0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FA4M2AD3CFP#AA0

R7FA4M2AD3CFP#AA0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    QFP100

  • 描述:

    R7FA4M2AD3CFP#AA0

  • 数据手册
  • 价格&库存
R7FA4M2AD3CFP#AA0 数据手册
R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 RA4M2 Group Renesas Microcontrollers Leading-performance 100 MHz Arm Cortex-M33 core, up to 512 KB code flash memory with background operation, 8 KB Data flash memory, and 128 KB SRAM with Parity/ECC. High-integration with USB 2.0 Full-Speed, SDHI, Quad SPI, and advanced analog. Integrated Secure Crypto Engine with cryptography accelerators, key management support, tamper detection and power analysis resistance in concert with Arm TrustZone for integrated secure element functionality. Features ■ Arm® Cortex®-M33 Core ● Armv8-M architecture with the main extension ● Maximum operating frequency: 100 MHz ● Arm Memory Protection Unit (Arm MPU) – Protected Memory System Architecture (PMSAv8) – Secure MPU (MPU_S): 8 regions – Non-secure MPU (MPU_NS): 8 regions ● SysTick timer – Embeds two Systick timers: Secure and Non-secure instance – Driven by LOCO or system clock ● CoreSight™ ETM-M33 ■ Memory ● Up to 512-KB code flash memory ● 8-KB data flash memory (100,000 program/erase (P/E) cycles) ● 128-KB SRAM ■ Connectivity ● Serial Communications Interface (SCI) × 6 – Asynchronous interfaces – 8-bit clock synchronous interface – Smart card interface – Simple IIC – Simple SPI – Manchester coding (SCI3, SCI4) ● I2C bus interface (IIC) × 2 ● Serial Peripheral Interface (SPI) ● Quad Serial Peripheral Interface (QSPI) ● USB 2.0 Full-Speed Module (USBFS) ● Control Area Network module (CAN) ● SD/MMC Host Interface (SDHI) ● Serial Sound Interface Enhanced (SSIE) ● Independent Watchdog Timer (IWDT) ■ Human Machine Interface (HMI) ● Capacitive Touch Sensing Unit (CTSU) ■ Multiple Clock Sources ● ● ● ● ● ● ● ● ● Main clock oscillator (MOSC) (8 to 24 MHz) Sub-clock oscillator (SOSC) (32.768 kHz) High-speed on-chip oscillator (HOCO) (16/18/20 MHz) Middle-speed on-chip oscillator (MOCO) (8 MHz) Low-speed on-chip oscillator (LOCO) (32.768 kHz) IWDT-dedicated on-chip oscillator (15 kHz) Clock trim function for HOCO/MOCO/LOCO PLL/PLL2 Clock out support ■ General-Purpose I/O Ports ● 5-V tolerance, open drain, input pull-up, switchable driving ability ■ Operating Voltage ● VCC: 2.7 to 3.6 V ■ Operating Temperature and Packages ● Ta = -40℃ to +105℃ – 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch) – 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) – 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch) – 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch) ■ Analog ● 12-bit A/D Converter (ADC12) ● 12-bit D/A Converter (DAC12) × 2 ● Temperature Sensor (TSN) ■ Timers ● General PWM Timer 32-bit (GPT32) × 4 ● General PWM Timer 16-bit (GPT16) × 4 ● Low Power Asynchronous General Purpose Timer (AGT) × 6 ■ Security and Encryption ● Secure Crypto Engine 9 – Symmetric algorithms: AES – Asymmetric algorithms: RSA, ECC, and DSA – Hash-value generation: SHA224, SHA256, GHASH – 128-bit unique ID ● Arm® TrustZone® – Up to three regions for the code flash – Up to two regions for the data flash – Up to three regions for the SRAM – Individual secure or non-secure security attribution for each peripheral ● Device lifecyle management ● Pin function – Up to three tamper pins – Secure pin multiplexing ■ System and Power Management ● ● ● ● ● ● ● ● ● Low power modes Battery backup function (VBATT) Realtime Clock (RTC) with calendar and VBATT support Event Link Controller (ELC) Data Transfer Controller (DTC) DMA Controller (DMAC) × 8 Power-on reset Low Voltage Detection (LVD) with voltage settings Watchdog Timer (WDT) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 1 of 92 RA4M2 Datasheet 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development. The MCU in this series incorporates a high-performance Arm Cortex®-M33 core running up to 100 MHz with the following features: ● Up to 512 KB code flash memory ● 128 KB SRAM ● Quad Serial Peripheral Interface (QSPI) ● USBFS, SD/MMC Host Interface ● Capacitive Touch Sensing Unit (CTSU) ● Analog peripherals ● Security and safety features 1.1 Table 1.1 Function Outline Arm core Feature Functional description Arm Cortex-M33 core Table 1.2 ● Maximum operating frequency: up to 100 MHz ● Arm Cortex-M33 core: – Armv8-M architecture with security extension – Revision: r0p4-00rel0 ● Arm Memory Protection Unit (Arm MPU) – Protected Memory System Architecture (PMSAv8) – Secure MPU (MPU_S): 8 regions – Non-secure MPU (MPU_NS): 8 regions ● SysTick timer – Embeds two Systick timers: Secure and Non-secure instance – Driven by SysTick timer clock (SYSTICCLK) or system clock (ICLK) ● CoreSight™ ETM-M33 Memory Feature Functional description Code flash memory Maximum 512 KB of code flash memory. Data flash memory 8 KB of data flash memory. Option-setting memory The option-setting memory determines the state of the MCU after a reset. SRAM On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). Table 1.3 System (1 of 2) Functional description Operating modes Two operating modes: ● Single-chip mode ● SCI/USB boot mode Resets The MCU provides 13 resets. Low Voltage Detection (LVD) The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The detection level can be selected by register settings. The LVD module consists of three separate voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD registers allow your application to configure detection of VCC changes at various voltage thresholds. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 2 of 92 RA4M2 Datasheet Table 1.3 1. Overview System (2 of 2) Functional description Clocks ● ● ● ● ● ● ● ● Main clock oscillator (MOSC) Sub-clock oscillator (SOSC) High-speed on-chip oscillator (HOCO) Middle-speed on-chip oscillator (MOCO) Low-speed on-chip oscillator (LOCO) IWDT-dedicated on-chip oscillator PLL/PLL2 Clock out support Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range.When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), the DMA Controller (DMAC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts. Low power modes Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. Battery backup function A battery backup function is provided for partial powering by a battery. The battery-powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. Register write protection The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR). Memory Protection Unit (MPU) The MCU has one Memory Protection Unit (MPU). Table 1.4 Event link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. DMA Controller (DMAC) The MCU includes an 8-channel direct memory access controller (DMAC) that can transfer data without intervention from the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. Table 1.6 External bus interface Feature Functional description External buses Table 1.7 ● QSPI area (EQBIU): Connected to the QSPI (external device interface) Timers (1 of 2) Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 4 channels and a 16-bit timer with GPT16 × 4 channels. PWM waveforms can be generated by controlling the up-counter, downcounter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. Port Output Enable for GPT (POEG) The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 3 of 92 RA4M2 Datasheet Table 1.7 1. Overview Timers (2 of 2) Feature Functional description Low power Asynchronous General Purpose Timer (AGT) The low power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register. Realtime Clock (RTC) The realtime clock (RTC) has two counting modes, calendar count mode and binary count mode, that are used by switching register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers. Table 1.8 Communication interfaces (1 of 2) Feature Functional description Serial Communications Interface (SCI) The Serial Communications Interface (SCI) × 6 channels have asynchronous and synchronous serial interfaces: ● Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) ● 8-bit clock synchronous interface ● Simple IIC (master-only) ● Simple SPI ● Smart card interface ● Manchester interface ● Extended Serial interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn (n = 0, 3, 4, 9) has FIFO buffers to enable continuous and full-duplex communication, and the The data transfer speed can be configured independently using an onchip baud rate generator. I2C bus interface (IIC) The I2C bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset of the NXP I2C (Inter-Integrated Circuit) bus interface functions. Serial Peripheral Interface (SPI) The Serial Peripheral Interface (SPI) provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices. Control Area Network (CAN) The Controller Area Network (CAN) module uses a message-based protocol to receive and transmit data between multiple slaves and masters in electromagnetically noisy applications. The module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN module requires an additional external CAN transceiver. USB 2.0 Full-Speed module (USBFS) The USB 2.0 Full-Speed module (USBFS) can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. Quad Serial Peripheral Interface (QSPI) The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 4 of 92 RA4M2 Datasheet Table 1.8 1. Overview Communication interfaces (2 of 2) Feature Functional description Serial Sound Interface Enhanced (SSIE) The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting I2S/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. SD/MMC Host Interface (SDHI) Table 1.9 The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, 4bit, and 8-bit1-bit, and 4-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84B451) device access. This interface also provides backward compatibility and supports highspeed SDR transfer modes. Analog Functional description 12-bit A/D Converter (ADC12) A 12-bit successive approximation A/D converter is provided. Up to 13 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. 12-bit D/A Converter (DAC12) A 12-bit D/A converter (DAC12) is provided. Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is fairly linear. The output voltage is provided to the ADC12 for conversion and can be further used by the end application. Table 1.10 Human machine interfaces Feature Functional description Capacitive Touch Sensing Unit (CTSU) The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software that enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical conductor so that a finger does not come into direct contact with the electrode. Table 1.11 Data processing Feature Functional description Cyclic Redundancy Check (CRC) calculator The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 5 of 92 RA4M2 Datasheet 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features. Memory Bus 512 KB code flash MPU Arm Cortex-M33 DSP System FPU POR/LVD Clocks MOSC/SOSC 8 KB data flash IDAU Reset (H/M/L) OCO 128 KB SRAM MPU 1 KB Standby SRAM Mode control PLL/PLL2 Power control CAC ICU Battery backup NVIC DMA System timer DTC Test and DBG interface Register write protection DMAC × 8 Timers GPT32 x 4 GPT16 x 4 Communication interfaces SCI × 6 QSPI IIC × 2 SDHI SPI CAN SSIE USBFS Human machine interfaces CTSU AGT × 6 RTC WDT/IWDT Event link Data processing Analog ELC CRC ADC12 Security DOC DAC12 × 2 TSN SCE9 Note: Not available on all parts. Figure 1.1 1.3 Block diagram Part Numbering Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a list of products. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 6 of 92 RA4M2 Datasheet 1. Overview R7FA4M2AD3C FP #AA 0 Production identification code Packaging, Terminal material (Pb-free) #AA: Tray/Sn (Tin) only #AC: Tray/others Package type FP: LQFP 100 pins FM: LQFP 64 pins FL: LQFP 48pins NE: QFN 48pins Quality Grade Operating temperature 3: -40°C to 105°C Code flash memory size B: 256 KB C: 384 KB D: 512 KB Feature set Group number Series name RA family Flash memory Renesas microcontroller Figure 1.2 Part numbering scheme Table 1.12 Product list (1 of 2) Product part number Package code Code flash Data flash SRAM Operating temperature R7FA4M2AD3CFP PLQP0100KB-B 512 KB 8 KB 128 KB -40 to +105°C R7FA4M2AD3CFM PLQP0064KB-C R7FA4M2AD3CFL PLQP0048KB-B R7FA4M2AD3CNE PWQN0048KC-A R7FA4M2AC3CFP PLQP0100KB-B 384 KB 8 KB 128 KB -40 to +105°C R7FA4M2AC3CFM PLQP0064KB-C R7FA4M2AC3CFL PLQP0048KB-B R7FA4M2AC3CNE PWQN0048KC-A R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 7 of 92 RA4M2 Datasheet Table 1.12 1. Overview Product list (2 of 2) Product part number Package code Code flash Data flash SRAM Operating temperature R7FA4M2AB3CFP PLQP0100KB-B 256 KB 8 KB 128 KB -40 to +105°C R7FA4M2AB3CFM PLQP0064KB-C R7FA4M2AB3CFL PLQP0048KB-B R7FA4M2AB3CNE PWQN0048KC-A R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 8 of 92 RA4M2 Datasheet 1.4 1. Overview Function Comparison Table 1.13 Function Comparison R7FA4M2AD3CFP R7FA4M2AC3CFP R7FA4M2AB3CFP Parts number Pin count R7FA4M2AD3CFM R7FA4M2AC3CFM R7FA4M2AB3CFM 100 R7FA4M2AD3CFL R7FA4M2AC3CFL R7FA4M2AB3CFL 64 Package 48 QFN 512KB 384KB 256KB Data flash memory 8 KB SRAM 128 KB Parity 64 KB ECC 64 KB Standby SRAM 1 KB DTC Yes DMAC System 8 CPU clock 100 MHz (max.) CPU clock sources MOSC, SOSC, HOCO, MOCO, LOCO, PLL CAC Yes WDT/IWDT Yes Backup register Communication 128 B SCI 6 IIC 2 1 SPI 1 CAN Timers 1 USBFS Yes QSPI Yes SSIE Yes No SDHI/MMC Yes No GPT32*1 4 GPT16*1 4 AGT*1 6 RTC Analog ADC12 Yes Unit 0: 13 Unit 0: 9 DAC12 Unit 0: 7 2 TSN Yes HMI CTSU Data processing CRC Yes DOC Yes ELC Yes Event control 48 LQFP Code flash memory DMA R7FA4M2AD3CNE R7FA4M2AC3CNE R7FA4M2AB3CNE Security 12 7 4 SCE9, TrustZone, and Lifecycle management Note 1. Available pins depend on the Pin count, about details see section 1.7. Pin Lists. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 9 of 92 RA4M2 Datasheet 1.5 1. Overview Pin Functions Table 1.14 Pin functions (1 of 4) Function Signal I/O Description Power supply VCC Input Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1-µF capacitor. The capacitor should be placed close to the pin. VCL I/O Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. VSS Input Ground pin. Connect it to the system power supply (0 V). VBATT Input Battery Backup power pin XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output CLKOUT Output Clock output pin Operating mode control MD Input Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin On-chip emulator TMS I/O On-chip emulator or boundary scan pins TDI Input TCK Input TDO Output TCLK Output Output clock for synchronization with the trace data TDATA0 to TDATA3 Output Trace data output SWO Output Serial wire trace output pin SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin NMI Input Non-maskable interrupt request pin Clock Interrupt Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. IRQn Input Maskable interrupt request pins IRQn-DS Input Maskable interrupt request pins that can also be used in Deep Software Standby mode R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 10 of 92 RA4M2 Datasheet Table 1.14 1. Overview Pin functions (2 of 4) Function Signal I/O Description GPT GTETRGA, GTETRGB, GTETRGC, GTETRGD Input External trigger input pins GTIOCnA, GTIOCnB I/O Input capture, output compare, or PWM output pins GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) AGTEEn Input External event input enable signals AGTIOn I/O External event input and pulse output pins AGTOn Output Pulse output pins AGTOAn Output Output compare match A output pins AGTOBn Output Output compare match B output pins RTCOUT Output Output pin for 1-Hz or 64-Hz clock RTCICn Input Time capture event input pins SCKn I/O Input/output pins for the clock (clock synchronous mode) RXDn Input Input pins for received data (asynchronous mode/clock synchronous mode) TXDn Output Output pins for transmitted data (asynchronous mode/clock synchronous mode) CTSn_RTSn I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), activelow. CTSn Input Input for the start of transmission. SCLn I/O Input/output pins for the IIC clock (simple IIC mode) SDAn I/O Input/output pins for the IIC data (simple IIC mode) SCKn I/O Input/output pins for the clock (simple SPI mode) MISOn I/O Input/output pins for slave transmission of data (simple SPI mode) MOSIn I/O Input/output pins for master transmission of data (simple SPI mode) SSn Input Chip-select input pins (simple SPI mode), active-low RXDXn Input Input pins for received data (Extended Serial Mode) TXDXn Output Output pins for transmitted data (Extended Serial Mode) SIOXn I/O Input/output pins for receivde or tramsmitted data (Extended Serial Mode) SCLn I/O Input/output pins for the clock SDAn I/O Input/output pins for data AGT RTC SCI IIC R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 11 of 92 RA4M2 Datasheet Table 1.14 1. Overview Pin functions (3 of 4) Function Signal I/O Description SPI RSPCKA I/O Clock input/output pin MOSIA I/O Input or output pins for data output from the master MISOA I/O Input or output pins for data output from the slave SSLA0 I/O Input or output pin for slave selection SSLA1 to SSLA3 Output Output pins for slave selection CRXn Input Receive data CTXn Output Transmit data VCC_USB Input Power supply pin VSS_USB Input Ground pin USB_DP I/O D+ pin of the USB on-chip transceiver. Connect this pin to the D+ pin of the USB bus. USB_DM I/O D- pin of the USB on-chip transceiver. Connect this pin to the D- pin of the USB bus. USB_VBUS Input USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a function controller. USB_EXICEN Output Low-power control signal for external power supply (OTG) chip USB_VBUSEN Output VBUS (5 V) supply enable signal for external power supply chip USB_OVRCURA, USB_OVRCURB Input Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected. USB_OVRCURA-DS Input Overcurrent pins for USBFS that can also be used in Deep Software Standby mode. Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected. USB_ID Input Connect the MicroAB connector ID input signal to this pin during operation in OTG mode QSPCLK Output QSPI clock output pin QSSL Output QSPI slave output pin QIO0 to QIO3 I/O Data0 to Data3 SSIBCK0 I/O SSIE serial bit clock pins SSILRCK0/SSIFS0 I/O LR clock/frame synchronization pins SSITXD0 Output Serial data output pin SSIRXD0 Input Serial data input pin SSIDATA0 I/O Serial data input/output pins AUDIO_CLK Input External clock pin for audio (input oversampling clock) SD0CLK Output SD clock output pins SD0CMD I/O Command output pin and response input signal pins SD0DAT0 to SD0DAT73 I/O SD and MMC data bus pins SD0CD Input SD card detection pins SD0WP Input SD write-protect signals AVCC0 Input Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin. CAN USBFS QSPI SSIE SDHI/MMC Analog power supply R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 12 of 92 RA4M2 Datasheet Table 1.14 Function 1. Overview Pin functions (4 of 4) Signal I/O Description AVSS0 Input Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin. VREFH0 Input Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin to AVCC0 when not using the ADC12 (unit 0). VREFL0 Input Analog reference ground pin for the ADC12. Connect this pin to AVSS0 when not using the ADC12 (unit 0). VREFH Input Analog reference voltage supply pin for the ADC12 (unit 1) and D/A Converter. Connect this pin to AVCC0 when not using the ADC12 (unit 1) and D/A Converter. VREFL Input Analog reference ground pin for the ADC12 and D/A Converter. Connect this pin to AVSS0 when not using the ADC12 (unit 1) and D/A Converter. ANmn Input Input pins for the analog signals to be processed by the A/D converter. (m: ADC unit number, n: pin number) ADTRGm Input Input pins for the external trigger signals that start the A/D conversion, active-low. DAC12 DAn Output Output pins for the analog signals processed by the D/A converter. CTSU TSn Input Capacitive touch detection pins (touch pins) TSCAP I/O Secondary power supply pin for the touch driver Pmn I/O General-purpose input/output pins (m: port number, n: pin number) P200 Input General-purpose input pin ADC12 I/O ports R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 13 of 92 RA4M2 Datasheet 1.6 1. Overview Pin Assignments P113 P112 P111 P110/TDI P109/TDO P108/TMS/SWDIO 55 54 53 52 51 VCC 62 P114 VSS 63 56 P603 64 P115 P602 65 57 P601 66 P608 P600 67 58 P107 68 P610 P106 69 P609 P105 70 59 P104 71 60 P103 P206 P004 96 30 P207 P003 97 29 VCC_USB P002 98 28 USB_DP P001 99 27 USB_DM P000 100 26 VSS_USB 25 31 P407 95 24 P205 P005 P408 32 23 94 P409 P214 P006 22 33 P410 93 21 P211 P007 P411 34 20 92 P412 P210 P008 19 35 P413 91 18 P209 VREFH0 P414 36 17 90 P415 P208 VREFL0 P708 37 16 RES 89 VCC 38 15 88 P212/EXTAL P201/MD AVCC0 14 P200 39 13 40 87 P213/XTAL P307 P013 VREFH 12 41 86 VSS P306 P014 11 42 85 XCOUT P305 P015 10 43 84 XCIN 83 9 P304 VSS VCL 44 8 82 VBATT VSS VCC 7 45 P406 81 6 VCC P505 5 46 P405 80 P404 P303 P504 4 P302 47 P403 48 79 P402 78 P503 3 P502 P100 P101 P102 P103 P104 P105 P106 P107 VSS VCC P113 P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 Pin assignment for LQFP 100-pin 20 VCC_USB P002 62 19 USB_DP P001 63 18 USB_DM P000 64 17 VSS_USB 16 61 P407 P207 P003 15 21 P408 60 14 P206 P004 13 22 P410 59 P409 P205 VREFH0 12 23 P411 58 11 P208 VREFL0 VCC 24 10 RES 57 P212/EXTAL 25 9 P201/MD 56 P213/XTAL 26 AVCC0 8 P200 VREFH VSS 27 55 7 P304 P013 XCOUT 28 54 6 53 XCIN P303 P014 5 29 VCL 52 4 P302 P015 VBATT 30 3 51 P402 P301 VSS 2 P300/TCK/SWCLK 31 1 32 50 P401 49 VCC P400 P500 AVSS0/VREFL Figure 1.4 61 P101 P102 72 P100 73 75 P300/TCK/SWCLK P301 1 49 2 50 77 P401 76 P501 P400 P500 AVSS0/VREFL Figure 1.3 74 The following figures show the pin assignments from the top view. Pin assignment for LQFP 64-pin R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 14 of 92 P100 P101 P102 P103 P104 VSS VCC P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 34 33 32 31 30 29 28 27 26 25 P207 16 VCC_USB P002 46 15 USB_DP P001 47 14 USB_DM P000 48 13 VSS_USB VSS XCOUT XCIN VCL 12 17 45 P407 P206 VREFL0 VREFH0 P408 18 44 11 RES 43 P409 19 10 42 VCC P201/MD AVCC0 9 20 8 41 P212/EXTAL P200 VREFH 7 21 P213/XTAL 40 6 P302 P013 5 22 4 39 3 P301 P014 2 P300/TCK/SWCLK 23 1 24 38 P402 37 P015 VBATT P500 AVSS0/VREFL 25 26 27 28 29 30 31 32 P102 P103 P104 VSS VCC P112 P111 P110/TDI P109/TDO/SWO P108/TMS/SWDIO 34 33 P100 P101 35 36 Pin assignment for LQFP 48-pin 17 45 16 46 15 47 14 P000 48 13 VSS_USB P402 VBATT VCL XCIN XCOUT VSS P213/XTAL P212/EXTAL VCC P409 P408 P407 12 44 11 18 VREFL0 VREFH0 P002 P001 10 19 43 9 20 42 8 21 41 7 40 P300/TCK/SWCLK P301 P302 P200 P201/MD RES P206 P207 VCC_USB USB_DP USB_DM 6 22 5 23 39 4 24 38 3 37 2 P500 P015 P014 P013 VREFH AVCC0 AVSS0/VREFL 1 Figure 1.5 35 1. Overview 36 RA4M2 Datasheet Figure 1.6 Pin assignment for QFN 48-pin R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 15 of 92 RA4M2 Datasheet 1.7 Pin Lists LQFP48, QFN48 LQFP64 Table 1.15 LQFP100 1. Overview Pin list (1 of 3) Power, System, Clock, Debug, CAC I/O ports Ex. Interrupt SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC GPT/AGT/RTC ADC12/DAC12 CTSU — 1 1 — — P400 IRQ0 SCK4/SCL0_A/AUDIO_CLK GTIOC6A/AGTIO1 — 2 2 — — P401 IRQ5-DS CTS4_RTS4/SS4/SDA0_A/CTX0 GTETRGA/GTIOC6B — — 3 3 1 CACREF P402 IRQ4-DS CTS4/CRX0/AUDIO_CLK AGTIO0/AGTIO1/AGTIO2/AGTIO3/ RTCIC0 — — 4 — — — P403 IRQ14-DS SSIBCK0_A GTIOC3A/AGTIO0/AGTIO1/AGTIO2/ AGTIO3/RTCIC1 — — 5 — — — P404 IRQ15-DS SSILRCK0/SSIFS0_A GTIOC3B/AGTIO0/AGTIO1/AGTIO2/ AGTIO3/RTCIC2 — — 6 — — — P405 — SSITXD0_A GTIOC1A — — 7 — — — P406 — SSIRXD0_A GTIOC1B/AGTO5 — — 8 4 2 VBATT — — — — — — 9 5 3 VCL — — — — — — 10 6 4 XCIN — — — — — — 11 7 5 XCOUT — — — — — — 12 8 6 VSS — — — — — — 13 9 7 XTAL P213 IRQ2 TXD1/MOSI1/SDA1/TXDX1/SIOX1 GTETRGC/GTIOC0A/AGTEE2 — — 14 10 8 EXTAL P212 IRQ3 RXD1/MISO1/SCL1/RXDX1 GTETRGD/GTIOC0B/AGTEE1 — — 15 11 9 VCC — — — — — — 16 — — CACREF P708 IRQ11 RXD1/MISO1/SCL1/RXDX1/AUDIO_CLK — — TS12 17 — — — P415 IRQ8 USB_VBUSEN/SD0CD GTIOC0A/AGTIO4 — TS11 18 — — — P414 IRQ9 CTS0/SD0WP GTIOC0B/AGTIO5 — TS10 19 — — — P413 — CTS0_RTS0/SS0/SD0CLK_A GTOUUP/AGTEE3 — TS09 20 — — — P412 — SCK0/CTS3/SD0CMD_A GTOULO/AGTEE1 — TS08 TS07 21 12 — — P411 IRQ4 TXD0/MOSI0/SDA0/CTS3_RTS3/SS3/SD0DAT0_A GTOVUP/AGTOA1 — 22 13 — — P410 IRQ5 RXD0/MISO0/SCL0/SCK3/SD0DAT1_A GTOVLO/AGTOB1 — TS06 23 14 10 — P409 IRQ6 TXD3/MOSI3/SDA3/USB_EXICEN GTOWUP/AGTOA2 — TS05 24 15 11 — P408 IRQ7 CTS4/RXD3/MISO3/SCL3/SCL0_B/USB_ID GTOWLO/GTIOC6B/AGTOB2 — TS04 25 16 12 — P407 — CTS4_RTS4/SS4/SDA0_B/USB_VBUS GTIOC6A/AGTIO0/RTCOUT ADTRG0 TS03 26 17 13 VSS_USB — — — — — — 27 18 14 USB_DM — — — — — — 28 19 15 USB_DP — — — — — — 29 20 16 VCC_USB — — — — — — 30 21 17 — P207 — TXD4/MOSI4/SDA4/QSSL — — TSCAP 31 22 18 — P206 IRQ0-DS RXD4/MISO4/SCL4/CTS9/SDA1_B/USB_VBUSEN/ SD0DAT2_A GTIU — TS02 32 23 — CLKOUT P205 IRQ1-DS TXD4/MOSI4/SDA4/CTS9_RTS9/SS9/SCL1_B/ USB_OVRCURA-DS/SD0DAT3_A GTIV/GTIOC4A/AGTO1 — TS01 33 — — TCLK P214 — QSPCLK/SD0CLK_B GTIU/AGTO5 — — 34 — — TDATA0 P211 — QIO0/SD0CMD_B GTIV/AGTOA5 — — 35 — — TDATA1 P210 — QIO1/SD0CD GTIW/AGTOB5 — — 36 — — TDATA2 P209 — QIO2/SD0WP GTOVUP/AGTEE5 — — 37 24 — TDATA3 P208 — QIO3/SD0DAT0_B GTOVLO — — 38 25 19 RES — — — — — — 39 26 20 MD P201 — — — — — 40 27 21 — P200 NMI — — — — 41 — — — P307 — QIO0 GTOUUP/AGTEE4 — — 42 — — — P306 — QSSL GTOULO/AGTOA2 — — 43 — — — P305 IRQ8 QSPCLK GTOWUP/AGTOB2 — — 44 28 — — P304 IRQ9 — GTOWLO/GTIOC7A/AGTEE2 — — R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 16 of 92 RA4M2 Datasheet LQFP48, QFN48 LQFP64 LQFP100 Table 1.15 1. Overview Pin list (2 of 3) Power, System, Clock, Debug, CAC I/O ports Ex. Interrupt SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC GPT/AGT/RTC ADC12/DAC12 CTSU 45 — — VSS — — — — — — 46 — — VCC — — — — — — 47 29 — — P303 — CTS9 GTIOC7B — — 48 30 22 — P302 IRQ5 TXD2/MOSI2/SDA2/TXDX2/SIOX2/SSLA3 GTOUUP/GTIOC4A — — 49 31 23 — P301 IRQ6 RXD2/MISO2/SCL2/RXDX2/CTS9_RTS9/SS9/SSLA2 GTOULO/GTIOC4B/AGTIO0 — — 50 32 24 TCK/SWCLK P300 — SSLA1 GTOUUP/GTIOC0A — — 51 33 25 TMS/SWDIO P108 — CTS9_RTS9/SS9/SSLA0 GTOULO/GTIOC0B/AGTOA3 — — 52 34 26 TDO/SWO/CLKOUT P109 — TXD9/MOSI9/SDA9/MOSIA GTOVUP/GTIOC1A/AGTOB3 — — — 53 35 27 TDI P110 IRQ3 CTS2_RTS2/SS2/RXD9/MISO9/SCL9/MISOA GTOVLO/GTIOC1B/AGTEE3 — 54 36 28 — P111 IRQ4 SCK2/SCK9/RSPCKA GTIOC3A/AGTOA5 — — 55 37 29 — P112 — TXD2/MOSI2/SDA2/TXDX2/SIOX2/SCK1/SSLA0/QSSL/ SSIBCK0_B GTIOC3B/AGTOB5 — — 56 38 — — P113 — RXD2/MISO2/SCL2/RXDX2/SSILRCK0/SSIFS0_B GTIOC2A/AGTEE5 — — 57 — — — P114 — CTS9/SSIRXD0_B GTIOC2B/AGTIO5 — — 58 — — — P115 — SSITXD0_B GTIOC4A — — 59 — — — P608 — — GTIOC4B — — 60 — — — P609 — — GTIOC5A/AGTO5 — — 61 — — — P610 — — GTIOC5B/AGTO4 — — 62 39 30 VCC — — — — — — 63 40 31 VSS — — — — — — 64 — — — P603 — CTS9_RTS9/SS9 GTIOC7A/AGTIO4 — — 65 — — — P602 — TXD9/MOSI9/SDA9 GTIOC7B/AGTO3 — — 66 — — — P601 — RXD9/MISO9/SCL9 GTIOC6A/AGTEE3 — — 67 — — CACREF/CLKOUT P600 — SCK9 GTIOC6B/AGTIO3 — — 68 41 — — P107 — — AGTOA0 — — 69 42 — — P106 — — AGTOB0 — — 70 43 — — P105 IRQ0 — GTETRGA/GTIOC1A/AGTO2 — — 71 44 32 — P104 IRQ1 QIO2 GTETRGB/GTIOC1B/AGTEE2 — — 72 45 33 — P103 — CTS0_RTS0/SS0/CTX0/QIO3 GTOWUP/GTIOC2A/AGTIO2 — — 73 46 34 — P102 — SCK0/CRX0/QIO0 GTOWLO/GTIOC2B/AGTO0 ADTRG0 — 74 47 35 — P101 IRQ1 TXD0/MOSI0/SDA0/CTS1_RTS1/SS1/QIO1 GTETRGB/GTIOC5A/AGTEE0 — — 75 48 36 — P100 IRQ2 RXD0/MISO0/SCL0/SCK1/QSPCLK GTETRGA/GTIOC5B/AGTIO0 — — 76 49 37 CACREF P500 — USB_VBUSEN/QSPCLK GTIU/AGTOA0 AN016 — 77 — — — P501 IRQ11 USB_OVRCURA/QSSL GTIV/AGTOB0 — — 78 — — — P502 IRQ12 USB_OVRCURB/QIO0 GTIW/AGTOA2 — — 79 — — — P503 — USB_EXICEN/QIO1 GTETRGC/AGTOB2 — — 80 — — — P504 — USB_ID/QIO2 GTETRGD/AGTOA3 — — 81 — — — P505 IRQ14 QIO3 AGTOB3 — — 82 50 — VCC — — — — — — 83 51 — VSS — — — — — — 84 52 38 — P015 IRQ13 — — AN013/DA1 — 85 53 39 — P014 — — — AN012/DA0 — 86 54 40 — P013 — — — AN011 — 87 55 41 VREFH — — — — — — 88 56 42 AVCC0 — — — — — — 89 57 43 AVSS0/VREFL — — — — — — 90 58 44 VREFL0 — — — — — — 91 59 45 VREFH0 — — — — — — 92 — — — P008 IRQ12-DS — — AN008 — R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 17 of 92 RA4M2 Datasheet LQFP48, QFN48 LQFP64 LQFP100 Table 1.15 1. Overview Pin list (3 of 3) Power, System, Clock, Debug, CAC I/O ports Ex. Interrupt SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC GPT/AGT/RTC ADC12/DAC12 CTSU 93 — — — P007 — — — AN007 — 94 — — — P006 IRQ11-DS — — AN006 — 95 — — — P005 IRQ10-DS — — AN005 — 96 60 — — P004 IRQ9-DS — — AN004 — 97 61 — — P003 — — — AN003 — 98 62 46 — P002 IRQ8-DS — — AN002 — 99 63 47 — P001 IRQ7-DS — — AN001 — 100 64 48 — P000 IRQ6-DS — — AN000 — Note: Several pin names have the added suffix of _A, _B, and _C. The suffix can be ignored when assigning functionality. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 18 of 92 RA4M2 Datasheet 2. 2. Electrical Characteristics Electrical Characteristics Supported peripheral functions and pins differ from one product name to another. Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions: ● VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V ● 2.7 ≤ VREFH0/VREFH ≤ AVCC0 ● VSS = AVSS0 = VREFL0/VREFL = VSS_USB = 0 V ● Ta = Topr Figure 2.1 shows the timing conditions. For example, P100 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30 pF Figure 2.1 Input or output timing measurement conditions The recommended measurement conditions for the timing specification of each peripheral provided are for the best peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions. Absolute Maximum Ratings 2.1 Table 2.1 Absolute maximum ratings Parameter Symbol Value Unit Power supply voltage VCC, VCC_USB*2 –0.3 to +4.0 V VBATT power supply voltage VBATT –0.3 to +4.0 V Input voltage (except for 5 V-tolerant ports*1) Vin –0.3 to VCC + 0.3 V Input voltage (5 V-tolerant ports*1) Vin –0.3 to + VCC + 4.0 (max. 5.8) V Reference power supply voltage VREFH/VREFH0 –0.3 to VCC + 0.3 V Analog power supply voltage AVCC0*2 –0.3 to +4.0 V Analog input voltage VAN –0.3 to AVCC0 + 0.3 V Operating temperature*3 *4 Topr –40 to +105 °C Storage temperature Tstg –55 to +125 °C Note 1. Note 2. Note 3. Note 4. Ports P205, P206, P400, P401, P407 to P415, and P708 are 5 V tolerant. Connect AVCC0 and VCC_USB to VCC. See section 2.2.1. Tj/Ta Definition. Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 19 of 92 RA4M2 Datasheet 2. Electrical Characteristics Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded. Table 2.2 Recommended operating conditions Parameter Symbol Value Min Typ Max Unit Power supply voltages VCC When USB is not used 2.7 — 3.6 V When USB is used 3.0 — 3.6 V VSS — 0 — V VCC_USB — VCC — V VSS_USB — 0 — V VBATT power supply voltage VBATT 1.8 — 3.6 V Analog power supply voltages AVCC0*1 — VCC — V AVSS0 — 0 — V USB power supply voltages Note 1. Connect AVCC0 to VCC. When the A/D converter and the D/A converter are not in use, do not leave the AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC, and the AVSS0 and VREFL/ VREFL0 pins to VSS, respectively. 2.2 DC Characteristics 2.2.1 Tj/Ta Definition Table 2.3 DC characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C Parameter Permissible junction temperature 100-pin LQFP 64-pin LQFP 48-pin LQFP 48-pin QFN Note: Symbol Typ Max Unit Test conditions Tj — 125 °C High-speed mode Low-speed mode Subosc-speed mode 115 Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. 2.2.2 I/O VIH, VIL Table 2.4 I/O VIH, VIL (1 of 2) Parameter Input voltage (except for Schmitt trigger input pins) Peripheral function pin EXTAL (external clock input), SPI (except RSPCK) IIC (SMBus) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Symbol Min Typ Max Unit VIH VCC × 0.8 — — V VIL — — VCC × 0.2 VIH 2.1 — VCC + 3.6 (max 5.8) VIL — — 0.8 Page 20 of 92 RA4M2 Datasheet Table 2.4 2. Electrical Characteristics I/O VIH, VIL (2 of 2) Parameter Schmitt trigger input voltage Peripheral function pin IIC (except for SMBus) 5 V-tolerant ports*1 *5 RTCIC0, RTCIC1, RTCIC2 When using the Battery Backup Function When VBATT power supply is selected When VCC power supply is selected When not using the Battery Backup Function Other input pins*2 Ports 5 V-tolerant ports*3 *5 Other input pins*4 Note 1. Note 2. Note 3. Note 4. Note 5. Symbol Min Typ Max Unit VIH VCC × 0.7 — VCC + 3.6 (max 5.8) V VIL — — VCC × 0.3 ΔVT VCC × 0.05 — — VIH VCC × 0.8 — VCC + 3.6 (max 5.8) VIL — — VCC × 0.2 ΔVT VCC × 0.05 — — VIH VBATT × 0.8 — VBATT + 0.3 VIL — — VBATT × 0.2 ΔVT VBATT × 0.05 — — VIH VCC × 0.8 — Higher voltage either VCC + 0.3 V or VBATT + 0.3 V VIL — — VCC × 0.2 ΔVT VCC × 0.05 — — VIH VCC × 0.8 — VCC + 0.3 VIL — — VCC × 0.2 ΔVT VCC × 0.05 — — VIH VCC × 0.8 — — VIL — — VCC × 0.2 ΔVT VCC × 0.05 — — VIH VCC × 0.8 — VCC + 3.6 (max 5.8) VIL — — VCC × 0.2 VIH VCC × 0.8 — — VIL — — VCC × 0.2 V RES and peripheral function pins associated with Ports P205, P206, P400, P401, P407 to P415, and P708(total 15 pins). All input pins except for the peripheral function pins already described in the table. Ports P205, P206, P400, P401, P407 to P415, and P708(total 14 pins). All input pins except for the ports already described in the table. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 21 of 92 RA4M2 Datasheet 2.2.3 Table 2.5 2. Electrical Characteristics I/O IOH, IOL I/O IOH, IOL Parameter Permissible output current (average value per pin) Ports P000 to P008, P013 to P015, P201 Symbol Min Typ Max Unit IOH — — –2.0 mA IOL — — 2.0 IOH — — –2.0 mA IOL — — 2.0 Middle drive*2 IOH — — –4.0 mA IOL — — 4.0 mA IOH — — –20 mA IOL — — 20 mA IOH — — –2.0 mA IOL — — 2.0 Middle drive*2 IOH — — –4.0 mA IOL — — 4.0 mA IOH — — –16 mA IOL — — 16 mA IOH — — –4.0 mA IOL — — 4.0 IOH — — –4.0 mA IOL — — 4.0 Middle drive*2 IOH — — –8.0 mA IOL — — 8.0 mA IOH — — –40 mA IOL — — 40 mA IOH — — –4.0 mA IOL — — 4.0 Middle drive*2 IOH — — –8.0 mA IOL — — 8.0 mA IOH — — –32 mA IOL — — 32 mA ΣIOH (max) — — –80 mA ΣIOL (max) — — 80 mA — Ports P205, P206, P407 to P415, P708 Low drive*1 (total 12 pins) High drive*3 Other output pins*4 Low drive*1 High drive*3 Permissible output current (max value per pin) Ports P000 to P008, P013 to P015, P201 — Ports P205, P206, P407 to P415, P708 Low drive*1 (total 12 pins) High drive*3 Other output pins*4 Low drive*1 High drive*3 Permissible output current (maxvalue of total of all pins) Maximum of all output pins mA mA mA mA mA mA Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. Note 4. Except for P200, which is an input port. Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 µs. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 22 of 92 RA4M2 Datasheet 2.2.4 2. Electrical Characteristics I/O VOH, VOL, and Other Characteristics Table 2.6 I/O VOH, VOL, and other characteristics Parameter Output voltage IIC IIC*1 Ports P205, P206, P407 to P415, P708 (total 12 pins)*2 Other output pins Input leakage current RES Symbol Min Typ Max Unit Test conditions VOL — — 0.4 VOL — — 0.6 IOL = 6.0 mA VOL — — 0.4 IOL = 15.0 mA (ICFER.FMPE = 1) VOL — 0.4 — IOL = 20.0 mA (ICFER.FMPE = 1) VOH VCC – 1.0 — — IOH = –20 mA VCC = 3.3 V VOL — 1.0 IOL = 20 mA VCC = 3.3 V VOH VCC – 0.5 — — IOH = –1.0 mA VOL — — 0.5 IOL = 1.0 mA |Iin| — — 5.0 — — 1.0 — — 5.0 — — 1.0 Port P200 Three-state leakage current (off state) 5 V-tolerant ports |ITSI| Other ports (except for port P200) — V µA IOL = 3.0 mA Vin = 0 V Vin = 5.5 V Vin = 0 V Vin = VCC µA Vin = 0 V Vin = 5.5 V Vin = 0 V Vin = VCC Input pull-up MOS current Ports P0 to P7 Ip –300 — –10 µA VCC = 2.7 to 3.6 V Vin = 0 V Input capacitance USB_DP, USB_DM, and ports P014, P015, P400, P401 Cin — — 16 pF — — 8 Vbias = 0 V Vamp = 20 mV f = 1 MHz Ta = 25°C Other input pins Note 1. SCL0_A, SDA0_A (total 2 pins). Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 23 of 92 RA4M2 Datasheet 2.2.5 Table 2.7 2. Electrical Characteristics Operating and Standby Current Operating and standby current (1 of 2) Parameter Supply current*1 High-speed mode Symbol Min Typ Max Unit Test conditions ICC*3 — — 65 mA CoreMark®*5 *6 *12 *14 — 8.1 — Normal mode All peripheral clocks enabled, while (1) code executing from flash*4 *12 — 15.4 — All peripheral clocks disabled, while (1) code executing from flash*5 *6 *12 *14 — 6.1 — — 4.4*6 25*7 *12 *13 Maximum*2 *13 Sleep mode*5 *14 Increase during BGO operation ICLK = 100 MHz PCLKA = 100 MHz PCLKB = 50 MHz PCLKC = 50 MHz PCLKD = 100 MHz FCLK = 50 MHz Data flash P/E — 6 — Code flash P/E — 8 — Low-speed mode*5 *10 — 0.8 — ICLK = 1 MHz Subosc-speed mode*5 *11 — 0.7 — ICLK = 32.768 kHz SNZCR.RXDREQEN = 1 — — 14 — SNZCR.RXDREQEN = 0 — 0.7 — — Power supplied to Standby SRAM and USB resume detecting unit — 16 96 Power not supplied to SRAM or USB resume detecting unit Power-on reset circuit low power function disabled — 12 27 — Power-on reset circuit low power function enabled — 5 17 — Increase when the RTC and AGT are operating When the low-speed on-chip oscillator (LOCO) is in use — 4.4 — — When a crystal oscillator for low clock loads is in use — 1.0 — — When a crystal oscillator for standard clock loads is in use — 1.6 — — When a crystal oscillator for low clock loads is in use — 0.6 — VBATT = 1.8 V, VCC = 0 V — 1.2 — VBATT = 3.3 V, VCC = 0 V When a crystal oscillator for standard clock loads is in use — 1.1 — VBATT = 1.8 V, VCC = 0 V — 1.8 — VBATT = 3.3 V, VCC = 0 V Software Standby mode Deep Software Standby mode RTC operating while VCC is off (with the battery backup function, only the RTC and sub-clock oscillator operate) Inrush current on returning from deep software standby mode R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 µA Inrush current*8 IRUSH — 160 — mA Energy of inrush current*8 ERUSH — 1.0 — µC — Page 24 of 92 RA4M2 Datasheet Table 2.7 2. Electrical Characteristics Operating and standby current (2 of 2) Parameter Analog power supply current Symbol Min Typ Max Unit Test conditions AICC — 0.8 1.1 mA — — 0.1 0.2 mA — Without AMP output — 0.1 0.2 mA — With AMP output — 0.6 1.1 mA — Waiting for A/D, D/A conversion (all units) — 0.5 1.0 mA — ADC12, DAC12 in standby modes (all units)*9 — 0.4 4.0 µA — — 70 120 µA — Waiting for 12-bit A/D conversion (unit 0) — 0.07 0.5 µA — ADC12 in standby modes (unit 0) — 0.07 0.5 µA — Without AMP output AIREFH — 0.1 0.4 mA — With AMP ouput — 0.1 0.4 mA — — 0.07 0.8 µA — During 12-bit A/D conversion Temperature sensor During D/A conversion (per unit) Reference power supply current (VREFH0) During 12-bit A/D conversion (unit 0) Reference power supply current (VREFH) During D/A conversion (per unit) USB operating current AIREFH0 Waiting for D/A (all units) conversion Low speed USB ICCUSBLS — 3.5 6.5 mA VCC_USB Full speed USB ICCUSBFS — 4.0 10.0 mA VCC_USB LDOn operating current (1 unit)*15 ICCLDO — 0.18 — mA — PLL2-LDO operating current ICCPLL2LDO — 0.21 — mA — Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state. Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation. Note 3. ICC depends on f (ICLK) as follows. ICC Max. = 0.53 × f + 12 (max. operation in high-speed mode) ICC Typ. = 0.05 × f + 1.85 (normal operation in high-speed mode, all peripheral clocks disabled) ICC Typ. = 0.12 × f + 0.69 (low-speed mode) ICC Max. = 0.13 × f + 12 (sleep mode) Note 4. This does not include the BGO operation. Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation. Note 6. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (1.563 MHz). Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.125 MHz). Note 8. Reference value Note 9. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-Bit A/D Converter 0 Module Stop bit) is in the module-stop state. Note 10. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (15.6 kHz). Note 11. PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (512 Hz). FCLK is the same frequency as that of ICLK. Note 12. PLL output frequency = 100MHz. Note 13. PLL output frequency = 200MHz. Note 14. PLL2-LDO disabled. Note 15. n = 0, 1 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 25 of 92 RA4M2 Datasheet Table 2.8 2. Electrical Characteristics Coremark and normal mode current Parameter Supply Current*1 Coremark*2 *3 *4 Normal mode Note 1. Note 2. Note 3. Note 4. Symbol Typ Unit Test conditions ICC 81 µA/MHz ICLK = 100MHz PCLKA = PCLKB = PCLKC = PCLKD = FCLK = 1.56 MHz All peripheral clocks disabled, cache on, while (1) code executing from flash*2 *3 *4 60 All peripheral clocks disabled, cache off, while (1) code executing from flash*2 *3 *4 118 Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation. Under development Preliminary document  PLL output frequency = 100MHz.Specifications in this document are tentative and subject to change  PLL2-LDO disabled. RA4M2 Series 59. Electrical Characteristics  100.0 ICC (mA) 10.0 1.0 0.1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.2 Figure 47.2 Temperature dependency in Software Standby mode (reference data) Temperature dependency in Software Standby mode (reference data) 1000 ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 47.3 Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and USB resume detecting unit (reference data) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 26 of 92 0.1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. RA4M2 Datasheet 2. Electrical Characteristics Figure 47.2 Temperature dependency in Software Standby mode (reference data) 1000 ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 47.3 Temperature dependency in Deep Software Standby mode, power supplied to standby Figure 2.3 SRAM and USB resume detecting (reference data) Temperature dependency in Deepunit Software Standby mode, power supplied to standby SRAM Under resume development Preliminary document  and USB detecting unit (reference data) Specifications in this document are tentative and subject to change  RA4M3 Series 59. Electrical Characteristics  100 ICC (uA) RA4M2 Target Spec  xx xx, 2019  Page 9    of 2123  10 1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 47.4 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or Figure 2.4 USB resume detecting unit, reset circuit low power function disabled Temperature dependency in power-on Deep Software Standby mode, power not (reference supplieddata) to SRAM or USB resume detecting unit, power-on reset circuit low power function disabled (reference data) ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 47.5 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function enabled (reference data) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 27 of 92 1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. RA4M2 Datasheet Average value of the tested upper-limit samples during product evaluation. 2. Electrical Characteristics Figure 47.4 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function disabled (reference data) ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (℃) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 47.5 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or Figure 2.5 2.2.6 Table 2.9 Temperature dependency in power-on Deep Software Standby mode, power not(reference supplieddata) to SRAM or USB resume detecting unit, reset circuit low power function enabled USB resume detecting unit, power-on reset circuit low power function enabled (reference data) VCC Rise and Fall Gradient and Ripple Frequency Rise and fall gradient characteristics Parameter VCC rising gradient RA4M2 Starget   Voltage monitorSpec 0 reset disabled at startup xx xx, 2019  Min Typ SrVCC 0.0084 — 0.0084 — — — 0.0084 — 20 — 0.0084 — — Voltage monitor 0 reset enabled at startup SCI/USB boot VCC falling mode*1 SfVCC gradient*2 Max Test conditions Symbol Unit Page of 2123  — 20 1  0  ms/V ms/V — Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit. Note 2. This applies when VBATT is used. Table 2.10 Rising and falling gradient and ripple frequency characteristics The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit (2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Unit Test conditions Allowable ripple frequency fr (VCC) — — 10 kHz Figure 2.6 Vr (VCC) ≤ VCC × 0.2 — — 1 MHz Figure 2.6 Vr (VCC) ≤ VCC × 0.08 — — 10 MHz Figure 2.6 Vr (VCC) ≤ VCC × 0.06 1.0 — — ms/V When VCC change exceeds VCC ±10% Allowable voltage change rising and falling gradient dt/dVCC R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 28 of 92 RA4M2 Datasheet 2. Electrical Characteristics 1 / fr(VCC) VCC Figure 2.6 2.2.7 Vr(VCC) Ripple waveform Thermal Characteristics Maximum value of junction temperature (Tj) must not exceed the value of “section 2.2.1. Tj/Ta Definition”. Tj is calculated by either of the following equations. ● Tj = Ta + θja × Total power consumption ● Tj = Tt + Ψjt × Total power consumption – Tj : Junction Temperature (°C) – Ta : Ambient Temperature (°C) – Tt : Top Center Case Temperature (°C) – θja : Thermal Resistance of “Junction”-to-“Ambient” (°C/W) – Ψjt : Thermal Resistance of “Junction”-to-“Top Center Case” (°C/W) ● Total power consumption = Voltage × (Leakage current + Dynamic current) ● Leakage current of IO = Σ (IOL × VOL) /Voltage + Σ (|IOH| × |VCC – VOH|) /Voltage ● Dynamic current of IO = Σ IO (Cin + Cload) × IO switching frequency × Voltage – Cin: Input capacitance – Cload: Output capacitance Regarding θja and Ψjt, refer to Table 2.11. Table 2.11 Thermal Resistance Parameter Package Symbol Value*1 Unit Test conditions Thermal Resistance 48-pin QFN (PWQN0048KC-A) θja 23.9 °C/W JESD 51-2 and 51-7 compliant °C/W JESD 51-2 and 51-7 compliant 48-pin LQFP (PLQP0048KB-B) 62.1 64-pin LQFP (PLQP0064KB-C) 54.6 100-pin LQFP (PLQP0100KB-B) 48-pin QFN (PWQN0048KC-A) 55.1 Ψjt 0.28 48-pin LQFP (PLQP0048KB-B) 2.39 64-pin LQFP (PLQP0064KB-C) 1.90 100-pin LQFP (PLQP0100KB-B) 1.90 Note 1. The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards. 2.2.7.1 Calculation guide of ICCmax R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 29 of 92 RA4M2 Datasheet 2. Electrical Characteristics Table 2.12 shows the power consumption of each unit. Table 2.12 Power consumption of each unit Dynamic current/ Leakage current MCU Domain Category Item Frequency [MHz] Current [uA/MHz] Current*1 [mA] Leakage current Analog LDO and Leak*2 Ta = 75 °C*3 — — 7.82 Ta = 85 °C*3 — — 9.13 Ta = 95 °C*3 — — 11.08 Ta = 105 °C*3 — — 14.33 Dynamic current CPU Operation with Flash and SRAM Coremark 100 55.556 5.56 Peripheral Unit Timer GPT16 (4ch)*4 100 3.575 0.36 GPT32 (4ch)*4 100 4.230 0.42 POEG (4 Groups) 50 1.361 0.07 AGT (6ch)*4 50 9.228 0.46 RTC 50 4.277 0.21 WDT 50 0.764 0.04 IWDT 50 0.339 0.02 USBFS 50 9.385 0.47 SCI (6ch)*4 100 18.715 1.87 IIC (2ch)*4 50 3.367 0.16 CAN 50 1.898 0.09 SPI 100 3.024 0.30 QSPI 100 2.051 0.21 SSIE 50 3.208 0.16 SDHI 50 6.341 0.32 ADC12 100 2.287 0.23 DAC12 (2ch)*4 100 0.869 0.09 TSN 50 0.166 0.01 Human machine interfaces CTSU 50 0.605 0.03 Event link ELC 50 0.865 0.04 Security SCE9 100 218.100 21.81 Data processing CRC 100 0.600 0.06 DOC 100 0.388 0.04 System CAC 50 0.844 0.04 DMA DMAC 100 4.479 0.45 DTC 100 4.274 0.43 Communication interfaces Analog Note 1. The values are guaranteed by design. Note 2. LDO and Leak are internal voltage regulator’s current and MCU’s leakage current. It is selected according to the temperature of Ta. Note 3. Δ(Tj-Ta) = 20 °C is considered to measure the current. Note 4. To determine the current consumption per channel, group or unit, divide Current [mA] by the number of channels, groups or units. Table 2.13 shows the outline of operation for each unit. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 30 of 92 RA4M2 Datasheet Table 2.13 Outline of operation for each unit Peripheral Outline of operation GPT Operating modes is set to saw-wave PWM mode. GPT is operating with PCLKD. POEG Only clear module stop bit. AGT AGT is operating with PCLKB. RTC RTC is operating with LOCO. WDT WDT is operating with PCLKB. IWDT IWDT is operating with IWDTCLK. USBFS Transfer types is set to bulk transfer. USBFS is operating using Full-speed transfer (12 Mbps). SCI SCI is transmitting data in clock synchronous mode. IIC Communication format is set to I2C-bus format. IIC is transmitting data in master mode. CAN CAN is transmitting and receiving data in self-test mode 1. SPI SPI mode is set to SPI operation (4-wire method). SPI master/slave mode is set to master mode. SPI is transmitting 8-bit width data. QSPI QSPI is issuing Fast Read Quad I/O Instruction. SSIE Communication mode is set to Master. System word length is set to 32 bits. Data word length is set to 20 bits. SSIE is transmitting data using I2S format. SDHI Transfer bus mode is set to 4-bit wide bus mode. SDHI is issuing CMD24 (single-block write). ADC12 Resolution is set to 12-bit accuracy. Data registers is set to A/D-converted value addition mode. ADC12 is converting the analog input in continuous scan mode. DAC12 DAC12 is outputting the conversion result while updating the value of data register. TSN TSN is operating. CTSU CTSU is operating in self-capacitance single scan mode. ELC Only clear module stop bit. SCE9 SCE9 is executing built-in self test. CRC CRC is generating CRC code using 32-bit CRC32-C polynomial. DOC DOC is operating in data addition mode. CAC Measurement target clocks is set to PCLKB. Measurement reference clocks is set to PCLKB. CAC is measuring the clock frequency accuracy. DMAC Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DMAC is transferring data from SRAM0 to SRAM0. DTC Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DTC is transferring data from SRAM0 to SRAM0. 2.2.7.2 2. Electrical Characteristics Example of Tj calculation Assumption : ● Package 100-pin LQFP : θja = 55.1 °C/W ● Ta = 100 °C ● ICCmax = 40 mA R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 31 of 92 RA4M2 Datasheet 2. Electrical Characteristics ● VCC = 3.5 V (VCC = AVCC = VCC_USB) ● IOH = 1 mA, VOH = VCC – 0.5 V, 12 Outputs ● IOL = 20 mA, VOL = 1.0 V, 8 Outputs ● IOL = 1 mA, VOL = 0.5 V, 12 Outputs ● Cin = 8 pF, 16 pins, Input frequency = 10 MHz ● Cload = 30 pF, 16 pins, Output frequency = 10 MHz Leakage current of IO = Σ (VOL × IOL) / Voltage + Σ ((VCC - VOH) × IOH) / Voltage = (20 mA × 1 V) × 8 / 3.5 V + (1 mA × 0.5 V) × 12 / 3.5 V + ((VCC - (VCC - 0.5 V)) × 1 mA) × 12 / 3.5 V = 45.7 mA + 1.71 mA + 1.71 mA = 49.1 mA Dynamic current of IO = Σ IO (Cin + Cload) × IO switching frequency × Voltage = ((8 pF × 16) × 10 MHz + (30 pF × 16) × 10 MHz) × 3.5 V = 21.3 mA Total power consumption = Voltage × (Leakage current + Dynamic current) = (40 mA × 3.5 V) + (49.1 mA + 21.3 mA) × 3.5 V = 386 mW (0.386 W) Tj = Ta + θja × Total power consumption = 100 °C + 55.1 °C/W × 0.386W = 121.3 °C 2.3 AC Characteristics 2.3.1 Table 2.14 Frequency Operation frequency value in high-speed mode Parameter Operation frequency Symbol Min Typ Max Unit f — — 100 MHz Peripheral module clock (PCLKA) — — 100 Peripheral module clock (PCLKB) — — 50 Peripheral module clock (PCLKC) —*2 — 50 Peripheral module clock (PCLKD) — — 100 Flash interface clock (FCLK) —*1 — 50 System clock (ICLK) Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory. Note 2. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 32 of 92 RA4M2 Datasheet Table 2.15 2. Electrical Characteristics Operation frequency value in low-speed mode Parameter Operation frequency Symbol Min Typ Max Unit f — — 1 MHz Peripheral module clock (PCLKA) — — 1 Peripheral module clock (PCLKB) — — 1 Peripheral module clock (PCLKC) *2 —*2 — 1 Peripheral module clock (PCLKD) — — 1 Flash interface clock (FCLK)*1 — — 1 Symbol Min Typ Max Unit f 29.4 — 36.1 kHz Peripheral module clock (PCLKA) — — 36.1 Peripheral module clock (PCLKB) — — 36.1 Peripheral module clock (PCLKC) *2 — — 36.1 Peripheral module clock (PCLKD) — — 36.1 Flash interface clock (FCLK)*1 29.4 — 36.1 System clock (ICLK) Note 1. Programming or erasing the flash memory is disabled in low-speed mode. Note 2. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz. Table 2.16 Operation frequency value in Subosc-speed mode Parameter Operation frequency System clock (ICLK) Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode. Note 2. The ADC12 cannot be used. 2.3.2 Table 2.17 Clock Timing Clock timing except for sub-clock oscillator (1 of 2) Parameter Symbol Min Typ Max Unit Test conditions EXTAL external clock input cycle time tEXcyc 41.66 — — ns EXTAL external clock input high pulse width tEXH 15.83 — — ns EXTAL external clock input low pulse width tEXL 15.83 — — ns EXTAL external clock rise time tEXr — — 5.0 ns EXTAL external clock fall time tEXf — — 5.0 ns Main clock oscillator frequency fMAIN 8 — 24 MHz — Main clock oscillation stabilization wait time (crystal)*1 tMAINOSCWT — — —*1 ms LOCO clock oscillation frequency fLOCO 29.4912 32.768 36.0448 kHz — LOCO clock oscillation stabilization wait time tLOCOWT — — 60.4 µs Figure 2.9 ILOCO clock oscillation frequency fILOCO 13.5 15 16.5 kHz — MOCO clock oscillation frequency FMOCO 6.8 8 9.2 MHz — MOCO clock oscillation stabilization wait time tMOCOWT — — 15.0 µs R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Figure 2.7 Figure 2.8 — Page 33 of 92 RA4M2 Datasheet Table 2.17 2. Electrical Characteristics Clock timing except for sub-clock oscillator (2 of 2) Parameter Symbol Min Typ Max Unit Test conditions fHOCO16 15.78 16 16.22 MHz –20 ≤ Ta ≤ 105°C fHOCO18 17.75 18 18.25 fHOCO20 19.72 20 20.28 fHOCO16 15.71 16 16.29 fHOCO18 17.68 18 18.32 fHOCO20 19.64 20 20.36 fHOCO16 15.960 16 16.040 fHOCO18 17.955 18 18.045 fHOCO20 19.950 20 20.050 HOCO clock oscillation stabilization wait time*2 tHOCOWT — — 64.7 µs — HOCO period jitter — — ±85 — ps — FLL stabilization wait time tFLLWT — — 1.8 ms — PLL clock frequency fPLL 100 — 200 MHz — PLL2 clock frequency fPLL2 120 — 240 MHz — PLL/PLL2 clock oscillation stabilization wait time tPLLWT — — 174.9 µs Figure 2.10 fPLL, fPLL2 ≥ 120MHz — — ±100 — ps — fPLL, fPLL2 < 120MHz — — ±120 — ps — — — ±300 — ps Term: 1µs, 10µs HOCO clock oscillator oscillation frequency Without FLL With FLL PLL/PLL2 period jitter PLL/PLL2 long term jitter –40 ≤ Ta ≤ –20°C –40 ≤ Ta ≤ 105°C Sub-clock frequency accuracy is ±50 ppm. Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value. After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator. Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed operation. Table 2.18 Clock timing for the sub-clock oscillator Parameter Symbol Min Typ Max Unit Test conditions Sub-clock frequency fSUB — 32.768 — kHz — Sub-clock oscillation stabilization wait time tSUBOSCWT — — —*1 s Figure 2.11 Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time. After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 34 of 92 RA4M2 Datasheet 2. Electrical Characteristics tXcyc tXH tXL EXTAL external clock input VCC × 0.5 tXr Figure 2.7 tXf EXTAL external clock input timing MOSCCR.MOSTP Main clock oscillator output tMAINOSCWT Main clock Figure 2.8 Main clock oscillation start timing LOCOCR.LCSTP On-chip oscillator output tLOCOWT LOCO clock Figure 2.9 LOCO clock oscillation start timing PLLCR.PLLSTP PLL2CR.PLL2STP PLL/PLL2 circuit output tPLLWT OSCSF.PLLSF OSCSF.PLL2SF PLL/PLL2 clock Figure 2.10 PLL/PLL2 clock oscillation start timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 35 of 92 RA4M2 Datasheet 2. Electrical Characteristics SOSCCR.SOSTP Sub-clock oscillator output tSUBOSCWT Sub-clock Figure 2.11 2.3.3 Table 2.19 Sub-clock oscillation start timing Reset Timing Reset timing Parameter Symbol Min Typ Max Unit Test conditions Power-on tRESWP 0.7 — — ms Figure 2.12 Deep Software Standby mode tRESWD 0.6 — — ms Figure 2.13 Software Standby mode, Subosc-speed mode tRESWS 0.3 — — ms All other tRESW 200 — — µs Wait time after RES cancellation tRESWT — 37.3 41.2 Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, TrustZone error reset) tRESW2 — 324 RES pulse width VCC µs 397.7 µs Figure 2.12 — VCCmin RES Internal reset signal (low is valid) tRESWP tRESWT Figure 2.12 RES pin input timing under the condition that VCC exceeds VPOR voltage threshold tRESWD, tRESWS, tRESW RES Internal reset signal (low is valid) tRESWT Figure 2.13 Reset input timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 36 of 92 RA4M2 Datasheet 2.3.4 Table 2.20 2. Electrical Characteristics Wakeup Timing Timing of recovery from low power modes Parameter Symbol Recovery time from Software Standby mode*1 Min Typ Max Unit Test conditions Crystal resonator connected to main clock oscillator System clock source is main clock oscillator*2 tSBYMC*13 — 2.1 2.4 ms System clock source is PLL with main clock oscillator*3 tSBYPC*13 — 2.2 2.6 ms External clock input to main clock oscillator System clock source is main clock oscillator*4 tSBYEX*13 — 45 125 μs System clock source is PLL with main clock oscillator*5 tSBYPE*13 — 170 255 μs System clock source is sub-clock oscillator*6 *11 tSBYSC*13 — 0.7 0.8 ms System clock source is LOCO*7 *11 tSBYLO*13 — 0.7 0.9 ms System clock source is HOCO clock oscillator*8 tSBYHO*13 — 55 130 µs System clock source is PLL with HOCO*9 tSBYPH*13 — 175 265 µs System clock source is MOCO clock oscillator*10 tSBYMO*13 — 35 65 µs DPSBYCR.DEEPCUT[1] = 0 and DPSWCR.WTSTS[5:0] = 0x0E tDSBY — 0.38 0.54 ms DPSBYCR.DEEPCUT[1] = 1 and DPSWCR.WTSTS[5:0] = 0x19 tDSBY — 0.55 0.73 ms Wait time after cancellation of Deep Software Standby mode tDSBYWT 56 — 57 tcyc Recovery time from Software Standby mode to Snooze mode High-speed mode when system clock source is HOCO (20 MHz) tSNZ — 35*12 70*12 μs High-speed mode when system clock source is MOCO (8 MHz) tSNZ — 11*12 14*12 μs Recovery time from Deep Software Standby mode Figure 2.14 The division ratio of all oscillators is 1. Figure 2.15 Figure 2.16 Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation: Total recovery time = recovery time for an oscillator as the system clock source + the longest tSBYOSCWT in the active oscillators tSBYOSCWT for the system clock + 2 LOCO cycles (when LOCO is operating) + Subosc is oscillating and MSTPC0 = 0 (CAC module stop)) Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest value of the internal clock division setting is 1. Note 3. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest value of the internal clock division setting is 4. Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 1. Note 5. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 4. Note 6. The Sub-clock oscillator frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1. Note 7. The LOCO frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1. Note 8. The HOCO frequency is 20 MHz and the greatest value of the internal clock division setting is 1. Note 9. The PLL frequency is 200 MHz and the greatest value of the internal clock division setting is 4. Note 10. The MOCO frequency is 8 MHz and the greatest value of the internal clock division setting is 1. Note 11. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode. Note 12. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: 16 µs (typical), 48 µs (maximum). Note 13. The recovery time can be calcurated with the equation of tSBYOSCWT + tSBYSEQ. And they can be determined with the fol-lowing value and equation. For n, the greatest value is selected from among the internal clock division settings. Wakeup time TYP tSBYMC MAX Unit tSBYOSCWT tSBYSEQ tSBYOSCWT tSBYSEQ (MSTS[7:0]*32 + 3) / 0.262 35 + 18 / fICLK + 4n / fMAIN (MSTS[7:0]*32 + 14 / 0.236 62 + 18 / fICLK + 4n / fMAIN R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 µs Page 37 of 92 RA4M2 Datasheet 2. Electrical Characteristics Wakeup time TYP MAX Unit tSBYOSCWT tSBYSEQ tSBYOSCWT tSBYSEQ tSBYPC (MSTS[7:0]*32 + 34) / 0.262 35 + 18 / fICLK + 4n / fPLL (MSTS[7:0]*32 + 45) / 0.236 62 + 18 / fICLK + 4n / fPLL tSBYEX 10 35 + 18 / fICLK + 4n / fEXMAIN 62 62 + 18 / fICLK + 4n / fEXMAIN µs tSBYPE 135 35 + 18 / fICLK + 4n / fPLL 192 62 + 18 / fICLK + 4n / fPLL µs tSBYSC 0 35 + 18 / fICLK + 4n / fSUB 0 62 + 18 / fICLK + 4n / fSUB µs tSBYLO 0 35 + 18 / fICLK + 4n / fLOCO 0 62 + 18 / fICLK + 4n / fLOCO µs tSBYHO 20 35 + 18 / fICLK + 4n / fHOCO 67 62 + 18 / fICLK + 4n / fHOCO µs tSBYPH 140 35 + 18 / fICLK + 4n / fPLL 202 62 + 18 / fICLK + 4n / fPLL µs tSBYMO 0 35 + 18 / fICLK + 4n / fMOCO 0 62 + 18 / fICLK + 4n / fMOCO µs µs Oscillator (system clock) tSBYOSCWT tSBYSEQ Oscillator (not the system clock) ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYPC, tSBYPE, tSBYPH, tSBYSC, tSBYHO, tSBYLO When stabilization of the system clock oscillator is slower Oscillator (system clock) tSBYOSCWT tSBYSEQ Oscillator (not the system clock) tSBYOSCWT ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYPC, tSBYPE, tSBYPH, tSBYSC, tSBYHO, tSBYLO When stabilization of an oscillator other than the system clock is slower Figure 2.14 Software Standby mode cancellation timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 38 of 92 RA4M2 Datasheet 2. Electrical Characteristics Oscillator IRQ Deep Software Standby reset (low is valid) Internal reset (low is valid) Deep Software Standby mode tDSBY tDSBYWT Reset exception handling start Figure 2.15 Deep Software Standby mode cancellation timing Oscillator ICLK (except DTC, SRAM) ICLK (to DTC, SRAM)*1 PCLK IRQ Software Standby mode Snooze mode tSNZ Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.16 2.3.5 Table 2.21 Recovery timing from Software Standby mode to Snooze mode NMI and IRQ Noise Filter NMI and IRQ noise filter Parameter Symbol Min Typ Max Unit Test conditions NMI pulse width tNMIW 200 — — ns tPcyc × 2 ≤ 200 ns tPcyc × 2*1 — — NMI digital filter disabled 200 — — tNMICK × 3 ≤ 200 ns — — NMI digital filter enabled 200 — — tPcyc × 2 ≤ 200 ns tPcyc × 2*1 — — IRQ digital filter disabled 200 — — tIRQCK × 3 ≤ 200 ns tIRQCK × 3.5*3 — — IRQ digital filter enabled tNMICK × IRQ pulse width tIRQW R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 3.5*2 ns tPcyc × 2 > 200 ns tNMICK × 3 > 200 ns tPcyc × 2 > 200 ns tIRQCK × 3 > 200 ns Page 39 of 92 RA4M2 Datasheet Note: Note: Note 1. Note 2. Note 3. 2. Electrical Characteristics 200 ns minimum in Software Standby mode. If the clock source is switched, add 4 clock cycles of the switched source. tPcyc indicates the PCLKB cycle. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock. NMI tNMIW Figure 2.17 NMI interrupt input timing IRQ tIRQW Figure 2.18 2.3.6 Table 2.22 IRQ interrupt input timing I/O Ports, POEG, GPT, AGT, and ADC12 Trigger Timing I/O ports, POEG, GPT, AGT, and ADC12 trigger timing GPT32 Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. AGT Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Max Unit Test conditions I/O ports Input data pulse width tPRW 1.5 — tPcyc Figure 2.19 POEG POEG input trigger pulse width tPOEW 3 — tPcyc Figure 2.20 GPT Input capture pulse width tGTICW 1.5 — tPDcyc Figure 2.21 2.5 — — 4 ns Figure 2.22 Single edge Dual edge AGT ADC12 GTIOCxY output skew (x = 0 to 3, Y = A or B) Middle drive buffer High drive buffer — 4 GTIOCxY output skew (x = 4 to 7, Y = A or B) Middle drive buffer — 4 High drive buffer — 4 GTIOCxY output skew (x = 0 to 7, Y = A or B) Middle drive buffer — 6 High drive buffer — 6 tGTISK*1 OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO tGTOSK — 5 ns Figure 2.23 AGTIO, AGTEE input cycle tACYC*2 100 — ns Figure 2.24 AGTIO, AGTEE input high width, low width tACKWH, tACKWL 40 — ns AGTIO, AGTO, AGTOA, AGTOB output cycle tACYC2 62.5 — ns ADC12 trigger input pulse width tTRGW 1.5 — tPcyc Figure 2.25 Note: tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle. Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed. Note 2. Constraints on input cycle: R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 40 of 92 RA4M2 Datasheet 2. Electrical Characteristics When not switching the source clock: tPcyc × 2 < tACYC should be satisfied. When switching the source clock: tPcyc × 6 < tACYC should be satisfied. Port tPRW Figure 2.19 I/O ports input timing POEG input trigger tPOEW Figure 2.20 POEG input trigger timing Input capture tGTICW Figure 2.21 GPT input capture timing PCLKD Output delay GPT output tGTISK Figure 2.22 GPT output delay skew R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 41 of 92 RA4M2 Datasheet 2. Electrical Characteristics PCLKD Output delay GPT output tGTOSK Figure 2.23 GPT output delay skew for OPS tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.24 AGT input/output timing ADTRG0 tTRGW Figure 2.25 2.3.7 Table 2.23 ADC12 trigger input timing CAC Timing CAC timing Parameter CAC CACREF input pulse width R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 tPBcyc ≤ tcac*1 tPBcyc > tcac*1 Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tcac + 3 × tPBcyc — — ns — 5 × tcac + 6.5 × tPBcyc — — ns Page 42 of 92 RA4M2 Datasheet 2. Electrical Characteristics Note: tPBcyc: PCLKB cycle. Note 1. tcac: CAC count clock source cycle. 2.3.8 SCI Timing Table 2.24 SCI timing (1) Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter SCI Input clock cycle Asynchronous Symbol Min Max Unit Test conditions tScyc 4 — Clock synchronous 6 — Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 5 ns Input clock fall time tSCKf — 5 ns tScyc 6 (other than SCI1, SCI2) 8 (SCI1, SCI2) — tPcyc 4 — Output clock cycle Asynchronous Clock synchronous Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rise time tSCKr — 5 ns Output clock fall time tSCKf — 5 ns Clock synchronous master mode (internal clock) tTXD — 5 ns Clock synchronous slave mode (external clock) tTXD — 25 ns tRXS 15 — ns Clock synchronous slave mode (external clock) tRXS 5 — ns Clock synchronous tRXH 5 — ns Transmit data delay Receive data setup time Clock synchronous master mode (internal clock) Receive data hold time Note: tPcyc Figure 2.26 Figure 2.27 tPcyc: PCLKA cycle. tSCKW tSCKr tSCKf SCKn tScyc Note: n = 0 to 4, 9 Figure 2.26 SCK clock input/output timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 43 of 92 RA4M2 Datasheet 2. Electrical Characteristics SCKn tTXD TXDn tRXS tRXH RXDn Note: n = 0 to 4, 9 Figure 2.27 SCI input/output timing in clock synchronous mode Table 2.25 SCI timing (2) Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Simple SPI SCK clock cycle output (master) Symbol Min Max Unit Test conditions tSPcyc 4 65536 tPcyc Figure 2.28 6 65536 SCK clock cycle input (slave) SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc SCK clock rise and fall time tSPCKr, tSPCKf — 5 ns tSU 15 — ns 5 — ns Data input setup time master slave Data input hold time tH 5 — ns SS input setup time tLEAD 1 — tSPcyc SS input hold time tLAG 1 — tSPcyc tOD — 5 ns — 25 ns Data output delay master slave Note: Data output hold time tOH -5 — ns Data rise and fall time tDr, tDf — 5 ns SS input rise and fall time tSSLr, tSSLf — 5 ns Slave access time tSA — 3 × tPcyc + 25 ns Slave output release time tREL — 3 × tPcyc + 25 ns Figure 2.29 to Figure 2.32 Figure 2.32 tPcyc: PCLKA cycle. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 44 of 92 RA4M2 Datasheet 2. Electrical Characteristics tSPCKr tSPCKWH VOH SCKn master select output VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH SCKn slave select input tSPCKf VIH VIL VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Note: n = 0 to 4, 9 Figure 2.28 SCI simple SPI mode clock timing SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output Note: DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n = 0 to 4, 9 Figure 2.29 SCI simple SPI mode timing for master when CKPH = 1 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 45 of 92 RA4M2 Datasheet 2. Electrical Characteristics SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH LSB IN MSB IN tDr, tDf tOD MOSIn output Note: DATA MSB OUT DATA LSB OUT IDLE MSB OUT n = 0 to 4, 9 Figure 2.30 SCI simple SPI mode timing for master when CKPH = 0 tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input Note: tOD DATA tREL LSB OUT MSB OUT tDr, tDf tH MSB IN MSB IN DATA LSB IN MSB IN n = 0 to 4, 9 Figure 2.31 SCI simple SPI mode timing for slave when CKPH = 1 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 46 of 92 RA4M2 Datasheet 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input Note: tREL DATA LSB OUT MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n = 0 to 4, 9 Figure 2.32 SCI simple SPI mode timing for slave when CKPH = 0 Table 2.26 SCI timing (3) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Simple IIC (Standard mode) Simple IIC (Fast mode) Symbol Min Max Unit Test conditions SDA input rise time tSr — 1000 ns Figure 2.33 SDA input fall time tSf — 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc ns Data input setup time tSDAS 250 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*1 — 400 pF SDA input rise time tSr — 300 ns SDA input fall time tSf — 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc ns Data input setup time tSDAS 100 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*1 — 400 pF Figure 2.33 Note: tIICcyc: IIC internal reference clock (IICφ) cycle. Note 1. Cb indicates the total capacity of the bus line. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 47 of 92 RA4M2 Datasheet 2. Electrical Characteristics VIH SDAn VIL tSr tSf tSP SCLn P*1 P*1 Sr*1 S*1 tSDAH tSDAS Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA Note: n = 0 to 4, 9 Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.33 SCI simple IIC mode timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 48 of 92 RA4M2 Datasheet 2.3.9 2. Electrical Characteristics SPI Timing Table 2.27 SPI timing Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter SPI RSPCK clock cycle Master Symbol Min Max Unit Test conditions tSPcyc 2 4096 tPcyc Figure 2.34 4 4096 (tSPcyc – tSPCKr – tSPCKf) / 2–3 — ns 0.4 0.6 tSPcyc (tSPcyc – tSPCKr – tSPCKf) / 2–3 — ns 0.4 0.6 tSPcyc — 5 ns — 1 µs 4 — ns 5 — Slave RSPCK clock high pulse width Master tSPCKWH Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise and Master fall time Slave tSPCKr, tSPCKf Data input setup time tSU Master Slave Data input hold time SSL setup time Master (PCLKA division ratio set to 1/2) tHF 0 — Master (PCLKA division ratio set to a value other than 1/2) tH tPcyc — Slave tH 20 — Master tLEAD N × tSPcyc - 10*1 N × tSPcyc + 100*1 ns 4 × tPcyc — ns N × tSPcyc - 10*2 N × tSPcyc + 100*2 ns 4 × tPcyc — ns tOD1 — 6.3 ns tOD2 — 6.3 Slave tOD — 20 Master tOH 0 — 0 — tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc ns — 5 ns — 1 µs — 5 ns — 1 µs ns Slave SSL hold time Master tLAG Slave Data output delay Data output hold time Master Slave Successive transmission delay Master tTD Slave MOSI and MISO rise and fall time Output SSL rise and fall time Output ns ns 4 × tPcyc tDr, tDf Input tSSLr, tSSLf Input Slave access time tSA — 25 Slave output release time tREL — 25 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Figure 2.35 to Figure 2.40 Figure 2.39 and Figure 2.40 Page 49 of 92 RA4M2 Datasheet 2. Electrical Characteristics Note: Note: tPcyc: PCLKA cycle. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI interface, the AC portion of the electrical characteristics is measured for each group. Note 1. N is set to an integer from 1 to 8 by the SPCKD register. Note 2. N is set to an integer from 1 to 8 by the SSLND register. tSPCKr tSPCKWH VOH RSPCKn master select output VOH tSPCKf VOH VOL VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH RSPCKn slave select input tSPCKf VIH VIL VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Note: n=A Figure 2.34 SPI clock timing SPI tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output DATA tOH MSB OUT LSB IN MSB IN tOD2 DATA LSB OUT IDLE MSB OUT tOD1 Note: n=A Figure 2.35 SPI timing for master when CPHA = 0 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 50 of 92 RA4M2 Datasheet 2. Electrical Characteristics SPI tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU tHF MISOn input tHF MSB IN tDr, tDf MOSIn output LSB IN DATA tOH MSB OUT MSB IN tOD2 DATA LSB OUT IDLE MSB OUT tOD1 Note: n=A Figure 2.36 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2 SPI tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH MOSIn output Note: DATA LSB IN tDr, tDf tOD2 MSB OUT MSB IN DATA LSB OUT IDLE MSB OUT n=A Figure 2.37 SPI timing for master when CPHA = 1 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 51 of 92 RA4M2 Datasheet 2. Electrical Characteristics SPI tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tOH DATA LSB IN MSB OUT MSB IN tDr, tDf tOD2 MOSIn output Note: tH DATA LSB OUT IDLE MSB OUT n=A Figure 2.38 RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2 tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input Note: tOD DATA tREL LSB OUT MSB OUT tDr, tDf tH MSB IN MSB IN DATA LSB IN MSB IN n=A Figure 2.39 SPI timing for slave when CPHA = 0 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 52 of 92 RA4M2 Datasheet 2. Electrical Characteristics tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input Note: Table 2.28 DATA LSB OUT MSB OUT tDr, tDf tH MSB IN DATA LSB IN MSB IN n=A Figure 2.40 2.3.10 tREL SPI timing for slave when CPHA = 1 QSPI Timing QSPI timing Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter QSPI Symbol Min Max Unit Test conditions tQScyc 2 48 tPcyc Figure 2.41 QSPCK clock high pulse tQSWH width tQScyc × 0.4 — ns QSPCK clock low pulse width tQSWL tQScyc × 0.4 — ns Data input setup time tSu 10 — ns Data input hold time tIH 0 — ns QSSL setup time tLEAD (N + 0.5) × tQscyc - 5*1 (N + 0.5) × tQscyc + 100*1 ns QSSL hold time tLAG (N + 0.5) × tQscyc - 5*2 (N + 0.5) × tQscyc + 100*2 ns Data output delay tOD — 4 ns Data output hold time tOH –3.3 — ns 1 16 tQScyc QSPCK clock cycle Successive transmission tTD delay Figure 2.42 Note: tPcyc: PCLKA cycle. Note 1. N is set to 0 or 1 in SFMSLD. Note 2. N is set to 0 or 1 in SFMSHD. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 53 of 92 RA4M2 Datasheet 2. Electrical Characteristics tQSWH tQSWL QSPCLK output tQScyc Figure 2.41 QSPI clock timing tTD QSSL output tLEAD tLAG QSPCLK output tSU QIO0-3 input tH MSB IN DATA tOH QIO0-3 output Figure 2.42 MSB OUT LSB IN tOD DATA LSB OUT IDLE Transmit and receive timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 54 of 92 RA4M2 Datasheet 2.3.11 Table 2.29 2. Electrical Characteristics IIC Timing IIC timing (1) (1 of 2) (1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B, SDA1_B, SCL1_B. (2) The following pins do not require setting: SCL0_A, SDA0_A. (3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group. Symbol Min Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 — ns Figure 2.43 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA rise time tSr — 1000 ns SCL, SDA fall time tSf — 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time when wakeup function is disabled tBUF 3 (6) × tIICcyc + 300 — ns SDA input bus free time when wakeup function is enabled tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 — ns START condition input hold time when wakeup function is disabled tSTAH tIICcyc + 300 — ns START condition input hold time when wakeup function is enabled tSTAH 1 (5) × tIICcyc + tPcyc + 300 — ns Repeated START condition input setup time tSTAS 1000 — ns STOP condition input setup time tSTOS 1000 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*2 — 400 pF Parameter IIC (Standard mode, SMBus) ICFER.FMPE = 0 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 55 of 92 RA4M2 Datasheet Table 2.29 2. Electrical Characteristics IIC timing (1) (2 of 2) (1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B, SDA1_B, SCL1_B. (2) The following pins do not require setting: SCL0_A, SDA0_A. (3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group. Symbol Min Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 600 — ns Figure 2.43 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 — ns SCL, SDA rise time tSr 20 × (external pullup voltage/5.5V)*1 300 ns SCL, SDA fall time tSf 20 × (external pullup voltage/5.5V)*1 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time when wakeup function is disabled tBUF 3 (6) × tIICcyc + 300 — ns SDA input bus free time when wakeup function is enabled tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 — ns START condition input hold time when wakeup function is disabled tSTAH tIICcyc + 300 — ns START condition input hold time when wakeup function is enabled tSTAH 1 (5) × tIICcyc + tPcyc + 300 — ns Repeated START condition input setup time tSTAS 300 — ns STOP condition input setup time tSTOS 300 — ns Data input setup time tSDAS tIICcyc + 50 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*2 — 400 pF Parameter IIC (Fast mode) Note: Note: Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group. Note 1. Only supported for SCL0_A and SDA0_A. Note 2. Cb indicates the total capacity of the bus line. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 56 of 92 RA4M2 Datasheet Table 2.30 2. Electrical Characteristics IIC timing (2) Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register. Parameter IIC (Fast-mode+) ICFER.FMPE = 1 Symbol Min Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 240 — ns Figure 2.43 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 120 — ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 120 — ns SCL, SDA rise time tSr — 120 ns SCL, SDA fall time tSf 20 × (external pullup voltage/ 5.5V) 120 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time when wakeup function is disabled tBUF 3 (6) × tIICcyc + 120 — ns SDA input bus free time when wakeup function is enabled tBUF 3 (6) × tIICcyc + 4 × tPcyc + 120 — ns Start condition input hold time when wakeup function is disabled tSTAH tIICcyc + 120 — ns START condition input hold time when wakeup function is enabled tSTAH 1 (5) × tIICcyc + tPcyc + 120 — ns Restart condition input setup time tSTAS 120 — ns Stop condition input setup time tSTOS 120 — ns Data input setup time tSDAS tIICcyc + 30 — ns Data input hold time tSDAH 0 — ns SCL, SDA capacitive load Cb*1 — 550 pF Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle. Note: Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. Note 1. Cb indicates the total capacity of the bus line. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 57 of 92 RA4M2 Datasheet 2. Electrical Characteristics VIH SDAn VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCLn P*1 P*1 Sr*1 S*1 tSCLL tSf tSr tSDAS tSCL tSDAH Note 1. S, P, and Sr indicate the following conditions: S: Start condition P: Stop condition Sr: Restart condition Figure 2.43 2.3.12 Table 2.31 I2C bus interface input/output timing SSIE Timing SSIE timing (1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register. (2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group. Target specification Parameter SSIBCK0 Cycle High level/ low level Rising time/ falling time SSILRCK0/ SSIFS0, SSITXD0, SSIRXD0 Symbol Min. Max. Unit Comments Master tO 80 — ns Figure 2.44 Slave tI 80 — ns Master tHC/tLC 0.35 — tO 0.35 — tI — 0.15 tO / tI — 0.15 tO / tI 12 — ns 12 — ns 8 — ns 15 — ns -10 5 ns 0 20 ns Figure 2.46, Figure 2.47 Slave Master tRC/tFC Slave Input set up time Master Input hold time Master tSR Slave tHR Slave Output delay time GTIOC2A, AUDIO_CLK Master tDTR Slave Figure 2.46, Figure 2.47 Output delay Slave time from SSILRCK0/ SSIFS0 change tDTRW — 20 ns Figure 2.48*1 Cycle tEXcyc 20 — ns Figure 2.45 High level/ low level tEXL/tEXH 0.4 0.6 tEXcyc R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 58 of 92 RA4M2 Datasheet 2. Electrical Characteristics Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 pin. tHC tRC tFC tLC SSIBCK0 tO, tI Figure 2.44 SSIE clock input/output timing tEXcyc tEXH tEXL GTIOC2A, AUDIO_CLK (input) 1/2 VCC tEXf Figure 2.45 tEXr Clock input timing SSIBCK0 (Input or Output) SSILRCK0/SSIFS0 (input), SSIRXD0 (input) tSR tHR SSILRCK0/SSIFS0 (output), SSITXD0 (output) tDTR Figure 2.46 SSIE data transmit and receive timing when SSICR.BCKP = 0 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 59 of 92 RA4M2 Datasheet 2. Electrical Characteristics SSIBCK0 (Input or Output) SSILRCK0/SSIFS0 (input), SSIRXD0 (input) tSR tHR SSILRCK0/SSIFS0 (output), SSITXD0 (output) tDTR Figure 2.47 SSIE data transmit and receive timing when SSICR.BCKP = 1 SSILRCK0/SSIFS0 (input) SSITXD0 (output) tDTRW MSB bit output delay after SSILRCK0/SSIFS0 change for slave transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR. Figure 2.48 2.3.13 Table 2.32 SSIE data output delay after SSILRCK0/SSIFS0 change SD/MMC Host Interface Timing SD/MMC Host Interface signal timing Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Clock duty ratio is 50%. Parameter Symbol Min Max Unit Test conditions SDCLK clock cycle TSDCYC 20 — ns Figure 2.49 SDCLK clock high pulse width TSDWH 6.5 — ns SDCLK clock low pulse width TSDWL 6.5 — ns SDCLK clock rise time TSDLH — 3 ns SDCLK clock fall time TSDHL — 3 ns SDCMD/SDDAT output data delay TSDODLY –7 4 ns SDCMD/SDDAT input data setup TSDIS 4.5 — ns SDCMD/SDDAT input data hold TSDIH 1.5 — ns R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 60 of 92 RA4M2 Datasheet Note: 2. Electrical Characteristics Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group. TSDCYC TSDWL SDnCLK (output) TSDHL TSDODLY(max) TSDWH TSDLH TSDODLY(min) SDnCMD/SDnDATm (output) TSDIS TSDIH SDnCMD/SDnDATm (input) n = 0, m = 0 to 3 Figure 2.49 2.4 SD/MMC Host Interface signal timing USB Characteristics 2.4.1 USBFS Timing Table 2.33 USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz Parameter Input characteristics Output characteristics Pull-up and pull-down characteristics Symbol Min Typ Max Unit Test conditions Input high voltage VIH 2.0 — — V — Input low voltage VIL — — 0.8 V — Differential input sensitivity VDI 0.2 — — V | USB_DP - USB_DM | Differential common-mode range VCM 0.8 — 2.5 V — Output high voltage VOH 2.8 — 3.6 V IOH = –200 µA Output low voltage VOL 0.0 — 0.3 V IOL = 2 mA Cross-over voltage VCRS 1.3 — 2.0 V Figure 2.50 Rise time tLR 75 — 300 ns Fall time tLF 75 — 300 ns Rise/fall time ratio tLR / tLF 80 — 125 % tLR/ tLF USB_DP and USB_DM pull-down resistance in host controller mode Rpd 14.25 — 24.80 kΩ — USB_DP, USB_DM 90% VCRS 90% 10% tLR Figure 2.50 10% tLF USB_DP and USB_DM output timing in low-speed mode R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 61 of 92 RA4M2 Datasheet 2. Electrical Characteristics Observation point USB_DP 200 pF to 600 pF 27  3.6 V 1.5 K USB_DM 200 pF to 600 pF Figure 2.51 Test circuit in low-speed mode Table 2.34 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz Parameter Input characteristics Output characteristics Pull-up and pull-down characteristics Symbol Min Typ Max Unit Test conditions Input high voltage VIH 2.0 — — V — Input low voltage VIL — — 0.8 V — Differential input sensitivity VDI 0.2 — — V | USB_DP - USB_DM | Differential common-mode range VCM 0.8 — 2.5 V — Output high voltage VOH 2.8 — 3.6 V IOH = –200 µA Output low voltage VOL 0.0 — 0.3 V IOL = 2 mA Cross-over voltage VCRS 1.3 — 2.0 V Figure 2.52 Rise time tLR 4 — 20 ns Fall time tLF 4 — 20 ns Rise/fall time ratio tLR / tLF 90 — 111.11 % tFR/ tFF Output resistance ZDRV 28 — 44 Ω USBFS: Rs = 27 Ω included DM pull-up resistance in device controller mode Rpu 0.900 — 1.575 kΩ During idle state 1.425 — 3.090 kΩ During transmission and reception USB_DP and USB_DM pull-down resistance in host controller mode Rpd 14.25 — 24.80 kΩ — USB_DP, USB_DM 90% VCRS 90% 10% tFR Figure 2.52 10% tFF USB_DP and USB_DM output timing in full-speed mode R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 62 of 92 RA4M2 Datasheet 2. Electrical Characteristics Observation point USB_DP 50 pF 27  USB_DM 50 pF Figure 2.53 Test circuit in full-speed mode Table 2.35 USBFS characteristics (USB_DP and USB_DM pin characteristics) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz Parameter Battery Charging Specification 2.5 Symbol Min Typ Max Unit Test conditions D+ sink current IDP_SINK 25 — 175 µA — D- sink current IDM_SINK 25 — 175 µA — DCD source current IDP_SRC 7 — 13 µA — Data detection voltage VDAT_REF 0.25 — 0.4 V — D+ source voltage VDP_SRC 0.5 — 0.7 V Outout current = 250 µA D- source voltage VDM_SRC 0.5 — 0.7 V Outout current = 250 µA ADC12 Characteristics Table 2.36 A/D conversion characteristics for unit 0 (1 of 2) Conditions: PCLKC = 1 to 50 MHz Parameter Min Typ Max Unit Test conditions Frequency 1 — 50 MHz — Analog input capacitance — — 30 pF Quantization error — ±0.5 — LSB — — 12 Bits — Resolution High-precision high-speed channels (AN000 to AN002) — time*1 Conversion (operation at PCLKC = 50 MHz) — Permissible signal source impedance Max. = 1 kΩ 0.52 — — μs Sampling in 13 states Max. = 400 Ω 0.40 (0.14)*2 — — μs Sampling in 7 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH0 ≤ AVCC0 (0.26)*2 Offset error — ±1.0 ±2.5 LSB — Full-scale error — ±1.0 ±2.5 LSB — Absolute accuracy — ±2.0 ±4.5 LSB — DNL differential nonlinearity error — ±0.5 ±1.5 LSB — INL integral nonlinearity error — ±1.0 ±2.5 LSB — R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 63 of 92 RA4M2 Datasheet Table 2.36 2. Electrical Characteristics A/D conversion characteristics for unit 0 (2 of 2) Conditions: PCLKC = 1 to 50 MHz Parameter Min High-precision normal-speed channels (AN003 to AN008, AN011 to AN013) Normal-precision normal-speed channels (AN016) time*1 Conversion (Operation at PCLKC = 50 MHz) Permissible signal source impedance Max. = 1 kΩ 0.92 (0.66)*2 Typ Max Unit Test conditions — — μs Sampling in 33 states Offset error — ±1.0 ±2.5 LSB — Full-scale error — ±1.0 ±2.5 LSB — Absolute accuracy — ±2.0 ±4.5 LSB — DNL differential nonlinearity error — ±0.5 ±1.5 LSB — INL integral nonlinearity error — ±1.0 ±2.5 LSB — Conversion time*1 (Operation at PCLKC = 50 MHz) Permissible signal source impedance Max. = 1 kΩ 0.92 (0.66)*2 — — μs Sampling in 33 states Offset error — ±1.0 ±5.5 LSB — Full-scale error — ±1.0 ±5.5 LSB — Absolute accuracy — ±2.0 ±7.5 LSB — DNL differential nonlinearity error — ±0.5 ±4.5 LSB — INL integral nonlinearity error — ±1.0 ±5.5 LSB — Note: These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges. The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used. The characteristics apply when AVCC0, AVSS0, VREFH0, VREFL0, and 12-bit A/D converter input voltage are stable. Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions. Note 2. Values in parentheses indicate the sampling time. Table 2.37 A/D internal reference voltage characteristics Parameter Min Typ Max Unit Test conditions A/D internal reference voltage 1.13 1.18 1.23 V — Sampling time 4.15 — — µs — R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 64 of 92 RA4M2 Datasheet 2. Electrical Characteristics 0xFFF Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy Offset error 0x000 0 Figure 2.54 Analog input voltage VREFH0 (full-scale) Illustration of ADC12 characteristic terms Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 65 of 92 RA4M2 Datasheet 2. Electrical Characteristics Offset error Offset error is the difference between the transition point of the ideal first output code and the actual first output code. Full-scale error Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code. 2.6 DAC12 Characteristics Table 2.38 D/A conversion characteristics Parameter Min Typ Max Unit Test conditions Resolution — — 12 Bits — Absolute accuracy — — ±24 LSB Resistive load 2 MΩ INL — ±2.0 ±8.0 LSB Resistive load 2 MΩ DNL — ±1.0 ±2.0 LSB — Output impedance — 8.5 — kΩ — Conversion time — — 3 µs Resistive load 2 MΩ, Capacitive load 20 pF Output voltage range 0 — VREFH V — INL — ±2.0 ±4.0 LSB — DNL — ±1.0 ±2.0 LSB — Conversion time — — 4.0 µs — Resistive load 5 — — kΩ — Capacitive load — — 50 pF — Output voltage range 0.2 — VREFH – 0.2 V — Without output amplifier With output amplifier 2.7 TSN Characteristics Table 2.39 TSN characteristics Parameter Symbol Min Typ Max Unit Test conditions Relative accuracy — — ± 1.0 — °C — Temperature slope — — 4.0 — mV/°C — Output voltage (at 25 °C) — — 1.24 — V — Temperature sensor start time tSTART — — 30 µs — Sampling time — 4.15 — — µs — 2.8 OSC Stop Detect Characteristics Table 2.40 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr — — 1 ms Figure 2.55 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 66 of 92 RA4M2 Datasheet 2. Electrical Characteristics Main clock OSTDSR.OSTDF tdr MOCO clock ICLK Figure 2.55 2.9 Oscillation stop detection timing POR and LVD Characteristics Table 2.41 Power-on reset circuit and voltage detection circuit characteristics (1) Parameter Voltage detection level Power-on reset (POR) DPSBYCR.DEEPCUT[1:0] = 00b or 01b. Symbol Min Typ Max Un it Test conditions VPOR 2.5 2.6 2.7 V DPSBYCR.DEEPCUT[1:0] = 11b. Figure 2.56 1.8 2.25 2.7 Vdet0_1 2.84 2.94 3.04 Vdet0_2 2.77 2.87 2.97 Vdet0_3 2.70 2.80 2.90 Vdet1_1 2.89 2.99 3.09 Vdet1_2 2.82 2.92 3.02 Vdet1_3 2.75 2.85 2.95 Vdet2_1 2.89 2.99 3.09 Vdet2_2 2.82 2.92 3.02 Vdet2_3 2.75 2.85 2.95 Power-on reset time tPOR — 4.5 — ms Figure 2.56 LVD0 reset time tLVD0 — 0.51 — Figure 2.57 LVD1 reset time tLVD1 — 0.38 — Figure 2.58 LVD2 reset time tLVD2 — 0.38 — Figure 2.59 Minimum VCC down time*1 tVOFF 200 — — µs Figure 2.56, Figure 2.57 Response delay tdet — — 200 µs Figure 2.57 to Figure 2.59 LVD operation stabilization time (after LVD is enabled) td(E-A) — — 10 µs Hysteresis width (LVD1 and LVD2) VLVH — 70 — m V Figure 2.58, Figure 2.59 Voltage detection circuit (LVD0) Voltage detection circuit (LVD1) Voltage detection circuit (LVD2) Internal reset time Figure 2.57 Figure 2.58 Figure 2.59 Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for POR and LVD. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 67 of 92 RA4M2 Datasheet 2. Electrical Characteristics tVOFF VPOR VCC Internal reset signal (active-low) tdet Figure 2.56 tPOR tdet tdet tPOR Power-on reset timing tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.57 tdet tLVD0 Voltage detection circuit timing (Vdet0) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 68 of 92 RA4M2 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E Td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.58 Voltage detection circuit timing (Vdet1) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 69 of 92 RA4M2 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet2 LVCMPCR.LVD2E Td(E-A) LVD2 Comparator output LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.59 2.10 Voltage detection circuit timing (Vdet2) VBATT Characteristics Table 2.42 Battery backup function characteristics Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V Parameter Symbol Min Typ Max Unit Test conditions Voltage level for switching to battery backup VDETBATT 2.50 2.60 2.70 V Figure 2.60 Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop VBATTSW 2.70 — — V VCC-off period for starting power supply switching tVOFFBATT 200 — — µs VBATT low voltage detection level Vbattldet 1.8 1.9 2.0 V Minimum VBATT down time tBATTOFF 200 — — µs Response delay tBATTdet — — 200 µs VBATT monitor operation stabilization time (after VBATTMNSELR.VBATTMNSEL is changed to 1) td(E-A) — — 20 µs — 140 350 nA VBATT current increase (when IVBATTSEL VBATTMNSELR.VBATTMNSEL is 1 compared to the case that VBATTMNSELR.VBATTMNSEL is 0) Note: Figure 2.61 The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (VDETBATT). R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 70 of 92 RA4M2 Datasheet 2. Electrical Characteristics tVOFFBATT VDETBATT VCC VBATT VBATTSW Backup power area Figure 2.60 VBATT supply VCC supply VCC supply Battery backup function characteristics tBATTOFF Vbattldet VBATT td(E-A) VBATTMON tBATTdet tBATTdet VBATTMNSEL Figure 2.61 2.11 Table 2.43 Battery backup function characteristics CTSU Characteristics CTSU characteristics Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF — TS pin capacitive load Cbase — — 50 pF — Permissible output high current ΣIoH — — -40 mA When the mutual capacitance method is applied 2.12 2.12.1 Table 2.44 Flash Memory Characteristics Code Flash Memory Characteristics Code flash memory characteristics (1 of 2) Conditions: Program or erase: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz FCLK = 4 MHz Symbol Min Typ*6 Max Min Typ*6 Max Unit 128-byte tP128 — 0.75 13.2 — 0.34 6.0 ms 8-KB tP8K — 49 176 — 22 80 ms 32-KB tP32K — 194 704 — 88 320 ms Parameter Programming time NPEC ≤ 100 times 20 MHz ≤ FCLK ≤ 50 MHz R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Test conditions Page 71 of 92 RA4M2 Datasheet Table 2.44 2. Electrical Characteristics Code flash memory characteristics (2 of 2) Conditions: Program or erase: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 50 MHz Test conditions Symbol Min Typ*6 Max Min Typ*6 Max Unit 128-byte tP128 — 0.91 15.8 — 0.41 7.2 ms 8-KB tP8K — 60 212 — 27 96 ms 32-KB tP32K — 234 848 — 106 384 ms Erasure time NPEC ≤ 100 times 8-KB tE8K — 78 216 — 43 120 ms 32-KB tE32K — 283 864 — 157 480 ms Erasure time NPEC > 100 times 8-KB tE8K — 94 260 — 52 144 ms 32-KB tE32K — 341 1040 — 189 576 ms NPEC 10000*1 — — 10000*1 — — Times Suspend delay during programming tSPD — — 264 — — 120 µs Programming resume time tPRT — — 110 — — 50 µs First suspend delay during erasure in suspend priority mode tSESD1 — — 216 — — 120 µs Second suspend delay during erasure in suspend priority mode tSESD2 — — 1.7 — — 1.7 ms Suspend delay during erasure in erasure priority mode tSEED — — 1.7 — — 1.7 ms First erasing resume time during erasure in suspend priority mode*5 tREST1 — — 1.7 — — 1.7 ms Second erasing resume time during erasure in suspend priority mode tREST2 — — 144 — — 80 µs Erasing resume time during erasure in erasure priority mode tREET — — 144 — — 80 µs Forced stop command tFD — — 32 — — 20 µs Data hold time*2 tDRP 10*2 *3 — — 10*2 *3 — — Years Parameter Programming time NPEC > 100 times Reprogramming/erasure cycle*4 Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value. Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range. Note 3. This result is obtained from reliability testing. Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited. Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension. Note 6. The reference value at VCC = 3.3V and room temperature. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 72 of 92 RA4M2 Datasheet 2. Electrical Characteristics • Suspension during programming FACI command Program Suspend Resume tSPD FSTATR.FRDY Ready Not Ready Ready tPRT Programming pulse Programming Programming • Suspension during erasure in suspend priority mode FACI command Erase Suspend Suspend Resume Resume tSESD1 FSTATR.FRDY Ready tSESD2 Ready Not Ready Not Ready Not Ready Ready tREST1 Erasure pulse tREST2 Erasing Erasing Erasing • Suspension during erasure in erasure priority mode FACI command Erase Suspend Resume tSEED FSTATR.FRDY Ready Not Ready Ready Not Ready tREET Erasure pulse Erasing Erasing • Forced Stop FACI command Forced Stop tFD FSTATR.FRDY Figure 2.62 2.12.2 Table 2.45 Not Ready Ready Suspension and forced stop timing for flash memory programming and erasure Data Flash Memory Characteristics Data flash memory characteristics (1 of 2) Conditions: Program or erase: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz FCLK = 4 MHz Symbol Min Max Min Typ*6 Max Test Unit conditions 4-byte tDP4 — 0.36 3.8 — 0.16 1.7 ms 8-byte tDP8 — 0.38 4.0 — 0.17 1.8 16-byte tDP16 — 0.42 4.5 — 0.19 2.0 64-byte tDE64 — 3.1 18 — 1.7 10 128-byte tDE128 — 4.7 27 — 2.6 15 256-byte tDE256 — 8.9 50 — 4.9 28 4-byte tDBC4 — — 84 — — 30 µs NDPEC 125000*2 — — 125000*2 — — — tDSPD — — 264 — — 120 µs 8-byte — — 264 — — 120 16-byte — — 264 — — 120 — — 110 — — 50 µs tDSESD1 — — 216 — — 120 µs 128-byte — — 216 — — 120 256-byte — — 216 — — 120 Parameter Programming time Erasure time Blank check time Reprogramming/erasure cycle*1 Suspend delay during programming 4-byte Programming resume time First suspend delay during erasure in suspend priority mode R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 20 MHz ≤ FCLK ≤ 50 MHz Typ*6 tDPRT 64-byte ms Page 73 of 92 RA4M2 Datasheet Table 2.45 2. Electrical Characteristics Data flash memory characteristics (2 of 2) Conditions: Program or erase: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 50 MHz Symbol Min Typ*6 Max Min Typ*6 Max Test Unit conditions tDSESD2 — — 300 — — 300 µs 128-byte — — 390 — — 390 256-byte — — 570 — — 570 — — 300 — — 300 128-byte — — 390 — — 390 256-byte — — 570 — — 570 First erasing resume time during erasure in suspend priority mode*5 tDREST1 — — 300 — — 300 µs Second erasing resume time during erasure in suspend priority mode tDREST2 — — 126 — — 70 µs Erasing resume time during erasure in erasure priority mode tDREET — — 126 — — 70 µs Forced stop command tFD — — 32 — — 20 µs Data hold time*3 tDRP 10*3 *4 — — 10*3 *4 — — Year Parameter Second suspend delay during erasure in suspend priority mode 64-byte Suspend delay during erasing in erasure priority mode 64-byte tDSEED µs Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited. Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value. Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range. Note 4. This result is obtained from reliability testing. Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension. Note 6. The reference value at VCC = 3.3 V and room temperature. 2.12.3 Table 2.46 Option Setting Memory Characteristics Option setting memory characteristics Conditions: Program: FCLK = 4 to 50 MHz Read: FCLK ≤ 50 MHz FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 50 MHz Parameter Symbol Min Typ*4 Max Min Typ*4 Max Unit Programming time NOPC ≤ 100 times tOP — 83 309 — 45 162 ms Programming time NOPC > 100 times tOP — 100 371 — 55 195 ms Reprogramming cycle NOPC 20000*1 — — 20000*1 — — Times Data hold time*2 tDRP 10*2 *3 — — 10*2 *3 — — Years Test conditions Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value. Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range. Note 3. This result is obtained from reliability testing. Note 4. The reference value at VCC = 3.3 V and room temperature. 2.13 Boundary Scan R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 74 of 92 RA4M2 Datasheet Table 2.47 2. Electrical Characteristics Boundary scan characteristics Parameter Symbol Min Typ Max Unit Test conditions TCK clock cycle time tTCKcyc 100 — — ns Figure 2.63 TCK clock high pulse width tTCKH 45 — — ns TCK clock low pulse width tTCKL 45 — — ns TCK clock rise time tTCKr — — 5 ns TCK clock fall time tTCKf — — 5 ns TMS setup time tTMSS 20 — — ns TMS hold time tTMSH 20 — — ns TDI setup time tTDIS 20 — — ns TDI hold time tTDIH 20 — — ns TDO data delay tTDOD — — 40 ns Boundary scan circuit startup time*1 TBSSTUP tRESWP — — — Figure 2.64 Figure 2.65 Note 1. Boundary scan does not function until the power-on reset becomes negative. tTCKcyc tTCKH tTCKf TCK tTCKL Figure 2.63 tTCKr Boundary scan TCK timing TCK tTMSS tTMSH tTDIS tTDIH TMS TDI tTDOD TDO Figure 2.64 Boundary scan input/output timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 75 of 92 RA4M2 Datasheet 2. Electrical Characteristics VCC RES tBSSTUP (= tRESWP) Figure 2.65 2.14 Boundary scan execute Boundary scan circuit startup timing Joint European Test Action Group (JTAG) Table 2.48 JTAG Parameter Symbol Min Typ Max Unit Test conditions TCK clock cycle time tTCKcyc 40 — — ns Figure 2.66 TCK clock high pulse width tTCKH 15 — — ns TCK clock low pulse width tTCKL 15 — — ns TCK clock rise time tTCKr — — 5 ns TCK clock fall time tTCKf — — 5 ns TMS setup time tTMSS 8 — — ns TMS hold time tTMSH 8 — — ns TDI setup time tTDIS 8 — — ns TDI hold time tTDIH 8 — — ns TDO data delay time tTDOD — — 20 ns Figure 2.67 tTCKcyc tTCKH TCK tTCKf tTCKr tTCKL Figure 2.66 JTAG TCK timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 76 of 92 RA4M2 Datasheet 2. Electrical Characteristics TCK tTMSS tTMSH TMS tTDIS tTDIH TDI tTDOD TDO Figure 2.67 2.15 Table 2.49 JTAG input/output timing Serial Wire Debug (SWD) SWD Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 40 — — ns Figure 2.68 SWCLK clock high pulse width tSWCKH 15 — — ns SWCLK clock low pulse width tSWCKL 15 — — ns SWCLK clock rise time tSWCKr — — 5 ns SWCLK clock fall time tSWCKf — — 5 ns SWDIO setup time tSWDS 8 — — ns SWDIO hold time tSWDH 8 — — ns SWDIO data delay time tSWDD 2 — 28 ns R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Figure 2.69 Page 77 of 92 RA4M2 Datasheet 2. Electrical Characteristics tSWCKcyc tSWCKH SWCLK tSWCKL Figure 2.68 SWD SWCLK timing SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.69 2.16 SWD input/output timing Embedded Trace Macro Interface (ETM) R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 78 of 92 RA4M2 Datasheet Table 2.50 2. Electrical Characteristics ETM Conditions: High speed high drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Typ Max Unit Test conditions TCLK clock cycle time tTCLKcyc 40 — — ns Figure 2.70 TCLK clock high pulse width tTCLKH 17 — — ns TCLK clock low pulse width tTCLKL 17 — — ns TCLK clock rise time tTCLKr — — 3 ns TCLK clock fall time tTCLKf — — 3 ns TDATA[3:0] output setup time tTRDS 3.5 — — ns TDATA[3:0] output hold time tTRDH 2.5 — — ns Figure 2.71 tTCLKcyc tTCLKH TCLK tTCLKf tTCLKL Figure 2.70 tTCLKr ETM TCLK timing TCLK tTRDS tTRDH tTRDS tTRDH TDATA[3:0] Figure 2.71 ETM output timing R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 79 of 92 RA4M2 Datasheet Appendix 1. Appendix 1. Port States in Each Processing Mode Port States in Each Processing Mode Function Pin function Reset Software Standby mode Deep Software Standby mode Mode MD Pull-up Keep-O JTAG TCK/TMS/TDI Pull-up Keep-O TDO output IRQx IRQx-DS After Deep Software Standby mode is canceled (return to startup mode) IOKEEP = 0 IOKEEP = 1*1 Keep Hi-Z Keep Keep Hi-Z Keep Keep-O Keep TDO output Keep Hi-Z Keep-O*2 Keep Hi-Z Keep Hi-Z Keep-O*2 Keep*3 Hi-Z Keep AGTIOn Hi-Z Keep-O*2 Keep Hi-Z Keep AGTIOn (n=1,3) Hi-Z Keep-O*2 Keep*3 Hi-Z Keep SCI RXD0 Hi-Z Keep-O*2 Keep Hi-Z Keep IIC SCLn/SDAn Hi-Z Keep-O*2 Keep Hi-Z Keep USBFS USB_OVRCURx Hi-Z Keep-O*2 Keep Hi-Z Keep USB_OVRCURx-DS/ USB_VBUS Hi-Z Keep-O*2 Keep*3 Hi-Z Keep USB_DP/USB_DM Hi-Z Keep-O*4 Keep*3 Hi-Z Keep RTCICx Hi-Z Keep-O*2 Keep*3 Hi-Z Keep IRQ AGT RTC RTCOUT Hi-Z [RTCOUT selected] RTCOUT output Keep Hi-Z Keep CLKOUT CLKOUT Hi-Z [CLKOUT selected] CLKOUT output Keep Hi-Z Keep DAC DAn Hi-Z [DAn output (DAOE = 1)] D/A output retained Keep Hi-Z Keep Others — Hi-Z Keep-O Keep Hi-Z Keep Note: Note 1. Note 2. Note 3. Note 4. H: High-level L: Low-level Hi-Z: High-impedance Keep-O: Output pins retain their previous values. Input pins go to high-impedance. Keep: Pin states are retained during periods in Software Standby mode. Retains the I/O port state until the DPSBYCR.IOKEEP bit is cleared to 0. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin. Input is enabled if the pin is specified as the Deep Software Standby canceling source. Input is enabled while the pin is used as an input pin. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 80 of 92 RA4M2 Datasheet Appendix 2. Package Dimensions Appendix 2. Package Dimensions Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas Electronics Corporation website. JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP100-14x14-0.50 PLQP0100KB-B — 0.6 HD Unit: mm *1 D 75 51 *2 E 50 100 HE 76 26 1 25 NOTE 4 Index area NOTE 3 F S 0.25 *3 A1  c A2 A e y S Lp L1 Detail F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol bp M Min Nom Max D 13.9 14.0 14.1 14.1 E 13.9 14.0 A2  1.4  HD 15.8 16.0 16.2 HE 15.8 16.0 16.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.1 LQFP 100-pin R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 81 of 92 RA4M2 Datasheet Appendix 2. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1  A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.2 LQFP 64-pin R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 82 of 92 RA4M2 Datasheet Appendix 2. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP48-7x7-0.50 PLQP0048KB-B — 0.2 HD Unit: mm *1 D 36 25 *2 48 HE 24 E 37 13 1 12 Index area NOTE 4 NOTE 3 F S NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol y S *3 bp 0.25 M A1  c A2 A e Lp L1 Detail F Min Nom Max D 6.9 7.0 7.1 E 6.9 7.0 7.1 A2  1.4  HD 8.8 9.0 9.2 HE 8.8 9.0 9.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20  0 3.5 8 e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 2.3 LQFP 48-pin R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 83 of 92 RA4M2 Datasheet Appendix 2. Package Dimensions JEITA Package code RENESAS code MASS(TYP.)[g] P-HWQFN048-7x7-0.50 PWQN0048KC-A 0.13 g 2X aaa C 36 25 37 24 D INDEX AREA (D/2 X E/2) 48 2X aaa C 13 1 12 B A E ccc C C SEATING PLANE A (A3) A1 b(48X) e 48X bbb ddd eee C E2 1 fff fff C A B 12 EXPOSED 13 DIE PAD 48 C A B C A B C Reference Symbol 24 36 25 L(48X) K(48X) Nom. Max. A - - 0.80 0.00 0.02 0.05 0.203 REF. A3 0.20 0.25 D 7.00 BSC E 7.00 BSC e 37 Figure 2.4 Min. A1 b D2 Dimension in Millimeters 0.30 0.50 BSC L 0.30 0.40 K 0.20 - - D2 5.25 5.30 5.35 E2 5.25 5.30 5.35 aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 0.50 QFN 48-pin R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 84 of 92 RA4M2 Datasheet Appendix 3. Appendix 3. I/O Registers I/O Registers This appendix describes I/O register address and access cycles by function. 3.1 Peripheral Base Addresses This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description, and the base address of each peripheral. Table 3.1 Peripheral base address (1 of 3) Name Description Base address RMPU Renesas Memory Protection Unit 0x4000_0000 TZF TrustZone Filter 0x4000_0E00 SRAM SRAM Control 0x4000_2000 BUS BUS Control 0x4000_3000 DMAC0 Direct memory access controller 0 0x4000_5000 DMAC1 Direct memory access controller 1 0x4000_5040 DMAC2 Direct memory access controller 2 0x4000_5080 DMAC3 Direct memory access controller 3 0x4000_50C0 DMAC4 Direct memory access controller 4 0x4000_5100 DMAC5 Direct memory access controller 5 0x4000_5140 DMAC6 Direct memory access controller 6 0x4000_5180 DMAC7 Direct memory access controller 7 0x4000_51C0 DMA DMAC Module Activation 0x4000_5200 DTC Data Transfer Controller 0x4000_5400 ICU Interrupt Controller 0x4000_6000 CPSCU CPU System Security Control Unit 0x4000_8000 DBG Debug Function 0x400_1B000 FCACHE Flash Cache 0x400_1C100 SYSC System Control 0x4001_E000 PORT0 Port 0 Control Registers 0x4008_0000 PORT1 Port 1 Control Registers 0x4008_0020 PORT2 Port 2 Control Registers 0x4008_0040 PORT3 Port 3 Control Registers 0x4008_0060 PORT4 Port 4 Control Registers 0x4008_0080 PORT5 Port 5 Control Registers 0x4008_00A0 PORT6 Port 6 Control Registers 0x4008_00C0 PORT7 Port 7 Control Registers 0x4008_00E0 PORT8 Port 8 Control Registers 0x4008_0100 PORT9 Port9 Control Registers 0x40080120 PORTA Port A Control Registers 0x40080140 PORTB Port B Control Registers 0x40080160 PFS Pmn Pin Function Control Register 0x4008_0800 ELC Event Link Controller 0x4008_2000 RTC Realtime Clock 0x4008_3000 IWDT Independent Watchdog Timer 0x4008_3200 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 85 of 92 RA4M2 Datasheet Table 3.1 Appendix 3. I/O Registers Peripheral base address (2 of 3) Name Description Base address WDT Watchdog Timer 0x4008_3400 CAC Clock Frequency Accuracy Measurement Circuit 0x4008_3600 MSTP Module Stop Control A, B, C, D 0x4008_4000 POEG Port Output Enable Module for GPT 0x4008_A000 USBFS USB 2.0 FS Module 0x4009_0000 SDHI0 SD Host Interface 0 0x4009_2000 SSIE0 Serial Sound Interface Enhanced (SSIE) 0x4009_D000 IIC0 Inter-Integrated Circuit 0 0x4009_F000 IIC0WU Inter-Integrated Circuit 0 Wake-up Unit 0x4009_F014 IIC1 Inter-Integrated Circuit 1 0x4009_F100 CAN0 CAN0 Module 0x400A_8000 CAN1 CAN1 Module 0x400A_9000 CTSU Capacitive Touch Sensing Unit 0x400D_0000 PSCU Peripheral Security Control Unit 0x400E_0000 AGT0 Low Power Asynchronous General purpose Timer 0 0x400E_8000 AGT1 Low Power Asynchronous General purpose Timer 1 0x400E_8100 AGT2 Low Power Asynchronous General purpose Timer 2 0x400E_8200 AGT3 Low Power Asynchronous General purpose Timer 3 0x400E_8300 AGT4 Low Power Asynchronous General purpose Timer 4 0x400E_8400 AGT5 Low Power Asynchronous General purpose Timer 5 0x400E_8500 TSN Temperature Sensor 0x400F_3000 CRC CRC Calculator 0x4010_8000 DOC Data Operation Circuit 0x4010_9000 SCI0 Serial Communication Interface 0 0x4011_8000 SCI1 Serial Communication Interface 1 0x4011_8100 SCI2 Serial Communication Interface 2 0x4011_8200 SCI3 Serial Communication Interface 3 0x4011_8300 SCI4 Serial Communication Interface 4 0x4011_8400 SCI9 Serial Communication Interface 9 0x4011_8900 SPI0 Serial Peripheral Interface 0 0x4011_A000 SCE9 Secure Cryptographic Engine 0x4016_1000 GPT320 General PWM 32-Bit Timer 0 0x4016_9000 GPT321 General PWM 32-Bit Timer 1 0x4016_9100 GPT322 General PWM 32-Bit Timer 2 0x4016_9200 GPT323 General PWM 32-Bit Timer 3 0x4016_9300 GPT164 General PWM 16-Bit Timer 4 0x4016_9400 GPT165 General PWM 16-Bit Timer 5 0x4016_9500 GPT166 General PWM 16-Bit Timer 6 0x4016_9600 GPT167 General PWM 16-Bit Timer 7 0x4016_9700 GPT_OPS Output Phase Switching Controller 0x4016_9A00 ADC120 12bit A/D Converter 0 0x4017_0000 R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 86 of 92 RA4M2 Datasheet Table 3.1 Appendix 3. I/O Registers Peripheral base address (3 of 3) Name Description Base address ADC121 12bit A/D Converter 1 0x4017_0200 DAC12 12-bit D/A converter 0x4017_1000 FLAD Data Flash 0x407F_C000 FACI Flash Application Command Interface 0x407F_E000 QSPI Quad-SPI 0x6400_0000 Note: Name = Peripheral name Description = Peripheral functionality Base address = Lowest reserved address or address used by the peripheral 3.2 Access Cycles This section provides access cycle information for the I/O registers described in this manual. ● Registers are grouped by associated module. ● The number of access cycles indicates the number of cycles based on the specified reference clock. ● In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations cannot be guaranteed. ● The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio between ICLK and PCLK. ● When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant. ● When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles. ● The number of write access cycles indicates the number of cycles obtained by non-bufferable write access. Note: This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the external memory or bus access from other bus masters such as DTC or DMAC. Table 3.2 Access cycles (1 of 3) Number of access cycles Address ICLK > PCLK*1 ICLK = PCLK Peripherals From To Read Write Read Write Cycle Unit RMPU, TZF, SRAM, BUS, DMACn, DMA, DTC, ICU 0x4000_0000 0x4000_6FFF 2 2 2 2 ICLK Renesas Memory Protection Unit, TrustZone Filter, SRAM Control, BUS Control, Direct memory access controller n, DMAC Module Activation, DTC Control Register, Interrupt Controller CPSCU, DBG, FCACHE 0x4000_8000 0x4001_CFFF 4 3 4 3 ICLK CPU System Security Control Unit, Debug Function, Flash Cache SYSC 0x4001_E000 0x4001_E3FF 5 4 5 4 ICLK System Control SYSC 0x4001_E400 0x4001_E5FF 9 8 5 to 8 5 to 8 PCLKB System Control PORTn, PFS 0x4008_0000 0x4008_0FFF 5 4 2 to 5 2 to 4 PCLKB Port n Control Registers, Pmn Pin Function Control Register R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Related function Page 87 of 92 RA4M2 Datasheet Table 3.2 Appendix 3. I/O Registers Access cycles (2 of 3) Number of access cycles Address ICLK > PCLK*1 ICLK = PCLK Peripherals From To Read Write Read Write Cycle Unit ELC, RTC, IWDT, WDT, CAC 0x4008_2000 0x4008_3FFF 5 4 3 to 5 2 to 4 PCLKB Event Link Controller, Realtime Clock, Independent Watchdog Timer, Watchdog Timer, Clock Frequency Accuracy Measurement Circuit MSTP 0x4008_4000 0x4008_4FFF 5 4 2 to 5 2 to 4 PCLKB Module Stop Control POEG 0x4008_A000 0x4008_AFFF 5 4 3 to 5 2 to 4 PCLKB Port Output Enable Module for GPT USBFS 0x4009_0000 0x4009_3FFF 6 5 3 to 6 3 to 5 PCLKB USB 2.0 FS Module USBFS 0x4009_4000 0x4009_4FFF 4 3 1 to 4 1 to 3 PCLKB USB 2.0 FS Module SDHI0, SSIE0, IICn, IIC0WU 0x4009_2000 0x4009_FFFF 5 4 2 to 5 2 to 4 PCLKB SD Host Interface 0, Serial Sound Interface Enhanced, InterIntegrated Circuit n, Inter-Integrated Circuit 0 Wake-up Unit CANn 0x400A_8000 0x400A_9FFF 5 4 2 to 5 2 to 4 PCLKB CANn Module CTSU 0x400D_0000 0x400D_FFFF 4 3 1 to 4 1 to 3 PCLKB Capacitive Touch Sensing Unit PSCU 0x400E_0000 0x400E_0FFF 5 4 2 to 5 2 to 4 PCLKB Peripheral Security Control Unit AGTn 0x400E_8000 0x400E_8FFF 7 4 5 to 7 2 to 4 PCLKB Low Power Asynchronous General purpose Timer n TSN 0x400F_3000 0x400F_3FFF 5 4 2 to 5 2 to 4 PCLKB Temperature Sensor CRC, DOC 0x4010_8000 0x4010_9FFF 5 4 2 to 5 2 to 4 PCLKA CRC Calculator, Data Operation Circuit SCIn 0x4011_8000 0x4011_8FFF 5*2 4*2 2 to 5*2 2 to 4*2 PCLKA Serial Communication Interface n SPIn 0x4011_A000 0x4011_AFFF 5*3 4*3 2 to 5*3 2 to 4*3 PCLKA Serial Peripheral Interface n SCE9 0x4016_1000 0x4016_1FFF 6 4 3 to 6 2 to 4 PCLKA Secure Cryptographic Engine GPT32n, GPT16n, 0x4016_9000 GPT_OPS 0x4016_9FFF 7 4 4 to 7 2 to 4 PCLKA General PWM 32-Bit Timer n, General PWM 16-Bit Timer n, Output Phase Switching Controller ADC12n, DAC12 0x4017_0000 0x4017_2FFF 5 4 2 to 5 2 to 4 PCLKA 12bit A/D Converter n, 12-bit D/A converter QSPI 0x6400_0000 0x6400_000F 5 14 to *4 2 to 5 14 to *4 PCLKA Quad-SPI QSPI 0x6400_0010 0x6400_0013 25 to *4 6 to *4 25 to *4 5 to *4 PCLKA Quad-SPI QSPI 0x6400_0014 0x6400_0037 5 14 to PCLKA Quad-SPI QSPI 0x6400_0804 0x6400_0807 4 3 PCLKA Quad-SPI R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 *4 2 to 5 14 to 1 to 4 1 to 3 *4 Related function Page 88 of 92 RA4M2 Datasheet Table 3.2 Appendix 3. I/O Registers Access cycles (3 of 3) Number of access cycles Address ICLK > FCLK*1 ICLK = FCLK Peripherals From To Read Write Read Write Cycle Unit FLAD, FACI 0x407F_C000 0x407F_EFFF 3 3 2 to 3 2 to 3 FCLK Related function Data Flash, Flash Application Command Interface Note 1. If the number of PCLK or FCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2. 5 is 1 to 3. Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (including FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2. Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit register (SPDR_HA), the access cycles are as shown in Table 3.2. Note 4. The access cycles depend on the QSPI bus cycles. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 89 of 92 RA4M2 Datasheet Revision History Revision History Revision 1.00 — August 28, 2020 First edition, issued Revision 1.10 — January 27, 2021 1. Overview: ● Added note to Figure 1.1 Block diagram. ● Changed pin name in Table 1.15 Pin functions. 2. Electrical Characteristics: ● Added information about supported functions and pins. ● Changed LDO to LDOn in Table 2.7 Operating and standby current. ● added Note 15 to PLL2-LDO operating current in Table 2.7 Operating and standby current. ● Removed ADTRG1 in Figure 2.25 ADC12 trigger input timing. R01DS0367EJ0110 Rev.1.10 Jan 27, 2021 Page 90 of 92 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 2. devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 3. level at which resetting is specified. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 4. elements. Follow the guideline for input signal during power-off state as described in your product documentation. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 5. become possible. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 6. produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 7. input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 8. addresses as the correct operation of the LSI is not guaranteed. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product. Notice 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note1) (Note2) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.5.0-1 October 2020) Corporate Headquarters Contact information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/. www.renesas.com Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2021 Renesas Electronics Corporation. All rights reserved.
R7FA4M2AD3CFP#AA0 价格&库存

很抱歉,暂时无法提供与“R7FA4M2AD3CFP#AA0”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R7FA4M2AD3CFP#AA0
  •  国内价格 香港价格
  • 1+49.474921+6.13734
  • 10+37.8747610+4.69835
  • 25+34.9842725+4.33979
  • 90+32.0063490+3.97038
  • 270+30.18051270+3.74388
  • 450+29.50520450+3.66011
  • 990+28.63584990+3.55227
  • 2430+27.853992430+3.45528

库存:554

R7FA4M2AD3CFP#AA0
  •  国内价格
  • 1+19.53280
  • 10+19.53280
  • 90+19.53280

库存:1322