0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FA6M2AF3CFB#AA0

R7FA6M2AF3CFB#AA0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LFQFP144_20X20MM

  • 描述:

    R7FA6M2AF3CFB#AA0

  • 数据手册
  • 价格&库存
R7FA6M2AF3CFB#AA0 数据手册
Datasheet 32 Cover Renesas RA6M2 Group Datasheet 32-bit MCU Renesas Advanced (RA) Family Renesas RA6 Series All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). www.renesas.com Rev.1.00 Oct 2019 RA6M2 Group Datasheet Leading performance 120-MHz Arm® Cortex®-M4 core, up to 1-MB code flash memory, 384-KB SRAM, Capacitive Touch Sensing Unit, Ethernet MAC Controller, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog. Features ■ Arm Cortex-M4 Core with Floating Point Unit (FPU)      Armv7E-M architecture with DSP instruction set Maximum operating frequency: 120 MHz Support for 4-GB address space On-chip debugging system: JTAG, SWD, and ETM Boundary scan and Arm Memory Protection Unit (Arm MPU) ■ Memory        Up to 1-MB code flash memory (40 MHz zero wait states) 32-KB data flash memory (125,000 erase/write cycles) Up to 384-KB SRAM Flash Cache (FCACHE) Memory Protection Units (MPU) Memory Mirror Function (MMF) 128-bit unique ID ■ Connectivity  Ethernet MAC Controller (ETHERC)  Ethernet DMA Controller (EDMAC)  USB 2.0 Full-Speed (USBFS) module - On-chip transceiver  Serial Communications Interface (SCI) with FIFO × 10  Serial Peripheral Interface (SPI) × 2  I2C bus interface (IIC) × 3  Controller Area Network (CAN) × 2  Serial Sound Interface Enhanced (SSIE)  SD/MMC Host Interface (SDHI) × 2  Quad Serial Peripheral Interface (QSPI)  IrDA interface  Sampling Rate Converter (SRC)  External address space - 8-bit or 16-bit bus space is selectable per area - SDRAM support ■ Analog  12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits each × 2  12-bit D/A Converter (DAC12) × 2  High-Speed Analog Comparator (ACMPHS) × 6  Temperature Sensor (TSN) ■ Timers  General PWM Timer 32-bit Enhanced High Resolution (GPT32EH) × 4  General PWM Timer 32-bit Enhanced (GPT32E) × 4  General PWM Timer 32-bit (GPT32) × 6  Asynchronous General-Purpose Timer (AGT) × 2  Watchdog Timer (WDT) ■ System and Power Management         Low power modes Realtime Clock (RTC) with calendar and VBATT support Event Link Controller (ELC) DMA Controller (DMAC) × 8 Data Transfer Controller (DTC) Key Interrupt Function (KINT) Power-on reset Low Voltage Detection (LVD) with voltage settings ■ Security and Encryption       AES128/192/256 3DES/ARC4 SHA1/SHA224/SHA256/MD5 GHASH RSA/DSA/ECC True Random Number Generator (TRNG) ■ Human Machine Interface (HMI)  Capacitive Touch Sensing Unit (CTSU)  Parallel Data Capture Unit (PDC) ■ Multiple Clock Sources         Main clock oscillator (MOSC) (8 to 24 MHz) Sub-clock oscillator (SOSC) (32.768 kHz) High-speed on-chip oscillator (HOCO) (16/18/20 MHz) Middle-speed on-chip oscillator (MOCO) (8 MHz) Low-speed on-chip oscillator (LOCO) (32.768 kHz) IWDT-dedicated on-chip oscillator (15 kHz) Clock trim function for HOCO/MOCO/LOCO Clock out support ■ General-Purpose I/O Ports  Up to 110 input/output pins - Up to 1 CMOS input - Up to 109 CMOS input/output - Up to 21 input/output 5 V tolerant - Up to 18 high current (20 mA) ■ Operating Voltage  VCC: 2.7 to 3.6 V ■ Operating Temperature and Packages  Ta = -40°C to +85°C - 145-pin LGA (7 mm × 7 mm, 0.5 mm pitch)  Ta = -40°C to +105°C - 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch) - 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch) ■ Safety              Error Correction Code (ECC) in SRAM SRAM parity error check Flash area protection ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC) calculator Data Operation Circuit (DOC) Port Output Enable for GPT (POEG) Independent Watchdog Timer (IWDT) GPIO readback level detection Register write protection Main oscillator stop detection Illegal memory access R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 2 of 100 RA6M2 Group 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development. The MCU in this series incorporates a high-performance Arm Cortex®-M4 core running up to 120 MHz with the following features:  Up to 1-MB code flash memory  384-KB SRAM  Capacitive Touch Sensing Unit (CTSU)  Ethernet MAC Controller (ETHERC), USBFS, SD/MMC Host Interface  Quad Serial Peripheral Interface (QSPI)  Security and safety features  12-bit A/D Converter (ADC12)  12-bit D/A Converter (DAC12)  Analog peripherals. 1.1 Function Outline Table 1.1 Arm core Feature Functional description Arm Cortex-M4 core  Maximum operating frequency: up to 120 MHz  Arm Cortex-M4 core: - Revision: r0p1-01rel0 - ARMv7E-M architecture profile - Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.  Arm Memory Protection Unit (Arm MPU): - Armv7 Protected Memory System Architecture - 8 protect regions.  SysTick timer: - Driven by SYSTICCLK (LOCO) or ICLK. Table 1.2 Memory Feature Functional description Code flash memory Maximum 1-MB code flash memory. See section 53, Flash Memory. Data flash memory 32-KB data flash memory. See section 53, Flash Memory. Memory Mirror Function (MMF) The Memory Mirror Function (MMF) can be configured to mirror the target application image load address in code flash memory to the application image link address in the 23-bit unused memory space (memory mirror space addresses). Your application code is developed and linked to run from this MMF destination address. The application code does not need to know the load location where it is stored in code flash memory. See section 5, Memory Mirror Function (MMF) in User’s Manual. Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 7, Option-Setting Memory in User’s Manual. SRAM On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). The first 32 KB of SRAM0 error correction capability using ECC. Parity check is performed for other areas. See section 51, SRAM in User’s Manual. Standby SRAM On-chip SRAM that can retain data in Deep Software Standby mode. See section 52, Standby SRAM in User’s Manual. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 3 of 100 RA6M2 Group Table 1.3 1. Overview System (1 of 2) Feature Functional description Operating modes Two operating modes:  Single-chip mode  SCI or USB boot mode. See section 3, Operating Modes in User’s Manual. Resets 14 resets:  RES pin reset  Power-on reset  Voltage monitor 0 reset  Voltage monitor 1 reset  Voltage monitor 2 reset  Independent watchdog timer reset  Watchdog timer reset  Deep Software Standby reset  SRAM parity error reset  SRAM ECC error reset  Bus master MPU error reset  Bus slave MPU error reset  Stack pointer error reset  Software reset. See section 6, Resets in User’s Manual. Low Voltage Detection (LVD) The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the detection level can be selected using a software program. See section 8, Low Voltage Detection (LVD) in User’s Manual. Clocks  Main clock oscillator (MOSC)  Sub-clock oscillator (SOSC)  High-speed on-chip oscillator (HOCO)  Middle-speed on-chip oscillator (MOCO)  Low-speed on-chip oscillator (LOCO)  PLL frequency synthesizer  IWDT-dedicated on-chip oscillator  Clock out support. See section 9, Clock Generation Circuit in User’s Manual. Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock to be used as a measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt Controller Unit (ICU) in User’s Manual. Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function (KINT) in User’s Manual. Low power modes Power consumption can be reduced in multiple ways, such as by setting clock dividers, controlling EBCLK output, controlling SDCLK output, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. See section 11, Low Power Modes in User’s Manual. Battery backup function A battery backup function is provided for partial powering by a battery. The battery powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See section 12, Battery Backup Function in User’s Manual. Register write protection The register write protection function protects important registers from being overwritten because of software errors. See section 13, Register Write Protection in User’s Manual. Memory Protection Unit (MPU) Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided for memory protection. See section 16, Memory Protection Unit (MPU) in User’s Manual. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 4 of 100 RA6M2 Group Table 1.3 1. Overview System (2 of 2) Feature Functional description Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A refresh-permitted period can be set to refresh the counter and be used as the condition for detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in User’s Manual. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by a refresh of the count value in the registers. See section 28, Independent Watchdog Timer (IWDT) in User’s Manual. Table 1.4 Event link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in User’s Manual. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 18, Data Transfer Controller (DTC) in User’s Manual. DMA Controller (DMAC) An 8-channel DMAC module is provided for transferring data without the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address. See section 17, DMA Controller (DMAC) in User’s Manual. Table 1.6 External bus interface Feature Functional description External buses  CS area (EXBIU): Connected to the external devices (external memory interface)  SDRAM area (EXBIU): Connected to the SDRAM (external memory interface)  QSPI area (EXBIUT2): Connected to the QSPI (external device interface). Table 1.7 Timers (1 of 2) Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with 14 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User’s Manual. Port Output Enable for GPT (POEG) Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in User’s Manual. Asynchronous General-Purpose Timer (AGT) The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting of external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and can be accessed with the AGT register. See section 25, Asynchronous General-Purpose Timer (AGT) in User’s Manual. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 5 of 100 RA6M2 Group Table 1.7 1. Overview Timers (2 of 2) Feature Functional description Realtime Clock (RTC) The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 26, Realtime Clock (RTC) in User’s Manual. Table 1.8 Communication interfaces (1 of 2) Feature Functional description Serial Communications Interface (SCI) The Serial Communications Interface (SCI) is configurable to five asynchronous and synchronous serial interfaces:  Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA))  8-bit clock synchronous interface  Simple IIC (master-only)  Simple SPI  Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 32, Serial Communications Interface (SCI) in User’s Manual. IrDA Interface (IrDA) The IrDA interface sends and receives IrDA data communication waveforms in cooperation with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 33, IrDA Interface in User’s Manual. I2C bus interface (IIC) The 3-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C (Inter-Integrated Circuit) bus interface functions. See section 34, I2C Bus Interface (IIC in User’s Manual). Serial Peripheral Interface (SPI) Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices. See section 36, Serial Peripheral Interface (SPI) in User’s Manual. Serial Sound Interface Enhanced (SSIE) The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting I2S (Inter-Integrated Sound) 2ch, 4ch, 6ch, 8ch, Word Select (WS) Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission. See section 39, Serial Sound Interface Enhanced (SSIE) in User’s Manual. Quad Serial Peripheral Interface (QSPI) The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface. See section 37, Quad Serial Peripheral Interface (QSPI) in User’s Manual. Controller Area Network (CAN) module The Controller Area Network (CAN) module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagneticallynoisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 37, Quad Serial Peripheral Interface (QSPI) in User’s Manual. USB 2.0 Full-Speed (USBFS) module The USB 2.0 Full-Speed (USBFS) module can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system. See section 31, USB 2.0 Full-Speed Module (USBFS in User’s Manual). R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 6 of 100 RA6M2 Group Table 1.8 1. Overview Communication interfaces (2 of 2) Feature Functional description Ethernet MAC (ETHERC) One-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3 Media Access Control (MAC) layer protocol. An ETHERC channel provides one channel of the MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards. The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be transferred without using the CPU. See section 29, Ethernet MAC Controller (ETHERC) in User’s Manual. SD/MMC Host Interface (SDHI) The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes. See section 41, SD/MMC Host Interface (SDHI) in User’s Manual. Table 1.9 Analog Feature Functional description 12-bit A/D Converter (ADC12) Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up to 13 analog input channels are selectable. In unit 1, up to nine analog input channels, the temperature sensor output, and an internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 45, 12-Bit A/D Converter (ADC12) in User’s Manual. 12-bit D/A Converter (DAC12) The12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section 46, 12-Bit D/A Converter (DAC12) in User’s Manual. Temperature sensor (TSN) The on-chip temperature sensor can determine and monitor the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC12 for conversion and can also be used by the end application. See section 47, Temperature Sensor (TSN) in User’s Manual. High-Speed Analog Comparator (ACMPHS) The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference voltage and provides a digital output based on the conversion result. Both the test and reference voltages can be provided to the comparator from internal sources such as the DAC12 output and internal reference voltage, and an external source. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 48, HighSpeed Analog Comparator (ACMPHS) in User’s Manual. Table 1.10 Human machine interfaces Feature Functional description Capacitive Touch Sensing Unit (CTSU) The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do not come into direct contact with the electrodes. See section 49, Capacitive Touch Sensing Unit (CTSU) in User’s Manual. Table 1.11 Graphics Feature Functional description Parallel Data Capture (PDC) unit One Parallel Data Capture (PDC) unit is provided to communicate with external I/O devices, including image sensors, and to transfer parallel data such as an image output from the external I/O device through the DTC or DMAC to the on-chip SRAM and external address spaces (the CS and SDRAM areas). See section 42, Parallel Data Capture Unit (PDC) in User’s Manual. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 7 of 100 RA6M2 Group Table 1.12 1. Overview Data processing Feature Functional description Cyclic Redundancy Check (CRC) calculator The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generating polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 42, Parallel Data Capture Unit (PDC) in User’s Manual. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 50, Data Operation Circuit (DOC) in User’s Manual. Sampling Rate Converter (SRC) The Sampling Rate Converter (SRC) converts the sampling rate of data produced by various audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are supported. See section 40, Sampling Rate Converter (SRC) in User’s Manual. Table 1.13 Security Feature Functional description Secure Crypto Engine 7 (SCE7)  Security algorithms: - Symmetric algorithms: AES, 3DES, and ARC4 - Asymmetric algorithms: RSA, DSA, and ECC.  Other support features: - TRNG (True Random Number Generator) - Hash-value generation: SHA1, SHA224, SHA256, GHASH, and MD5 - 128-bit unique ID. See section 44, Secure Cryptographic Engine (SCE7) in User’s Manual. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 8 of 100 RA6M2 Group 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the features. Memory Bus 1 MB code flash External 32 KB data flash CSC Arm Cortex-M4 DSP System FPU POR/LVD MOSC/SOSC MPU 384 KB SRAM SDRAM 8 KB Standby SRAM MPU Clocks Reset (H/M/L) OCO NVIC Mode control PLL Power control CAC ICU Battery backup KINT Register write protection System timer DMA Test and DBG interface DTC DMAC × 8 Timers GPT32EH x 4 GPT32E x 4 GPT32 x 6 Communication interfaces SCI × 10 AGT × 2 RTC QSPI Human machine interfaces ETHERC CTSU IrDA × 1 Graphics PDC IIC × 3 SDHI × 2 SPI × 2 CAN × 2 SSIE USBFS WDT/IWDT Event link Data processing ELC CRC Security DOC SRC Analog ADC12 × 2 TSN DAC12 ACMPHS × 6 SCE7 Figure 1.1 Block diagram R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 9 of 100 RA6M2 Group 1.3 1. Overview Part Numbering Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.14 shows a list of products. R7FA6M2AF3C FB #AA 0 Production identification code Packaging, Terminal material (Pb-free) #AA: Tray/Sn (Tin) only #AC: Tray/others Package type FB: LQFP 144 pins FP: LQFP 100 pins LK: LGA 145 pins Quality Grade Operating temperature 2: -40°C to 85°C 3: -40°C to 105°C Code flash memory size D: 512 KB F: 1 MB Feature set Group number Series name RA family Flash memory Renesas microcontroller Figure 1.2 Table 1.14 Part numbering scheme Product list Product part number Orderable part number Package Code flash Data flash SRAM Operating temperature R7FA6M2AF2CLK R7FA6M2AF2CLK#AC1 PTLG0145KA-A 1 MB 32 KB 384 KB -40 to +85°C R7FA6M2AF3CFB R7FA6M2AF3CFB#AA1 PLQP0144KA-B R7FA6M2AF3CFP R7FA6M2AF3CFP#AA1 PLQP0100KB-B R7FA6M2AD2CLK R7FA6M2AD2CLK#AC1 PTLG0145KA-A R7FA6M2AD3CFB R7FA6M2AD3CFB#AA1 PLQP0144KA-B -40 to +105°C R7FA6M2AD3CFP R7FA6M2AD3CFP#AA1 PLQP0100KB-B -40 to +105°C R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 -40 to +105°C -40 to +105°C 512 KB -40 to +85°C Page 10 of 100 RA6M2 Group 1.4 1. Overview Function Comparison Table 1.15 Functional comparison Part numbers R7FA6M2AF2CLK/ R7FA6M2AD2CLK Function R7FA6M2AF3CFB/ R7FA6M2AD3CFB R7FA6M2AF3CFP/ R7FA6M2AD3CFP Pin count 145 144 100 Package LGA LQFP LQFP Code flash memory 1 MB/512 KB Data flash memory 32 KB SRAM 384 KB Parity 352 KB ECC 32 KB Standby SRAM System 8 KB CPU clock 120 MHz Backup registers 512 B ICU Yes KINT 8 Event link ELC Yes DMA DTC Yes BUS External bus DMAC 8 16-bit bus SDRAM Timers Communication 4 4 4 GPT32E 4 4 4 GPT32 6 6 5 AGT 2 2 2 RTC Yes WDT/IWDT Yes SCI 10 3 2 SSIE 1 QSPI 1 SDHI 2 CAN 2 Yes ETHERC ADC12 1 22 DAC12 6 TSN CTSU Data processing 19 2 ACMPHS Graphics 2 SPI USBFS HMI No GPT32EH IIC Analog 8-bit bus Yes Yes 18 12 PDC Yes CRC Yes DOC Yes SRC Security R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Yes SCE7 Page 11 of 100 RA6M2 Group 1.5 1. Overview Pin Functions Table 1.16 Pin functions (1 of 5) Function Signal I/O Description Power supply VCC Input Power supply pin. This is used as the digital power supply for the respective modules and internal voltage regulator, and used to monitor the voltage of the POR/LVD. Connect it to the system power supply. Connect this pin to VSS by a 0.1-μF capacitor. Place the capacitor close to the pin. VCL0 - VCL - Connect to VSS through a 0.1-μF smoothing capacitor close to each VCL pin. Stabilize the internal power supply. VSS Input Ground pin. Connect to the system power supply (0 V). VBATT Input Backup power pin XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. EBCLK Output Outputs the external bus clock for external devices SDCLK Output Outputs the SDRAM-dedicated clock CLKOUT Output Clock output pin Operating mode control MD Input Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin Interrupt NMI Input Non-maskable interrupt request pin IRQ0 to IRQ15 Input Maskable interrupt request pins KINT KR00 to KR07 Input A key interrupt can be generated by inputting a falling edge to the key interrupt input pins On-chip emulator TMS I/O On-chip emulator or boundary scan pins TDI Input TCK Input TDO Output Clock External bus interface TCLK Output TDATA0 to TDATA3 Output This pin outputs the clock for synchronization with the trace data Trace data output SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin SWO Output Serial wire trace output pin RD Output Strobe signal indicating that reading from the external bus interface space is in progress, active-low WR Output Strobe signal indicating that writing to the external bus interface space is in progress, in 1-write strobe mode, active-low WR0 to WR1 Output Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in writing to the external bus interface space, in byte strobe mode, active-low BC0 to BC1 Output Strobe signals indicating that either group of data bus pins (D07 to D00 or D15 to D08) is valid in access to the external bus interface space, in 1-write strobe mode, active-low ALE Output Address latch signal when address/data multiplexed bus is selected WAIT Input Input pin for wait request signals in access to the external space, active-low CS0 to CS7 Output Select signals for CS areas, active-low A00 to A20 Output Address bus D00 to D15 I/O Data bus A00/D00 to A15/D15 I/O Address/data multiplexed bus R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 12 of 100 RA6M2 Group Table 1.16 1. Overview Pin functions (2 of 5) Function Signal I/O Description SDRAM interface CKE Output SDRAM clock enable signal SDCS Output SDRAM chip select signal, active-low RAS Output SDRAM low address strobe signal, active-low CAS Output SDRAM column address strobe signal, active-low WE Output SDRAM write enable signal, active-low DQM0 Output SDRAM I/O data mask enable signal for DQ07 to DQ00 DQM1 Output SDRAM I/O data mask enable signal for DQ15 to DQ08 A00 to A15 Output Address bus GPT AGT RTC SCI IIC SSIE DQ00 to DQ15 I/O Data bus GTETRGA, GTETRGB, GTETRGC, GTETRGD Input External trigger input pins GTIOC0A to GTIOC13A, GTIOC0B to GTIOC13B I/O Input capture, output compare, or PWM output pins GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) AGTEE0, AGTEE1 Input External event input enable signals AGTIO0, AGTIO1 I/O External event input and pulse output pins AGTO0, AGTO1 Output Pulse output pins AGTOA0, AGTOA1 Output Output compare match A output pins Output compare match B output pins AGTOB0, AGTOB1 Output RTCOUT Output Output pin for 1-Hz or 64-Hz clock RTCIC0 to RTCIC2 Input Time capture event input pins SCK0 to SCK9 I/O Input/output pins for the clock (clock synchronous mode) RXD0 to RXD9 Input Input pins for received data (asynchronous mode/clock synchronous mode) TXD0 to TXD9 Output Output pins for transmitted data (asynchronous mode/clock synchronous mode) CTS0_RTS0 to CTS9_RTS9 I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low SCL0 to SCL9 I/O Input/output pins for the IIC clock (simple IIC mode) SDA0 to SDA9 I/O Input/output pins for the IIC data (simple IIC mode) SCK0 to SCK9 I/O Input/output pins for the clock (simple SPI mode) MISO0 to MISO9 I/O Input/output pins for slave transmission of data (simple SPI mode) MOSI0 to MOSI9 I/O Input/output pins for master transmission of data (simple SPI mode) SS0 to SS9 Input Chip-select input pins (simple SPI mode), active-low SCL0 to SCL2 I/O Input/output pins for the clock SDA0 to SDA2 I/O Input/output pins for data SSIBCK0 I/O SSIE serial bit clock pins SSILRCK0/SSIFS0 I/O LR clock/frame synchronization pins SSITXD0 Output Serial data output pins SSIRXD0 Input Serial data input pins SSIDATA0 I/O Serial data input/output pins AUDIO_CLK Input External clock pin for audio (input oversampling clock) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 13 of 100 RA6M2 Group Table 1.16 1. Overview Pin functions (3 of 5) Function Signal I/O SPI RSPCKA, RSPCKB I/O Clock input/output pin MOSIA, MOSIB I/O Input or output pins for data output from the master MISOA, MISOB I/O Input or output pins for data output from the slave SSLA0, SSLB0 I/O Input or output pin for slave selection SSLA1 to SSLA3, SSLB1 to SSLB3 Output Output pins for slave selection QSPCLK Output QSPI clock output pin QSSL Output QSPI slave output pin QIO0 to QIO3 I/O Data0 to Data3 CRX0, CRX1 Input Receive data CTX0, CTX1 Output Transmit data VCC_USB Input Power supply pins VSS_USB Input Ground pins USB_DP I/O D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of the USB bus USB_DM I/O D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of the USB bus USB_VBUS Input USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a device controller. QSPI CAN USBFS Description USB_EXICEN Output Low-power control signal for external power supply (OTG) chip USB_VBUSEN Output VBUS (5 V) supply enable signal for external power supply chip USB_OVRCURA, USB_OVRCURB Input Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected. USB_ID Input Connect the MicroAB connector ID input signal to this pin during operation in OTG mode R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 14 of 100 RA6M2 Group Table 1.16 1. Overview Pin functions (4 of 5) Function Signal I/O Description ETHERC REF50CK0 Input 50-MHz reference clock. This pin inputs reference signal for transmission/reception timing in RMII mode. RMII0_CRS_DV Input Indicates carrier detection signals and valid receive data on RMII0_RXD1 and RMII0_RXD0 in RMII mode RMII0_TXD0, RMII0_TXD1 Output 2-bit transmit data in RMII mode RMII0_RXD0, RMII0_RXD1 Input 2-bit receive data in RMII mode RMII0_TXD_EN Output Output pin for data transmit enable signal in RMII mode RMII0_RX_ER Input Indicates an error occurred during reception of data in RMII mode ET0_CRS Input Carrier detection/data reception enable signal ET0_RX_DV Input Indicates valid receive data on ET0_ERXD3 to ET0_ERXD0 ET0_EXOUT Output General-purpose external output pin SDHI Analog power supply ET0_LINKSTA Input Input link status from the PHY-LSI ET0_ETXD0 to ET0_ETXD3 Output 4 bits of MII transmit data ET0_ERXD0 to ET0_ERXD3 Input 4 bits of MII receive data ET0_TX_EN Output Transmit enable signal. Functions as signal indicating that transmit data is ready on ET0_ETXD3 to ET0_ETXD0 ET0_TX_ER Output Transmit error pin. Functions as signal notifying the PHY_LSI of an error during transmission ET0_RX_ER Input Receive error pin. Functions as signal to recognize an error during reception ET0_TX_CLK Input Transmit clock pin. This pin inputs reference signal for output timing from ET0_TX_EN, ET0_ETXD3 to ET0_ETXD0, and ET0_TX_ER ET0_RX_CLK Input Receive clock pin. This pin inputs reference signal for input timing to ET0_RX_DV, ET0_ERXD3 to ET0_ERXD0, and ET0_RX_ER ET0_COL Input Input collision detection signal ET0_WOL Output Receive Magic packets ET0_MDC Output Output reference clock signal for information transfer through ET0_MDIO ET0_MDIO I/O Input or output bidirectional signal for exchange of management data with PHY-LSI SD clock output pins SD0CLK, SD1CLK Output SD0CMD, SD1CMD I/O Command output pin and response input signal pins SD0DAT0 to SD0DAT7, SD1DAT0 to SD1DAT7 I/O SD and MMC data bus pins SD0CD, SD1CD Input SD card detection pins SD0WP Input SD write-protect signals AVCC0 Input Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin. AVSS0 Input Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin. VREFH0 Input Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to AN002. VREFL0 Input Analog reference ground pin for the ADC12. Connect this pin to VSS when not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to AN002 VREFH Input Analog reference voltage supply pin for the ADC12 (unit 1) and D/A Converter. Connect this pin to VCC when not using the ADC12 (unit 1), sample-and-hold circuit for AN100 to AN102, and D/A Converter. VREFL Input Analog reference ground pin for the ADC12 and D/A Converter. Connect this pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for AN100 to AN102, and D/A Converter. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 15 of 100 RA6M2 Group Table 1.16 1. Overview Pin functions (5 of 5) Function Signal I/O Description ADC12 AN000 to AN007, AN016 to AN020 Input Input pins for the analog signals to be processed by the ADC12 AN100 to AN102, AN105 to AN107, AN116 to AN118 Input ADTRG0 Input ADTRG1 Input DAC12 DA0, DA1 Output Output pins for the analog signals processed by the D/A converter ACMPHS VCOUT Output Comparator output pin IVREF0 to IVREF3 Input Reference voltage input pins for comparator IVCMP0 to IVCMP2 Input Analog voltage input pins for comparator TS00 to TS17 Input Capacitive touch detection pins (touch pins) CTSU I/O ports PDC Input pins for the external trigger signals that start the A/D conversion TSCAP - Secondary power supply pin for the touch driver P000 to P009, P014, P015 I/O General-purpose input/output pins P100 to P115 I/O General-purpose input/output pins P200 Input General-purpose input pin P201 to P214 I/O General-purpose input/output pins P300 to P313 I/O General-purpose input/output pins P400 to P415 I/O General-purpose input/output pins P500 to P506, P508, P511, P512 I/O General-purpose input/output pins P600 to P605, P608 to P614 I/O General-purpose input/output pins P700 to P705, P708 to P713 I/O General-purpose input/output pins P800, P801 I/O General-purpose input/output pins PIXCLK Input Image transfer clock pin VSYNC Input Vertical synchronization signal pin HSYNC Input Horizontal synchronization signal pin PIXD0 to PIXD7 Input 8-bit image data pins PCKO Output Output pin for dot clock R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 16 of 100 RA6M2 Group 1.6 1. Overview Pin Assignments Figure 1.3 to Figure 1.5 show the pin assignments. R7FA6M2AX2CLK 13 A B C D E F G H J K L M N P407 P409 P412 P708 P711 VCC P212 /EXTAL XCIN VCL0 P702 P405 P402 P400 13 P410 P414 P710 VSS P213 /XTAL XCOUT VBATT P701 P404 P511 VCC 12 12 USB_DM USB_DP 11 VCC_ USB VSS_ USB P207 P411 P415 P712 P705 P704 P703 P403 P401 P512 VSS 11 10 P205 P206 P204 P408 P413 P709 P713 P700 P406 P003 P000 P002 P001 10 9 P203 P313 P202 VSS P004 P006 P009 P008 9 8 P214 P211 P200 VCC P005 AVSS0 VREFL0 VREFH0 8 7 P210 P209 RES P310 P007 AVCC0 VREFL VREFH 7 6 P208 P201/MD P312 P305 P505 P506 P015 P014 6 5 P309 P311 P308 P303 NC P503 P504 VSS VCC 5 4 P307 P306 P304 P109/TDO P114 P608 P604 P600 P105 P500 P502 P501 P508 4 3 VSS VCC P301 P112 P115 P610 P614 P603 P107 P106 P104 VSS VCC 3 2 P302 P300/TCK /SWCLK P111 VCC P609 P612 VSS P605 P601 VCC P800 P101 P801 2 P108/TMS P110/TDI /SWDIO P113 VSS P611 P613 VCC VCL P602 VSS P103 P102 P100 1 C D E F G H J K L M N 1 A Figure 1.3 B Pin assignment for 145-pin LGA (top view) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 17 of 100 VSS VCC P614 P613 P612 P611 P610 P609 P608 VSS VCC P115 P114 P113 P112 P111 P110/TDI P109/TDO P108/TMS/SWDIO 91 90 89 88 87 85 83 81 79 76 75 74 73 VCL 92 77 P604 P605 94 78 P602 P603 96 80 P601 97 82 VCC P600 99 84 VSS 100 86 P107 101 93 P106 102 95 P104 P105 104 98 P102 P103 103 P101 106 105 P100 107 1. Overview 108 RA6M2 Group P800 109 72 P300/TCK/SWCLK P801 110 71 P301 VCC 111 70 P302 VSS 112 69 P303 P500 113 68 P501 114 67 VCC VSS P502 P503 115 66 P304 116 65 P305 P504 117 64 P306 P505 118 63 P307 P506 119 62 P308 P508 120 61 P309 VCC 121 60 P310 VSS 122 59 P015 123 58 P311 P312 P014 124 57 VREFL VREFH 125 56 P200 P201/MD 55 RES AVCC0 127 54 P208 AVSS0 128 53 P209 VREFL0 129 52 P210 VREFH0 130 51 P211 P009 P008 131 50 P214 132 49 VCC P007 133 48 P006 134 47 VSS P313 P005 135 46 P004 136 45 P202 P203 P003 137 44 P204 P002 138 43 P205 P001 P000 139 42 P206 140 41 P207 VSS VCC P512 141 40 142 39 143 38 VCC_USB USB_DP USB_DM P511 144 37 VSS_USB Figure 1.4 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 P704 P705 VBATT VCL0 XCIN XCOUT VSS P213/XTAL P212/EXTAL VCC P713 P712 P711 P710 P709 P708 P415 P414 P413 P412 P411 P410 P409 P408 P407 32 11 P703 10 9 P701 P702 5 P404 P405 8 4 P403 7 3 P402 P406 P700 2 P401 6 1 P400 14 R7FA6M2AX3CFB 126 Pin assignment for 144-pin LQFP (top view) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 18 of 100 Figure 1.5 P100 P101 P102 P103 P104 P105 P106 P107 P600 P601 P602 VCL VSS VCC P610 P609 P608 P115 P114 P113 P112 P111 P110/TDI P109/TDO P108/TMS/SWDIO 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 1. Overview 75 RA6M2 Group P500 76 50 P501 77 49 P300/TCK/SWCLK P301 P502 78 48 P302 P503 79 47 P303 P504 80 46 VCC P508 81 45 VSS VCC 82 44 P304 VSS 83 43 P305 P015 84 42 P306 P014 85 41 P307 VREFL 86 40 P200 VREFH 87 39 P201/MD AVCC0 88 38 RES AVSS0 89 37 P208 VREFL0 90 36 P209 VREFH0 91 35 P210 P008 92 34 P211 P007 93 33 P214 P006 94 32 P205 P005 95 31 P206 P004 96 30 P207 P003 97 29 VCC_USB P002 98 28 USB_DP P001 99 27 USB_DM P000 100 26 VSS_USB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P400 P401 P402 P403 P404 P405 P406 VBATT VCL0 XCIN XCOUT VSS P213/XTAL P212/EXTAL VCC P708 P415 P414 P413 P412 P411 P410 P409 P408 P407 R7FA6M2AX3CFP Pin assignment for 100-pin LQFP (top view) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 19 of 100 RA6M2 Group Pin Lists N13 1 1 - IRQ0 P400 - - AGTIO1 - L11 2 2 - IRQ5- P401 DS - - GTIOC 6A M13 3 3 CACREF IRQ4- P402 DS - AGTIO0/ AGTIO1 - K11 4 4 - - P403 - - AGTIO0/ AGTIO1 GTIOC RTCI 3A C1 L12 5 5 - - P404 - - - - L13 6 6 - - P405 - - - - GTETRGA GTIOC 6B - SCK4 SCK7 SCL0 _A CTX0 CTS4_R TXD7/M SDA0 TS4/SS4 OSI7/SD _A A7 RTCI CRX0 C0 HMI PDC CTSU DAC12, ACMPHS ADC12 SDHI ETHERC (RMII) (50 MHz) ETHERC (MII) (25 MHz) SSIE SPI, QSPI Analog IIC SCI1,3,5,7,9 (30 MHz) SCI0,2,4,6,8 (30 MHz) GPT AGT Communication interfaces RTC USBFS, CAN Timers GPT External bus I/O port Interrupt LQFP144 LGA145 Extbus LQFP100 Power, System, Clock, Debug, CAC Pin number SDRAM 1.7 1. Overview AUDIO ET0_WOL ET0_WOL _CLK ADTRG 1 - - - ET0_MDC ET0_MDC - - - - - RXD7/MI SO7/SC L7 - AUDIO ET0_MDI ET0_MDI _CLK O O - - - VSYNC - CTS7_R TS7/SS7 - SSIBC ET0_LINK ET0_LINK SD1DA K0_A STA STA T7_B - - PIXD7 GTIOC RTCI 3B C2 - - - - SSILR ET0_EXO ET0_EXO SD1DA UT T6_B CK0/S UT SIFS0 _A - - PIXD6 GTIOC 1A - - - - SSITX ET0_TX_ RMII0_TX SD1DA D0_A EN D_EN_B T5_B - - PIXD5 - J10 7 7 - - P406 - - - - GTIOC 1B - - - - SSLB3 SSIRX ET0_RX_ RMII0_TX SD1DA _C D0_A ER D1_B T4_B - - PIXD4 H10 8 - - - P700 - - - - GTIOC 5A - - - - MISOB _C ET0_ETX RMII0_TX SD1DA D1 D0_B T3_B - - PIXD3 K12 9 - - - P701 - - - - GTIOC 5B - - - - MOSIB _C ET0_ETX REF50CK SD1DA D0 0_B T2_B - - PIXD2 K13 10 - - - P702 - - - - GTIOC 6A - - - - RSPC KB_C ET0_ERX RMII0_RX SD1DA D1 D0_B T1_B - - PIXD1 J11 11 - - - P703 - - - - GTIOC 6B - - - - SSLB0 _C ET0_ERX RMII0_RX SD1DA D0 D1_B T0_B VCOUT - PIXD0 H11 12 - - - P704 - - AGTO0 - - - CTX0 - - - SSLB1 _C ET0_RX_ RMII0_RX SD1CL CLK _ER_B K_B - - HSYNC G11 13 - - - P705 - - AGTIO0 - - - CRX0 - - - SSLB2 _C ET0_CRS RMII0_CR SD1CM S_DV_B D_B - - PIXCLK J12 14 8 VBATT - - - - - - J13 15 9 VCL0 - - - - - - - - - - - - - - - - - - - - - H13 16 10 XCIN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H12 17 11 XCOUT - - - - - - - - - - - - - - - - - - - - - F12 18 12 VSS - - - - - - - - - - - - - - - - - - - - - G12 19 13 XTAL IRQ2 P213 - - - GTETRGC GTIOC 0A - - TXD1/M OSI1/SD A1 - - - - - ADTRG 1 - - G13 20 14 EXTAL IRQ3 P212 - - AGTEE1 GTETRGD GTIOC 0B - - RXD1/MI SO1/SC L1 - - - - - - - - - F13 15 VCC - - - - - - - - - - - - - - - - - - - - - - P713 - - AGTOA0 - GTIOC 2A - - - - - - - - - - - TS17 - 21 G10 22 - - F11 23 - - - P712 - - AGTOB0 - GTIOC 2B - - - - - - - - - - - TS16 - E13 24 - - - P711 - - AGTEE0 - - - - - CTS1_R TS1/SS1 - - ET0_TX_ CLK - - - TS15 - E12 25 - - - P710 - - - - - - - - SCK1 - - - ET0_TX_ ER - - - TS14 - F10 26 - - IRQ10 P709 - - - - - - - - TXD1/M OSI1/SD A1 - - ET0_ETX D2 - - - TS13 - D13 27 16 CACREF IRQ11 P708 - - - - - - - - RXD1/MI SO1/SC L1 SSLA3 AUDIO ET0_ETX _B _CLK D3 - - - TS12 PCKO E11 28 17 - IRQ8 P415 - - - - GTIOC 0A USB_ VBUS EN - SSLA2 _B ET0_TX_ RMII0_TX SD0CD EN D_EN_A - TS11 PIXD5 - D12 29 18 - IRQ9 P414 - - - - GTIOC 0B - - - - SSLA1 _B ET0_RX_ RMII0_TX SD0WP ER D1_A - TS10 PIXD4 E10 30 19 - - P413 - - - GTOUUP - - - CTS0_R TS0/SS0 - SSLA0 _B ET0_ETX RMII0_TX SD0CL D1 D0_A K_A - TS09 PIXD3 C13 31 20 - - P412 - - AGTEE1 GTOULO - - - SCK0 - RSPC KA_B ET0_ETX REF50CK SD0CM D0 0_A D_A - TS08 PIX02 D11 32 21 - IRQ4 P411 - - AGTOA1 GTOVUP GTIOC 9A - TXD0/M CTS3_R OSI0/SD TS3/SS3 A0 MOSIA _B ET0_ERX RMII0_RX SD0DA D1 D0_A T0_A - TS07 PIX01 C12 33 22 - IRQ5 P410 - - AGTOB1 GTOVLO GTIOC 9B - RXD0/MI SCK3 SO0/SC L0 MISOA _B ET0_ERX RMII0_RX SD0DA D0 D1_A T1_A - TS06 PIXD0 B13 34 23 - IRQ6 P409 - - - GTOWUP GTIOC 10A USB_ EXICE N TXD3/M OSI3/SD A3 - - ET0_RX_ RMII0_RX CLK _ER_A - - TS05 HSYNC D10 35 24 - IRQ7 P408 - - - GTOWLO GTIOC 10B USB_I D RXD3/MI SCL0 SO3/SC _B L3 - ET0_CRS RMII0_CR S_DV_A - - TS04 PIXCLK A13 36 25 - - P407 - - AGTIO0 - - RTC USB_ CTS4_R OUT VBUS TS4/SS4 B11 37 26 VSS_US B - - - - - - - - - - SDA0 SSLB3 _B _A ET0_EXO ET0_EXO UT UT ADTRG 0 TS03 - - - - - - - - - - - - - A12 38 27 - - - - - - - - - USB_ DM - - - - - - - - - - B12 39 28 - - - - - - - - - USB_ DP - - - - - - - - - - - A11 40 29 VCC_US B - - - - - - - - - - - - - - - - - - - R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 - Page 20 of 100 RA6M2 Group 1. Overview P207 A17 - - C11 41 30 - - - - - - - - B10 42 31 - IRQ0- P206 WAI DS T - GTIU - - USB_ RXD4/MI VBUS SO4/SC EN L4 A10 43 32 CLKOUT IRQ1- P205 A16 DS - AGTO1 GTIV GTIOC 4A USB_ TXD4/M CTS9_R SCL1 SSLB0 _A OVRC OSI4/SD TS9/SS9 _A URA- A4 DS C10 44 - CACREF - P204 A18 - AGTIO1 GTIW GTIOC 4B USB_ SCK4 OVRC URBDS A9 45 - - IRQ2- P203 A19 DS - - - GTIOC 5A CTX0 CTS2_R TXD9/M TS2/SS2 OSI9/SD A9 MOSIB _A C9 46 - - IRQ3- P202 WR1 DS /BC1 - - GTIOC 5B CRX0 SCK2 MISOB _A SCK9 - SSLB2 _A/QS SL - - PDC CTSU - - TS02 - SDA1 SSLB1 SSIDA ET0_LINK ET0_LINK SD0DA _A _A TA0_C STA STA T2_A - TS01 - SSILR ET0_WOL ET0_WOL SD0DA T3_A CK0/S SIFS0 _C - TSCA P - SD0DA T4_A - TS00 - ET0_COL - SD0DA T5_A - TSCA P - ET0_ERX D2 SD0DA T6_A - - - SCL0 RSPC SSIBC ET0_RX_ _B KB_A K0_C DV RXD9/MI SO9/SC L9 - HMI DAC12, ACMPHS ADC12 SDHI ETHERC (RMII) (50 MHz) ETHERC (MII) (25 MHz) SSIE SPI, QSPI Analog IIC SCI1,3,5,7,9 (30 MHz) SCI0,2,4,6,8 (30 MHz) GPT GPT AGT Communication interfaces RTC USBFS, CAN Timers SDRAM I/O port Interrupt External bus Extbus LQFP100 Power, System, Clock, Debug, CAC LQFP144 LGA145 Pin number B9 47 - - - P313 A20 - - - - - - - - - - - ET0_ERX D3 SD0DA T7_A - - - D9 48 - VSS - - - - - - - - - - - - - - - - - - - - - D8 49 - VCC - - - - - - - - - - - - - - - - - - - - - A8 50 33 TRCLK - P214 - - - GTIU - - - - - - QSPC LK ET0_MDC ET0_MDC SD0CL K_B - - - B8 51 34 TRDATA 0 P211 CS7 - - GTIV - - - - - - QIO0 ET0_MDI ET0_MDI SD0CM O O D_B - - - A7 52 35 TRDATA 1 P210 CS6 - - GTIW - - - - - - QIO1 - ET0_WOL ET0_WOL SD0CD - - - - B7 53 36 TRDATA 2 P209 CS5 - - GTOVUP - - - - - - QIO2 - ET0_EXO ET0_EXO SD0WP UT UT - - - - A6 54 37 TRDATA 3 P208 CS4 - - GTOVLO - - - - - - QIO3 - ET0_LINK ET0_LINK SD0DA STA STA T0_B - - - C7 55 38 RES - - - - - - - - - - - - - - - - - - - - - B6 56 39 MD - P201 - - - - - - - - - - - - - - - - - - - C8 57 40 - NMI P200 - - - - - - - - - - - - - - - - - - - C6 58 - - - P312 CS3 CAS AGTOA1 - - - - - CTS3_R TS3/SS3 - - - - - - - - - B5 59 - - - P311 CS2 RAS AGTOB1 - - - - - SCK3 - - - - - - - - - - D7 60 - - - P310 A15 A15 AGTEE1 - - - - - TXD3 - QIO3 - - - - - - - - A5 61 - - - P309 A14 A14 - - - - - - RXD3 - QIO2 - - - - - - - - C5 62 - - - P308 A13 A13 - - - - - - - - QIO1 - - - - - - - - A4 63 41 - - P307 A12 A12 - GTOUUP - - - CTS6 - - QIO0 - - - - - - - - B4 64 42 - - P306 A11 A11 - GTOULO - - - SCK6 - - QSSL - - - - - - - - D6 65 43 - IRQ8 P305 A10 A10 - GTOWUP - - - TXD6/M OSI6/SD A6 - QSPC LK - - - - - - - C4 66 44 - IRQ9 P304 A09 A09 - GTOWLO GTIOC 7A - RXD6/MI SO6/SC L6 - - - - - - - - - A3 67 45 VSS - - - - - - - - - - - - - - - - - - - - - B3 68 46 VCC - - - - - - - - - - - - - - - - - - - - - - D5 69 47 - - P303 A08 A08 - - GTIOC 7B - - - - - - - - - - - - - A2 70 48 - IRQ5 P302 A07 A07 - GTOUUP GTIOC 4A - TXD2/M OSI2/SD A2 - SSLB3 _B - - - - - - - C3 71 49 - IRQ6 P301 A06 A06 AGTIO0 GTOULO GTIOC 4B - RXD2/MI CTS9_R SO2/SC TS9/SS9 L2 SSLB2 _B - - - - - - - B2 72 50 TCK/SW CLK P300 - - - GTOUUP GTIOC 0A_A - - - - SSLB1 _B - - - - - - - A1 73 51 TMS/SW DIO P108 - - - GTOULO GTIOC 0B_A - - CTS9_R TS9/SS9 SSLB0 _B - - - - - - - D4 74 52 CLKOUT /TDO/S WO P109 - - - GTOVUP GTIOC 1A_A CTX1 - TXD9/M OSI9/SD A9 MOSIB _B - - - - - - - B1 75 53 TDI IRQ3 P110 - - - GTOVLO GTIOC 1B_A CRX1 CTS2_R RXD9/MI TS2/SS2 SO9/SC L9 MISOB _B - - - - VCOUT - - C2 76 54 - IRQ4 P111 A05 A05 - - GTIOC 3A_A - SCK2 SCK9 - RSPC KB_B - - - - - - - D3 77 55 - - P112 A04 A04 - - GTIOC 3B_A - TXD2/M SCK1 OSI2/SD A2 - SSLB0 SSIBC _B K0_B - - - - - - C1 78 56 - - P113 A03 A03 - - GTIOC 2A - RXD2/MI SO2/SC L2 - - SSILR CK0/S SIFS0 _B - - - - - - E4 79 57 - - P114 A02 A02 - - GTIOC 2B - - - - - SSIRX D0_B - - - - - - E3 80 58 - - P115 A01 A01 - - GTIOC 4A - - - - - SSITX D0_B - - - - - - D2 81 - VCC - - - - - - - - - - - - - - - - - - - - - D1 82 - VSS - - - - - - - - - - - - - - - - - - - - - F4 83 59 - - P608 A00/ A00/D BC0 QM1 - GTIOC 4B - - - - - - - - - - - - - E2 84 60 - - P609 CS1 CKE - - GTIOC 5A CTX1 - - - - - - - - - - - - F3 85 61 - - P610 CS0 WE - - GTIOC 5B CRX1 - - - - - - - - - - - - R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 21 of 100 RA6M2 Group 1. Overview HMI PDC CTSU DAC12, ACMPHS ADC12 SDHI ETHERC (RMII) (50 MHz) ETHERC (MII) (25 MHz) SSIE SPI, QSPI Analog IIC SCI1,3,5,7,9 (30 MHz) SCI0,2,4,6,8 (30 MHz) GPT GPT AGT Communication interfaces RTC USBFS, CAN Timers SDRAM I/O port Interrupt External bus Extbus LQFP100 Power, System, Clock, Debug, CAC LQFP144 LGA145 Pin number E1 86 - CLKOUT /CACRE F P611 - SDCS - - - - - - CTS7_R TS7/SS7 - - - - - - - - - F2 87 - - - P612 D08[ DQ08 A08/ D08] - - - - - SCK7 - - - - - - - - - - F1 88 - - - P613 D09[ DQ09 A09/ D09] - - - - - TXD7 - - - - - - - - - - G3 89 - - - P614 D10[ DQ10 A10/ D10] - - - - - RXD7 - - - - - - - - - - G1 90 62 VCC - - - - - - - - - - - - - - - - - - - - - G2 91 63 VSS - - - - - - - - - - - - - - - - - - - - - - - H1 92 64 VCL - - - - - - - - - - - - - - - - - - - H2 93 - - - P605 D11[ DQ11 A11/ D11] - GTIOC 8A - - - - - - - - - - - - - G4 94 - - - P604 D12[ DQ12 A12/ D12] - GTIOC 8B - - - - - - - - - - - - - H3 95 - - - P603 D13[ DQ13 A13/ D13] - GTIOC 7A - - CTS9_R TS9/SS9 - - - - - - - - - J1 96 65 - - P602 EBC SDCL LK K - GTIOC 7B - - TXD9 - - - - - - - - - - - J2 97 66 - P601 WR/ DQM0 WR0 - GTIOC 6A - - RXD9 - - - - - - - - - - H4 98 67 CLKOUT /CACRE F P600 RD - - - GTIOC 6B - - SCK9 - - - - - - - - - - K2 99 - VCC - - - - - - - - - - - - - - - - - - - - - K1 100 - VSS - - - - - - - - - - - - - - - - - - - - - J3 101 68 - KR07 P107 D07[ DQ07 AGTOA0 A07/ D07] GTIOC 8A - CTS8_R TS8/SS8 - - - - - - - - - - K3 102 69 - KR06 P106 D06[ DQ06 AGTOB0 A06/ D06] GTIOC 8B - SCK8 - - SSLA3 _A - - - - - - - J4 103 70 - IRQ0/ P105 D05[ DQ05 KR05 A05/ D05] GTETRGA GTIOC 1A - TXD8/M OSI8/SD A8 - SSLA2 _A - - - - - - - L3 104 71 - IRQ1/ P104 D04[ DQ04 KR04 A04/ D04] GTETRGB GTIOC 1B - RXD8/MI SO8/SC L8 - SSLA1 _A - - - - - - - L1 105 72 - KR03 P103 D03[ DQ03 A03/ D03] GTOWUP GTIOC 2A_A CTX0 CTS0_R TS0/SS0 - SSLA0 _A - - - - - - - M1 106 73 - KR02 P102 D02[ DQ02 AGTO0 A02/ D02] GTOWLO GTIOC 2B_A CRX0 SCK0 - RSPC KA_A - - - ADTRG 0 - - M2 107 74 - IRQ1/ P101 D01[ DQ01 AGTEE0 GTETRGB GTIOC KR01 A01/ 5A D01] - TXD0/M CTS1_R SDA1 MOSIA OSI0/SD TS1/SS1 _B _A A0 - - - - - - - N1 108 75 - IRQ2/ P100 D00[ DQ00 AGTIO0 GTETRGA GTIOC KR00 A00/ 5B D00] - RXD0/MI SCK1 SO0/SC L0 SCL1 MISOA _B _A - - - - - - - L2 109 - - - P800 D14[ DQ14 A14/ D14] - - - - - - - - - - - - - - - - N2 110 - - - P801 D15[ DQ15 A15/ D15] - - - - - - - - - - - - - - - - N3 111 - VCC - - - - - - - - - - - - - - - - - - - - - M3 112 - VSS - - - - - - - - - - - - - - - - - - - - - K4 113 76 - - P500 - - AGTOA0 GTIU GTIOC 11A USB_ VBUS EN - - QSPC LK - - SD1CL AN016 K_A IVREF0 - - M4 114 77 - IRQ11 P501 - - AGTOB0 GTIV GTIOC 11B USB_ OVRC URA TXD5/M OSI5/SD A5 QSSL - - - SD1CM AN116 D_A IVREF1 - - L4 115 78 - IRQ12 P502 - - - GTIW GTIOC 12A USB_ OVRC URB RXD5/MI SO5/SC L5 QIO0 - - - SD1DA AN017 T0_A IVCMP0 - - K5 116 79 - - P503 - - - GTETRGC GTIOC 12B QIO1 - - - SD1DA AN117 T1_A - - - P504 ALE - - USB_ CTS6_R SCK5 EXICE TS6/SS6 N - L5 117 80 - - - GTETRGD GTIOC 13A USB_I SCK6 D QIO2 - - - SD1DA AN018 T2_A - - - K6 118 - - IRQ14 P505 - - - - GTIOC 13B - RXD6/MI SO6/SC L6 - QIO3 - - - SD1DA AN118 T3_A - - - L6 119 - - IRQ15 P506 - - - - - - - TXD6/M OSI6/SD A6 - - - - - SD1CD AN019 - - - N4 120 81 - - P508 - - - - - - - SCK6 SCK5 - - - - - SD1DA AN020 T3_A - - - N5 121 82 VCC - - - - - - - - - - - - - - - - - - - - - M5 122 83 VSS - - - - - - - - - - - - - - - - - - - - - M6 123 84 - IRQ13 P015 - - - - - - - - - - - - - - - AN006/ DA1/ AN106 IVCMP1 - N6 124 85 - - P014 - - - - - - - - - - - - - - - AN005/ DA0/ AN105 IVREF3 - M7 125 86 VREFL - - - - - - - - - - - - - - - - - - - R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 CTS5_R TS5/SS5 - - Page 22 of 100 RA6M2 Group 1. Overview HMI PDC CTSU DAC12, ACMPHS ADC12 SDHI ETHERC (RMII) (50 MHz) ETHERC (MII) (25 MHz) SSIE SPI, QSPI Analog IIC SCI1,3,5,7,9 (30 MHz) SCI0,2,4,6,8 (30 MHz) GPT GPT AGT Communication interfaces RTC USBFS, CAN Timers SDRAM External bus I/O port Interrupt LQFP144 LGA145 Extbus LQFP100 Power, System, Clock, Debug, CAC Pin number N7 126 87 VREFH - - - - - - - - - - - - - - - - - - - - - L7 127 88 AVCC0 - - - - - - - - - - - - - - - - - - - - - L8 128 89 AVSS0 - - - - - - - - - - - - - - - - - - - - - M8 129 90 VREFL0 - - - - - - - - - - - - - - - - - - - - - N8 130 91 VREFH0 - - - - - - - - - - - - - - - - - - - - - M9 131 - - IRQ13 P009 -DS - - - - - - - - - - - - - - AN004 - - - N9 132 92 - IRQ12 P008 -DS - - - - - - - - - - - - - - AN003 - - - K7 133 93 - - P007 - - - - - - - - - - - - - - - AN107 - - - L9 134 94 - IRQ11 P006 -DS - - - - - - - - - - - - - - AN102 IVCMP2 - - K8 135 95 - IRQ10 P005 -DS - - - - - - - - - - - - - - AN101 IVCMP2 - - K9 136 96 - IRQ9- P004 DS - - - - - - - - - - - - - - AN100 IVCMP2 - - K10 137 97 - - P003 - - - - - - - - - - - - - - - AN007 - - - M10 138 98 - IRQ8- P002 DS - - - - - - - - - - - - - - AN002 IVCMP2 - - N10 99 - IRQ7- P001 DS - - - - - - - - - - - - - - AN001 IVCMP2 - - 139 L10 140 100 - IRQ6- P000 DS - - - - - - - - - - - - - - AN000 IVCMP2 - N11 141 - VSS - - - - - - - - - - - - - - - - - - - - - N12 142 - VCC - - - - - - - - - - - - - - - - - - - - - M11 143 - - IRQ14 P512 - - - - GTIOC 0A CTX1 TXD4/M OSI4/SD A4 SCL2 - - - - - - - - VSYNC M12 144 - - IRQ15 P511 - - - - GTIOC 0B CRX1 RXD4/MI SO4/SC L4 SDA2 - - - - - - - - PCKO Note: Some pin names have the added suffix of _A, _B, and _C. When assigning the GPT, IIC, SPI, SSIE, ETHERC (RMII), and SDHI functionality, select the functional pins with the same suffix. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 23 of 100 RA6M2 Group 2. 2. Electrical Characteristics Electrical Characteristics Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V  2.7 ≤ VREFH0/VREFH ≤ AVCC0  VSS = AVSS0 = VREFL0/VREFL = VSS_USB = 0 V  Ta = Topr. Figure 2.1 shows the timing conditions. For example P100 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30pF Figure 2.1 Input or output timing measurement conditions The recommended measurement conditions for the timing specification of each peripheral provided are for the best peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions. 2.1 Absolute Maximum Ratings Table 2.1 Absolute maximum ratings Parameter Symbol Value *2 Unit Power supply voltage VCC, VCC_USB -0.3 to +4.0 V VBATT power supply voltage VBATT -0.3 to +4.0 V Input voltage (except for 5 V-tolerant ports*1) Vin -0.3 to VCC + 0.3 V ports*1) Vin -0.3 to + VCC + 4.0 (max. 5.8) V Reference power supply voltage VREFH/VREFH0 -0.3 to AVCC0 + 0.3 V Analog power supply voltage AVCC0 *2 -0.3 to +4.0 V Analog input voltage VAN -0.3 to AVCC0 + 0.3 V Operating temperature*3, *4, *5 Topr -40 to +85 -40 to +105 °C Storage temperature Tstg -55 to +125 °C Input voltage (5 V-tolerant Caution: Note 1. Note 2. Note 3. Note 4. Note 5. Permanent damage to the MCU might result if absolute maximum ratings are exceeded. Ports P205, P206, P400, P401, P407 to P415, P511, P512, and P708 to P713 are 5 V tolerant. Connect AVCC0 and VCC_USB to VCC. See section 2.2.1, Tj/Ta Definition. Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 24 of 100 RA6M2 Group Table 2.2 2. Electrical Characteristics Recommended operating conditions Parameter Symbol Value Min Power supply voltages VCC When USB/SDRAM is not used 2.7 When USB/SDRAM is used Typ Max Unit - 3.6 V 3.0 - 3.6 V VSS - 0 - V USB power supply voltages VCC_USB - VCC - V VSS_USB - 0 - V VBATT power supply voltage VBATT 1.8 - 3.6 V Analog power supply voltages AVCC0*1 - VCC - V AVSS0 - 0 - V Note 1. Connect AVCC0 to VCC. When the A/D converter, the D/A converter, or the comparator are not in use, do not leave the AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC, and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively. 2.2 DC Characteristics 2.2.1 Tj/Ta Definition Table 2.3 DC characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C. Parameter Symbol Typ Max Unit Test conditions Permissible junction temperature Tj - 125 °C High-speed mode Low-speed mode Subosc-speed mode 105*1 Note: Note 1. Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows the operation temperature to 85°C, then Tj max is 105°C, otherwise, it is 125°C. 2.2.2 Table 2.4 I/O VIH, VIL I/O VIH, VIL (1 of 2) Parameter Input voltage (except for Schmitt trigger input pins) Schmitt trigger input voltage Peripheral function pin Peripheral function pin Symbol Min Typ Max Unit EXTAL(external clock input), WAIT, SPI (except RSPCK) VIH VCC × 0.8 - - V VIL - - VCC × 0.2 D00 to D15, DQ00 to DQ15 VIH VCC × 0.7 - - VIL - - VCC × 0.3 ETHERC VIH 2.3 - - VIL - - VCC × 0.2 IIC (SMBus)*1 VIH 2.1 - - VIL - - 0.8 IIC (SMBus)*2 VIH 2.1 - VCC + 3.6 (max 5.8) VIL - - 0.8 VIH VCC × 0.7 - - VIL - - VCC × 0.3 ΔVT VCC × 0.05 - - IIC (except for R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 SMBus)*1 V Page 25 of 100 RA6M2 Group Table 2.4 2. Electrical Characteristics I/O VIH, VIL (2 of 2) Parameter Schmitt trigger input voltage Peripheral function pin IIC (except for SMBus)*2 When using the Battery Backup Function Ports 5 V-tolerant ports*5, *7 Other input Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. Note 7. pins*6 Typ Max Unit VIH VCC × 0.7 - VCC + 3.6 (max 5.8) V VIL - - VCC × 0.3 VCC × 0.05 - - VIH VCC × 0.8 - VCC + 3.6 (max 5.8) VIL - - VCC × 0.2 ΔVT VCC × 0.05 - - When VBATT power supply is selected VIH VBATT × 0.8 - VBATT + 0.3 VIL - - VBATT × 0.2 ΔVT VBATT × 0.05 - - When VCC power supply is selected VIH VCC × 0.8 - Higher voltage either VCC + 0.3 V or VBATT + 0.3 V VIL - - VCC × 0.2 ΔVT VCC × 0.05 - - VIH VCC × 0.8 - VCC + 0.3 VIL - - VCC × 0.2 ΔVT VCC × 0.05 - - VIH VCC × 0.8 - - VIL - - VCC × 0.2 When not using the Battery Backup Function Other input pins*4 Min ΔVT 5 V-tolerant ports*3, *7 RTCIC0, RTCIC1, RTCIC2 Symbol ΔVT VCC × 0.05 - - VIH VCC × 0.8 - VCC + 3.6 (max 5.8) VIL - - VCC × 0.2 VIH VCC × 0.8 - - VIL - - VCC × 0.2 V SCL0_B (P204), SCL1_B, SDA1_B (total 3 pins). SCL0_A, SDA0_A, SCL0_B (P408), SDA0_B, SCL1_A, SDA1_A, SCL2, SDA2 (total 8 pins). RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 22 pins). All input pins except for the peripheral function pins already described in the table. P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 21 pins). All input pins except for the ports already described in the table. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 26 of 100 RA6M2 Group 2.2.3 2. Electrical Characteristics I/O IOH, IOL Table 2.5 I/O IOH, IOL Parameter Permissible output current (average value per pin) Ports P000 to P009, P201 - Ports P014, P015 - Ports P205, P206, P407 to P415, P602, P708 to P713 (total 18 pins) Low drive*1 Middle drive*2 High drive*3 Low drive*1 Middle drive*2 High drive*3 Other output pins*4 Permissible output current (max value per pin) Caution: Note 1. Note 2. Note 3. Note 4. Min Typ Max Unit IOH - - -2.0 mA IOL - - 2.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -2.0 mA IOL - - 2.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -20 mA IOL - - 20 mA IOH - - -2.0 mA IOL - - 2.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -16 mA IOL - - 16 mA IOH - - -4.0 mA Ports P000 to P009, P201 - IOL - - 4.0 mA Ports P014, P015 - IOH - - -8.0 mA IOL - - 8.0 mA Ports P205, P206, P407 to P415, P602, P708 to P713 (total 18 pins) Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA Middle drive*2 IOH - - -8.0 mA IOL - - 8.0 mA High drive*3 IOH - - -40 mA IOL - - 40 mA Low drive*1 IOH - - -4.0 mA IOL - - 4.0 mA Middle drive*2 IOH - - -8.0 mA IOL - - 8.0 mA High drive*3 IOH - - -32 mA Other output pins*4 Permissible output current (maxvalue of total of all pins) Symbol Maximum of all output pins IOL - - 32 mA ΣIOH (max) - - -80 mA ΣIOL (max) - - 80 mA To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 μs. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. Except for P200, which is an input port. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 27 of 100 RA6M2 Group 2.2.4 2. Electrical Characteristics I/O VOH, VOL, and Other Characteristics Table 2.6 I/O VOH, VOL, and other characteristics Parameter Output voltage Symbol Min Typ Max Unit Test conditions IIC VOL - - 0.4 V IOL = 3.0 mA VOL - - 0.6 IOL = 6.0 mA IIC*1 VOL - - 0.4 IOL = 15.0 mA (ICFER.FMPE = 1) VOL - 0.4 - IOL = 20.0 mA (ICFER.FMPE = 1) VOH VCC - 0.5 - - IOH = -1.0 mA VOL - - 0.4 IOL = 1.0 mA VOH VCC - 1.0 - - IOH = -20 mA VCC = 3.3 V VOL - - 1.0 IOL = 20 mA VCC = 3.3 V Other output pins VOH VCC - 0.5 - - IOH = -1.0 mA VOL - - 0.5 RES |Iin| - - 5.0 - - 1.0 - - 5.0 - - 1.0 ETHERC Ports P205, P206, P407 to P415, P602, P708 to P713 (total of 18 pins)*2 Input leakage current Port P200 Three-state leakage current (off state) 5 V-tolerant ports |ITSI| Other ports (except for port P200) IOL = 1.0 mA μA Vin = 0 V Vin = 5.5 V Vin = 0 V Vin = VCC μA Vin = 0 V Vin = 5.5 V Vin = 0 V Vin = VCC Input pull-up MOS current Ports P0 to PB Ip -300 - -10 μA VCC = 2.7 to 3.6 V Vin = 0 V Input capacitance USB_DP, USB_DM, and ports P014, P015, P400, P401, P511, P512 Cin - - 16 pF - - 8 Vbias = 0V Vamp = 20 mV f = 1 MHz Ta = 25°C Other input pins Note 1. Note 2. SCL0_A, SDA0_A (total 2 pins). This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 28 of 100 RA6M2 Group 2.2.5 2. Electrical Characteristics Operating and Standby Current Table 2.7 Operating and standby current (1 of 2) Parameter Maximum*2 Supply current*1 Min Typ Max Unit Test conditions ICC*3 - - 102*2 mA ICLK = 120 MHz PCLKA = 120 MHz*7 PCLKB = 60 MHz PCLKC = 60 MHz PCLKD = 120 MHz FCLK = 60 MHz BCLK = 120 MHz CoreMark®*5 High-speed mode Normal mode - 19 - All peripheral clocks enabled, while (1) code executing from flash*4 - 26 - All peripheral clocks disabled, while (1) code executing from flash*5, *6 - 12 - 40 Sleep mode*5, *6 Increase during BGO operation - 10 Data flash P/E - 6 - Code flash P/E - 8 - - 1.3 - ICLK = 1 MHz Subosc-speed mode*5 - 1.2 - ICLK = 32.768 kHz Software Standby mode - 1.3 15 Ta ≤ 85°C - 1.3 24 Ta ≤ 105°C Power supplied to Standby SRAM and USB resume detecting unit - 29 67 - 29 96 Ta ≤ 105°C Power not supplied to SRAM or USB resume detecting unit Power-on reset circuit low power function disabled - 11.6 32.4 Ta ≤ 85°C - 11.6 40 Ta ≤ 105°C Power-on reset circuit low power function enabled - 4.9 23.5 Ta ≤ 85°C - 4.9 31 Ta ≤ 105°C When the low-speed on-chip oscillator (LOCO) is in use - 4.4 - - When a crystal oscillator for low clock loads is in use - 1.0 - - When a crystal oscillator for standard clock loads is in use - 1.4 - - When a crystal oscillator for low clock loads is in use - 0.9 - VBATT = 1.8 V, VCC = 0 V - 1.1 - VBATT = 3.3 V, VCC = 0 V When a crystal oscillator for standard clock loads is in use - 1.0 - VBATT = 1.8 V, VCC = 0 V - 1.6 - VBATT = 3.3 V, VCC = 0 V Deep Software Standby mode Low-speed mode*5 Increase when the RTC and AGT are operating RTC operating while VCC is off (with the battery backup function, only the RTC and sub-clock oscillator operate) Analog power supply current Symbol During 12-bit A/D conversion AICC μA Ta ≤ 85°C - 0.8 1.1 mA - During 12-bit A/D conversion with S/H amp - 2.3 3.3 mA - ACMPHS (1 unit) - 100 150 µA - Temperature sensor - 0.1 0.2 mA - - 0.1 0.2 mA - During D/A conversion (per unit) Without AMP output - 0.6 1.1 mA Waiting for A/D, D/A conversion (all units) With AMP output - 0.9 1.6 mA - ADC12, DAC12 in standby modes (all units)*8 - 2 8 µA - - 70 120 μA - Reference power supply current (VREFH0) During 12-bit A/D conversion (unit 0) Reference power supply current (VREFH) During 12-bit A/D conversion (unit 1) AIREFH0 Waiting for 12-bit A/D conversion (unit 0) - 0.07 0.5 μA - ADC12 in standby modes (unit 0) - 0.07 0.5 µA - - 70 120 µA - Without AMP output - 0.1 0.4 mA - With AMP ouput - 0.1 0.4 mA - Waiting for 12-bit A/D (unit 1), D/A (all units) conversion - 0.07 0.8 µA - ADC12 unit 1 in standby modes - 0.07 0.8 µA - During D/A conversion (per unit) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 AIREFH Page 29 of 100 RA6M2 Group Table 2.7 2. Electrical Characteristics Operating and standby current (2 of 2) Parameter USB operating current Note 1. Note 2. Note 3. Note 4. Note 5. Note 6. Note 7. Note 8. Symbol Min Typ Max Unit Test conditions Low speed USB ICCUSBLS - 3.5 6.5 mA VCC_USB Full speed USB ICCUSBFS - 4.0 10.0 mA VCC_USB Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation. ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCK:EBCLK = 2:2:1:1:2:1:1) ICC Max. = 0.61 × f + 29 (maximum operation in High-speed mode) ICC Typ. = 0.08 × f + 2.6 (normal operation in High-speed mode) ICC Typ. = 0.1 × f + 1.2 (Low-speed mode) ICC Max. = 0.09 × f + 29 (Sleep mode). This does not include the BGO operation. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz). When using ETHERC, PCLKA frequency is such that PCLKA = ICLK. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-bit A/D Converter 0 Module Stop bit) and MSTPCRD.MSTPD15 (12-bit A/D Converter 1 Module Stop bit) are in the module-stop state. 100.0 ICC (mA) 10.0 1.0 -40 -20 0.1 0 20 40 60 80 100 Ta (Ԩ) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.2 Temperature dependency in Software Standby mode (reference data) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 30 of 100 RA6M2 Group 2. Electrical Characteristics 1000 ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (Ԩ) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.3 Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and USB resume detecting unit (reference data) ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (Ԩ) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.4 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function disabled (reference data) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 31 of 100 RA6M2 Group 2. Electrical Characteristics ICC (uA) 100 10 1 -40 -20 0 20 40 60 80 100 Ta (Ԩ) Average value of the tested middle samples during product evaluation. Average value of the tested upper-limit samples during product evaluation. Figure 2.5 2.2.6 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function enabled (reference data) VCC Rise and Fall Gradient and Ripple Frequency Table 2.8 Rise and fall gradient characteristics Parameter VCC rising gradient Voltage monitor 0 reset disabled at startup Symbol Min Typ Max Unit Test conditions SrVCC 0.0084 - 20 ms/V - 0.0084 - - 0.0084 - 20 0.0084 - - Voltage monitor 0 reset enabled at startup SCI/USB boot mode*1 VCC falling gradient*2 Note 1. Note 2. SfVCC ms/V - At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit. This applies when VBATT is used. Table 2.9 Rise and fall gradient and ripple frequency characteristics The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit (2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Unit Test conditions Allowable ripple frequency fr (VCC) - - 10 kHz Figure 2.6 Vr (VCC) ≤ VCC × 0.2 - - 1 MHz Figure 2.6 Vr (VCC) ≤ VCC × 0.08 - - 10 MHz Figure 2.6 Vr (VCC) ≤ VCC × 0.06 1.0 - - ms/V When VCC change exceeds VCC ±10% Allowable voltage change rising and falling gradient R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 dt/dVCC Page 32 of 100 RA6M2 Group 2. Electrical Characteristics 1/fr(VCC) VCC Figure 2.6 2.3 Vr(VCC) Ripple waveform AC Characteristics 2.3.1 Frequency Table 2.10 Operation frequency value in high-speed mode Parameter Symbol Operation frequency System clock (ICLK*2) 120 120 Peripheral module clock (PCLKB)*2 - - 60 Peripheral module clock (PCLKC)*2 -*3 - 60 - - 120 -*1 - 60 (PCLKD)*2 (BCLK)*2 SDCLK pin output VCC ≥ 3.0 V - - 120 - - 60 - - 120 FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz. Table 2.11 Operation frequency value in low-speed mode Parameter Operation frequency Symbol Min Typ Max Unit f - - 1 MHz (PCLKA)*2 - - 1 Peripheral module clock (PCLKB)*2 - - 1 System clock (ICLK)*2 Peripheral module clock -*3 - 1 Peripheral module clock (PCLKD)*2 - - 1 Flash interface clock (FCLK)*1, *2 - - 1 External bus clock (BCLK) - - 1 EBCLK pin output - - 1 Peripheral module clock Note 3. MHz - EBCLK pin output Note 1. Note 2. Unit - External bus clock Note 3. Max - Flash interface clock (FCLK)*2 Note 1. Note 2. Typ Peripheral module clock (PCLKA)*2 Peripheral module clock f Min (PCLKC)*2,*3 Programming or erasing the flash memory is disabled in low-speed mode. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 33 of 100 RA6M2 Group Table 2.12 2. Electrical Characteristics Operation frequency value in Subosc-speed mode Parameter Operation frequency Symbol Min Typ Max Unit f 29.4 - 36.1 kHz Peripheral module clock (PCLKA)*2 - - 36.1 Peripheral module clock (PCLKB)*2 - - 36.1 - - 36.1 - - 36.1 System clock (ICLK)*2 Peripheral module clock (PCLKC)*2,*3 Peripheral module clock (PCLKD)*2 Flash interface clock Note 1. Note 2. Note 3. (FCLK)*1, *2 29.4 - 36.1 External bus clock (BCLK)*2 - - 36.1 EBCLK pin output - - 36.1 Programming or erasing the flash memory is disabled in Subosc-speed mode. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC, PCLKD, FCLK, and BCLK frequencies. The ADC12 cannot be used. 2.3.2 Table 2.13 Clock Timing Clock timing except for sub-clock oscillator (1 of 2) Parameter Symbol Min Typ Max Unit Test conditions EBCLK pin output cycle time tBcyc 16.6 - - ns Figure 2.7 EBCLK pin output high pulse width tCH 3.3 - - ns EBCLK pin output low pulse width tCL 3.3 - - ns EBCLK pin output rise time tCr - - 5.0 ns EBCLK pin output fall time tCf - - 5.0 ns SDCLK pin output cycle time tSDcyc 8.33 - - ns SDCLK pin output high pulse width tCH 1.0 - - ns SDCLK pin output low pulse width tCL 1.0 - - ns SDCLK pin output rise time tCr - - 3.0 ns SDCLK pin output fall time tCf - - 3.0 ns EXTAL external clock input cycle time tEXcyc 41.66 - - ns EXTAL external clock input high pulse width tEXH 15.83 - - ns EXTAL external clock input low pulse width tEXL 15.83 - - ns EXTAL external clock rise time tEXr - - 5.0 ns EXTAL external clock fall time tEXf - - 5.0 ns Main clock oscillator frequency fMAIN 8 - 24 MHz - Main clock oscillation stabilization wait time (crystal) *1 tMAINOSCWT - - -*1 ms Figure 2.9 LOCO clock oscillation frequency fLOCO 29.4912 32.768 36.0448 kHz - Figure 2.8 LOCO clock oscillation stabilization wait time tLOCOWT - - 60.4 μs Figure 2.10 ILOCO clock oscillation frequency fILOCO 13.5 15 16.5 kHz - MOCO clock oscillation frequency FMOCO 6.8 8 9.2 MHz - MOCO clock oscillation stabilization wait time tMOCOWT - - 15.0 μs - R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 34 of 100 RA6M2 Group Table 2.13 2. Electrical Characteristics Clock timing except for sub-clock oscillator (2 of 2) Parameter HOCO clock oscillator oscillation frequency Without FLL With FLL HOCO clock oscillation stabilization wait time*2 Symbol Min Typ Max Unit Test conditions fHOCO16 15.78 16 16.22 MHz -20 ≤ Ta ≤ 105°C fHOCO18 17.75 18 18.25 fHOCO20 19.72 20 20.28 fHOCO16 15.71 16 16.29 fHOCO18 17.68 18 18.32 fHOCO20 19.64 20 20.36 fHOCO16 15.955 16 16.045 fHOCO18 17.949 18 18.051 fHOCO20 19.944 20 20.056 -40 ≤ Ta ≤ -20°C -40 ≤ Ta ≤ 105°C Sub-clock frequency accuracy is ±50 ppm. tHOCOWT - - 64.7 μs - FLL stabilization wait time tFLLWT - - 1.8 ms - PLL clock frequency fPLL 120 - 240 MHz - PLL clock oscillation stabilization wait time tPLLWT - - 174.9 μs Figure 2.11 Note 1. Note 2. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value. After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1, and then start using the main clock oscillator. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed operation. Table 2.14 Clock timing for the sub-clock oscillator Parameter Symbol Min Typ Max Unit Test conditions Sub-clock frequency fSUB - 32.768 - kHz - Sub-clock oscillation stabilization wait time tSUBOSCWT - - -*1 s Figure 2.12 Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time. After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended. tBcyc, tSDcyc tCH tCf EBCLK pin output, SDCLK pin output tCL Figure 2.7 tCr EBCLK and SDCLK output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 35 of 100 RA6M2 Group 2. Electrical Characteristics tEXcyc tEXH EXTAL external clock input VCC × 0.5 tEXr Figure 2.8 tEXL tEXf EXTAL external clock input timing MOSCCR.MOSTP Main clock oscillator output tMAINOSCWT Main clock Figure 2.9 Main clock oscillation start timing LOCOCR.LCSTP On-chip oscillator output tLOCOWT LOCO clock Figure 2.10 LOCO clock oscillation start timing PLLCR.PLLSTP PLL circuit output tPLLWT OSCSF.PLLSF PLL clock Figure 2.11 Note: PLL clock oscillation start timing Only operate the PLL after the main clock oscillation has stabilized. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 36 of 100 RA6M2 Group 2. Electrical Characteristics SOSCCR.SOSTP Sub-clock oscillator output tSUBOSCWT Sub-clock Figure 2.12 2.3.3 Table 2.15 Sub-clock oscillation start timing Reset Timing Reset timing Symbol Min Typ Max Unit Test conditions Power-on tRESWP 1 - - ms Figure 2.13 Deep Software Standby mode tRESWD 0.6 - - ms Figure 2.14 Software Standby mode, Subosc-speed mode tRESWS 0.3 - - ms All other tRESW 200 - - μs Wait time after RES cancellation tRESWT - 29 32 μs Figure 2.13 Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset) tRESW2 - 320 390 μs - Parameter RES pulse width VCC RES Internal reset signal (low is valid) tRESWP tRESWT Figure 2.13 Power-on reset timing tRESWD, tRESWS, tRESW RES Internal reset signal (low is valid) tRESWT Figure 2.14 Reset input timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 37 of 100 RA6M2 Group 2.3.4 Table 2.16 2. Electrical Characteristics Wakeup Timing Timing of recovery from low power modes Parameter Symbol Min Typ Max Unit Crystal resonator connected to main clock oscillator System clock source is main clock oscillator*2 tSBYMC - 2.4*9 2.8*9 ms System clock source is PLL with main clock oscillator*3 tSBYPC - 2.7*9 3.2*9 ms External clock input to main clock oscillator System clock source is main clock oscillator*4 tSBYEX - 230*9 280*9 μs System clock source is PLL with main clock oscillator*5 tSBYPE - 570*9 700*9 μs System clock source is sub-clock oscillator*8 tSBYSC - 1.2*9 1.3*9 ms System clock source is LOCO*8 tSBYLO - 1.2*9 1.4*9 ms System clock source is HOCO clock oscillator*6 tSBYHO - 240*9, *10 300 *9, *10 µs System clock source is MOCO clock oscillator*7 tSBYMO - 220*9 300*9 µs Recovery time from Deep Software Standby mode tDSBY - 0.65 1.0 ms Wait time after cancellation of Deep Software Standby mode tDSBYWT 34 - 35 tcyc 70 *9, *10 μs 14*9 μs Recovery time from Software Standby mode*1 Recovery time from Software Standby mode to Snooze mode High-speed mode when system clock source is HOCO (20 MHz) tSNZ - 35*9, *10 High-speed mode when system clock source is MOCO (8 MHz) tSNZ - 11*9 Test conditions Figure 2.15 The division ratio of all oscillators is 1. Figure 2.16 Figure 2.17 Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation: Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3 SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)). Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR = 05h)) Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR = 05h)) Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR = 00h)) Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation: tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR = 00h)) Note 6. The HOCO frequency is 20 MHz. Note 7. The MOCO frequency is 8 MHz. Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode. Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum) STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum). Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 38 of 100 RA6M2 Group 2. Electrical Characteristics Oscillator (system clock) tSBYOSCWT tSBYSEQ Oscillator (not the system clock) ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYPC, tSBYPE, tSBYPH, tSBYSC, tSBYHO, tSBYLO When stabilization of the system clock oscillator is slower Oscillator (system clock) tSBYOSCWT tSBYSEQ Oscillator (not the system clock) tSBYOSCWT ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYPC, tSBYPE, tSBYPH, tSBYSC, tSBYHO, tSBYLO When stabilization of an oscillator other than the system clock is slower Figure 2.15 Software Standby mode cancellation timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 39 of 100 RA6M2 Group 2. Electrical Characteristics Oscillator IRQ Deep Software Standby reset (low is valid) Internal reset (low is valid) Deep Software Standby mode tDSBY tDSBYWT Reset exception handling start Figure 2.16 Deep Software Standby mode cancellation timing Oscillator ICLK(except DTC, SRAM) ICLK(to DTC, SRAM)*1 PCLK IRQ Software Standby mode Snooze mode tSNZ Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.17 2.3.5 Recovery timing from Software Standby mode to Snooze mode NMI and IRQ Noise Filter Table 2.17 NMI and IRQ noise filter Parameter Symbol Min NMI pulse width tNMIW 200 tPcyc × IRQ pulse width tIRQW 2*1 Max Unit Test conditions - - ns NMI digital filter disabled tPcyc × 2 ≤ 200 ns NMI digital filter enabled tNMICK × 3 ≤ 200 ns - - 200 - - tNMICK × 3.5*2 - - 200 - - tPcyc × 2*1 - - 200 - - - - tIRQCK × Note: Note: Typ 3.5*3 tPcyc × 2 > 200 ns tNMICK × 3 > 200 ns ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns tIRQCK × 3 > 200 ns 200 ns minimum in Software Standby mode. If the clock source is switched, add 4 clock cycles of the switched source. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 40 of 100 RA6M2 Group Note 1. Note 2. Note 3. 2. Electrical Characteristics tPcyc indicates the PCLKB cycle. tNMICK indicates the cycle of the NMI digital filter sampling clock. tIRQCK indicates the cycle of the IRQi digital filter sampling clock. NMI tNMIW Figure 2.18 NMI interrupt input timing IRQ tIRQW Figure 2.19 2.3.6 IRQ interrupt input timing Bus Timing Table 2.18 Bus timing (1 of 2) Condition 1: When using the CS area controller (CSC). BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz. VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF. EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Condition 2: When using the SDRAM area controller (SDRAMC). BCLK = SDCLK = 8 to 120 MHz. VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF. High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously. BCLK = SDCLK = 8 to 60 MHz. VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF. High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Max Unit Test conditions Address delay tAD - 12.5 ns Byte control delay tBCD - 12.5 ns Figure 2.20 to Figure 2.25 CS delay tCSD - 12.5 ns ALE delay time tALED - 12.5 ns RD delay tRSD - 12.5 ns Read data setup time tRDS 12.5 - ns Read data hold time tRDH 0 - ns WR/WRn delay tWRD - 12.5 ns Write data delay tWDD - 12.5 ns Write data hold time tWDH 0 - ns WAIT setup time tWTS 12.5 - ns WAIT hold time tWTH 0 - ns R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Figure 2.26 Page 41 of 100 RA6M2 Group Table 2.18 2. Electrical Characteristics Bus timing (2 of 2) Condition 1: When using the CS area controller (CSC). BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz. VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF. EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Condition 2: When using the SDRAM area controller (SDRAMC). BCLK = SDCLK = 8 to 120 MHz. VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF. High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously. BCLK = SDCLK = 8 to 60 MHz. VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF. High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Max Unit Test conditions Address delay 2 (SDRAM) tAD2 0.8 6.8 ns CS delay 2 (SDRAM) tCSD2 0.8 6.8 ns Figure 2.27 to Figure 2.30 DQM delay (SDRAM) tDQMD 0.8 6.8 ns CKE delay (SDRAM) tCKED 0.8 6.8 ns Read data setup time 2 (SDRAM) tRDS2 2.9 - ns Read data hold time 2 (SDRAM) tRDH2 1.5 - ns Write data delay 2 (SDRAM) tWDD2 - 6.8 ns Write data hold time 2 (SDRAM) tWDH2 0.8 - ns WE delay (SDRAM) tWED 0.8 6.8 ns RAS delay (SDRAM) tRASD 0.8 6.8 ns CAS delay (SDRAM) tCASD 0.8 6.8 ns Data cycle Address cycle Ta1 Ta1 Tan TW1 TW2 TW3 TW4 TW5 Tend Tn1 Tn2 EBCLK tAD Address bus Address bus/ data bus tAD tRDS tAD tALED tRDH tALED Address latch (ALE) tRSD tRSD Data read (RD) tCSD Chip select (CSn) Figure 2.20 tCSD Address/data multiplexed bus read access timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 42 of 100 RA6M2 Group 2. Electrical Characteristics Data cycle Address cycle Ta1 Ta1 Tan TW1 TW2 TW3 TW4 TW5 Tend Tn1 Tn2 Tn3 EBCLK tAD Address bus Address bus/ data bus tAD tAD tALED tWDD tWDH tALED Address latch (ALE) tWRD tWRD Data write (WRm) tCSD Chip select (CSn) Figure 2.21 tCSD Address/data multiplexed bus write access timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 43 of 100 RA6M2 Group 2. Electrical Characteristics CSRWAIT: 2 RDON:1 CSROFF: 2 CSON: 0 TW1 TW2 Tend Tn1 Tn2 EBCLK Byte strobe mode tAD tAD tAD tAD A20 to A00 1-write strobe mode A20 to A01 tBCD tBCD tCSD tCSD BC1, BC0 Common to both byte strobe mode and 1-write strobe mode CS7 to CS0 tRSD tRSD RD (read) tRDS tRDH D15 to D00 (read) Figure 2.22 External bus timing for normal read cycle with bus clock synchronized R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 44 of 100 RA6M2 Group 2. Electrical Characteristics CSWWAIT: 2 WRON: 1 WDON: 1*1 CSWOFF: 2 WDOFF: 1*1 CSON:0 TW1 TW2 Tend Tn1 Tn2 EBCLK Byte strobe mode tAD tAD tAD tAD A20 to A00 1-write strobe mode A20 to A01 tBCD tBCD tCSD tCSD BC1, BC0 Common to both byte strobe mode and 1-write strobe mode CS7 to CS0 tWRD tWRD WR1, WR0, WR (write) tWDD tWDH D15 to D00 (write) Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle. Figure 2.23 External bus timing for normal write cycle with bus clock synchronized R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 45 of 100 RA6M2 Group 2. Electrical Characteristics CSRWAIT:2 CSPRWAIT:2 RDON:1 CSON:0 TW1 TW2 Tend CSPRWAIT:2 CSPRWAIT:2 RDON:1 RDON:1 Tpw1 Tpw2 Tend CSROFF:2 RDON:1 Tpw1 Tpw2 Tend Tpw1 Tpw2 Tend Tn1 Tn2 EBCLK Byte strobe mode tAD tAD tAD tAD tAD tAD tAD tAD tAD tAD A20 to A00 1-write strobe mode A20 to A01 tBCD tBCD tCSD tCSD BC1, BC0 Common to both byte strobe mode and 1-write strobe mode CS7 to CS0 tRSD tRSD tRSD tRSD tRSD tRSD tRSD tRSD RD (Read) tRDS tRDH tRDS tRDH tRDS tRDH tRDS tRDH D15 to D00 (Read) Figure 2.24 External bus timing for page read cycle with bus clock synchronized CSPWWAIT:2 CSWWAIT:2 WRON:1 WDON:1*1 WDOFF:1*1 CSON:0 TW1 TW2 Tend Tdw1 WRON:1 WDON:1*1 Tpw1 CSPWWAIT:2 WDOFF:1*1 Tpw2 Tend Tdw1 WRON:1 WDON:1*1 Tpw1 CSWOFF:2 WDOFF:1*1 Tpw2 Tend Tn1 Tn2 EBCLK Byte strobe mode tAD tAD tAD tAD tAD tAD tAD tAD A20 to A00 1-write strobe mode A20 to A01 tBCD tBCD tCSD tCSD BC1, BC0 Common to both byte strobe mode and 1-write strobe mode CS7 to CS0 tWRD tWRD tWRD tWRD tWRD tWRD WR1, WR0, WR (write) tWDD tWDH tWDD tWDH tWDD tWDH D15 to D00 (write) Note 1. Figure 2.25 Always specify WDON and WDOFF as at least one EBCLK cycle. External bus timing for page write cycle with bus clock synchronized R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 46 of 100 RA6M2 Group 2. Electrical Characteristics CSRWAIT:3 CSWWAIT:3 TW1 TW2 TW3 (Tend) Tend Tn1 Tn2 EBCLK A20 to A00 CS7 to CS0 RD (read) WR (write) External wait tWTS tWTH tWTS tWTH WAIT Figure 2.26 External bus timing for external wait control R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 47 of 100 RA6M2 Group 2. Electrical Characteristics SDRAM command ACT RD PRA SDCLK tAD2 tAD2 Row address A15 to A00 tAD2 tAD2 tAD2 tAD2 tAD2 Column address tAD2 AP*1 PRA command tCSD2 tCSD2 tRASD tRASD tCSD2 tCSD2 tCSD2 tCSD2 tRASD tRASD tWED tWED SDCS RAS tCASD tCASD CAS WE (High) CKE tDQMD DQMn tRDS2 tRDH2 DQ15 to DQ00 Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM. Figure 2.27 SDRAM single read timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 48 of 100 RA6M2 Group 2. Electrical Characteristics SDRAM command ACT WR PRA SDCLK tAD2 tAD2 Row address A15 to A00 tAD2 tAD2 tAD2 tAD2 tAD2 Column address tAD2 AP*1 PRA command tCSD2 tCSD2 tRASD tRASD tCSD2 tCSD2 tCSD2 tCSD2 tRASD tRASD tWED tWED SDCS RAS tCASD tCASD tWED tWED CAS WE (High) CKE tDQMD DQMn tWDD2 tWDH2 DQ15 to DQ00 Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM. Figure 2.28 SDRAM single write timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 49 of 100 RA6M2 Group 2. Electrical Characteristics MRS SDRAM command SDCLK t AD2 t AD2 t AD2 t AD2 t CSD2 t CSD2 t RASD t RASD t CASD t CASD t WED t WED A15 to A00 AP*1 SDCS RAS CAS WE (High) CKE DQMn (Hi-Z) DQ15 to DQ00 Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM. Figure 2.29 SDRAM mode register set timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 50 of 100 RA6M2 Group 2. Electrical Characteristics SDRAM command Ts (RFA) (RFS) (RFX) (RFA) SDCLK t AD2 t AD2 t AD2 t AD2 A15 to A00 AP*1 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t RASD t RASD t RASD t RASD t RASD t RASD t RASD t CASD t CASD t CASD t CASD t CASD t CASD t CASD SDCS RAS CAS (High) WE t CKED t CKED CKE t DQMD t DQMD DQMn (Hi-Z) DQ15 to DQ00 Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM. Figure 2.30 2.3.7 Table 2.19 SDRAM self-refresh timing I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2) GPT32 Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. AGT Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Max Unit Test conditions I/O ports Input data pulse width tPRW 1.5 - tPcyc Figure 2.31 POEG POEG input trigger pulse width tPOEW 3 - tPcyc Figure 2.32 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 51 of 100 RA6M2 Group Table 2.19 2. Electrical Characteristics I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2) GPT32 Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. AGT Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter GPT32 Input capture pulse width Single edge Symbol Min Max Unit Test conditions tGTICW 1.5 - tPDcyc Figure 2.33 2.5 ns Figure 2.34 Dual edge *1 GTIOCxY output skew (x = 0 to 7, Y= A or B) Middle drive buffer - 4 High drive buffer - 4 GTIOCxY output skew (x = 8 to 13, Y = A or B) Middle drive buffer - 4 High drive buffer - 4 GTIOCxY output skew (x = 0 to 13, Y = A or B) Middle drive buffer - 6 High drive buffer - 6 tGTISK OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO tGTOSK - 5 ns Figure 2.35 GPT(PWM Delay Generation Circuit) GTIOCxY_Z output skew (x = 0 to 3, Y = A or B, Z = A) tHRSK*2 - 2.0 ns Figure 2.36 AGT AGTIO, AGTEE input cycle tACYC*3 100 - ns Figure 2.37 AGTIO, AGTEE input high width, low width tACKWH, tACKWL 40 - ns AGTIO, AGTO, AGTOA, AGTOB output cycle tACYC2 62.5 - ns ADC12 ADC12 trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.38 KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.39 Note: Note 1. Note 2. Note 3. tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed. The load is 30 pF. Constraints on input cycle: When not switching the source clock: tPcyc × 2 < tACYC should be satisfied. When switching the source clock: tPcyc × 6 < tACYC should be satisfied. Port tPRW Figure 2.31 I/O ports input timing POEG input trigger tPOEW Figure 2.32 POEG input trigger timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 52 of 100 RA6M2 Group 2. Electrical Characteristics Input capture tGTICW Figure 2.33 GPT32 input capture timing PCLKD Output delay GPT32 output tGTISK Figure 2.34 GPT32 output delay skew PCLKD Output delay GPT32 output tGTOSK Figure 2.35 GPT32 output delay skew for OPS PCLKD Output delay GPT32 output (PWM delay generation circuit) tHRSK Figure 2.36 GPT32 (PWM Delay Generation Circuit) output delay skew R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 53 of 100 RA6M2 Group 2. Electrical Characteristics tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.37 AGT input/output timing ADTRG0, ADTRG1 tTRGW Figure 2.38 ADC12 trigger input timing KR00 to KR07 tKR Figure 2.39 2.3.8 Key interrupt input timing PWM Delay Generation Circuit Timing Table 2.20 PWM Delay Generation Circuit timing Parameter Min Typ Max Unit Test conditions Operation frequency 80 - 120 MHz - Resolution - 260 - ps PCLKD = 120 MHz DNL*1 - ±2.0 - LSB - Note 1. This value normalizes the differences between lines in 1-LSB resolution. 2.3.9 Table 2.21 CAC Timing CAC timing Parameter CAC CACREF input pulse width tPBcyc ≤ tcac*2 tPBcyc > tcac*2 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tcac + 3 × tPBcyc - - ns - 5 × tcac + 6.5 × tPBcyc - - ns Page 54 of 100 RA6M2 Group Note 1. Note 2. 2. Electrical Characteristics tPBcyc: PCLKB cycle. tcac: CAC count clock source cycle. 2.3.10 SCI Timing Table 2.22 SCI timing (1) Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK9. For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter SCI Input clock cycle Asynchronous Symbol Min Max Unit*1 Test conditions tScyc 4 - tPcyc Figure 2.40 6 - Clock synchronous Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr - 5 ns Input clock fall time tSCKf - 5 ns tScyc 6 - tPcyc 4 - Output clock cycle Asynchronous Clock synchronous Note 1. Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rise time tSCKr - 5 ns Output clock fall time tSCKf - 5 ns Transmit data delay Clock synchronous tTXD - 25 ns Receive data setup time Clock synchronous tRXS 15 - ns Receive data hold time Clock synchronous tRXH 5 - ns Figure 2.41 tPcyc: PCLKA cycle. tSCKW tSCKr tSCKf SCKn (n = 0 to 9) tScyc Figure 2.40 SCK clock input/output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 55 of 100 RA6M2 Group 2. Electrical Characteristics SCKn tTXD TxDn tRXS tRXH RxDn n = 0 to 9 Figure 2.41 Table 2.23 SCI input/output timing in clock synchronous mode SCI timing (2) Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK9. For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Max Unit Test conditions Simple SPI tSPcyc 4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz) 65536 tPcyc Figure 2.42 SCK clock cycle input (slave) - 6 (PCLKA ≤ 60 MHz) 12 (PCLKA > 60 MHz) 65536 SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc SCK clock rise and fall time tSPCKr, tSPCKf - 20 ns Data input setup time tSU 33.3 - ns SCK clock cycle output (master) Data input hold time tH 33.3 - ns SS input setup time tLEAD 1 - tSPcyc SS input hold time tLAG 1 - tSPcyc Data output delay tOD - 33.3 ns Data output hold time tOH -10 - ns Data rise and fall time tDr, tDf - 16.6 ns SS input rise and fall time tSSLr, tSSLf - 16.6 ns Slave access time tSA - 4 (PCLKA ≤ 60 MHz) 8 (PCLKA > 60 MHz) tPcyc Slave output release time tREL - 5 (PCLKA ≤ 60 MHz) 10 (PCLKA > 60 MHz) tPcyc R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Figure 2.43 to Figure 2.46 Figure 2.46 Page 56 of 100 RA6M2 Group 2. Electrical Characteristics tSPCKr tSPCKWH VOH SCKn master select output VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH SCKn slave select input VIH VIL (n = 0 to 9) tSPCKf VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.42 SCI simple SPI mode clock timing SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN DATA tDr, tDf MOSIn output tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 0 to 9) Figure 2.43 SCI simple SPI mode timing for master when CKPH = 1 SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH MOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = 0 to 9) Figure 2.44 SCI simple SPI mode timing for master when CKPH = 0 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 57 of 100 RA6M2 Group 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tSA tOH MISOn output tOD MSB OUT tSU MOSIn input tREL DATA LSB OUT tH MSB IN MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0 to 9) Figure 2.45 SCI simple SPI mode timing for slave when CKPH = 1 tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input tREL LSB OUT DATA tH MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0 to 9) Figure 2.46 Table 2.24 SCI simple SPI mode timing for slave when CKPH = 0 SCI timing (3) (1 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Simple IIC (Standard mode) Symbol Min Max Unit Test conditions SDA input rise time tSr - 1000 ns Figure 2.47 SDA input fall time tSf - 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc ns Data input setup time tSDAS 250 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb*1 - 400 pF R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 58 of 100 RA6M2 Group Table 2.24 2. Electrical Characteristics SCI timing (3) (2 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Simple IIC (Fast mode) Note: Note 1. Symbol Min Max Unit Test conditions SDA input rise time tSr - 300 ns Figure 2.47 SDA input fall time tSf - 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc ns Data input setup time tSDAS 100 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb*1 - 400 pF tIICcyc: IIC internal reference clock (IICφ) cycle. Cb indicates the total capacity of the bus line. VIH SDAn VIL tSr tSf tSP SCLn (n = 0 to 9) P*1 S*1 tSDAH Note 1. S, P, and Sr indicate the following: S: Start condition P: Stop condition Sr: Restart condition Figure 2.47 P*1 Sr*1 tSDAS Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA SCI simple IIC mode timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 59 of 100 RA6M2 Group 2.3.11 2. Electrical Characteristics SPI Timing Table 2.25 SPI timing Conditions: For RSPCKA and RSPCKB pins, high drive output is selected with the Port Drive Capability bit in the PmnPFS register. For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Symbol Min Max Unit*1 Test conditions*2 tSPcyc 2 (PCLKA  60 MHz) 4 (PCLKA > 60 MHz) 4096 tPcyc Figure 2.48 C = 30 pF 4 4096 (tSPcyc - tSPCKr tSPCKf) / 2 - 3 - 2 × tPcyc - tSPCKWL (tSPcyc - tSPCKr tSPCKf) / 2 - 3 - 2 × tPcyc - - 5 ns Slave tSPCKr, tSPCKf - 1 µs Master tSU ns Parameter SPI RSPCK clock cycle Master Slave RSPCK clock high pulse width Master tSPCKWH Slave RSPCK clock low pulse width Master RSPCK clock rise and fall time Master Slave Data input setup time Slave Data input hold time SSL setup time tHF 0 - Master (PCLKA division ratio set to a value other than 1/2) tH tPcyc - Slave tH 20 - Master tLEAD N × tSPcyc - 10*3 N× tSPcyc + 100*3 ns 6 x tPcyc - ns N× tSPcyc + 100*4 ns 6 x tPcyc - ns tOD - 6.3 ns - 20 tOH 0 - 0 - tSPcyc + 2 × tPcyc 8× tSPcyc + 2 × tPcyc ns 5 ns Master tLAG Slave Data output delay Master Data output hold time Master Slave Slave Successive transmission delay Master tTD Slave MOSI and MISO rise and fall time Output N × tSPcyc - 10 *4 ns 6 × tPcyc - 1 μs tSSLr, tSSLf - 5 ns - 1 μs Slave access time tSA - 2 x tPcyc + 28 ns Slave output release time tREL - 2 x tPcyc + 28 Input Output Input Figure 2.49 to Figure 2.54 C = 30 pF ns tDr, tDf SSL rise and fall time Note 1. - ns Master (PCLKA division ratio set to 1/2) Slave SSL hold time 4 5 ns Figure 2.53 and Figure 2.54 C = 30PF tPcyc: PCLKA cycle. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 60 of 100 RA6M2 Group Note 2. Note 3. Note 4. 2. Electrical Characteristics Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI interface, the AC portion of the electrical characteristics is measured for each group. N is set to an integer from 1 to 8 by the SPCKD register. N is set to an integer from 1 to 8 by the SSLND register. tSPCKr tSPCKWH SPI VOH VOH RSPCKn master select output tSPCKf VOH VOL VOH VOL VOL tSPCKWL tSPcyc tSPCKr tSPCKWH VIH VIH RSPCKn slave select input tSPCKf VIH VIL VIH VIL VIL tSPCKWL tSPcyc n = A or B VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.48 SPI clock timing SPI SSLn0 to SSLn3 output tTD tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.49 SPI timing for master when CPHA = 0 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 61 of 100 RA6M2 Group 2. Electrical Characteristics SPI SSLn0 to SSLn3 output tTD tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU tHF MISOn input tHF MSB IN tDr, tDf MOSIn output LSB IN DATA tOH MSB OUT MSB IN tOD DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.50 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2 SPI SSLn0 to SSLn3 output tTD tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH MOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.51 SPI timing for master when CPHA = 1 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 62 of 100 RA6M2 Group 2. Electrical Characteristics SPI SSLn0 to SSLn3 output tTD tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tOH tH DATA LSB IN tOD MOSIn output MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.52 RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2 SPI tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input tOD DATA tREL LSB OUT tH MSB IN MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN n = A or B Figure 2.53 SPI timing for slave when CPHA = 0 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 63 of 100 RA6M2 Group 2. Electrical Characteristics SPI tTD SSLAn input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input tREL LSB OUT DATA tH MSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN n = A or B Figure 2.54 2.3.12 SPI timing for slave when CPHA = 1 QSPI Timing Table 2.26 QSPI timing Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Max Unit*1 Test conditions QSPI tQScyc 2 48 tPcyc Figure 2.55 Note 1. Note 2. Note 3. QSPCK clock cycle QSPCK clock high pulse width tQSWH tQScyc × 0.4 - ns QSPCK clock low pulse width tQSWL tQScyc × 0.4 - ns Data input setup time tSu 8 - ns Data input hold time tIH 0 - ns QSSL setup time tLEAD (N+0.5) x tQscyc - 5 *2 (N+0.5) x tQscyc +100 *2 ns QSSL hold time tLAG (N+0.5) x tQscyc - 5 *3 (N+0.5) x tQscyc +100 *3 ns Data output delay tOD - 4 ns Data output hold time tOH -3.3 - ns Successive transmission delay tTD 1 16 tQScyc Figure 2.56 tPcyc: PCLKA cycle. N is set to 0 or 1 in SFMSLD. N is set to 0 or 1 in SFMSHD. tQSWH tQSWL QSPCLK output tQScyc Figure 2.55 QSPI clock timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 64 of 100 RA6M2 Group 2. Electrical Characteristics tTD QSSL output tLEAD tLAG QSPCLK output tSU QIO0-3 input tH MSB IN DATA tOH QIO0-3 output Figure 2.56 2.3.13 Table 2.27 LSB IN tOD MSB OUT DATA LSB OUT IDLE Transmit and receive timing IIC Timing IIC timing (1) (1 of 2) (1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B. (2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2. (3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group. Symbol Min*1 Max Unit Test conditions*3 SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 - ns Figure 2.57 Parameter IIC (Standard mode, SMBus) ICFER.FMPE = 0 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr - 1000 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time when wakeup function is disabled tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time when wakeup function is enabled tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time when wakeup function is disabled tSTAH tIICcyc + 300 - ns START condition input hold time when wakeup function is enabled tSTAH 1 (5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 1000 - ns STOP condition input setup time tSTOS 1000 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 65 of 100 RA6M2 Group Table 2.27 2. Electrical Characteristics IIC timing (1) (2 of 2) (1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B, SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B. (2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2. (3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group. Symbol Min*1 Max Unit Test conditions*3 SCL input cycle time tSCL 6 (12) × tIICcyc + 600 - ns Figure 2.57 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr 20 × (external pullup voltage/5.5V)*2 300 ns SCL, SDA input fall time tSf 20 × (external pullup voltage/5.5V)*2 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time when wakeup function is disabled tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time when wakeup function is enabled tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time when wakeup function is disabled tSTAH tIICcyc + 300 - ns START condition input hold time when wakeup function is enabled tSTAH 1 (5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 300 - ns STOP condition input setup time tSTOS 300 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF Parameter IIC (Fast mode) Note: Note 1. Note 2. Note 3. tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. Only supported for SCL0_A, SDA0_A, SCL2, and SDA2. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 66 of 100 RA6M2 Group Table 2.28 2. Electrical Characteristics IIC timing (2) Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register. Symbol Min*1,*2 Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 240 - ns Figure 2.57 SCL input high pulse width tSCLH 3 (6) × tIICcyc + 120 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 120 - ns SCL, SDA input rise time tSr - 120 ns SCL, SDA input fall time tSf - 120 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time when wakeup function is disabled tBUF 3 (6) × tIICcyc + 120 - ns SDA input bus free time when wakeup function is enabled tBUF 3 (6) × tIICcyc + 4 × tPcyc + 120 - ns Start condition input hold time when wakeup function is disabled tSTAH tIICcyc + 120 - ns START condition input hold time when wakeup function is enabled tSTAH 1 (5) × tIICcyc + tPcyc + 120 - ns Restart condition input setup time tSTAS 120 - ns Stop condition input setup time tSTOS 120 - ns Data input setup time tSDAS tIICcyc + 30 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 550 pF Parameter IIC (Fast-mode+) ICFER.FMPE = 1 Note: Note 1. Note 2. tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. Cb indicates the total capacity of the bus line. VIH SDA0 to SDA2 VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCL0 to SCL2 P*1 S*1 tSf tSCLL tSr tSCL Note 1. S, P, and Sr indicate the following: S: Start condition P: Stop condition Sr: Restart condition Figure 2.57 P*1 Sr*1 tSDAS tSDAH Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA (ICFER.FMPE = 0) VOL = 0.4 V, IOL = 15 mA (ICFER.FMPE = 1) I2C bus interface input/output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 67 of 100 RA6M2 Group 2.3.14 2. Electrical Characteristics SSIE Timing Table 2.29 SSIE timing (1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register. (2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group. Target specification Parameter SSIBCK0 Symbol Min. Max. Unit Comments Master tO 80 - ns Figure 2.58 Slave tI 80 - ns High level/ low level Master tHC/tLC 0.35 - tO 0.35 - tI Rising time/falling time Master - 0.15 tO / tI - 0.15 tO / tI Cycle Slave tRC/tFC Slave SSILRCK0/SSIFS0, SSITXD0, SSIRXD0, SSIDATA0 Input set up time Master tSR 12 - ns 12 - ns 8 - ns 15 - ns -10 5 ns 0 20 ns Figure 2.60, Figure 2.61 tDTRW - 20 ns Figure 2.62*1 Cycle tEXcyc 20 - ns Figure 2.59 High level/ low level tEXL/ tEXH 0.4 0.6 tEXcyc Slave Input hold time Master Output delay time Master tHR Slave tDTR Slave Output delay time from SSILRCK0/SSIFS0 change GTIOC1A, AUDIO_CLK Note 1. Slave Figure 2.60, Figure 2.61 For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA0 pin. tHC SSIBCK0 tRC tFC tLC tO, tI Figure 2.58 SSIE clock input/output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 68 of 100 RA6M2 Group 2. Electrical Characteristics tEXcyc tEXH tEXL GTIOC1A, AUDIO_CLK (input) 1/2 VCC tEXf Figure 2.59 tEXr Clock input timing SSIBCK0 (Input or Output) SSILRCK0/SSIFS0 (input), SSIRXD0, SSIDATA0 (input) tSR tHR SSILRCK0/SSIFS0 (output), SSITXD0, SSIDATA0 (output) tDTR Figure 2.60 SSIE data transmit and receive timing when SSICR.BCKP = 0 R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 69 of 100 RA6M2 Group 2. Electrical Characteristics SSIBCK0 (Input or Output) SSILRCK0/SSIFS0 (input), SSIRXD0, SSIDATA0 (input) tSR tHR SSILRCK0/SSIFS0 (output), SSITXD0, SSIDATA0 (output) tDTR Figure 2.61 SSIE data transmit and receive timing when SSICR.BCKP = 1 SSILRCK0/SSIFS0 (input) SSITXD0, SSIDATA0 (output) tDTRW MSB bit output delay after SSILRCK0/SSIFS0 change for slave transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR. Figure 2.62 2.3.15 Table 2.30 SSIE data output delay after SSILRCK0/SSIFS0 change SD/MMC Host Interface Timing SD/MMC Host Interface signal timing Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Clock duty ratio is 50%. Parameter Symbol Min Max Unit Test conditions*1 SDCLK clock cycle TSDCYC 20 - ns Figure 2.63 SDCLK clock high pulse width TSDWH 6.5 - ns SDCLK clock low pulse width TSDWL 6.5 - ns SDCLK clock rise time TSDLH - 3 ns SDCLK clock fall time TSDHL - 3 ns SDCMD/SDDAT output data delay TSDODLY -6 5 ns SDCMD/SDDAT input data setup TSDIS 4 - ns SDCMD/SDDAT input data hold TSDIH 2 - ns Note 1. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 70 of 100 RA6M2 Group 2. Electrical Characteristics For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group. T SDCYC T SDW L SDnCLK (output) T SDHL T SDW H T SDLH T SDO DLY(m ax) T SDO DLY (m in) SDnCM D/SDnDATm (output) T SDIS T SDIH SDnCM D/SDnDATm (input) n = 0, 1, m = 0 to 7 Figure 2.63 2.3.16 SD/MMC Host Interface signal timing ETHERC Timing Table 2.31 ETHERC timing Conditions: ETHERC (RMII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: ET0_MDC, ET0_MDIO. For other pins, high drive output is selected in the Port Drive Capability bit in the PmnPFS register. ETHERC (MII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter ETHERC (RMII) Symbol Min Max Unit REF50CK0 cycle time Tck 20 - ns REF50CK0 frequency, typical 50 MHz - - 50 + 100 ppm MHz REF50CK0 duty - 35 65 % REF50CK0 rise/fall time Tckr/ckf 0.5 3.5 ns RMII_xxxx*1 ETHERC (MII) Note 1. Note 2. Tco 2.5 12.0 ns RMII_xxxx*2 setup time output delay Tsu 3 - ns RMII_xxxx*2 hold time Thd 1 - ns RMII_xxxx*1, *2 rise/fall time Test conditions*3 Figure 2.64 to Figure 2.67 Tr/Tf 0.5 4 ns ET0_WOL output delay tWOLd 1 23.5 ns Figure 2.68 ET0_TX_CLK cycle time tTcyc 40 - ns - ET0_TX_EN output delay tTENd 1 20 ns Figure 2.69 ET0_ETXD0 to ET_ETXD3 output delay tMTDd 1 20 ns ET0_CRS setup time tCRSs 10 - ns ET0_CRS hold time tCRSh 10 - ns ET0_COL setup time tCOLs 10 - ns Figure 2.70 ET0_COL hold time tCOLh 10 - ns ET0_RX_CLK cycle time tTRcyc 40 - ns - ET0_RX_DV setup time tRDVs 10 - ns Figure 2.71 ET0_RX_DV hold time tRDVh 10 - ns ET0_ERXD0 to ET_ERXD3 setup time tMRDs 10 - ns ET0_ERXD0 to ET_ERXD3 hold time tMRDh 10 - ns ET0_RX_ER setup time tRERs 10 - ns ET0_RX_ER hold time tRESh 10 - ns ET0_WOL output delay tWOLd 1 23.5 ns Figure 2.72 Figure 2.73 RMII_TXD_EN, RMII_TXD1, RMII_TXD0. RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 71 of 100 RA6M2 Group Note 3. 2. Electrical Characteristics The following pins must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the ETHERC (RMII) Host interface, the AC portion of the electrical characteristics is measured for each group. REF50CK0_A, REF50CK0_B, RMII0_xxxx_A, RMII0_xxxx_B. Tck 90% REF50CK0 Tckr 50% Tckf 10% Tco Tf Tr Tsu Thd 90% *1 RMII_xxxx 50% Change in signal level Change in signal level Signal Change in signal level Signal 10% Note 1. RMII_TXD_EN, RMII_TXD1, RMII_TXD0, RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER Figure 2.64 REF50CK0 and RMII signal timing TCK REF50CK0 TCO RMII_TXD_EN TCO RMII_TXD1, RMII_TXD0 Figure 2.65 Preamble SFD DATA CRC RMII transmission timing REF50CK0 Thd Tsu RMII_CRS_DV Tsu RMII_RXD1, RMII_RXD0 Thd Preamble DATA CRC SFD RMII_RX_ER Figure 2.66 L RMII reception timing in normal operation R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 72 of 100 RA6M2 Group 2. Electrical Characteristics REF50CK0 RMII_CRS_DV RMII_RXD1, RMII_RXD0 Preamble SFD DATA xxxx Thd Tsu RMII_RX_ER Figure 2.67 RMII reception timing when an error occurs REF50CK0 tWOLd ET0_WOL Figure 2.68 WOL output timing for RMII ET0_TX_CLK tTENd ET0_TX_EN tMTDd ET0_ETXD[3:0] Preamble SFD DATA CRC ET0_TX_ER tCRSs tCRSh ET0_CRS ET0_COL Figure 2.69 MII transmission timing in normal operation R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 73 of 100 RA6M2 Group 2. Electrical Characteristics ET0_TX_CLK ET0_TX_EN ET0_ETXD[3:0] Preamble JAM ET0_TX_ER ET0_CRS tCOLs tCOLh ET0_COL Figure 2.70 MII transmission timing when a conflict occurs ET0_RX_CLK tRDVs tRDVh ET0_RX_DV tMRDh tMRDs ET0_ERXD[3:0] Preamble SFD DATA CRC ET0_RX_ER Figure 2.71 MII reception timing in normal operation ET0_RX_CLK ET0_RX_DV Preamble ET0_ERXD[3:0] SFD DATA xxxx tRERh tRERs ET0_RX_ER Figure 2.72 MII reception timing when an error occurs ET0_RX_CLK tWOLd ET0_WOL Figure 2.73 WOL output timing for MII R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 74 of 100 RA6M2 Group 2.3.17 2. Electrical Characteristics PDC Timing Table 2.32 PDC timing Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register. Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF Parameter Symbol Min Max Unit Test conditions PDC PIXCLK input cycle time tPIXcyc 37 - ns Figure 2.74 PIXCLK input high pulse width tPIXH 10 - ns PIXCLK input low pulse width tPIXL 10 - ns PIXCLK rise time tPIXr - 5 ns PIXCLK fall time tPIXf - 5 ns PCKO output cycle time tPCKcyc 2 × tPBcyc - ns PCKO output high pulse width tPCKH (tPCKcyc - tPCKr - tPCKf)/2 - 3 - ns PCKO output low pulse width tPCKL (tPCKcyc - tPCKr - tPCKf)/2 - 3 - ns PCKO rise time tPCKr - 5 ns PCKO fall time tPCKf - 5 ns Note 1. VSYNV/HSYNC input setup time tSYNCS 10 - ns VSYNV/HSYNC input hold time tSYNCH 5 - ns PIXD input setup time tPIXDS 10 - ns PIXD input hold time tPIXDH 5 - ns Figure 2.75 Figure 2.76 tPBcyc: PCLKB cycle. tPIXcyc tPIXH tPIXf PIXCLK input tPIXr tPIXL Figure 2.74 PDC input clock timing tPCKcyc tPCKH tPCKf PCKO pin output tPCKr tPCKL Figure 2.75 PDC output clock timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 75 of 100 RA6M2 Group 2. Electrical Characteristics PIXCLK tSYNCS tSYNCH VSYNC tSYNCS tSYNCH HSYNC tPIXDS tPIXDH PIXD7 to PIXD0 Figure 2.76 2.4 PDC AC timing USB Characteristics 2.4.1 Table 2.33 USBFS Timing USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz Parameter Input characteristics Output characteristics Pull-up and pulldown characteristics Symbol Min Typ Max Unit Test conditions VIH 2.0 - - V - Input low voltage VIL - - 0.8 V - Differential input sensitivity VDI 0.2 - - V | USB_DP - USB_DM | Differential common-mode range VCM 0.8 - 2.5 V - Output high voltage VOH 2.8 - 3.6 V IOH = -200 μA Output low voltage VOL 0.0 - 0.3 V IOL= 2 mA Cross-over voltage VCRS 1.3 - 2.0 V Figure 2.77 Rise time tLR 75 - 300 ns Fall time tLF 75 - 300 ns Rise/fall time ratio tLR / tLF 80 - 125 % tLR/ tLF USB_DP and USB_DM pulldown resistance in host controller mode Rpd 14.25 - 24.80 kΩ - Input high voltage USB_DP, USB_DM VCRS 90% 90% 10% 10% tLR Figure 2.77 tLF USB_DP and USB_DM output timing in low-speed mode Observation point USB_DP 27  200 pF to 600 pF 3.6 V 1.5 K USB_DM 200 pF to 600 pF Figure 2.78 Test circuit in low-speed mode R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 76 of 100 RA6M2 Group Table 2.34 2. Electrical Characteristics USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics) Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz Parameter Input characteristics Symbol Min Typ Max Unit Test conditions VIH 2.0 - - V - Input low voltage VIL - - 0.8 V - Differential input sensitivity VDI 0.2 - - V | USB_DP - USB_DM | Differential common-mode range VCM 0.8 - 2.5 V - Output high voltage VOH 2.8 - 3.6 V IOH = -200 μA Input high voltage Output characteristics Pull-up and pulldown characteristics Output low voltage VOL 0.0 - 0.3 V IOL= 2 mA Cross-over voltage VCRS 1.3 - 2.0 V Figure 2.79 Rise time tLR 4 - 20 ns Fall time tLF 4 - 20 ns Rise/fall time ratio tLR / tLF 90 - 111.11 % tFR/ tFF Output resistance ZDRV 28 - 44 Ω USBFS: Rs = 27 Ω included DM pull-up resistance in device controller mode Rpu 0.900 - 1.575 kΩ During idle state 1.425 - 3.090 kΩ During transmission and reception USB_DP and USB_DM pulldown resistance in host controller mode Rpd 14.25 - 24.80 kΩ - USB_DP, USB_DM VCRS 90% 90% 10% 10% tFR Figure 2.79 tFF USB_DP and USB_DM output timing in full-speed mode Observation point USB_DP 50 pF 27  USB_DM 50 pF Figure 2.80 2.5 Test circuit in full-speed mode ADC12 Characteristics Table 2.35 A/D conversion characteristics for unit 0 (1 of 2) Conditions: PCLKC = 1 to 60 MHz Parameter Min Typ Max Unit Test conditions Frequency 1 - 60 MHz - Analog input capacitance - - 30 pF - R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 77 of 100 RA6M2 Group Table 2.35 2. Electrical Characteristics A/D conversion characteristics for unit 0 (2 of 2) Conditions: PCLKC = 1 to 60 MHz Parameter Min Typ Max Unit Test conditions Quantization error - ±0.5 - LSB - Resolution - - 12 Bits - 1.06 (0.4 + 0.25)*2 - - μs  Sampling of channeldedicated sample-and-hold circuits in 24 states  Sampling in 15 states Offset error - ±1.5 ±3.5 LSB AN000 to AN002 = 0.25 V Full-scale error - ±1.5 ±3.5 LSB AN000 to AN002 = VREFH0- 0.25 V Absolute accuracy - ±2.5 ±5.5 LSB - DNL differential nonlinearity error - ±1.0 ±2.0 LSB - INL integral nonlinearity error - ±1.5 ±3.0 LSB - Holding characteristics of sample-and hold circuits - - 20 μs - Dynamic range 0.25 - VREFH0 - 0.25 V - 0.48 (0.267)*2 - - μs Sampling in 16 states Offset error - ±1.0 ±2.5 LSB - Full-scale error - ±1.0 ±2.5 LSB - Channel-dedicated sample-and-hold circuits in use*3 (AN000 to AN002) Channel-dedicated sample-and-hold circuits not in use (AN000 to AN002) High-precision channels (AN003 to AN007) Normal-precision channels (AN016 to AN020) Note: Note 1. Note 2. Note 3. Conversion time*1 (operation at PCLKC = 60 MHz) Conversion time*1 (operation at PCLKC = 60 MHz) Permissible signal source impedance Max. = 1 kΩ Permissible signal source impedance Max. = 1 kΩ Absolute accuracy - ±2.0 ±4.5 LSB - DNL differential nonlinearity error - ±0.5 ±1.5 LSB - INL integral nonlinearity error - ±1.0 ±2.5 LSB - Conversion time*1 (operation at PCLKC = 60 MHz) Permissible signal source impedance Max. = 1 kΩ 0.48 (0.267)*2 - - μs Sampling in 16 states Max. = 400 Ω 0.40 (0.183)*2 - - μs Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH0 ≤ AVCC0 Offset error - ±1.0 ±2.5 LSB - Full-scale error - ±1.0 ±2.5 LSB - Absolute accuracy - ±2.0 ±4.5 LSB - DNL differential nonlinearity error - ±0.5 ±1.5 LSB - INL integral nonlinearity error - ±1.0 ±2.5 LSB - Conversion time*1 (Operation at PCLKC = 60 MHz) 0.88 (0.667)*2 - - μs Sampling in 40 states Offset error - ±1.0 ±5.5 LSB - Full-scale error - ±1.0 ±5.5 LSB - Permissible signal source impedance Max. = 1 kΩ Absolute accuracy - ±2.0 ±7.5 LSB - DNL differential nonlinearity error - ±0.5 ±4.5 LSB - INL integral nonlinearity error - ±1.0 ±5.5 LSB - These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges. The use of PORT0 as digital outputs is not allowed when the 12-bit A/D converter is used. The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are stable. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions. Values in parentheses indicate the sampling time. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.37. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 78 of 100 RA6M2 Group Table 2.36 2. Electrical Characteristics A/D conversion characteristics for unit 1 Conditions: PCLKC = 1 to 60 MHz Parameter Min Typ Max Unit Test conditions Frequency 1 - 60 MHz - Analog input capacitance - - 30 pF - Quantization error - ±0.5 - LSB - Resolution - - 12 Bits - 1.06 (0.4 + 0.25)*2 - - μs  Sampling of channeldedicated sample-and-hold circuits in 24 states  Sampling in 15 states Channel-dedicated sample-and-hold circuits in use*3 (AN100 to AN102) Channel-dedicated sample-and-hold circuits not in use (AN100 to AN102) High-precision channels (AN105 to AN107) Normal-precision channels (AN116 to AN118) Note: Note 1. Note 2. Note 3. Conversion time*1 (operation at PCLKC = 60 MHz) Permissible signal source impedance Max. = 1 kΩ Offset error - ±1.5 ±3.5 LSB AN100 to AN102 = 0.25 V Full-scale error - ±1.5 ±3.5 LSB AN100 to AN102 = VREFH - 0.25 V Absolute accuracy - ±2.5 ±5.5 LSB - DNL differential nonlinearity error - ±1.0 ±2.0 LSB - INL integral nonlinearity error - ±1.5 ±3.0 LSB - Holding characteristics of sample-and hold circuits - - 20 μs - Dynamic range 0.25 - VREFH 0.25 V - 0.48 (0.267)*2 - - μs Sampling in 16 states Conversion time*1 (Operation at PCLKC = 60 MHz) Permissible signal source impedance Max. = 1 kΩ Offset error - ±1.0 ±2.5 LSB - Full-scale error - ±1.0 ±2.5 LSB - Absolute accuracy - ±2.0 ±4.5 LSB - DNL differential nonlinearity error - ±0.5 ±1.5 LSB - INL integral nonlinearity error - ±1.0 ±2.5 LSB - Conversion time*1 (Operation at PCLKC = 60 MHz) Permissible signal source impedance Max. = 1 kΩ 0.48 (0.267)*2 - - μs Sampling in 16 states Max. = 400 Ω 0.40 (0.183)*2 - - μs Sampling in 11 states VCC = AVCC0 = 3.0 to 3.6 V 3.0 V ≤ VREFH ≤ AVCC0 Offset error - ±1.0 ±2.5 LSB - Full-scale error - ±1.0 ±2.5 LSB - Absolute accuracy - ±2.0 ±4.5 LSB - DNL differential nonlinearity error - ±0.5 ±1.5 LSB - INL integral nonlinearity error - ±1.0 ±2.5 LSB - Conversion time*1 (Operation at PCLKC = 60 MHz) 0.88 (0.667)*2 - - μs Sampling in 40 states Permissible signal source impedance Max. = 1 kΩ Offset error - ±1.0 ±5.5 LSB - Full-scale error - ±1.0 ±5.5 LSB - Absolute accuracy - ±2.0 ±7.5 LSB - DNL differential nonlinearity error - ±0.5 ±4.5 LSB - INL integral nonlinearity error - ±1.0 ±5.5 LSB - These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges. The use of PORT0 as digital outputs is not allowed when the 12-bit A/D converter is used. The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are stable. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions. Values in parentheses indicate the sampling time. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.37. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 79 of 100 RA6M2 Group Table 2.37 2. Electrical Characteristics A/D conversion characteristics for simultaneous use of channel-dedicated sample-and-hold circuits in unit0 and unit1 Conditions: PCLKC = 30/60 MHz Parameter Channel-dedicated sample-and-hold circuits in use with continious sampling function enabled (AN000 to AN002) Channel-dedicated sample-and-hold circuits in use with continious sampling function enabled (AN100 to AN102) Channel-dedicated sample-and-hold circuits in use with continious sampling function enabled (AN000 to AN002) Channel-dedicated sample-and-hold circuits in use with continious sampling function enabled (AN100 to AN102) Note: Min Typ Max Test conditions Offset error - ±1.5 ±5.0 Full-scale error - ±2.5 ±5.0  PCLKC = 60 MHz  Sampling in 15 states Absolute accuracy - ±4.0 ±8.0 Offset error - ±1.5 ±5.0 Full-scale error - ±2.5 ±5.0 Absolute accuracy - ±4.0 ±8.0 Offset error - ±1.5 ±3.5 Full-scale error - ±1.5 ±3.5 Absolute accuracy - ±3.0 ±5.5 Offset error - ±1.5 ±3.5 Full-scale error - ±1.5 ±3.5 Absolute accuracy - ±3.0 ±5.5  PCLKC = 30 MHz  Sampling in 7 states When simultaneously using channel-dedicated sample-and-hold circuits in unit0 and unit1, setting the ADSHMSR.SHMD bit to 1 is recommended. Table 2.38 A/D internal reference voltage characteristics Parameter Min Typ Max Unit Test conditions A/D internal reference voltage 1.13 1.18 1.23 V - Sampling time 4.15 - - μs - FFFh Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy 000h Offset error 0 Figure 2.81 Analog input voltage VREFH0 (full-scale) Illustration of ADC12 characteristic terms R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 80 of 100 RA6M2 Group 2. Electrical Characteristics Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. Offset error Offset error is the difference between the transition point of the ideal first output code and the actual first output code. Full-scale error Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code. 2.6 DAC12 Characteristics Table 2.39 D/A conversion characteristics Parameter Min Typ Max Unit Test conditions Resolution - - 12 Bits - Absolute accuracy - - ±24 LSB Resistive load 2 MΩ INL - ±2.0 ±8.0 LSB Resistive load 2 MΩ DNL - ±1.0 ±2.0 LSB - Output impedance - 8.5 - kΩ - Conversion time - - 3.0 μs Resistive load 2 MΩ, Capacitive load 20 pF Output voltage range 0 - VREFH V - INL - ±2.0 ±4.0 LSB - DNL - ±1.0 ±2.0 LSB - Without output amplifier With output amplifier Conversion time - - 4.0 μs - Resistive load 5 - - kΩ - Capacitive load - - 50 pF - Output voltage range 0.2 - VREFH - 0.2 V - R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 81 of 100 RA6M2 Group 2.7 2. Electrical Characteristics TSN Characteristics Table 2.40 TSN characteristics Parameter Symbol Min Typ Max Unit Test conditions Relative accuracy - - ±1.0 - °C - Temperature slope - - 4.0 - mV/°C - Output voltage (at 25°C) - - 1.24 - V - Temperature sensor start time tSTART - - 30 μs - Sampling time - 4.15 - - μs - 2.8 OSC Stop Detect Characteristics Table 2.41 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr - - 1 ms Figure 2.82 Main clock tdr OSTDSR.OSTDF MOCO clock ICLK Figure 2.82 2.9 Oscillation stop detection timing POR and LVD Characteristics Table 2.42 Power-on reset circuit and voltage detection circuit characteristics (1 of 2) Parameter Voltage detection level Power-on reset (POR) DPSBYCR.DEEPCUT[1:0] = 00b or 01b Symbol Min Typ Max Unit Test conditions VPOR 2.5 2.6 2.7 V Figure 2.83 1.8 2.25 2.7 Vdet0_1 2.84 2.94 3.04 Vdet0_2 2.77 2.87 2.97 Vdet0_3 2.70 2.80 2.90 Vdet1_1 2.89 2.99 3.09 Vdet1_2 2.82 2.92 3.02 Vdet1_3 2.75 2.85 2.95 Vdet2_1 2.89 2.99 3.09 Vdet2_2 2.82 2.92 3.02 Vdet2_3 2.75 2.85 2.95 DPSBYCR.DEEPCUT[1:0] = 11b Voltage detection circuit (LVD0) Voltage detection circuit (LVD1) Voltage detection circuit (LVD2) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Figure 2.84 Figure 2.85 Figure 2.86 Page 82 of 100 RA6M2 Group Table 2.42 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (2 of 2) Symbol Min Typ Max Unit Test conditions Power-on reset time tPOR - 4.5 - ms Figure 2.83 LVD0 reset time tLVD0 - 0.51 - Figure 2.84 LVD1 reset time tLVD1 - 0.38 - Figure 2.85 LVD2 reset time tLVD2 - 0.38 - Figure 2.86 Minimum VCC down time*1 tVOFF 200 - - μs Figure 2.83, Figure 2.84 Response delay tdet - - 200 μs Figure 2.83 to Figure 2.86 LVD operation stabilization time (after LVD is enabled) td(E-A) - - 10 μs Hysteresis width (LVD1 and LVD2) VLVH - 70 - mV Figure 2.85, Figure 2.86 Parameter Internal reset time Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet1, and Vdet2 for POR and LVD. tVOFF VPOR VCC Internal reset signal (active-low) tdet Figure 2.83 tPOR tdet tdet tPOR Power-on reset timing tVOFF VCC Vdet0 Internal reset signal (active-low) tdet Figure 2.84 tdet tLVD0 Voltage detection circuit timing (Vdet0) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 83 of 100 RA6M2 Group 2. Electrical Characteristics tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.85 Voltage detection circuit timing (Vdet1) tVOFF VCC VLVH Vdet2 LVCMPCR.LVD2E LVD2 Comparator output td(E-A) LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.86 Voltage detection circuit timing (Vdet2) R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 84 of 100 RA6M2 Group 2.10 2. Electrical Characteristics VBATT Characteristics Table 2.43 Battery backup function characteristics Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V Parameter Symbol Min Typ Max Unit Test conditions Voltage level for switching to battery backup VDETBATT 2.50 2.60 2.70 V Figure 2.87 Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop VBATTSW 2.70 - - V VCC-off period for starting power supply switching tVOFFBATT 200 - - μs Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (VDETBATT). tVOFFBATT VDETBATT VCC VBATT Backup power area Figure 2.87 2.11 VBATTSW VCC supply VBATT supply VCC supply Battery backup function characteristics CTSU Characteristics Table 2.44 CTSU characteristics Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF - TS pin capacitive load Cbase - - 50 pF - Permissible output high current ΣIoH - - -40 mA When the mutual capacitance method is applied 2.12 ACMPHS Characteristics Table 2.45 ACMPHS characteristics Parameter Symbol Min Typ Max Unit Test conditions Reference voltage range VREF 0 - AVCC0 V - Input voltage range VI 0 - AVCC0 V - Output delay*1 Td - 50 100 ns VI = VREF ± 100 mV Internal reference voltage Vref 1.13 1.18 1.23 V - Note 1. This value is the internal propagation delay. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 85 of 100 RA6M2 Group 2.13 2. Electrical Characteristics Flash Memory Characteristics 2.13.1 Code Flash Memory Characteristics Table 2.46 Code flash memory characteristics Conditions: Program or erase: FCLK = 4 to 60 MHz Read: FCLK ≤ 60 MHz FCLK = 4 MHz Parameter 20 MHz ≤ FCLK ≤ 60 MHz Symbol Min Typ Max Min Typ Max Unit Programming time NPEC  100 times 128-byte tP128 - 0.75 13.2 - 0.34 6.0 ms 8-KB tP8K - 49 176 - 22 80 ms 32-KB tP32K - 194 704 - 88 320 ms Programming time NPEC > 100 times 128-byte tP128 - 0.91 15.8 - 0.41 7.2 ms 8-KB tP8K - 60 212 - 27 96 ms 32-KB tP32K - 234 848 - 106 384 ms Erasure time NPEC  100 times 8-KB tE8K - 78 216 - 43 120 ms 32-KB tE32K - 283 864 - 157 480 ms Erasure time NPEC > 100 times 8-KB tE8K - 94 260 - 52 144 ms 32-KB tE32K - 341 1040 - 189 576 ms Reprogramming/erasure cycle*4 NPEC 10000*1 - - 10000*1 - - Times Suspend delay during programming tSPD - - 264 - - 120 μs First suspend delay during erasure in tSESD1 suspend priority mode - - 216 - - 120 μs Second suspend delay during erasure in suspend priority mode tSESD2 - - 1.7 - - 1.7 ms Suspend delay during erasure in erasure priority mode tSEED - - 1.7 - - 1.7 ms Forced stop command tFD - - 32 - - 20 μs Data hold time*2 tDRP 10*2, *3 - - 10*2, *3 - - Years - 30*2, *3 - - 30*2, *3 Note 1. Note 2. Note 3. Note 4. - Test conditions Ta = +85°C This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range. This result is obtained from reliability testing. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000), erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited. R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 86 of 100 RA6M2 Group 2. Electrical Characteristics • Suspension during programming FCU command Program Suspend tSPD FSTATR0.FRDY Ready Not Ready Programming pulse Ready Programming • Suspension during erasure in suspend priority mode FCU command Erase Suspend Resume Suspend tSESD1 FSTATR0.FRDY Ready tSESD2 Not Ready Erasure pulse Ready Erasing Not Ready Erasing • Suspension during erasure in erasure priority mode FCU command Erase Suspend tSEED FSTATR0.FRDY Ready Not Ready Erasure pulse Ready Erasing • Forced Stop FACI command Forced Stop tFD FSTATR.FRDY Figure 2.88 Not Ready Ready Suspension and forced stop timing for flash memory programming and erasure R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 87 of 100 RA6M2 Group 2.13.2 2. Electrical Characteristics Data Flash Memory Characteristics Table 2.47 Data flash memory characteristics Conditions: Program or erase: FCLK = 4 to 60 MHz Read: FCLK ≤ 60 MHz FCLK = 4 MHz Parameter 20 MHz ≤ FCLK ≤ 60 MHz Symbol Min Typ Max Min Typ Max Unit 4-byte tDP4 - 0.36 3.8 - 0.16 1.7 ms 8-byte tDP8 - 0.38 4.0 - 0.17 1.8 16-byte tDP16 - 0.42 4.5 - 0.19 2.0 64-byte tDE64 - 3.1 18 - 1.7 10 128-byte tDE128 - 4.7 27 - 2.6 15 256-byte tDE256 - 8.9 50 - 4.9 28 Blank check time 4-byte tDBC4 - - 84 - - 30 Reprogramming/erasure cycle*1 NDPEC 125000*2 - - 125000*2 - - - Suspend delay during programming 4-byte tDSPD - - 264 - - 120 μs - - 264 - - 120 - - 264 - - 120 - - 216 - - 120 - - 216 - - 120 - - 216 - - 120 - - 300 - - 300 - - 390 - - 390 - - 570 - - 570 - - 300 - - 300 128-byte - - 390 - - 390 256-byte - - 570 - - 570 tFD - - 32 - - 20 μs tDRP 10*3,*4 - - 10*3,*4 - - Year 30*3,*4 - - 30*3,*4 - - Programming time Erasure time 8-byte 16-byte First suspend delay during erasure in suspend priority mode 64-byte tDSESD1 128-byte 256-byte Second suspend delay during erasure in suspend priority mode 64-byte tDSESD2 128-byte 256-byte Suspend delay during erasing in erasure priority mode 64-byte Forced stop command Data hold Note 1. Note 2. Note 3. Note 4. 2.14 time*3 tDSEED Test conditions ms μs μs μs μs Ta = +85°C The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range. This result is obtained from reliability testing. Boundary Scan Table 2.48 Boundary scan characteristics (1 of 2) Parameter Symbol Min Typ Max Unit Test conditions TCK clock cycle time tTCKcyc 100 - - ns Figure 2.89 TCK clock high pulse width tTCKH 45 - - ns TCK clock low pulse width tTCKL 45 - - ns TCK clock rise time tTCKr - - 5 ns TCK clock fall time tTCKf - - 5 ns R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 88 of 100 RA6M2 Group Table 2.48 2. Electrical Characteristics Boundary scan characteristics (2 of 2) Parameter Symbol Min Typ Max Unit Test conditions TMS setup time tTMSS 20 - - ns Figure 2.90 TMS hold time tTMSH 20 - - ns TDI setup time tTDIS 20 - - ns TDI hold time tTDIH 20 - - ns tTDOD - - 40 ns TBSSTUP tRESWP - - - TDO data delay Boundary scan circuit startup Note 1. time*1 Figure 2.91 Boundary scan does not function until the power-on reset becomes negative. tTCKcyc tTCKH tTCKf TCK tTCKr tTCKL Figure 2.89 Boundary scan TCK timing TCK tTMSS tTMSH tTDIS tTDIH TMS TDI tTDOD TDO Figure 2.90 Boundary scan input/output timing VCC RES tBSSTUP (= tRESWP) Figure 2.91 Boundary scan execute Boundary scan circuit startup timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 89 of 100 RA6M2 Group 2.15 2. Electrical Characteristics Joint Test Action Group (JTAG) Table 2.49 JTAG Parameter Symbol Min Typ Max Unit Test conditions TCK clock cycle time tTCKcyc 40 - - ns Figure 2.89 TCK clock high pulse width tTCKH 15 - - ns TCK clock low pulse width tTCKL 15 - - ns TCK clock rise time tTCKr - - 5 ns TCK clock fall time tTCKf - - 5 ns TMS setup time tTMSS 8 - - ns TMS hold time tTMSH 8 - - ns TDI setup time tTDIS 8 - - ns TDI hold time tTDIH 8 - - ns TDO data delay time tTDOD - - 20 ns Figure 2.90 tTCKcyc tTCKH TCK tTCKf tTCKr tTCKL Figure 2.92 JTAG TCK timing TCK tTMSS tTMSH TMS tTDIS tTDIH TDI tTDOD TDO Figure 2.93 JTAG input/output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 90 of 100 RA6M2 Group 2.16 2. Electrical Characteristics Serial Wire Debug (SWD) Table 2.50 SWD Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 40 - - ns Figure 2.94 SWCLK clock high pulse width tSWCKH 15 - - ns SWCLK clock low pulse width tSWCKL 15 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns SWDIO setup time tSWDS 8 - - ns SWDIO hold time tSWDH 8 - - ns SWDIO data delay time tSWDD 2 - 28 ns Figure 2.95 tSWCKcyc tSWCKH SWCLK tSWCKL Figure 2.94 SWD SWCLK timing SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.95 SWD input/output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 91 of 100 RA6M2 Group 2.17 2. Electrical Characteristics Embedded Trace Macro Interface (ETM) Table 2.51 ETM Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter Symbol Min Typ Max Unit Test conditions TCLK clock cycle time tTCLKcyc 33.3 - - ns Figure 2.96 TCLK clock high pulse width tTCLKH 13.6 - - ns TCLK clock low pulse width tTCLKL 13.6 - - ns TCLK clock rise time tTCLKr - - 3 ns TCLK clock fall time tTCLKf - - 3 ns TDATA[3:0] output setup time tTRDS 3.5 - - ns TDATA[3:0] output hold time tTRDH 2.5 - - ns Figure 2.97 tTCLKcyc tTCLKH TCLK tTCLKf tTCLKL Figure 2.96 tTCLKr ETM TCLK timing TCLK tTRDS tTRDH tTRDS tTRDH TDATA[3:0] Figure 2.97 ETM output timing R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 92 of 100 RA6M2 Group Appendix 1. Package Dimensions Appendix 1.Package Dimensions For information on the latest version of the package dimensions or mountings, go to “Packages” on the Renesas Electronics Corporation website. JEITA Package Code P-TFLGA145-7x7-0.50 RENESAS Code PTLG0145KA-A Previous Code 145F0G MASS[Typ.] 0.1g w S B φb1 D φ φb φ w S A ZD A M S AB M S AB e A e N M L K J E H B G F E D C B v Index mark (Laser mark) Figure 1.1 S ZE A y S x4 1 2 3 4 5 6 7 8 9 10 11 12 13 Reference Dimension in Millimeters Symbol Min D E v w A e b b1 x y ZD ZE Nom 7.0 7.0 Max 0.15 0.20 1.05 0.21 0.29 0.5 0.25 0.34 0.29 0.39 0.08 0.08 0.5 0.5 145-pin LGA R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 93 of 100 RA6M2 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP144-20x20-0.50 PLQP0144KA-B — 1.2 Unit: mm HD *1 D 108 73 *2 144 HE 72 E 109 37 1 36 NOTE 4 Index area NOTE 3 F S *3 bp 0.25 A1 T c y S A2 A e Lp L1 Detail F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol M Min Nom Max D 19.9 20.0 20.1 20.1 E 19.9 20.0 A2  1.4  HD 21.8 22.0 22.2 HE 21.8 22.0 22.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2016 Renesas Electronics Corporation. All rights reserved. Figure 1.2 144-pin LQFP R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 94 of 100 RA6M2 Group Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP100-14x14-0.50 PLQP0100KB-B — 0.6 HD Unit: mm *1 D 75 51 E *2 100 HE 50 76 26 1 25 NOTE 4 Index area NOTE 3 F S y S *3 0.25 T A1 Lp L1 Detail F Reference Dimensions in millimeters Symbol bp M Min Nom Max D 13.9 14.0 14.1 14.1 E 13.9 14.0 A2  1.4  HD 15.8 16.0 16.2 HE 15.8 16.0 16.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  c A2 A e NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. © 2015 Renesas Electronics Corporation. All rights reserved. Figure 1.3 100-pin LQFP R01DS0357EJ0100 Rev.1.00 Oct 8, 2019 Page 95 of 100 Revision History Rev. Date 1.00 Oct 8, 2019 RA6M2 Group Datasheet Summary First release Proprietary Notice All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas. Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited. CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium. Magic Packet™ is a trademark of Advanced Micro Devices, Inc. SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders. Colophon RA6M2 Group Datasheet Publication Date: Rev.1.00 Oct 8, 2019 Published by: Renesas Electronics Corporation Address List General Precautions 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during poweroff state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the you or third parties arising from such alteration, modification, copying or reverse engineering. product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338 © 2019 Renesas Electronics Corporation. All rights reserved. Colophon 8.0 Back cover RA6M2 Group R01DS0357EJ0100
R7FA6M2AF3CFB#AA0 价格&库存

很抱歉,暂时无法提供与“R7FA6M2AF3CFB#AA0”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R7FA6M2AF3CFB#AA0
    •  国内价格 香港价格
    • 60+49.0049560+5.86080
    • 120+48.81932120+5.83860
    • 240+48.54088240+5.80530
    • 300+48.44807300+5.79420
    • 900+48.07682900+5.74980

    库存:480

    R7FA6M2AF3CFB#AA0
      •  国内价格
      • 1+72.14078
      • 10+61.31522
      • 50+56.52358
      • 100+55.28131

      库存:140

      R7FA6M2AF3CFB#AA0
        •  国内价格
        • 1+58.68936
        • 10+56.08440
        • 30+54.50004
        • 100+53.17812

        库存:204