0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FA4M1AB3CNF#AC0

R7FA4M1AB3CNF#AC0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    WFQFN40

  • 描述:

    IC MCU 32BIT 256KB FLASH 40HWQFN

  • 数据手册
  • 价格&库存
R7FA4M1AB3CNF#AC0 数据手册
Datasheet 32 Cover Renesas RA4M1 Group Datasheet 32-bit MCU Renesas Advanced (RA) Family Renesas RA4 Series All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). www.renesas.com Rev.1.00 Oct 2019 RA4M1 Group Datasheet High efficiency 48-MHz Arm® Cortex®-M4 core, 256-KB code flash memory, 32-KB SRAM, Segment LCD Controller, Capacitive Touch Sensing Unit, USB 2.0 Full-Speed Module, 14-bit A/D Converter, 12-bit D/A Converter, security and safety features Features ■ Arm Cortex-M4 Core with Floating Point Unit (FPU)       Armv7E-M architecture with DSP instruction set Maximum operating frequency: 48 MHz Support for 4-GB address space Arm Memory Protection Unit (Arm MPU) with 8 regions Debug and Trace: ITM, DWT, FPB, TPIU, ETB CoreSight™ Debug Port: JTAG-DP and SW-DP ■ Memory       256-KB code flash memory 8-KB data flash memory (100,000 program/erase (P/E) cycles) 32-KB SRAM Flash Cache (FCACHE) Memory Protection Unit (MPU) 128-bit unique ID ■ Connectivity  USB 2.0 Full-Speed Module (USBFS) - On-chip transceiver with voltage regulator - Compliant with USB Battery Charging Specification 1.2  Serial Communications Interface (SCI) × 4 - UART - Simple IIC - Simple SPI  Serial Peripheral Interface (SPI) × 2  I2C bus interface (IIC) × 2  Controller Area Network (CAN) module  Serial Sound Interface Enhanced (SSIE) ■ Analog       14-bit A/D Converter (ADC14) 12-bit D/A Converter (DAC12) 8-bit D/A Converter (DAC8) ×2 (for ACMPLP) Low-Power Analog Comparator (ACMPLP) × 2 Operational Amplifier (OPAMP) × 4 Temperature Sensor (TSN) ■ Timers     General PWM Timer 32-Bit (GPT32) × 2 General PWM Timer 16-Bit (GPT16) × 6 Asynchronous General-Purpose Timer (AGT) × 2 Watchdog Timer (WDT) ■ Safety              Error Correction Code (ECC) in SRAM SRAM parity error check Flash area protection ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC) calculator Data Operation Circuit (DOC) Port Output Enable for GPT (POEG) Independent Watchdog Timer (IWDT) GPIO readback level detection Register write protection Main oscillator stop detection Illegal memory access R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 ■ System and Power Management         Low power modes Realtime Clock (RTC) with calendar and Battery Backup support Event Link Controller (ELC) DMA Controller (DMAC) × 4 Data Transfer Controller (DTC) Key Interrupt Function (KINT) Power-on reset Low Voltage Detection (LVD) with voltage settings ■ Security and Encryption  AES128/256  GHASH  True Random Number Generator (TRNG) ■ Human Machine Interface (HMI)  Segment LCD Controller (SLCDC) - Up to 38 segments × 4 commons - Up to 34 segments × 8 commons  Capacitive Touch Sensing Unit (CTSU) ■ Multiple Clock Sources  Main clock oscillator (MOSC) (1 to 20 MHz when VCC = 2.4 to 5.5 V) (1 to 8 MHz when VCC = 1.8 to 2.4 V) (1 to 4 MHz when VCC = 1.6 to 1.8 V)  Sub-clock oscillator (SOSC) (32.768 kHz)  High-speed on-chip oscillator (HOCO) (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)  Middle-speed on-chip oscillator (MOCO) (8 MHz)  Low-speed on-chip oscillator (LOCO) (32.768 kHz)  IWDT-dedicated on-chip oscillator (15 kHz)  Clock trim function for HOCO/MOCO/LOCO  Clock out support ■ General Purpose I/O Ports  Up to 84 input/output pins - Up to 3 CMOS input - Up to 81 CMOS input/output - Up to 9 input/output 5-V tolerant - Up to 2 high current (20 mA) ■ Operating Voltage  VCC: 1.6 to 5.5 V ■ Operating Temperature and Packages  Ta = -40°C to +85°C - 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)  Ta = -40°C to +105°C - 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch) - 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) - 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch) - 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch) - 40-pin QFN (6 mm × 6 mm, 0.5 mm pitch) Page 2 of 130 RA4M1 Group 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development. The MCU provides an optimal combination of low-power, high-performance Arm Cortex®-M4 core running up to 48 MHz with the following features:  256-KB code flash memory  32-KB SRAM  Segment LCD Controller (SLCDC)  Capacitive Touch Sensing Unit (CTSU)  USB 2.0 Full-Speed Module (USBFS)  14-bit A/D Converter (ADC14)  12-bit D/A Converter (DAC12)  Security features. 1.1 Table 1.1 Function Outline Arm core Feature Functional description Arm Cortex-M4 core  Maximum operating frequency: up to 48 MHz  Arm Cortex-M4 core - Revision: r0p1-01rel0 - Armv7E-M architecture profile - Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.  Arm Memory Protection Unit (Arm MPU) - Armv7 Protected Memory System Architecture - 8 protected regions.  SysTick timer - Driven by SYSTICCLK (LOCO) or ICLK. Table 1.2 Memory Feature Functional description Code flash memory Maximum 256-KB code flash memory. See section 44, Flash Memory in User’s Manual. Data flash memory 8-KB data flash memory. See section 44, Flash Memory in User’s Manual. Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 6, Option-Setting Memory in User’s Manual. SRAM On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). An area in SRAM0 provides error correction capability using ECC. See section 43, SRAM in User’s Manual. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 3 of 130 RA4M1 Group Table 1.3 1. Overview System (1 of 2) Feature Functional description Operating modes Two operating modes:  Single-chip mode  SCI/USB boot mode. See section 3, Operating Modes in User’s Manual. Resets 14 resets:  RES pin reset  Power-on reset  VBATT-selected voltage power-on reset  Independent watchdog timer reset  Watchdog timer reset  Voltage monitor 0 reset  Voltage monitor 1 reset  Voltage monitor 2 reset  SRAM parity error reset  SRAM ECC error reset  Bus master MPU error reset  Bus slave MPU error reset  CPU stack pointer error reset  Software reset. See section 5, Resets in User’s Manual. Low Voltage Detection (LVD) Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the detection level can be selected using a software program. See section 7, Low Voltage Detection (LVD) in User’s Manual. Clocks  Main clock oscillator (MOSC)  Sub-clock oscillator (SOSC)  High-speed on-chip oscillator (HOCO)  Middle-speed on-chip oscillator (MOCO)  Low-speed on-chip oscillator (LOCO)  PLL frequency synthesizer  IWDT-dedicated on-chip oscillator  Clock out support. See section 8, Clock Generation Circuit in User’s Manual. Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock to be used as a measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. See section 9, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 13, Interrupt Controller Unit (ICU) in User’s Manual. Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 20, Key Interrupt Function (KINT) in User’s Manual. Low power modes Power consumption can be reduced in multiple ways, such as by setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. See section 10, Low Power Modes in User’s Manual. Battery backup function A battery backup function is provided for partial powering by a battery. The battery powered area includes RTC, SOSC, LOCO, wakeup control, backup memory, VBATT_R low voltage detection, and switches between VCC and VBATT. During normal operation, the battery powered area is powered by the main power supply, which is the VCC pin. When a VCC voltage drop is detected, the power source is switched to the dedicated battery backup power pin, the VBATT pin. When the voltage rises again, the power source is switched from the VBATT pin to the VCC pin. See section 11, Battery Backup Function in User’s Manual. Register write protection The register write protection function protects important registers from being overwritten because of software errors. See section 12, Register Write Protection in User’s Manual. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 4 of 130 RA4M1 Group Table 1.3 1. Overview System (2 of 2) Feature Functional description Memory Protection Unit (MPU) Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided for memory protection. See section 15, Memory Protection Unit (MPU) in User’s Manual. Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and used as the condition to detect when the system runs out of control. See section 25, Watchdog Timer (WDT) in User’s Manual. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. It can be used to reset the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the count value in the registers. See section 26, Independent Watchdog Timer (IWDT) in User’s Manual. Table 1.4 Event link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 18, Event Link Controller (ELC) in User’s Manual. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 17, Data Transfer Controller (DTC) in User’s Manual. DMA Controller (DMAC) A 4-channel DMA Controller (DMAC) module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 16, DMA Controller (DMAC) in User’s Manual. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 5 of 130 RA4M1 Group Table 1.6 1. Overview Timers Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with 2 channels and a 16-bit timer with 6 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 22, General PWM Timer (GPT) in User’s Manual. Port Output Enable for GPT (POEG) Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 21, Port Output Enable for GPT (POEG). Asynchronous General Purpose Timer (AGT) The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and they can be accessed with the AGT register. See section 23, Asynchronous General Purpose Timer (AGT) in User’s Manual. Realtime Clock (RTC) The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 24, Realtime Clock (RTC) in User’s Manual. Table 1.7 Communication interfaces (1 of 2) Feature Functional description Serial Communications Interface (SCI) The Serial Communications Interface (SCI) is configurable to five asynchronous and synchronous serial interfaces:  Asynchronous interfaces (UART and asynchronous communications interface adapter (ACIA))  8-bit clock synchronous interface  Simple IIC (master-only)  Simple SPI  Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCI0 and SCI1 have FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 28, Serial Communications Interface (SCI) in User’s Manual. I2C Bus Interface (IIC) The 3-channel I2C Bus Interface (IIC) module conforms with and provides a subset of the NXP I2C bus (Inter-Integrated Circuit bus) interface functions. See section 29, I2C Bus Interface (IIC) in User’s Manual. Serial Peripheral Interface (SPI) Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices. See section 31, Serial Peripheral Interface (SPI) in User’s Manual. Serial Sound Interface Enhanced (SSIE) The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 8stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 33, Serial Sound Interface Enhanced (SSIE) in User’s Manual. Controller Area Network (CAN) module The Controller Area Network (CAN) module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 30, Controller Area Network (CAN) Module in User’s Manual. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 6 of 130 RA4M1 Group Table 1.7 1. Overview Communication interfaces (2 of 2) Feature Functional description USB 2.0 Full-Speed Module (USBFS) The USB 2.0 Full-Speed Module (USBFS) can operate as a host controller or device controller. The module supports full-speed and low-speed (only for the host controller) transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on the user system. The MCU supports revision 1.2 of the Battery Charging specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply at 3.3 V. See section 27, USB 2.0 Full-Speed Module (USBFS) in User’s Manual. Table 1.8 Analog Feature Functional description 14-bit A/D Converter (ADC14) A 14-bit successive approximation A/D converter is provided. Up to 25 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 35, 14-Bit A/D Converter (ADC14) in User’s Manual. 12-Bit D/A Converter (DAC12) The 12-Bit D/A Converter (DAC12) converts data and includes an output amplifier. See section 36, 12-Bit D/A Converter (DAC12) in User’s Manual. 8-Bit D/A Converter (DAC8) for ACMPLP The 8-Bit D/A Converter (DAC8) converts data and does not include an output amplifier (DAC8). The DAC8 is used only as the reference voltage for ACMPLP. See section 40, 8-Bit D/ A Converter (DAC8) in User’s Manual. Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC14 for conversion and can be further used by the end application. See section 37, Temperature Sensor (TSN) in User’s Manual. Low-Power Analog Comparator (ACMPLP) The Low-Power Analog Comparator (ACMPLP) compares the reference input voltage and analog input voltage. The comparison result can be read through software and also be output externally. The reference voltage can be selected from an input to the CMPREFi(i = 0,1) pin, an internal 8-bit D/A converter output, or the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting the high-speed mode decreases the response delay time, but increases current consumption. Setting the lowspeed mode increases the response delay time, but decreases current consumption. See section 39, Low-Power Analog Comparator (ACMPLP) in User’s Manual. Operational Amplifier (OPAMP) The Operational Amplifier (OPAMP) amplifies small analog input voltages and outputs the amplified voltages. A total of four differential operational amplifier units with two input pins and one output pin are provided. See section 38, Operational Amplifier (OPAMP) in User’s Manual. Table 1.9 Human machine interfaces Feature Functional description Segment LCD Controller (SLCDC) The Segment LCD Controller (SLCDC) provides the following functions:  Waveform A or B selectable  The LCD driver voltage generator can switch between an internal voltage boosting method, a capacitor split method, and an external resistance division method  Automatic output of segment and common signals based on automatic display data register read  The reference voltage generated when operating the voltage boost circuit can be selected in 16 steps (contrast adjustment)  The LCD can be made to blink. See section 45, Segment LCD Controller (SLCDC) in User’s Manual. Capacitive Touch Sensing Unit (CTSU) The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed within an electrical insulator so that fingers do not come into direct contact with the electrode. See section 41, Capacitive Touch Sensing Unit (CTSU) in User’s Manual. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 7 of 130 RA4M1 Group Table 1.10 1. Overview Data processing Feature Functional description Cyclic Redundancy Check (CRC) calculator The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC generation polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 32, Cyclic Redundancy Check (CRC) Calculator in User’s Manual. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 42, Data Operation Circuit (DOC) in User’s Manual. Table 1.11 Security Feature Functional description Secure Crypto Engine 5 (SCE5)  Security algorithm - Symmetric algorithm: AES.  Other support features - TRNG (True Random Number Generator) - Hash-value generation: GHASH. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 8 of 130 RA4M1 Group 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features. Memory Bus 256 KB Code Flash MPU Arm Cortex-M4 DSP System FPU POR/LVD Clocks MOSC/SOSC 8 KB Data Flash MPU Reset NVIC Mode Control 32 KB SRAM (HOCO/ MOCO/ LOCO) PLL System Timer Power Control DMA CAC DTC Test and DBG Interface DMAC × 4 KINT Timers Communication interfaces GPT32 × 2 SCI × 4 GPT16 × 6 IIC × 2 AGT × 2 SPI × 2 RTC WDT/IWDT ICU Battery Backup Register Write Protection Human machine interfaces CAN × 1 CTSU SLCDC USBFS with Battery Charging revision 1.2 SSIE × 1 Event Link Data processing Analog ELC CRC ADC14 TSN OPAMP × 4 Security DOC DAC12 DAC8 ACMPLP × 2 SCE5 Figure 1.1 Block diagram R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 9 of 130 RA4M1 Group 1.3 1. Overview Part Numbering Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.12 shows a product list. R7FA4M1AB3C FP #AA 0 Production identification code Packaging, Terminal material (Pb-free) #AA: Tray/Sn (Tin) only #AC: Tray/others Package type FP: LQFP 100 pins FM: LQFP 64 pins FL: LQFP 48 pins LJ: LGA 100 pins NB: QFN 64 pins NE: QFN 48 pins NF: QFN 40 pins Quality Grade Operating temperature 2: -40°C to 85°C 3: -40°C to 105°C Code flash memory size B: 256 KB Feature set Group number Series name RA family Flash memory Renesas microcontroller Figure 1.2 Table 1.12 Part numbering scheme Product list Product part number Orderable part number Package code Code flash Data flash SRAM Operating temperature R7FA4M1AB3CFP R7FA4M1AB3CFP#AA0 PLQP0100KB-B 256 KB 8 KB 32 KB -40 to +105°C R7FA4M1AB2CLJ R7FA4M1AB2CLJ#AC0 PTLG0100JA-A -40 to +85°C R7FA4M1AB3CFM R7FA4M1AB3CFM#AA0 PLQP0064KB-C -40 to +105°C R7FA4M1AB3CNB R7FA4M1AB3CNB#AC0 PWQN0064LA-A -40 to +105°C R7FA4M1AB3CFL R7FA4M1AB3CFL#AA0 PLQP0048KB-B -40 to +105°C R7FA4M1AB3CNE R7FA4M1AB3CNE#AC0 PWQN0048KB-A -40 to +105°C R7FA4M1AB3CNF R7FA4M1AB3CNF#AC0 PWQN0040KC-A -40 to +105°C R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 10 of 130 RA4M1 Group 1.4 1. Overview Function Comparison Table 1.13 Function comparison Part numbers R7FA4M1AB3CFP R7FA4M1AB3CFM/ R7FA4M1AB3CNB R7FA4M1AB2CLJ R7FA4M1AB3CFL/ R7FA4M1AB3CNE R7FA4M1AB3CNF Pin count 100 100 64 48 40 Package LQFP LGA LQFP/QFN LQFP/QFN QFN 5 3 256 KB Code flash memory 8 KB Data flash memory 32 KB SRAM 16 KB Parity 16 KB ECC System 48 MHz CPU clock 512 bytes Backup registers Yes ICU 8 KINT Event control ELC Yes DMA DTC Yes 4 DMAC Bus External bus Timers GPT32 Communication No 2 GPT16 6 AGT 2 4 RTC Yes WDT/IWDT Yes 4 SCI 2 IIC 2 SPI No QSPI No SDHI No 1 CAN Yes USBFS 25 ADC14 18 1 No 2 ACMPLP 4 OPAMP 4 1 3 Yes TSN 4 com × 38 seg or 8 com × 34 seg CTSU Data processing 11 2 DAC8 SLCDC 14 1 DAC12 HMI 1 1 SSIE Analog 2 No CRC DOC Security R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 27 4 com × 21 seg or 8 com × 17 seg 24 No 15 10 Yes Yes SCE5 Page 11 of 130 RA4M1 Group 1.5 1. Overview Pin Functions Table 1.14 Pin functions (1 of 4) Function Signal I/O Description Power supply VCC Input Power supply pin. Connect this pin to the system power supply. Connect it to VSS through a 0.1-μF capacitor. The capacitor should be placed close to the pin. VCL I/O Connect this pin to the VSS pin through the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect to the system power supply (0 V). VBATT Input Backup power supply pin XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output Clock Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. CLKOUT Output Clock output pin Operating mode control MD Input Pins for setting the operating mode. The signal levels on these pins must not be changed during operation mode transition on release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin Interrupt NMI Input Non-maskable interrupt request pin IRQ0 to IRQ12, IRQ14, IRQ15 Input Maskable interrupt request pins KINT KR00 to KR07 Input Key interrupt input pins. A key interrupt (KINT) can be generated by inputting a falling edge to the key interrupt input pins. On-chip debug TMS I/O On-chip emulator or boundary scan pins TDI Input TCK Input TDO Output SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin SWO Output Serial wire trace output pin Battery Backup VBATWIO0 to VBATWIO2 I/O Output wakeup signal for the VBATT wakeup control function. External event input for the VBATT wakeup control function. GPT GTETRGA, GTETRGB Input External trigger input pin GTIOC0A to GTIOC7A, GTIOC0B to GTIOC7B I/O Input capture, output capture, or PWM output pin GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 12 of 130 RA4M1 Group Table 1.14 1. Overview Pin functions (2 of 4) Function Signal I/O Description AGT AGTEE0, AGTEE1 Input External event input enable signals AGTIO0, AGTIO1 I/O External event input and pulse output pins AGTO0, AGTO1 Output Pulse output pins AGTOA0, AGTOA1 Output Output compare match A output pins RTC SCI IIC SSIE SPI CAN AGTOB0, AGTOB1 Output Output compare match B output pins RTCOUT Output Output pin for 1-Hz/64-Hz clock RTCIC0 to RTCIC2 Input Time capture event input pins SCK0 to SCK2, SCK9 I/O Clock (clock synchronous mode) input/output pins RXD0 to RXD2, RXD9 Input Received data (asynchronous mode/clock synchronous mode) input pins TXD0 to TXD2, TXD9 Output Transmitted data (asynchronous mode/clock synchronous mode) output pins CTS0_RTS0 to CTS2_RTS2, CTS9_RTS9 I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low SCL0 to SCL2, SCL9 I/O I2C clock (simple IIC) input/output pins SDA0 to SDA2, SDA9 I/O I2C data (simple IIC) input/output pins SCK0 to SCK2, SCK9 I/O Clock (simple SPI) input/output pins MISO0 to MISO2, MISO9 I/O Slave transmission of data (simple SPI) input/output pins MOSI0 to MOSI2, MOSI9 I/O Master transmission of data (simple SPI) input/output pins SS0 to SS2, SS9 Input Slave-select input pins (simple SPI), active-low SCL0, SCL1 I/O Clock input/output pins SDA0, SDA1 I/O Data input/output pins SSIBCK0 I/O SSIE serial bit clock pin SSILRCK0/SSIFS0 I/O Word select pins SSITXD0 Output Serial data output pin SSIRXD0 Input Serial data input pin AUDIO_CLK Input External clock pin for audio (input oversampling clock) RSPCKA, RSPCKB I/O Clock input/output pin MOSIA, MOSIB I/O Input/output pins for data output from the master MISOA, MISOB I/O Input/output pins for data output from the slave SSLA0, SSLB0 I/O Input/output pins for slave selection SSLA1, SSLA2, SSLA3, SSLB1, SSLB2, SSLB3 Output Output pins for slave selection CRX0 Input Receive data CTX0 Output Transmit data R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 13 of 130 RA4M1 Group Table 1.14 1. Overview Pin functions (3 of 4) Function Signal I/O Description USBFS VSS_USB Input Ground pin VCC_USB_LDO Input Power supply pin for USB LDO regulator VCC_USB I/O Input: USB transceiver power supply pin. Output: USB LDO regulator output pin. This pin should be connected to an external capacitor. USB_DP I/O D+ I/O pin of the USB on-chip transceiver. This pin should be connected to the D+ pin of the USB bus. USB_DM I/O D- I/O pin of the USB on-chip transceiver. This pin should be connected to the D- pin of the USB bus. USB_VBUS Input USB cable connection monitor pin. This pin should be connected to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a device controller. USB_EXICEN Output Low power control signal for external power supply (OTG) chip Analog power supply USB_VBUSEN Output VBUS (5 V) supply enable signal for external power supply chip USB_OVRCURA, USB_OVRCURB Input Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected. USB_ID Input Connect the MicroAB connector ID input signal to this pin during operation in OTG mode AVCC0 Input Analog voltage supply pin AVSS0 Input Analog voltage supply ground pin VREFH0 Input Analog reference voltage supply pin VREFL0 Input Reference power supply ground pin VREFH Input Analog reference voltage supply pin for D/A converter VREFL Input Analog reference ground pin for D/A converter AN000 to AN014, AN016 to AN025 Input Input pins for the analog signals to be processed by the A/D converter ADTRG0 Input Input pins for the external trigger signals that start the A/D conversion, activelow DAC12 DA0 Output Output pins for the analog signals to be processed by the D/A converter Comparator output VCOUT Output Comparator output pin ACMPLP CMPREF0, CMPREF1 Input Reference voltage input pin CMPIN0, CMPIN1 Input Analog voltage input pins AMP0+ to AMP3+ Input Analog voltage input pins AMP0- to AMP3- Input Analog voltage input pins AMP0O to AMP3O Output Analog voltage output pins TS00 to TS13, TS17 to TS22, TS27 to TS31, TS34, TS35 Input Capacitive touch detection pins (touch pins) TSCAP - Secondary power supply pin for the touch driver ADC14 OPAMP CTSU R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 14 of 130 RA4M1 Group Table 1.14 1. Overview Pin functions (4 of 4) Function Signal I/O Description I/O ports P000 to P008, P010 to P015 I/O General-purpose input/output pins P100 to P115 I/O General-purpose input/output pins P200 Input General-purpose input pin P201 to P206, P212, P213 I/O General-purpose input/output pins SLCDC P214, P215 Input General-purpose input pins P300 to P307 I/O General-purpose input/output pins P400 to P415 I/O General-purpose input/output pins P500 to P505 I/O General-purpose input/output pins P600 to P603, P608 to P610 I/O General-purpose input/output pins P708 I/O General-purpose input/output pins P808, P809 I/O General-purpose input/output pins P914, P915 I/O General-purpose input/output pins VL1, VL2, VL3, VL4 I/O Voltage pin for driving the LCD CAPH, CAPL I/O Capacitor connection pin for the LCD controller/driver COM0 to COM7 Output Common signal output pins for the LCD controller/driver SEG00 to SEG37 Output Segment signal output pins for the LCD controller/driver R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 15 of 130 RA4M1 Group 1.6 1. Overview Pin Assignments Figure 1.3 P100 P101 P102 P103 P104 P105 P106 P107 P600 P601 P602 P603 VSS VCC P610 P609 P608 P115 P114 P113 P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 Figure 1.3 to Figure 1.6 show the pin assignments. P500 76 50 P501 77 49 P300/TCK/SWCLK P301 P502 78 48 P302 P503 79 47 P303 P504 80 46 P809 P505 81 45 P808 VCC 82 44 P304 VSS 83 43 P305 P015 84 42 P306 P014 85 41 P307 P013/VREFL 86 40 P200 P012/VREFH 87 39 P201/MD AVCC0 88 38 RES AVSS0 89 37 VCC P011/VREFL0 90 36 VSS P010/VREFH0 91 35 P202 P008 92 34 P203 P007 93 33 P204 P006 94 32 P205 P005 95 31 P206 P004 96 30 VCC_USB_LDO P003 97 29 VCC_USB P002 98 28 P914/USB_DP P001 99 27 P915/USB_DM P000 100 26 VSS_USB 14 15 16 17 18 19 20 21 22 23 24 25 P212/EXTAL VCC P708 P415 P414 P413 P412 P411 P410 P409 P408 P407 9 VCL 13 8 VBATT P213/XTAL 7 P406 12 6 P405 VSS 5 P404 11 4 P403 P214/XCOUT 3 P402 10 2 P401 P215/XCIN 1 P400 R7FA4M1AB3CFP Pin assignment for 100-pin LQFP (top view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 16 of 130 RA4M1 Group 1. Overview R7FA4M1AB2CLJ 10 9 Figure 1.4 A B C D E F G H J K P407 P409 P412 VCC P212/ EXTAL P215/ XCIN VCL P403 P400 P000 10 P413 VSS P213/ XTAL P214/ XCOUT VBATT P405 P401 P001 9 P915/ P914/ USB_DM USB_DP 8 VCC_ USB VSS_ USB VCC_US B_LDO P411 P415 P708 P404 P003 P004 P002 8 7 P205 P204 P206 P408 P414 P406 P006 P007 P008 P005 7 6 VSS VCC P202 P203 P410 P402 P505 AVSS0 P011/ P010/ 6 VREFL0 VREFH0 5 P200 P201/MD P307 RES P113 P600 P504 AVCC0 P013/ VREFL P012/ VREFH 5 4 P305 P304 P808 P306 P115 P601 P503 P100 P015 P014 4 3 P809 P303 P110/TDI P111 P609 P602 P107 P103 VSS VCC 3 2 P300/ TCK/ SWCLK P302 P301 P114 P610 P603 P106 P101 P501 P502 2 1 P108/ TMS/ SWDIO P109/ TDO/ SWO P112 P608 VCC VSS P105 P104 P102 P500 1 A B C D E F G H J K Pin assignment for 100-pin LGA (upper perspective view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 17 of 130 Figure 1.5 P100 P101 P102 P103 P104 P105 P106 P107 VSS VCC P113 P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 1. Overview 48 RA4M1 Group P500 49 32 P300/TCK/SWCLK P501 50 31 P301 P502 51 30 P302 P015 52 29 P303 P014 53 28 P304 P013/VREFL 54 27 P200 P012/VREFH 55 26 P201/MD AVCC0 56 25 RES AVSS0 57 24 P204 P011/VREFL0 58 23 P205 P010/VREFH0 59 22 P206 P004 60 21 VCC_USB_LDO P003 61 20 VCC_USB P002 62 19 P914/USB_DP P001 63 18 P915/USB_DM P000 64 17 VSS_USB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P400 P401 P402 VBATT VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P411 P410 P409 P408 P407 R7FA4M1AB3CFM Pin assignment for 64-pin LQFP (top view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 18 of 130 33 34 35 36 37 38 39 40 41 42 43 44 P102 P103 P104 P105 P106 P107 VSS VCC P113 P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 45 46 47 P100 P101 1. Overview 48 RA4M1 Group P500 P501 P502 P015 P014 P013/VREFL P012/VREFH AVCC0 AVSS0 P011/VREFL0 P010/VREFH0 P004 P003 P002 P001 49 32 50 31 58 23 59 22 60 21 61 20 62 19 63 18 P300/TCK/SWCLK P301 P302 P303 P304 P200 P201/MD RES P204 P205 P206 VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM 51 30 52 29 53 28 54 27 55 26 P000 64 17 VSS_USB 16 24 15 14 13 12 11 10 9 8 7 6 5 4 2 25 P400 P401 P402 VBATT VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P411 P410 P409 P408 P407 1 57 3 R7FA4M1AB3CNB 56 Figure 1.6 Pin assignment for 64-pin QFN (upper perspective view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 19 of 130 Figure 1.7 P100 P101 P102 P103 P104 VSS VCC P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 35 34 33 32 31 30 29 28 27 26 25 1. Overview 36 RA4M1 Group P500 37 24 P300/TCK/SWCLK P015 38 23 P301 P014 39 22 P302 P013/VREFL 40 21 P200 P012/VREFH 41 20 P201/MD AVCC0 42 19 RES AVSS0 43 18 P206 P011/VREFL0 44 17 VCC_USB_LDO P010/VREFH0 45 16 VCC_USB P002 46 15 P914/USB_DP P001 47 14 P915/USB_DM P000 48 13 VSS_USB 1 2 3 4 5 6 7 8 9 10 11 12 P400 VBATT VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P409 P408 P407 R7FA4M1AB3CFL Pin assignment for 48-pin LQFP (top view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 20 of 130 25 26 27 28 29 30 31 32 P102 P103 P104 VSS VCC P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 33 34 35 P100 P101 1. Overview 36 RA4M1 Group P500 P015 P014 P013/VREFL P012/VREFH AVCC0 AVSS0 P011/VREFL0 P010/VREFH0 P002 P001 37 24 38 23 44 17 45 16 46 15 47 14 P300/TCK/SWCLK P301 P302 P200 P201/MD RES P206 VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM 39 22 40 21 41 20 P000 48 13 VSS_USB 42 19 12 11 10 9 8 7 6 5 4 3 1 18 P400 VBATT VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P409 P408 P407 2 R7FA4M1AB3CNE 43 Figure 1.8 Pin assignment for 48-pin QFN (top view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 21 of 130 21 22 23 24 25 26 P102 VSS VCC P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 27 28 29 P100 P101 1. Overview 30 RA4M1 Group P015 P014 P013/VREFL P012/VREFH AVCC0 AVSS0 P011/VREFL0 P010/VREFH0 P001 31 20 32 19 37 14 38 13 39 12 P300/TCK/SWCLK P301 P200 P201/MD RES VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM 33 18 34 17 P000 40 11 VSS_USB 35 16 10 9 8 7 6 5 4 3 1 15 VBATT VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P408 P407 2 R7FA4M1AB3CNF 36 Figure 1.9 Pin assignment for 40-pin QFN (top view) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 22 of 130 RA4M1 Group Pin Lists J10 1 1 2 J9 2 3 F6 3 4 CACREF IRQ0 P400 2 IRQ5 P401 3 VBATWIO0 IRQ4 P402 AGTIO0/ AGTIO1 H10 VBATWIO1 P403 AGTIO0/ AGTIO1 5 G8 VBATWIO2 6 AGTIO1 GTIOC6A SCK0 SCK1 GTETRGA GTIOC6B RTCIC0 SCL0 AUDIO_CL K CTSU SLCDC ACMPLP HMI DAC12, OPAMP ADC14 SSIE Analogs SPI IIC SCI USBFS,CAN RTC GPT Communication interfaces GPT_OPS, POEG AGT Timers I/O ports 1 Power, System, Clock, Debug, CAC, VBATT 1 QFN40 QFN48 1 LQFP48 QFN64 LQFP64 LGA100 LQFP100 Pin number Interrupt 1.7 1. Overview SEG04 TS20 CTX0 CTS0_ SDA0 RTS0/ SS0 TXD1/ MOSI1/ SDA1 SEG05 TS19 CRX0 RXD1/ MISO1/ SCL1 SEG06 TS18 GTIOC3A RTCIC1 CTS1_ RTS1/ SS1 P404 GTIOC3B RTCIC2 H9 P405 GTIOC1A SSITXD0 7 F7 P406 GTIOC1B SSIRXD0 8 G9 4 4 2 2 1 VBATT 9 G10 5 5 3 3 2 VCL 10 F10 6 6 4 4 3 XCIN P215 11 F9 7 7 5 5 4 XCOUT P214 12 D9 8 8 6 6 5 VSS 13 E9 9 9 7 7 6 XTAL IRQ2 P213 GTETRGA GTIOC0A TXD1/ MOSI1/ SDA1 14 E10 10 10 8 8 7 EXTAL IRQ3 P212 AGTEE1 GTETRGB GTIOC0B RXD1/ MISO1/ SCL1 15 D10 11 11 9 9 8 VCC 16 F8 17 E8 IRQ8 P415 GTIOC0A SSLA2 18 E7 IRQ9 P414 GTIOC0B SSLA1 19 C9 P413 CTS0_ RTS0/ SS0 SSLA0 20 C10 P412 SCK0 RSPCKA 21 D8 12 12 IRQ4 P411 AGTOA1 GTOVUP GTIOC6A TXD0/ MOSI0/ SDA0 MOSIA SEG07 TS07 22 E6 13 13 IRQ5 P410 AGTOB1 GTOVLO GTIOC6B RXD0/ MISO0/ SCL0 MISOA SEG08 TS06 23 B10 14 14 10 10 IRQ6 P409 GTOWUP GTIOC5A USB_EXI TXD9/ CEN MOSI9/ SDA9 24 D7 15 15 11 11 9 IRQ7 P408 GTOWLO USB_ID 25 A10 16 16 12 12 10 26 B8 17 17 13 13 11 27 A9 18 18 14 14 12 P915 USB_DM 28 B9 19 19 15 15 13 P914 USB_DP P407 RXD1/ MISO1/ SCL1 AGTIO0 TS17 SSILRCK0/ SSIFS0 P708 GTIOC5B SSIBCK0 SSLA3 SEG09 TS05 CTS1_ SCL0 RTS1/ SS1 RXD9/ MISO9/ SCL9 RTCOUT USB_VB CTS0_ SDA0 US RTS0/ SS0 SEG10 TS04 SSLB3 ADTRG0 SEG11 TS03 VSS_USB R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 23 of 130 RA4M1 Group 1. Overview 21 17 17 15 VCC_USB_ LDO 31 C7 22 22 18 18 32 A7 23 23 CLKOUT 33 B7 24 24 CACREF 34 D6 P203 GTIOC5A 35 C6 P202 GTIOC5B 36 A6 37 B6 38 D5 25 25 19 19 16 RES 39 B5 26 26 20 20 17 MD 40 A5 27 27 21 21 18 41 C5 P307 SEG17 42 D4 P306 SEG18 43 A4 IRQ8 P305 SEG19 44 B4 IRQ9 P304 45 C4 P808 SEG21 46 A3 P809 SEG22 47 B3 29 29 48 B2 30 30 22 22 49 C2 31 31 23 23 19 50 A2 32 32 24 24 20 TCK/ SWCLK 51 A1 33 33 25 25 21 52 B1 34 34 26 26 53 C3 35 35 27 27 IRQ0 P206 GTIU IRQ1 P205 AGTO1 GTIV P204 AGTIO1 GTIW SLCDC 21 ADC14 C8 SSIE 30 SPI VCC_USB IIC 14 SCI 16 RTC 16 GPT 20 AGT 20 QFN64 A8 CTSU ACMPLP DAC12, OPAMP USBFS,CAN HMI QFN40 GPT_OPS, POEG Analogs QFN48 I/O ports Communication interfaces LQFP48 Interrupt Power, System, Clock, Debug, CAC, VBATT Timers 29 LGA100 LQFP64 LQFP100 Pin number USB_VB RXD0/ SDA1 USEN MISO0/ SCL0 SSLB1 SEG12 TS01 GTIOC4A USB_OV TXD0/ SCL1 RCURA MOSI0/ SDA0 CTS9_ RTS9/ SS9 SSLB0 SEG13 TSCAP GTIOC4B USB_OV SCK0 RCURB SCK9 RSPCKB SEG14 TS00 CTS2_ RTS2/ SS2 TXD9/ MOSI9/ SDA9 MOSIB SEG15 TSCAP SCK2 RXD9/ MISO9/ SCL9 MISOB SEG16 SCL0 VSS VCC 28 P201 NMI 28 P200 GTIOC7A P303 IRQ5 P302 IRQ6 P301 SEG20 TS11 GTIOC7B SEG03/ TS02 COM7 GTOUUP GTIOC4A TXD2/ MOSI2/ SDA2 SSLB3 SEG02/ TS08 COM6 GTOULO GTIOC4B RXD2/ MISO2/ SCL2 CTS9_ RTS9/ SS9 SSLB2 SEG01/ TS09 COM5 P300 GTOUUP GTIOC0A TMS/ SWDIO P108 GTOULO GTIOC0B 22 TDO/SWO/ CLKOUT P109 GTOVUP GTIOC1A 23 TDI P110 GTOVLO GTIOC1B IRQ3 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 AGTIO0 SSLB1 CTS9_ RTS9/ SS9 SSLB0 CTX0 SCK1 TXD9/ MOSI9/ SDA9 MOSIB CRX0 CTS2_ RTS2/ SS2 RXD9/ MISO9/ SCL9 MISOB SEG23 TS10 VCOUT SEG24 Page 24 of 130 RA4M1 Group 1. Overview 57 GTIOC3B TXD2/ MOSI2/ SDA2 SCK1 SSLB0 P113 D2 58 CTSU 38 P112 SLCDC 38 RSPCKB ACMPLP E5 SCK2 SCK9 HMI DAC12, OPAMP 56 GTIOC3A ADC14 25 P111 SSIE 29 Analogs SPI 29 IIC 37 SCI 37 USBFS,CAN C1 RTC 55 IRQ4 GPT 24 GPT_OPS, POEG 28 Communication interfaces AGT 28 I/O ports QFN40 36 Timers Interrupt QFN48 36 Power, System, Clock, Debug, CAC, VBATT LQFP48 D3 QFN64 54 LGA100 LQFP64 LQFP100 Pin number CAPH TS12 SSIBCK0 CAPL TSCAP GTIOC2A SSILRCK0/ SSIFS0 SEG00/ TS27 COM4 P114 GTIOC2B SSIRXD0 SEG25 TS29 E4 P115 GTIOC4A SSITXD0 SEG26 TS35 59 D1 P608 GTIOC4B SEG27 60 E3 P609 GTIOC5A SEG28 61 E2 P610 GTIOC5B SEG29 62 E1 39 39 30 30 26 VCC 63 F1 40 40 31 31 27 VSS 64 F2 P603 GTIOC7A CTS9_ RTS9/ SS9 SEG30 65 F3 P602 GTIOC7B TXD9/ MOSI9/ SDA9 SEG31 66 F4 P601 GTIOC6A RXD9/ MISO9/ SCL9 SEG32 67 F5 P600 GTIOC6B SCK9 SEG33 68 G3 41 41 KR07 P107 GTIOC0A 69 G2 42 42 KR06 P106 GTIOC0B SSLA3 COM2 70 G1 43 43 KR05/ IRQ0 P105 GTETRGA GTIOC1A SSLA2 COM1 TS34 71 H1 44 44 32 32 KR04/ IRQ1 P104 GTETRGB GTIOC1B RXD0/ MISO0/ SCL0 SSLA1 COM0 TS13 72 H3 45 45 33 33 KR03 P103 GTOWUP GTIOC2A CTX0 CTS0_ RTS0/ SS0 SSLA0 AN019 CMPREF1 VL4 73 J1 46 46 34 34 28 KR02 P102 AGTO0 GTOWLO CRX0 SCK0 TXD2/ MOSI2/ SDA2 RSPCKA AN020/ ADTRG0 CMPIN1 74 H2 47 47 35 35 29 KR01/ IRQ1 P101 AGTEE0 GTETRGB GTIOC5A TXD0/ SDA1 MOSI0/ SDA0 CTS1_ RTS1/ SS1 MOSIA AN021 CMPREF0 VL2 75 H4 48 48 36 36 30 KR00/ IRQ2 P100 AGTIO0 RXD0/ SCL1 MISO0/ SCL0 SCK1 MISOA AN022 CMPIN0 76 K1 49 49 37 37 P500 AGTOA0 GTIU GTIOC2A USB_VB USEN AN016 CMPREF1 SEG34 77 J2 50 50 IRQ11 P501 AGTOB0 GTIV GTIOC2B USB_OV TXD1/ RCURA MOSI1/ SDA1 AN017 CMPIN1 78 K2 51 51 IRQ12 P502 GTIW GTIOC3B USB_OV RXD1/ RCURB MISO1/ SCL1 AN018 CMPREF0 SEG36 79 G4 P503 USB_EXI SCK1 CEN AN023 CMPIN0 80 G5 P504 USB_ID AN024 81 G6 82 K3 IRQ14 P505 GTIOC2B COM3 GTETRGA GTIOC5B CTS1_ RTS1/ SS1 VL3 VL1 SEG35 SEG37 AN025 VCC R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 25 of 130 RA4M1 Group 1. Overview 83 J3 84 J4 52 52 38 38 31 85 K4 53 53 39 39 32 86 J5 54 54 40 40 33 87 K5 55 55 41 41 88 H5 56 56 42 89 H6 57 57 90 J6 58 91 K6 59 92 CTSU SLCDC ACMPLP DAC12, OPAMP HMI ADC14 SSIE Analogs SPI IIC SCI USBFS,CAN RTC GPT Communication interfaces GPT_OPS, POEG AGT I/O ports Timers Interrupt Power, System, Clock, Debug, CAC, VBATT QFN40 QFN48 LQFP48 QFN64 LQFP64 LGA100 LQFP100 Pin number VSS IRQ7 P015 AN010 P014 AN009 DA0 VREFL P013 AN008 AMP1+ 34 VREFH P012 AN007 AMP1- 42 35 AVCC0 43 43 36 AVSS0 58 44 44 37 VREFL0 P011 AN006 AMP2+ TS31 59 45 45 38 VREFH0 P010 AN005 AMP2- TS30 J7 P008 AN014 93 H7 P007 AN013 AMP3O 94 G7 P006 AN012 AMP3- 95 K7 IRQ10 P005 AN011 AMP3+ 96 J8 60 60 IRQ3 P004 AN004 AMP2O 97 H8 61 61 P003 AN003 AMP1O 98 K8 62 62 46 46 IRQ2 P002 AN002 AMP0O 99 K9 63 63 47 47 39 IRQ7 P001 AN001 AMP0- TS22 100 K10 64 64 48 48 40 IRQ6 P000 AN000 AMP0+ TS21 IRQ15 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 TS28 Page 26 of 130 RA4M1 Group 2. 2. Electrical Characteristics Electrical Characteristics Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions: VCC*1 = AVCC0 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5V, VREFH = VREFH0 = 1.6 to AVCC0, VBATT = 1.6 to 3.6V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0V, Ta = Topr. Note 1. The typical condition is set to VCC = 3.3V. Note 2. When USBFS is not used. Figure 2.1 shows the timing conditions. For example P100 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30 pF Figure 2.1 Input or output timing measurement conditions The recommended measurement conditions for the timing specification of each peripheral provided are for the best peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions. Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the AC specification of each function is not guaranteed. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 27 of 130 RA4M1 Group 2.1 2. Electrical Characteristics Absolute Maximum Ratings Table 2.1 Absolute maximum ratings Parameter Power supply voltage Input voltage ports*1 Symbol Value Unit VCC -0.5 to +6.5 V Vin -0.3 to +6.5 V P000 to P008, P010 to P015 Vin -0.3 to AVCC0 + 0.3 V Others Vin -0.3 to VCC + 0.3 V VREFH0 -0.3 to +6.5 V 5 V-tolerant Reference power supply voltage VREFH V VBATT power supply voltage VBATT -0.5 to +6.5 V Analog power supply voltage AVCC0 -0.5 to +6.5 V USB power supply voltage VCC_USB -0.5 to +6.5 V VCC_USB_LDO -0.5 to +6.5 V VAN -0.3 to AVCC0 + 0.3 V -0.3 to VCC + 0.3 V Analog input voltage When AN000 to AN014 are used When AN016 to AN025 are used LCD voltage VL1 voltage VL1 -0.3 to +2.8 V VL2 voltage VL2 -0.3 to +6.5 V VL3 voltage VL3 -0.3 to +6.5 V VL4 voltage VL4 -0.3 to +6.5 V Topr -40 to +105 °C Operating temperature*2,*3,*4 -40 to +85 Storage temperature Caution: Note 1. Note 2. Note 3. Note 4. Tstg -55 to +125 °C Permanent damage to the MCU may result if absolute maximum ratings are exceeded. To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 μF as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance. Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. The capacitor must be placed close to the pin. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements. Ports P205, P206, P400 to P404, P407, P408 are 5 V tolerant. See section 2.2.1, Tj/Ta Definition. Contact a Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part Numbering. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 28 of 130 RA4M1 Group Table 2.2 2. Electrical Characteristics Recommended operating conditions Parameter Symbol Value Min Typ Max Unit Power supply voltages VCC*1, *2 When USBFS is not used 1.6 - 5.5 V When USBFS is used VCC_USB USB Regulator Disable - 3.6 V When USBFS is used VCC_USB USB Regulator _LDO Enable - 5.5 V - 0 - V - VCC - V When USBFS is used 3.0 USB Regulator Disable (Input) 3.3 3.6 V When USBFS is not used - VCC - V When USBFS is used USB Regulator Disable - VCC - V - 5.5 V - 0 - V When the battery backup function is not used - VCC - V When the battery backup function is used 1.6 - 3.6 V AVCC0*1, *2 1.6 - 5.5 V AVSS0 - 0 - V 1.6 - AVCC0 V VSS USB power supply voltages VCC_USB VCC_USB_LDO When USBFS is not used When USBFS is used 3.8 USB Regulator Enable VSS_USB VBATT power supply voltage Analog power supply voltages VBATT VREFH0 VREFL0 VREFH VREFL Note 1. Note 2. When used as ADC14 Reference When used as DAC12 Reference - 0 - V 1.6 - AVCC0 V - 0 - V Use AVCC0 and VCC under the following conditions: AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 ≥ 2.2 V. AVCC0 = VCC when VCC < 2.2 V or AVCC0 < 2.2 V. When powering on the VCC and AVCC0 pins, power them on at the same time, or power the VCC pin first and then the AVCC0 pin. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 29 of 130 RA4M1 Group 2.2 2. Electrical Characteristics DC Characteristics 2.2.1 Tj/Ta Definition Table 2.3 DC Characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C Parameter Symbol Typ Max Unit Test conditions Permissible junction temperature Tj - 125 °C High-speed mode Middle-speed mode Low-voltage mode Low-speed mode Subosc-speed mode 105*1 Note: Note 1. Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is +105°C, otherwise, it is +125°C. 2.2.2 I/O VIH, VIL Table 2.4 I/O VIH, VIL (1) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 2.7 to 5.5V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V Parameter Schmitt trigger input voltage IIC*1 (except for SMBus) RES, NMI Other peripheral input pins excluding IIC Input voltage (except for Schmitt trigger input pin) IIC (SMBus)*2 5 V-tolerant ports*3 P914, P915 Symbol Min VIH VCC × 0.7 VIL - ΔVT VCC × 0.05 - - VIH VCC × 0.8 - - VIL - - VCC × 0.2 ΔVT VCC × 0.1 - - Note 1. Note 2. Note 3. Max Unit Test conditions - 5.8 V - - VCC × 0.3 VIH 2.2 - - VCC = 3.6 to 5.5 V VIH 2.0 - - VCC = 2.7 to 3.6 V VIL - - 0.8 - VIH VCC × 0.8 - 5.8 VIL - - VCC × 0.2 VIH VCC_USB × 0.8 - VCC_USB + 0.3 VIL - - VCC_USB × 0.2 AVCC0 × 0.8 - - VIL - - AVCC0 × 0.2 EXTAL Input ports pins except for P000 to P008, P010 to P015, P914, P915 VIH VCC × 0.8 - - VIL - - VCC × 0.2 P402, P403, P404 VIH VBATT × 0.8 - VBATT + 0.3 VIL - - VBATT × 0.2 ΔVT VBATT × 0.05 - - P000 to P008, P010 to P015 VIH When VBATT power supply is selected Typ P205, P206, P400, P401, P407, P408 (total 6 pins). P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins). P205, P206, P400 to P404, P407, P408 (total 9 pins). R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 30 of 130 RA4M1 Group Table 2.5 2. Electrical Characteristics I/O VIH, VIL (2) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V Parameter Symbol Min Typ Max Unit Test conditions V - Schmitt trigger input voltage RES, NMI Peripheral input pins VIH VCC × 0.8 - - VIL - - VCC × 0.2 ΔVT VCC × 0.01 - - Input voltage (except for Schmitt trigger input pin) 5 V-tolerant ports*1 VIH VCC × 0.8 - 5.8 VIL - - VCC × 0.2 P914, P915 VIH VCC_USB × 0.8 - VCC_USB + 0.3 VIL - - VCC_USB × 0.2 P000 to P008, P010 to P015 VIH AVCC0 × 0.8 - - VIL When VBATT power supply is selected Note 1. - - AVCC0 × 0.2 EXTAL Input ports pins except for P000 to P008, P010 to P015, P914, P915 VIH VCC × 0.8 - - VIL - - VCC × 0.2 P402, P403, P404 VIH VBATT × 0.8 - VBATT + 0.3 VIL - - VBATT × 0.2 ΔVT VBATT × 0.01 - - P205, P206, P400 to P404, P407, P408 (total 9 pins) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 31 of 130 RA4M1 Group 2.2.3 Table 2.6 2. Electrical Characteristics I/O IOH, IOL I/O IOH, IOL (1 of 2) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V Parameter Permissible output current (average value per pin) Symbol Min Typ Max Unit IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA Middle drive for IIC Fast-mode*4 VCC = 2.7 to 5.5 V IOH - - -8.0 mA IOL - - 8.0 mA Middle drive*2 VCC = 3.0 to 5.5 V IOH - - -20.0 mA IOL - - 20.0 mA Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA Middle drive*2 VCC = 2.7 to 3.0 V IOH - - -8.0 mA IOL - - 8.0 mA Middle drive*2 VCC = 3.0 to 5.5 V IOH - - -20.0 mA IOL - - 20.0 mA Ports P100 to P115, P201 to P204, P300 to P307, P500 to P503, P600 to P603, P608 to P610, P808, P809 (total 41 pins) Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA Middle drive*2 IOH - - -4.0 mA IOL - - 8.0 mA Ports P914, P915 - IOH - - -4.0 mA IOL - - 4.0 mA Other output pin*3 Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA Ports P212, P213 Port P408 Port P409 - Low drive*1 Middle drive*2 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 32 of 130 RA4M1 Group Table 2.6 2. Electrical Characteristics I/O IOH, IOL (2 of 2) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V Parameter Permissible output current (Max value per pin) Symbol Min Typ Max Unit Ports P212, P213 - IOH - - -4.0 mA IOL - - 4.0 mA Port P408 Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA Middle drive for IIC Fast-mode*4 VCC = 2.7 to 5.5 V IOH - - -8.0 mA IOL - - 8.0 mA Middle drive*2 VCC = 3.0 to 5.5 V IOH - - -20.0 mA IOL - - 20.0 mA Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA IOH - - -20.0 mA IOL - - 20.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 8.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA Port P409 Middle drive*2 VCC = 2.7 to 3.0 V Middle drive*2 VCC = 3.0 to 5.5 V Ports P100 to P115, P201 to P204, P300 to P307, P500 to P503, P600 to P603, P608 to P610, P808, P809 (total 41 pins) Ports P914, P915 Other output pin*3 Low drive*1 Middle drive*2 - Low drive*1 Middle drive*2 Permissible output current (max value total pins) Total of ports P000 to P008, P010 to P015 Ports P914, P915 Total of all output pin*5 Caution: Note 1. Note 2. Note 3. Note 4. Note 5. IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA ΣIOH (max) - - -30 mA ΣIOL (max) - - 30 mA ΣIOH (max) - - -2.0 mA ΣIOL (min) - - 2.0 mA ΣIOH (max) - - -60 mA ΣIOL (max) - - 60 mA To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 μs. This is the value when low driving ability is selected with the Port Drive Capability bit in PmnPFS register. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register. Except for ports P200, P214, P215, which are input ports. This is the value when middle driving ability for IIC Fast-mode is selected with the Port Drive Capability bit in PmnPFS register. For details on the permissible output current used with CTSU, see section 2.11, CTSU Characteristics. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 33 of 130 RA4M1 Group 2.2.4 2. Electrical Characteristics I/O VOH, VOL, and Other Characteristics Table 2.7 I/O VOH, VOL (1) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 4.0 to 5.5 V Parameter Output voltage IIC*1 Ports P408, P409*2, *3 Ports P000 to P008, P010 to P015 Low drive Middle drive Ports P914, P915 Other output pins*4 Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. Symbol Min Typ Max Unit Test conditions VOL - - 0.4 V IOL = 3.0 mA VOL*2,*5 - - 0.6 IOL = 6.0 mA VOH VCC - 1.0 - - IOH = -20 mA VOL - - 1.0 IOL = 20 mA VOH AVCC0 - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA VOH AVCC0 - 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA VOH VCC_USB - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA Low drive VOH VCC - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA Middle drive*6 VOH VCC - 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins). This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register. Based on characterization data, not tested in production. Except for ports P200, P214, P215, which are input ports. This is the value when middle driving ability for IIC is selected in the Port Drive Capability bit in PmnPFS register for P408. Except for P212, P213. Table 2.8 I/O VOH, VOL (2) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 2.7 to 4.0 V Parameter Output voltage IIC*1 Symbol Min Typ Max Unit Test conditions VOL - - 0.4 V IOL = 3.0 mA VOL Ports P408, P409*2, *3 Ports P000 to P008, P010 to P015 Low drive Middle drive Ports P914, P915 Other output pins*4 Low drive Middle drive*6 Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. *2,*5 - - 0.6 IOL = 6.0 mA VOH VCC - 1.0 - - IOH = -20 mA VCC = 3.3 V VOL - - 1.0 IOL = 20 mA VCC = 3.3 V VOH AVCC0 - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH AVCC0 - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA VOH VCC_USB - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH VCC - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH VCC - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins). This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register. Based on characterization data, not tested in production. Except for ports P200, P214, P215, which are input ports. This is the value when middle driving ability for IIC is selected in the Port Drive Capability bit in PmnPFS register for P408. Except for P212, P213. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 34 of 130 RA4M1 Group Table 2.9 2. Electrical Characteristics I/O VOH, VOL (3) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 2.7 V Parameter Output voltage Ports P000 to P015 Symbol Min Typ Max Unit Test conditions Low drive VOH AVCC0 - 0.3 - - V IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA Middle drive VOH AVCC0 - 0.3 - - IOH = -1.0 mA Ports P914, P915 Other output pins*1 Note 1. Note 2. VOL - - 0.3 IOL = 1.0 mA VOH VCC_USB - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA Low drive VOH VCC - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA Middle drive*2 VOH VCC - 0.3 - - IOH = -1.0 mA VOL - - 0.3 IOL = 1.0 mA Except for ports P200, P214, P215, which are input ports. Except for P212, P213. Table 2.10 I/O other characteristics Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Input leakage current RES, P200, P214, P215 | Iin | - - 1.0 μA Vin = 0 V Vin = VCC Three-state leakage current (off state) 5 V-tolerant ports | ITSI | - - 1.0 μA Vin = 0 V Vin = 5.8 V - - 1.0 Other ports (except for ports P200, P214, P215 and 5 V tolerant) Vin = 0 V Vin = VCC Input pull-up resistor All ports (except for ports P200, P214, P215, P914, P915) RU 10 20 50 kΩ Vin = 0 V Input capacitance P914, P915, P100 to P103, P111, P112, P200 Cin - - 30 pF Vin = 0 V f = 1 MHz Ta = 25°C - - 15 Other input pins R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 35 of 130 RA4M1 Group 2.2.5 2. Electrical Characteristics I/O Pin Output Characteristics of Low Drive Capacity IOH/IOL vs VOH/VOL 60 50 VCC = 5.5 V 40 30 VCC = 3.3 V IOH/IOL [mA] 20 VCC = 2.7 V 10 VCC = 1.6 V 0 VCC = 1.6 V -10 VCC = 2.7 V -20 VCC = 3.3 V -30 -40 -50 VCC = 5.5 V -60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.2 VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C when low drive output is selected (reference data) IOH/IOL vs VOH/VOL 3 Ta = -40°C Ta = 25°C Ta = 105°C 2 IOH/IOL [mA] 1 0 -1 Ta = 105°C Ta = 25°C -2 Ta = -40°C -3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH/VOL [V] Figure 2.3 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 36 of 130 RA4M1 Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 20 15 Ta = -40°C Ta = 25°C Ta = 105°C IOH/IOL [mA] 10 5 0 -5 Ta = 105°C Ta = 25°C -10 Ta = -40°C -15 -20 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.4 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data) IOH/IOL vs VOH/VOL 30 Ta = -40°C Ta = 25°C Ta = 105°C 20 IOH/IOL [mA] 10 0 -10 Ta = 105°C Ta = 25°C -20 Ta = -40°C -30 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.5 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 37 of 130 RA4M1 Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 60 Ta = -40°C Ta = 25°C Ta = 105°C 40 IOH/IOL [mA] 20 0 -20 Ta = 105°C -40 Ta = 25°C Ta = -40°C -60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.6 2.2.6 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected (reference data) I/O Pin Output Characteristics of Middle Drive Capacity IOH/IOL [mA] IOH/IOL vs VOH/VOL 140 120 100 80 60 40 20 VCC = 5.5 V VCC = 3.3 V VCC = 2.7 V VCC = 1.6 V 0 -20 -40 -60 -80 -100 -120 -140 VCC = 1.6 V VCC = 2.7 V VCC = 3.3 V VCC = 5.5 V 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.7 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 38 of 130 RA4M1 Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 6 Ta = -40°C Ta = 25°C Ta = 105°C 4 IOH/IOL [mA] 2 0 -2 Ta = 105°C -4 Ta = 25°C Ta = -40°C -6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH/VOL [V] Figure 2.8 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is selected (reference data) IOH/IOL vs VOH/VOL 40 Ta = -40°C Ta = 25°C Ta = 105°C 30 IOH/IOL [mA] 20 10 0 -10 -20 Ta = 105°C Ta = 25°C -30 Ta = -40°C -40 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.9 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 39 of 130 RA4M1 Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 60 Ta = -40°C Ta = 25°C 40 Ta = 105°C IOH/IOL [mA] 20 0 -20 Ta = 105°C -40 Ta = 25°C Ta = -40°C -60 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.10 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data) IOH/IOL [mA] IOH/IOL vs VOH/VOL 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 Ta = -40°C Ta = 25°C Ta = 105°C Ta = 105°C Ta = 25°C Ta = -40°C 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.11 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 40 of 130 RA4M1 Group 2.2.7 2. Electrical Characteristics P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity IOH/IOL [mA] IOH/IOL vs VOH/VOL 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 VCC = 5.5 V VCC = 3.3 V VCC = 2.7 V VCC = 2.7 V VCC = 3.3 V VCC = 5.5 V 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.12 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected (reference data) IOH/IOL vs VOH/VOL 60 Ta = -40°C Ta = 25°C Ta = 105°C 40 IOH/IOL [mA] 20 0 -20 Ta = 105°C -40 Ta = 25°C Ta = -40°C -60 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.13 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 41 of 130 RA4M1 Group 2. Electrical Characteristics IOH/IOL vs VOH/VOL 100 Ta = -40°C Ta = 25°C Ta = 105°C 80 60 40 IOH/IOL [mA] 20 0 -20 -40 Ta = 105°C -60 Ta = 25°C -80 Ta = -40°C -100 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.14 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data) IOH/IOL vs VOH/VOL 220 Ta = -40°C Ta = 25°C Ta = 105°C 180 140 IOH/IOL [mA] 100 60 20 -20 -60 -100 -140 Ta = 105°C Ta = 25°C -180 Ta = -40°C -220 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.15 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 42 of 130 RA4M1 Group 2.2.8 2. Electrical Characteristics IIC I/O Pin Output Characteristics IOL vs VOL 120 110 VCC = 5.5 V (Middle drive) 100 90 IOL [mA] 80 70 60 50 VCC = 3.3V (Middle drive) VCC = 5.5V (Low drive) 40 VCC = 2.7V (Middle drive) 30 VCC = 3.3V (Low drive) 20 10 VCC = 2.7V (Low drive) 0 0 1 2 3 4 5 6 VOL [V] Figure 2.16 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 43 of 130 RA4M1 Group 2.2.9 Table 2.11 2. Electrical Characteristics Operating and Standby Current Operating and standby current (1) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 High-speed mode*2 Normal mode All peripheral clock disabled, while (1) code executing from flash*5 All peripheral clock disabled, CoreMark code executing from flash*5 All peripheral clock enabled, while (1) code executing from flash*5 Sleep mode ICLK = 48 MHz Symbol Typ*10 Max Unit Test conditions ICC mA *7 8.3 - ICLK = 32 MHz 5.8 - ICLK = 16 MHz 3.5 - ICLK = 8 MHz 2.2 - ICLK = 48 MHz 16.4 - ICLK = 32 MHz 11.3 - ICLK = 16 MHz 6.4 - ICLK = 8 MHz 4.0 - ICLK = 48 MHz 18.5 - *9 ICLK = 32 MHz 13.8 - *8 ICLK = 16 MHz 7.7 - ICLK = 8 MHz 4.5 - All peripheral clock enabled, code executing from SRAM*5 ICLK = 48 MHz - 50.0 *9 All peripheral clock disabled*5 ICLK = 48 MHz 3.3 - *7 ICLK = 32 MHz 2.4 - ICLK = 16 MHz 1.8 - ICLK = 8 MHz 1.4 - ICLK = 48 MHz 13.4 - *9 ICLK = 32 MHz 10.4 - *8 All peripheral clock enabled*5 ICLK = 16 MHz 6.0 - ICLK = 8 MHz 3.6 - Increase during BGO operation*6 Middle-speed mode*2 Normal mode All peripheral clock disabled, while (1) code executing from flash*5 All peripheral clock disabled, CoreMark code executing from flash*5 All peripheral clock enabled, while (1) code executing from flash*5 Sleep mode - 2.5 - ICLK = 8 MHz 2.0 - ICLK = 1 MHz 0.9 - ICLK = 12 MHz 4.7 - ICLK = 8 MHz 3.7 - ICLK = 1 MHz 1.2 - ICLK = 12 MHz 5.7 - ICLK = 8 MHz 4.3 - ICC ICLK = 1 MHz 1.5 - All peripheral clock enabled, code executing from SRAM*5 ICLK = 12 MHz - 20.0 All peripheral clock disabled*5 ICLK = 12 MHz 1.2 - ICLK = 8 MHz 1.2 - ICLK = 1 MHz 0.8 - ICLK = 12 MHz 4.4 - ICLK = 8 MHz 3.4 - ICLK = 1 MHz 1.4 - 2.5 - All peripheral clock enabled*5 Increase during BGO operation*6 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 2.5 ICLK = 12 MHz mA *7 *8 *7 *8 - Page 44 of 130 RA4M1 Group Table 2.11 2. Electrical Characteristics Operating and standby current (1) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 Low-speed mode*3 Normal mode Sleep mode Low-voltage mode*3 Normal mode Sleep mode Suboscspeed mode*4 Normal mode Sleep mode Symbol Typ*10 Max Unit Test conditions ICC 0.4 - mA *7 All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 1 MHz All peripheral clock disabled, CoreMark code executing from flash*5 ICLK = 1 MHz 0.6 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 1 MHz 1.0 - All peripheral clock enabled, code executing from SRAM*5 ICLK = 1 MHz - 2.2 All peripheral clock disabled*5 ICLK = 1 MHz 0.3 - *7 All peripheral clock enabled*5 ICLK = 1 MHz 0.9 - *8 All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 4 MHz 1.7 - All peripheral clock disabled, CoreMark code executing from flash*5 ICLK = 4 MHz 2.8 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 4 MHz 3.0 - All peripheral clock enabled, code executing from SRAM*5 ICLK = 4 MHz - 8.0 All peripheral clock disabled*5 ICLK = 4 MHz 1.3 - *7 All peripheral clock enabled*5 ICLK = 4 MHz 2.5 - *8 All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 32.768 kHz 8.5 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 32.768 kHz 14.9 - All peripheral clock enabled, code executing from SRAM*5 ICLK = 32.768 kHz - 83.0 All peripheral clock disabled*5 ICLK = 32.768 kHz 5.0 - All peripheral clock enabled*5 ICLK = 32.768 kHz 11.4 - ICC ICC *8 mA *7 *8 μA *8 Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state. Note 2. The clock source is HOCO. Note 3. The clock source is MOCO. Note 4. The clock source is the sub-clock oscillator. Note 5. This does not include BGO operation. Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution. Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64. Note 8. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are the same frequency as that of ICLK. Note 9. FCLK and PCLKB are set to divided by 2 and PCLKA, PCLKC, and PCLKD are the same frequency as that of ICLK. Note 10. VCC = 3.3 V. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 45 of 130 RA4M1 Group 2. Electrical Characteristics 40 T a = 1 0 5C , IC L K = 4 8 M H z * 2 35 30 T a = 1 0 5 C , I C L K = 3 2 M H z * 2 ICC (mA) 25 T a = 2 5 C , I C L K = 4 8 M H z * 1 T a = 1 0 5 C , I C L K = 1 6 M H z * 2 T a = 2 5 C , I C L K = 3 2 M H z * 1 T a = 1 0 5 C , I C L K = 8 M H z * 2 T a = 2 5 C , I C L K = 1 6 M H z * 1 T a = 1 0 5 C , I C L K = 4 M H z * 2 T a = 2 5 C , I C L K = 8 M H z * 1 T a = 2 5 C , I C L K = 4 M H z * 1 20 15 10 5 0 1 .5 2 .0 2 .5 Ta Ta Ta Ta Ta = = = = = 2 5 C 2 5 C 2 5 C 2 5 C 2 5 C 3 .0 , , , , IC L K IC L K IC L K IC L K 3 .5 = = = = VCC 4 8 M H z *1 3 2 M H z *1 1 6 M H z *1 8 M H z *1 , IC L K = 4 M H z * 1 4 .0 4 .5 5 .0 5 .5 6 .0 (V ) 1 0 5 C 1 0 5 C 1 0 5 C 1 0 5 C T a = 1 0 5 C Ta Ta Ta Ta = = = = , , , , , IC L K IC L K IC L K IC L K IC L K = = = = = 4 8 M H z *2 3 2 M H z *2 1 6 M H z *2 8 M H z *2 4 M H z *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.17 Voltage dependency in high-speed operating mode (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 46 of 130 RA4M1 Group 2. Electrical Characteristics 12 Ta = 105C , ICLK = 12 MHz * 2 ICC (mA) 10 8 Ta = 105C , ICLK = 8 MHz * 2 6 Ta = 25 C , ICLK = 12 MHz * 1 Ta = 105 C , ICLK = 4 MHz * 2 Ta = 25 C, ICLK = 8 MHz * 1 4 Ta = 25 C, ICLK = 4 MHz*1 Ta = 105C , ICLK = 1 MHz * 2 Ta = 25 C, ICLK = 1 MHz * 1 2 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VCC (V) Ta = 25C , ICLK = 12 MHz *1 Ta = 25C , ICLK = 8 MHz *1 Ta = 25C , ICLK = 4 MHz *1 Ta = 25C , ICLK = 1 MHz *1 Ta = 105C , ICLK = 12 MHz *2 Ta = 105 C , ICLK = 8 MHz *2 Ta = 105 C , ICLK = 4 MHz *2 Ta = 105 C , ICLK = 1 MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.18 Voltage dependency in middle-speed operating mode (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 47 of 130 RA4M1 Group 2. Electrical Characteristics 1.6 Ta = 105C , ICLK = 1 MHz * 2 1.4 1.2 Ta = 25 C , ICLK = 1 MHz * 1 ICC (mA) 1.0 0.8 0.6 0.4 0.2 0.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VCC (V) Ta = 25 C, ICLK = 1 MHz *1 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.19 Voltage dependency in Low-speed mode (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 48 of 130 RA4M1 Group 2. Electrical Characteristics 6 5 Ta = 105C, ICLK = 4 MHz*2 ICC (mA) 4 3 Ta = 25C, ICLK = 4 MHz*1 Ta = 105C, ICLK = 1 MHz*2 2 Ta = 25C, ICLK = 1 MHz*1 1 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VCC (V) Ta = 25C, ICLK = 4 MHz *1 *1 Ta = 25C, ICLK = 1 MHz Ta = 105C, ICLK = 4 MHz *2 Ta = 105C, ICLK = 1 MHz*2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.20 Voltage dependency in low-voltage mode (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 49 of 130 RA4M1 Group 2. Electrical Characteristics 55.0 Ta = 105C, ICLK = 32 MHz*2 50.0 45.0 40.0 ICC ( A) 35.0 30.0 25.0 20.0 Ta = 25 C, ICLK = 32 MHz* 1 15.0 10.0 5.0 0.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VCC (V) Ta = 25 C, ICLK = 32 MHz *1 Ta = 105C , ICLK = 32 MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper limit samples during product evaluation. Figure 2.21 Table 2.12 Voltage dependency in Subosc-speed mode (reference data) Operating and standby current (2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 Software Standby mode*2 Ta = 25°C Note 2. Note 3. Note 4. Typ*4 ICC Max Unit Test conditions μA - 0.8 4.5 Ta = 55°C 1.3 7.1 Ta = 85°C 3.5 20.2 Ta = 105°C Note 1. Symbol 8.7 53.7 Increment for RTC operation with low-speed on-chip oscillator*3 0.5 - - Increment for RTC operation with sub-clock oscillator*3 0.4 - SOMCR.SODRV[1:0] are 11b (Low power mode 3) 1.2 - SOMCR.SODRV[1:0] are 00b (Normal mode) Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state. The IWDT and LVD are not operating. Includes the current of sub-oscillation circuit or low-speed on-chip oscillator. VCC = 3.3 V. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 50 of 130 RA4M1 Group 2. Electrical Characteristics 100 ICC (mA) ICC (A) 10 1 0.1 -40 -20 0 20 40 Ta (  C) 60 80 100 Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.22 Table 2.13 Temperature dependency in Software Standby mode all SRAM (reference data) Operating and standby current (3) Conditions: VCC = AVCC0 = 0V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V Parameter Supply current*1 Note 1. RTC operation when VCC is off Ta = 25°C Symbol Typ Max Unit Test conditions ICC μA VBATT = 2.0 V SOMCR.SORDRV[1:0] = 11b (Low power mode 3) 0.8 - Ta = 55°C 0.9 - Ta = 85°C 1.0 - Ta = 105°C 1.1 - Ta = 25°C 0.9 - Ta = 55°C 1.0 - Ta = 85°C 1.1 - Ta = 105°C 1.2 - Ta = 25°C 1.5 - Ta = 55°C 1.7 - Ta = 85°C 2.0 - Ta = 105°C 2.2 - Ta = 25°C 1.6 - Ta = 55°C 1.8 - Ta = 85°C 2.1 - Ta = 105°C 2.3 - VBATT = 3.3 V SOMCR.SORDRV[1:0] = 11b (Low power mode 3) VBATT = 2.0 V SOMCR.SORDRV[1:0] = 00b (Normal mode) VBATT = 3.3 V SOMCR.SORDRV[1:0] = 00b (Normal mode) Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 51 of 130 RA4M1 Group 2. Electrical Characteristics 10 ICC ( A) Normal drive capacity*1 1 Low drive capacity*1 0 -40 -20 0 20 40 Ta (  C) Low drive capacity*1 60 80 100 120 Normal drive capacity*1 Note 1. Average value of the tested middle sample during product evaluation . Figure 2.23 Temperature dependency of RTC operation with VCC off (reference data) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 52 of 130 RA4M1 Group Table 2.14 2. Electrical Characteristics Operating and standby current (4) Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VREFH0 = 2.7 V to AVCC0 Parameter Analog power supply current During A/D conversion (at high-speed conversion) Symbol Min Typ Max Unit Test conditions IAVCC - - 3.0 mA - - - 1.0 mA - - 0.4 0.8 mA - - - 1.0 μA - - - 150 μA - - - 60 nA - - 50 100 μA - During A/D conversion (at low-power conversion) During D/A conversion (per channel)*1 Waiting for A/D and D/A conversion (all units)*6 Reference power supply current During A/D conversion IREFH0 Waiting for A/D conversion (all units) During D/A conversion IREFH Waiting for D/A conversion (all units) - - 100 μA - ITNS - 75 - μA - ICMPLP - 15 - μA - Comparator High-speed mode - 10 - μA - Comparator Low-speed mode - 2 - μA - Temperature sensor Low-Power Analog Comparator operating current Window mode Comparator Low-speed mode using DAC8 Operational Amplifier operating current Low power mode High-speed mode - 820 - μA - 2.5 4.0 μA - 2 units operating - 4.5 8.0 μA - 3 units operating - 6.5 11.0 μA - 4 units operating - 8.5 14.0 μA - 1 unit operating IAMP 1 unit operating - 140 220 μA - 2 units operating - 280 410 μA - 3 units operating - 420 600 μA - 4 units operating LCD operating current USB operating current Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. - 560 780 μA - External resistance division method fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice ILCD1*5 - 0.34 - μA - Internal voltage boosting method (VLCD.VLCD = 04) fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice ILCD2*5 - 0.92 - μA - Capacitor split method fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice ILCD3*5 - 0.19 - μA - During USB communication operation under the following settings and conditions:  Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1  Connect peripheral devices via a 1-meter USB cable from the USB port. IUSBH*2 - 4.3 (VCC) 0.9 (VCC_USB)*4 - mA - During USB communication operation under the following settings and conditions:  Device controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1  Connect the host device via a 1-meter USB cable from the USB port. IUSBF*2 - 3.6 (VCC) 1.1 (VCC_USB)*4 - mA - During suspended state under the following setting and conditions:  Device controller operation is set to full-speed mode (pull up the USB_DP pin)  Software standby mode  Connect the host device via a 1-meter USB cable from the USB port. ISUSP*3 - 0.35 (VCC) 170 (VCC_USB)*4 - μA - The reference power supply current is included in the power supply current value for D/A conversion. Current consumed only by the USBFS. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU during the suspended state. When VCC = VCC_USB = 3.3 V. Current flowing only to the LCD controller. Not including the current that flows through the LCD panel. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 module stop bit) is in the module-stop state. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 53 of 130 RA4M1 Group 2.2.10 2. Electrical Characteristics VCC Rise and Fall Gradient and Ripple Frequency Table 2.15 Rise and fall gradient characteristics Conditions: VCC = AVCC0 = 0 to 5.5 V Parameter Power-on VCC rising gradient Note 1. Note 2. Voltage monitor 0 reset disabled at startup (normal startup) Symbol Min Typ Max Unit Test conditions SrVCC 0.02 - 2 ms/V - Voltage monitor 0 reset enabled at startup*1 0.02 - - SCI/USB boot mode*2 0.02 - 2 When OFS1.LVDAS = 0. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit. Table 2.16 Rising and falling gradient and ripple frequency characteristics Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V). When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Unit Test conditions Allowable ripple frequency fr (VCC) - - 10 kHz Figure 2.24 Vr (VCC) ≤ VCC × 0.2 - - 1 MHz Figure 2.24 Vr (VCC) ≤ VCC × 0.08 - - 10 MHz Figure 2.24 Vr (VCC) ≤ VCC × 0.06 1.0 - - ms/V When VCC change exceeds VCC ±10% Allowable voltage change rising and falling gradient dt/dVCC 1/fr(VCC) VCC Figure 2.24 Vr(VCC) Ripple waveform R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 54 of 130 RA4M1 Group 2.3 2. Electrical Characteristics AC Characteristics 2.3.1 Frequency Table 2.17 Operation frequency value in high-speed operating mode Conditions: VCC = AVCC0 = 2.4 to 5.5 V Symbol Min Typ Max*5 Unit f 0.032768 - 48 MHz 2.4 to 2.7 V 0.032768 - 16 2.7 to 5.5 V 0.032768 - 32 2.4 to 2.7 V 0.032768 - 16 2.7 to 5.5 V - - 48 2.4 to 2.7 V - - 16 2.7 to 5.5 V - - 32 2.4 to 2.7 V - - 16 2.7 to 5.5 V - - 64 2.4 to 2.7 V - - 16 2.7 to 5.5 V - - 64 2.4 to 2.7 V - - 16 Parameter Operation frequency System clock (ICLK)*4 Flash interface clock 2.7 to 5.5 V (FCLK)*1, *2, *4 Peripheral module clock Peripheral module clock Peripheral module clock Peripheral module clock Note 1. Note 2. Note 3. Note 4. Note 5. (PCLKA)*4 (PCLKB)*4 (PCLKC)*3, *4 (PCLKD)*4 The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, and FCLK. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.22, Clock timing. Table 2.18 Operation frequency value in Middle-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency Symbol System clock (ICLK)*4 2.7 to 5.5 V Flash interface clock (FCLK)*1, *2, *4 Peripheral module clock (PCLKA)*4 Peripheral module clock (PCLKB)*4 Peripheral module clock (PCLKC)*3, *4 Peripheral module clock (PCLKD)*4 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 f Min Typ Max*5 Unit MHz 0.032768 - 12 2.4 to 2.7 V 0.032768 - 12 1.8 to 2.4 V 0.032768 - 8 2.7 to 5.5 V 0.032768 - 12 2.4 to 2.7 V 0.032768 - 12 1.8 to 2.4 V 0.032768 - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 Page 55 of 130 RA4M1 Group Note 1. Note 2. Note 3. Note 4. Note 5. 2. Electrical Characteristics The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.22, Clock timing. Table 2.19 Operation frequency value in Low-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency Typ Max*4 Unit f 0.032768 - 1 MHz 1.8 to 5.5 V Flash interface clock (FCLK)*1, *3 1.8 to 5.5 V 0.032768 - 1 Peripheral module clock (PCLKA)*3 1.8 to 5.5 V - - 1 (PCLKB)*3 1.8 to 5.5 V - - 1 1.8 to 5.5 V - - 1 1.8 to 5.5 V - - 1 Peripheral module clock (PCLKC)*2, *3 Peripheral module clock Note 4. Min System clock (ICLK)*3 Peripheral module clock Note 1. Note 2. Note 3. Symbol (PCLKD)*3 The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. The lower-limit frequency of PCLKC is 1 MHz when the A/D converter is in use. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.22, Clock timing. Table 2.20 Operation frequency value in low-voltage mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Min Typ Max*5 Unit 0.032768 - 4 MHz 0.032768 - 4 - - 4 - - 4 1.6 to 5.5 V - - 4 1.6 to 5.5 V - - 4 Parameter Operation frequency Symbol (ICLK)*4 1.6 to 5.5 V Flash interface clock (FCLK)*1, *2, *4 1.6 to 5.5 V Peripheral module clock (PCLKA)*4 1.6 to 5.5 V Peripheral module clock (PCLKB)*4 1.6 to 5.5 V System clock Peripheral module clock (PCLKC)*3, *4 Peripheral module clock (PCLKD)*4 Note 1. Note 2. Note 3. Note 4. Note 5. f The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-Bit A/D converter is in use. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.22, Clock timing. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 56 of 130 RA4M1 Group Table 2.21 2. Electrical Characteristics Operation frequency value in Subosc-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency System clock (ICLK)*3 1.8 to 5.5 V (FCLK)*1, *3 Min Typ Max Unit 27.8528 32.768 37.6832 kHz 1.8 to 5.5 V 27.8528 32.768 37.6832 Peripheral module clock (PCLKA)*3 1.8 to 5.5 V - - 37.6832 (PCLKB)*3 1.8 to 5.5 V - - 37.6832 1.8 to 5.5 V - - 37.6832 1.8 to 5.5 V - - 37.6832 Flash interface clock Peripheral module clock Peripheral module clock (PCLKC)*2, *3 Peripheral module clock Note 1. Note 2. Note 3. Symbol f (PCLKD)*3 Programming and erasing the flash memory is not possible. The 14-bit A/D converter cannot be used. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK. 2.3.2 Table 2.22 Clock Timing Clock timing (1 of 2) Parameter Symbol Min Typ Max Unit Test conditions EXTAL external clock input cycle time tXcyc 50 - - ns Figure 2.25 EXTAL external clock input high pulse width tXH 20 - - ns EXTAL external clock input low pulse width tXL 20 - - ns EXTAL external clock rising time tXr - - 5 ns EXTAL external clock falling time tXf - - 5 ns tEXWT 0.3 - - μs - fEXTAL - - 20 MHz 2.4 ≤ VCC ≤ 5.5 - - 8 1.8 ≤ VCC < 2.4 - - 1 1.6 ≤ VCC < 1.8 1 - 20 1 - 8 EXTAL external clock input wait time*1 EXTAL external clock input frequency Main clock oscillator oscillation frequency fMAIN MHz 2.4 ≤ VCC ≤ 5.5 1.8 ≤ VCC < 2.4 1 - 4 tMAINOSCWT - - -*9 ms - LOCO clock oscillation frequency fLOCO 27.8528 32.768 37.6832 kHz - LOCO clock oscillation stabilization time tLOCO - - 100 μs Figure 2.26 Main clock oscillation stabilization wait time (crystal)*9 1.6 ≤ VCC < 1.8 IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz - MOCO clock oscillation frequency fMOCO 6.8 8 9.2 MHz - MOCO clock oscillation stabilization time tMOCO - - 1 μs - R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 57 of 130 RA4M1 Group Table 2.22 2. Electrical Characteristics Clock timing (2 of 2) Parameter Symbol Min Typ Max Unit Test conditions HOCO clock oscillation frequency fHOCO24 23.64 24 24.36 MHz Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 22.68 24 25.32 Ta = -40 to 85°C 1.6 ≤ VCC < 1.8 23.76 24 24.24 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 23.52 24 24.48 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 31.52 32 32.48 Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 30.24 32 33.76 Ta = -40 to 85°C 1.6 ≤ VCC < 1.8 31.68 32 32.32 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 31.36 32 32.64 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 47.28 48 48.72 Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 47.52 48 48.48 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 47.04 48 48.96 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 63.04 64 64.96 Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5 63.36 64 64.64 Ta = -20 to 85°C 2.4 ≤ VCC ≤ 5.5 62.72 64 65.28 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 tHOCO24 tHOCO32 - - 37.1 tHOCO48 - - 43.3 fHOCO32 fHOCO48*4 fHOCO64*5 HOCO clock oscillation stabilization time*6, *7 Except Low-Voltage mode Low-Voltage mode PLL input frequency*2 PLL circuit oscillation frequency*2 PLL clock oscillation stabilization time*8 μs Figure 2.27 tHOCO64 - - 80.6 tHOCO24 tHOCO32 tHOCO48 tHOCO64 - - 100.9 fPLLIN 4 - 12.5 MHz - fPLL 24 - 64 MHz - tPLL - - 55.5 μs Figure 2.29 PLL free-running oscillation frequency fPLLFR - 8 - MHz - Sub-clock oscillator oscillation frequency fSUB - 32.768 - kHz - Sub-clock oscillation stabilization time*3 tSUBOSC - - -*3 s Figure 2.30 Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. Note 7. Note 8. Note 9. Time until the clock can be used after the Main Clock Oscillator Stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable. The VCC range that the PLL can be used is 2.4 to 5.5 V. After changing the setting of the SOSCCR.SOSTP bit so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization wait time elapses, that is greater than or equal to the value recommended by the oscillator manufacturer. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V. This is a characteristic when HOCOCR.HCSTP bit is set to 0 (oscillation) in MOCO stop state. When HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs. Whether stabilization time has elapsed can be confirmed by OSCSF.HOCOSF. This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in MOCO stop state. When PLLCR.PLLSTP bit is set to 0 (operation) during MOCO oscillation, this specification is shortened by 1 μs. When setting up the main clock, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended stabilization time. After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCSF.MOSCSF flag to confirm that it is 1, then start using the main clock. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 58 of 130 RA4M1 Group 2. Electrical Characteristics tXcyc tXL tXH EXTAL external clock input VCC × 0.5 tXr Figure 2.25 tXf EXTAL external clock input timing LOCOCR.LCSTP tLOCO LOCO clock oscillator output Figure 2.26 LOCO clock oscillation start timing HOCOCR.HCSTP tHOCOx*1 HOCO clock Note 1. Figure 2.27 x = 24, 32, 48, 64 HOCO clock oscillation start timing (started by setting HOCOCR.HCSTP bit) MOSCCR.MOSTP Main clock oscillator output tMAINOSCWT Main clock Figure 2.28 Main clock oscillation start timing PLLCR.PLLSTP tPLL PLL clock Figure 2.29 PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 59 of 130 RA4M1 Group 2. Electrical Characteristics SOSCCR.SOSTP tSUBOSC Sub-clock oscillator output Figure 2.30 Sub-clock oscillation start timing MOCOCR.MCSTP tMOCO MOCO clock oscillator output Figure 2.31 MOCO clock oscillation start timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 60 of 130 RA4M1 Group 2.3.3 2. Electrical Characteristics Reset Timing Table 2.23 Reset timing Symbol Min Typ Max Unit Test conditions At power-on tRESWP 3 - - ms Figure 2.32 Other than above tRESW 30 - - μs Figure 2.33 tRESWT - 0.7 - ms Figure 2.32 - 0.3 - - 0.5 - ms Figure 2.33 - 0.05 - - 0.6 - ms - - 0.15 - Parameter RES pulse width enable*1 Wait time after RES cancellation (at power-on) LVD0: Wait time after RES cancellation (during powered-on state) LVD0: enable*1 Internal reset cancellation time (Watchdog timer reset, SRAM parity error reset, SRAM ECC error reset, Bus master MPU error reset, Bus slave MPU error reset, Stack pointer error reset, Software reset) LVD0: enable*1 Note 1. Note 2. LVD0: disable*2 LVD0: tRESWT2 disable*2 tRESWT3 LVD0: disable*2 When OFS1.LVDAS = 0. When OFS1.LVDAS = 1. VCC RES tRESWP Internal reset tRESWT Figure 2.32 Reset input timing at power-on tRESW RES Internal reset tRESWT2 Figure 2.33 Reset input timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 61 of 130 RA4M1 Group 2.3.4 2. Electrical Characteristics Wakeup Time Table 2.24 Timing of recovery from low power modes (1) Symbol Min Typ Max Unit Test conditions System clock source is main clock oscillator (20 MHz)*2 tSBYMC - 2 3 ms Figure 2.34 System clock source is PLL (48 MHz) with main clock oscillator*2 tSBYPC - 2 3 ms System clock source is main clock oscillator (20 MHz)*3 tSBYEX - 14 25 μs System clock source is PLL (48 MHz) with main clock oscillator*3 tSBYPE - 53 76 μs System clock source is HOCO*4 (HOCO clock is 32 MHz) tSBYHO - 43 52 μs System clock source is HOCO*4 (HOCO clock is 48 MHz) tSBYHO - 44 52 μs System clock source is HOCO*5 (HOCO clock is 64 MHz) tSBYHO - 82 110 μs System clock source is MOCO tSBYMO - 16 25 μs Parameter Recovery time from Software Standby mode*1 High-speed mode Crystal resonator connected to main clock oscillator External clock input to main clock oscillator Note 1. Note 2. Note 3. Note 4. Note 5. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h. Table 2.25 Timing of recovery from low power modes (2) Symbol Min Typ Max Unit Test conditions System clock source is main clock oscillator (12 MHz)*2 tSBYMC - 2 3 ms Figure 2.34 System clock source is PLL (24 MHz) with main clock oscillator*2 tSBYPC - 2 3 ms System clock source is main clock oscillator (12 MHz)*3 tSBYEX - 2.9 10 μs System clock source is PLL (24 MHz) with main clock oscillator*3 tSBYPE - 49 76 μs System clock source is HOCO (24 MHz) tSBYHO - 38 50 μs System clock source is MOCO tSBYMO - 3.5 5.5 μs Parameter Recovery time from Software Standby mode*1 Middle-speed mode Crystal resonator connected to main clock oscillator External clock input to main clock oscillator Note 1. Note 2. Note 3. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 62 of 130 RA4M1 Group Table 2.26 2. Electrical Characteristics Timing of recovery from low power modes (3) Parameter Recovery time from Software Standby mode*1 Low-speed mode Note 2. Note 3. Unit Test conditions Figure 2.34 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (1 MHz)*3 tSBYEX - 28 50 μs tSBYMO - 25 35 μs Timing of recovery from low power modes (4) Recovery time from Software Standby mode*1 Low-voltage mode Crystal resonator connected to main clock oscillator External clock input to main clock oscillator System clock source is main clock oscillator Symbol Min Typ Max Unit Test conditions tSBYMC - 2 3 ms Figure 2.34 tSBYEX - 108 130 μs tSBYHO - 108 130 μs (4 MHz)*2 System clock source is main clock oscillator (4 MHz)*3 System clock source is HOCO The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined by the following expression. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Table 2.28 Timing of recovery from low power modes (5) Symbol Min Typ Max Unit Test conditions System clock source is sub-clock oscillator (32.768 kHz) tSBYSC - 0.85 1 ms Figure 2.34 System clock source is LOCO (32.768 kHz) tSBYLO - 0.85 1.2 ms Parameter Recovery time from Software Standby mode*1 Note 1. Max System clock source is main clock oscillator (1 MHz)*2 Parameter Note 2. Note 3. Typ The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Table 2.27 Note 1. Min Crystal resonator connected to main clock oscillator System clock source is MOCO Note 1. Symbol Subosc-speed mode The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 63 of 130 RA4M1 Group 2. Electrical Characteristics Oscillator ICLK IRQ Software Standby mode tSBYMC, tSBYPC, tSBYEX, tSBYPE, tSBYMO, tSBYHO Oscillator ICLK IRQ Software Standby mode tSBYSC, tSBYLO Figure 2.34 Software Standby mode cancellation timing Table 2.29 Timing of recovery from low power modes (6) Parameter Recovery time from Software Standby mode to Snooze mode Symbol Min Typ Max Unit Test conditions High-speed mode System clock source is HOCO tSNZ - 36 45 μs Figure 2.35 Middle-speed mode System clock source is MOCO tSNZ - 1.3 3.6 μs Low-speed mode System clock source is MOCO tSNZ - 10 13 μs Low-voltage mode System clock source is HOCO tSNZ - 87 110 μs R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 64 of 130 RA4M1 Group 2. Electrical Characteristics Oscillator ICLK (except DTC, SRAM) ICLK (to DTC, SRAM)*1 PCLK IRQ Software Standby mode Snooze mode tSNZ Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.35 Software Standby mode to Snooze mode recovery timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 65 of 130 RA4M1 Group 2.3.5 2. Electrical Characteristics NMI and IRQ Noise Filter Table 2.30 NMI and IRQ noise filter Parameter Symbol Min Typ Max Unit Test conditions NMI pulse width tNMIW 200 - - ns NMI digital filter disabled tPcyc × 2 ≤ 200 ns - - 200 - - NMI digital filter enabled tNMICK × 3 ≤ 200 ns tNMICK × 3.5*2 - - 200 - - tPcyc × 2*1 - - 200 - - - - tPcyc × IRQ pulse width tIRQW 2*1 tIRQCK × Note: Note: Note 1. Note 2. Note 3. 3.5*3 tPcyc × 2 > 200 ns tNMICK × 3 > 200 ns ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns tIRQCK × 3 > 200 ns 200 ns minimum in Software Standby mode. If the clock source is switched, add 4 clock cycles of the switched source. tPcyc indicates the cycle of PCLKB. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 12, 14, 15). NMI tNMIW Figure 2.36 NMI interrupt input timing IRQ tIRQW Figure 2.37 IRQ interrupt input timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 66 of 130 RA4M1 Group 2.3.6 2. Electrical Characteristics I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing Table 2.31 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing Symbol Min Max Unit Test conditions Input data pulse width tPRW 1.5 - tPcyc Figure 2.38 Input/output data cycle (P002, P003, P004, P007) tPOcyc 10 - us tPOEW 3 - tPcyc Figure 2.39 tGTICW 1.5 - tPDcyc Figure 2.40 2.5 Figure 2.41 Parameter I/O ports POEG POEG input trigger pulse width GPT Input capture pulse width Single edge Dual edge AGT AGTIO, AGTEE input cycle 2.7 V ≤ VCC ≤ 5.5 V tACYC *1 250 - ns 2.4 V ≤ VCC < 2.7 V 500 - ns 1.8 V ≤ VCC < 2.4 V 1000 - ns 1.6 V ≤ VCC < 1.8 V AGTIO, AGTEE input high level width, low-level width AGTIO, AGTO, AGTOA, AGTOB output cycle 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V tACKWH, tACKWL 2000 - ns 100 - ns 200 - ns 1.8 V ≤ VCC < 2.4 V 400 - ns 1.6 V ≤ VCC < 1.8 V 800 - ns 62.5 - ns 2.4 V ≤ VCC < 2.7 V 125 - ns 1.8 V ≤ VCC < 2.4 V 250 - ns 1.6 V ≤ VCC < 1.8 V 500 - ns 2.7 V ≤ VCC ≤ 5.5 V tACYC2 Figure 2.41 ADC14 14-bit A/D converter trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.42 KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.43 Note 1. Note: Constraints on input cycle: When not switching the source clock: tPcyc × 2 < tACYC should be satisfied. When switching the source clock: tPcyc × 6 < tACYC should be satisfied. tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle Port tPRW Figure 2.38 I/O ports input timing POEG input trigger tPOEW Figure 2.39 POEG input trigger timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 67 of 130 RA4M1 Group 2. Electrical Characteristics Input capture tGTICW Figure 2.40 GPT input capture timing tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.41 AGT I/O timing ADTRG0 tTRGW Figure 2.42 ADC14 trigger input timing KR00 to KR07 tKR Figure 2.43 2.3.7 Key interrupt input timing CAC Timing Table 2.32 CAC timing Parameter CAC CACREF input pulse width tPBcyc*1 ≤ tcac*2 tPBcyc*1 > tcac*2 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tcac + 3 × tPBcyc*1 - - ns - 5 × tcac + 6.5 × tPBcyc*1 - - ns Page 68 of 130 RA4M1 Group Note 1. Note 2. 2. Electrical Characteristics tPBcyc: PCLKB cycle. tcac: CAC count clock source cycle. 2.3.8 SCI Timing Table 2.33 SCI timing (1) Parameter SCI Input clock cycle Asynchronous Symbol Min Max Unit*1 Test conditions tScyc 4 - tPcyc Figure 2.44 6 - Clock synchronous Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr - 20 ns tSCKf - 20 ns tScyc 6 - tPcyc 4 - 0.4 0.6 tScyc - 20 ns - 30 Input clock fall time Output clock cycle Asynchronous Clock synchronous Output clock pulse width Output clock rise time tSCKW 1.8 V or above tSCKr 1.6 V or above Output clock fall time 1.8 V or above tSCKf 1.6 V or above Note 1. 20 30 Transmit data delay (master) Clock synchronous 1.8 V or above Transmit data delay (slave) Clock synchronous 2.7 V or above - 55 2.4 V or above - 60 1.8 V or above - 100 1.6 V or above - 125 Receive data setup time (master) Clock synchronous tTXD - 1.6 V or above 2.7 V or above tRXS - 40 - 45 45 - 2.4 V or above 55 - 1.8 V or above 90 - ns ns ns ns 1.6 V or above 110 - 2.7 V or above 40 - 45 - 5 - ns 40 - ns Receive data setup time (slave) Clock synchronous Receive data hold time (master) Clock synchronous tRXH Receive data hold time (slave) Clock synchronous tRXH 1.6 V or above Figure 2.45 ns tPcyc: PCLKA cycle. tSCKW tSCKr tSCKf SCKn (n = 0 to 2, 9) tScyc Figure 2.44 SCK clock input timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 69 of 130 RA4M1 Group 2. Electrical Characteristics SCKn tTXD TXDn tRXS tRXH RXDn (n = 0 to 2, 9) Figure 2.45 Table 2.34 SCI input/output timing in clock synchronous mode SCI timing (2) (1 of 2) Parameter Symbol Min Max Unit Test conditions Simple SPI tSPcyc 4 65,536 tPcyc Figure 2.46 SCK clock cycle output (master) SCK clock cycle input (slave) 6 65,536 tSPCKWH 0.4 0.6 tSPCKWL 0.4 0.6 tSPcyc - 20 ns - 30 45 - 2.4 V or above 55 - 1.8 V or above 80 - 1.6 V or above 110 - 2.7 V or above 40 - 1.6 V or above 45 - SCK clock high pulse width SCK clock low pulse width SCK clock rise and fall time 1.8 V or above 1.6 V or above tSPCKr, tSPCKf Data input setup time 2.7 V or above tSU Master Slave Data input hold time Master tH Slave 33.3 - 40 - tSPcyc ns ns SS input setup time tLEAD 1 - tSPcyc SS input hold time tLAG 1 - tSPcyc tOD ns Data output delay Master Slave 1.8 V or above - 40 1.6 V or above - 50 2.4 V or above - 65 1.8 V or above - 100 1.6 V or above Data output hold time Master - 125 -10 - 2.4 V or above -20 - 1.8 V or above -30 - 2.7 V or above tOH 1.6 V or above Slave Data rise and fall time Master Slave R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 - - 20 1.6 V or above - 30 1.8 V or above - 20 1.6 V or above - 30 1.8 V or above tDr, tDf -40 -10 Figure 2.47 to Figure 2.50 ns ns Page 70 of 130 RA4M1 Group Table 2.34 2. Electrical Characteristics SCI timing (2) (2 of 2) Parameter Symbol Min Max Unit Test conditions Simple SPI Slave access time tSA - 10 (PCLKA > 32 MHz), 6 (PCLKA ≤ 32 MHz) tPcyc Figure 2.49 and Figure 2.50 Slave output release time tREL - 10 (PCLKA > 32 MHz), 6 (PCLKA ≤ 32 MHz) tPcyc tSPCKr tSPCKWH VOH SCKn master select output VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH SCKn slave select input VIL (n = 0 to 2, 9) tSPCKf VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.46 SCI simple SPI mode clock timing SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 0 to 2, 9) Figure 2.47 SCI simple SPI mode timing for master when CKPH = 1 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 71 of 130 RA4M1 Group 2. Electrical Characteristics SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH DATA LSB IN tOD MOSIn output MSB IN tDr, tDf MSB OUT DATA LSB OUT IDLE MSB OUT (n = 0 to 2, 9) Figure 2.48 SCI simple SPI mode timing for master when CKPH = 0 tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input tOD DATA tREL LSB OUT tH MSB IN MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN (n = 0 to 2, 9) Figure 2.49 SCI simple SPI mode timing for slave when CKPH = 1 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 72 of 130 RA4M1 Group 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input tREL DATA tH MSB OUT LSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0 to 2, 9) Figure 2.50 Table 2.35 SCI simple SPI mode timing for slave when CKPH = 0 SCI timing (3) Conditions: VCC = 2.7 to 5.5 V Parameter Simple I2C (Standard mode) Simple I2C (Fast mode) Note 1. Note 2. Symbol Min Max Unit Test conditions SDA input rise time tSr - 1000 ns Figure 2.51 SDA input fall time tSf - 300 ns tIICcyc*1 SDA input spike pulse removal time tSP 0 4× Data input setup time tSDAS 250 - Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb*2 - 400 pF SDA input rise time tSr - 300 ns SDA input fall time tSf - 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc*1 ns Data input setup time tSDAS 100 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb*1 - 400 pF ns ns Figure 2.51 For all ports except P408, use PmnPFS.DSCR of middle drive. For port P408, use PmnPFS.DSCR1 /DSCR of middle drive for IIC fast-mode. tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits. Cb indicates the total capacity of the bus line. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 73 of 130 RA4M1 Group 2. Electrical Characteristics VIH SDAn VIL tSr tSf tSP SCLn (n = 0 to 2, 9) P*1 S*1 tSDAH Note 1. S, P, and Sr indicate the following: S: Start condition P: Stop condition Sr: Restart condition Figure 2.51 P*1 Sr*1 tSDAS Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA SCI simple IIC mode timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 74 of 130 RA4M1 Group 2.3.9 2. Electrical Characteristics SPI Timing Table 2.36 SPI timing (1 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register Parameter SPI RSPCK clock cycle Master Symbol Min Max Unit*1 Test conditions tSPcyc 2*4 4096 tPcyc Figure 2.52 6 4096 tSPCKWH (tSPcyc tSPCKrtSPCKf) / 2 3 - 3 × tPcyc - (tSPcyc tSPCKr tSPCKf) / 2 3 - 3 × tPcyc - Slave RSPCK clock high pulse width Master Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise and fall time Output - 10 15 1.8 V or above - 20 1.6 V or above - 30 - 1 µs 10 - ns 2.4 V or above Master Slave tSPCKr, tSPCKf tSU 2.4 V or above 10 - 1.8 V or above 15 - 1.6 V or above Data input hold time 20 - Master (RSPCK is PCLKA/2) tHF 0 - Master (RSPCK is other than above.) tH tPcyc - tH 20 - tLEAD -30 + N × tSpcyc*2 - -50 + N × tSpcyc*2 - 6 × tPcyc - -30 + N × tSpcyc*3 - 6 × tPcyc - Slave SSL setup time Master 1.8 V or above 1.6 V or above Slave SSL hold time Master Slave R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 ns - 2.7 V or above Input Data input setup time ns tLAG ns Figure 2.53 to Figure 2.58 ns ns Page 75 of 130 RA4M1 Group Table 2.36 2. Electrical Characteristics SPI timing (2 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register Symbol Min Max Unit*1 Test conditions tOD - 14 ns 2.4 V or above - 20 Figure 2.53 to Figure 2.58 1.8 V or above - 25 Parameter SPI Data output delay Master Slave 2.7 V or above 1.6 V or above - 30 2.7 V or above - 50 2.4 V or above - 60 1.8 V or above - 85 - 110 0 - 0 - tTD tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc 6 × tPcyc - tDr, tDf - 10 2.4 V or above - 15 1.8 V or above - 20 1.6 V or above - 30 - 1 µs ns 1.6 V or above Data output hold time Master tOH Slave Successive transmission delay Master MOSI and MISO rise and fall time Output Slave 2.7 V or above Input SSL rise and fall time Output Note 1. Note 2. Note 3. Note 4. ns - 10 15 1.8 V or above - 20 1.6 V or above - 30 - 1 µs - 2 × tPcyc + 100 ns 1.8 V or above - 2 × tPcyc + 140 1.6 V or above - 2 × tPcyc + 180 tSSLr, tSSLf Input Slave output release time ns - 2.7 V or above 2.4 V or above Slave access time ns 2.4 V or above tSA - 2 × tPcyc + 100 1.8 V or above - 2 × tPcyc + 140 1.6 V or above - 2 × tPcyc + 180 2.4 V or above tREL Figure 2.57 and Figure 2.58 ns tPcyc: PCLKA cycle. N is set as an integer from 1 to 8 by the SPCKD register. N is set as an integer from 1 to 8 by the SSLND register. The upper limit of RSPCK is 16 MHz. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 76 of 130 RA4M1 Group 2. Electrical Characteristics t SPCKr t SPCKW H V OH RSPCKn master select output VOH VOL tSPCKf VOH V OH V OL t SPCKW L VOL tSPcyc t SPCKr t SPCKW H V IH V IH RSPCKn slave select input tSPCKf V IH V IL V IH V IL t SPCKW L V IL t SPcyc V O H = 0.7 × VCC, V OL = 0.3 × VCC, V IH = 0.7 × VCC, V IL = 0.3 × VCC n = A or B Figure 2.52 SPI clock timing t TD SSLn0 to SSLn3 output t LEA D t LAG t S SLr, t S SLf RSPCKn C PO L = 0 output RSPCKn C PO L = 1 output tS U M ISO n input tH M SB IN t D r, t D f M O SIn output DATA tO H M SB O U T LSB IN M SB IN tO D D ATA LSB O UT ID LE M SB O U T n = A or B Figure 2.53 SPI timing for master when CPHA = 0 and the bit rate is set to any value other than PCLKA/2 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 77 of 130 RA4M1 Group 2. Electrical Characteristics tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, t SSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output t SU MISOn input tHF t HF MSB IN t Dr, t Df MOSIn output LSB IN DATA t OH MSB OUT MSB IN tOD DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.54 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2 tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, t SSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH MOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, t Df DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.55 SPI timing for master when CPHA = 1 and the bit rate is set to any value other than PCLKA/2 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 78 of 130 RA4M1 Group 2. Electrical Characteristics tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output n = A or B tSU MISOn input tHF MSB IN tOH tH DATA LSB IN tOD MOSIn output MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.56 SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2 tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input t SA t OH MISOn output MSB OUT t SU MOSIn input t OD DATA t REL LSB OUT tH MSB IN MSB IN MSB OUT t Dr, tDf DATA LSB IN MSB IN n = A or B Figure 2.57 SPI timing for slave when CPHA = 0 R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 79 of 130 RA4M1 Group 2. Electrical Characteristics tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA MISOn output tOH t OD LSB OUT (Last data) MSB OUT tSU MOSIn input t REL LSB OUT DATA MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n = A or B Figure 2.58 2.3.10 Table 2.37 SPI timing for slave when CPHA = 1 IIC Timing IIC timing (1 of 2) Conditions: VCC = 2.7 to 5.5 V Symbol Min*1 Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 - ns Figure 2.59 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns Parameter IIC (standard mode, SMBus) SCL, SDA input rise time tSr - 1,000 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 - ns START condition input hold time (When wakeup function is enabled) tSTAH 1 (5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 1,000 - ns STOP condition input setup time tSTOS 1,000 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 80 of 130 RA4M1 Group Table 2.37 2. Electrical Characteristics IIC timing (2 of 2) Conditions: VCC = 2.7 to 5.5 V Symbol Min*1 Max Unit SCL input cycle time tSCL 6 (12) × tIICcyc + 600 - ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr - 300 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 - ns START condition input hold time (When wakeup function is enabled) tSTAH 1(5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 300 - ns STOP condition input setup time tSTOS 300 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF Parameter IIC (Fast mode) Note: Note 1. Test conditions Figure 2.59 For all ports except P408, use PmnPFS.DSC R of middle drive. For port P408, use PmnPFS.DSC R1/DSCR of middle drive for IIC fastmode. tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle The value in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. VIH SDA0 to SDA1 VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCL0 to SCL1 P*1 S*1 tSf tSCLL tSr tSCL Note 1. Figure 2.59 P*1 Sr*1 tSDAS tSDAH S, P, and Sr indicate the following conditions. S: Start condition P: Stop condition Sr: Restart condition. IIC bus interface input/output timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 81 of 130 RA4M1 Group 2.3.11 Table 2.38 2. Electrical Characteristics SSIE Timing SSIE timing Conditions: VCC = 1.6 to 5.5 V Parameter SSIE AUDIO_CLK input frequency 2.7 V or above Input clock period Clock high pulse width 1.8 V or above Clock low pulse width 1.8 V or above Max Unit Test conditions - 25 MHz Figure 2.60 - 4 tO 250 - ns tI 250 - ns tHC 100 - ns 200 - 1.6 V or above 100 - 200 - tRC - 25 ns tDTR - 65 ns 1.8 V or above - 105 1.6 V or above - 140 tLC 1.6 V or above Clock rise time 2.7 V or above Set-up time Min 1.6 V or above Output clock period Data delay Symbol tAUDIO 2.7 V or above tSR 1.8 V or above 1.6 V or above Hold time SSITXD0 output delay from SSILRCK0/SSIFS0 change time 1.8 V or above - Figure 2.61, Figure 2.62 ns 140 - tHTR 40 - ns TDTRW - 105 ns - 140 1.6 V or above Figure 2.63 tRC tHC SSIBCK0 65 90 ns tLC tI, tO Figure 2.60 SSIE clock input/output timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 82 of 130 RA4M1 Group 2. Electrical Characteristics SSIBCK0 (Input or Output) SSILRCK0/SSIFS0, SSIRXD0 (Input) tSR tHTR SSILRCK0/SSIFS0, SSITXD0 (Output) tDTR Figure 2.61 SSIE data transmit/receive timing (SSICR.BCKP = 0) SSIBCK0 (Input or Output) SSILRCK0/SSIFS0, SSIRXD0 (Input) tSR tHTR SSILRCK0/SSIFS0, SSITXD0 (Output) tDTR Figure 2.62 SSIE data transmit/receive timing (SSICR.BCKP = 1) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 83 of 130 RA4M1 Group 2. Electrical Characteristics SSILRCK0/SSIFS0 (Input) SSITXD0 (Output) tDTRW MSB bit output delay from SSILRCK0/SSIFS0 change time for slave transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] Figure 2.63 2.3.12 SSIE data output delay from SSILRCK0/SSIFS0 change time CLKOUT Timing Table 2.39 CLKOUT timing Parameter CLKOUT Symbol CLKOUT pin output cycle*1 VCC = 2.7 V or above tCcyc CLKOUT pin low pulse Note 1. Note 2. ns Figure 2.64 - 250 - 15 - VCC = 1.8 V or above 30 - VCC = 1.6 V or above 150 - VCC = 2.7 V or above VCC = 2.7 V or above tCH tCL VCC = 1.6 V or above CLKOUT pin output fall time Test conditions - VCC = 1.8 V or above CLKOUT pin output rise time Unit*1 62.5 VCC = 1.6 V or above width*2 Max 125 VCC = 1.8 V or above CLKOUT pin high pulse width*2 Min 15 - 30 - 150 - - 12 VCC = 1.8 V or above - 25 VCC = 1.6 V or above - 50 VCC = 2.7 V or above tCr - 12 VCC = 1.8 V or above - 25 VCC = 1.6 V or above - 50 VCC = 2.7 V or above tCf ns ns ns ns When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b). tCcyc tCH tCf CLKOUT pin output tCL tCr Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 2.64 CLKOUT output timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 84 of 130 RA4M1 Group 2.4 2. Electrical Characteristics USB Characteristics 2.4.1 Table 2.40 USBFS Timing USB characteristics Conditions: VCC = VCC_USB = 3.0 to 3.6 V, Ta = -20 to +85°C (USBCLKSEL = 1), Ta = -40 to +105°C (USBCLKSEL = 0) Parameter Input characteristics Output characteristics Symbol Min Max Unit Test conditions Input high level voltage VIH 2.0 - V - Input low level voltage VIL - 0.8 V - Differential input sensitivity VDI 0.2 - V |USB_DP - USB_DM | Differential common mode range VCM 0.8 2.5 V - Output high level voltage VOH 2.8 VCC_USB V IOH = -200 μA Output low level voltage VOL 0.0 0.3 V IOL = 2 mA Cross-over voltage VCRS 1.3 2.0 V ns Figure 2.65, Figure 2.66, Figure 2.67 Rise time FS tr LS Fall time FS Rise/fall time ratio FS tf LS tr/tf LS 4 20 75 300 4 20 75 300 90 111.11 80 125 ns % Output resistance ZDRV 28 44 Ω (Adjusting the resistance of external elements is not necessary.) VBUS characteristics VBUS input voltage VIH VCC × 0.8 - V - VIL - VCC × 0.2 V - Pull-up, pull-down Pull-down resistor RPD 14.25 24.80 kΩ - Pull-up resistor RPUI 0.9 1.575 kΩ During idle state RPUA 1.425 3.09 kΩ During reception D + sink current IDP_SINK 25 175 μA - D - sink current IDM_SINK 25 175 μA - DCD source current IDP_SRC 7 13 μA - Data detection voltage VDAT_REF 0.25 0.4 V - D + source voltage VDP_SRC 0.5 0.7 V Output current = 250 μA D - source voltage VDM_SRC 0.5 0.7 V Output current = 250 μA Battery Charging Specification Ver 1.2 USB_DP, USB_DM VCRS 90% 10% tr Figure 2.65 90% 10% tf USB_DP and USB_DM output timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 85 of 130 RA4M1 Group 2. Electrical Characteristics Observation point DP 50 pF DM 50 pF Figure 2.66 Test circuit for Full-Speed (FS) connection Observation point DP 200 pF to 600 pF 3.6 V 1.5 K DM 200 pF to 600 pF Observation point Figure 2.67 2.4.2 Table 2.41 Test circuit for Low-Speed (LS) connection USB External Supply USB regulator Parameter VCC_USB supply current Min Typ Max Unit Test conditions VCC_USB_LDO ≥ 3.8V - - 50 mA - VCC_USB_LDO ≥ 4.5V - - 100 mA - 3.0 - 3.6 V - VCC_USB supply voltage R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 86 of 130 RA4M1 Group 2.5 2. Electrical Characteristics ADC14 Characteristics VREFH0 VREFH0 5.5 5.5 A/D Conversion Characteristics (1) 5.0 A/D Conversion Characteristics (2) 4.0 3.0 2.7 2.4 A/D Conversion Characteristics (3) 2.0 5.0 A/D Conversion Characteristics (4) 4.0 3.0 2.7 2.4 A/D Conversion Characteristics (5) A/D Conversion Characteristics (6) 2.0 1.8 1.6 1.0 A/D Conversion Characteristics (7) 1.0 2.42.7 1.0 2.0 3.0 5.5 4.0 1.8 AVCC0 5.0 1.0 ADCSR.ADHSC = 0 Figure 2.68 Table 2.42 2.42.7 1.6 2.0 3.0 5.5 4.0 AVCC0 5.0 ADCSR.ADHSC = 1 AVCC0 to VREFH0 voltage range A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Frequency 1 - 64 MHz - Analog input capacitance*2 Cs - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 0.70 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.13 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Analog input resistance Rs Analog input voltage range Ain 12-bit mode Resolution Conversion time*1 (Operation at PCLKC = 64 MHz) Permissible signal source impedance Max. = 0.3 kΩ Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 14-bit mode Resolution R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 87 of 130 RA4M1 Group Table 2.42 2. Electrical Characteristics A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter time*1 Permissible signal source impedance Max. = 0.3 kΩ Conversion (Operation at PCLKC = 64 MHz) Offset error Full-scale error Min Typ Max Unit Test conditions 0.80 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.22 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h - ±2.0 - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.43 A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Frequency 1 - 48 MHz - Analog input capacitance*2 - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 0.94 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.50 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Analog input resistance Cs Rs Analog input voltage range Ain 12-bit mode Resolution Conversion time*1 (Operation at PCLKC = 48 MHz) Permissible signal source impedance Max. = 0.3 kΩ Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 88 of 130 RA4M1 Group Table 2.43 2. Electrical Characteristics A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions - - 14 Bit - 1.06 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.63 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h - ±2.0 14-bit mode Resolution time*1 Permissible signal source impedance Max. = 0.3 kΩ Conversion (Operation at PCLKC = 48 MHz) Offset error Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.44 A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Frequency 1 - 32 MHz - Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - 12-bit mode Resolution Conversion time*1 (Operation at PCLKC = 32 MHz) Permissible signal source impedance Max. = 1.3 kΩ Offset error Full-scale error - - 12 Bit - 1.41 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 2.25 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h - ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above ±4.5 LSB High-precision channel ±6.0 LSB Other than above - ±0.75 Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 89 of 130 RA4M1 Group Table 2.44 2. Electrical Characteristics A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 1.59 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 2.44 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h - ±2.0 14-bit mode Resolution time*1 Conversion (Operation at PCLKC = 32 MHz) Permissible signal source impedance Max. = 1.3 kΩ Offset error Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.45 A/D conversion characteristics (4) in low power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Frequency 1 - 24 MHz - Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - 12-bit mode Resolution Conversion time*1 (Operation at PCLKC = 24 MHz) Permissible signal source impedance Max. = 1.1 kΩ Offset error Full-scale error Quantization error R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 - - 12 Bit - 2.25 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 3.38 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±0.5 - ±0.75 ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above ±4.5 LSB High-precision channel ±6.0 LSB Other than above - LSB - Page 90 of 130 RA4M1 Group Table 2.45 2. Electrical Characteristics A/D conversion characteristics (4) in low power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 2.50 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 3.63 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±2.0 14-bit mode Resolution time*1 Conversion (Operation at PCLKC = 24 MHz) Permissible signal source impedance Max. = 1.1 kΩ Offset error ±18 LSB High-precision channel ±24.0 LSB Other than above LSB High-precision channel Full-scale error - ±3.0 ±18 ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.46 A/D conversion characteristics (5) in low power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Frequency 1 - 16 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 3.38 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 5.06 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±0.5 Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain 12-bit mode Resolution time*1 Conversion (Operation at PCLKC = 16 MHz) Permissible signal source impedance Max. = 2.2 kΩ Offset error R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Page 91 of 130 RA4M1 Group Table 2.46 2. Electrical Characteristics A/D conversion characteristics (5) in low power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test conditions Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - 14-bit mode Resolution Conversion time*1 (Operation at PCLKC = 16 MHz) Permissible signal source impedance Max. = 2.2 kΩ Offset error Full-scale error - - 14 Bit - 3.75 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 5.44 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±2.0 - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.47 A/D conversion characteristics (6) in low power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Frequency Min Typ Max Unit Test conditions 1 - 8 MHz - Analog input capacitance*2 Cs - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel Analog input resistance Rs - - 3.8 (reference data) kΩ High-precision channel - - 8.2 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 6.75 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 10.13 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h Analog input voltage range Ain 12-bit mode Resolution Conversion time*1 (Operation at PCLKC = 8 MHz) Permissible signal source impedance Max. = 5 kΩ R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 92 of 130 RA4M1 Group Table 2.47 2. Electrical Characteristics A/D conversion characteristics (6) in low power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Offset error - ±1.0 Full-scale error - ±1.5 Max Unit Test conditions ±7.5 LSB High-precision channel ±10.0 LSB Other than above ±7.5 LSB High-precision channel ±10.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel ±12.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 7.50 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 10.88 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±4.0 14-bit mode Resolution time*1 Conversion (Operation at PCLKC = 8 MHz) Permissible signal source impedance Max. = 5 kΩ Offset error Full-scale error - ±6.0 ±30.0 LSB High-precision channel ±40.0 LSB Other than above ±30.0 LSB High-precision channel ±40.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel ±48.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.48 A/D conversion characteristics (7) in low power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Frequency Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain Min Typ Max Unit Test conditions 1 - 4 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 13.1 (reference data) kΩ High-precision channel - - 14.3 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 12-bit mode Resolution R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 93 of 130 RA4M1 Group Table 2.48 2. Electrical Characteristics A/D conversion characteristics (7) in low power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter time*1 Conversion (Operation at PCLKC = 4 MHz) Permissible signal source impedance Max. = 9.9 kΩ Offset error Full-scale error Min Typ Max Unit Test conditions 13.5 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 20.25 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±1.0 - ±1.5 ±7.5 LSB High-precision channel ±10.0 LSB Other than above ±7.5 LSB High-precision channel ±10.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel ±12.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 15.0 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 21.75 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±4.0 14-bit mode Resolution time*1 Conversion (Operation at PCLKC = 4 MHz) Permissible signal source impedance Max. = 9.9 kΩ Offset error Full-scale error - ±6.0 ±30.0 LSB High-precision channel ±40.0 LSB Other than above ±30.0 LSB High-precision channel ±40.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel ±48.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: Note 1. Note 2. The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 94 of 130 RA4M1 Group 2. Electrical Characteristics MCU Analog input ANn Sensor Rs Cin ADC Cs Analog input ANn Rs Cin Figure 2.69 Table 2.49 Equivalent circuit for analog input 14-Bit A/D converter channel classification Classification Channel Conditions Remarks High-precision channel AN000 to AN014 AVCC0 = 1.6 to 5.5 V Normal-precision channel AN016 to AN025 Pins AN000 to AN014 cannot be used as general I/O, IRQ2, IRQ3 inputs, and TS transmission, when the A/D converter is in use Internal reference voltage input channel Internal reference voltage AVCC0 = 2.0 to 5.5 V - Temperature sensor input channel Temperature sensor output AVCC0 = 2.0 to 5.5 V - Table 2.50 A/D internal reference voltage characteristics Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1 Parameter Min Typ Max Unit Test conditions Internal reference voltage input channel*2 1.36 1.43 1.50 V - Frequency*3 1 - 2 MHz - 5.0 - - μs - Sampling Note 1. Note 2. Note 3. Note 4. time*4 The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D converter. This is a parameter for ADC14 when the internal reference voltage is used as the high-potential reference voltage. This is a parameter for ADC14 when the internal reference voltage is selected for an analog input channel in ADC14. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 95 of 130 RA4M1 Group 2. Electrical Characteristics 3FFFh Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy 0000h Offset error 0 Figure 2.70 Analog input voltage VREFH0 (full-scale) Illustration of 14-bit A/D converter characteristic terms Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actually output code. Offset error Offset error is the difference between the transition point of the ideal first output code and the actual first output code. Full-scale error Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 96 of 130 RA4M1 Group 2.6 2. Electrical Characteristics DAC12 Characteristics Table 2.51 D/A conversion characteristics (1) Conditions: VCC = AVCC0 = 1.8 to 5.5 V Reference voltage = VREFH or VREFL selected Parameter Min Typ Max Unit Test conditions Resolution - - 12 bit - Resistive load 30 - - kΩ - Load capacitance - - 50 pF - Output voltage range 0.35 - AVCC0 - 0.47 V - DNL differential nonlinearity error - ±0.5 ±1.0 LSB - INL integral nonlinearity error - ±2.0 ±8.0 LSB - Offset error - - ±20 mV - Full-scale error - - ±20 mV - Output impedance - 5 - Ω - Conversion time - - 30 μs - Typ Max Unit Test conditions Table 2.52 D/A conversion characteristics (2) Conditions: VCC = AVCC0 = 1.8 to 5.5 V Reference voltage = AVCC0 or AVSS0 selected Parameter Min Resolution - - 12 bit - Resistive load 30 - - kΩ - Load capacitance - - 50 pF - Output voltage range 0.35 - AVCC0 - 0.47 V - DNL differential nonlinearity error - ±0.5 ±2.0 LSB - INL integral nonlinearity error - ±2.0 ±8.0 LSB - Offset error - - ±30 mV - Full-scale error - - ±30 mV - Output impedance - 5 - Ω - Conversion time - - 30 μs - Table 2.53 D/A conversion characteristics (3) Conditions: VCC = AVCC0 = 1.8 to 5.5 V Reference voltage = internal reference voltage selected Parameter Min Typ Max Unit Test conditions Resolution - - 12 bit - Internal reference voltage (Vbgr) 1.36 1.43 1.50 V - Resistive load 30 - - kΩ - Load capacitance - - 50 pF - Output voltage range 0.35 - Vbgr V - DNL differential nonlinearity error - ±2.0 ±16.0 LSB - INL integral nonlinearity error - ±8.0 ±16.0 LSB - Offset error - - ±30 mV - Output impedance - 5 - Ω - Conversion time - - 30 μs - R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 97 of 130 RA4M1 Group 2. Electrical Characteristics Gain error Full-scale error Upper output limit Integral nonlinearity error (INL) Offset error Output analog voltage 1-LSB width for ideal D/A conversion characteristic Ideal output voltage Differential nonlinearity error (DNL) *1 Lower output limit Actual D/A conversion characteristic Offset error Ideal output voltage 000h Note 1. Figure 2.71 D/A converter input code FFFh Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed. Illustration of D/A converter characteristic terms Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion characteristics and the width of the actual output voltage. Offset error Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the ideal output voltage based on the input code. Full-scale error Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the ideal output voltage based on the input code. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 98 of 130 RA4M1 Group 2.7 2. Electrical Characteristics TSN Characteristics Table 2.54 TSN characteristics Conditions: VCC = AVCC0 = 2.0 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Relative accuracy - - ±1.5 - °C 2.4 V or above - - ±2.0 - °C Below 2.4 V Temperature slope - - -3.65 - mV/°C - Output voltage (at 25°C) - - 1.05 - V VCC = 3.3 V Temperature sensor start time tSTART - - 5 μs - Sampling time - 5 - - μs - 2.8 OSC Stop Detect Characteristics Table 2.55 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr - - 1 ms Figure 2.72 Main clock Main clock tdr OSTDSR.OSTDF tdr OSTDSR.OSTDF MOCO clock PLL clock ICLK MOCO clock ICLK When the main clock is selected When the PLL clock is selected Figure 2.72 Oscillation stop detection timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 99 of 130 RA4M1 Group 2.9 2. Electrical Characteristics POR and LVD Characteristics Table 2.56 Power-on reset circuit and voltage detection circuit characteristics (1) Parameter Voltage detection level*1 Symbol Min Typ Max Unit Test conditions Power-on reset (POR) VPOR 1.27 1.42 1.57 V Figure 2.73, Figure 2.74 Voltage detection circuit (LVD0)*2 Vdet0_0 3.68 3.85 4.00 V Vdet0_1 2.68 2.85 2.96 Figure 2.75 At falling edge VCC Vdet0_2 2.38 2.53 2.64 Vdet0_3 1.78 1.90 2.02 V Figure 2.76 At falling edge VCC V Figure 2.77 At falling edge VCC Voltage detection circuit (LVD1)*3 Voltage detection circuit Note 1. Note 2. Note 3. Note 4. (LVD2)*4 Vdet0_4 1.60 1.69 1.82 Vdet1_0 4.13 4.29 4.45 Vdet1_1 3.98 4.16 4.30 Vdet1_2 3.86 4.03 4.18 Vdet1_3 3.68 3.86 4.00 Vdet1_4 2.98 3.10 3.22 Vdet1_5 2.89 3.00 3.11 Vdet1_6 2.79 2.90 3.01 Vdet1_7 2.68 2.79 2.90 Vdet1_8 2.58 2.68 2.78 Vdet1_9 2.48 2.58 2.68 Vdet1_A 2.38 2.48 2.58 Vdet1_B 2.10 2.20 2.30 Vdet1_C 1.84 1.96 2.05 Vdet1_D 1.74 1.86 1.95 Vdet1_E 1.63 1.75 1.84 Vdet1_F 1.60 1.65 1.73 Vdet2_0 4.11 4.31 4.48 Vdet2_1 3.97 4.17 4.34 Vdet2_2 3.83 4.03 4.20 Vdet2_3 3.64 3.84 4.01 These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 100 of 130 RA4M1 Group Table 2.57 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (2) Parameter Symbol Min Typ Max Unit Test conditions Wait time after power-on reset cancellation LVD0:enable tPOR - 1.7 - ms - LVD0:disable tPOR - 1.3 - ms - Wait time after voltage monitor 0,1,2 reset cancellation LVD0:enable*1 tLVD0,1,2 - 0.6 - ms - LVD0:disable*2 tLVD1,2 - 0.2 - ms - Response delay*3 tdet - - 350 μs Figure 2.73, Figure 2.74 Minimum VCC down time tVOFF 450 - - μs Figure 2.73, VCC = 1.0 V or above Power-on reset enable time tW (POR) 1 - - ms Figure 2.74, VCC = below 1.0 V LVD operation stabilization time (after LVD is enabled) Td (E-A) - - 300 μs Figure 2.76, Figure 2.77 Hysteresis width (POR) VPORH - 110 - mV - Hysteresis width (LVD0, LVD1 and LVD2) VLVH - 60 - mV LVD0 selected - 100 - mV Vdet1_0 to Vdet1_2 selected. - 60 - Vdet1_3 to Vdet1_9 selected. - 50 - Vdet1_A or Vdet1_B selected. - 40 - Vdet1_C or Vdet1_F selected. - 60 - LVD2 selected Note 1. Note 2. Note 3. When OFS1.LVDAS = 0. When OFS1.LVDAS = 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. tVOFF VCC VPOR 1.0 V Internal reset signal (active-low) tdet Figure 2.73 tdet tPOR Voltage detection reset timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 101 of 130 RA4M1 Group 2. Electrical Characteristics VPOR VCC 1.0 V tW(POR) Internal reset signal (active-low) *1 tdet Note: Figure 2.74 tPOR tW(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When VCC turns on, maintain tW(POR) for 1.0 ms or more. Power-on reset timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.75 tdet tLVD0 Voltage detection circuit timing (Vdet0) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 102 of 130 RA4M1 Group 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E Td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.76 Voltage detection circuit timing (Vdet1) tVOFF VCC VLVH Vdet2 LVCMPCR.LVD2E LVD2 Comparator output Td(E-A) LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.77 Voltage detection circuit timing (Vdet2) R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 103 of 130 RA4M1 Group 2.10 2. Electrical Characteristics VBATT Characteristics Table 2.58 Battery backup function characteristics Conditions: VCC = AVCC0 = 1.6V to 5.5V, VBATT = 1.6 to 3.6 V Parameter Symbol Min Typ Max Unit Test conditions Voltage level for switching to battery backup (falling) VDETBATT 1.99 2.09 2.19 V Hysteresis width for switching to battery back up VVBATTH - 100 - mV Figure 2.78, Figure 2.79 VCC-off period for starting power supply switching tVOFFBATT 300 - - μs - Voltage detection level VBATT_Power-on reset (VBATT_POR) VVBATPOR 1.30 1.40 1.50 V Figure 2.78, Figure 2.79 Wait time after VBATT_POR reset time cancellation tVBATPOR - - 3 mS - Level for detection of voltage drop on the VBATT pin (falling) VDETBATLVD 2.11 2.2 2.29 V Figure 2.80 1.92 2 2.08 V VBTLVDLVL[1:0] = 10b VBTLVDLVL[1:0] = 11b Hysteresis width for VBATT pin LVD VVBATLVDTH - 50 - mV VBATT pin LVD operation stabilization time td_vbat - - 300 μs Figure 2.80 VBATT pin LVD response delay time tdet_vbat - - 350 μs Allowable voltage change rising/falling gradient dt/dVCC 1.0 - - ms/V - VCC voltage level for access to the VBATT backup registers V_BKBATT 1.8 - - V - Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (VDETBATT). VLVH Vdet0 VCC VVBATH VDETBATT VPOR VBATT VVBATPOR Internal reset signal (active-low) VCC supplied Figure 2.78 tdet tLVD0 tdet Backup power area VBATT supplied VCC supplied Power supply switching and LVD0 reset timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 104 of 130 RA4M1 Group 2. Electrical Characteristics VCC VVBATH VDETBATT VBATT VVBATPOR VBATT_POR (active-low) tVBATPOR Backup power area VCC supplied Figure 2.79 VBATT supplied not supplied VCC supplied VBATT_POR reset timing VBATT VVBATLVDTH VDETBATLVD VBTCR2.VBTLVDEN Td_vbat VBATT pin LVD Comparator output VBTCMPCR.VBTCMPE VBTSR.VBTBLDF tdet_vbat Figure 2.80 tdet_vbat VBATT pin voltage detection circuit timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 105 of 130 RA4M1 Group Table 2.59 2. Electrical Characteristics VBATT-I/O characteristics Parameter VBATWIOn I/O output characteristics (n = 0 to 2) VCC > VDETBATT VCC = 4.0 to 5.5 V VCC = 2.7 to 4.0 V Symbol Min Typ Max Unit Test conditions VOH VCC - 0.8 - - V IOH = -200 µA VOL - - 0.8 IOL = 200 µA VOH VCC - 0.5 - - IOH = -100 µA VOL - - 0.5 IOL = 100 µA VCC = VDETBATT to 2.7 V VOH VCC < VDETBATT VBATT = 2.7 to 3.6 V VBATT = 1.6 to 2.7 V 2.11 VCC - 0.3 - - IOH = -50 µA VOL - - 0.3 IOL = 50 µA VOH VBATT - 0.5 - - IOH = -100 µA VOL - - 0.5 IOL = 100 µA VOH VBATT - 0.3 - - IOH = -50 µA VOL - - 0.3 IOL = 50 µA CTSU Characteristics Table 2.60 CTSU characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF - TS pin capacitive load Cbase - - 50 pF - Permissible output high current ΣIoH - - -24 mA When the mutual capacitance method is applied R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 106 of 130 RA4M1 Group 2.12 2. Electrical Characteristics Segment LCD Controller Characteristics 2.12.1 Resistance Division Method [Static Display Mode] Table 2.61 Resistance division method LCD characteristics (1) Conditions: VL4 ≤ VCC ≤ 5.5 V Parameter Symbol Min Typ Max Unit Test conditions LCD drive voltage VL4 2.0 - VCC V - [1/2 Bias Method, 1/4 Bias Method] Table 2.62 Resistance division method LCD characteristics (2) Conditions: VL4 ≤ VCC ≤ 5.5 V Parameter Symbol Min Typ Max Unit Test conditions LCD drive voltage VL4 2.7 - VCC V - [1/3 Bias Method] Table 2.63 Resistance division method LCD characteristics (3) Conditions: VL4 ≤ VCC ≤ 5.5 V Parameter Symbol Min Typ Max Unit Test conditions LCD drive voltage VL4 2.5 - VCC V - 2.12.2 Internal Voltage Boosting Method [1/3 Bias Method] Table 2.64 Internal voltage boosting method LCD characteristics Conditions: VCC = 1.8 V to 5.5 V Parameter Symbol Conditions LCD output voltage variation range VL1 C1 to C4*1 = 0.47 μF C4*1 Doubler output voltage VL2 C1 to Tripler output voltage VL4 C1 to C4*1 = 0.47 μF Reference voltage setup time*2 tVL1S LCD output voltage variation range*3 tVLWT Note 1. = 0.47 μF C1 to C4*1 = 0.47 μF Min Typ Max Unit Test conditions VLCD = 04h 0.90 1.0 1.08 V - VLCD = 05h 0.95 1.05 1.13 V - VLCD = 06h 1.00 1.10 1.18 V - VLCD = 07h 1.05 1.15 1.23 V - VLCD = 08h 1.10 1.20 1.28 V - VLCD = 09h 1.15 1.25 1.33 V - VLCD = 0Ah 1.20 1.30 1.38 V - VLCD = 0Bh 1.25 1.35 1.43 V - VLCD = 0Ch 1.30 1.40 1.48 V - VLCD = 0Dh 1.35 1.45 1.53 V - VLCD = 0Eh 1.40 1.50 1.58 V - VLCD = 0Fh 1.45 1.55 1.63 V - VLCD = 10h 1.50 1.60 1.68 V - VLCD = 11h 1.55 1.65 1.73 V - VLCD = 12h 1.60 1.70 1.78 V - VLCD = 13h 1.65 1.75 1.83 V - 2 × VL1 - 0.1 2 × VL1 2 × VL1 V - 3 × VL1 - 0.15 3 × VL1 3 × VL1 V - 5 - - ms Figure 2.81 500 - - ms This is a capacitor that is connected between voltage pins used to drive the LCD. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 107 of 130 RA4M1 Group Note 2. Note 3. 2. Electrical Characteristics C1: A capacitor connected between CAPH and CAPL C2: A capacitor connected between VL1 and GND C3: A capacitor connected between VL2 and GND C4: A capacitor connected between VL4 and GND C1 = C2 = C3 = C4 = 0.47 μF ±30%. This is the time required to wait from when the reference voltage is specified using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET[1:0] bits in the LCDM0 register to 01b) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1). This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1). [1/4 Bias Method] Table 2.65 Internal voltage boosting method LCD characteristics Conditions: VCC = 1.8 V to 5.5 V Parameter Symbol Conditions LCD output voltage variation range VL1 Doubler output voltage VL2 C1 to C5*1 = 0.47 μF C1 to C5*1 = 0.47 μF C5*1 Min Typ Max Unit Test conditions VLCD = 04h 0.90 1.0 1.08 V - VLCD = 05h 0.95 1.05 1.13 V - VLCD = 06h 1.00 1.10 1.18 V - VLCD = 07h 1.05 1.15 1.23 V - VLCD = 08h 1.10 1.20 1.28 V - VLCD = 09h 1.15 1.25 1.33 V - VLCD = 0Ah 1.20 1.30 1.38 V - VLCD = 0Bh 1.25 1.35 1.43 V - VLCD = 0Ch 1.30 1.40 1.48 V - 2VL1 - 0.08 2VL1 2VL1 V - Tripler output voltage VL3 C1 to = 0.47 μF 3VL1 - 0.12 3VL1 3VL1 V - Quadruply output voltage VL4*4 C1 to C5*1 = 0.47 μF 4VL1 - 0.16 4VL1 4VL1 V - Reference voltage setup time*2 tVL1S 5 - - ms Figure 2.81 LCD output voltage variation range*3 tVLWT 500 - - ms Note 1. Note 2. Note 3. Note 4. C1 to C5*1 = 0.47 μF This is a capacitor that is connected between voltage pins used to drive the LCD. C1: A capacitor connected between CAPH and CAPL C2: A capacitor connected between VL1 and GND C3: A capacitor connected between VL2 and GND C4: A capacitor connected between VL3 and GND C5: A capacitor connected between VL4 and GND C1 = C2 = C3 = C4 = C5 = 0.47 μF ± 30% This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits in the LCDM0 register to 01b) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1). This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1). VL4 must be 5.5 V or lower. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 108 of 130 RA4M1 Group 2.12.3 2. Electrical Characteristics Capacitor Split Method [1/3 Bias Method] Table 2.66 Internal voltage boosting method LCD characteristics Conditions: VCC = 2.2 V to 5.5 V Parameter Symbol Conditions VL4 voltage*1 VL4 C1 to C4 = 0.47 μF*2 voltage*1 VL2 C1 to C4 = 0.47 μF*2 VL1 voltage*1 VL1 C1 to C4 = 0.47 μF*2 VL2 Capacitor split wait Note 1. Note 2. time*1 tWAIT Min Typ Max Unit Test conditions - VCC - V - 2/3 × VL4 - 0.07 2/3 × VL4 2/3 × VL4 + 0.07 V - 1/3 × VL4 - 0.08 1/3 × VL4 1/3 × VL4 + 0.08 V - 100 - - ms Figure 2.81 This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1). This is a capacitor that is connected between voltage pins used to drive the LCD. C1: A capacitor connected between CAPH and CAPL C2: A capacitor connected between VL1 and GND C3: A capacitor connected between VL2 and GND C4: A capacitor connected between VL4 and GND C1 = C2 = C3 = C4 = 0.47 μF ± 30%. MDSET0, MDSET1 VLCON 00b 01b or 10b tVL1S tVLWT, tWAIT LCDON Figure 2.81 LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 109 of 130 RA4M1 Group 2.13 2. Electrical Characteristics Comparator Characteristics Table 2.67 ACMPLP characteristics Conditions: VCC = 1.8 to 5.5 V Parameter Reference voltage range Min Typ Max Unit Test conditions VREF 0 - VCC-1.4 V - IVREFn (n= 0,1) Window mode*2 IVREF1 VREFH 1.4 - VCC V - IVREF0 VREFL 0 - VCC-1.4 V - VI 0 - VCC V - - 1.36 1.44 1.50 V - Td - - 1.2 μs - - 5 μs VCC = 3.0 Slew rate of input signal > 50 mV/μs - - 2 μs - - 50 mV Input voltage range Internal reference voltage Output delay Symbol Standard mode High-speed mode Low-speed mode Window mode Offset voltage*1 High-speed mode - Low-speed mode - - - 40 mV - Window mode - - - 60 mV - Tcmp 100 - - μs - Operation stabilization wait time Note 1. Note 2. - When 8-bit DAC output is used as the reference voltage, the offset voltage increases up to 2.5 x VCC/256. In window mode, be sure to satisfy the following condition: IVREF1 - IVREF0 ≥ 0.2 V. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 110 of 130 RA4M1 Group 2.14 2. Electrical Characteristics OPAMP Characteristics Table 2.68 OPAMP characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V) Parameter Symbol Conditions Min Typ Max Common mode input range Vicm1 Low power mode 0.2 - AVCC0 - 0.5 V Vicm2 High-speed mode 0.3 - AVCC0 - 0.6 V Output voltage range Vo1 Low power mode 0.1 - AVCC0 - 0.1 V Vo2 High-speed mode 0.1 - AVCC0 - 0.1 V Vioff 3σ -10 - 10 mV Input offset voltage Unit Open gain Av 60 120 - dB Gain-bandwidth (GB) product GBW1 Low power mode - 0.04 - MHz GBW2 High-speed mode - 1.7 - MHz Phase margin PM CL = 20 pF 50 - - deg Gain margin GM CL = 20 pF 10 - - dB - 230 - nV/√Hz - 200 - nV/√Hz - 90 - nV/√Hz Equivalent input noise Vnoise1 f = 1 kHz Vnoise2 f = 10 kHz Vnoise3 f = 1 kHz Vnoise4 f = 2 kHz Low power mode High-speed mode - 70 - nV/√Hz Power supply reduction ratio PSRR - 90 - dB Common mode signal reduction ratio CMRR - 90 - dB Stabilization wait time Tstd1 CL = 20 pF Only operational amplifier is activated *1 Low power mode 650 - - μs High-speed mode 13 - - μs Low power mode 650 - - μs Tstd4 CL = 20 pF Operational amplifier and reference current circuit are activated simultaneously High-speed mode 13 - - μs Tset1 CL = 20 pF Low power mode - - 750 μs High-speed mode - - 13 μs Low power mode - 0.02 - V/μs Tstd2 Tstd3 Settling time Tset2 Slew rate Tslew1 CL = 20 pF - 1.1 - V/μs Load current Iload1 Low-power mode -100 - 100 μA Iload2 High-speed mode -100 - 100 μA - - 20 pF Tslew2 Load capacitance Note 1. High-speed mode CL When the operational amplifier reference current circuit is activated in advance. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 111 of 130 RA4M1 Group 2.15 2. Electrical Characteristics Flash Memory Characteristics 2.15.1 Code Flash Memory Characteristics Table 2.69 Code flash characteristics (1) Parameter Symbol Min Typ Max Unit Test conditions Reprogramming/erasure cycle*1 NPEC 1000 - - Times - tDRP 20*2, *3 - - Year Ta = +85°C Data hold time Note 1. Note 2. Note 3. After 1000 times of NPEC The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be done n times for each block. For instance, when 8-byte programming is performed 256 times for different addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled (overwriting is prohibited). Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics. This result is obtained from reliability testing. Table 2.70 Code flash characteristics (2) High-speed operating mode Conditions: VCC = 2.7 to 5.5 V FCLK = 1 MHz Parameter Programming time 8-byte FCLK = 32 MHz Symbol Min Typ Max Min Typ Max Unit tP8 - 116 998 - 54 506 μs Erasure time 2-KB tE2K - 9.03 287 - 5.67 222 ms Blank check time 8-byte tBC8 - - 56.8 - - 16.6 μs 2-KB tBC2K - - 1899 - - 140 μs Erase suspended time tSED - - 22.5 - - 10.7 μs Startup area switching setting time tSAS - 21.7 585 - 12.1 447 ms Access window time tAWS - 21.7 585 - 12.1 447 ms OCD/serial programmer ID setting time tOSIS - 21.7 585 - 12.1 447 ms Flash memory mode transition wait time 1 tDIS 2 - - 2 - - μs Flash memory mode transition wait time 2 tMS 5 - - 5 - - μs Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 112 of 130 RA4M1 Group Table 2.71 2. Electrical Characteristics Code flash characteristics (3) Middle-speed operating mode Conditions: VCC = 1.8 to 5.5 V, Ta = -40 to +85°C FCLK = 1 MHz Parameter Symbol Min Typ FCLK = 8 MHz Max Min Typ Max Unit Programming time 8-byte tP8 - 157 1411 - 101 966 μs Erasure time 2-KB tE2K - 9.10 289 - 6.10 228 ms Blank check time 8-byte tBC8 - - 87.7 - - 52.5 μs tBC2K - - 1930 - - 414 μs Erase suspended time 2-KB tSED - - 32.7 - - 21.6 μs Startup area switching setting time tSAS - 22.5 592 - 14.0 464 ms Access window time tAWS - 22.5 592 - 14.0 464 ms OCD/serial programmer ID setting time tOSIS - 22.5 592 - 14.0 464 ms Flash memory mode transition wait time 1 tDIS 2 - - 2 - - μs Flash memory mode transition wait time 2 tMS 720 - - 720 - - ns Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source. 2.15.2 Data Flash Memory Characteristics Table 2.72 Data flash characteristics (1) Parameter Reprogramming/erasure Data hold time cycle*1 After 10,000 times of NDPEC Symbol Min NDPEC 100,000 1,000,000 tDDRP 20*2, *3 - 5*2, *3 - - Year - 1*2, *3 - Year After 100,000 times of NDPEC After 1,000,000 times of NDPEC Note 1. Note 2. Note 3. Typ Max Unit Test conditions - Times - - Year Ta = +85°C Ta = +25°C The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. Overwriting is prohibited. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics. These results are obtained from reliability testing. Table 2.73 Data flash characteristics (2) High-speed operating mode Conditions: VCC = 2.7 to 5.5 V FCLK = 4 MHz Parameter Programming time 1-byte FCLK = 32 MHz Symbol Min Typ Max Min Typ Max Unit tDP1 - 52.4 463 - 42.1 387 μs Erasure time 1-KB tDE1K - 8.98 286 - 6.42 237 ms Blank check time 1-byte tDBC1 - - 24.3 - - 16.6 μs 1-KB tDBC1K - - 1872 - - 512 μs Suspended time during erasing tDSED - - 13.0 - - 10.7 μs Data flash STOP recovery time tDSTOP 5 - - 5 - - μs Note: Note: Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source. R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 113 of 130 RA4M1 Group Table 2.74 2. Electrical Characteristics Data flash characteristics (3) Middle-speed operating mode Conditions: VCC = 1.8 to 5.5 V, Ta = -40 to +85°C FCLK = 4 MHz Parameter Symbol Min Typ FCLK = 8 MHz Max Min Typ Max Unit Programming time 1-byte tDP1 - 94.7 886 - 89.3 849 μs Erasure time 1-KB tDE1K - 9.59 299 - 8.29 273 ms Blank check time 1-byte tDBC1 - - 56.2 - - 52.5 μs tDBC1K - - 2.17 - - 1.51 ms Suspended time during erasing 1-KB tDSED - - 23.0 - - 21.7 μs Data flash STOP recovery time tDSTOP 720 - - 720 - - ns Note: Note: Note: 2.16 Does not include the time until each operation of the flash memory is started after instructions are executed by software. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source. Boundary Scan Table 2.75 Boundary scan Conditions: VCC = AVCC0 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions TCK clock cycle time tTCKcyc 100 - - ns Figure 2.82 TCK clock high pulse width tTCKH 45 - - ns TCK clock low pulse width tTCKL 45 - - ns TCK clock rise time tTCKr - - 5 ns TCK clock fall time tTCKf - - 5 ns TMS setup time tTMSS 20 - - ns TMS hold time tTMSH 20 - - ns TDI setup time tTDIS 20 - - ns TDI hold time tTDIH 20 - - ns TDO data delay tTDOD - - 70 ns tBSSTUP tRESWP - - - Boundary Scan circuit start up Note 1. time*1 Figure 2.83 Figure 2.84 Boundary scan does not function until power-on-reset becomes negative. tTCKcyc tTCKH TCK tTCKf tTCKL Figure 2.82 tTCKr Boundary scan TCK timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 114 of 130 RA4M1 Group 2. Electrical Characteristics TCK tTMSS tTMSH tTDIS tTDIH TMS TDI tTDOD TDO Figure 2.83 Boundary scan input/output timing VCC RES tBSSTUP (= tRESWP) Figure 2.84 2.17 Boundary scan execute Boundary scan circuit start up timing Joint Test Action Group (JTAG) Table 2.76 JTAG (debug) characteristics (1) Conditions: VCC = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions TCK clock cycle time tTCKcyc 80 - - ns Figure 2.85 TCK clock high pulse width tTCKH 35 - - ns TCK clock low pulse width tTCKL 35 - - ns TCK clock rise time tTCKr - - 5 ns TCK clock fall time tTCKf - - 5 ns TMS setup time tTMSS 16 - - ns TMS hold time tTMSH 16 - - ns TDI setup time tTDIS 16 - - ns TDI hold time tTDIH 16 - - ns TDO data delay time tTDOD - - 70 ns R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Figure 2.86 Page 115 of 130 RA4M1 Group Table 2.77 2. Electrical Characteristics JTAG (debug) characteristics (2) Conditions: VCC = 1.6 to 2.4 V Parameter Symbol Min Typ Max Unit Test conditions Figure 2.85 TCK clock cycle time tTCKcyc 250 - - ns TCK clock high pulse width tTCKH 120 - - ns TCK clock low pulse width tTCKL 120 - - ns TCK clock rise time tTCKr - - 5 ns TCK clock fall time tTCKf - - 5 ns TMS setup time tTMSS 50 - - ns TMS hold time tTMSH 50 - - ns TDI setup time tTDIS 50 - - ns TDI hold time tTDIH 50 - - ns TDO data delay time tTDOD - - 150 ns Figure 2.86 tTCKcyc tTCKH TCK tTCKf tTCKL Figure 2.85 tTCKr JTAG TCK timing TCK tTMSS tTMSH tTDIS tTDIH TMS TDI tTDOD TDO Figure 2.86 JTAG input/output timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 116 of 130 RA4M1 Group 2.17.1 Table 2.78 2. Electrical Characteristics Serial Wire Debug (SWD) SWD characteristics (1) Conditions: VCC = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 80 - - ns Figure 2.87 SWCLK clock high pulse width tSWCKH 35 - - ns SWCLK clock low pulse width tSWCKL 35 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns SWDIO setup time tSWDS 16 - - ns SWDIO hold time tSWDH 16 - - ns SWDIO data delay time tSWDD 2 - 70 ns Table 2.79 Figure 2.88 SWD characteristics (2) Conditions: VCC = 1.6 to 2.4 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 250 - - ns Figure 2.87 SWCLK clock high pulse width tSWCKH 120 - - ns SWCLK clock low pulse width tSWCKL 120 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns SWDIO setup time tSWDS 50 - - ns SWDIO hold time tSWDH 50 - - ns SWDIO data delay time tSWDD 2 - 150 ns Figure 2.88 tSWCKcyc tSWCKH SWCLK tSWCKf tSWCKL Figure 2.87 tSWCKr SWD SWCLK timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 117 of 130 RA4M1 Group 2. Electrical Characteristics SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.88 SWD input/output timing R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 118 of 130 RA4M1 Group Appendix 1. Package Dimensions Appendix 1.Package Dimensions Information on the latest version of the package dimensions or mountings is shown in “Packages” on the Renesas Electronics Corporation website. JEITA Package Code P-TFLGA100-7x7-0.65 RENESAS Code PTLG0100JA-A Previous Code 100F0G MASS[Typ.] 0.1g w S B φ b1 D φ× M S φb w S A ZD AB e A e A AB φ× M S K J H G B E F E D C B ×4 y S v Index mark (Laser mark) Figure 1.1 S ZE A 1 2 3 Index mark 4 5 6 7 8 9 10 Reference Symbol Dimension in Millimeters Min Nom D 7.0 E 7.0 v w A e 0.65 b 0.31 0.35 b1 0.385 0.435 x y ZD 0.575 ZE 0.575 Max 0.15 0.20 1.05 0.39 0.485 0.08 0.10 100-pin LGA R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 119 of 130 RA4M1 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP100-14x14-0.50 PLQP0100KB-B — 0.6 HD Unit: mm *1 D 51 75 *2 E 50 100 HE 76 26 1 25 NOTE 4 Index area NOTE 3 F S y S *3 0.25 T A1 Lp L1 Detail F Reference Dimensions in millimeters Symbol bp M Min Nom Max D 13.9 14.0 14.1 14.1 E 13.9 14.0 A2  1.4  HD 15.8 16.0 16.2 HE 15.8 16.0 16.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  c A2 A e NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. © 2015 Renesas Electronics Corporation. All rights reserved. Figure 1.2 100-pin LQFP R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 120 of 130 RA4M1 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1 T A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 1.3 64-pin LQFP R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 121 of 130 RA4M1 Group Appendix 1. Package Dimensions JEITA Package code P-HWQFN64-8x8-0.40 RENESAS code Previous code MASS(TYP.)[g] PWQN0064LA-A P64K8-40-9B5-3 0.16 D 33 48 DETAIL OF A PART 32 49 E A A1 17 64 c2 16 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 16 1 64 17 Dimension in Millimeters Min Nom Max D 7.95 8.00 8.05 E 7.95 8.00 8.05 A 0.80 A1 0.00 b 0.17 e Lp B E2 32 49 0.30 33 ZD e b x M 0.40 0.50 x 0.05 y 0.05 1.00 ZE c2 48 0.23 0.40 ZD ZE 0.20 1.00 0.15 0.20 D2 6.50 E2 6.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. Figure 1.4 64-pin QFN R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 122 of 130 RA4M1 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP48-7x7-0.50 PLQP0048KB-B — 0.2 HD Unit: mm *1 D 36 25 *2 48 HE 24 E 37 13 1 12 NOTE 4 Index area NOTE 3 F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. S Reference Dimensions in millimeters Symbol y S *3 bp 0.25 M A1 T c A2 A e Lp L1 Detail F Figure 1.5 Min Nom Max D 6.9 7.0 7.1 E 6.9 7.0 7.1 A2  1.4  HD 8.8 9.0 9.2 HE 8.8 9.0 9.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  48-pin LQFP R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 123 of 130 RA4M1 Group Appendix 1. Package Dimensions JEITA Package code P-HWQFN48-7x7-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0048KB-A 48PJN-A P48K8-50-5B4-6 0.13 D 25 36 DETAIL OF A PART 24 37 E A A1 13 48 c2 12 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 12 1 13 48 Dimension in Millimeters Min Nom Max D 6.95 7.00 7.05 E 6.95 7.00 7.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 ZE 37 24 36 25 ZD e b x M 0.25 0.30 0.50 0.30 0.40 0.50 x 0.05 y 0.05 ZD 0.75 ZE 0.75 c2 0.15 0.20 D2 5.50 E2 5.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. Figure 1.6 48-pin QFN R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 124 of 130 RA4M1 Group Appendix 1. Package Dimensions JEITA Package code P-HWQFN40-6x6-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0040KC-A P40K8-50-4B4-5 0.09 D 21 30 DETAIL OF A PART 20 31 E 40 A A1 11 c2 10 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 10 11 40 Dimension in Millimeters Min Nom Max D 5.95 6.00 6.05 E 5.95 6.00 6.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.25 0.30 0.40 x y 0.05 0.75 ZE 20 31 30 21 ZD e b Figure 1.7 x M c2 0.50 0.05 ZD ZE 0.30 0.50 0.75 0.15 0.20 D2 4.50 E2 4.50 0.25 S AB 40-pin QFN R01DS0355EJ0100 Rev.1.00 Oct 8, 2019 Page 125 of 130 Revision History Rev. Date 1.00 Oct 8, 2019 RA4M1Group Datasheet Summary First release Proprietary Notice All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas. Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited. CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium. Magic Packet™ is a trademark of Advanced Micro Devices, Inc. SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders. Colophon RA4M1 Group Datasheet Publication Date: Rev.1.00 Oct 8, 2019 Published by: Renesas Electronics Corporation Address List General Precautions 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during poweroff state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the you or third parties arising from such alteration, modification, copying or reverse engineering. product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338 © 2019 Renesas Electronics Corporation. All rights reserved. Colophon 8.0 Back cover RA4M1 Group R01DS0355EJ0100
R7FA4M1AB3CNF#AC0 价格&库存

很抱歉,暂时无法提供与“R7FA4M1AB3CNF#AC0”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R7FA4M1AB3CNF#AC0
  •  国内价格 香港价格
  • 1+47.199331+5.86176
  • 10+36.0278310+4.47436
  • 25+33.2401825+4.12815
  • 100+30.17616100+3.74763
  • 490+27.85882490+3.45983

库存:936