keep-O*1 P002/AN002/TS23/IRQ2 Hi-Z Keep-O*1 P003/AN003/TS24 Hi-Z Keep-O P004/AN004/TS25/IRQ3 Hi-Z Keep-O*1 P005/AN011 Hi-Z Keep-O P006/AN012 Hi-Z Keep-O P007/AN013 Hi-Z Keep-O P008/AN014 Hi-Z Keep-O P010/AN005/TS30-CFC Hi-Z Keep-O P011/AN006/TS31-CFC Hi-Z Keep-O P012/AN007/TS32-CFC Hi-Z Keep-O P013/AN008/TS33-CFC Hi-Z Keep-O P014/AN009/DA0 Hi-Z [DA0 output (DACE0 = 1)] DA0 output retained [Other than the above (DACE0 = 0)] Keep-O P015/AN010/TS28-CFC/IRQ7_A Hi-Z Keep-O*1 P100/CMPIN0/TS26-CFC/AGTIO0_A/GTETRGA_A/GTIOC5B_A/RXD0_A/ MISO0_A/SCL0_A/SCK1_A/SCL1_B/MISOA_A/KRM00/IRQ2_A Hi-Z [AGTIO0_A output selected] AGTIO0_A output*2 [Other than the above] Keep-O*1 P101/CMPREF0/TS16-CFC/AGTEE0/GTETRGB_A/GTIOC5A_A/TXD0_A/ MOSI0_A/SDA0_A/CTS1_RTS1_A/SDA1_B/MOSIA_A/KRM01/IRQ1_A Hi-Z Keep-O*1 P102/CMPIN1/ADTRG0_A/TS15-CFC/AGTO0/GTOWLO_A/GTIOC2B_A/ CRX0_C /SCK0_A/TXD2_D/MOSI2_D/SDA2_D/RSPCKA_A/KRM02 Hi-Z [AGTO0 selected] AGTO0 output*2 [Other than the above] Keep-O*1 P103/CMPREF1/TS14-CFC/GTOWUP_A/GTIOC2A_A/CTX0_C/ CTS0_RTS0_A/SSLA0_A/KRM03 Hi-Z Keep-O*1 P104/TS13-CFC/GTETRGB_B/GTIOC1B_C/RXD0_C/MISO0_C/SCL0_C/ SSLA1_A/KRM04/IRQ1_B Hi-Z Keep-O*1 P105/TS34-CFC/GTETRGA_C/GTIOC1A_C/SSLA2_A/KRM05/IRQ0_B Hi-Z Keep-O*1 P106/GTIOC8B_A/SSLA3_A/KRM06 Hi-Z Keep-O*1 P107/GTIOC8A_A/KRM07 Hi-Z Keep-O*1 P108/SWDIO/GTOULO_C/GTIOC0B_A/CTS9_RTS9_B/SSLB0_B Pull-up Keep-O P109/TS10-CFC/GTOVUP_A/GTIOC1A_A/CTX0_A//SCK1_E/TXD9_B/ MOSI9_B/SDA9_B/MOSIB_B/CLKOUT_B Hi-Z [CLKOUT selected] CLKOUT output [Other than the above] Keep-O P110/TS11-CFC/GTOVLO_A/GTIOC1B_A/CRX0_A/CTS2_RTS2_B/RXD9_B/ MISO9_B/SCL9_B/MISOB_B/IRQ3_A/VCOUT Hi-Z [ACMPLP selected] VCOUT output [Other than the above] Keep-O*1 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 82 of 113 RA2L1 Datasheet Table 1.1 Appendix 1. Port States in each Processing Mode Port states in each processing mode (2 of 4) Port name Reset Software Standby Mode P111/TS12-CFC/AGTOA0/GTIOC3A_A/SCK2_B/SCK9_B/RSPCKB_B/ IRQ4_A Hi-Z [AGTOA0 selected] AGTOA0 output*2 [Other than the above] Keep-O*1 P112/TSCAP_C/AGTOB0/GTIOC3B_A/TXD2_B/MOSI2_B/SDA2_B/SCK1_D/ SSLB0_C Hi-Z [AGTOB0 selected] AGTOB0 output*2 [Other than the above] Keep-O P113/TS27-CFC/GTIOC2A_C Hi-Z Keep-O P114/TS29-CFC/GTIOC2B_C Hi-Z Keep-O P115/TS35-CFC/GTIOC4A_C Hi-Z Keep-O P200/NMI Hi-Z Hi-Z P201/MD Pull-up Keep-O P202/SCK2_A/RXD9_A/MISO9_A/SCL9_A/MISOB_A Hi-Z Keep-O P203/CTS2_RTS2_A/TXD9_A/MOSI9_A/SDA9_A/MOSIB_A Hi-Z Keep-O P204/CACREF_A/TS0/AGTIO1_A/GTIW_A/GTIOC4B_B/SCK0_D/SCK9_A/ SCL0_B/RSPCKB_A Hi-Z [AGTIO1_A output selected] AGTIO1_A output*2 [Other than the above] Keep-O*1 P205/AGTO1/GTIV_A/GTIOC4A_B/TXD0_D/MOSI0_D/SDA0_D/ CTS9_RTS9_A/ SCL1_A/SSLB0_A/IRQ1/CLKOUT_A Hi-Z [AGTO1 selected] AGTO1 output*2 [CLKOUT selected] CLKOUT output [Other than the above] Keep-O*1 P206/GTIU_A/RXD0_D/MISO0_D/SCL0_D/SDA1_A/SSLB1_A/IRQ0 Hi-Z Keep-O*1 P207 Hi-Z Keep-O P208/AGTOB0_A Hi-Z [AGTOB0_A selected] AGTOB0_A output*2 [Other than the above] Keep-O P212/EXTAL /AGTEE1/GTETRGB_D/GTIOC0B_D/RXD1_A/MISO1_A/ SCL1_A/IRQ3_B Hi-Z Keep-O*1 P213/XTAL /GTETRGA_D/GTIOC0A_D/TXD1_A/MOSI1_A/SDA1_A/IRQ2_B Hi-Z Keep-O*1 P214/XCOUT, P215/XCIN Hi-Z [Sub-clock Oscillator selected] Sub-clock Oscillator is operating [Other than the above] Hi-Z P300/SWCLK/GTOUUP_C/GTIOC0A_A/SSLB1_B Pull-up Keep-O P301/TS9-CFC/AGTIO0_D/GTOULO_A/GTIOC4B_A/RXD2_A/MISO2_A/ SCL2_A/CTS9_RTS9_D/SSLB2_B/IRQ6_A Hi-Z [AGTIO0_D output selected] AGTIO0_D output*2 [Other than the above] Keep-O*1 P302/TS8-CFC/GTOUUP_A/GTIOC4A_A/TXD2_A/MOSI2_A/SDA2_A/ SSLB3_B/IRQ5_A Hi-Z Keep-O*1 P303/TS2-CFC/GTIOC7B_A Hi-Z Keep-O P304/GTIOC7A_A Hi-Z Keep-O P305, P306, P307 Hi-Z Keep-O R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 83 of 113 RA2L1 Datasheet Table 1.1 Appendix 1. Port States in each Processing Mode Port states in each processing mode (3 of 4) Port name Reset Software Standby Mode P400/CACREF_C/AGTIO1_C/GTIOC6A_A/SCK0_B/SCK1_B/SCL0_A/ IRQ0_A Hi-Z [AGTIO1_C output selected] AGTIO1_C output*2 [Other than the above] Keep-O*1 P401/GTETRGA_B/GTIOC6B_A/CTX0_B/CTS0_RTS0_B/TXD1_B/MOSI1_B/ Hi-Z SDA1_B/SDA0_A/IRQ5 Keep-O*1 P402/TS18/AGTIO0_E/AGTIO1_D/CRX0_B/RXD1_B/MISO1_B/SCL1_B/ IRQ4 Hi-Z [AGTIO0_E, AGTIO1_D output selected] AGTIO0_E, AGTIO1_D output*2 [Other than the above] Keep-O*1 P403/TS17/AGTIO0_F/AGTIO1_E/GTIOC3A_B/CTS1_RTS1_B Hi-Z [AGTIO0_F, AGTIO1_E output selected] AGTIO0_F, AGTIO1_E output*2 [Other than the above] Keep-O*1 P404/GTIOC3B_B, P405/GTIOC1A_B, P406/GTIOC1B_B Hi-Z Keep-O P407/ADTRG0_B/AGTIO0_C/RTCOUT/CTS0_RTS0_D/SDA0_B/SSLB3_A Hi-Z [AGTIO0_C output selected] AGTIO0_C output*2 [RTCOUT selected] RTCOUT output [Other than the above] Keep-O*1 P408/TS4/GTOWLO_B/GTIOC5B_B/CTS1_RTS1_D/RXD3_A/MISO3_A/ SCL3_A/SCL0_C/IRQ7_B Hi-Z Keep-O*1 P409/TS5/GTOWUP_B/GTIOC5A_B/TXD3_A/MOSI3_A/SDA3_A/IRQ6_B Hi-Z Keep-O*1 P410/TS6/AGTOB1/GTOVLO_B/GTIOC9B_A/RXD0_B/MISO0_B/SCL0_B/ SCK3_A/MISOA_B/IRQ5_B Hi-Z [AGTOB1 selected] AGTOB1 output*2 [Other than the above] Keep-O*1 P411/TS7/AGTOA1/GTOVUP_B/GTIOC9A_A/TXD0_B/MOSI0_B/SDA0_B/ CTS3_RTS3_A/MOSIA_B/IRQ4_B Hi-Z [AGTOA1 selected] AGTOA1 output*2 [Other than the above] Keep-O*1 P412/GTOULO_B/SCK0_E/RSPCKA_B Hi-Z Keep-O P413/GTOUUP_B/CTS0_RTS0_E/SSLA0_B Hi-Z Keep-O P414/GTIOC0B_C/SSLA1_B Hi-Z Keep-O P415/GTIOC0A_C/SSLA2_B Hi-Z Keep-O P500/GTIU_B/GTIOC2A_B Hi-Z Keep-O P501/AN017/GTIV_B/GTIOC2B_B/TXD1_C/MOSI1_C/SDA1_C Hi-Z Keep-O P502/AN018/GTIW_B/GTIOC3B_C/RXD1_C/MISO1_C/SCL1_C Hi-Z Keep-O P503/AN019/GTETRGA_E/SCK1_C Hi-Z Keep-O P504/AN020/GTETRGB_E/CTS1_RTS1_C Hi-Z Keep-O P505 Hi-Z Keep-O P600/GTIOC6B_C/SCK9_C Hi-Z Keep-O P601/GTIOC6A_C/RXD9_C/MISO9_C/SCL9_C Hi-Z Keep-O P602/GTIOC7B_B/TXD9_C/MOSI9_C/SDA9_C Hi-Z Keep-O P603/GTIOC7A_B/CTS9_RTS9_C Hi-Z Keep-O P608/GTIOC4B_C Hi-Z Keep-O R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 84 of 113 RA2L1 Datasheet Table 1.1 Appendix 1. Port States in each Processing Mode Port states in each processing mode (4 of 4) Port name Reset Software Standby Mode P609/GTIOC5A_C Hi-Z Keep-O P610/GTIOC5B_C Hi-Z Keep-O P708/RXD1_D/MISO1_D/SCL1_D/SSLA3_B Hi-Z Keep-O P714 Hi-Z Keep-O P808, P809 Hi-Z Keep-O Note: Hi-Z: High-impedance Keep-O: Output pins retain their previous values. Input pins become high-impedance. Note 1. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin. Note 2. AGTIO output is enabled while LOCO or SOSC is selected as a count source. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 85 of 113 RA2L1 Datasheet Appendix 2. Appendix 2. Package Dimensions Package Dimensions Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas Electronics Corporation website. JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP100-14x14-0.50 PLQP0100KB-B — 0.6 HD Unit: mm *1 D 75 51 *2 100 HE 50 E 76 26 1 25 NOTE 4 Index area NOTE 3 F S *3 A1  c 0.25 A2 A e y S Lp L1 Detail F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol bp M Min Nom Max D 13.9 14.0 14.1 E 13.9 14.0 14.1 A2  1.4  HD 15.8 16.0 16.2 HE 15.8 16.0 16.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.1 LQFP 100-pin R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 86 of 113 RA2L1 Datasheet Appendix 2. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP80-12x12-0.50 PLQP0080KB-B — 0.5 HD Unit: mm *1 D 41 40 80 21 *2 E 61 1 20 HE 60 NOTE 4 Index area NOTE 3 F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol S y S *3 0.25 A1  c A2 A e Lp L1 bp M Min Nom Max D 11.9 12.0 12.1 12.1 E 11.9 12.0 A2  1.4  HD 13.8 14.0 14.2 HE 13.8 14.0 14.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  Detail F © 2017 Renesas Electronics Corporation. All rights reserved. Figure 2.2 LQFP 80-pin R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 87 of 113 RA2L1 Datasheet Appendix 2. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1  A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.3 LQFP 64-pin (1) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 88 of 113 RDK-G-001678 外形図 Outline drawing RA2L1 Datasheet Renesasコード PLQP0064KL-A 1/1 Appendix 2. Package Dimensions ルネサスエレクトロニクス株式会社 Renesas Electronics Corporation JEITA Package code RENESAS code MASS(TYP.)[g] P-LFQFP064-10x10-0.50 PLQP0064KL-A 0.36 - - - - - - - - - - - - - - q - Figure 2.4 - - - - - LQFP 64-pin (2) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 89 of 113 RA2L1 Datasheet Appendix 2. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP48-7x7-0.50 PLQP0048KB-B — 0.2 HD Unit: mm *1 D 36 25 *2 48 13 1 12 Index area NOTE 4 NOTE 3 F S NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol y S *3 bp 0.25 M A1  c A2 A e Lp L1 Detail F Figure 2.5 HE 24 E 37 LQFP 48-pin (1) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Min Nom Max D 6.9 7.0 7.1 E 6.9 7.0 7.1 A2  1.4  HD 8.8 9.0 9.2 HE 8.8 9.0 9.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Page 90 of 113 RDK-G-001673 外形図 Outline drawing RA2L1 Datasheet Renesasコード PLQP0048KL-A 1/1 Appendix 2. Package Dimensions ルネサスエレクトロニクス株式会社 Renesas Electronics Corporation JEITA Package code RENESAS code MASS(TYP.)[g] P-LFQFP48-7x7-0.50 PLQP0048KL-A 0.18 - - - - - - - - - - - - - - q - Figure 2.6 - - - - - LQFP 48-pin (2) R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 91 of 113 RA2L1 Datasheet Appendix 2. Package Dimensions JEITA Package code RENESAS code MASS(TYP.)[g] P-HWQFN048-7x7-0.50 PWQN0048KC-A 0.13 g 2X aaa C 36 25 37 24 D INDEX AREA (D/2 X E/2) 48 2X aaa C 13 1 12 B A E ccc C C SEATING PLANE A (A3) A1 b(48X) e 48X bbb ddd eee C E2 1 fff fff C A B 12 EXPOSED 13 DIE PAD 48 C A B C A B C Reference Symbol Dimension in Millimeters Min. A - - 0.80 0.00 0.02 0.05 0.203 REF. A3 0.20 D 24 37 36 25 L(48X) Figure 2.7 K(48X) Max. A1 b D2 Nom. 0.25 0.30 7.00 BSC E 7.00 BSC e 0.50 BSC L 0.30 0.40 0.50 K 0.20 - - D2 5.25 5.30 5.35 E2 5.25 5.30 5.35 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 HWQFN 48-pin R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 92 of 113 RA2L1 Datasheet Appendix 3. Appendix 3. I/O Registers I/O Registers This appendix describes I/O register addresses, access cycles, and reset values by function. 3.1 Peripheral Base Addresses This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description, and the base address of each peripheral. Table 3.1 Peripheral base address (1 of 2) Name Description Base address MPU Memory Protection Unit 0x4000_0000 SRAM SRAM Control 0x4000_2000 BUS BUS Control 0x4000_3000 DTC Data Transfer Controller 0x4000_5400 ICU Interrupt Controller 0x4000_6000 DBG Debug Function 0x4001_B000 SYSC System Control 0x4001_E000 PORT0 Port 0 Control Registers 0x4004_0000 PORT1 Port 1 Control Registers 0x4004_0020 PORT2 Port 2 Control Registers 0x4004_0040 PORT3 Port 3 Control Registers 0x4004_0060 PORT4 Port 4 Control Registers 0x4004_0080 PORT5 Port 5 Control Registers 0x4004_00A0 PORT6 Port 6 Control Registers 0x4004_00C0 PORT7 Port 7 Control Registers 0x4004_00E0 PORT8 Port 8 Control Registers 0x4004_0100 PFS Pmn Pin Function Control Register 0x4004_0800 ELC Event Link Controller 0x4004_1000 POEG Port Output Enable Module for GPT 0x4004_2000 RTC Realtime Clock 0x4004_4000 WDT Watchdog Timer 0x4004_4200 IWDT Independent Watchdog Timer 0x4004_4400 CAC Clock Frequency Accuracy Measurement Circuit 0x4004_4600 MSTP Module Stop Control B, C, D 0x4004_7000 CAN0 CAN0 Module 0x4005_0000 IIC0 Inter-Integrated Circuit 0 0x4005_3000 IIC0WU Inter-Integrated Circuit 0 Wakeup Unit 0x4005_3014 IIC1 Inter-Integrated Circuit 1 0x4005_3100 DOC Data Operation Circuit 0x4005_4100 ADC12 12-bit A/D Converter 0x4005_C000 DAC12 12-bit D/A Converter 0x4005_E000 SCI0 Serial Communication Interface 0 0x4007_0000 SCI1 Serial Communication Interface 1 0x4007_0020 SCI2 Serial Communication Interface 2 0x4007_0040 SCI3 Serial Communication Interface 3 0x4007_0060 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 93 of 113 RA2L1 Datasheet Table 3.1 Appendix 3. I/O Registers Peripheral base address (2 of 2) Name Description Base address SCI9 Serial Communication Interface 9 0x4007_0120 SPI0 Serial Peripheral Interface 0 0x4007_2000 SPI1 Serial Peripheral Interface 1 0x4007_2100 CRC CRC Calculator 0x4007_4000 GPT320 General PWM Timer 0 (32-bit) 0x4007_8000 GPT321 General PWM Timer 1 (32-bit) 0x4007_8100 GPT322 General PWM Timer 2 (32-bit) 0x4007_8200 GPT323 General PWM Timer 3 (32-bit) 0x4007_8300 GPT164 General PWM Timer 4 (16-bit) 0x4007_8400 GPT165 General PWM Timer 5 (16-bit) 0x4007_8500 GPT166 General PWM Timer 6 (16-bit) 0x4007_8600 GPT167 General PWM Timer 7 (16-bit) 0x4007_8700 GPT168 General PWM Timer 8 (16-bit) 0x4007_8800 GPT169 General PWM Timer 9 (16-bit) 0x4007_8900 GPT_OPS Output Phase Switching Controller 0x4007_8FF0 KINT Key Interrupt Function 0x4008_0000 CTSU Capacitive Sensing Unit 0x4008_2000 AGT0 Low Power Asynchronous General Purpose Timer 0 0x4008_4000 AGT1 Low Power Asynchronous General Purpose Timer 1 0x4008_4100 ACMPLP Low-Power Analog Comparator 0x4008_5E00 FLCN Flash I/O Registers 0x407E_C000 Note: 3.2 Name = Peripheral name Description = Peripheral functionality Base address = Lowest reserved address or address used by the peripheral Access Cycles This section provides access cycle information for the I/O registers described in this manual. The following information applies to Table 3.2: ● Registers are grouped by associated module. ● The number of access cycles indicates the number of cycles based on the specified reference clock. ● In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations cannot be guaranteed. ● The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio between ICLK and PCLK. ● When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant. ● When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles. Note: This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the external memory or bus access from other bus master such as DTC. Table 3.2 shows the register access cycles for non-GPT modules. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 94 of 113 RA2L1 Datasheet Table 3.2 Appendix 3. I/O Registers Access cycles for non-GPT modules Number of access cycles Address ICLK = PCLK ICLK > PCLK*1 Read Read Cycle unit Peripherals From To MPU, SRAM, BUS, DTC, ICU, DBG 0x4000_2000 0x4001_BFFF 3 ICLK Memory Protection Unit, SRAM, Buses, Data Transfer Controller, Interrupt Controller, CPU, Flash Memory SYSC 0x4001_E000 0x4001_E6FF 4 ICLK Low Power Modes, Resets, Low Voltage Detection, Clock Generation Circuit, Register Write Protection PORTn, PFS, ELC, POEG, RTC, WDT, IWDT, CAC, MSTP 0x4004_0000 0x4004_7FFF 3 2 to 3 PCLKB I/O Ports, Event Link Controller, Port Output Enable for GPT, Realtime Clock, Watchdog Timer, Independent Watchdog Timer, Clock Frequency Accuracy Measurement Circuit, Module Stop Control CAN0,IICn (n = 0, 1),IIC0WU, DOC, ADC12, DAC12 0x4005_0000 0x4005_EFFF 3 2 to 3 PCLKB Controller Area Network Module, I2C Bus Interface, Data Operation Circuit, 12-bit A/D Converter, 12-Bit D/A Converter SCIn (n = 0*2 to 3, 9) 0x4007_0000 0x4007_0EFF 5 2 to 3 PCLKB Serial Communications Interface 0x4007_2000 0x4007_2FFF 5 2 to 3 PCLKB Serial Peripheral Interface CRC 0x4007_4000 0x4007_4FFF 3 2 to 3 PCLKB CRC Calculator GPT32n (n = 0 to 3), GPT16n (n = 4 to 9), GPT_OPS 0x4007_8000 0x4007_BFFF PCLKB General PWM Timer KINT, CTSU 0x4008_0000 0x4008_2FFF 3 2 to 3 PCLKB Key interrupt Function, Capacitive Sensing Unit AGTn 0x4008_4000 0x4008_4FFF 3 2 to 3 PCLKB Low Power Asynchronous General Purpose Timer ACMPLP 0x4008_5000 0x4008_6FFF 3 2 to 3 PCLKB Low-Power Analog Comparator FLCN 0x407E_C000 0x407E_FFFF 7 7 ICLK Data Flash, Temperature Sensor, Capacitive Sensing Unit, Flash Control SPIn (n = 0, 1)*3 Write Write See Table 3.3. Related function Note 1. If the number of PCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2.5 is 1 to 3. Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2. Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit register (SPDR_HA), the access cycles are as shown in Table 3.2. Table 3.3 shows register access cycles for GPT modules. Table 3.3 Access cycles for GPT modules Frequency ratio between ICLK and PCLK Number of access cycles Read Write Cycle unit ICLK > PCLKD = PCLKB 5 to 6 3 to 4 PCLKB ICLK > PCLKD > PCLKB 3 to 4 2 to 3 PCLKB PCLKD = ICLK = PCLKB 6 4 PCLKB PCLKD = ICLK > PCLKB 2 to 3 1 to 2 PCLKB PCLKD > ICLK = PCLKB 4 3 PCLKB PCLKD > ICLK > PCLKB 2 to 3 1 to 2 PCLKB R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 95 of 113 RA2L1 Datasheet 3.3 Appendix 3. I/O Registers Register Descriptions This section provides information associated with registers described in this manual. Table 3.4 shows a list of registers including address offsets, address sizes, access rights, and reset values. Table 3.4 Register description (1 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask MPU — — — MMPUCTLA Bus Master MPU Control Register 0x000 16 R/W 0x0000 0xFFFF MPU — — — MMPUPTA Group A Protection of Register 0x102 16 R/W 0x0000 0xFFFF MPU 4 0x010 0-3 MMPUACA%s Group A Region %s access control register 0x200 16 R/W 0x0000 0xFFFF MPU 4 0x010 0-3 MMPUSA%s Group A Region %s Start Address Register 0x204 32 R/W 0x00000000 0x00000003 MPU 4 0x010 0-3 MMPUEA%s Group A Region %s End Address Register 0x208 32 R/W 0x00000003 0x00000003 MPU — — — SMPUCTL Slave MPU Control Register 0xC00 16 R/W 0x0000 0xFFFF MPU — — — SMPUMBIU Access Control Register for Memory Bus 1 0xC10 16 R/W 0x0000 0xFFFF MPU — — — SMPUFBIU Access Control Register for Internal Peripheral Bus 9 0xC14 16 R/W 0x0000 0xFFFF MPU — — — SMPUSRAM0 Access Control Register for Memory Bus 4 0xC18 16 R/W 0x0000 0xFFFF MPU — — — SMPUP0BIU Access Control Register for Internal Peripheral Bus 1 0xC20 16 R/W 0x0000 0xFFFF MPU — — — SMPUP2BIU Access Control Register for Internal Peripheral Bus 3 0xC24 16 R/W 0x0000 0xFFFF MPU — — — SMPUP6BIU Access Control Register for Internal Peripheral Bus 7 0xC28 16 R/W 0x0000 0xFFFF MPU — — — MSPMPUOAD Stack Pointer Monitor Operation After Detection Register 0xD00 16 R/W 0x0000 0xFFFF MPU — — — MSPMPUCTL Stack Pointer Monitor Access Control Register 0xD04 16 R/W 0x0000 0xFEFF MPU — — — MSPMPUPT Stack Pointer Monitor Protection Register 0xD06 16 R/W 0x0000 0xFFFF MPU — — — MSPMPUSA Main Stack Pointer (MSP) Monitor Start Address Register 0xD08 32 R/W 0x00000000 0x00000000 MPU — — — MSPMPUEA Main Stack Pointer (MSP) Monitor End Address Register 0xD0C 32 R/W 0x00000000 0x00000000 MPU — — — PSPMPUOAD Stack Pointer Monitor Operation After Detection Register 0xD10 16 R/W 0x0000 0xFFFF MPU — — — PSPMPUCTL Stack Pointer Monitor Access Control Register 0xD14 16 R/W 0x0000 0xFEFF MPU — — — PSPMPUPT Stack Pointer Monitor Protection Register 0xD16 16 R/W 0x0000 0xFFFF MPU — — — PSPMPUSA Process Stack Pointer (PSP) Monitor Start Address Register 0xD18 32 R/W 0x00000000 0x00000000 MPU — — — PSPMPUEA Process Stack Pointer (PSP) Monitor End Address Register 0xD1C 32 R/W 0x00000000 0x00000000 SRAM — — — PARIOAD SRAM Parity Error Operation After Detection Register 0x00 8 R/W 0x00 0xFF SRAM — — — SRAMPRCR SRAM Protection Register 0x04 8 R/W 0x00 0xFF SRAM — — — ECCMODE ECC Operating Mode Control Register 0xC0 8 R/W 0x00 0xFF SRAM — — — ECC2STS ECC 2-Bit Error Status Register 0xC1 8 R/W 0x00 0xFF SRAM — — — ECC1STSEN ECC 1-Bit Error Information Update Enable Register 0xC2 8 R/W 0x00 0xFF SRAM — — — ECC1STS ECC 1-Bit Error Status Register 0xC3 8 R/W 0x00 0xFF SRAM — — — ECCETST ECC Test Control Register 0xC4 8 R/W 0x00 0xFF SRAM — — — ECCPRCR ECC Protection Register 0xC4 8 R/W 0x00 0xFF SRAM — — — ECCPRCR2 ECC Protection Register 2 0xD0 8 R/W 0x00 0xFF SRAM — — — ECCOAD SRAM ECC Error Operation After Detection Register 0xD8 8 R/W 0x00 0xFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 96 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (2 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask BUS — — — BUSMCNTSYS Master Bus Control Register SYS 0x1008 16 R/W 0x0000 0xFFFF BUS — — — BUSMCNTDMA Master Bus Control Register DMA 0x100C 16 R/W 0x0000 0xFFFF BUS — — — BUS3ERRADD Bus Error Address Register 3 0x1820 32 R 0x00000000 0x00000000 BUS — — — BUS3ERRSTAT BUS Error Status Register 3 0x1824 8 R 0x00 0xFE BUS — — — BUS4ERRADD Bus Error Address Register 4 0x1830 32 R 0x00000000 0x00000000 BUS — — — BUS4ERRSTAT BUS Error Status Register 4 0x1834 8 R 0x00 0xFE DTC — — — DTCCR DTC Control Register 0x00 8 R/W 0x08 0xFF DTC — — — DTCVBR DTC Vector Base Register 0x04 32 R/W 0x00000000 0xFFFFFFFF DTC — — — DTCST DTC Module Start Register 0x0C 8 R/W 0x00 0xFF DTC — — — DTCSTS DTC Status Register 0x0E 16 R 0x0000 0xFFFF ICU 8 0x1 0-7 IRQCR%s IRQ Control Register 0x000 8 R/W 0x00 0xFF ICU — — — NMICR NMI Pin Interrupt Control Register 0x100 8 R/W 0x00 0xFF ICU — — — NMIER Non-Maskable Interrupt Enable Register 0x120 16 R/W 0x0000 0xFFFF ICU — — — NMICLR Non-Maskable Interrupt Status Clear Register 0x130 16 R/W 0x0000 0xFFFF ICU — — — NMISR Non-Maskable Interrupt Status Register 0x140 16 R 0x0000 0xFFFF ICU — — — WUPEN Wake Up Interrupt Enable Register 0x1A0 32 R/W 0x00000000 0xFFFFFFFF ICU — — — IELEN ICU event Enable Register 0x1C0 8 R/W 0x00 0xFF ICU — — — SELSR0 SYS Event Link Setting Register 0x200 16 R/W 0x0000 0xFFFF ICU 32 0x4 0-31 IELSR%s ICU Event Link Setting Register %s 0x300 32 R/W 0x00000000 0xFFFFFFFF DBG — — — DBGSTR Debug Status Register 0x00 32 R 0x00000000 0xFFFFFFFF DBG — — — DBGSTOPCR Debug Stop Control Register 0x10 32 R/W 0x00000003 0xFFFFFFFF SYSC — — — SBYCR Standby Control Register 0x00C 16 R/W 0x0000 0xFFFF SYSC — — — MSTPCRA Module Stop Control Register A 0x01C 32 R/W 0xFFBFFFFF 0xFFFFFFFF SYSC — — — SCKDIVCR System Clock Division Control Register 0x020 32 R/W 0x04000404 0xFFFFFFFF SYSC — — — SCKSCR System Clock Source Control Register 0x026 8 R/W 0x01 0xFF SYSC — — — MEMWAIT Memory Wait Cycle Control Register for Code Flash 0x031 8 R/W 0x00 0xFF SYSC — — — MOSCCR Main Clock Oscillator Control Register 0x032 8 R/W 0x01 0xFF SYSC — — — HOCOCR High-Speed On-Chip Oscillator Control Register 0x036 8 R/W 0x00 0xFE SYSC — — — MOCOCR Middle-Speed On-Chip Oscillator Control Register 0x038 8 R/W 0x00 0xFF SYSC — — — OSCSF Oscillation Stabilization Flag Register 0x03C 8 R 0x00 0xFE SYSC — — — CKOCR Clock Out Control Register 0x03E 8 R/W 0x00 0xFF SYSC — — — OSTDCR Oscillation Stop Detection Control Register 0x040 8 R/W 0x00 0xFF SYSC — — — OSTDSR Oscillation Stop Detection Status Register 0x041 8 R/W 0x00 0xFF SYSC — — — LPOPT Lower Power Operation Control Register 0x04C 8 R/W 0x00 0xFF SYSC — — — MOCOUTCR MOCO User Trimming Control Register 0x061 8 R/W 0x00 0xFF SYSC — — — HOCOUTCR HOCO User Trimming Control Register 0x062 8 R/W 0x00 0xFF SYSC — — — SNZCR Snooze Control Register 0x092 8 R/W 0x00 0xFF SYSC — — — SNZEDCR0 Snooze End Control Register 0 0x094 8 R/W 0x00 0xFF SYSC — — — SNZREQCR0 Snooze Request Control Register 0 0x098 32 R/W 0x00000000 0xFFFFFFFF SYSC — — — PSMCR Power Save Memory Control Register 0x09F 8 R/W 0x00 0xFF SYSC — — — OPCCR Operating Power Control Register 0x0A0 8 R/W 0x01 0xFF SYSC — — — MOSCWTCR Main Clock Oscillator Wait Control Register 0x0A2 8 R/W 0x05 0xFF SYSC — — — SOPCCR Sub Operating Power Control Register 0x0AA 8 R/W 0x00 0xFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 97 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (3 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask SYSC — — — RSTSR1 Reset Status Register 1 0x0C0 16 R/W 0x0000 0xE0F8 SYSC — — — LVD1CR1 Voltage Monitor 1 Circuit Control Register 0x0E0 8 R/W 0x01 0xFF SYSC — — — LVD1SR Voltage Monitor 1 Circuit Status Register 0x0E1 8 R/W 0x02 0xFF SYSC — — — LVD2CR1 Voltage Monitor 2 Circuit Control Register 1 0x0E2 8 R/W 0x01 0xFF SYSC — — — LVD2SR Voltage Monitor 2 Circuit Status Register 0x0E3 8 R/W 0x02 0xFF SYSC — — — PRCR Protect Register 0x3FE 16 R/W 0x0000 0xFFFF SYSC — — — SYOCDCR System Control OCD Control Register 0x040E 8 R/W 0x00 0xFF SYSC — — — RSTSR0 Reset Status Register 0 0x410 8 R/W 0x00 0xF0 SYSC — — — RSTSR2 Reset Status Register 2 0x411 8 R/W 0x00 0xFE SYSC — — — MOMCR Main Clock Oscillator Mode Oscillation Control Register 0x413 8 R/W 0x00 0xFF SYSC — — — LVCMPCR Voltage Monitor Circuit Control Register 0x417 8 R/W 0x00 0xFF SYSC — — — LVDLVLR Voltage Detection Level Select Register 0x418 8 R/W 0x07 0xFF SYSC — — — LVD1CR0 Voltage Monitor 1 Circuit Control Register 0 0x41A 8 R/W 0x80 0xF7 SYSC — — — LVD2CR0 Voltage Monitor 2 Circuit Control Register 0 0x41B 8 R/W 0x80 0xF7 SYSC — — — DCDCCTL DCDC/LDO Control Register 0x440 8 R/W 0xC0 0xFF SYSC — — — VCCSEL Voltage Level Selection Control Register 0x441 8 R/W 0x00 0xFF SYSC — — — SOSCCR Sub-Clock Oscillator Control Register 0x480 8 R/W 0x01 0xFF SYSC — — — SOMCR Sub-Clock Oscillator Mode Control Register 0x481 8 R/W 0x00 0xFF SYSC — — — SOMRG Sub-Clock Oscillator Margin Check Register 0x482 8 R/W 0x00 0xFF SYSC — — — LOCOCR Low-Speed On-Chip Oscillator Control Register 0x490 8 R/W 0x00 0xFF SYSC — — — LOCOUTCR LOCO User Trimming Control Register 0x492 8 R/W 0x00 0xFF PORT0,3-8 — — — PCNTR1 Port Control Register 1 0x000 32 R/W 0x00000000 0xFFFFFFFF PORT0,3-8 — — — PODR Port Control Register 1 0x000 16 R/W 0x0000 0xFFFF PORT0,3-8 — — — PDR Port Control Register 1 0x002 16 R/W 0x0000 0xFFFF PORT0,3-8 — — — PCNTR2 Port Control Register 2 0x004 32 R 0x00000000 0xFFFF0000 PORT0,3-8 — — — PIDR Port Control Register 2 0x006 16 R 0x0000 0x0000 PORT0,3-8 — — — PCNTR3 Port Control Register 3 0x008 32 W 0x00000000 0xFFFFFFFF PORT0,3-8 — — — PORR Port Control Register 3 0x008 16 W 0x0000 0xFFFF PORT0,3-8 — — — POSR Port Control Register 3 0x00A 16 W 0x0000 0xFFFF PORT1-2 — — — PCNTR1 Port Control Register 1 0x000 32 R/W 0x00000000 0xFFFFFFFF PORT1-2 — — — PODR Port Control Register 1 0x000 16 R/W 0x0000 0xFFFF PORT1-2 — — — PDR Port Control Register 1 0x002 16 R/W 0x0000 0xFFFF PORT1-2 — — — PCNTR2 Port Control Register 2 0x004 32 R 0x00000000 0xFFFF0000 PORT1-2 — — — EIDR Port Control Register 2 0x004 16 R 0x0000 0xFFFF PORT1-2 — — — PIDR Port Control Register 2 0x006 16 R 0x0000 0x0000 PORT1-2 — — — PCNTR3 Port Control Register 3 0x008 32 W 0x00000000 0xFFFFFFFF PORT1-2 — — — PORR Port Control Register 3 0x008 16 W 0x0000 0xFFFF PORT1-2 — — — POSR Port Control Register 3 0x00A 16 W 0x0000 0xFFFF PORT1-2 — — — PCNTR4 Port Control Register 4 0x00C 32 R/W 0x00000000 0xFFFFFFFF PORT1-2 — — — EORR Port Control Register 4 0x00C 16 R/W 0x0000 0xFFFF PORT1-2 — — — EOSR Port Control Register 4 0x00E 16 R/W 0x0000 0xFFFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 98 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (4 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask PFS 9 0x4 0-8 P00%sPFS Port 00%s Pin Function Select Register 0x000 32 R/W 0x00000000 0xFFFFFFFD PFS 9 0x4 0-8 P00%sPFS_HA Port 00%s Pin Function Select Register 0x002 16 R/W 0x0000 0xFFFD PFS 9 0x4 0-8 P00%sPFS_BY Port 00%s Pin Function Select Register 0x003 8 R/W 0x00 0xFD PFS 6 0x4 10-15 P0%sPFS Port 0%s Pin Function Select Register 0x028 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 10-15 P0%sPFS_HA Port 0%s Pin Function Select Register 0x02A 16 R/W 0x0000 0xFFFD PFS 6 0x4 10-15 P0%sPFS_BY Port 0%s Pin Function Select Register 0x02B 8 R/W 0x00 0xFD PFS 8 0x4 0-7 P10%sPFS Port 10%s Pin Function Select Register 0x040 32 R/W 0x00000000 0xFFFFFFFD PFS 8 0x4 0-7 P10%sPFS_HA Port 10%s Pin Function Select Register 0x042 16 R/W 0x0000 0xFFFD PFS 8 0x4 0-7 P10%sPFS_BY Port 10%s Pin Function Select Register 0x043 8 R/W 0x00 0xFD PFS — — — P108PFS Port 108 Pin Function Select Register 0x060 32 R/W 0x00010010 0xFFFFFFFD PFS — — — P108PFS_HA Port 108 Pin Function Select Register 0x062 16 R/W 0x0010 0xFFFD PFS — — — P108PFS_BY Port 108 Pin Function Select Register 0x063 8 R/W 0x10 0xFD PFS — — — P109PFS Port 109 Pin Function Select Register 0x064 32 R/W 0x00000000 0xFFFFFFFD PFS — — — P109PFS_HA Port 109 Pin Function Select Register 0x066 16 R/W 0x0000 0xFFFD PFS — — — P109PFS_BY Port 109 Pin Function Select Register 0x067 8 R/W 0x00 0xFD PFS 6 0x4 10-15 P1%sPFS Port 1%s Pin Function Select Register 0x068 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 10-15 P1%sPFS_HA Port 1%s Pin Function Select Register 0x06A 16 R/W 0x0000 0xFFFD PFS 6 0x4 10-15 P1%sPFS_BY Port 1%s Pin Function Select Register 0x06B 8 R/W 0x00 0xFD PFS — — — P200PFS Port 200 Pin Function Select Register 0x080 32 R/W 0x00000000 0xFFFFFFFD PFS — — — P200PFS_HA Port 200 Pin Function Select Register 0x082 16 R/W 0x0000 0xFFFD PFS — — — P200PFS_BY Port 200 Pin Function Select Register 0x083 8 R/W 0x00 0xFD PFS — — — P201PFS Port 201 Pin Function Select Register 0x084 32 R/W 0x00000010 0xFFFFFFFD PFS — — — P201PFS_HA Port 201 Pin Function Select Register 0x086 16 R/W 0x0010 0xFFFD PFS — — — P201PFS_BY Port 201 Pin Function Select Register 0x087 8 R/W 0x10 0xFD PFS 7 0x4 2-8 P20%sPFS Port 20%s Pin Function Select Register 0x088 32 R/W 0x00000000 0xFFFFFFFD PFS 7 0x4 2-8 P20%sPFS_HA Port 20%s Pin Function Select Register 0x08A 16 R/W 0x0000 0xFFFD PFS 7 0x4 2-8 P20%sPFS_BY Port 20%s Pin Function Select Register 0x08B 8 R/W 0x00 0xFD PFS 4 0x4 12-15 P2%sPFS Port 2%s Pin Function Select Register 0x0B0 32 R/W 0x00000000 0xFFFFFFFD PFS 4 0x4 12-15 P2%sPFS_HA Port 2%s Pin Function Select Register 0x0B2 16 R/W 0x0000 0xFFFD PFS 4 0x4 12-15 P2%sPFS_BY Port 2%s Pin Function Select Register 0x0B3 8 R/W 0x00 0xFD PFS — — — P300PFS Port 300 Pin Function Select Register 0x0C0 32 R/W 0x00010000 0xFFFFFFFD PFS — — — P300PFS_HA Port 300 Pin Function Select Register 0x0C2 16 R/W 0x0000 0xFFFD PFS — — — P300PFS_BY Port 300 Pin Function Select Register 0x0C3 8 R/W 0x00 0xFD PFS 7 0x4 1-7 P30%sPFS Port 30%s Pin Function Select Register 0x0C4 32 R/W 0x00000000 0xFFFFFFFD PFS 7 0x4 1-7 P30%sPFS_HA Port 30%s Pin Function Select Register 0x0C6 16 R/W 0x0000 0xFFFD PFS 7 0x4 1-7 P30%sPFS_BY Port 30%s Pin Function Select Register 0x0C7 8 R/W 0x00 0xFD PFS 10 0x4 0-9 P40%sPFS Port 40%s Pin Function Select Register 0x100 32 R/W 0x00000000 0xFFFFFFFD PFS 10 0x4 0-9 P40%sPFS_HA Port 40%s Pin Function Select Register 0x102 16 R/W 0x0000 0xFFFD PFS 10 0x4 0-9 P40%sPFS_BY Port 40%s Pin Function Select Register 0x103 8 R/W 0x00 0xFD PFS 6 0x4 10-15 P4%sPFS Port 4%s Pin Function Select Register 0x128 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 10-15 P4%sPFS_HA Port 4%s Pin Function Select Register 0x12A 16 R/W 0x0000 0xFFFD PFS 6 0x4 10-15 P4%sPFS_BY Port 4%s Pin Function Select Register 0x12B 8 R/W 0x00 0xFD PFS 6 0x4 0-5 P50%sPFS Port 50%s Pin Function Select Register 0x140 32 R/W 0x00000000 0xFFFFFFFD PFS 6 0x4 0-5 P50%sPFS_HA Port 50%s Pin Function Select Register 0x142 16 R/W 0x0000 0xFFFD PFS 6 0x4 0-5 P50%sPFS_BY Port 50%s Pin Function Select Register 0x143 8 R/W 0x00 0xFD R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 99 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (5 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask PFS 4 0x4 0-3 P60%sPFS Port 60%s Pin Function Select Register 0x180 32 R/W 0x00000000 0xFFFFFFFD PFS 4 0x4 0-3 P60%sPFS_HA Port 60%s Pin Function Select Register 0x182 16 R/W 0x0000 0xFFFD PFS 4 0x4 0-3 P60%sPFS_BY Port 60%s Pin Function Select Register 0x183 8 R/W 0x00 0xFD PFS 2 0x4 8-9 P60%sPFS Port 60%s Pin Function Select Register 0x1A0 32 R/W 0x00000000 0xFFFFFFFD PFS 2 0x4 8-9 P60%sPFS_HA Port 60%s Pin Function Select Register 0x1A2 16 R/W 0x0000 0xFFFD PFS 2 0x4 8-9 P60%sPFS_BY Port 60%s Pin Function Select Register 0x1A3 8 R/W 0x00 0xFD PFS — — — P610PFS Port 610 Pin Function Select Register 0x1A8 32 R/W 0x00000000 0xFFFFFFFD PFS — — — P610PFS_HA Port 610 Pin Function Select Register 0x1AA 16 R/W 0x0000 0xFFFD PFS — — — P610PFS_BY Port 610 Pin Function Select Register 0x1AB 8 R/W 0x00 0xFD PFS — — — P708PFS Port 708 Pin Function Select Register 0x1E0 32 R/W 0x00000000 0xFFFFFFFD PFS — — — P708PFS_HA Port 708 Pin Function Select Register 0x1E2 16 R/W 0x0000 0xFFFD PFS — — — P708PFS_BY Port 708 Pin Function Select Register 0x1E3 8 R/W 0x00 0xFD PFS — — — P714PFS Port 714 Pin Function Select Register 0x1F8 32 R/W 0x00000000 0xFFFFFFFD PFS — — — P714PFS_HA Port 714 Pin Function Select Register 0x1FA 16 R/W 0x0000 0xFFFD PFS — — — P714PFS_BY Port 714 Pin Function Select Register 0x1FB 8 R/W 0x00 0xFD PFS 2 0x4 8-9 P80%sPFS Port 80%s Pin Function Select Register 0x220 32 R/W 0x00000000 0xFFFFFFFD PFS 2 0x4 8-9 P80%sPFS_HA Port 80%s Pin Function Select Register 0x222 16 R/W 0x0000 0xFFFD PFS 2 0x4 8-9 P80%sPFS_BY Port 80%s Pin Function Select Register 0x223 8 R/W 0x00 0xFD PFS — — — PWPR Write-Protect Register 0x503 8 R/W 0x80 0xFF PFS — — — PRWCNTR Port Read Wait Control Register 0x50F 8 R/W 0x01 0xFF ELC — — — ELCR Event Link Controller Register 0x00 8 R/W 0x00 0xFF ELC 2 0x02 0-1 ELSEGR%s Event Link Software Event Generation Register %s 0x02 8 R/W 0x80 0xFF ELC 4 0x04 0-3 ELSR%s Event Link Setting Register %s 0x10 16 R/W 0x0000 0xFFFF ELC 2 0x04 8-9 ELSR%s Event Link Setting Register %s 0x30 16 R/W 0x0000 0xFFFF ELC — — — ELSR12 Event Link Setting Register 12 0x40 16 R/W 0x0000 0xFFFF ELC 2 0x04 14-15 ELSR%s Event Link Setting Register %s 0x48 16 R/W 0x0000 0xFFFF ELC — — — ELSR18 Event Link Setting Register 18 0x58 16 R/W 0x0000 0xFFFF POEG — — — POEGGA POEG Group A Setting Register 0x000 32 R/W 0x00000000 0xFFFFFFFF POEG — — — POEGGB POEG Group B Setting Register 0x100 32 R/W 0x00000000 0xFFFFFFFF RTC — — — R64CNT 64-Hz Counter 0x00 8 R 0x00 0x00 RTC 4 0x02 0-3 BCNT%s Binary Counter %s 0x02 8 R/W 0x00 0x00 RTC — — — RSECCNT Second Counter (in Calendar Count Mode) 0x02 8 R/W 0x00 0x00 RTC — — — RMINCNT Minute Counter (in Calendar Count Mode) 0x04 8 R/W 0x00 0x00 RTC — — — RHRCNT Hour Counter (in Calendar Count Mode) 0x06 8 R/W 0x00 0x00 RTC — — — RWKCNT Day-of-Week Counter (in Calendar Count Mode) 0x08 8 R/W 0x00 0x00 RTC — — — RDAYCNT Day Counter 0x0A 8 R/W 0x00 0xC0 RTC — — — RMONCNT Month Counter 0x0C 8 R/W 0x00 0xE0 RTC — — — RYRCNT Year Counter 0x0E 16 R/W 0x0000 0xFF00 RTC 4 0x02 0-3 BCNT%sAR Binary Counter %s Alarm Register 0x10 8 R/W 0x00 0x00 RTC — — — RSECAR Second Alarm Register (in Calendar Count Mode) 0x10 8 R/W 0x00 0x00 RTC — — — RMINAR Minute Alarm Register (in Calendar Count Mode) 0x12 8 R/W 0x00 0x00 RTC — — — RHRAR Hour Alarm Register (in Calendar Count Mode) 0x14 8 R/W 0x00 0x00 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 100 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (6 of 15) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask RTC — — — RWKAR Day-of-Week Alarm Register (in Calendar Count Mode) 0x16 8 R/W 0x00 0x00 RTC 2 0x02 0-1 BCNT%sAER Binary Counter %s Alarm Enable Register 0x18 8 R/W 0x00 0x00 RTC — — — RDAYAR Date Alarm Register (in Calendar Count Mode) 0x18 8 R/W 0x00 0x00 RTC — — — RMONAR Month Alarm Register (in Calendar Count Mode) 0x1A 8 R/W 0x00 0x00 RTC — — — BCNT2AER Binary Counter 2 Alarm Enable Register 0x1C 16 R/W 0x0000 0xFF00 RTC — — — RYRAR Year Alarm Register (in Calendar Count Mode) 0x1C 16 R/W 0x0000 0xFF00 RTC — — — BCNT3AER Binary Counter 3 Alarm Enable Register 0x1E 8 R/W 0x00 0x00 RTC — — — RYRAREN Year Alarm Enable Register (in Calendar Count Mode) 0x1E 8 R/W 0x00 0x00 RTC — — — RCR1 RTC Control Register 1 0x22 8 R/W 0x00 0x0A RTC — — — RCR2 RTC Control Register 2 (in Calendar Count 0x24 Mode) 8 R/W 0x00 0x0E RTC — — — RCR2 RTC Control Register 2 (in Binary Count Mode) 0x24 8 R/W 0x00 0x0E RTC — — — RCR4 RTC Control Register 4 0x28 8 R/W 0x00 0x7E RTC — — — RFRH Frequency Register H 0x2A 16 R/W 0x0000 0xFFFE RTC — — — RFRL Frequency Register L 0x2C 16 R/W 0x0000 0x0000 RTC — — — RADJ Time Error Adjustment Register 0x2E 8 R/W 0x00 0x00 WDT — — — WDTRR WDT Refresh Register 0x00 8 R/W 0xFF 0xFF WDT — — — WDTCR WDT Control Register 0x02 16 R/W 0x0000 0xFFFF WDT — — — WDTSR WDT Status Register 0x04 16 R/W 0x0000 0xFFFF WDT — — — WDTRCR WDT Reset Control Register 0x06 8 R/W 0x80 0xFF WDT — — — WDTCSTPR WDT Count Stop Control Register 0x08 8 R/W 0x80 0xFF IWDT — — — IWDTRR IWDT Refresh Register 0x00 8 R/W 0xFF 0xFF IWDT — — — IWDTSR IWDT Status Register 0x04 16 R/W 0x0000 0xFFFF CAC — — — CACR0 CAC Control Register 0 0x00 8 R/W 0x00 0xFF CAC — — — CACR1 CAC Control Register 1 0x01 8 R/W 0x00 0xFF CAC — — — CACR2 CAC Control Register 2 0x02 8 R/W 0x00 0xFF CAC — — — CAICR CAC Interrupt Control Register 0x03 8 R/W 0x00 0xFF CAC — — — CASTR CAC Status Register 0x04 8 R 0x00 0xFF CAC — — — CAULVR CAC Upper-Limit Value Setting Register 0x06 16 R/W 0x0000 0xFFFF CAC — — — CALLVR CAC Lower-Limit Value Setting Register 0x08 16 R/W 0x0000 0xFFFF CAC — — — CACNTBR CAC Counter Buffer Register 0x0A 16 R 0x0000 0xFFFF MSTP — — — MSTPCRB Module Stop Control Register B 0x000 32 R/W 0xFFFFFFFF 0xFFFFFFFF MSTP — — — MSTPCRC Module Stop Control Register C 0x004 32 R/W 0xFFFFFFFF 0xFFFFFFFF MSTP — — — MSTPCRD Module Stop Control Register D 0x008 32 R/W 0xFFFFFFFF 0xFFFFFFFF MSTP — — — LSMRWDIS Low Speed Module R/W Disable Control Register 0x00C 16 R/W 0x0000 0xFFFF CAN0 32 0x10 0-31 MB%s_ID Mailbox ID Register %s 0x200 32 R/W 0x00000000 0x00000001 CAN0 32 0x10 0-31 MB%s_DL Mailbox Data Length Register %s 0x204 16 R/W 0x0000 0x0000 CAN0 32 0x10 0-31 MB%s_D0 Mailbox Data Register %s 0x206 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_D1 Mailbox Data Register %s 0x207 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_D2 Mailbox Data Register %s 0x208 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_D3 Mailbox Data Register %s 0x209 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_D4 Mailbox Data Register %s 0x20A 8 R/W 0x00 0x00 R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Description Page 101 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (7 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask CAN0 32 0x10 0-31 MB%s_D5 Mailbox Data Register %s 0x20B 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_D6 Mailbox Data Register %s 0x20C 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_D7 Mailbox Data Register %s 0x20D 8 R/W 0x00 0x00 CAN0 32 0x10 0-31 MB%s_TS Mailbox Time Stamp Register %s 0x20E 16 R/W 0x0000 0x0000 CAN0 8 0x04 — MKR[%s] Mask Register %s 0x400 32 R/W 0x00000000 0x00000000 CAN0 2 0x04 0-1 FIDCR%s FIFO Received ID Compare Register %s 0x420 32 R/W 0x00000000 0x00000000 CAN0 — — — MKIVLR Mask Invalid Register 0x428 32 R/W 0x00000000 0x00000000 CAN0 — — — MIER Mailbox Interrupt Enable Register 0x42C 32 R/W 0x00000000 0x00000000 CAN0 — — — MIER_FIFO Mailbox Interrupt Enable Register for FIFO Mailbox Mode 0x42C 32 R/W 0x00000000 0x00000000 CAN0 32 0x01 — MCTL_RX[%s] Message Control Register for Receive 0x820 8 R/W 0x00 0xFF CAN0 32 0x01 — MCTL_TX[%s] Message Control Register for Transmit 0x820 8 R/W 0x00 0xFF CAN0 — — — CTLR Control Register 0x840 16 R/W 0x0500 0xFFFF CAN0 — — — STR Status Register 0x842 16 R 0x0500 0xFFFF CAN0 — — — BCR Bit Configuration Register 0x844 32 R/W 0x00000000 0xFFFFFFFF CAN0 — — — RFCR Receive FIFO Control Register 0x848 8 R/W 0x80 0xFF CAN0 — — — RFPCR Receive FIFO Pointer Control Register 0x849 8 W 0x00 0x00 CAN0 — — — TFCR Transmit FIFO Control Register 0x84A 8 R/W 0x80 0xFF CAN0 — — — TFPCR Transmit FIFO Pointer Control Register 0x84B 8 W 0x00 0x00 CAN0 — — — EIER Error Interrupt Enable Register 0x84C 8 R/W 0x00 0xFF CAN0 — — — EIFR Error Interrupt Factor Judge Register 0x84D 8 R/W 0x00 0xFF CAN0 — — — RECR Receive Error Count Register 0x84E 8 R 0x00 0xFF CAN0 — — — TECR Transmit Error Count Register 0x84F 8 R 0x00 0xFF CAN0 — — — ECSR Error Code Store Register 0x850 8 R/W 0x00 0xFF CAN0 — — — CSSR Channel Search Support Register 0x851 8 R/W 0x00 0x00 CAN0 — — — MSSR Mailbox Search Status Register 0x852 8 R 0x80 0xFF CAN0 — — — MSMR Mailbox Search Mode Register 0x853 8 R/W 0x00 0xFF CAN0 — — — TSR Time Stamp Register 0x854 16 R 0x0000 0xFFFF CAN0 — — — AFSR Acceptance Filter Support Register 0x856 16 R/W 0x0000 0x0000 CAN0 — — — TCR Test Control Register 0x858 8 R/W 0x00 0xFF IIC0-1 — — — ICCR1 I2C Bus Control Register 1 0x00 8 R/W 0x1F 0xFF IIC0-1 — — — ICCR2 I2C Bus Control Register 2 0x01 8 R/W 0x00 0xFF IIC0-1 — — — ICMR1 I2C Bus Mode Register 1 0x02 8 R/W 0x08 0xFF IIC0-1 — — — ICMR2 I2C Bus Mode Register 2 0x03 8 R/W 0x06 0xFF IIC0-1 — — — ICMR3 I2C Bus Mode Register 3 0x04 8 R/W 0x00 0xFF IIC0-1 — — — ICFER I2C Bus Function Enable Register 0x05 8 R/W 0x72 0xFF IIC0-1 — — — ICSER I2C Bus Status Enable Register 0x06 8 R/W 0x09 0xFF IIC0-1 — — — ICIER I2C Bus Interrupt Enable Register 0x07 8 R/W 0x00 0xFF IIC0-1 — — — ICSR1 I2C Bus Status Register 1 0x08 8 R/W 0x00 0xFF IIC0-1 — — — ICSR2 I2C Bus Status Register 2 0x09 8 R/W 0x00 0xFF IIC0-1 3 0x02 0-2 SARL%s Slave Address Register Ly 0x0A 8 R/W 0x00 0xFF IIC0-1 3 0x02 0-2 SARU%s Slave Address Register Uy 0x0B 8 R/W 0x00 0xFF IIC0-1 — — — ICBRL I2C Bus Bit Rate Low-Level Register 0x10 8 R/W 0xFF 0xFF IIC0-1 — — — ICBRH I2C Bus Bit Rate High-Level Register 0x11 8 R/W 0xFF 0xFF IIC0-1 — — — ICDRT I2C Bus Transmit Data Register 0x12 8 R/W 0xFF 0xFF IIC0-1 — — — ICDRR I2C Bus Receive Data Register 0x13 8 R 0x00 0xFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 102 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (8 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask IIC0WU — — — ICWUR I2C Bus Wakeup Unit Register 0x02 8 R/W 0x10 0xFF IIC0WU — — — ICWUR2 I2C Bus Wakeup Unit Register 2 0x03 8 R/W 0xFD 0xFF DOC — — — DOCR DOC Control Register 0x00 8 R/W 0x00 0xFF DOC — — — DODIR DOC Data Input Register 0x02 16 R/W 0x0000 0xFFFF DOC — — — DODSR DOC Data Setting Register 0x04 16 R/W 0x0000 0xFFFF ADC12 — — — ADCSR A/D Control Register 0x000 16 R/W 0x0000 0xFFFF ADC12 — — — ADANSA0 A/D Channel Select Register A0 0x004 16 R/W 0x0000 0xFFFF ADC12 — — — ADANSA1 A/D Channel Select Register A1 0x006 16 R/W 0x0000 0xFFFF ADC12 — — — ADADS0 A/D-Converted Value Addition/Average Channel Select Register 0 0x008 16 R/W 0x0000 0xFFFF ADC12 — — — ADADS1 A/D-Converted Value Addition/Average Channel Select Register 1 0x00A 16 R/W 0x0000 0xFFFF ADC12 — — — ADADC A/D-Converted Value Addition/Average Count Select Register 0x00C 8 R/W 0x00 0xFF ADC12 — — — ADCER A/D Control Extended Register 0x00E 16 R/W 0x0000 0xFFFF ADC12 — — — ADSTRGR A/D Conversion Start Trigger Select Register 0x010 16 R/W 0x0000 0xFFFF ADC12 — — — ADEXICR A/D Conversion Extended Input Control Registers 0x012 16 R/W 0x0000 0xFFFF ADC12 — — — ADANSB0 A/D Channel Select Register B0 0x014 16 R/W 0x0000 0xFFFF ADC12 — — — ADANSB1 A/D Channel Select Register B1 0x016 16 R/W 0x0000 0xFFFF ADC12 — — — ADDBLDR A/D Data Duplexing Register 0x018 16 R 0x0000 0xFFFF ADC12 — — — ADTSDR A/D Temperature Sensor Data Register 0x01A 16 R 0x0000 0xFFFF ADC12 — — — ADOCDR A/D Internal Reference Voltage Data Register 0x01C 16 R 0x0000 0xFFFF ADC12 — — — ADRD A/D Self-Diagnosis Data Register 0x01E 16 R 0x0000 0xFFFF ADC12 15 0x2 0-14 ADDR%s A/D Data Registers %s 0x020 16 R 0x0000 0xFFFF ADC12 — — — ADCTDR A/D CTSU TSCAP Voltage Data Register 0x040 16 R 0x0000 0xFFFF ADC12 4 0x2 17-20 ADDR%s A/D Data Registers %s 0x042 16 R 0x0000 0xFFFF ADC12 — — — ADDISCR A/D Disconnection Detection Control Register 0x07A 8 R/W 0x00 0xFF ADC12 — — — ADACSR A/D Conversion Operation Mode Select Register 0x07E 8 R/W 0x00 0xFF ADC12 — — — ADGSPCR A/D Group Scan Priority Control Register 0x080 16 R/W 0x0000 0xFFFF ADC12 — — — ADDBLDRA A/D Data Duplexing Register A 0x084 16 R 0x0000 0xFFFF ADC12 — — — ADDBLDRB A/D Data Duplexing Register B 0x086 16 R 0x0000 0xFFFF ADC12 — — — ADHVREFCNT A/D High-Potential/Low-Potential Reference Voltage Control Register 0x08A 8 R/W 0x00 0xFF ADC12 — — — ADWINMON A/D Compare Function Window A/B Status Monitor Register 0x08C 8 R 0x00 0xFF ADC12 — — — ADCMPCR A/D Compare Function Control Register 0x090 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPANSER A/D Compare Function Window A Extended Input Select Register 0x092 8 R/W 0x00 0xFF ADC12 — — — ADCMPLER A/D Compare Function Window A Extended Input Comparison Condition Setting Register 0x093 8 R/W 0x00 0xFF ADC12 — — — ADCMPANSR0 A/D Compare Function Window A Channel Select Register 0 0x094 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPANSR1 A/D Compare Function Window A Channel Select Register 1 0x096 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPLR0 A/D Compare Function Window A Comparison Condition Setting Register 0 0x098 16 R/W 0x0000 0xFFFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 103 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (9 of 15) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask ADC12 — — — ADCMPLR1 A/D Compare Function Window A Comparison Condition Setting Register 1 0x09A 16 R/W 0x0000 0xFFFF ADC12 2 0x2 0-1 ADCMPDR%s A/D Compare Function Window A LowerSide/Upper-Side Level Setting Register 0x09C 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPSR0 A/D Compare Function Window A Channel Status Register 0 0x0A0 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPSR1 A/D Compare Function Window A Channel Status Register1 0x0A2 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPSER A/D Compare Function Window A Extended Input Channel Status Register 0x0A4 8 R/W 0x00 0xFF ADC12 — — — ADCMPBNSR A/D Compare Function Window B Channel Select Register 0x0A6 8 R/W 0x00 0xFF ADC12 — — — ADWINLLB A/D Compare Function Window B LowerSide/Upper-Side Level Setting Register 0x0A8 16 R/W 0x0000 0xFFFF ADC12 — — — ADWINULB A/D Compare Function Window B LowerSide/Upper-Side Level Setting Register 0x0AA 16 R/W 0x0000 0xFFFF ADC12 — — — ADCMPBSR A/D Compare Function Window B Status Register 0x0AC 8 R/W 0x00 0xFF ADC12 — — — ADSSTRL A/D Sampling State Register 0x0DD 8 R/W 0x0D 0xFF ADC12 — — — ADSSTRT A/D Sampling State Register 0x0DE 8 R/W 0x0D 0xFF ADC12 — — — ADSSTRO A/D Sampling State Register 0x0DF 8 R/W 0x0D 0xFF ADC12 15 0x1 0-14 ADSSTR%s A/D Sampling State Register 0x0E0 8 R/W 0x0D 0xFF DAC12 — — — DADR0 D/A Data Register 0 0x00 16 R/W 0x0000 0xFFFF DAC12 — — — DACR D/A Control Register 0x04 8 R/W 0x1F 0xFF DAC12 — — — DADPR DADR0 Format Select Register 0x05 8 R/W 0x00 0xFF DAC12 — — — DAADSCR D/A A/D Synchronous Start Control Register 0x06 8 R/W 0x00 0xFF DAC12 — — — DAVREFCR D/A VREF Control Register 0x07 8 R/W 0x00 0xFF SCI0 — — — SMR Serial Mode Register for Non-Smart Card Interface Mode (SCMR.SMIF = 0) 0x00 8 R/W 0x00 0xFF SCI0 — — — SMR_SMCI Serial Mode Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x00 8 R/W 0x00 0xFF SCI0 — — — BRR Bit Rate Register 0x01 8 R/W 0xFF 0xFF SCI0 — — — SCR Serial Control Register for Non-Smart Card 0x02 Interface Mode (SCMR.SMIF = 0) 8 R/W 0x00 0xFF SCI0 — — — SCR_SMCI Serial Control Register for Smart Card Interface Mode (SCMR.SMIF = 1) 8 R/W 0x00 0xFF SCI0 — — — TDR Transmit Data Register 0x03 8 R/W 0xFF 0xFF SCI0 — — — SSR Serial Status Register for Non-Smart Card Interface and Non-FIFO Mode (SCMR.SMIF = 0 and FCR.FM = 0) 0x04 8 R/W 0x84 0xFF SCI0 — — — SSR_FIFO Serial Status Register for Non-Smart Card 0x04 Interface and FIFO Mode (SCMR.SMIF = 0 and FCR.FM = 1) 8 R/W 0x80 0xFD SCI0 — — — SSR_SMCI Serial Status Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x04 8 R/W 0x84 0xFF SCI0 — — — RDR Receive Data Register 0x05 8 R/W 0x00 0xFF SCI0 — — — SCMR Smart Card Mode Register 0x06 8 R/W 0xF2 0xFF SCI0 — — — SEMR Serial Extended Mode Register 0x07 8 R/W 0x00 0xFF SCI0 — — — SNFR Noise Filter Setting Register 0x08 8 R/W 0x00 0xFF SCI0 — — — SIMR1 IIC Mode Register 1 0x09 8 R/W 0x00 0xFF SCI0 — — — SIMR2 IIC Mode Register 2 0x0A 8 R/W 0x00 0xFF SCI0 — — — SIMR3 IIC Mode Register 3 0x0B 8 R/W 0x00 0xFF SCI0 — — — SISR IIC Status Register 0x0C 8 R 0x00 0xCB R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Description 0x02 Page 104 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (10 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask SCI0 — — — SPMR SPI Mode Register 0x0D 8 R/W 0x00 0xFF SCI0 — — — TDRHL Transmit Data Register 0x0E 16 R/W 0xFFFF 0xFFFF SCI0 — — — FRDRHL Receive FIFO Data Register 0x10 16 R 0x0000 0xFFFF SCI0 — — — FTDRHL Transmit FIFO Data Register 0x0E 16 W 0xFFFF 0xFFFF SCI0 — — — RDRHL Receive Data Register 0x10 16 R 0x0000 0xFFFF SCI0 — — — FRDRH Receive FIFO Data Register 0x10 8 R 0x00 0xFF SCI0 — — — FTDRH Transmit FIFO Data Register 0x0E 8 W 0xFF 0xFF SCI0 — — — FRDRL Receive FIFO Data Register 0x11 8 R 0x00 0xFF SCI0 — — — FTDRL Transmit FIFO Data Register 0x0F 8 W 0xFF 0xFF SCI0 — — — MDDR Modulation Duty Register 0x12 8 R/W 0xFF 0xFF SCI0 — — — DCCR Data Compare Match Control Register 0x13 8 R/W 0x40 0xFF SCI0 — — — FCR FIFO Control Register 0x14 16 R/W 0xF800 0xFFFF SCI0 — — — FDR FIFO Data Count Register 0x16 16 R 0x0000 0xFFFF SCI0 — — — LSR Line Status Register 0x18 16 R 0x0000 0xFFFF SCI0 — — — CDR Compare Match Data Register 0x1A 16 R/W 0x0000 0xFFFF SCI0 — — — SPTR Serial Port Register 0x1C 8 R/W 0x03 0xFF SCI1-3,9 — — — SMR Serial Mode Register for Non-Smart Card Interface Mode (SCMR.SMIF = 0) 0x00 8 R/W 0x00 0xFF SCI1-3,9 — — — SMR_SMCI Serial Mode Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x00 8 R/W 0x00 0xFF SCI1-3,9 — — — BRR Bit Rate Register 0x01 8 R/W 0xFF 0xFF SCI1-3,9 — — — SCR Serial Control Register for Non-Smart Card 0x02 Interface Mode (SCMR.SMIF = 0) 8 R/W 0x00 0xFF SCI1-3,9 — — — SCR_SMCI Serial Control Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x02 8 R/W 0x00 0xFF SCI1-3,9 — — — TDR Transmit Data Register 0x03 8 R/W 0xFF 0xFF SCI1-3,9 — — — SSR Serial Status Register for Non-Smart Card Interface and Non-FIFO Mode (SCMR.SMIF = 0 and FCR.FM = 0) 0x04 8 R/W 0x84 0xFF SCI1-3,9 — — — SSR_SMCI Serial Status Register for Smart Card Interface Mode (SCMR.SMIF = 1) 0x04 8 R/W 0x84 0xFF SCI1-3,9 — — — RDR Receive Data Register 0x05 8 R/W 0x00 0xFF SCI1-3,9 — — — SCMR Smart Card Mode Register 0x06 8 R/W 0xF2 0xFF SCI1-3,9 — — — SEMR Serial Extended Mode Register 0x07 8 R/W 0x00 0xFF SCI1-3,9 — — — SNFR Noise Filter Setting Register 0x08 8 R/W 0x00 0xFF SCI1-3,9 — — — SIMR1 IIC Mode Register 1 0x09 8 R/W 0x00 0xFF SCI1-3,9 — — — SIMR2 IIC Mode Register 2 0x0A 8 R/W 0x00 0xFF SCI1-3,9 — — — SIMR3 IIC Mode Register 3 0x0B 8 R/W 0x00 0xFF SCI1-3,9 — — — SISR IIC Status Register 0x0C 8 R 0x00 0xCB SCI1-3,9 — — — SPMR SPI Mode Register 0x0D 8 R/W 0x00 0xFF SCI1-3,9 — — — TDRHL Transmit Data Register 0x0E 16 R/W 0xFFFF 0xFFFF SCI1-3,9 — — — RDRHL Receive Data Register 0x10 16 R 0x0000 0xFFFF SCI1-3,9 — — — MDDR Modulation Duty Register 0x12 8 R/W 0xFF 0xFF SCI1-3,9 — — — DCCR Data Compare Match Control Register 0x13 8 R/W 0x40 0xFF SCI1-3,9 — — — CDR Compare Match Data Register 0x1A 16 R/W 0x0000 0xFFFF SCI1-3,9 — — — SPTR Serial Port Register 0x1C 8 R/W 0x03 0xFF SPI0-1 — — — SPCR SPI Control Register 0x00 8 R/W 0x00 0xFF SPI0-1 — — — SSLP SPI Slave Select Polarity Register 0x01 8 R/W 0x00 0xFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 105 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (11 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask SPI0-1 — — — SPPCR SPI Pin Control Register 0x02 8 R/W 0x00 0xFF SPI0-1 — — — SPSR SPI Status Register 0x03 8 R/W 0x20 0xFF SPI0-1 — — — SPDR SPI Data Register 0x04 32 R/W 0x00000000 0xFFFFFFFF SPI0-1 — — — SPDR_HA SPI Data Register 0x04 16 R/W 0x0000 0xFFFF SPI0-1 — — — SPBR SPI Bit Rate Register 0x0A 8 R/W 0xFF 0xFF SPI0-1 — — — SPDCR SPI Data Control Register 0x0B 8 R/W 0x00 0xFF SPI0-1 — — — SPCKD SPI Clock Delay Register 0x0C 8 R/W 0x00 0xFF SPI0-1 — — — SSLND SPI Slave Select Negation Delay Register 0x0D 8 R/W 0x00 0xFF SPI0-1 — — — SPND SPI Next-Access Delay Register 0x0E 8 R/W 0x00 0xFF SPI0-1 — — — SPCR2 SPI Control Register 2 0x0F 8 R/W 0x00 0xFF SPI0-1 — — — SPCMD0 SPI Command Register 0 0x10 16 R/W 0x070D 0xFFFF CRC — — — CRCCR0 CRC Control Register 0 0x00 8 R/W 0x00 0xFF CRC — — — CRCCR1 CRC Control Register 1 0x01 8 R/W 0x00 0xFF CRC — — — CRCDIR CRC Data Input Register 0x04 32 R/W 0x00000000 0xFFFFFFFF CRC — — — CRCDIR_BY CRC Data Input Register 0x04 8 R/W 0x00 0xFF CRC — — — CRCDOR CRC Data Output Register 0x08 32 R/W 0x00000000 0xFFFFFFFF CRC — — — CRCDOR_HA CRC Data Output Register 0x08 16 R/W 0x0000 0xFFFF CRC — — — CRCDOR_BY CRC Data Output Register 0x08 8 R/W 0x00 0xFF CRC — — — CRCSAR Snoop Address Register 0x0C 16 R/W 0x0000 0xFFFF GPT320-3 — — — GTWP General PWM Timer Write-Protection Register 0x00 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTSTR General PWM Timer Software Start Register 0x04 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTSTP General PWM Timer Software Stop Register 0x08 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTCLR General PWM Timer Software Clear Register 0x0C 32 W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTSSR General PWM Timer Start Source Select Register 0x10 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTPSR General PWM Timer Stop Source Select Register 0x14 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTCSR General PWM Timer Clear Source Select Register 0x18 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTUPSR General PWM Timer Up Count Source Select Register 0x1C 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTDNSR General PWM Timer Down Count Source Select Register 0x20 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTICASR General PWM Timer Input Capture Source Select Register A 0x24 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTICBSR General PWM Timer Input Capture Source Select Register B 0x28 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTCR General PWM Timer Control Register 0x2C 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTUDDTYC General PWM Timer Count Direction and Duty Setting Register 0x30 32 R/W 0x00000001 0xFFFFFFFF GPT320-3 — — — GTIOR General PWM Timer I/O Control Register 0x34 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTINTAD General PWM Timer Interrupt Output Setting Register 0x38 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTST General PWM Timer Status Register 0x3C 32 R/W 0x00008000 0xFFFFFFFF GPT320-3 — — — GTBER General PWM Timer Buffer Enable Register 0x40 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTCNT General PWM Timer Counter 0x48 32 R/W 0x00000000 0xFFFFFFFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 106 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (12 of 15) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask GPT320-3 — — — GTCCRA General PWM Timer Compare Capture Register A 0x4C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTCCRB General PWM Timer Compare Capture Register B 0x50 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTCCRC General PWM Timer Compare Capture Register C 0x54 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTCCRE General PWM Timer Compare Capture Register E 0x58 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTCCRD General PWM Timer Compare Capture Register D 0x5C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTCCRF General PWM Timer Compare Capture Register F 0x60 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTPR General PWM Timer Cycle Setting Register 0x64 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTPBR General PWM Timer Cycle Setting Buffer Register 0x68 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT320-3 — — — GTDTCR General PWM Timer Dead Time Control Register 0x88 32 R/W 0x00000000 0xFFFFFFFF GPT320-3 — — — GTDVU General PWM Timer Dead Time Value Register U 0x8C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTWP General PWM Timer Write-Protection Register 0x00 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTSTR General PWM Timer Software Start Register 0x04 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTSTP General PWM Timer Software Stop Register 0x08 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTCLR General PWM Timer Software Clear Register 0x0C 32 W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTSSR General PWM Timer Start Source Select Register 0x10 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTPSR General PWM Timer Stop Source Select Register 0x14 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTCSR General PWM Timer Clear Source Select Register 0x18 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTUPSR General PWM Timer Up Count Source Select Register 0x1C 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTDNSR General PWM Timer Down Count Source Select Register 0x20 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTICASR General PWM Timer Input Capture Source Select Register A 0x24 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTICBSR General PWM Timer Input Capture Source Select Register B 0x28 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTCR General PWM Timer Control Register 0x2C 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTUDDTYC General PWM Timer Count Direction and Duty Setting Register 0x30 32 R/W 0x00000001 0xFFFFFFFF GPT164-9 — — — GTIOR General PWM Timer I/O Control Register 0x34 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTINTAD General PWM Timer Interrupt Output Setting Register 0x38 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTST General PWM Timer Status Register 0x3C 32 R/W 0x00008000 0xFFFFFFFF GPT164-9 — — — GTBER General PWM Timer Buffer Enable Register 0x40 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTCNT General PWM Timer Counter 0x48 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTCCRA General PWM Timer Compare Capture Register A 0x4C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTCCRB General PWM Timer Compare Capture Register B 0x50 32 R/W 0xFFFFFFFF 0xFFFFFFFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Description Page 107 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (13 of 15) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask GPT164-9 — — — GTCCRC General PWM Timer Compare Capture Register C 0x54 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTCCRE General PWM Timer Compare Capture Register E 0x58 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTCCRD General PWM Timer Compare Capture Register D 0x5C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTCCRF General PWM Timer Compare Capture Register F 0x60 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTPR General PWM Timer Cycle Setting Register 0x64 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTPBR General PWM Timer Cycle Setting Buffer Register 0x68 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT164-9 — — — GTDTCR General PWM Timer Dead Time Control Register 0x88 32 R/W 0x00000000 0xFFFFFFFF GPT164-9 — — — GTDVU General PWM Timer Dead Time Value Register U 0x8C 32 R/W 0xFFFFFFFF 0xFFFFFFFF GPT_OPS — — — OPSCR Output Phase Switching Control Register 0x00 32 R/W 0x00000000 0xFFFFFFFF KINT — — — KRCTL Key Return Control Register 0x00 8 R/W 0x00 0xFF KINT — — — KRF Key Return Flag Register 0x04 8 R/W 0x00 0xFF KINT — — — KRM Key Return Mode Register 0x08 8 R/W 0x00 0xFF CTSU — — — CTSUCRA CTSU Control Register A 0x00 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUCRAL CTSU Control Register A 0x00 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCR0 CTSU Control Register A 0x00 8 R/W 0x00 0xFF CTSU — — — CTSUCR1 CTSU Control Register A 0x01 8 R/W 0x00 0xFF CTSU — — — CTSUCR2 CTSU Control Register A 0x02 8 R/W 0x00 0xFF CTSU — — — CTSUCR3 CTSU Control Register A 0x03 8 R/W 0x00 0xFF CTSU — — — CTSUCRB CTSU Control Register B 0x04 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUCRBL CTSU Control Register B 0x04 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSDPRS CTSU Control Register B 0x04 8 R/W 0x00 0xFF CTSU — — — CTSUSST CTSU Control Register B 0x05 8 R/W 0x00 0xFF CTSU — — — CTSUCRBH CTSU Control Register B 0x06 16 R/W 0x0000 0xFFFF CTSU — — — CTSUDCLKC CTSU Control Register B 0x07 8 R/W 0x00 0xFF CTSU — — — CTSUMCH CTSU Measurement Channel Register 0x08 32 R/W 0x00003F3F 0xFFFFFFFF Description CTSU — — — CTSUMCHL CTSU Measurement Channel Register 0x08 16 R/W 0x0000 0xFFFF CTSU — — — CTSUMCH0 CTSU Measurement Channel Register 0x08 8 R/W 0x00 0xFF CTSU — — — CTSUMCH1 CTSU Measurement Channel Register 0x09 8 R/W 0x00 0xFF CTSU — — — CTSUMCHH CTSU Measurement Channel Register 0x0A 16 R/W 0x3F3F 0xFFFF CTSU — — — CTSUMFAF CTSU Measurement Channel Register 0x0A 8 R/W 0x3F 0xFF CTSU — — — CTSUCHACA CTSU Channel Enable Control Register A 0x0C 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUCHACAL CTSU Channel Enable Control Register A 0x0C 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCHAC0 CTSU Channel Enable Control Register A 0x0C 8 R/W 0x00 0xFF CTSU — — — CTSUCHAC1 CTSU Channel Enable Control Register A 0x0D 8 R/W 0x00 0xFF CTSU — — — CTSUCHACAH CTSU Channel Enable Control Register A 0x0E 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCHAC2 CTSU Channel Enable Control Register A 0x0E 8 R/W 0x00 0xFF CTSU — — — CTSUCHAC3 CTSU Channel Enable Control Register A 0x0F 8 R/W 0x00 0xFF CTSU — — — CTSUCHACB CTSU Channel Enable Control Register B 0x10 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUCHACBL CTSU Channel Enable Control Register B 0x10 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCHAC4 CTSU Channel Enable Control Register B 0x10 8 R/W 0x00 0xFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 108 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (14 of 15) Peripheral name Dim Dim inc. Dim index Register name Address offset Size R/W Reset value Reset mask CTSU — — — CTSUCHTRCA CTSU Channel Transmit/Receive Control Register A 0x14 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUCHTRCAL CTSU Channel Transmit/Receive Control Register A 0x14 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCHTRC0 CTSU Channel Transmit/Receive Control Register A 0x14 8 R/W 0x00 0xFF CTSU — — — CTSUCHTRC1 CTSU Channel Transmit/Receive Control Register A 0x15 8 R/W 0x00 0xFF CTSU — — — CTSUCHTRCAH CTSU Channel Transmit/Receive Control Register A 0x16 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCHTRC2 CTSU Channel Transmit/Receive Control Register A 0x16 8 R/W 0x00 0xFF CTSU — — — CTSUCHTRC3 CTSU Channel Transmit/Receive Control Register A 0x17 8 R/W 0x00 0xFF CTSU — — — CTSUCHTRCB CTSU Channel Transmit/Receive Control Register B 0x18 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUCHTRCBL CTSU Channel Transmit/Receive Control Register B 0x18 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCHTRC4 CTSU Channel Transmit/Receive Control Register B 0x18 8 R/W 0x00 0xFF CTSU — — — CTSUSR CTSU Status Register 0x1C 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUSRL CTSU Status Register 0x1C 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSR0 CTSU Status Register 0x1C 8 R/W 0x00 0xFF CTSU — — — CTSUST CTSU Status Register 0x1D 8 R/W 0x00 0xFF CTSU — — — CTSUSRH CTSU Status Register 0x1E 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSR2 CTSU Status Register 0x1E 8 R/W 0x00 0xFF CTSU — — — CTSUSO CTSU Sensor Offset Register 0x20 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUSO0 CTSU Sensor Offset Register 0x20 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSO1 CTSU Sensor Offset Register 0x22 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSCNT CTSU Sensor Counter Register 0x24 32 R 0x00000000 0xFFFFFFFF CTSU — — — CTSUSC CTSU Sensor Counter Register 0x24 16 R 0x0000 0xFFFF CTSU — — — CTSUCALIB CTSU Calibration Register 0x28 32 R/W 0x00000000 0xFFFFFFFF Description CTSU — — — CTSUDBGR0 CTSU Calibration Register 0x28 16 R/W 0x0000 0xFFFF CTSU — — — CTSUDBGR1 CTSU Calibration Register 0x2A 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSUCLKA CTSU Sensor Unit Clock Control Register A 0x2C 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUSUCLK0 CTSU Sensor Unit Clock Control Register A 0x2C 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSUCLK1 CTSU Sensor Unit Clock Control Register A 0x2E 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSUCLKB CTSU Sensor Unit Clock Control Register B 0x30 32 R/W 0x00000000 0xFFFFFFFF CTSU — — — CTSUSUCLK2 CTSU Sensor Unit Clock Control Register B 0x30 16 R/W 0x0000 0xFFFF CTSU — — — CTSUSUCLK3 CTSU Sensor Unit Clock Control Register B 0x32 16 R/W 0x0000 0xFFFF CTSU — — — CTSUCFCCNT CTSU CFC Counter Register 0x34 32 R 0x00000000 0xFFFFFFFF CTSU — — — CTSUCFCCNTL CTSU CFC Counter Register 0x34 16 R 0x0000 0xFFFF AGT0-1 — — — AGT AGT Counter Register 0x00 16 R/W 0xFFFF 0xFFFF AGT0-1 — — — AGTCMB AGT Compare Match B Register 0x04 16 R/W 0xFFFF 0xFFFF AGT0-1 — — — AGTCMA AGT Compare Match A Register 0x02 16 R/W 0xFFFF 0xFFFF AGT0-1 — — — AGTCR AGT Control Register 0x08 8 R/W 0x00 0xFF R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 109 of 113 RA2L1 Datasheet Table 3.4 Appendix 3. I/O Registers Register description (15 of 15) Peripheral name Dim Dim inc. Dim index Register name Description Address offset Size R/W Reset value Reset mask AGT0-1 — — — AGTMR1 AGT Mode Register 1 0x09 8 R/W 0x00 0xFF AGT0-1 — — — AGTMR2 AGT Mode Register 2 0x0A 8 R/W 0x00 0xFF AGT0-1 — — — AGTIOC AGT I/O Control Register 0x0C 8 R/W 0x00 0xFF AGT0-1 — — — AGTISR AGT Event Pin Select Register 0x0D 8 R/W 0x00 0xFF AGT0-1 — — — AGTCMSR AGT Compare Match Function Select Register 0x0E 8 R/W 0x00 0xFF AGT0-1 — — — AGTIOSEL AGT Pin Select Register 0x00F 8 R/W 0x00 0xFF ACMPLP — — — COMPMDR ACMPLP Mode Setting Register 0x00 8 R/W 0x00 0xFF ACMPLP — — — COMPFIR ACMPLP Filter Control Register 0x01 8 R/W 0x00 0xFF ACMPLP — — — COMPOCR ACMPLP Output Control Register 0x02 8 R/W 0x00 0xFF FLCN — — — DFLCTL Data Flash Enable Register 0x0090 8 R/W 0x00 0xFF FLCN — — — TSCDR Temperature Sensor Calibration Data Register 0x0228 16 R 0x00 0x00 FLCN — — — CTSUTRIMA CTSU Trimming Register A 0x03A4 32 R/W 0x00000000 0x00000000 FLCN — — — FLDWAITR Memory Wait Cycle Control Register for Data Flash 0x3FC4 8 R/W 0x00 0xFF FLCN — — — PFBER Prefetch Buffer Enable Register 0x3FC8 8 R/W 0x00 0xFF Note: Peripheral name = Name of peripheral Dim = Number of elements in an array of registers Dim inc. = Address increment between two simultaneous registers of a register array in the address map Dim index = Sub string that replaces the %s placeholder within the register name Register name = Name of register Description = Register description Address offset = Address of the register relative to the base address defined by the peripheral of the register Size = Bit width of the register Reset value = Default reset value of a register Reset mask = Identifies which register bits have a defined reset value R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 110 of 113 RA2L1 Datasheet Revision History Revision History Revision 1.00 — Aug 06, 2020 First edition, issued Revision 1.10 — Feb 26, 2021 Features: ● Changed from LFQFP to LQFP. Overview: ● Changed from LFQFP to LQFP in Figure 1.2 Part numbering scheme. ● Added PWQN0048KC-A to Table 1.11 Product list. ● Changed from MISO0_A to MISO9_A for P202 in Table 1.14 Pin list. Electrical Characteristics: ● Added Note 5 to Table 2.19 Clock timing. Appendix 2. Package Dimensions: ● Added Figure 2.5 HWQFN 48-pin. Revision 1.20 — May 20, 2022 Overview: ● Added Table 1.11 I/O ports to 1.1 Function Outline. ● Fixed Figure 1.2 Part numbering scheme in 1.3 Part Numbering. ● Fixed Table 1.13 Function comparison in 1.4 Function Comparison. ● Added I/O ports to Table 1.13 Function comparison. ● Fixed Figure 1.7 Pin assignment for QFN 48-pin (top view) in 1.6 Pin Assignments. Electrical Characteristics: ● Fixed Table 2.4 I/O VIH, VIL in 2.2.2 I/O VIH, VIL. ● Fixed Table 2.11 Operating and standby current (2) in 2.2.5 Operating and Standby Current. ● Fixed Note 2 in Table 2.47 Power-on reset circuit and voltage detection circuit characteristics (1) in 2.8 POR and LVD Characteristics. Revision 1.30 — November 30, 2022 1. Overview: ● Updated 1.3 Part Numbering. ● Updated Table 1.13 Function comparison. 2. Electrical Characteristics: ● Updated Table 2.32 SPI timing. ● Updated 2.11.1 Code Flash Memory Characteristics and 2.11.2 Data Flash Memory Characteristics. Appendix 2. Package Dimensions: ● Updated the figure title of Figure 2.3 LQFP 64-pin (1). ● Added Figure 2.4 LQFP 64-pin (2). ● Updated the figure title of Figure 2.5 LQFP 48-pin (1). ● Added Figure 2.6 LQFP 48-pin (2). Appendix 3. I/O Registers: ● Updated Table 3.2 Access cycles for non-GPT modules. ● Updated Table 3.4 Register description. R01DS0385EJ0130 Rev.1.30 Nov 30, 2022 Page 111 of 113 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 2. devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 3. level at which resetting is specified. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 4. elements. Follow the guideline for input signal during power-off state as described in your product documentation. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 5. become possible. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 6. produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 7. input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 8. addresses as the correct operation of the LSI is not guaranteed. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product. Notice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note1) (Note2) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.5.0-1 October 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2022 Renesas Electronics Corporation. All rights reserved.
R7FA2L1A93CFM#AA0 价格&库存

很抱歉,暂时无法提供与“R7FA2L1A93CFM#AA0”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R7FA2L1A93CFM#AA0
    •  国内价格
    • 1+19.64520
    • 10+18.66240
    • 30+18.09000
    • 160+17.49600
    • 480+17.22600

    库存:553

    R7FA2L1A93CFM#AA0
      •  国内价格
      • 1+22.99088
      • 10+17.39850
      • 50+15.88945
      • 100+13.84779
      • 500+12.51627

      库存:575