Datasheet
32
Cover
Renesas RA6M2 Group
Datasheet
32-bit MCU
Renesas Advanced (RA) Family
Renesas RA6 Series
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).
www.renesas.com
Rev.1.00
Oct 2019
RA6M2 Group
Datasheet
Leading performance 120-MHz Arm® Cortex®-M4 core, up to 1-MB code flash memory, 384-KB SRAM, Capacitive
Touch Sensing Unit, Ethernet MAC Controller, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and
advanced analog.
Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)
Armv7E-M architecture with DSP instruction set
Maximum operating frequency: 120 MHz
Support for 4-GB address space
On-chip debugging system: JTAG, SWD, and ETM
Boundary scan and Arm Memory Protection Unit (Arm MPU)
■ Memory
Up to 1-MB code flash memory (40 MHz zero wait states)
32-KB data flash memory (125,000 erase/write cycles)
Up to 384-KB SRAM
Flash Cache (FCACHE)
Memory Protection Units (MPU)
Memory Mirror Function (MMF)
128-bit unique ID
■ Connectivity
Ethernet MAC Controller (ETHERC)
Ethernet DMA Controller (EDMAC)
USB 2.0 Full-Speed (USBFS) module
- On-chip transceiver
Serial Communications Interface (SCI) with FIFO × 10
Serial Peripheral Interface (SPI) × 2
I2C bus interface (IIC) × 3
Controller Area Network (CAN) × 2
Serial Sound Interface Enhanced (SSIE)
SD/MMC Host Interface (SDHI) × 2
Quad Serial Peripheral Interface (QSPI)
IrDA interface
Sampling Rate Converter (SRC)
External address space
- 8-bit or 16-bit bus space is selectable per area
- SDRAM support
■ Analog
12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits
each × 2
12-bit D/A Converter (DAC12) × 2
High-Speed Analog Comparator (ACMPHS) × 6
Temperature Sensor (TSN)
■ Timers
General PWM Timer 32-bit Enhanced High Resolution
(GPT32EH) × 4
General PWM Timer 32-bit Enhanced (GPT32E) × 4
General PWM Timer 32-bit (GPT32) × 6
Asynchronous General-Purpose Timer (AGT) × 2
Watchdog Timer (WDT)
■ System and Power Management
Low power modes
Realtime Clock (RTC) with calendar and VBATT support
Event Link Controller (ELC)
DMA Controller (DMAC) × 8
Data Transfer Controller (DTC)
Key Interrupt Function (KINT)
Power-on reset
Low Voltage Detection (LVD) with voltage settings
■ Security and Encryption
AES128/192/256
3DES/ARC4
SHA1/SHA224/SHA256/MD5
GHASH
RSA/DSA/ECC
True Random Number Generator (TRNG)
■ Human Machine Interface (HMI)
Capacitive Touch Sensing Unit (CTSU)
Parallel Data Capture Unit (PDC)
■ Multiple Clock Sources
Main clock oscillator (MOSC) (8 to 24 MHz)
Sub-clock oscillator (SOSC) (32.768 kHz)
High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
Middle-speed on-chip oscillator (MOCO) (8 MHz)
Low-speed on-chip oscillator (LOCO) (32.768 kHz)
IWDT-dedicated on-chip oscillator (15 kHz)
Clock trim function for HOCO/MOCO/LOCO
Clock out support
■ General-Purpose I/O Ports
Up to 110 input/output pins
- Up to 1 CMOS input
- Up to 109 CMOS input/output
- Up to 21 input/output 5 V tolerant
- Up to 18 high current (20 mA)
■ Operating Voltage
VCC: 2.7 to 3.6 V
■ Operating Temperature and Packages
Ta = -40°C to +85°C
- 145-pin LGA (7 mm × 7 mm, 0.5 mm pitch)
Ta = -40°C to +105°C
- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
■ Safety
Error Correction Code (ECC) in SRAM
SRAM parity error check
Flash area protection
ADC self-diagnosis function
Clock Frequency Accuracy Measurement Circuit (CAC)
Cyclic Redundancy Check (CRC) calculator
Data Operation Circuit (DOC)
Port Output Enable for GPT (POEG)
Independent Watchdog Timer (IWDT)
GPIO readback level detection
Register write protection
Main oscillator stop detection
Illegal memory access
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 2 of 100
RA6M2 Group
1.
1. Overview
Overview
The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU in this series incorporates a high-performance Arm Cortex®-M4 core running up to 120 MHz with the
following features:
Up to 1-MB code flash memory
384-KB SRAM
Capacitive Touch Sensing Unit (CTSU)
Ethernet MAC Controller (ETHERC), USBFS, SD/MMC Host Interface
Quad Serial Peripheral Interface (QSPI)
Security and safety features
12-bit A/D Converter (ADC12)
12-bit D/A Converter (DAC12)
Analog peripherals.
1.1
Function Outline
Table 1.1
Arm core
Feature
Functional description
Arm Cortex-M4 core
Maximum operating frequency: up to 120 MHz
Arm Cortex-M4 core:
- Revision: r0p1-01rel0
- ARMv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
Arm Memory Protection Unit (Arm MPU):
- Armv7 Protected Memory System Architecture
- 8 protect regions.
SysTick timer:
- Driven by SYSTICCLK (LOCO) or ICLK.
Table 1.2
Memory
Feature
Functional description
Code flash memory
Maximum 1-MB code flash memory. See section 53, Flash Memory.
Data flash memory
32-KB data flash memory. See section 53, Flash Memory.
Memory Mirror Function (MMF)
The Memory Mirror Function (MMF) can be configured to mirror the target application image
load address in code flash memory to the application image link address in the 23-bit unused
memory space (memory mirror space addresses). Your application code is developed and
linked to run from this MMF destination address. The application code does not need to know
the load location where it is stored in code flash memory. See section 5, Memory Mirror
Function (MMF) in User’s Manual.
Option-setting memory
The option-setting memory determines the state of the MCU after a reset. See section 7,
Option-Setting Memory in User’s Manual.
SRAM
On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). The first 32
KB of SRAM0 error correction capability using ECC. Parity check is performed for other areas.
See section 51, SRAM in User’s Manual.
Standby SRAM
On-chip SRAM that can retain data in Deep Software Standby mode. See section 52, Standby
SRAM in User’s Manual.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 3 of 100
RA6M2 Group
Table 1.3
1. Overview
System (1 of 2)
Feature
Functional description
Operating modes
Two operating modes:
Single-chip mode
SCI or USB boot mode.
See section 3, Operating Modes in User’s Manual.
Resets
14 resets:
RES pin reset
Power-on reset
Voltage monitor 0 reset
Voltage monitor 1 reset
Voltage monitor 2 reset
Independent watchdog timer reset
Watchdog timer reset
Deep Software Standby reset
SRAM parity error reset
SRAM ECC error reset
Bus master MPU error reset
Bus slave MPU error reset
Stack pointer error reset
Software reset.
See section 6, Resets in User’s Manual.
Low Voltage Detection (LVD)
The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and
the detection level can be selected using a software program. See section 8, Low Voltage
Detection (LVD) in User’s Manual.
Clocks
Main clock oscillator (MOSC)
Sub-clock oscillator (SOSC)
High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
PLL frequency synthesizer
IWDT-dedicated on-chip oscillator
Clock out support.
See section 9, Clock Generation Circuit in User’s Manual.
Clock Frequency Accuracy
Measurement Circuit (CAC)
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be
measured (measurement target clock) within the time generated by the clock to be used as a
measurement reference (measurement reference clock), and determines the accuracy
depending on whether the number of pulses is within the allowable range.
When measurement is complete or the number of pulses within the time generated by the
measurement reference clock is not within the allowable range, an interrupt request is
generated.
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.
Interrupt Controller Unit (ICU)
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt
Controller Unit (ICU) in User’s Manual.
Key Interrupt Function (KINT)
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function
(KINT) in User’s Manual.
Low power modes
Power consumption can be reduced in multiple ways, such as by setting clock dividers,
controlling EBCLK output, controlling SDCLK output, stopping modules, selecting power
control mode in normal operation, and transitioning to low power modes. See section 11, Low
Power Modes in User’s Manual.
Battery backup function
A battery backup function is provided for partial powering by a battery. The battery powered
area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See
section 12, Battery Backup Function in User’s Manual.
Register write protection
The register write protection function protects important registers from being overwritten
because of software errors. See section 13, Register Write Protection in User’s Manual.
Memory Protection Unit (MPU)
Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided
for memory protection. See section 16, Memory Protection Unit (MPU) in User’s Manual.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 4 of 100
RA6M2 Group
Table 1.3
1. Overview
System (2 of 2)
Feature
Functional description
Watchdog Timer (WDT)
The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh the
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.
A refresh-permitted period can be set to refresh the counter and be used as the condition for
detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in
User’s Manual.
Independent Watchdog Timer (IWDT)
The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset
the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because
the timer operates with an independent, dedicated clock source, it is particularly useful in
returning the MCU to a known state as a fail-safe mechanism when the system runs out of
control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by
a refresh of the count value in the registers. See section 28, Independent Watchdog Timer
(IWDT) in User’s Manual.
Table 1.4
Event link
Feature
Functional description
Event Link Controller (ELC)
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral
modules as event signals to connect them to different modules, enabling direct interaction
between the modules without CPU intervention. See section 19, Event Link Controller (ELC)
in User’s Manual.
Table 1.5
Direct memory access
Feature
Functional description
Data Transfer Controller (DTC)
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an
interrupt request. See section 18, Data Transfer Controller (DTC) in User’s Manual.
DMA Controller (DMAC)
An 8-channel DMAC module is provided for transferring data without the CPU. When a DMA
transfer request is generated, the DMAC transfers data stored at the transfer source address
to the transfer destination address. See section 17, DMA Controller (DMAC) in User’s Manual.
Table 1.6
External bus interface
Feature
Functional description
External buses
CS area (EXBIU): Connected to the external devices (external memory interface)
SDRAM area (EXBIU): Connected to the SDRAM (external memory interface)
QSPI area (EXBIUT2): Connected to the QSPI (external device interface).
Table 1.7
Timers (1 of 2)
Feature
Functional description
General PWM Timer (GPT)
The General PWM Timer (GPT) is a 32-bit timer with 14 channels. PWM waveforms can be
generated by controlling the up-counter, down-counter, or up- and down-counter. In addition,
PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be
used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User’s
Manual.
Port Output Enable for GPT (POEG)
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)
output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in
User’s Manual.
Asynchronous General-Purpose
Timer (AGT)
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
output, external pulse width or period measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and can be accessed with the AGT register.
See section 25, Asynchronous General-Purpose Timer (AGT) in User’s Manual.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 5 of 100
RA6M2 Group
Table 1.7
1. Overview
Timers (2 of 2)
Feature
Functional description
Realtime Clock (RTC)
The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count
mode, that are controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 26, Realtime Clock (RTC) in User’s Manual.
Table 1.8
Communication interfaces (1 of 2)
Feature
Functional description
Serial Communications Interface
(SCI)
The Serial Communications Interface (SCI) is configurable to five asynchronous and
synchronous serial interfaces:
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter
(ACIA))
8-bit clock synchronous interface
Simple IIC (master-only)
Simple SPI
Smart card interface.
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data
transfer speed can be configured independently using an on-chip baud rate generator. See
section 32, Serial Communications Interface (SCI) in User’s Manual.
IrDA Interface (IrDA)
The IrDA interface sends and receives IrDA data communication waveforms in cooperation
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 33,
IrDA Interface in User’s Manual.
I2C bus interface (IIC)
The 3-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C
(Inter-Integrated Circuit) bus interface functions. See section 34, I2C Bus Interface (IIC in
User’s Manual).
Serial Peripheral Interface (SPI)
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices.
See section 36, Serial Peripheral Interface (SPI) in User’s Manual.
Serial Sound Interface Enhanced
(SSIE)
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with
digital audio devices for transmitting I2S (Inter-Integrated Sound) 2ch, 4ch, 6ch, 8ch, Word
Select (WS) Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an
audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver,
transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO
buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception
and transmission. See section 39, Serial Sound Interface Enhanced (SSIE) in User’s Manual.
Quad Serial Peripheral Interface
(QSPI)
The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial
ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM)
that has an SPI-compatible interface. See section 37, Quad Serial Peripheral Interface (QSPI)
in User’s Manual.
Controller Area Network (CAN)
module
The Controller Area Network (CAN) module provides functionality to receive and transmit data
using a message-based protocol between multiple slaves and masters in electromagneticallynoisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 37, Quad Serial Peripheral Interface (QSPI) in User’s Manual.
USB 2.0 Full-Speed (USBFS) module
The USB 2.0 Full-Speed (USBFS) module can operate as a host controller or device controller.
The module supports full-speed and low-speed (host controller only) transfer as defined in
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in Universal Serial Bus Specification 2.0.
The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9
can be assigned any endpoint number based on the peripheral devices used for
communication or based on your system. See section 31, USB 2.0 Full-Speed Module
(USBFS in User’s Manual).
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 6 of 100
RA6M2 Group
Table 1.8
1. Overview
Communication interfaces (2 of 2)
Feature
Functional description
Ethernet MAC (ETHERC)
One-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3
Media Access Control (MAC) layer protocol. An ETHERC channel provides one channel of the
MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows
transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards.
The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be
transferred without using the CPU.
See section 29, Ethernet MAC Controller (ETHERC) in User’s Manual.
SD/MMC Host Interface (SDHI)
The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to
connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit
buses for connecting memory cards that support SD, SDHC, and SDXC formats. When
developing host devices that are compliant with the SD Specifications, you must comply with
the SD Host/Ancillary Product License Agreement (SD HALA).
The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51
(JEDEC Standard JESD 84-B451) device access. This interface also provides backward
compatibility and supports high-speed SDR transfer modes. See section 41, SD/MMC Host
Interface (SDHI) in User’s Manual.
Table 1.9
Analog
Feature
Functional description
12-bit A/D Converter (ADC12)
Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up
to 13 analog input channels are selectable. In unit 1, up to nine analog input channels, the
temperature sensor output, and an internal reference voltage are selectable for conversion.
The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it
possible to optimize the tradeoff between speed and resolution in generating a digital value.
See section 45, 12-Bit A/D Converter (ADC12) in User’s Manual.
12-bit D/A Converter (DAC12)
The12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section
46, 12-Bit D/A Converter (DAC12) in User’s Manual.
Temperature sensor (TSN)
The on-chip temperature sensor can determine and monitor the die temperature for reliable
operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC12 for conversion and can also be used by the end
application. See section 47, Temperature Sensor (TSN) in User’s Manual.
High-Speed Analog Comparator
(ACMPHS)
The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference
voltage and provides a digital output based on the conversion result.
Both the test and reference voltages can be provided to the comparator from internal sources
such as the DAC12 output and internal reference voltage, and an external source.
Such flexibility is useful in applications that require go/no-go comparisons to be performed
between analog signals without necessarily requiring A/D conversion. See section 48, HighSpeed Analog Comparator (ACMPHS) in User’s Manual.
Table 1.10
Human machine interfaces
Feature
Functional description
Capacitive Touch Sensing Unit
(CTSU)
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do
not come into direct contact with the electrodes. See section 49, Capacitive Touch Sensing
Unit (CTSU) in User’s Manual.
Table 1.11
Graphics
Feature
Functional description
Parallel Data Capture (PDC) unit
One Parallel Data Capture (PDC) unit is provided to communicate with external I/O devices,
including image sensors, and to transfer parallel data such as an image output from the
external I/O device through the DTC or DMAC to the on-chip SRAM and external address
spaces (the CS and SDRAM areas). See section 42, Parallel Data Capture Unit (PDC) in
User’s Manual.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 7 of 100
RA6M2 Group
Table 1.12
1. Overview
Data processing
Feature
Functional description
Cyclic Redundancy Check (CRC)
calculator
The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC
calculation results can be switched for LSB-first or MSB-first communication. Additionally,
various CRC-generating polynomials are available. The snoop function allows monitoring
reads from and writes to specific addresses. This function is useful in applications that require
CRC code to be generated automatically in certain events, such as monitoring writes to the
serial transmit buffer and reads from the serial receive buffer. See section 42, Parallel Data
Capture Unit (PDC) in User’s Manual.
Data Operation Circuit (DOC)
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 50,
Data Operation Circuit (DOC) in User’s Manual.
Sampling Rate Converter (SRC)
The Sampling Rate Converter (SRC) converts the sampling rate of data produced by various
audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are
supported.
See section 40, Sampling Rate Converter (SRC) in User’s Manual.
Table 1.13
Security
Feature
Functional description
Secure Crypto Engine 7 (SCE7)
Security algorithms:
- Symmetric algorithms: AES, 3DES, and ARC4
- Asymmetric algorithms: RSA, DSA, and ECC.
Other support features:
- TRNG (True Random Number Generator)
- Hash-value generation: SHA1, SHA224, SHA256, GHASH, and MD5
- 128-bit unique ID.
See section 44, Secure Cryptographic Engine (SCE7) in User’s Manual.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 8 of 100
RA6M2 Group
1.2
1. Overview
Block Diagram
Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the
features.
Memory
Bus
1 MB code flash
External
32 KB data flash
CSC
Arm Cortex-M4
DSP
System
FPU
POR/LVD
MOSC/SOSC
MPU
384 KB SRAM
SDRAM
8 KB Standby
SRAM
MPU
Clocks
Reset
(H/M/L) OCO
NVIC
Mode control
PLL
Power control
CAC
ICU
Battery backup
KINT
Register write
protection
System timer
DMA
Test and DBG interface
DTC
DMAC × 8
Timers
GPT32EH x 4
GPT32E x 4
GPT32 x 6
Communication interfaces
SCI × 10
AGT × 2
RTC
QSPI
Human machine interfaces
ETHERC
CTSU
IrDA × 1
Graphics
PDC
IIC × 3
SDHI × 2
SPI × 2
CAN × 2
SSIE
USBFS
WDT/IWDT
Event link
Data processing
ELC
CRC
Security
DOC
SRC
Analog
ADC12 × 2
TSN
DAC12
ACMPHS × 6
SCE7
Figure 1.1
Block diagram
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 9 of 100
RA6M2 Group
1.3
1. Overview
Part Numbering
Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.14 shows a
list of products.
R7FA6M2AF3C FB #AA 0
Production identification code
Packaging, Terminal material (Pb-free)
#AA: Tray/Sn (Tin) only
#AC: Tray/others
Package type
FB: LQFP 144 pins
FP: LQFP 100 pins
LK: LGA 145 pins
Quality Grade
Operating temperature
2: -40°C to 85°C
3: -40°C to 105°C
Code flash memory size
D: 512 KB
F: 1 MB
Feature set
Group number
Series name
RA family
Flash memory
Renesas microcontroller
Figure 1.2
Table 1.14
Part numbering scheme
Product list
Product part number
Orderable part number
Package
Code
flash
Data
flash
SRAM
Operating
temperature
R7FA6M2AF2CLK
R7FA6M2AF2CLK#AC1
PTLG0145KA-A
1 MB
32 KB
384 KB
-40 to +85°C
R7FA6M2AF3CFB
R7FA6M2AF3CFB#AA1
PLQP0144KA-B
R7FA6M2AF3CFP
R7FA6M2AF3CFP#AA1
PLQP0100KB-B
R7FA6M2AD2CLK
R7FA6M2AD2CLK#AC1
PTLG0145KA-A
R7FA6M2AD3CFB
R7FA6M2AD3CFB#AA1
PLQP0144KA-B
-40 to +105°C
R7FA6M2AD3CFP
R7FA6M2AD3CFP#AA1
PLQP0100KB-B
-40 to +105°C
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
-40 to +105°C
-40 to +105°C
512 KB
-40 to +85°C
Page 10 of 100
RA6M2 Group
1.4
1. Overview
Function Comparison
Table 1.15
Functional comparison
Part numbers
R7FA6M2AF2CLK/
R7FA6M2AD2CLK
Function
R7FA6M2AF3CFB/
R7FA6M2AD3CFB
R7FA6M2AF3CFP/
R7FA6M2AD3CFP
Pin count
145
144
100
Package
LGA
LQFP
LQFP
Code flash memory
1 MB/512 KB
Data flash memory
32 KB
SRAM
384 KB
Parity
352 KB
ECC
32 KB
Standby SRAM
System
8 KB
CPU clock
120 MHz
Backup registers
512 B
ICU
Yes
KINT
8
Event link
ELC
Yes
DMA
DTC
Yes
BUS
External bus
DMAC
8
16-bit bus
SDRAM
Timers
Communication
4
4
4
GPT32E
4
4
4
GPT32
6
6
5
AGT
2
2
2
RTC
Yes
WDT/IWDT
Yes
SCI
10
3
2
SSIE
1
QSPI
1
SDHI
2
CAN
2
Yes
ETHERC
ADC12
1
22
DAC12
6
TSN
CTSU
Data processing
19
2
ACMPHS
Graphics
2
SPI
USBFS
HMI
No
GPT32EH
IIC
Analog
8-bit bus
Yes
Yes
18
12
PDC
Yes
CRC
Yes
DOC
Yes
SRC
Security
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Yes
SCE7
Page 11 of 100
RA6M2 Group
1.5
1. Overview
Pin Functions
Table 1.16
Pin functions (1 of 5)
Function
Signal
I/O
Description
Power supply
VCC
Input
Power supply pin. This is used as the digital power supply for the respective
modules and internal voltage regulator, and used to monitor the voltage of
the POR/LVD. Connect it to the system power supply. Connect this pin to
VSS by a 0.1-μF capacitor. Place the capacitor close to the pin.
VCL0
-
VCL
-
Connect to VSS through a 0.1-μF smoothing capacitor close to each VCL
pin. Stabilize the internal power supply.
VSS
Input
Ground pin. Connect to the system power supply (0 V).
VBATT
Input
Backup power pin
XTAL
Output
EXTAL
Input
Pins for a crystal resonator. An external clock signal can be input through the
EXTAL pin.
XCIN
Input
XCOUT
Output
Input/output pins for the sub-clock oscillator. Connect a crystal resonator
between XCOUT and XCIN.
EBCLK
Output
Outputs the external bus clock for external devices
SDCLK
Output
Outputs the SDRAM-dedicated clock
CLKOUT
Output
Clock output pin
Operating mode
control
MD
Input
Pin for setting the operating mode. The signal level on this pin must not be
changed during operation mode transition on release from the reset state.
System control
RES
Input
Reset signal input pin. The MCU enters the reset state when this signal goes
low.
CAC
CACREF
Input
Measurement reference clock input pin
Interrupt
NMI
Input
Non-maskable interrupt request pin
IRQ0 to IRQ15
Input
Maskable interrupt request pins
KINT
KR00 to KR07
Input
A key interrupt can be generated by inputting a falling edge to the key
interrupt input pins
On-chip emulator
TMS
I/O
On-chip emulator or boundary scan pins
TDI
Input
TCK
Input
TDO
Output
Clock
External bus
interface
TCLK
Output
TDATA0 to TDATA3
Output
This pin outputs the clock for synchronization with the trace data
Trace data output
SWDIO
I/O
Serial wire debug data input/output pin
SWCLK
Input
Serial wire clock pin
SWO
Output
Serial wire trace output pin
RD
Output
Strobe signal indicating that reading from the external bus interface space is
in progress, active-low
WR
Output
Strobe signal indicating that writing to the external bus interface space is in
progress, in 1-write strobe mode, active-low
WR0 to WR1
Output
Strobe signals indicating that either group of data bus pins (D07 to D00 or
D15 to D08) is valid in writing to the external bus interface space, in byte
strobe mode, active-low
BC0 to BC1
Output
Strobe signals indicating that either group of data bus pins (D07 to D00 or
D15 to D08) is valid in access to the external bus interface space, in 1-write
strobe mode, active-low
ALE
Output
Address latch signal when address/data multiplexed bus is selected
WAIT
Input
Input pin for wait request signals in access to the external space, active-low
CS0 to CS7
Output
Select signals for CS areas, active-low
A00 to A20
Output
Address bus
D00 to D15
I/O
Data bus
A00/D00 to A15/D15
I/O
Address/data multiplexed bus
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 12 of 100
RA6M2 Group
Table 1.16
1. Overview
Pin functions (2 of 5)
Function
Signal
I/O
Description
SDRAM interface
CKE
Output
SDRAM clock enable signal
SDCS
Output
SDRAM chip select signal, active-low
RAS
Output
SDRAM low address strobe signal, active-low
CAS
Output
SDRAM column address strobe signal, active-low
WE
Output
SDRAM write enable signal, active-low
DQM0
Output
SDRAM I/O data mask enable signal for DQ07 to DQ00
DQM1
Output
SDRAM I/O data mask enable signal for DQ15 to DQ08
A00 to A15
Output
Address bus
GPT
AGT
RTC
SCI
IIC
SSIE
DQ00 to DQ15
I/O
Data bus
GTETRGA,
GTETRGB,
GTETRGC,
GTETRGD
Input
External trigger input pins
GTIOC0A to
GTIOC13A,
GTIOC0B to
GTIOC13B
I/O
Input capture, output compare, or PWM output pins
GTIU
Input
Hall sensor input pin U
GTIV
Input
Hall sensor input pin V
GTIW
Input
Hall sensor input pin W
GTOUUP
Output
3-phase PWM output for BLDC motor control (positive U phase)
GTOULO
Output
3-phase PWM output for BLDC motor control (negative U phase)
GTOVUP
Output
3-phase PWM output for BLDC motor control (positive V phase)
GTOVLO
Output
3-phase PWM output for BLDC motor control (negative V phase)
GTOWUP
Output
3-phase PWM output for BLDC motor control (positive W phase)
GTOWLO
Output
3-phase PWM output for BLDC motor control (negative W phase)
AGTEE0, AGTEE1
Input
External event input enable signals
AGTIO0, AGTIO1
I/O
External event input and pulse output pins
AGTO0, AGTO1
Output
Pulse output pins
AGTOA0, AGTOA1
Output
Output compare match A output pins
Output compare match B output pins
AGTOB0, AGTOB1
Output
RTCOUT
Output
Output pin for 1-Hz or 64-Hz clock
RTCIC0 to RTCIC2
Input
Time capture event input pins
SCK0 to SCK9
I/O
Input/output pins for the clock (clock synchronous mode)
RXD0 to RXD9
Input
Input pins for received data (asynchronous mode/clock synchronous mode)
TXD0 to TXD9
Output
Output pins for transmitted data (asynchronous mode/clock synchronous
mode)
CTS0_RTS0 to
CTS9_RTS9
I/O
Input/output pins for controlling the start of transmission and reception
(asynchronous mode/clock synchronous mode), active-low
SCL0 to SCL9
I/O
Input/output pins for the IIC clock (simple IIC mode)
SDA0 to SDA9
I/O
Input/output pins for the IIC data (simple IIC mode)
SCK0 to SCK9
I/O
Input/output pins for the clock (simple SPI mode)
MISO0 to MISO9
I/O
Input/output pins for slave transmission of data (simple SPI mode)
MOSI0 to MOSI9
I/O
Input/output pins for master transmission of data (simple SPI mode)
SS0 to SS9
Input
Chip-select input pins (simple SPI mode), active-low
SCL0 to SCL2
I/O
Input/output pins for the clock
SDA0 to SDA2
I/O
Input/output pins for data
SSIBCK0
I/O
SSIE serial bit clock pins
SSILRCK0/SSIFS0
I/O
LR clock/frame synchronization pins
SSITXD0
Output
Serial data output pins
SSIRXD0
Input
Serial data input pins
SSIDATA0
I/O
Serial data input/output pins
AUDIO_CLK
Input
External clock pin for audio (input oversampling clock)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 13 of 100
RA6M2 Group
Table 1.16
1. Overview
Pin functions (3 of 5)
Function
Signal
I/O
SPI
RSPCKA, RSPCKB
I/O
Clock input/output pin
MOSIA, MOSIB
I/O
Input or output pins for data output from the master
MISOA, MISOB
I/O
Input or output pins for data output from the slave
SSLA0, SSLB0
I/O
Input or output pin for slave selection
SSLA1 to SSLA3,
SSLB1 to SSLB3
Output
Output pins for slave selection
QSPCLK
Output
QSPI clock output pin
QSSL
Output
QSPI slave output pin
QIO0 to QIO3
I/O
Data0 to Data3
CRX0, CRX1
Input
Receive data
CTX0, CTX1
Output
Transmit data
VCC_USB
Input
Power supply pins
VSS_USB
Input
Ground pins
USB_DP
I/O
D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of
the USB bus
USB_DM
I/O
D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of
the USB bus
USB_VBUS
Input
USB cable connection monitor pin. Connect this pin to VBUS of the USB
bus. The VBUS pin status (connected or disconnected) can be detected
when the USB module is operating as a device controller.
QSPI
CAN
USBFS
Description
USB_EXICEN
Output
Low-power control signal for external power supply (OTG) chip
USB_VBUSEN
Output
VBUS (5 V) supply enable signal for external power supply chip
USB_OVRCURA,
USB_OVRCURB
Input
Connect the external overcurrent detection signals to these pins. Connect
the VBUS comparator signals to these pins when the OTG power supply
chip is connected.
USB_ID
Input
Connect the MicroAB connector ID input signal to this pin during operation in
OTG mode
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 14 of 100
RA6M2 Group
Table 1.16
1. Overview
Pin functions (4 of 5)
Function
Signal
I/O
Description
ETHERC
REF50CK0
Input
50-MHz reference clock. This pin inputs reference signal for
transmission/reception timing in RMII mode.
RMII0_CRS_DV
Input
Indicates carrier detection signals and valid receive data on RMII0_RXD1
and RMII0_RXD0 in RMII mode
RMII0_TXD0,
RMII0_TXD1
Output
2-bit transmit data in RMII mode
RMII0_RXD0,
RMII0_RXD1
Input
2-bit receive data in RMII mode
RMII0_TXD_EN
Output
Output pin for data transmit enable signal in RMII mode
RMII0_RX_ER
Input
Indicates an error occurred during reception of data in RMII mode
ET0_CRS
Input
Carrier detection/data reception enable signal
ET0_RX_DV
Input
Indicates valid receive data on ET0_ERXD3 to ET0_ERXD0
ET0_EXOUT
Output
General-purpose external output pin
SDHI
Analog power
supply
ET0_LINKSTA
Input
Input link status from the PHY-LSI
ET0_ETXD0 to
ET0_ETXD3
Output
4 bits of MII transmit data
ET0_ERXD0 to
ET0_ERXD3
Input
4 bits of MII receive data
ET0_TX_EN
Output
Transmit enable signal. Functions as signal indicating that transmit data is
ready on ET0_ETXD3 to ET0_ETXD0
ET0_TX_ER
Output
Transmit error pin. Functions as signal notifying the PHY_LSI of an error
during transmission
ET0_RX_ER
Input
Receive error pin. Functions as signal to recognize an error during reception
ET0_TX_CLK
Input
Transmit clock pin. This pin inputs reference signal for output timing from
ET0_TX_EN, ET0_ETXD3 to ET0_ETXD0, and ET0_TX_ER
ET0_RX_CLK
Input
Receive clock pin. This pin inputs reference signal for input timing to
ET0_RX_DV, ET0_ERXD3 to ET0_ERXD0, and ET0_RX_ER
ET0_COL
Input
Input collision detection signal
ET0_WOL
Output
Receive Magic packets
ET0_MDC
Output
Output reference clock signal for information transfer through ET0_MDIO
ET0_MDIO
I/O
Input or output bidirectional signal for exchange of management data with
PHY-LSI
SD clock output pins
SD0CLK, SD1CLK
Output
SD0CMD, SD1CMD
I/O
Command output pin and response input signal pins
SD0DAT0 to
SD0DAT7,
SD1DAT0 to
SD1DAT7
I/O
SD and MMC data bus pins
SD0CD, SD1CD
Input
SD card detection pins
SD0WP
Input
SD write-protect signals
AVCC0
Input
Analog voltage supply pin. This is used as the analog power supply for the
respective modules. Supply this pin with the same voltage as the VCC pin.
AVSS0
Input
Analog ground pin. This is used as the analog ground for the respective
modules. Supply this pin with the same voltage as the VSS pin.
VREFH0
Input
Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin
to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for
AN000 to AN002.
VREFL0
Input
Analog reference ground pin for the ADC12. Connect this pin to VSS when
not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to
AN002
VREFH
Input
Analog reference voltage supply pin for the ADC12 (unit 1) and D/A
Converter. Connect this pin to VCC when not using the ADC12 (unit 1),
sample-and-hold circuit for AN100 to AN102, and D/A Converter.
VREFL
Input
Analog reference ground pin for the ADC12 and D/A Converter. Connect this
pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for
AN100 to AN102, and D/A Converter.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 15 of 100
RA6M2 Group
Table 1.16
1. Overview
Pin functions (5 of 5)
Function
Signal
I/O
Description
ADC12
AN000 to AN007,
AN016 to AN020
Input
Input pins for the analog signals to be processed by the ADC12
AN100 to AN102,
AN105 to AN107,
AN116 to AN118
Input
ADTRG0
Input
ADTRG1
Input
DAC12
DA0, DA1
Output
Output pins for the analog signals processed by the D/A converter
ACMPHS
VCOUT
Output
Comparator output pin
IVREF0 to IVREF3
Input
Reference voltage input pins for comparator
IVCMP0 to IVCMP2
Input
Analog voltage input pins for comparator
TS00 to TS17
Input
Capacitive touch detection pins (touch pins)
CTSU
I/O ports
PDC
Input pins for the external trigger signals that start the A/D conversion
TSCAP
-
Secondary power supply pin for the touch driver
P000 to P009,
P014, P015
I/O
General-purpose input/output pins
P100 to P115
I/O
General-purpose input/output pins
P200
Input
General-purpose input pin
P201 to P214
I/O
General-purpose input/output pins
P300 to P313
I/O
General-purpose input/output pins
P400 to P415
I/O
General-purpose input/output pins
P500 to P506,
P508, P511, P512
I/O
General-purpose input/output pins
P600 to P605,
P608 to P614
I/O
General-purpose input/output pins
P700 to P705,
P708 to P713
I/O
General-purpose input/output pins
P800, P801
I/O
General-purpose input/output pins
PIXCLK
Input
Image transfer clock pin
VSYNC
Input
Vertical synchronization signal pin
HSYNC
Input
Horizontal synchronization signal pin
PIXD0 to PIXD7
Input
8-bit image data pins
PCKO
Output
Output pin for dot clock
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 16 of 100
RA6M2 Group
1.6
1. Overview
Pin Assignments
Figure 1.3 to Figure 1.5 show the pin assignments.
R7FA6M2AX2CLK
13
A
B
C
D
E
F
G
H
J
K
L
M
N
P407
P409
P412
P708
P711
VCC
P212
/EXTAL
XCIN
VCL0
P702
P405
P402
P400
13
P410
P414
P710
VSS
P213
/XTAL
XCOUT
VBATT
P701
P404
P511
VCC
12
12 USB_DM USB_DP
11
VCC_
USB
VSS_
USB
P207
P411
P415
P712
P705
P704
P703
P403
P401
P512
VSS
11
10
P205
P206
P204
P408
P413
P709
P713
P700
P406
P003
P000
P002
P001
10
9
P203
P313
P202
VSS
P004
P006
P009
P008
9
8
P214
P211
P200
VCC
P005
AVSS0
VREFL0
VREFH0
8
7
P210
P209
RES
P310
P007
AVCC0
VREFL
VREFH
7
6
P208
P201/MD
P312
P305
P505
P506
P015
P014
6
5
P309
P311
P308
P303
NC
P503
P504
VSS
VCC
5
4
P307
P306
P304
P109/TDO
P114
P608
P604
P600
P105
P500
P502
P501
P508
4
3
VSS
VCC
P301
P112
P115
P610
P614
P603
P107
P106
P104
VSS
VCC
3
2
P302
P300/TCK
/SWCLK
P111
VCC
P609
P612
VSS
P605
P601
VCC
P800
P101
P801
2
P108/TMS
P110/TDI
/SWDIO
P113
VSS
P611
P613
VCC
VCL
P602
VSS
P103
P102
P100
1
C
D
E
F
G
H
J
K
L
M
N
1
A
Figure 1.3
B
Pin assignment for 145-pin LGA (top view)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 17 of 100
VSS
VCC
P614
P613
P612
P611
P610
P609
P608
VSS
VCC
P115
P114
P113
P112
P111
P110/TDI
P109/TDO
P108/TMS/SWDIO
91
90
89
88
87
85
83
81
79
76
75
74
73
VCL
92
77
P604
P605
94
78
P602
P603
96
80
P601
97
82
VCC
P600
99
84
VSS
100
86
P107
101
93
P106
102
95
P104
P105
104
98
P102
P103
103
P101
106
105
P100
107
1. Overview
108
RA6M2 Group
P800
109
72
P300/TCK/SWCLK
P801
110
71
P301
VCC
111
70
P302
VSS
112
69
P303
P500
113
68
P501
114
67
VCC
VSS
P502
P503
115
66
P304
116
65
P305
P504
117
64
P306
P505
118
63
P307
P506
119
62
P308
P508
120
61
P309
VCC
121
60
P310
VSS
122
59
P015
123
58
P311
P312
P014
124
57
VREFL
VREFH
125
56
P200
P201/MD
55
RES
AVCC0
127
54
P208
AVSS0
128
53
P209
VREFL0
129
52
P210
VREFH0
130
51
P211
P009
P008
131
50
P214
132
49
VCC
P007
133
48
P006
134
47
VSS
P313
P005
135
46
P004
136
45
P202
P203
P003
137
44
P204
P002
138
43
P205
P001
P000
139
42
P206
140
41
P207
VSS
VCC
P512
141
40
142
39
143
38
VCC_USB
USB_DP
USB_DM
P511
144
37
VSS_USB
Figure 1.4
12
13
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
33
34
35
36
P704
P705
VBATT
VCL0
XCIN
XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P713
P712
P711
P710
P709
P708
P415
P414
P413
P412
P411
P410
P409
P408
P407
32
11
P703
10
9
P701
P702
5
P404
P405
8
4
P403
7
3
P402
P406
P700
2
P401
6
1
P400
14
R7FA6M2AX3CFB
126
Pin assignment for 144-pin LQFP (top view)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 18 of 100
Figure 1.5
P100
P101
P102
P103
P104
P105
P106
P107
P600
P601
P602
VCL
VSS
VCC
P610
P609
P608
P115
P114
P113
P112
P111
P110/TDI
P109/TDO
P108/TMS/SWDIO
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1. Overview
75
RA6M2 Group
P500
76
50
P501
77
49
P300/TCK/SWCLK
P301
P502
78
48
P302
P503
79
47
P303
P504
80
46
VCC
P508
81
45
VSS
VCC
82
44
P304
VSS
83
43
P305
P015
84
42
P306
P014
85
41
P307
VREFL
86
40
P200
VREFH
87
39
P201/MD
AVCC0
88
38
RES
AVSS0
89
37
P208
VREFL0
90
36
P209
VREFH0
91
35
P210
P008
92
34
P211
P007
93
33
P214
P006
94
32
P205
P005
95
31
P206
P004
96
30
P207
P003
97
29
VCC_USB
P002
98
28
USB_DP
P001
99
27
USB_DM
P000
100
26
VSS_USB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
P400
P401
P402
P403
P404
P405
P406
VBATT
VCL0
XCIN
XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P708
P415
P414
P413
P412
P411
P410
P409
P408
P407
R7FA6M2AX3CFP
Pin assignment for 100-pin LQFP (top view)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 19 of 100
RA6M2 Group
Pin Lists
N13
1
1
-
IRQ0
P400 -
-
AGTIO1 -
L11
2
2
-
IRQ5- P401 DS
-
-
GTIOC 6A
M13 3
3
CACREF IRQ4- P402 DS
-
AGTIO0/ AGTIO1
-
K11
4
4
-
-
P403 -
-
AGTIO0/ AGTIO1
GTIOC RTCI 3A
C1
L12
5
5
-
-
P404 -
-
-
-
L13
6
6
-
-
P405 -
-
-
-
GTETRGA GTIOC 6B
-
SCK4
SCK7
SCL0 _A
CTX0 CTS4_R TXD7/M SDA0 TS4/SS4 OSI7/SD _A
A7
RTCI CRX0 C0
HMI
PDC
CTSU
DAC12,
ACMPHS
ADC12
SDHI
ETHERC (RMII)
(50 MHz)
ETHERC (MII)
(25 MHz)
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,5,7,9
(30 MHz)
SCI0,2,4,6,8
(30 MHz)
GPT
AGT
Communication interfaces
RTC
USBFS,
CAN
Timers
GPT
External bus
I/O port
Interrupt
LQFP144
LGA145
Extbus
LQFP100
Power, System,
Clock, Debug,
CAC
Pin number
SDRAM
1.7
1. Overview
AUDIO ET0_WOL ET0_WOL _CLK
ADTRG 1
-
-
-
ET0_MDC ET0_MDC -
-
-
-
-
RXD7/MI SO7/SC
L7
-
AUDIO ET0_MDI ET0_MDI _CLK O
O
-
-
-
VSYNC
-
CTS7_R TS7/SS7
-
SSIBC ET0_LINK ET0_LINK SD1DA K0_A STA
STA
T7_B
-
-
PIXD7
GTIOC RTCI 3B
C2
-
-
-
-
SSILR ET0_EXO ET0_EXO SD1DA UT
T6_B
CK0/S UT
SIFS0
_A
-
-
PIXD6
GTIOC 1A
-
-
-
-
SSITX ET0_TX_ RMII0_TX SD1DA D0_A EN
D_EN_B T5_B
-
-
PIXD5
-
J10
7
7
-
-
P406 -
-
-
-
GTIOC 1B
-
-
-
-
SSLB3 SSIRX ET0_RX_ RMII0_TX SD1DA _C
D0_A ER
D1_B
T4_B
-
-
PIXD4
H10
8
-
-
-
P700 -
-
-
-
GTIOC 5A
-
-
-
-
MISOB _C
ET0_ETX RMII0_TX SD1DA D1
D0_B
T3_B
-
-
PIXD3
K12
9
-
-
-
P701 -
-
-
-
GTIOC 5B
-
-
-
-
MOSIB _C
ET0_ETX REF50CK SD1DA D0
0_B
T2_B
-
-
PIXD2
K13
10
-
-
-
P702 -
-
-
-
GTIOC 6A
-
-
-
-
RSPC KB_C
ET0_ERX RMII0_RX SD1DA D1
D0_B
T1_B
-
-
PIXD1
J11
11
-
-
-
P703 -
-
-
-
GTIOC 6B
-
-
-
-
SSLB0 _C
ET0_ERX RMII0_RX SD1DA D0
D1_B
T0_B
VCOUT -
PIXD0
H11
12
-
-
-
P704 -
-
AGTO0
-
-
-
CTX0 -
-
-
SSLB1 _C
ET0_RX_ RMII0_RX SD1CL CLK
_ER_B
K_B
-
-
HSYNC
G11
13
-
-
-
P705 -
-
AGTIO0 -
-
-
CRX0 -
-
-
SSLB2 _C
ET0_CRS RMII0_CR SD1CM S_DV_B D_B
-
-
PIXCLK
J12
14
8
VBATT
-
-
-
-
-
-
J13
15
9
VCL0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H13
16
10
XCIN
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H12
17
11
XCOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F12
18
12
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G12 19
13
XTAL
IRQ2
P213 -
-
-
GTETRGC GTIOC 0A
-
-
TXD1/M OSI1/SD
A1
-
-
-
-
-
ADTRG 1
-
-
G13 20
14
EXTAL
IRQ3
P212 -
-
AGTEE1 GTETRGD GTIOC 0B
-
-
RXD1/MI SO1/SC
L1
-
-
-
-
-
-
-
-
-
F13
15
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P713 -
-
AGTOA0 -
GTIOC 2A
-
-
-
-
-
-
-
-
-
-
-
TS17
-
21
G10 22
-
-
F11
23
-
-
-
P712 -
-
AGTOB0 -
GTIOC 2B
-
-
-
-
-
-
-
-
-
-
-
TS16
-
E13
24
-
-
-
P711 -
-
AGTEE0 -
-
-
-
-
CTS1_R TS1/SS1
-
-
ET0_TX_ CLK
-
-
-
TS15
-
E12
25
-
-
-
P710 -
-
-
-
-
-
-
-
SCK1
-
-
-
ET0_TX_ ER
-
-
-
TS14
-
F10
26
-
-
IRQ10 P709 -
-
-
-
-
-
-
-
TXD1/M OSI1/SD
A1
-
-
ET0_ETX D2
-
-
-
TS13
-
D13
27
16
CACREF IRQ11 P708 -
-
-
-
-
-
-
-
RXD1/MI SO1/SC
L1
SSLA3 AUDIO ET0_ETX _B
_CLK D3
-
-
-
TS12
PCKO
E11
28
17
-
IRQ8
P415 -
-
-
-
GTIOC 0A
USB_ VBUS
EN
-
SSLA2 _B
ET0_TX_ RMII0_TX SD0CD EN
D_EN_A
-
TS11
PIXD5
-
D12
29
18
-
IRQ9
P414 -
-
-
-
GTIOC 0B
-
-
-
-
SSLA1 _B
ET0_RX_ RMII0_TX SD0WP ER
D1_A
-
TS10
PIXD4
E10
30
19
-
-
P413 -
-
-
GTOUUP
-
-
-
CTS0_R TS0/SS0
-
SSLA0 _B
ET0_ETX RMII0_TX SD0CL D1
D0_A
K_A
-
TS09
PIXD3
C13
31
20
-
-
P412 -
-
AGTEE1 GTOULO
-
-
-
SCK0
-
RSPC KA_B
ET0_ETX REF50CK SD0CM D0
0_A
D_A
-
TS08
PIX02
D11
32
21
-
IRQ4
P411 -
-
AGTOA1 GTOVUP
GTIOC 9A
-
TXD0/M CTS3_R OSI0/SD TS3/SS3
A0
MOSIA _B
ET0_ERX RMII0_RX SD0DA D1
D0_A
T0_A
-
TS07
PIX01
C12
33
22
-
IRQ5
P410 -
-
AGTOB1 GTOVLO
GTIOC 9B
-
RXD0/MI SCK3
SO0/SC
L0
MISOA _B
ET0_ERX RMII0_RX SD0DA D0
D1_A
T1_A
-
TS06
PIXD0
B13
34
23
-
IRQ6
P409 -
-
-
GTOWUP GTIOC 10A
USB_ EXICE
N
TXD3/M OSI3/SD
A3
-
-
ET0_RX_ RMII0_RX CLK
_ER_A
-
-
TS05
HSYNC
D10
35
24
-
IRQ7
P408 -
-
-
GTOWLO GTIOC 10B
USB_I D
RXD3/MI SCL0 SO3/SC _B
L3
-
ET0_CRS RMII0_CR S_DV_A
-
-
TS04
PIXCLK
A13
36
25
-
-
P407 -
-
AGTIO0 -
-
RTC USB_ CTS4_R OUT VBUS TS4/SS4
B11
37
26
VSS_US B
-
-
-
-
-
-
-
-
-
-
SDA0 SSLB3 _B
_A
ET0_EXO ET0_EXO UT
UT
ADTRG 0
TS03
-
-
-
-
-
-
-
-
-
-
-
-
-
A12
38
27
-
-
-
-
-
-
-
-
-
USB_ DM
-
-
-
-
-
-
-
-
-
-
B12
39
28
-
-
-
-
-
-
-
-
-
USB_ DP
-
-
-
-
-
-
-
-
-
-
-
A11
40
29
VCC_US B
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
-
Page 20 of 100
RA6M2 Group
1. Overview
P207 A17
-
-
C11
41
30
-
-
-
-
-
-
-
-
B10
42
31
-
IRQ0- P206 WAI DS
T
-
GTIU
-
-
USB_ RXD4/MI VBUS SO4/SC
EN
L4
A10
43
32
CLKOUT IRQ1- P205 A16
DS
-
AGTO1
GTIV
GTIOC 4A
USB_ TXD4/M CTS9_R SCL1 SSLB0
_A
OVRC OSI4/SD TS9/SS9 _A
URA- A4
DS
C10
44
-
CACREF -
P204 A18
-
AGTIO1 GTIW
GTIOC 4B
USB_ SCK4
OVRC
URBDS
A9
45
-
-
IRQ2- P203 A19
DS
-
-
-
GTIOC 5A
CTX0 CTS2_R TXD9/M TS2/SS2 OSI9/SD
A9
MOSIB _A
C9
46
-
-
IRQ3- P202 WR1 DS
/BC1
-
-
GTIOC 5B
CRX0 SCK2
MISOB
_A
SCK9
-
SSLB2 _A/QS
SL
-
-
PDC
CTSU
-
-
TS02
-
SDA1 SSLB1 SSIDA ET0_LINK ET0_LINK SD0DA _A
_A
TA0_C STA
STA
T2_A
-
TS01
-
SSILR ET0_WOL ET0_WOL SD0DA T3_A
CK0/S
SIFS0
_C
-
TSCA
P
-
SD0DA T4_A
-
TS00
-
ET0_COL -
SD0DA T5_A
-
TSCA
P
-
ET0_ERX D2
SD0DA T6_A
-
-
-
SCL0 RSPC SSIBC ET0_RX_ _B
KB_A K0_C DV
RXD9/MI SO9/SC
L9
-
HMI
DAC12,
ACMPHS
ADC12
SDHI
ETHERC (RMII)
(50 MHz)
ETHERC (MII)
(25 MHz)
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,5,7,9
(30 MHz)
SCI0,2,4,6,8
(30 MHz)
GPT
GPT
AGT
Communication interfaces
RTC
USBFS,
CAN
Timers
SDRAM
I/O port
Interrupt
External bus
Extbus
LQFP100
Power, System,
Clock, Debug,
CAC
LQFP144
LGA145
Pin number
B9
47
-
-
-
P313 A20
-
-
-
-
-
-
-
-
-
-
-
ET0_ERX D3
SD0DA T7_A
-
-
-
D9
48
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D8
49
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A8
50
33
TRCLK
-
P214 -
-
-
GTIU
-
-
-
-
-
-
QSPC LK
ET0_MDC ET0_MDC SD0CL K_B
-
-
-
B8
51
34
TRDATA 0
P211 CS7 -
-
GTIV
-
-
-
-
-
-
QIO0
ET0_MDI ET0_MDI SD0CM O
O
D_B
-
-
-
A7
52
35
TRDATA 1
P210 CS6 -
-
GTIW
-
-
-
-
-
-
QIO1
-
ET0_WOL ET0_WOL SD0CD -
-
-
-
B7
53
36
TRDATA 2
P209 CS5 -
-
GTOVUP
-
-
-
-
-
-
QIO2
-
ET0_EXO ET0_EXO SD0WP UT
UT
-
-
-
-
A6
54
37
TRDATA 3
P208 CS4 -
-
GTOVLO
-
-
-
-
-
-
QIO3
-
ET0_LINK ET0_LINK SD0DA STA
STA
T0_B
-
-
-
C7
55
38
RES
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B6
56
39
MD
-
P201 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C8
57
40
-
NMI
P200 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C6
58
-
-
-
P312 CS3 CAS
AGTOA1 -
-
-
-
-
CTS3_R TS3/SS3
-
-
-
-
-
-
-
-
-
B5
59
-
-
-
P311 CS2 RAS
AGTOB1 -
-
-
-
-
SCK3
-
-
-
-
-
-
-
-
-
-
D7
60
-
-
-
P310 A15
A15
AGTEE1 -
-
-
-
-
TXD3
-
QIO3
-
-
-
-
-
-
-
-
A5
61
-
-
-
P309 A14
A14
-
-
-
-
-
-
RXD3
-
QIO2
-
-
-
-
-
-
-
-
C5
62
-
-
-
P308 A13
A13
-
-
-
-
-
-
-
-
QIO1
-
-
-
-
-
-
-
-
A4
63
41
-
-
P307 A12
A12
-
GTOUUP
-
-
-
CTS6
-
-
QIO0
-
-
-
-
-
-
-
-
B4
64
42
-
-
P306 A11
A11
-
GTOULO
-
-
-
SCK6
-
-
QSSL
-
-
-
-
-
-
-
-
D6
65
43
-
IRQ8
P305 A10
A10
-
GTOWUP -
-
-
TXD6/M OSI6/SD
A6
-
QSPC LK
-
-
-
-
-
-
-
C4
66
44
-
IRQ9
P304 A09
A09
-
GTOWLO GTIOC 7A
-
RXD6/MI SO6/SC
L6
-
-
-
-
-
-
-
-
-
A3
67
45
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B3
68
46
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D5
69
47
-
-
P303 A08
A08
-
-
GTIOC 7B
-
-
-
-
-
-
-
-
-
-
-
-
-
A2
70
48
-
IRQ5
P302 A07
A07
-
GTOUUP
GTIOC 4A
-
TXD2/M OSI2/SD
A2
-
SSLB3 _B
-
-
-
-
-
-
-
C3
71
49
-
IRQ6
P301 A06
A06
AGTIO0 GTOULO
GTIOC 4B
-
RXD2/MI CTS9_R SO2/SC TS9/SS9
L2
SSLB2 _B
-
-
-
-
-
-
-
B2
72
50
TCK/SW CLK
P300 -
-
-
GTOUUP
GTIOC 0A_A
-
-
-
-
SSLB1 _B
-
-
-
-
-
-
-
A1
73
51
TMS/SW DIO
P108 -
-
-
GTOULO
GTIOC 0B_A
-
-
CTS9_R TS9/SS9
SSLB0 _B
-
-
-
-
-
-
-
D4
74
52
CLKOUT /TDO/S
WO
P109 -
-
-
GTOVUP
GTIOC 1A_A
CTX1 -
TXD9/M OSI9/SD
A9
MOSIB _B
-
-
-
-
-
-
-
B1
75
53
TDI
IRQ3
P110 -
-
-
GTOVLO
GTIOC 1B_A
CRX1 CTS2_R RXD9/MI TS2/SS2 SO9/SC
L9
MISOB _B
-
-
-
-
VCOUT -
-
C2
76
54
-
IRQ4
P111 A05
A05
-
-
GTIOC 3A_A
-
SCK2
SCK9
-
RSPC KB_B
-
-
-
-
-
-
-
D3
77
55
-
-
P112 A04
A04
-
-
GTIOC 3B_A
-
TXD2/M SCK1
OSI2/SD
A2
-
SSLB0 SSIBC _B
K0_B
-
-
-
-
-
-
C1
78
56
-
-
P113 A03
A03
-
-
GTIOC 2A
-
RXD2/MI SO2/SC
L2
-
-
SSILR CK0/S
SIFS0
_B
-
-
-
-
-
-
E4
79
57
-
-
P114 A02
A02
-
-
GTIOC 2B
-
-
-
-
-
SSIRX D0_B
-
-
-
-
-
-
E3
80
58
-
-
P115 A01
A01
-
-
GTIOC 4A
-
-
-
-
-
SSITX D0_B
-
-
-
-
-
-
D2
81
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D1
82
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F4
83
59
-
-
P608 A00/ A00/D BC0 QM1
-
GTIOC 4B
-
-
-
-
-
-
-
-
-
-
-
-
-
E2
84
60
-
-
P609 CS1 CKE
-
-
GTIOC 5A
CTX1 -
-
-
-
-
-
-
-
-
-
-
-
F3
85
61
-
-
P610 CS0 WE
-
-
GTIOC 5B
CRX1 -
-
-
-
-
-
-
-
-
-
-
-
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 21 of 100
RA6M2 Group
1. Overview
HMI
PDC
CTSU
DAC12,
ACMPHS
ADC12
SDHI
ETHERC (RMII)
(50 MHz)
ETHERC (MII)
(25 MHz)
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,5,7,9
(30 MHz)
SCI0,2,4,6,8
(30 MHz)
GPT
GPT
AGT
Communication interfaces
RTC
USBFS,
CAN
Timers
SDRAM
I/O port
Interrupt
External bus
Extbus
LQFP100
Power, System,
Clock, Debug,
CAC
LQFP144
LGA145
Pin number
E1
86
-
CLKOUT /CACRE
F
P611 -
SDCS -
-
-
-
-
-
CTS7_R TS7/SS7
-
-
-
-
-
-
-
-
-
F2
87
-
-
-
P612 D08[ DQ08 A08/
D08]
-
-
-
-
-
SCK7
-
-
-
-
-
-
-
-
-
-
F1
88
-
-
-
P613 D09[ DQ09 A09/
D09]
-
-
-
-
-
TXD7
-
-
-
-
-
-
-
-
-
-
G3
89
-
-
-
P614 D10[ DQ10 A10/
D10]
-
-
-
-
-
RXD7
-
-
-
-
-
-
-
-
-
-
G1
90
62
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G2
91
63
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H1
92
64
VCL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H2
93
-
-
-
P605 D11[ DQ11 A11/
D11]
-
GTIOC 8A
-
-
-
-
-
-
-
-
-
-
-
-
-
G4
94
-
-
-
P604 D12[ DQ12 A12/
D12]
-
GTIOC 8B
-
-
-
-
-
-
-
-
-
-
-
-
-
H3
95
-
-
-
P603 D13[ DQ13 A13/
D13]
-
GTIOC 7A
-
-
CTS9_R TS9/SS9
-
-
-
-
-
-
-
-
-
J1
96
65
-
-
P602 EBC SDCL LK
K
-
GTIOC 7B
-
-
TXD9
-
-
-
-
-
-
-
-
-
-
-
J2
97
66
-
P601 WR/ DQM0 WR0
-
GTIOC 6A
-
-
RXD9
-
-
-
-
-
-
-
-
-
-
H4
98
67
CLKOUT /CACRE
F
P600 RD
-
-
-
GTIOC 6B
-
-
SCK9
-
-
-
-
-
-
-
-
-
-
K2
99
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K1
100
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J3
101
68
-
KR07 P107 D07[ DQ07 AGTOA0 A07/
D07]
GTIOC 8A
-
CTS8_R TS8/SS8
-
-
-
-
-
-
-
-
-
-
K3
102
69
-
KR06 P106 D06[ DQ06 AGTOB0 A06/
D06]
GTIOC 8B
-
SCK8
-
-
SSLA3 _A
-
-
-
-
-
-
-
J4
103
70
-
IRQ0/ P105 D05[ DQ05 KR05
A05/
D05]
GTETRGA GTIOC 1A
-
TXD8/M OSI8/SD
A8
-
SSLA2 _A
-
-
-
-
-
-
-
L3
104
71
-
IRQ1/ P104 D04[ DQ04 KR04
A04/
D04]
GTETRGB GTIOC 1B
-
RXD8/MI SO8/SC
L8
-
SSLA1 _A
-
-
-
-
-
-
-
L1
105
72
-
KR03 P103 D03[ DQ03 A03/
D03]
GTOWUP GTIOC 2A_A
CTX0 CTS0_R TS0/SS0
-
SSLA0 _A
-
-
-
-
-
-
-
M1
106
73
-
KR02 P102 D02[ DQ02 AGTO0
A02/
D02]
GTOWLO GTIOC 2B_A
CRX0 SCK0
-
RSPC KA_A
-
-
-
ADTRG 0
-
-
M2
107
74
-
IRQ1/ P101 D01[ DQ01 AGTEE0 GTETRGB GTIOC KR01
A01/
5A
D01]
-
TXD0/M CTS1_R SDA1 MOSIA OSI0/SD TS1/SS1 _B
_A
A0
-
-
-
-
-
-
-
N1
108
75
-
IRQ2/ P100 D00[ DQ00 AGTIO0 GTETRGA GTIOC KR00
A00/
5B
D00]
-
RXD0/MI SCK1
SO0/SC
L0
SCL1 MISOA _B
_A
-
-
-
-
-
-
-
L2
109
-
-
-
P800 D14[ DQ14 A14/
D14]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N2
110
-
-
-
P801 D15[ DQ15 A15/
D15]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N3
111
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M3
112
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K4
113
76
-
-
P500 -
-
AGTOA0 GTIU
GTIOC 11A
USB_ VBUS
EN
-
-
QSPC LK
-
-
SD1CL AN016
K_A
IVREF0 -
-
M4
114
77
-
IRQ11 P501 -
-
AGTOB0 GTIV
GTIOC 11B
USB_ OVRC
URA
TXD5/M OSI5/SD
A5
QSSL
-
-
-
SD1CM AN116
D_A
IVREF1 -
-
L4
115
78
-
IRQ12 P502 -
-
-
GTIW
GTIOC 12A
USB_ OVRC
URB
RXD5/MI SO5/SC
L5
QIO0
-
-
-
SD1DA AN017
T0_A
IVCMP0 -
-
K5
116
79
-
-
P503 -
-
-
GTETRGC GTIOC 12B
QIO1
-
-
-
SD1DA AN117
T1_A
-
-
-
P504 ALE -
-
USB_ CTS6_R SCK5
EXICE TS6/SS6
N
-
L5
117
80
-
-
-
GTETRGD GTIOC 13A
USB_I SCK6
D
QIO2
-
-
-
SD1DA AN018
T2_A
-
-
-
K6
118
-
-
IRQ14 P505 -
-
-
-
GTIOC 13B
-
RXD6/MI SO6/SC
L6
-
QIO3
-
-
-
SD1DA AN118
T3_A
-
-
-
L6
119
-
-
IRQ15 P506 -
-
-
-
-
-
-
TXD6/M OSI6/SD
A6
-
-
-
-
-
SD1CD AN019
-
-
-
N4
120
81
-
-
P508 -
-
-
-
-
-
-
SCK6
SCK5
-
-
-
-
-
SD1DA AN020
T3_A
-
-
-
N5
121
82
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M5
122
83
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M6
123
84
-
IRQ13 P015 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN006/ DA1/
AN106 IVCMP1
-
N6
124
85
-
-
P014 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN005/ DA0/
AN105 IVREF3
-
M7
125
86
VREFL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
CTS5_R TS5/SS5
-
-
Page 22 of 100
RA6M2 Group
1. Overview
HMI
PDC
CTSU
DAC12,
ACMPHS
ADC12
SDHI
ETHERC (RMII)
(50 MHz)
ETHERC (MII)
(25 MHz)
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,5,7,9
(30 MHz)
SCI0,2,4,6,8
(30 MHz)
GPT
GPT
AGT
Communication interfaces
RTC
USBFS,
CAN
Timers
SDRAM
External bus
I/O port
Interrupt
LQFP144
LGA145
Extbus
LQFP100
Power, System,
Clock, Debug,
CAC
Pin number
N7
126
87
VREFH
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L7
127
88
AVCC0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L8
128
89
AVSS0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M8
129
90
VREFL0 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N8
130
91
VREFH0 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M9
131
-
-
IRQ13 P009 -DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN004
-
-
-
N9
132
92
-
IRQ12 P008 -DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN003
-
-
-
K7
133
93
-
-
P007 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN107
-
-
-
L9
134
94
-
IRQ11 P006 -DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN102
IVCMP2 -
-
K8
135
95
-
IRQ10 P005 -DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN101
IVCMP2 -
-
K9
136
96
-
IRQ9- P004 DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN100
IVCMP2 -
-
K10
137
97
-
-
P003 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN007
-
-
-
M10 138
98
-
IRQ8- P002 DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN002
IVCMP2 -
-
N10
99
-
IRQ7- P001 DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN001
IVCMP2 -
-
139
L10
140
100
-
IRQ6- P000 DS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN000
IVCMP2 -
N11
141
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N12
142
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M11 143
-
-
IRQ14 P512 -
-
-
-
GTIOC 0A
CTX1 TXD4/M OSI4/SD
A4
SCL2 -
-
-
-
-
-
-
-
VSYNC
M12 144
-
-
IRQ15 P511 -
-
-
-
GTIOC 0B
CRX1 RXD4/MI SO4/SC
L4
SDA2 -
-
-
-
-
-
-
-
PCKO
Note:
Some pin names have the added suffix of _A, _B, and _C. When assigning the GPT, IIC, SPI, SSIE, ETHERC (RMII), and
SDHI functionality, select the functional pins with the same suffix.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 23 of 100
RA6M2 Group
2.
2. Electrical Characteristics
Electrical Characteristics
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V
2.7 ≤ VREFH0/VREFH ≤ AVCC0
VSS = AVSS0 = VREFL0/VREFL = VSS_USB = 0 V
Ta = Topr.
Figure 2.1 shows the timing conditions.
For example P100
C
VOH = VCC × 0.7, VOL = VCC × 0.3
VIH = VCC × 0.7, VIL = VCC × 0.3
Load capacitance C = 30pF
Figure 2.1
Input or output timing measurement conditions
The recommended measurement conditions for the timing specification of each peripheral provided are for the best
peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.
2.1
Absolute Maximum Ratings
Table 2.1
Absolute maximum ratings
Parameter
Symbol
Value
*2
Unit
Power supply voltage
VCC, VCC_USB
-0.3 to +4.0
V
VBATT power supply voltage
VBATT
-0.3 to +4.0
V
Input voltage (except for 5 V-tolerant ports*1)
Vin
-0.3 to VCC + 0.3
V
ports*1)
Vin
-0.3 to + VCC + 4.0 (max. 5.8)
V
Reference power supply voltage
VREFH/VREFH0
-0.3 to AVCC0 + 0.3
V
Analog power supply voltage
AVCC0 *2
-0.3 to +4.0
V
Analog input voltage
VAN
-0.3 to AVCC0 + 0.3
V
Operating temperature*3, *4, *5
Topr
-40 to +85
-40 to +105
°C
Storage temperature
Tstg
-55 to +125
°C
Input voltage (5 V-tolerant
Caution:
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Permanent damage to the MCU might result if absolute maximum ratings are exceeded.
Ports P205, P206, P400, P401, P407 to P415, P511, P512, and P708 to P713 are 5 V tolerant.
Connect AVCC0 and VCC_USB to VCC.
See section 2.2.1, Tj/Ta Definition.
Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the
systematic reduction of load for improved reliability.
The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 24 of 100
RA6M2 Group
Table 2.2
2. Electrical Characteristics
Recommended operating conditions
Parameter
Symbol
Value
Min
Power supply voltages
VCC
When USB/SDRAM is not used 2.7
When USB/SDRAM is used
Typ
Max
Unit
-
3.6
V
3.0
-
3.6
V
VSS
-
0
-
V
USB power supply voltages
VCC_USB
-
VCC
-
V
VSS_USB
-
0
-
V
VBATT power supply voltage
VBATT
1.8
-
3.6
V
Analog power supply voltages
AVCC0*1
-
VCC
-
V
AVSS0
-
0
-
V
Note 1.
Connect AVCC0 to VCC. When the A/D converter, the D/A converter, or the comparator are not in use, do not leave the
AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC,
and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.
2.2
DC Characteristics
2.2.1
Tj/Ta Definition
Table 2.3
DC characteristics
Conditions: Products with operating temperature (Ta) -40 to +105°C.
Parameter
Symbol
Typ
Max
Unit
Test conditions
Permissible junction temperature
Tj
-
125
°C
High-speed mode
Low-speed mode
Subosc-speed mode
105*1
Note:
Note 1.
Make sure that Tj = Ta + θja × total power consumption (W),
where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC.
The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering. If the part number shows the operation temperature to 85°C, then Tj max is 105°C, otherwise, it is 125°C.
2.2.2
Table 2.4
I/O VIH, VIL
I/O VIH, VIL (1 of 2)
Parameter
Input voltage
(except for
Schmitt trigger
input pins)
Schmitt trigger
input voltage
Peripheral
function
pin
Peripheral
function
pin
Symbol
Min
Typ
Max
Unit
EXTAL(external clock input), WAIT, SPI (except
RSPCK)
VIH
VCC × 0.8
-
-
V
VIL
-
-
VCC × 0.2
D00 to D15, DQ00 to DQ15
VIH
VCC × 0.7
-
-
VIL
-
-
VCC × 0.3
ETHERC
VIH
2.3
-
-
VIL
-
-
VCC × 0.2
IIC (SMBus)*1
VIH
2.1
-
-
VIL
-
-
0.8
IIC (SMBus)*2
VIH
2.1
-
VCC + 3.6
(max 5.8)
VIL
-
-
0.8
VIH
VCC × 0.7
-
-
VIL
-
-
VCC × 0.3
ΔVT
VCC × 0.05
-
-
IIC (except for
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
SMBus)*1
V
Page 25 of 100
RA6M2 Group
Table 2.4
2. Electrical Characteristics
I/O VIH, VIL (2 of 2)
Parameter
Schmitt trigger
input voltage
Peripheral
function
pin
IIC (except for
SMBus)*2
When using the
Battery Backup
Function
Ports
5 V-tolerant ports*5, *7
Other input
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Note 7.
pins*6
Typ
Max
Unit
VIH
VCC × 0.7
-
VCC + 3.6
(max 5.8)
V
VIL
-
-
VCC × 0.3
VCC × 0.05
-
-
VIH
VCC × 0.8
-
VCC + 3.6
(max 5.8)
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
When VBATT
power supply is
selected
VIH
VBATT × 0.8
-
VBATT + 0.3
VIL
-
-
VBATT × 0.2
ΔVT
VBATT × 0.05 -
-
When VCC
power supply is
selected
VIH
VCC × 0.8
-
Higher
voltage either
VCC + 0.3 V
or
VBATT + 0.3 V
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
VCC + 0.3
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
When not using the Battery Backup
Function
Other input pins*4
Min
ΔVT
5 V-tolerant ports*3, *7
RTCIC0,
RTCIC1,
RTCIC2
Symbol
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
VCC + 3.6
(max 5.8)
VIL
-
-
VCC × 0.2
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
V
SCL0_B (P204), SCL1_B, SDA1_B (total 3 pins).
SCL0_A, SDA0_A, SCL0_B (P408), SDA0_B, SCL1_A, SDA1_A, SCL2, SDA2 (total 8 pins).
RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 22
pins).
All input pins except for the peripheral function pins already described in the table.
P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 21 pins).
All input pins except for the ports already described in the table.
When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur
because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 26 of 100
RA6M2 Group
2.2.3
2. Electrical Characteristics
I/O IOH, IOL
Table 2.5
I/O IOH, IOL
Parameter
Permissible output current
(average value per pin)
Ports P000 to P009, P201
-
Ports P014, P015
-
Ports P205, P206, P407 to P415,
P602, P708 to P713 (total 18 pins)
Low drive*1
Middle drive*2
High drive*3
Low drive*1
Middle drive*2
High drive*3
Other output pins*4
Permissible output current
(max value per pin)
Caution:
Note 1.
Note 2.
Note 3.
Note 4.
Min
Typ
Max
Unit
IOH
-
-
-2.0
mA
IOL
-
-
2.0
mA
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
-2.0
mA
IOL
-
-
2.0
mA
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
-20
mA
IOL
-
-
20
mA
IOH
-
-
-2.0
mA
IOL
-
-
2.0
mA
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
-16
mA
IOL
-
-
16
mA
IOH
-
-
-4.0
mA
Ports P000 to P009, P201
-
IOL
-
-
4.0
mA
Ports P014, P015
-
IOH
-
-
-8.0
mA
IOL
-
-
8.0
mA
Ports P205, P206, P407 to P415,
P602, P708 to P713
(total 18 pins)
Low drive*1
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
Middle drive*2
IOH
-
-
-8.0
mA
IOL
-
-
8.0
mA
High drive*3
IOH
-
-
-40
mA
IOL
-
-
40
mA
Low drive*1
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
Middle drive*2
IOH
-
-
-8.0
mA
IOL
-
-
8.0
mA
High drive*3
IOH
-
-
-32
mA
Other output pins*4
Permissible output current
(maxvalue of total of all pins)
Symbol
Maximum of all output pins
IOL
-
-
32
mA
ΣIOH (max)
-
-
-80
mA
ΣIOL (max)
-
-
80
mA
To protect the reliability of the MCU, the output current values should not exceed the values in this
table. The average output current indicates the average value of current measured during 100 μs.
This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving
ability is retained in Deep Software Standby mode.
This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected
driving ability is retained in Deep Software Standby mode.
This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected
driving ability is retained in Deep Software Standby mode.
Except for P200, which is an input port.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 27 of 100
RA6M2 Group
2.2.4
2. Electrical Characteristics
I/O VOH, VOL, and Other Characteristics
Table 2.6
I/O VOH, VOL, and other characteristics
Parameter
Output voltage
Symbol
Min
Typ
Max
Unit
Test conditions
IIC
VOL
-
-
0.4
V
IOL = 3.0 mA
VOL
-
-
0.6
IOL = 6.0 mA
IIC*1
VOL
-
-
0.4
IOL = 15.0 mA
(ICFER.FMPE = 1)
VOL
-
0.4
-
IOL = 20.0 mA
(ICFER.FMPE = 1)
VOH
VCC - 0.5
-
-
IOH = -1.0 mA
VOL
-
-
0.4
IOL = 1.0 mA
VOH
VCC - 1.0
-
-
IOH = -20 mA
VCC = 3.3 V
VOL
-
-
1.0
IOL = 20 mA
VCC = 3.3 V
Other output pins
VOH
VCC - 0.5
-
-
IOH = -1.0 mA
VOL
-
-
0.5
RES
|Iin|
-
-
5.0
-
-
1.0
-
-
5.0
-
-
1.0
ETHERC
Ports P205, P206, P407 to P415,
P602, P708 to P713 (total of 18
pins)*2
Input leakage current
Port P200
Three-state leakage
current (off state)
5 V-tolerant ports
|ITSI|
Other ports (except for port P200)
IOL = 1.0 mA
μA
Vin = 0 V
Vin = 5.5 V
Vin = 0 V
Vin = VCC
μA
Vin = 0 V
Vin = 5.5 V
Vin = 0 V
Vin = VCC
Input pull-up MOS current
Ports P0 to PB
Ip
-300
-
-10
μA
VCC = 2.7 to 3.6 V
Vin = 0 V
Input capacitance
USB_DP, USB_DM, and ports
P014, P015, P400, P401, P511,
P512
Cin
-
-
16
pF
-
-
8
Vbias = 0V
Vamp = 20 mV
f = 1 MHz
Ta = 25°C
Other input pins
Note 1.
Note 2.
SCL0_A, SDA0_A (total 2 pins).
This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register.
The selected driving ability is retained in Deep Software Standby mode.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 28 of 100
RA6M2 Group
2.2.5
2. Electrical Characteristics
Operating and Standby Current
Table 2.7
Operating and standby current (1 of 2)
Parameter
Maximum*2
Supply
current*1
Min
Typ
Max
Unit
Test conditions
ICC*3
-
-
102*2
mA
ICLK = 120 MHz
PCLKA = 120 MHz*7
PCLKB = 60 MHz
PCLKC = 60 MHz
PCLKD = 120 MHz
FCLK = 60 MHz
BCLK = 120 MHz
CoreMark®*5
High-speed mode
Normal mode
-
19
-
All peripheral clocks enabled,
while (1) code executing from
flash*4
-
26
-
All peripheral clocks disabled,
while (1) code executing from
flash*5, *6
-
12
-
40
Sleep mode*5, *6
Increase during BGO
operation
-
10
Data flash P/E
-
6
-
Code flash P/E
-
8
-
-
1.3
-
ICLK = 1 MHz
Subosc-speed mode*5
-
1.2
-
ICLK = 32.768 kHz
Software Standby mode
-
1.3
15
Ta ≤ 85°C
-
1.3
24
Ta ≤ 105°C
Power supplied to Standby SRAM and USB resume
detecting unit
-
29
67
-
29
96
Ta ≤ 105°C
Power not supplied to
SRAM or USB resume
detecting unit
Power-on reset circuit low
power function disabled
-
11.6
32.4
Ta ≤ 85°C
-
11.6
40
Ta ≤ 105°C
Power-on reset circuit low
power function enabled
-
4.9
23.5
Ta ≤ 85°C
-
4.9
31
Ta ≤ 105°C
When the low-speed on-chip
oscillator (LOCO) is in use
-
4.4
-
-
When a crystal oscillator for
low clock loads is in use
-
1.0
-
-
When a crystal oscillator for
standard clock loads is in use
-
1.4
-
-
When a crystal
oscillator for low clock
loads is in use
-
0.9
-
VBATT = 1.8 V,
VCC = 0 V
-
1.1
-
VBATT = 3.3 V,
VCC = 0 V
When a crystal
oscillator for standard
clock loads is in use
-
1.0
-
VBATT = 1.8 V,
VCC = 0 V
-
1.6
-
VBATT = 3.3 V,
VCC = 0 V
Deep Software Standby mode
Low-speed mode*5
Increase when the RTC
and AGT are operating
RTC operating while VCC is off (with
the battery backup function, only the
RTC and sub-clock oscillator
operate)
Analog
power
supply
current
Symbol
During 12-bit A/D conversion
AICC
μA
Ta ≤ 85°C
-
0.8
1.1
mA
-
During 12-bit A/D conversion with S/H amp
-
2.3
3.3
mA
-
ACMPHS (1 unit)
-
100
150
µA
-
Temperature sensor
-
0.1
0.2
mA
-
-
0.1
0.2
mA
-
During D/A conversion (per unit)
Without AMP output
-
0.6
1.1
mA
Waiting for A/D, D/A conversion (all units)
With AMP output
-
0.9
1.6
mA
-
ADC12, DAC12 in standby modes (all units)*8
-
2
8
µA
-
-
70
120
μA
-
Reference
power
supply
current
(VREFH0)
During 12-bit A/D conversion (unit 0)
Reference
power
supply
current
(VREFH)
During 12-bit A/D conversion (unit 1)
AIREFH0
Waiting for 12-bit A/D conversion (unit 0)
-
0.07
0.5
μA
-
ADC12 in standby modes (unit 0)
-
0.07
0.5
µA
-
-
70
120
µA
-
Without AMP output
-
0.1
0.4
mA
-
With AMP ouput
-
0.1
0.4
mA
-
Waiting for 12-bit A/D (unit 1), D/A (all units) conversion
-
0.07
0.8
µA
-
ADC12 unit 1 in standby modes
-
0.07
0.8
µA
-
During D/A conversion
(per unit)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
AIREFH
Page 29 of 100
RA6M2 Group
Table 2.7
2. Electrical Characteristics
Operating and standby current (2 of 2)
Parameter
USB
operating
current
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Note 7.
Note 8.
Symbol
Min
Typ
Max
Unit
Test conditions
Low speed
USB
ICCUSBLS
-
3.5
6.5
mA
VCC_USB
Full speed
USB
ICCUSBFS
-
4.0
10.0
mA
VCC_USB
Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.
Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCK:EBCLK = 2:2:1:1:2:1:1)
ICC Max. = 0.61 × f + 29 (maximum operation in High-speed mode)
ICC Typ. = 0.08 × f + 2.6 (normal operation in High-speed mode)
ICC Typ. = 0.1 × f + 1.2 (Low-speed mode)
ICC Max. = 0.09 × f + 29 (Sleep mode).
This does not include the BGO operation.
Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz).
When using ETHERC, PCLKA frequency is such that PCLKA = ICLK.
When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-bit A/D Converter 0 Module Stop bit) and
MSTPCRD.MSTPD15 (12-bit A/D Converter 1 Module Stop bit) are in the module-stop state.
100.0
ICC (mA)
10.0
1.0
-40
-20
0.1
0
20
40
60
80
100
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
Figure 2.2
Temperature dependency in Software Standby mode (reference data)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 30 of 100
RA6M2 Group
2. Electrical Characteristics
1000
ICC (uA)
100
10
1
-40
-20
0
20
40
60
80
100
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
Figure 2.3
Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and
USB resume detecting unit (reference data)
ICC (uA)
100
10
1
-40
-20
0
20
40
60
80
100
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
Figure 2.4
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low power function disabled (reference data)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 31 of 100
RA6M2 Group
2. Electrical Characteristics
ICC (uA)
100
10
1
-40
-20
0
20
40
60
80
100
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
Figure 2.5
2.2.6
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low power function enabled (reference data)
VCC Rise and Fall Gradient and Ripple Frequency
Table 2.8
Rise and fall gradient characteristics
Parameter
VCC rising gradient
Voltage monitor 0 reset disabled at startup
Symbol
Min
Typ
Max
Unit
Test conditions
SrVCC
0.0084
-
20
ms/V
-
0.0084
-
-
0.0084
-
20
0.0084
-
-
Voltage monitor 0 reset enabled at startup
SCI/USB boot
mode*1
VCC falling gradient*2
Note 1.
Note 2.
SfVCC
ms/V
-
At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.
This applies when VBATT is used.
Table 2.9
Rise and fall gradient and ripple frequency characteristics
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit
(2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Allowable ripple frequency
fr (VCC)
-
-
10
kHz
Figure 2.6
Vr (VCC) ≤ VCC × 0.2
-
-
1
MHz
Figure 2.6
Vr (VCC) ≤ VCC × 0.08
-
-
10
MHz
Figure 2.6
Vr (VCC) ≤ VCC × 0.06
1.0
-
-
ms/V
When VCC change exceeds VCC ±10%
Allowable voltage change rising
and falling gradient
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
dt/dVCC
Page 32 of 100
RA6M2 Group
2. Electrical Characteristics
1/fr(VCC)
VCC
Figure 2.6
2.3
Vr(VCC)
Ripple waveform
AC Characteristics
2.3.1
Frequency
Table 2.10
Operation frequency value in high-speed mode
Parameter
Symbol
Operation frequency
System clock
(ICLK*2)
120
120
Peripheral module clock (PCLKB)*2
-
-
60
Peripheral module clock (PCLKC)*2
-*3
-
60
-
-
120
-*1
-
60
(PCLKD)*2
(BCLK)*2
SDCLK pin output
VCC ≥ 3.0 V
-
-
120
-
-
60
-
-
120
FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.
Table 2.11
Operation frequency value in low-speed mode
Parameter
Operation frequency
Symbol
Min
Typ
Max
Unit
f
-
-
1
MHz
(PCLKA)*2
-
-
1
Peripheral module clock (PCLKB)*2
-
-
1
System clock (ICLK)*2
Peripheral module clock
-*3
-
1
Peripheral module clock (PCLKD)*2
-
-
1
Flash interface clock (FCLK)*1, *2
-
-
1
External bus clock (BCLK)
-
-
1
EBCLK pin output
-
-
1
Peripheral module clock
Note 3.
MHz
-
EBCLK pin output
Note 1.
Note 2.
Unit
-
External bus clock
Note 3.
Max
-
Flash interface clock (FCLK)*2
Note 1.
Note 2.
Typ
Peripheral module clock (PCLKA)*2
Peripheral module clock
f
Min
(PCLKC)*2,*3
Programming or erasing the flash memory is disabled in low-speed mode.
See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 33 of 100
RA6M2 Group
Table 2.12
2. Electrical Characteristics
Operation frequency value in Subosc-speed mode
Parameter
Operation frequency
Symbol
Min
Typ
Max
Unit
f
29.4
-
36.1
kHz
Peripheral module clock (PCLKA)*2
-
-
36.1
Peripheral module clock (PCLKB)*2
-
-
36.1
-
-
36.1
-
-
36.1
System clock (ICLK)*2
Peripheral module clock
(PCLKC)*2,*3
Peripheral module clock (PCLKD)*2
Flash interface clock
Note 1.
Note 2.
Note 3.
(FCLK)*1, *2
29.4
-
36.1
External bus clock (BCLK)*2
-
-
36.1
EBCLK pin output
-
-
36.1
Programming or erasing the flash memory is disabled in Subosc-speed mode.
See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
The ADC12 cannot be used.
2.3.2
Table 2.13
Clock Timing
Clock timing except for sub-clock oscillator (1 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
EBCLK pin output cycle time
tBcyc
16.6
-
-
ns
Figure 2.7
EBCLK pin output high pulse width
tCH
3.3
-
-
ns
EBCLK pin output low pulse width
tCL
3.3
-
-
ns
EBCLK pin output rise time
tCr
-
-
5.0
ns
EBCLK pin output fall time
tCf
-
-
5.0
ns
SDCLK pin output cycle time
tSDcyc
8.33
-
-
ns
SDCLK pin output high pulse width
tCH
1.0
-
-
ns
SDCLK pin output low pulse width
tCL
1.0
-
-
ns
SDCLK pin output rise time
tCr
-
-
3.0
ns
SDCLK pin output fall time
tCf
-
-
3.0
ns
EXTAL external clock input cycle time
tEXcyc
41.66
-
-
ns
EXTAL external clock input high pulse width
tEXH
15.83
-
-
ns
EXTAL external clock input low pulse width
tEXL
15.83
-
-
ns
EXTAL external clock rise time
tEXr
-
-
5.0
ns
EXTAL external clock fall time
tEXf
-
-
5.0
ns
Main clock oscillator frequency
fMAIN
8
-
24
MHz
-
Main clock oscillation stabilization wait time
(crystal) *1
tMAINOSCWT
-
-
-*1
ms
Figure 2.9
LOCO clock oscillation frequency
fLOCO
29.4912
32.768
36.0448
kHz
-
Figure 2.8
LOCO clock oscillation stabilization wait time
tLOCOWT
-
-
60.4
μs
Figure 2.10
ILOCO clock oscillation frequency
fILOCO
13.5
15
16.5
kHz
-
MOCO clock oscillation frequency
FMOCO
6.8
8
9.2
MHz
-
MOCO clock oscillation stabilization wait time
tMOCOWT
-
-
15.0
μs
-
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 34 of 100
RA6M2 Group
Table 2.13
2. Electrical Characteristics
Clock timing except for sub-clock oscillator (2 of 2)
Parameter
HOCO clock oscillator
oscillation frequency
Without FLL
With FLL
HOCO clock oscillation stabilization wait
time*2
Symbol
Min
Typ
Max
Unit
Test conditions
fHOCO16
15.78
16
16.22
MHz
-20 ≤ Ta ≤ 105°C
fHOCO18
17.75
18
18.25
fHOCO20
19.72
20
20.28
fHOCO16
15.71
16
16.29
fHOCO18
17.68
18
18.32
fHOCO20
19.64
20
20.36
fHOCO16
15.955
16
16.045
fHOCO18
17.949
18
18.051
fHOCO20
19.944
20
20.056
-40 ≤ Ta ≤ -20°C
-40 ≤ Ta ≤ 105°C
Sub-clock
frequency accuracy
is ±50 ppm.
tHOCOWT
-
-
64.7
μs
-
FLL stabilization wait time
tFLLWT
-
-
1.8
ms
-
PLL clock frequency
fPLL
120
-
240
MHz
-
PLL clock oscillation stabilization wait time
tPLLWT
-
-
174.9
μs
Figure 2.11
Note 1.
Note 2.
When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as
the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the
recommended value.
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm
that it is 1, and then start using the main clock oscillator.
This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed
operation.
Table 2.14
Clock timing for the sub-clock oscillator
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Sub-clock frequency
fSUB
-
32.768
-
kHz
-
Sub-clock oscillation stabilization wait time
tSUBOSCWT
-
-
-*1
s
Figure 2.12
Note 1.
When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time.
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after
the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is
recommended.
tBcyc, tSDcyc
tCH
tCf
EBCLK pin output, SDCLK pin output
tCL
Figure 2.7
tCr
EBCLK and SDCLK output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 35 of 100
RA6M2 Group
2. Electrical Characteristics
tEXcyc
tEXH
EXTAL external clock input
VCC × 0.5
tEXr
Figure 2.8
tEXL
tEXf
EXTAL external clock input timing
MOSCCR.MOSTP
Main clock oscillator output
tMAINOSCWT
Main clock
Figure 2.9
Main clock oscillation start timing
LOCOCR.LCSTP
On-chip oscillator output
tLOCOWT
LOCO clock
Figure 2.10
LOCO clock oscillation start timing
PLLCR.PLLSTP
PLL circuit output
tPLLWT
OSCSF.PLLSF
PLL clock
Figure 2.11
Note:
PLL clock oscillation start timing
Only operate the PLL after the main clock oscillation has stabilized.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 36 of 100
RA6M2 Group
2. Electrical Characteristics
SOSCCR.SOSTP
Sub-clock oscillator output
tSUBOSCWT
Sub-clock
Figure 2.12
2.3.3
Table 2.15
Sub-clock oscillation start timing
Reset Timing
Reset timing
Symbol
Min
Typ
Max
Unit
Test
conditions
Power-on
tRESWP
1
-
-
ms
Figure 2.13
Deep Software Standby mode
tRESWD
0.6
-
-
ms
Figure 2.14
Software Standby mode, Subosc-speed
mode
tRESWS
0.3
-
-
ms
All other
tRESW
200
-
-
μs
Wait time after RES cancellation
tRESWT
-
29
32
μs
Figure 2.13
Wait time after internal reset cancellation
(IWDT reset, WDT reset, software reset, SRAM parity error
reset, SRAM ECC error reset, bus master MPU error reset, bus
slave MPU error reset, stack pointer error reset)
tRESW2
-
320
390
μs
-
Parameter
RES pulse width
VCC
RES
Internal reset signal
(low is valid)
tRESWP
tRESWT
Figure 2.13
Power-on reset timing
tRESWD, tRESWS, tRESW
RES
Internal reset signal
(low is valid)
tRESWT
Figure 2.14
Reset input timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 37 of 100
RA6M2 Group
2.3.4
Table 2.16
2. Electrical Characteristics
Wakeup Timing
Timing of recovery from low power modes
Parameter
Symbol
Min
Typ
Max
Unit
Crystal
resonator
connected
to main
clock
oscillator
System clock source is main
clock oscillator*2
tSBYMC
-
2.4*9
2.8*9
ms
System clock source is PLL
with main clock oscillator*3
tSBYPC
-
2.7*9
3.2*9
ms
External
clock input
to main
clock
oscillator
System clock source is main
clock oscillator*4
tSBYEX
-
230*9
280*9
μs
System clock source is PLL
with main clock oscillator*5
tSBYPE
-
570*9
700*9
μs
System clock source is sub-clock
oscillator*8
tSBYSC
-
1.2*9
1.3*9
ms
System clock source is LOCO*8
tSBYLO
-
1.2*9
1.4*9
ms
System clock source is HOCO clock
oscillator*6
tSBYHO
-
240*9, *10
300
*9, *10
µs
System clock source is MOCO clock
oscillator*7
tSBYMO
-
220*9
300*9
µs
Recovery time from Deep Software Standby mode
tDSBY
-
0.65
1.0
ms
Wait time after cancellation of Deep Software Standby mode
tDSBYWT
34
-
35
tcyc
70
*9, *10
μs
14*9
μs
Recovery time
from Software
Standby mode*1
Recovery time
from Software
Standby mode to
Snooze mode
High-speed mode when system clock
source is HOCO (20 MHz)
tSNZ
-
35*9, *10
High-speed mode when system clock
source is MOCO (8 MHz)
tSNZ
-
11*9
Test
conditions
Figure 2.15
The division
ratio of all
oscillators is
1.
Figure 2.16
Figure 2.17
Note 1.
The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be
determined with the following equation:
Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any
oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3
SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For
other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
05h))
Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
05h))
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).
For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
00h))
Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
00h))
Note 6. The HOCO frequency is 20 MHz.
Note 7. The MOCO frequency is 8 MHz.
Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time:
STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum)
STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).
Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 38 of 100
RA6M2 Group
2. Electrical Characteristics
Oscillator
(system clock)
tSBYOSCWT
tSBYSEQ
Oscillator
(not the system clock)
ICLK
IRQ
Software Standby mode
tSBYMC, tSBYEX, tSBYPC, tSBYPE,
tSBYPH, tSBYSC, tSBYHO, tSBYLO
When stabilization of the system clock oscillator is slower
Oscillator
(system clock)
tSBYOSCWT
tSBYSEQ
Oscillator
(not the system clock)
tSBYOSCWT
ICLK
IRQ
Software Standby mode
tSBYMC, tSBYEX, tSBYPC, tSBYPE,
tSBYPH, tSBYSC, tSBYHO, tSBYLO
When stabilization of an oscillator other than the system clock is slower
Figure 2.15
Software Standby mode cancellation timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 39 of 100
RA6M2 Group
2. Electrical Characteristics
Oscillator
IRQ
Deep Software Standby
reset
(low is valid)
Internal reset
(low is valid)
Deep Software Standby mode
tDSBY
tDSBYWT
Reset exception handling start
Figure 2.16
Deep Software Standby mode cancellation timing
Oscillator
ICLK(except DTC, SRAM)
ICLK(to DTC, SRAM)*1
PCLK
IRQ
Software Standby mode
Snooze mode
tSNZ
Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.
Figure 2.17
2.3.5
Recovery timing from Software Standby mode to Snooze mode
NMI and IRQ Noise Filter
Table 2.17
NMI and IRQ noise filter
Parameter
Symbol
Min
NMI pulse width
tNMIW
200
tPcyc ×
IRQ pulse width
tIRQW
2*1
Max
Unit
Test conditions
-
-
ns
NMI digital filter disabled
tPcyc × 2 ≤ 200 ns
NMI digital filter enabled
tNMICK × 3 ≤ 200 ns
-
-
200
-
-
tNMICK × 3.5*2
-
-
200
-
-
tPcyc × 2*1
-
-
200
-
-
-
-
tIRQCK ×
Note:
Note:
Typ
3.5*3
tPcyc × 2 > 200 ns
tNMICK × 3 > 200 ns
ns
IRQ digital filter disabled
tPcyc × 2 ≤ 200 ns
tPcyc × 2 > 200 ns
IRQ digital filter enabled
tIRQCK × 3 ≤ 200 ns
tIRQCK × 3 > 200 ns
200 ns minimum in Software Standby mode.
If the clock source is switched, add 4 clock cycles of the switched source.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 40 of 100
RA6M2 Group
Note 1.
Note 2.
Note 3.
2. Electrical Characteristics
tPcyc indicates the PCLKB cycle.
tNMICK indicates the cycle of the NMI digital filter sampling clock.
tIRQCK indicates the cycle of the IRQi digital filter sampling clock.
NMI
tNMIW
Figure 2.18
NMI interrupt input timing
IRQ
tIRQW
Figure 2.19
2.3.6
IRQ interrupt input timing
Bus Timing
Table 2.18
Bus timing (1 of 2)
Condition 1: When using the CS area controller (CSC).
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF.
EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Condition 2: When using the SDRAM area controller (SDRAMC).
BCLK = SDCLK = 8 to 120 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF.
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.
BCLK = SDCLK = 8 to 60 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF.
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay
tAD
-
12.5
ns
Byte control delay
tBCD
-
12.5
ns
Figure 2.20 to
Figure 2.25
CS delay
tCSD
-
12.5
ns
ALE delay time
tALED
-
12.5
ns
RD delay
tRSD
-
12.5
ns
Read data setup time
tRDS
12.5
-
ns
Read data hold time
tRDH
0
-
ns
WR/WRn delay
tWRD
-
12.5
ns
Write data delay
tWDD
-
12.5
ns
Write data hold time
tWDH
0
-
ns
WAIT setup time
tWTS
12.5
-
ns
WAIT hold time
tWTH
0
-
ns
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Figure 2.26
Page 41 of 100
RA6M2 Group
Table 2.18
2. Electrical Characteristics
Bus timing (2 of 2)
Condition 1: When using the CS area controller (CSC).
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF.
EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Condition 2: When using the SDRAM area controller (SDRAMC).
BCLK = SDCLK = 8 to 120 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF.
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.
BCLK = SDCLK = 8 to 60 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF.
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay 2 (SDRAM)
tAD2
0.8
6.8
ns
CS delay 2 (SDRAM)
tCSD2
0.8
6.8
ns
Figure 2.27 to
Figure 2.30
DQM delay (SDRAM)
tDQMD
0.8
6.8
ns
CKE delay (SDRAM)
tCKED
0.8
6.8
ns
Read data setup time 2 (SDRAM)
tRDS2
2.9
-
ns
Read data hold time 2 (SDRAM)
tRDH2
1.5
-
ns
Write data delay 2 (SDRAM)
tWDD2
-
6.8
ns
Write data hold time 2 (SDRAM)
tWDH2
0.8
-
ns
WE delay (SDRAM)
tWED
0.8
6.8
ns
RAS delay (SDRAM)
tRASD
0.8
6.8
ns
CAS delay (SDRAM)
tCASD
0.8
6.8
ns
Data cycle
Address cycle
Ta1
Ta1
Tan
TW1
TW2
TW3
TW4
TW5
Tend
Tn1
Tn2
EBCLK
tAD
Address bus
Address bus/
data bus
tAD
tRDS
tAD
tALED
tRDH
tALED
Address latch
(ALE)
tRSD
tRSD
Data read
(RD)
tCSD
Chip select
(CSn)
Figure 2.20
tCSD
Address/data multiplexed bus read access timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 42 of 100
RA6M2 Group
2. Electrical Characteristics
Data cycle
Address cycle
Ta1
Ta1
Tan
TW1
TW2
TW3
TW4
TW5
Tend
Tn1
Tn2
Tn3
EBCLK
tAD
Address bus
Address bus/
data bus
tAD
tAD
tALED
tWDD
tWDH
tALED
Address latch
(ALE)
tWRD
tWRD
Data write
(WRm)
tCSD
Chip select
(CSn)
Figure 2.21
tCSD
Address/data multiplexed bus write access timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 43 of 100
RA6M2 Group
2. Electrical Characteristics
CSRWAIT: 2
RDON:1
CSROFF: 2
CSON: 0
TW1
TW2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
A20 to A00
1-write strobe mode
A20 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS7 to CS0
tRSD
tRSD
RD (read)
tRDS
tRDH
D15 to D00 (read)
Figure 2.22
External bus timing for normal read cycle with bus clock synchronized
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 44 of 100
RA6M2 Group
2. Electrical Characteristics
CSWWAIT: 2
WRON: 1
WDON: 1*1
CSWOFF: 2
WDOFF: 1*1
CSON:0
TW1
TW2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
A20 to A00
1-write strobe mode
A20 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS7 to CS0
tWRD
tWRD
WR1, WR0, WR (write)
tWDD
tWDH
D15 to D00 (write)
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.
Figure 2.23
External bus timing for normal write cycle with bus clock synchronized
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 45 of 100
RA6M2 Group
2. Electrical Characteristics
CSRWAIT:2
CSPRWAIT:2
RDON:1
CSON:0
TW1
TW2
Tend
CSPRWAIT:2
CSPRWAIT:2
RDON:1
RDON:1
Tpw1
Tpw2
Tend
CSROFF:2
RDON:1
Tpw1
Tpw2
Tend
Tpw1
Tpw2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
A20 to A00
1-write strobe mode
A20 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS7 to CS0
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
RD (Read)
tRDS
tRDH
tRDS
tRDH
tRDS
tRDH
tRDS
tRDH
D15 to D00 (Read)
Figure 2.24
External bus timing for page read cycle with bus clock synchronized
CSPWWAIT:2
CSWWAIT:2
WRON:1
WDON:1*1
WDOFF:1*1
CSON:0 TW1
TW2
Tend
Tdw1
WRON:1
WDON:1*1
Tpw1
CSPWWAIT:2
WDOFF:1*1
Tpw2
Tend
Tdw1
WRON:1
WDON:1*1
Tpw1
CSWOFF:2
WDOFF:1*1
Tpw2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
A20 to A00
1-write strobe mode
A20 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS7 to CS0
tWRD
tWRD
tWRD
tWRD
tWRD
tWRD
WR1, WR0, WR (write)
tWDD
tWDH
tWDD
tWDH
tWDD
tWDH
D15 to D00 (write)
Note 1.
Figure 2.25
Always specify WDON and WDOFF as at least one EBCLK cycle.
External bus timing for page write cycle with bus clock synchronized
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 46 of 100
RA6M2 Group
2. Electrical Characteristics
CSRWAIT:3
CSWWAIT:3
TW1
TW2
TW3
(Tend)
Tend
Tn1
Tn2
EBCLK
A20 to A00
CS7 to CS0
RD (read)
WR (write)
External wait
tWTS tWTH
tWTS tWTH
WAIT
Figure 2.26
External bus timing for external wait control
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 47 of 100
RA6M2 Group
2. Electrical Characteristics
SDRAM command
ACT
RD
PRA
SDCLK
tAD2
tAD2
Row
address
A15 to A00
tAD2
tAD2
tAD2
tAD2
tAD2
Column address
tAD2
AP*1
PRA
command
tCSD2
tCSD2
tRASD
tRASD
tCSD2
tCSD2
tCSD2
tCSD2
tRASD
tRASD
tWED
tWED
SDCS
RAS
tCASD
tCASD
CAS
WE
(High)
CKE
tDQMD
DQMn
tRDS2
tRDH2
DQ15 to DQ00
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
Figure 2.27
SDRAM single read timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 48 of 100
RA6M2 Group
2. Electrical Characteristics
SDRAM command
ACT
WR
PRA
SDCLK
tAD2
tAD2
Row
address
A15 to A00
tAD2
tAD2
tAD2
tAD2
tAD2
Column address
tAD2
AP*1
PRA
command
tCSD2
tCSD2
tRASD
tRASD
tCSD2
tCSD2
tCSD2
tCSD2
tRASD
tRASD
tWED
tWED
SDCS
RAS
tCASD
tCASD
tWED
tWED
CAS
WE
(High)
CKE
tDQMD
DQMn
tWDD2
tWDH2
DQ15 to DQ00
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
Figure 2.28
SDRAM single write timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 49 of 100
RA6M2 Group
2. Electrical Characteristics
MRS
SDRAM command
SDCLK
t AD2
t AD2
t AD2
t AD2
t CSD2
t CSD2
t RASD
t RASD
t CASD
t CASD
t WED
t WED
A15 to A00
AP*1
SDCS
RAS
CAS
WE
(High)
CKE
DQMn
(Hi-Z)
DQ15 to DQ00
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
Figure 2.29
SDRAM mode register set timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 50 of 100
RA6M2 Group
2. Electrical Characteristics
SDRAM command
Ts
(RFA)
(RFS)
(RFX)
(RFA)
SDCLK
t AD2
t AD2
t AD2
t AD2
A15 to A00
AP*1
t CSD2 t CSD2
t CSD2
t CSD2
t CSD2 t CSD2 t CSD2
t RASD t RASD
t RASD
t RASD
t RASD t RASD t RASD
t CASD t CASD
t CASD
t CASD
t CASD t CASD t CASD
SDCS
RAS
CAS
(High)
WE
t CKED
t CKED
CKE
t DQMD
t DQMD
DQMn
(Hi-Z)
DQ15 to DQ00
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
Figure 2.30
2.3.7
Table 2.19
SDRAM self-refresh timing
I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2)
GPT32 Conditions:
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
AGT Conditions:
Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test
conditions
I/O ports
Input data pulse width
tPRW
1.5
-
tPcyc
Figure 2.31
POEG
POEG input trigger pulse width
tPOEW
3
-
tPcyc
Figure 2.32
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 51 of 100
RA6M2 Group
Table 2.19
2. Electrical Characteristics
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2)
GPT32 Conditions:
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
AGT Conditions:
Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
GPT32
Input capture pulse width
Single edge
Symbol
Min
Max
Unit
Test
conditions
tGTICW
1.5
-
tPDcyc
Figure 2.33
2.5
ns
Figure 2.34
Dual edge
*1
GTIOCxY output skew
(x = 0 to 7, Y= A or B)
Middle drive buffer
-
4
High drive buffer
-
4
GTIOCxY output skew
(x = 8 to 13, Y = A or B)
Middle drive buffer
-
4
High drive buffer
-
4
GTIOCxY output skew
(x = 0 to 13, Y = A or B)
Middle drive buffer
-
6
High drive buffer
-
6
tGTISK
OPS output skew
GTOUUP, GTOULO, GTOVUP,
GTOVLO, GTOWUP, GTOWLO
tGTOSK
-
5
ns
Figure 2.35
GPT(PWM
Delay
Generation
Circuit)
GTIOCxY_Z output skew
(x = 0 to 3, Y = A or B, Z = A)
tHRSK*2
-
2.0
ns
Figure 2.36
AGT
AGTIO, AGTEE input cycle
tACYC*3
100
-
ns
Figure 2.37
AGTIO, AGTEE input high width, low width
tACKWH,
tACKWL
40
-
ns
AGTIO, AGTO, AGTOA, AGTOB output cycle
tACYC2
62.5
-
ns
ADC12
ADC12 trigger input pulse width
tTRGW
1.5
-
tPcyc
Figure 2.38
KINT
KRn (n = 00 to 07) pulse width
tKR
250
-
ns
Figure 2.39
Note:
Note 1.
Note 2.
Note 3.
tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.
This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not
guaranteed.
The load is 30 pF.
Constraints on input cycle:
When not switching the source clock: tPcyc × 2 < tACYC should be satisfied.
When switching the source clock: tPcyc × 6 < tACYC should be satisfied.
Port
tPRW
Figure 2.31
I/O ports input timing
POEG input trigger
tPOEW
Figure 2.32
POEG input trigger timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 52 of 100
RA6M2 Group
2. Electrical Characteristics
Input capture
tGTICW
Figure 2.33
GPT32 input capture timing
PCLKD
Output delay
GPT32 output
tGTISK
Figure 2.34
GPT32 output delay skew
PCLKD
Output delay
GPT32 output
tGTOSK
Figure 2.35
GPT32 output delay skew for OPS
PCLKD
Output delay
GPT32 output
(PWM delay
generation circuit)
tHRSK
Figure 2.36
GPT32 (PWM Delay Generation Circuit) output delay skew
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 53 of 100
RA6M2 Group
2. Electrical Characteristics
tACYC
tACKWL
tACKWH
AGTIO, AGTEE
(input)
tACYC2
AGTIO, AGTO,
AGTOA, AGTOB
(output)
Figure 2.37
AGT input/output timing
ADTRG0,
ADTRG1
tTRGW
Figure 2.38
ADC12 trigger input timing
KR00 to KR07
tKR
Figure 2.39
2.3.8
Key interrupt input timing
PWM Delay Generation Circuit Timing
Table 2.20
PWM Delay Generation Circuit timing
Parameter
Min
Typ
Max
Unit
Test conditions
Operation frequency
80
-
120
MHz
-
Resolution
-
260
-
ps
PCLKD = 120 MHz
DNL*1
-
±2.0
-
LSB
-
Note 1.
This value normalizes the differences between lines in 1-LSB resolution.
2.3.9
Table 2.21
CAC Timing
CAC timing
Parameter
CAC
CACREF input pulse width
tPBcyc ≤ tcac*2
tPBcyc > tcac*2
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Symbol
Min
Typ
Max
Unit
Test
conditions
tCACREF
4.5 × tcac + 3 × tPBcyc
-
-
ns
-
5 × tcac + 6.5 × tPBcyc
-
-
ns
Page 54 of 100
RA6M2 Group
Note 1.
Note 2.
2. Electrical Characteristics
tPBcyc: PCLKB cycle.
tcac: CAC count clock source cycle.
2.3.10
SCI Timing
Table 2.22
SCI timing (1)
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
SCI
Input clock cycle
Asynchronous
Symbol
Min
Max
Unit*1
Test
conditions
tScyc
4
-
tPcyc
Figure 2.40
6
-
Clock
synchronous
Input clock pulse width
tSCKW
0.4
0.6
tScyc
Input clock rise time
tSCKr
-
5
ns
Input clock fall time
tSCKf
-
5
ns
tScyc
6
-
tPcyc
4
-
Output clock cycle
Asynchronous
Clock
synchronous
Note 1.
Output clock pulse width
tSCKW
0.4
0.6
tScyc
Output clock rise time
tSCKr
-
5
ns
Output clock fall time
tSCKf
-
5
ns
Transmit data delay
Clock
synchronous
tTXD
-
25
ns
Receive data setup time
Clock
synchronous
tRXS
15
-
ns
Receive data hold time
Clock
synchronous
tRXH
5
-
ns
Figure 2.41
tPcyc: PCLKA cycle.
tSCKW
tSCKr
tSCKf
SCKn
(n = 0 to 9)
tScyc
Figure 2.40
SCK clock input/output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 55 of 100
RA6M2 Group
2. Electrical Characteristics
SCKn
tTXD
TxDn
tRXS tRXH
RxDn
n = 0 to 9
Figure 2.41
Table 2.23
SCI input/output timing in clock synchronous mode
SCI timing (2)
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test
conditions
Simple
SPI
tSPcyc
4 (PCLKA ≤ 60 MHz)
8 (PCLKA > 60 MHz)
65536
tPcyc
Figure 2.42
SCK clock cycle input (slave) -
6 (PCLKA ≤ 60 MHz)
12 (PCLKA > 60 MHz)
65536
SCK clock high pulse width
tSPCKWH
0.4
0.6
tSPcyc
SCK clock low pulse width
tSPCKWL
0.4
0.6
tSPcyc
SCK clock rise and fall time
tSPCKr, tSPCKf
-
20
ns
Data input setup time
tSU
33.3
-
ns
SCK clock cycle output
(master)
Data input hold time
tH
33.3
-
ns
SS input setup time
tLEAD
1
-
tSPcyc
SS input hold time
tLAG
1
-
tSPcyc
Data output delay
tOD
-
33.3
ns
Data output hold time
tOH
-10
-
ns
Data rise and fall time
tDr, tDf
-
16.6
ns
SS input rise and fall time
tSSLr, tSSLf
-
16.6
ns
Slave access time
tSA
-
4 (PCLKA ≤ 60 MHz)
8 (PCLKA > 60 MHz)
tPcyc
Slave output release time
tREL
-
5 (PCLKA ≤ 60 MHz)
10 (PCLKA > 60 MHz)
tPcyc
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Figure 2.43 to
Figure 2.46
Figure 2.46
Page 56 of 100
RA6M2 Group
2. Electrical Characteristics
tSPCKr
tSPCKWH
VOH
SCKn
master select
output
VOH
VOL
tSPCKf
VOH
VOH
VOL
tSPCKWL
VOL
tSPcyc
tSPCKr
tSPCKWH
VIH
VIH
SCKn
slave select input
VIH
VIL
(n = 0 to 9)
tSPCKf
VIL
tSPCKWL
VIH
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
Figure 2.42
SCI simple SPI mode clock timing
SCKn
CKPOL = 0
output
SCKn
CKPOL = 1
output
tSU
MISOn
input
tH
MSB IN
DATA
tDr, tDf
MOSIn
output
tOH
MSB OUT
LSB IN
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
(n = 0 to 9)
Figure 2.43
SCI simple SPI mode timing for master when CKPH = 1
SCKn
CKPOL = 1
output
SCKn
CKPOL = 0
output
tSU
MISOn
input
tH
MSB IN
tOH
MOSIn
output
DATA
LSB IN
tOD
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
(n = 0 to 9)
Figure 2.44
SCI simple SPI mode timing for master when CKPH = 0
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 57 of 100
RA6M2 Group
2. Electrical Characteristics
tTD
SSn
input
tLEAD
tLAG
SCKn
CKPOL = 0
input
SCKn
CKPOL = 1
input
tSA
tOH
MISOn
output
tOD
MSB OUT
tSU
MOSIn
input
tREL
DATA
LSB OUT
tH
MSB IN
MSB OUT
tDr, tDf
MSB IN
DATA
LSB IN
MSB IN
(n = 0 to 9)
Figure 2.45
SCI simple SPI mode timing for slave when CKPH = 1
tTD
SSn
input
tLEAD
tLAG
SCKn
CKPOL = 1
input
SCKn
CKPOL = 0
input
tSA
tOH
tOD
LSB OUT
(Last data)
MISOn
output
MSB OUT
tSU
MOSIn
input
tREL
LSB OUT
DATA
tH
MSB OUT
tDr, tDf
MSB IN
DATA
LSB IN
MSB IN
(n = 0 to 9)
Figure 2.46
Table 2.24
SCI simple SPI mode timing for slave when CKPH = 0
SCI timing (3) (1 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Simple IIC
(Standard mode)
Symbol
Min
Max
Unit
Test conditions
SDA input rise time
tSr
-
1000
ns
Figure 2.47
SDA input fall time
tSf
-
300
ns
SDA input spike pulse removal time
tSP
0
4 × tIICcyc
ns
Data input setup time
tSDAS
250
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb*1
-
400
pF
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 58 of 100
RA6M2 Group
Table 2.24
2. Electrical Characteristics
SCI timing (3) (2 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Simple IIC
(Fast mode)
Note:
Note 1.
Symbol
Min
Max
Unit
Test conditions
SDA input rise time
tSr
-
300
ns
Figure 2.47
SDA input fall time
tSf
-
300
ns
SDA input spike pulse removal time
tSP
0
4 × tIICcyc
ns
Data input setup time
tSDAS
100
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb*1
-
400
pF
tIICcyc: IIC internal reference clock (IICφ) cycle.
Cb indicates the total capacity of the bus line.
VIH
SDAn
VIL
tSr
tSf
tSP
SCLn
(n = 0 to 9)
P*1
S*1
tSDAH
Note 1. S, P, and Sr indicate the following:
S: Start condition
P: Stop condition
Sr: Restart condition
Figure 2.47
P*1
Sr*1
tSDAS
Test conditions:
VIH = VCC × 0.7, VIL = VCC × 0.3
VOL = 0.6 V, IOL = 6 mA
SCI simple IIC mode timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 59 of 100
RA6M2 Group
2.3.11
2. Electrical Characteristics
SPI Timing
Table 2.25
SPI timing
Conditions:
For RSPCKA and RSPCKB pins, high drive output is selected with the Port Drive Capability bit in the PmnPFS register.
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Symbol
Min
Max
Unit*1
Test conditions*2
tSPcyc
2 (PCLKA 60 MHz)
4 (PCLKA > 60 MHz)
4096
tPcyc
Figure 2.48
C = 30 pF
4
4096
(tSPcyc - tSPCKr tSPCKf) / 2 - 3
-
2 × tPcyc
-
tSPCKWL
(tSPcyc - tSPCKr tSPCKf) / 2 - 3
-
2 × tPcyc
-
-
5
ns
Slave
tSPCKr,
tSPCKf
-
1
µs
Master
tSU
ns
Parameter
SPI
RSPCK clock cycle
Master
Slave
RSPCK clock high
pulse width
Master
tSPCKWH
Slave
RSPCK clock low pulse
width
Master
RSPCK clock rise and
fall time
Master
Slave
Data input setup time
Slave
Data input hold time
SSL setup time
tHF
0
-
Master
(PCLKA division ratio
set to a value other
than 1/2)
tH
tPcyc
-
Slave
tH
20
-
Master
tLEAD
N × tSPcyc - 10*3
N×
tSPcyc +
100*3
ns
6 x tPcyc
-
ns
N×
tSPcyc +
100*4
ns
6 x tPcyc
-
ns
tOD
-
6.3
ns
-
20
tOH
0
-
0
-
tSPcyc + 2 × tPcyc
8×
tSPcyc +
2 × tPcyc
ns
5
ns
Master
tLAG
Slave
Data output delay
Master
Data output hold time
Master
Slave
Slave
Successive
transmission delay
Master
tTD
Slave
MOSI and MISO rise
and fall time
Output
N × tSPcyc - 10
*4
ns
6 × tPcyc
-
1
μs
tSSLr,
tSSLf
-
5
ns
-
1
μs
Slave access time
tSA
-
2 x tPcyc
+ 28
ns
Slave output release time
tREL
-
2 x tPcyc
+ 28
Input
Output
Input
Figure 2.49 to
Figure 2.54
C = 30 pF
ns
tDr, tDf
SSL rise and fall time
Note 1.
-
ns
Master
(PCLKA division ratio
set to 1/2)
Slave
SSL hold time
4
5
ns
Figure 2.53 and
Figure 2.54
C = 30PF
tPcyc: PCLKA cycle.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 60 of 100
RA6M2 Group
Note 2.
Note 3.
Note 4.
2. Electrical Characteristics
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI
interface, the AC portion of the electrical characteristics is measured for each group.
N is set to an integer from 1 to 8 by the SPCKD register.
N is set to an integer from 1 to 8 by the SSLND register.
tSPCKr
tSPCKWH
SPI
VOH
VOH
RSPCKn
master select output
tSPCKf
VOH
VOL
VOH
VOL
VOL
tSPCKWL
tSPcyc
tSPCKr
tSPCKWH
VIH
VIH
RSPCKn
slave select input
tSPCKf
VIH
VIL
VIH
VIL
VIL
tSPCKWL
tSPcyc
n = A or B
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
Figure 2.48
SPI clock timing
SPI
SSLn0 to
SSLn3
output
tTD
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tH
MSB IN
tDr, tDf
MOSIn
output
DATA
tOH
MSB OUT
LSB IN
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.49
SPI timing for master when CPHA = 0
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 61 of 100
RA6M2 Group
2. Electrical Characteristics
SPI
SSLn0 to
SSLn3
output
tTD
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
tHF
MISOn
input
tHF
MSB IN
tDr, tDf
MOSIn
output
LSB IN
DATA
tOH
MSB OUT
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.50
SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2
SPI
SSLn0 to
SSLn3
output
tTD
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tH
MSB IN
tOH
MOSIn
output
DATA
LSB IN
tOD
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.51
SPI timing for master when CPHA = 1
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 62 of 100
RA6M2 Group
2. Electrical Characteristics
SPI
SSLn0 to
SSLn3
output
tTD
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tHF
MSB IN
tOH
tH
DATA
LSB IN
tOD
MOSIn
output
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.52
RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2
SPI
tTD
SSLn0
input
tLEAD
tLAG
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
tSA
tOH
MISOn
output
MSB OUT
tSU
MOSIn
input
tOD
DATA
tREL
LSB OUT
tH
MSB IN
MSB IN
MSB OUT
tDr, tDf
DATA
LSB IN
MSB IN
n = A or B
Figure 2.53
SPI timing for slave when CPHA = 0
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 63 of 100
RA6M2 Group
2. Electrical Characteristics
SPI
tTD
SSLAn
input
tLEAD
tLAG
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
tSA
tOH
tOD
LSB OUT
(Last data)
MISOn
output
MSB OUT
tSU
MOSIn
input
tREL
LSB OUT
DATA
tH
MSB OUT
tDr, tDf
MSB IN
DATA
LSB IN
MSB IN
n = A or B
Figure 2.54
2.3.12
SPI timing for slave when CPHA = 1
QSPI Timing
Table 2.26
QSPI timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit*1
Test conditions
QSPI
tQScyc
2
48
tPcyc
Figure 2.55
Note 1.
Note 2.
Note 3.
QSPCK clock cycle
QSPCK clock high pulse width
tQSWH
tQScyc × 0.4
-
ns
QSPCK clock low pulse width
tQSWL
tQScyc × 0.4
-
ns
Data input setup time
tSu
8
-
ns
Data input hold time
tIH
0
-
ns
QSSL setup time
tLEAD
(N+0.5) x
tQscyc - 5 *2
(N+0.5) x
tQscyc +100 *2
ns
QSSL hold time
tLAG
(N+0.5) x
tQscyc - 5 *3
(N+0.5) x
tQscyc +100 *3
ns
Data output delay
tOD
-
4
ns
Data output hold time
tOH
-3.3
-
ns
Successive transmission delay
tTD
1
16
tQScyc
Figure 2.56
tPcyc: PCLKA cycle.
N is set to 0 or 1 in SFMSLD.
N is set to 0 or 1 in SFMSHD.
tQSWH
tQSWL
QSPCLK output
tQScyc
Figure 2.55
QSPI clock timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 64 of 100
RA6M2 Group
2. Electrical Characteristics
tTD
QSSL
output
tLEAD
tLAG
QSPCLK
output
tSU
QIO0-3
input
tH
MSB IN
DATA
tOH
QIO0-3
output
Figure 2.56
2.3.13
Table 2.27
LSB IN
tOD
MSB OUT
DATA
LSB OUT
IDLE
Transmit and receive timing
IIC Timing
IIC timing (1) (1 of 2)
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.
Symbol
Min*1
Max
Unit
Test
conditions*3
SCL input cycle time
tSCL
6 (12) × tIICcyc + 1300
-
ns
Figure 2.57
Parameter
IIC
(Standard mode,
SMBus)
ICFER.FMPE = 0
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 300
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 300
-
ns
SCL, SDA input rise time
tSr
-
1000
ns
SCL, SDA input fall time
tSf
-
300
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time when
wakeup function is disabled
tBUF
3 (6) × tIICcyc + 300
-
ns
SDA input bus free time when
wakeup function is enabled
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 300
-
ns
START condition input hold time
when wakeup function is disabled
tSTAH
tIICcyc + 300
-
ns
START condition input hold time
when wakeup function is enabled
tSTAH
1 (5) × tIICcyc + tPcyc +
300
-
ns
Repeated START condition input
setup time
tSTAS
1000
-
ns
STOP condition input setup time
tSTOS
1000
-
ns
Data input setup time
tSDAS
tIICcyc + 50
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
400
pF
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 65 of 100
RA6M2 Group
Table 2.27
2. Electrical Characteristics
IIC timing (1) (2 of 2)
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.
Symbol
Min*1
Max
Unit
Test
conditions*3
SCL input cycle time
tSCL
6 (12) × tIICcyc + 600
-
ns
Figure 2.57
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 300
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 300
-
ns
SCL, SDA input rise time
tSr
20 × (external pullup
voltage/5.5V)*2
300
ns
SCL, SDA input fall time
tSf
20 × (external pullup
voltage/5.5V)*2
300
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time when
wakeup function is disabled
tBUF
3 (6) × tIICcyc + 300
-
ns
SDA input bus free time when
wakeup function is enabled
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 300
-
ns
START condition input hold time
when wakeup function is disabled
tSTAH
tIICcyc + 300
-
ns
START condition input hold time
when wakeup function is enabled
tSTAH
1 (5) × tIICcyc + tPcyc +
300
-
ns
Repeated START condition input
setup time
tSTAS
300
-
ns
STOP condition input setup time
tSTOS
300
-
ns
Data input setup time
tSDAS
tIICcyc + 50
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
400
pF
Parameter
IIC
(Fast mode)
Note:
Note 1.
Note 2.
Note 3.
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.
Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Only supported for SCL0_A, SDA0_A, SCL2, and SDA2.
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC
interface, the AC portion of the electrical characteristics is measured for each group.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 66 of 100
RA6M2 Group
Table 2.28
2. Electrical Characteristics
IIC timing (2)
Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.
Symbol
Min*1,*2
Max
Unit
Test
conditions
SCL input cycle time
tSCL
6 (12) × tIICcyc + 240
-
ns
Figure 2.57
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 120
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 120
-
ns
SCL, SDA input rise time
tSr
-
120
ns
SCL, SDA input fall time
tSf
-
120
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time when
wakeup function is disabled
tBUF
3 (6) × tIICcyc + 120
-
ns
SDA input bus free time when
wakeup function is enabled
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 120
-
ns
Start condition input hold time when
wakeup function is disabled
tSTAH
tIICcyc + 120
-
ns
START condition input hold time
when wakeup function is enabled
tSTAH
1 (5) × tIICcyc + tPcyc +
120
-
ns
Restart condition input setup time
tSTAS
120
-
ns
Stop condition input setup time
tSTOS
120
-
ns
Data input setup time
tSDAS
tIICcyc + 30
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
550
pF
Parameter
IIC
(Fast-mode+)
ICFER.FMPE = 1
Note:
Note 1.
Note 2.
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.
Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Cb indicates the total capacity of the bus line.
VIH
SDA0 to SDA2
VIL
tBUF
tSCLH
tSTAH
tSTAS
tSTOS
tSP
SCL0 to SCL2
P*1
S*1
tSf
tSCLL
tSr
tSCL
Note 1. S, P, and Sr indicate the following:
S: Start condition
P: Stop condition
Sr: Restart condition
Figure 2.57
P*1
Sr*1
tSDAS
tSDAH
Test conditions:
VIH = VCC × 0.7, VIL = VCC × 0.3
VOL = 0.6 V, IOL = 6 mA (ICFER.FMPE = 0)
VOL = 0.4 V, IOL = 15 mA (ICFER.FMPE = 1)
I2C bus interface input/output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 67 of 100
RA6M2 Group
2.3.14
2. Electrical Characteristics
SSIE Timing
Table 2.29
SSIE timing
(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.
(2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface,
the AC portion of the electrical characteristics is measured for each group.
Target specification
Parameter
SSIBCK0
Symbol
Min.
Max.
Unit
Comments
Master
tO
80
-
ns
Figure 2.58
Slave
tI
80
-
ns
High level/ low level
Master
tHC/tLC
0.35
-
tO
0.35
-
tI
Rising time/falling time
Master
-
0.15
tO / tI
-
0.15
tO / tI
Cycle
Slave
tRC/tFC
Slave
SSILRCK0/SSIFS0,
SSITXD0, SSIRXD0,
SSIDATA0
Input set up time
Master
tSR
12
-
ns
12
-
ns
8
-
ns
15
-
ns
-10
5
ns
0
20
ns
Figure 2.60,
Figure 2.61
tDTRW
-
20
ns
Figure 2.62*1
Cycle
tEXcyc
20
-
ns
Figure 2.59
High level/ low level
tEXL/
tEXH
0.4
0.6
tEXcyc
Slave
Input hold time
Master
Output delay time
Master
tHR
Slave
tDTR
Slave
Output delay time from
SSILRCK0/SSIFS0
change
GTIOC1A,
AUDIO_CLK
Note 1.
Slave
Figure 2.60,
Figure 2.61
For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to
generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA0 pin.
tHC
SSIBCK0
tRC
tFC
tLC
tO, tI
Figure 2.58
SSIE clock input/output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 68 of 100
RA6M2 Group
2. Electrical Characteristics
tEXcyc
tEXH
tEXL
GTIOC1A,
AUDIO_CLK
(input)
1/2 VCC
tEXf
Figure 2.59
tEXr
Clock input timing
SSIBCK0
(Input or Output)
SSILRCK0/SSIFS0 (input),
SSIRXD0,
SSIDATA0 (input)
tSR
tHR
SSILRCK0/SSIFS0 (output),
SSITXD0,
SSIDATA0 (output)
tDTR
Figure 2.60
SSIE data transmit and receive timing when SSICR.BCKP = 0
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 69 of 100
RA6M2 Group
2. Electrical Characteristics
SSIBCK0
(Input or Output)
SSILRCK0/SSIFS0 (input),
SSIRXD0,
SSIDATA0 (input)
tSR
tHR
SSILRCK0/SSIFS0 (output),
SSITXD0,
SSIDATA0 (output)
tDTR
Figure 2.61
SSIE data transmit and receive timing when SSICR.BCKP = 1
SSILRCK0/SSIFS0 (input)
SSITXD0,
SSIDATA0 (output)
tDTRW
MSB bit output delay after SSILRCK0/SSIFS0 change for slave
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR.
Figure 2.62
2.3.15
Table 2.30
SSIE data output delay after SSILRCK0/SSIFS0 change
SD/MMC Host Interface Timing
SD/MMC Host Interface signal timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Clock duty ratio is 50%.
Parameter
Symbol
Min
Max
Unit
Test conditions*1
SDCLK clock cycle
TSDCYC
20
-
ns
Figure 2.63
SDCLK clock high pulse width
TSDWH
6.5
-
ns
SDCLK clock low pulse width
TSDWL
6.5
-
ns
SDCLK clock rise time
TSDLH
-
3
ns
SDCLK clock fall time
TSDHL
-
3
ns
SDCMD/SDDAT output data delay
TSDODLY
-6
5
ns
SDCMD/SDDAT input data setup
TSDIS
4
-
ns
SDCMD/SDDAT input data hold
TSDIH
2
-
ns
Note 1. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 70 of 100
RA6M2 Group
2. Electrical Characteristics
For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.
T SDCYC
T SDW L
SDnCLK
(output)
T SDHL
T SDW H
T SDLH
T SDO DLY(m ax)
T SDO DLY (m in)
SDnCM D/SDnDATm
(output)
T SDIS
T SDIH
SDnCM D/SDnDATm
(input)
n = 0, 1, m = 0 to 7
Figure 2.63
2.3.16
SD/MMC Host Interface signal timing
ETHERC Timing
Table 2.31
ETHERC timing
Conditions: ETHERC (RMII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins:
ET0_MDC, ET0_MDIO.
For other pins, high drive output is selected in the Port Drive Capability bit in the PmnPFS register.
ETHERC (MII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
ETHERC
(RMII)
Symbol
Min
Max
Unit
REF50CK0 cycle time
Tck
20
-
ns
REF50CK0 frequency, typical 50 MHz
-
-
50 + 100 ppm
MHz
REF50CK0 duty
-
35
65
%
REF50CK0 rise/fall time
Tckr/ckf
0.5
3.5
ns
RMII_xxxx*1
ETHERC
(MII)
Note 1.
Note 2.
Tco
2.5
12.0
ns
RMII_xxxx*2 setup time
output delay
Tsu
3
-
ns
RMII_xxxx*2 hold time
Thd
1
-
ns
RMII_xxxx*1, *2
rise/fall time
Test
conditions*3
Figure 2.64 to
Figure 2.67
Tr/Tf
0.5
4
ns
ET0_WOL output delay
tWOLd
1
23.5
ns
Figure 2.68
ET0_TX_CLK cycle time
tTcyc
40
-
ns
-
ET0_TX_EN output delay
tTENd
1
20
ns
Figure 2.69
ET0_ETXD0 to ET_ETXD3 output delay
tMTDd
1
20
ns
ET0_CRS setup time
tCRSs
10
-
ns
ET0_CRS hold time
tCRSh
10
-
ns
ET0_COL setup time
tCOLs
10
-
ns
Figure 2.70
ET0_COL hold time
tCOLh
10
-
ns
ET0_RX_CLK cycle time
tTRcyc
40
-
ns
-
ET0_RX_DV setup time
tRDVs
10
-
ns
Figure 2.71
ET0_RX_DV hold time
tRDVh
10
-
ns
ET0_ERXD0 to ET_ERXD3 setup time
tMRDs
10
-
ns
ET0_ERXD0 to ET_ERXD3 hold time
tMRDh
10
-
ns
ET0_RX_ER setup time
tRERs
10
-
ns
ET0_RX_ER hold time
tRESh
10
-
ns
ET0_WOL output delay
tWOLd
1
23.5
ns
Figure 2.72
Figure 2.73
RMII_TXD_EN, RMII_TXD1, RMII_TXD0.
RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 71 of 100
RA6M2 Group
Note 3.
2. Electrical Characteristics
The following pins must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group
membership. For the ETHERC (RMII) Host interface, the AC portion of the electrical characteristics is measured for each
group.
REF50CK0_A, REF50CK0_B, RMII0_xxxx_A, RMII0_xxxx_B.
Tck
90%
REF50CK0
Tckr
50%
Tckf
10%
Tco
Tf
Tr
Tsu
Thd
90%
*1
RMII_xxxx
50%
Change
in signal
level
Change in
signal level
Signal
Change
in signal
level
Signal
10%
Note 1. RMII_TXD_EN, RMII_TXD1, RMII_TXD0, RMII_CRS_DV, RMII_RXD1, RMII_RXD0,
RMII_RX_ER
Figure 2.64
REF50CK0 and RMII signal timing
TCK
REF50CK0
TCO
RMII_TXD_EN
TCO
RMII_TXD1,
RMII_TXD0
Figure 2.65
Preamble
SFD
DATA
CRC
RMII transmission timing
REF50CK0
Thd
Tsu
RMII_CRS_DV
Tsu
RMII_RXD1,
RMII_RXD0
Thd
Preamble
DATA
CRC
SFD
RMII_RX_ER
Figure 2.66
L
RMII reception timing in normal operation
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 72 of 100
RA6M2 Group
2. Electrical Characteristics
REF50CK0
RMII_CRS_DV
RMII_RXD1,
RMII_RXD0
Preamble
SFD
DATA
xxxx
Thd
Tsu
RMII_RX_ER
Figure 2.67
RMII reception timing when an error occurs
REF50CK0
tWOLd
ET0_WOL
Figure 2.68
WOL output timing for RMII
ET0_TX_CLK
tTENd
ET0_TX_EN
tMTDd
ET0_ETXD[3:0]
Preamble
SFD
DATA
CRC
ET0_TX_ER
tCRSs
tCRSh
ET0_CRS
ET0_COL
Figure 2.69
MII transmission timing in normal operation
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 73 of 100
RA6M2 Group
2. Electrical Characteristics
ET0_TX_CLK
ET0_TX_EN
ET0_ETXD[3:0]
Preamble
JAM
ET0_TX_ER
ET0_CRS
tCOLs
tCOLh
ET0_COL
Figure 2.70
MII transmission timing when a conflict occurs
ET0_RX_CLK
tRDVs
tRDVh
ET0_RX_DV
tMRDh
tMRDs
ET0_ERXD[3:0]
Preamble
SFD
DATA
CRC
ET0_RX_ER
Figure 2.71
MII reception timing in normal operation
ET0_RX_CLK
ET0_RX_DV
Preamble
ET0_ERXD[3:0]
SFD
DATA
xxxx
tRERh
tRERs
ET0_RX_ER
Figure 2.72
MII reception timing when an error occurs
ET0_RX_CLK
tWOLd
ET0_WOL
Figure 2.73
WOL output timing for MII
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 74 of 100
RA6M2 Group
2.3.17
2. Electrical Characteristics
PDC Timing
Table 2.32
PDC timing
Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter
Symbol
Min
Max
Unit
Test
conditions
PDC
PIXCLK input cycle time
tPIXcyc
37
-
ns
Figure 2.74
PIXCLK input high pulse width
tPIXH
10
-
ns
PIXCLK input low pulse width
tPIXL
10
-
ns
PIXCLK rise time
tPIXr
-
5
ns
PIXCLK fall time
tPIXf
-
5
ns
PCKO output cycle time
tPCKcyc
2 × tPBcyc
-
ns
PCKO output high pulse width
tPCKH
(tPCKcyc - tPCKr - tPCKf)/2 - 3
-
ns
PCKO output low pulse width
tPCKL
(tPCKcyc - tPCKr - tPCKf)/2 - 3
-
ns
PCKO rise time
tPCKr
-
5
ns
PCKO fall time
tPCKf
-
5
ns
Note 1.
VSYNV/HSYNC input setup time
tSYNCS
10
-
ns
VSYNV/HSYNC input hold time
tSYNCH
5
-
ns
PIXD input setup time
tPIXDS
10
-
ns
PIXD input hold time
tPIXDH
5
-
ns
Figure 2.75
Figure 2.76
tPBcyc: PCLKB cycle.
tPIXcyc
tPIXH
tPIXf
PIXCLK input
tPIXr
tPIXL
Figure 2.74
PDC input clock timing
tPCKcyc
tPCKH
tPCKf
PCKO pin output
tPCKr
tPCKL
Figure 2.75
PDC output clock timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 75 of 100
RA6M2 Group
2. Electrical Characteristics
PIXCLK
tSYNCS
tSYNCH
VSYNC
tSYNCS
tSYNCH
HSYNC
tPIXDS
tPIXDH
PIXD7 to PIXD0
Figure 2.76
2.4
PDC AC timing
USB Characteristics
2.4.1
Table 2.33
USBFS Timing
USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz
Parameter
Input
characteristics
Output
characteristics
Pull-up and pulldown
characteristics
Symbol
Min
Typ
Max
Unit
Test conditions
VIH
2.0
-
-
V
-
Input low voltage
VIL
-
-
0.8
V
-
Differential input sensitivity
VDI
0.2
-
-
V
| USB_DP - USB_DM |
Differential common-mode
range
VCM
0.8
-
2.5
V
-
Output high voltage
VOH
2.8
-
3.6
V
IOH = -200 μA
Output low voltage
VOL
0.0
-
0.3
V
IOL= 2 mA
Cross-over voltage
VCRS
1.3
-
2.0
V
Figure 2.77
Rise time
tLR
75
-
300
ns
Fall time
tLF
75
-
300
ns
Rise/fall time ratio
tLR / tLF
80
-
125
%
tLR/ tLF
USB_DP and USB_DM pulldown resistance in host
controller mode
Rpd
14.25
-
24.80
kΩ
-
Input high voltage
USB_DP,
USB_DM
VCRS
90%
90%
10%
10%
tLR
Figure 2.77
tLF
USB_DP and USB_DM output timing in low-speed mode
Observation
point
USB_DP
27
200 pF to
600 pF
3.6 V
1.5 K
USB_DM
200 pF to
600 pF
Figure 2.78
Test circuit in low-speed mode
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 76 of 100
RA6M2 Group
Table 2.34
2. Electrical Characteristics
USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz
Parameter
Input
characteristics
Symbol
Min
Typ
Max
Unit
Test conditions
VIH
2.0
-
-
V
-
Input low voltage
VIL
-
-
0.8
V
-
Differential input sensitivity
VDI
0.2
-
-
V
| USB_DP - USB_DM |
Differential common-mode
range
VCM
0.8
-
2.5
V
-
Output high voltage
VOH
2.8
-
3.6
V
IOH = -200 μA
Input high voltage
Output
characteristics
Pull-up and pulldown
characteristics
Output low voltage
VOL
0.0
-
0.3
V
IOL= 2 mA
Cross-over voltage
VCRS
1.3
-
2.0
V
Figure 2.79
Rise time
tLR
4
-
20
ns
Fall time
tLF
4
-
20
ns
Rise/fall time ratio
tLR / tLF
90
-
111.11
%
tFR/ tFF
Output resistance
ZDRV
28
-
44
Ω
USBFS: Rs = 27 Ω included
DM pull-up resistance in
device controller mode
Rpu
0.900
-
1.575
kΩ
During idle state
1.425
-
3.090
kΩ
During transmission and
reception
USB_DP and USB_DM pulldown resistance in host
controller mode
Rpd
14.25
-
24.80
kΩ
-
USB_DP,
USB_DM
VCRS
90%
90%
10%
10%
tFR
Figure 2.79
tFF
USB_DP and USB_DM output timing in full-speed mode
Observation
point
USB_DP
50 pF
27
USB_DM
50 pF
Figure 2.80
2.5
Test circuit in full-speed mode
ADC12 Characteristics
Table 2.35
A/D conversion characteristics for unit 0 (1 of 2)
Conditions: PCLKC = 1 to 60 MHz
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
60
MHz
-
Analog input capacitance
-
-
30
pF
-
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 77 of 100
RA6M2 Group
Table 2.35
2. Electrical Characteristics
A/D conversion characteristics for unit 0 (2 of 2)
Conditions: PCLKC = 1 to 60 MHz
Parameter
Min
Typ
Max
Unit
Test conditions
Quantization error
-
±0.5
-
LSB
-
Resolution
-
-
12
Bits
-
1.06
(0.4 + 0.25)*2
-
-
μs
Sampling of channeldedicated sample-and-hold
circuits in 24 states
Sampling in 15 states
Offset error
-
±1.5
±3.5
LSB
AN000 to AN002 = 0.25 V
Full-scale error
-
±1.5
±3.5
LSB
AN000 to AN002 =
VREFH0- 0.25 V
Absolute accuracy
-
±2.5
±5.5
LSB
-
DNL differential nonlinearity error
-
±1.0
±2.0
LSB
-
INL integral nonlinearity error
-
±1.5
±3.0
LSB
-
Holding characteristics of sample-and hold
circuits
-
-
20
μs
-
Dynamic range
0.25
-
VREFH0
- 0.25
V
-
0.48 (0.267)*2
-
-
μs
Sampling in 16 states
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Channel-dedicated
sample-and-hold
circuits in use*3
(AN000 to AN002)
Channel-dedicated
sample-and-hold
circuits not in use
(AN000 to AN002)
High-precision
channels
(AN003 to AN007)
Normal-precision
channels
(AN016 to AN020)
Note:
Note 1.
Note 2.
Note 3.
Conversion time*1
(operation at
PCLKC = 60 MHz)
Conversion time*1
(operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
Permissible signal
source impedance
Max. = 1 kΩ
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
0.48 (0.267)*2
-
-
μs
Sampling in 16 states
Max. = 400 Ω
0.40 (0.183)*2
-
-
μs
Sampling in 11 states
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH0 ≤ AVCC0
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(Operation at
PCLKC = 60 MHz)
0.88 (0.667)*2
-
-
μs
Sampling in 40 states
Offset error
-
±1.0
±5.5
LSB
-
Full-scale error
-
±1.0
±5.5
LSB
-
Permissible signal
source impedance
Max. = 1 kΩ
Absolute accuracy
-
±2.0
±7.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±4.5
LSB
-
INL integral nonlinearity error
-
±1.0
±5.5
LSB
-
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, values might not fall within the indicated ranges.
The use of PORT0 as digital outputs is not allowed when the 12-bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage
are stable.
The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Values in parentheses indicate the sampling time.
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.37.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 78 of 100
RA6M2 Group
Table 2.36
2. Electrical Characteristics
A/D conversion characteristics for unit 1
Conditions: PCLKC = 1 to 60 MHz
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
60
MHz
-
Analog input capacitance
-
-
30
pF
-
Quantization error
-
±0.5
-
LSB
-
Resolution
-
-
12
Bits
-
1.06
(0.4 + 0.25)*2
-
-
μs
Sampling of channeldedicated sample-and-hold
circuits in 24 states
Sampling in 15 states
Channel-dedicated
sample-and-hold
circuits in use*3
(AN100 to AN102)
Channel-dedicated
sample-and-hold
circuits not in use
(AN100 to AN102)
High-precision
channels
(AN105 to AN107)
Normal-precision
channels
(AN116 to AN118)
Note:
Note 1.
Note 2.
Note 3.
Conversion time*1
(operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
-
±1.5
±3.5
LSB
AN100 to AN102 = 0.25 V
Full-scale error
-
±1.5
±3.5
LSB
AN100 to AN102 =
VREFH - 0.25 V
Absolute accuracy
-
±2.5
±5.5
LSB
-
DNL differential nonlinearity error
-
±1.0
±2.0
LSB
-
INL integral nonlinearity error
-
±1.5
±3.0
LSB
-
Holding characteristics of sample-and hold
circuits
-
-
20
μs
-
Dynamic range
0.25
-
VREFH 0.25
V
-
0.48
(0.267)*2
-
-
μs
Sampling in 16 states
Conversion time*1
(Operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(Operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
0.48
(0.267)*2
-
-
μs
Sampling in 16 states
Max. = 400 Ω
0.40
(0.183)*2
-
-
μs
Sampling in 11 states
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH ≤ AVCC0
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(Operation at
PCLKC = 60 MHz)
0.88
(0.667)*2
-
-
μs
Sampling in 40 states
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
-
±1.0
±5.5
LSB
-
Full-scale error
-
±1.0
±5.5
LSB
-
Absolute accuracy
-
±2.0
±7.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±4.5
LSB
-
INL integral nonlinearity error
-
±1.0
±5.5
LSB
-
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, values might not fall within the indicated ranges.
The use of PORT0 as digital outputs is not allowed when the 12-bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage
are stable.
The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Values in parentheses indicate the sampling time.
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.37.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 79 of 100
RA6M2 Group
Table 2.37
2. Electrical Characteristics
A/D conversion characteristics for simultaneous use of channel-dedicated sample-and-hold
circuits in unit0 and unit1
Conditions: PCLKC = 30/60 MHz
Parameter
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN000 to AN002)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN100 to AN102)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN000 to AN002)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN100 to AN102)
Note:
Min
Typ
Max
Test conditions
Offset error
-
±1.5
±5.0
Full-scale error
-
±2.5
±5.0
PCLKC = 60 MHz
Sampling in 15 states
Absolute accuracy
-
±4.0
±8.0
Offset error
-
±1.5
±5.0
Full-scale error
-
±2.5
±5.0
Absolute accuracy
-
±4.0
±8.0
Offset error
-
±1.5
±3.5
Full-scale error
-
±1.5
±3.5
Absolute accuracy
-
±3.0
±5.5
Offset error
-
±1.5
±3.5
Full-scale error
-
±1.5
±3.5
Absolute accuracy
-
±3.0
±5.5
PCLKC = 30 MHz
Sampling in 7 states
When simultaneously using channel-dedicated sample-and-hold circuits in unit0 and unit1, setting the ADSHMSR.SHMD bit to
1 is recommended.
Table 2.38
A/D internal reference voltage characteristics
Parameter
Min
Typ
Max
Unit
Test conditions
A/D internal reference voltage
1.13
1.18
1.23
V
-
Sampling time
4.15
-
-
μs
-
FFFh
Full-scale error
Integral nonlinearity
error (INL)
A/D converter
output code
Ideal line of actual A/D
conversion characteristic
Actual A/D conversion
characteristic
Ideal A/D conversion
characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
Absolute accuracy
000h
Offset error
0
Figure 2.81
Analog input voltage
VREFH0
(full-scale)
Illustration of ADC12 characteristic terms
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 80 of 100
RA6M2 Group
2. Electrical Characteristics
Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the
analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D
conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical
A/D conversion characteristics.
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion
characteristics and the width of the actual output code.
Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.
Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.
2.6
DAC12 Characteristics
Table 2.39
D/A conversion characteristics
Parameter
Min
Typ
Max
Unit
Test conditions
Resolution
-
-
12
Bits
-
Absolute accuracy
-
-
±24
LSB
Resistive load 2 MΩ
INL
-
±2.0
±8.0
LSB
Resistive load 2 MΩ
DNL
-
±1.0
±2.0
LSB
-
Output impedance
-
8.5
-
kΩ
-
Conversion time
-
-
3.0
μs
Resistive load 2 MΩ,
Capacitive load 20 pF
Output voltage range
0
-
VREFH
V
-
INL
-
±2.0
±4.0
LSB
-
DNL
-
±1.0
±2.0
LSB
-
Without output amplifier
With output amplifier
Conversion time
-
-
4.0
μs
-
Resistive load
5
-
-
kΩ
-
Capacitive load
-
-
50
pF
-
Output voltage range
0.2
-
VREFH - 0.2
V
-
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 81 of 100
RA6M2 Group
2.7
2. Electrical Characteristics
TSN Characteristics
Table 2.40
TSN characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Relative accuracy
-
-
±1.0
-
°C
-
Temperature slope
-
-
4.0
-
mV/°C
-
Output voltage (at 25°C)
-
-
1.24
-
V
-
Temperature sensor start time
tSTART
-
-
30
μs
-
Sampling time
-
4.15
-
-
μs
-
2.8
OSC Stop Detect Characteristics
Table 2.41
Oscillation stop detection circuit characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Detection time
tdr
-
-
1
ms
Figure 2.82
Main clock
tdr
OSTDSR.OSTDF
MOCO clock
ICLK
Figure 2.82
2.9
Oscillation stop detection timing
POR and LVD Characteristics
Table 2.42
Power-on reset circuit and voltage detection circuit characteristics (1 of 2)
Parameter
Voltage detection
level
Power-on reset
(POR)
DPSBYCR.DEEPCUT[1:0] =
00b or 01b
Symbol
Min
Typ
Max
Unit
Test
conditions
VPOR
2.5
2.6
2.7
V
Figure 2.83
1.8
2.25
2.7
Vdet0_1
2.84
2.94
3.04
Vdet0_2
2.77
2.87
2.97
Vdet0_3
2.70
2.80
2.90
Vdet1_1
2.89
2.99
3.09
Vdet1_2
2.82
2.92
3.02
Vdet1_3
2.75
2.85
2.95
Vdet2_1
2.89
2.99
3.09
Vdet2_2
2.82
2.92
3.02
Vdet2_3
2.75
2.85
2.95
DPSBYCR.DEEPCUT[1:0] =
11b
Voltage detection circuit (LVD0)
Voltage detection circuit (LVD1)
Voltage detection circuit (LVD2)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Figure 2.84
Figure 2.85
Figure 2.86
Page 82 of 100
RA6M2 Group
Table 2.42
2. Electrical Characteristics
Power-on reset circuit and voltage detection circuit characteristics (2 of 2)
Symbol
Min
Typ
Max
Unit
Test
conditions
Power-on reset time
tPOR
-
4.5
-
ms
Figure 2.83
LVD0 reset time
tLVD0
-
0.51
-
Figure 2.84
LVD1 reset time
tLVD1
-
0.38
-
Figure 2.85
LVD2 reset time
tLVD2
-
0.38
-
Figure 2.86
Minimum VCC down time*1
tVOFF
200
-
-
μs
Figure 2.83,
Figure 2.84
Response delay
tdet
-
-
200
μs
Figure 2.83 to
Figure 2.86
LVD operation stabilization time (after LVD is enabled)
td(E-A)
-
-
10
μs
Hysteresis width (LVD1 and LVD2)
VLVH
-
70
-
mV
Figure 2.85,
Figure 2.86
Parameter
Internal reset time
Note 1.
The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR,
Vdet1, and Vdet2 for POR and LVD.
tVOFF
VPOR
VCC
Internal reset signal
(active-low)
tdet
Figure 2.83
tPOR
tdet
tdet
tPOR
Power-on reset timing
tVOFF
VCC
Vdet0
Internal reset signal
(active-low)
tdet
Figure 2.84
tdet
tLVD0
Voltage detection circuit timing (Vdet0)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 83 of 100
RA6M2 Group
2. Electrical Characteristics
tVOFF
VCC
VLVH
Vdet1
LVCMPCR.LVD1E
td(E-A)
LVD1
Comparator output
LVD1CR0.CMPE
LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0
tdet
tdet
tLVD1
When LVD1CR0.RN = 1
tLVD1
Figure 2.85
Voltage detection circuit timing (Vdet1)
tVOFF
VCC
VLVH
Vdet2
LVCMPCR.LVD2E
LVD2
Comparator output
td(E-A)
LVD2CR0.CMPE
LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0
tdet
tdet
tLVD2
When LVD2CR0.RN = 1
tLVD2
Figure 2.86
Voltage detection circuit timing (Vdet2)
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 84 of 100
RA6M2 Group
2.10
2. Electrical Characteristics
VBATT Characteristics
Table 2.43
Battery backup function characteristics
Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Voltage level for switching to battery backup
VDETBATT
2.50
2.60
2.70
V
Figure 2.87
Lower-limit VBATT voltage for power supply
switching caused by VCC voltage drop
VBATTSW
2.70
-
-
V
VCC-off period for starting power supply switching
tVOFFBATT
200
-
-
μs
Note:
The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum
value of the voltage level for switching to battery backup (VDETBATT).
tVOFFBATT
VDETBATT
VCC
VBATT
Backup power
area
Figure 2.87
2.11
VBATTSW
VCC supply
VBATT supply
VCC supply
Battery backup function characteristics
CTSU Characteristics
Table 2.44
CTSU characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
External capacitance connected to TSCAP pin
Ctscap
9
10
11
nF
-
TS pin capacitive load
Cbase
-
-
50
pF
-
Permissible output high current
ΣIoH
-
-
-40
mA
When the mutual
capacitance method
is applied
2.12
ACMPHS Characteristics
Table 2.45
ACMPHS characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Reference voltage range
VREF
0
-
AVCC0
V
-
Input voltage range
VI
0
-
AVCC0
V
-
Output delay*1
Td
-
50
100
ns
VI = VREF ± 100 mV
Internal reference voltage
Vref
1.13
1.18
1.23
V
-
Note 1.
This value is the internal propagation delay.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 85 of 100
RA6M2 Group
2.13
2. Electrical Characteristics
Flash Memory Characteristics
2.13.1
Code Flash Memory Characteristics
Table 2.46
Code flash memory characteristics
Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz
FCLK = 4 MHz
Parameter
20 MHz ≤ FCLK ≤ 60 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Programming time
NPEC 100 times
128-byte
tP128
-
0.75
13.2
-
0.34
6.0
ms
8-KB
tP8K
-
49
176
-
22
80
ms
32-KB
tP32K
-
194
704
-
88
320
ms
Programming time
NPEC > 100 times
128-byte
tP128
-
0.91
15.8
-
0.41
7.2
ms
8-KB
tP8K
-
60
212
-
27
96
ms
32-KB
tP32K
-
234
848
-
106
384
ms
Erasure time
NPEC 100 times
8-KB
tE8K
-
78
216
-
43
120
ms
32-KB
tE32K
-
283
864
-
157
480
ms
Erasure time
NPEC > 100 times
8-KB
tE8K
-
94
260
-
52
144
ms
32-KB
tE32K
-
341
1040
-
189
576
ms
Reprogramming/erasure cycle*4
NPEC
10000*1
-
-
10000*1
-
-
Times
Suspend delay during programming
tSPD
-
-
264
-
-
120
μs
First suspend delay during erasure in tSESD1
suspend priority mode
-
-
216
-
-
120
μs
Second suspend delay during
erasure in suspend priority mode
tSESD2
-
-
1.7
-
-
1.7
ms
Suspend delay during erasure in
erasure priority mode
tSEED
-
-
1.7
-
-
1.7
ms
Forced stop command
tFD
-
-
32
-
-
20
μs
Data hold time*2
tDRP
10*2, *3
-
-
10*2, *3
-
-
Years
-
30*2, *3
-
-
30*2, *3
Note 1.
Note 2.
Note 3.
Note 4.
-
Test
conditions
Ta = +85°C
This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
This result is obtained from reliability testing.
The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000),
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 86 of 100
RA6M2 Group
2. Electrical Characteristics
• Suspension during programming
FCU command
Program
Suspend
tSPD
FSTATR0.FRDY
Ready
Not Ready
Programming pulse
Ready
Programming
• Suspension during erasure in suspend priority mode
FCU command
Erase
Suspend
Resume
Suspend
tSESD1
FSTATR0.FRDY
Ready
tSESD2
Not Ready
Erasure pulse
Ready
Erasing
Not Ready
Erasing
• Suspension during erasure in erasure priority mode
FCU command
Erase
Suspend
tSEED
FSTATR0.FRDY
Ready
Not Ready
Erasure pulse
Ready
Erasing
• Forced Stop
FACI command
Forced Stop
tFD
FSTATR.FRDY
Figure 2.88
Not Ready
Ready
Suspension and forced stop timing for flash memory programming and erasure
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 87 of 100
RA6M2 Group
2.13.2
2. Electrical Characteristics
Data Flash Memory Characteristics
Table 2.47
Data flash memory characteristics
Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz
FCLK = 4 MHz
Parameter
20 MHz ≤ FCLK ≤ 60 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
4-byte
tDP4
-
0.36
3.8
-
0.16
1.7
ms
8-byte
tDP8
-
0.38
4.0
-
0.17
1.8
16-byte
tDP16
-
0.42
4.5
-
0.19
2.0
64-byte
tDE64
-
3.1
18
-
1.7
10
128-byte
tDE128
-
4.7
27
-
2.6
15
256-byte
tDE256
-
8.9
50
-
4.9
28
Blank check time
4-byte
tDBC4
-
-
84
-
-
30
Reprogramming/erasure
cycle*1
NDPEC
125000*2
-
-
125000*2
-
-
-
Suspend delay during
programming
4-byte
tDSPD
-
-
264
-
-
120
μs
-
-
264
-
-
120
-
-
264
-
-
120
-
-
216
-
-
120
-
-
216
-
-
120
-
-
216
-
-
120
-
-
300
-
-
300
-
-
390
-
-
390
-
-
570
-
-
570
-
-
300
-
-
300
128-byte
-
-
390
-
-
390
256-byte
-
-
570
-
-
570
tFD
-
-
32
-
-
20
μs
tDRP
10*3,*4
-
-
10*3,*4
-
-
Year
30*3,*4
-
-
30*3,*4
-
-
Programming time
Erasure time
8-byte
16-byte
First suspend delay
during erasure in
suspend priority mode
64-byte
tDSESD1
128-byte
256-byte
Second suspend delay
during erasure in
suspend priority mode
64-byte
tDSESD2
128-byte
256-byte
Suspend delay during
erasing in erasure
priority mode
64-byte
Forced stop command
Data hold
Note 1.
Note 2.
Note 3.
Note 4.
2.14
time*3
tDSEED
Test
conditions
ms
μs
μs
μs
μs
Ta = +85°C
The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000),
erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different
addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
This result is obtained from reliability testing.
Boundary Scan
Table 2.48
Boundary scan characteristics (1 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TCK clock cycle time
tTCKcyc
100
-
-
ns
Figure 2.89
TCK clock high pulse width
tTCKH
45
-
-
ns
TCK clock low pulse width
tTCKL
45
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 88 of 100
RA6M2 Group
Table 2.48
2. Electrical Characteristics
Boundary scan characteristics (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TMS setup time
tTMSS
20
-
-
ns
Figure 2.90
TMS hold time
tTMSH
20
-
-
ns
TDI setup time
tTDIS
20
-
-
ns
TDI hold time
tTDIH
20
-
-
ns
tTDOD
-
-
40
ns
TBSSTUP
tRESWP
-
-
-
TDO data delay
Boundary scan circuit startup
Note 1.
time*1
Figure 2.91
Boundary scan does not function until the power-on reset becomes negative.
tTCKcyc
tTCKH
tTCKf
TCK
tTCKr
tTCKL
Figure 2.89
Boundary scan TCK timing
TCK
tTMSS
tTMSH
tTDIS
tTDIH
TMS
TDI
tTDOD
TDO
Figure 2.90
Boundary scan input/output timing
VCC
RES
tBSSTUP
(= tRESWP)
Figure 2.91
Boundary scan
execute
Boundary scan circuit startup timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 89 of 100
RA6M2 Group
2.15
2. Electrical Characteristics
Joint Test Action Group (JTAG)
Table 2.49
JTAG
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TCK clock cycle time
tTCKcyc
40
-
-
ns
Figure 2.89
TCK clock high pulse width
tTCKH
15
-
-
ns
TCK clock low pulse width
tTCKL
15
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
TMS setup time
tTMSS
8
-
-
ns
TMS hold time
tTMSH
8
-
-
ns
TDI setup time
tTDIS
8
-
-
ns
TDI hold time
tTDIH
8
-
-
ns
TDO data delay time
tTDOD
-
-
20
ns
Figure 2.90
tTCKcyc
tTCKH
TCK
tTCKf
tTCKr
tTCKL
Figure 2.92
JTAG TCK timing
TCK
tTMSS
tTMSH
TMS
tTDIS
tTDIH
TDI
tTDOD
TDO
Figure 2.93
JTAG input/output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 90 of 100
RA6M2 Group
2.16
2. Electrical Characteristics
Serial Wire Debug (SWD)
Table 2.50
SWD
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
SWCLK clock cycle time
tSWCKcyc
40
-
-
ns
Figure 2.94
SWCLK clock high pulse width
tSWCKH
15
-
-
ns
SWCLK clock low pulse width
tSWCKL
15
-
-
ns
SWCLK clock rise time
tSWCKr
-
-
5
ns
SWCLK clock fall time
tSWCKf
-
-
5
ns
SWDIO setup time
tSWDS
8
-
-
ns
SWDIO hold time
tSWDH
8
-
-
ns
SWDIO data delay time
tSWDD
2
-
28
ns
Figure 2.95
tSWCKcyc
tSWCKH
SWCLK
tSWCKL
Figure 2.94
SWD SWCLK timing
SWCLK
tSWDS
tSWDH
SWDIO
(Input)
tSWDD
SWDIO
(Output)
tSWDD
SWDIO
(Output)
tSWDD
SWDIO
(Output)
Figure 2.95
SWD input/output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 91 of 100
RA6M2 Group
2.17
2. Electrical Characteristics
Embedded Trace Macro Interface (ETM)
Table 2.51
ETM
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TCLK clock cycle time
tTCLKcyc
33.3
-
-
ns
Figure 2.96
TCLK clock high pulse width
tTCLKH
13.6
-
-
ns
TCLK clock low pulse width
tTCLKL
13.6
-
-
ns
TCLK clock rise time
tTCLKr
-
-
3
ns
TCLK clock fall time
tTCLKf
-
-
3
ns
TDATA[3:0] output setup time
tTRDS
3.5
-
-
ns
TDATA[3:0] output hold time
tTRDH
2.5
-
-
ns
Figure 2.97
tTCLKcyc
tTCLKH
TCLK
tTCLKf
tTCLKL
Figure 2.96
tTCLKr
ETM TCLK timing
TCLK
tTRDS
tTRDH
tTRDS
tTRDH
TDATA[3:0]
Figure 2.97
ETM output timing
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 92 of 100
RA6M2 Group
Appendix 1. Package Dimensions
Appendix 1.Package Dimensions
For information on the latest version of the package dimensions or mountings, go to “Packages” on the Renesas
Electronics Corporation website.
JEITA Package Code
P-TFLGA145-7x7-0.50
RENESAS Code
PTLG0145KA-A
Previous Code
145F0G
MASS[Typ.]
0.1g
w S B
φb1
D
φ
φb
φ
w S A
ZD
A
M S AB
M
S AB
e
A
e
N
M
L
K
J
E
H
B
G
F
E
D
C
B
v
Index mark
(Laser mark)
Figure 1.1
S
ZE
A
y S
x4
1
2
3
4
5
6
7
8
9
10 11 12 13
Reference Dimension in Millimeters
Symbol
Min
D
E
v
w
A
e
b
b1
x
y
ZD
ZE
Nom
7.0
7.0
Max
0.15
0.20
1.05
0.21
0.29
0.5
0.25
0.34
0.29
0.39
0.08
0.08
0.5
0.5
145-pin LGA
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 93 of 100
RA6M2 Group
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP144-20x20-0.50
PLQP0144KA-B
—
1.2
Unit: mm
HD
*1 D
108
73
*2
144
HE
72
E
109
37
1
36
NOTE 4
Index area
NOTE 3
F
S
*3
bp
0.25
A1
T
c
y S
A2
A
e
Lp
L1
Detail F
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
Reference Dimensions in millimeters
Symbol
M
Min
Nom
Max
D
19.9
20.0
20.1
20.1
E
19.9
20.0
A2
1.4
HD
21.8
22.0
22.2
HE
21.8
22.0
22.2
A
1.7
A1
0.05
0.15
bp
0.17
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.08
Lp
0.45
0.6
0.75
L1
1.0
© 2016 Renesas Electronics Corporation. All rights reserved.
Figure 1.2
144-pin LQFP
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 94 of 100
RA6M2 Group
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP100-14x14-0.50
PLQP0100KB-B
—
0.6
HD
Unit: mm
*1 D
75
51
E
*2
100
HE
50
76
26
1
25
NOTE 4
Index area
NOTE 3
F
S
y S
*3
0.25
T
A1
Lp
L1
Detail F
Reference Dimensions in millimeters
Symbol
bp
M
Min
Nom
Max
D
13.9
14.0
14.1
14.1
E
13.9
14.0
A2
1.4
HD
15.8
16.0
16.2
HE
15.8
16.0
16.2
A
1.7
A1
0.05
0.15
bp
0.15
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.08
Lp
0.45
0.6
0.75
L1
1.0
c
A2
A
e
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
© 2015 Renesas Electronics Corporation. All rights reserved.
Figure 1.3
100-pin LQFP
R01DS0357EJ0100 Rev.1.00
Oct 8, 2019
Page 95 of 100
Revision History
Rev.
Date
1.00
Oct 8, 2019
RA6M2 Group Datasheet
Summary
First release
Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior
written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States
and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
Colophon
RA6M2 Group Datasheet
Publication Date:
Rev.1.00
Oct 8, 2019
Published by:
Renesas Electronics Corporation
Address List
General Precautions
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit
boards with mounted semiconductor devices.
2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches
the level at which resetting is specified.
3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during poweroff state as described in your product documentation.
4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device
stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the
input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.
Notice
1.
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.
2.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.
3.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
5.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
you or third parties arising from such alteration, modification, copying or reverse engineering.
product’s quality grade, as indicated below.
"Standard":
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.
6.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.
7.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
9.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1)
“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2)
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.4.0-1 November 2017)
http://www.renesas.com
SALES OFFICES
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
© 2019 Renesas Electronics Corporation. All rights reserved.
Colophon 8.0
Back cover
RA6M2 Group
R01DS0357EJ0100