0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7FS128782A01CLM#AC1

R7FS128782A01CLM#AC1

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    WFLGA36

  • 描述:

  • 数据手册
  • 价格&库存
R7FS128782A01CLM#AC1 数据手册
Datasheet Cover S128 Microcontroller Group Datasheet Renesas Synergy™ Platform Synergy Microcontrollers S1 Series The integrated module for Digital Addressable Lighting Interface (DALI) communications is designed for compliance to IEC 62386 version 2 (DALI 2) when used with suitable software and hardware. All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com). www.renesas.com Rev.1.10 Nov 2018 Features S128 Microcontroller Group Datasheet Ultra low power 32-MHz Arm® Cortex®-M0+ core, up to 256-KB code flash memory, 24-KB SRAM, Digital Addressable Lighting Interface, Capacitive Touch Sensing Unit, 14-bit A/D Converter, 8-bit D/A Converter, security and safety features. Features ■ Arm Cortex-M0+ Core      Arm®v6-M architecture Maximum operating frequency: 32 MHz Arm® Memory Protection Unit (Arm MPU) with 8 regions Debug and Trace: DWT, BPU, CoreSight™ MTB-M0+ CoreSight Debug Port: SW-DP ■ Memory      Up to 256-KB code flash memory 4-KB data flash memory (100,000 erase/write cycles) Up to 24-KB SRAM Memory protection units 128-bit unique ID ■ Connectivity  USB 2.0 Full-Speed (USBFS) module - On-chip transceiver with voltage regulator - Compliant with USB Battery Charging Specification 1.2  Serial Communications Interface (SCI) × 3 - UART - Simple IIC - Simple SPI  Serial Peripheral Interface (SPI) × 2  I2C bus interface (IIC) × 2  Controller Area Network (CAN) module  Digital Addressable Lighting Interface (DALI) ■ Analog       14-bit A/D Converter (ADC14) 8-bit D/A Converter (DAC8) × 3 High-Speed Analog Comparator (ACMPHS) × 3 Low-Power Analog Comparator (ACMPLP) × 2 Operational Amplifier (OPAMP) × 4 Temperature Sensor (TSN) ■ Timers      General PWM Timer 32-bit (GPT32) General PWM Timer 16-bit High Resolution (GPT16H) × 3 General PWM Timer 16-bit (GPT16) × 3 Asynchronous General-Purpose Timer (AGT) × 2 Watchdog Timer (WDT) ■ Safety              Error Correction Code (ECC) in SRAM SRAM parity error check Flash area protection ADC self-diagnosis function Clock Frequency Accuracy Measurement Circuit (CAC) Cyclic Redundancy Check (CRC) calculator Data Operation Circuit (DOC) Port Output Enable for GPT (POEG) Independent Watchdog Timer (IWDT) GPIO readback level detection Register write protection Main oscillator stop detection Illegal memory access R01DS0309EU0110 Rev.1.10 Nov 28, 2018 ■ System and Power Management        Low power modes Realtime clock (RTC) Event Link Controller (ELC) Data Transfer Controller (DTC) Key Interrupt Function (KINT) Power-on reset Low Voltage Detection (LVD) with voltage settings ■ Security and Encryption  AES128/256  True Random Number Generator (TRNG) ■ Human Machine Interface (HMI)  Capacitive Touch Sensing Unit (CTSU) ■ Multiple Clock Sources  Main clock oscillator (MOSC) (1 to 20 MHz when VCC = 2.4 to 5.5 V) (1 to 8 MHz when VCC = 1.8 to 5.5 V) (1 to 4 MHz when VCC = 1.6 to 5.5 V)  Sub-clock oscillator (SOSC) (32.768 kHz)  High-speed on-chip oscillator (HOCO) (24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V) (24, 32, 48 MHz when VCC = 1.8 to 5.5 V) (24, 32 MHz when VCC = 1.6 to 5.5 V)  Middle-speed on-chip oscillator (MOCO) (8 MHz)  Low-speed on-chip oscillator (LOCO) (32.768 kHz)  IWDT-dedicated on-chip oscillator (15 kHz)  Clock trim function for HOCO/MOCO/LOCO  Clock out support ■ General Purpose I/O Ports  Up to 53 input/output pins - Up to 3 CMOS input - Up to 50 CMOS input/output - Up to 5V tolerant input/output - Up to 2 high current (20 mA) ■ Operating Voltage  VCC: 1.6 to 5.5 V ■ Operating Temperature and Packages  Ta = -40°C to +85°C - 36-pin LGA (4 mm × 4 mm, 0.5 mm pitch)  Ta = -40°C to +105°C - 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch) - 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch) - 32-pin LQFP (7 mm × 7 mm, 0.8 mm pitch) - 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch) - 32-pin QFN (5 mm × 5 mm, 0.5 mm pitch) Page 2 of 107 S128 Datasheet 1. 1. Overview Overview The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development. The MCU in this series incorporates an energy-efficient Arm Cortex®-M0+ 32-bit core that is particularly well suited for cost-sensitive and low-power applications, with the following features:  Up to 256 KB code flash memory  24-KB SRAM  Capacitive Touch Sensing Unit (CTSU)  14-bit A/D Converter (ADC14)  8-bit D/A Converter (DAC8)  Security features. 1.1 Function Outline Table 1.1 Arm core Feature Functional description Arm Cortex-M0+ core  Maximum operating frequency: up to 32 MHz  Arm Cortex-M0+ core: - Revision: r0p1-00rel0 - Armv6-M architecture profile - Single-cycle integer multiplier.  Arm Memory Protection Unit (Arm MPU) - Armv6 Protected Memory System Architecture - 8 protect regions.  SysTick timer - Driven by SYSTICCLK (LOCO) or ICLK. Table 1.2 Memory Feature Functional description Code flash memory Maximum 256 KB of code flash memory. See section 42, Flash Memory in User’s Manual. Data flash memory 4 KB of data flash memory. See section 42, Flash Memory in User’s Manual. Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 6, Option-Setting Memory in User’s Manual. SRAM On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). See section 41, SRAM in User’s Manual. Table 1.3 System (1 of 2) Feature Functional description Operating mode Two operating modes:  Single-chip mode  SCI boot mode. See section 3, Operating Modes in User’s Manual. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 3 of 107 S128 Datasheet Table 1.3 1. Overview System (2 of 2) Feature Functional description Resets 13 resets:  RES pin reset  Power-on reset  Independent watchdog timer reset  Watchdog timer reset  Voltage monitor 0 reset  Voltage monitor 1 reset  Voltage monitor 2 reset  SRAM parity error reset  SRAM ECC error reset  Bus master MPU error reset  Bus slave MPU error reset  CPU stack pointer error reset  Software reset. See section 5, Resets in User’s Manual. Low Voltage Detection (LVD) The Low Voltage Detection (LVD) monitors the voltage level input to the VCC pin, and the detection level can be selected using a software program. See section 7, Low Voltage Detection (LVD) in User’s Manual. Clock  Main clock oscillator (MOSC)  Sub-clock oscillator (SOSC)  High-speed on-chip oscillator (HOCO)  Middle-speed on-chip oscillator (MOCO)  Low-speed on-chip oscillator (LOCO)  IWDT-dedicated on-chip oscillator  Clock out support. See section 8, Clock Generation Circuit in User’s Manual. Clock Frequency Accuracy Measurement Circuit (CAC) The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock to be used as a measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated. See section 9, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual. Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC module. The ICU also controls NMI interrupts. See section 12, Interrupt Controller Unit (ICU) in User’s Manual. Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting a rising or falling edge to the key interrupt input pins. See section 18, Key Interrupt Function (KINT) in User’s Manual. Low Power Mode Power consumption can be reduced in multiple ways, such as by setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes. See section 10, Low Power Modes in User’s Manual. Register Write Protection The register write protection function protects important registers from being overwritten because of software errors. See section 11, Register Write Protection in User’s Manual. Memory Protection Unit (MPU) Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided for memory protection. See section 14, Memory Protection Unit (MPU) in User’s Manual. Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. The refresh-permitted period can be set to refresh the counter and used as the condition for detecting when the system runs out of control. See section 24, Watchdog Timer (WDT) in User’s Manual. Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail safe mechanism when the system runs out of control. The IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the count value in the registers. See section 25, Independent Watchdog Timer (IWDT) in User’s Manual. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 4 of 107 S128 Datasheet Table 1.4 1. Overview Event Link Feature Functional description Event Link Controller (ELC) The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 16, Event Link Controller (ELC) in User’s Manual. Table 1.5 Direct memory access Feature Functional description Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 15, Data Transfer Controller (DTC) in User’s Manual. Table 1.6 Timers Feature Functional description General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with one channel and a 16-bit timer with six channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 20, General PWM Timer (GPT) in User’s Manual. Port Output Enable for GPT (POEG) Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 19, Port Output Enable for GPT (POEG) in User’s Manual. Asynchronous General Purpose Timer (AGT) The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and they can be accessed with the AGT register. See section 22, Asynchronous General Purpose Timer (AGT) in User’s Manual. Realtime Clock (RTC) The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 23, Realtime Clock (RTC) in User’s Manual. Table 1.7 Communication interfaces (1 of 2) Feature Functional description Serial Communications Interface (SCI) The Serial Communication Interface (SCI) is configurable to five asynchronous and synchronous serial interfaces:  Asynchronous interfaces (UART and asynchronous communications interface adapter (ACIA))  8-bit clock synchronous interface  Simple IIC (master-only)  Simple SPI  Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCI0 has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 27, Serial Communications Interface (SCI) in User’s Manual. Digital Addressable Lighting Interface (DALI) A Digital Addressable Lighting Interface (DALI) module is provided. DALI is an international open lighting control communication protocol that includes dimming control of electronic ballasts and LED lights from different manufacturers. The DALI interface module is designed to allow compliance with international standard IEC62386-101 Edition 1.0/2.0 (DALI 2), that includes software control. See section 28, Digital Addressable Lighting Interface (DALI) in User’s Manual. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 5 of 107 S128 Datasheet Table 1.7 1. Overview Communication interfaces (2 of 2) Feature Functional description I2C The 2-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C (Inter-Integrated Circuit) bus interface functions. See section 29, I2C Bus Interface (IIC) in User’s Manual. bus interface (IIC) Serial Peripheral Interface (SPI) Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices. See section 31, Serial Peripheral Interface (SPI) in User’s Manual. Control Area Network (CAN) module The Controller Area Network (CAN) module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 30, Controller Area Network (CAN) Module in User’s Manual. USB 2.0 Full-Speed (USBFS) module The USB 2.0 Full-Speed (USBFS) module is a USB controller that can operate as a device controller. The module supports full-speed and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 5 pipes. Pipe 0 and pipe 4 to pipe 7 can be assigned any endpoint number based on the peripheral devices used for communication or based on the user system. The MCU supports Battery Charging Specification revision 1.2. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply 3.3 V. See section 26, USB 2.0 Full-Speed Module (USBFS) in User’s Manual. Table 1.8 Analog Feature Functional description 14-bit A/D Converter (ADC14) A 14-bit successive approximation A/D converter is provided. Up to 21 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 33, 14-Bit A/D Converter (ADC14) in User’s Manual. 8-bit D/A Converter (DAC8) An 8-bit D/A converter (DAC8) is provided. See section 34, 8-Bit D/A Converter (DAC8) in User’s Manual. Temperature Sensor (TSN) The on-chip temperature sensor determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC14 for conversion and can be further used by the end application. See section 35, Temperature Sensor (TSN) in User’s Manual. High-Speed Analog Comparator (ACMPHS) The analog comparator compares a test voltage with a reference voltage and to provide a digital output based on the result of conversion. Both the test voltage and the reference voltage can be provided to the ACMPHS from internal sources (D/A converter output) and an external source. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 37, HighSpeed Analog Comparator (ACMPHS) in User’s Manual. Low-Power Analog Comparator (ACMPLP) The analog comparator compares a reference input voltage and analog input voltage. The comparison result can be read by software and also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin, an output from internal D/A converter, or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Setting lowspeed mode increases the response delay time, but decreases current consumption. See section 38, Low-Power Analog Comparator (ACMPLP) in User’s Manual. Operational Amplifier (OPAMP) The operational amplifier amplifies small analog input voltages and outputs the amplified voltages. A total of four differential operational amplifier units with two input pins and one output pin are provided. See section 36, Operational Amplifier (OPAMP) in User’s Manual. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 6 of 107 S128 Datasheet Table 1.9 1. Overview Human machine interfaces Feature Functional description Capacitive Touch Sensing Unit (CTSU) The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does not come into direct contact with the electrode. See section 39, Capacitive Touch Sensing Unit (CTSU) in User’s Manual. Table 1.10 Data processing Feature Functional description Cyclic Redundancy Check (CRC) Calculator The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC generation polynomials are available. The snoop function allows monitoring reads from and writes to specific addresses. This function is useful in applications that require CRC code to be generated automatically in certain events, such as monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See section 32, Cyclic Redundancy Check (CRC) Calculator in User’s Manual. Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 40, Data Operation Circuit (DOC) in User’s Manual. Table 1.11 Security Feature Functional description AES See section 43, AES Engine in User’s Manual True Random Number Generator (TRNG) See section 44, True Random Number Generator (TRNG) in User’s Manual R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 7 of 107 S128 Datasheet 1.2 1. Overview Block Diagram Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the features. Memory Bus 256 KB code flash MPU Arm Cortex-M0+ System POR/LVD MPU 4 KB data flash Reset NVIC 24 KB SRAM Mode control System timer Test and DBG interface DTC Timers AGT × 2 (H/M/L) OCO Power control DMA GPT32 × 1 GPT16H × 3 GPT16 × 3 Clocks MOSC/SOSC Communication interfaces ICU CAC KINT Register write protection Human machine interfaces CTSU SCI × 3 DALI IIC × 2 CAN × 1 RTC SPI × 2 WDT/IWDT Event link USBFS with Battery Charging revision1.2 Data processing Analog ELC CRC ADC14 TSN Security DOC DAC8 × 3 ACMPHS × 3 ACMPLP × 2 OPAMP × 4 AES + TRNG Figure 1.1 Block diagram R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 8 of 107 S128 Datasheet 1.3 1. Overview Part Numbering Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a product list. R 7 F S1 2 8 7 8 3 A 0 1 C F M # A A 1 Product identification code Packing, terminal material (Pb-free) #AA: Tray/Sn (Tin) only #AC: Tray/others Package type FM: LQFP 64 pins FL: LQFP 48 pins FJ: LQFP 32 pins LM: LGA 36 pins NE: QFN 48 pins NG: QFN 32 pins Quality ID Software ID Operating temperature 2: -40° C to 85° C 3: -40° C to 105° C Code flash memory size 8: 256 KB Feature set 7: Superset Group name 28: S128 Group, Arm Cortex-M0+, 32 MHz Series name 1: Ultra low power Renesas Synergy™ family Flash memory Renesas microcontroller unit Renesas Figure 1.2 Table 1.12 Part numbering scheme Product list Product part number Orderable part number Package code Code flash Data flash SRAM Operating temperature R7FS128783A01CFM R7FS128783A01CFM#AA1 PLQP0064KB-C 256 KB 4 KB 24 KB -40 to +105°C R7FS128783A01CFL R7FS128783A01CFL#AA1 PLQP0048KB-B -40 to +105°C R7FS128783A01CNE R7FS128783A01CNE#AC1 PWQN0048KB-A -40 to +105°C R7FS128782A01CLM R7FS128782A01CLM#AC1 PWLG0036KA-A -40 to +85°C R7FS128783A01CFJ R7FS128783A01CFJ#AA1 PLQP0032GB-A -40 to +105°C R7FS128783A01CNG R7FS128783A01CNG#AC1 PWQN0032KB-A -40 to +105°C R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 9 of 107 S128 Datasheet 1.4 1. Overview Function Comparison Table 1.13 Function comparison Parts number R7FS128783A01CFM R7FS128783A01CFL R7FS128783A01CNE Pin count 64 48 Package LQFP LQFP/QFN R7FS128782A01CLM Code flash memory 256 KB Data flash memory 4 KB SRAM LGA LQFP/QFN 4 4 3 2 1 1 16 KB CPU clock 32 MHz ICU KINT Yes 8 5 Event control ELC Yes DMA DTC Yes Timers GPT32 1 GPT16H 3 3 GPT16 3 3 AGT 2 RTC Yes WDT/IWDT Yes SCI 3 DALI Yes IIC 2 2 1 1 SPI 2 2 2 1 13 10 3 2 12 9 CAN Yes USBFS Analog 32 8 KB ECC Communication 36 24 KB Parity System R7FS128783A01CFJ R7FS128783A01CNG ADC14 Yes 21 15 DAC8 3 ACMPHS 3 ACMPLP 2 OPAMP 4 3 TSN Yes HMI CTSU Data processing CRC Yes DOC Yes Security R01DS0309EU0110 Rev.1.10 Nov 28, 2018 28 21 AES and TRNG Page 10 of 107 S128 Datasheet 1.5 1. Overview Pin Functions Table 1.14 Pin functions (1 of 3) Function Signal I/O Description Power supply VCC Input Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1-μF capacitor. The capacitor should be placed close to the pin. VCL I/O Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin. Clock VSS Input Ground pin. Connect it to the system power supply (0 V). XTAL Output EXTAL Input Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin. XCIN Input XCOUT Output Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN. CLKOUT Output Clock output pin Operating mode control MD Input Pins for setting the operating mode. The signal levels on these pins must not be changed during operation mode transition at the time of release from the reset state. System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes low. CAC CACREF Input Measurement reference clock input pin On-chip debug SWDIO I/O Serial wire debug data input/output pin SWCLK Input Serial wire clock pin NMI Input Non-maskable interrupt request pin IRQ0 to IRQ7 Input Maskable interrupt request pins GTETRGA, GTETRGB Input External trigger input pin GTIOC0A to GTIOC6A, GTIOC0B to GTIOC6B I/O Input capture, output compare, or PWM output pin GTIU Input Hall sensor input pin U GTIV Input Hall sensor input pin V GTIW Input Hall sensor input pin W GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase) Interrupt GPT AGT RTC GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase) GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase) GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase) GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase) GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase) AGTEE0, AGTEE1 Input External event input enable AGTIO0, AGTIO1 I/O External event input and pulse output AGTO0, AGTO1 Output Pulse output AGTOA0, AGTOA1 Output Output compare match A output AGTOB0, AGTOB1 Output Output compare match B output RTCOUT Output Output pin for 1-Hz/64-Hz clock R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 11 of 107 S128 Datasheet 1. Overview Table 1.14 Pin functions (2 of 3) Function Signal I/O Description SCI SCK0, SCK1, SCK9 I/O Input/output pins for the clock (clock synchronous mode) RXD0, RXD1, RXD9 Input Input pins for received data (asynchronous mode/clock synchronous mode) TXD0, TXD1, TXD9 Output Output pins for transmitted data (asynchronous mode/clock synchronous mode) CTS0_RTS0, CTS1_RTS1, CTS9_RTS9 I/O Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low SCL0, SCL1, SCL9 I/O Input/output pins for the IIC clock (simple IIC) SDA0, SDA1, SDA9 I/O Input/output pins for the IIC data (simple IIC) SCK0, SCK1, SCK9 I/O Input/output pins for the clock (simple SPI) MISO0, MISO1, MISO9 I/O Input/output pins for slave transmission of data (simple SPI) MOSI0, MOSI1, MOSI9 I/O Input/output pins for master transmission of data (simple SPI) SS0, SS1, SS9 Input Chip-select input pins (simple SPI), active-low DRX0 Input Input pin for DALI received data DTX0 Output Output pin for DALI transmitted data DALI IIC SPI CAN USBFS Analog power supply SCL0, SCL1 I/O Input/output pins for clock SDA0, SDA1 I/O Input/output pins for data RSPCKA, RSPCKB I/O Clock input/output pin MOSIA, MOSIB I/O Inputs or outputs data output from the master MISOA, MISOB I/O Inputs or outputs data output from the slave SSLA0, SSLB0 I/O Input or output pin for slave selection SSLA1 to SSLA3, SSLB1 to SSLB3 Output Output pin for slave selection CRX0 Input Receive data CTX0 Output Transmit data VSS_USB Input Ground pins VCC_USB_LDO Input Power supply pin for USB LDO regulator VCC_USB I/O Input: Power supply pin for USB transceiver. Output: USB LDO regulator output pin. This pin should be connected to an external capacitor. USB_DP I/O D+ I/O pin of the USB on-chip transceiver. This pin should be connected to the D+ pin of the USB bus. USB_DM I/O D- I/O pin of the USB on-chip transceiver. This pin should be connected to the D- pin of the USB bus. USB_VBUS Input USB cable connection monitor pin. This pin should be connected to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a device controller. AVCC0 Input Analog block power supply pin AVSS0 Input Analog block power supply ground pin VREFH0 Input Reference power supply pin VREFL0 Input Reference power supply ground pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 12 of 107 S128 Datasheet 1. Overview Table 1.14 Pin functions (3 of 3) Function Signal I/O Description ADC14 AN000 to AN013, AN016 to AN022 Input Input pins for the analog signals to be processed by the A/D converter ADTRG0 Input Input pins for the external trigger signals that start the A/D conversion, active-low DAC8 DA0 to DA2 Output Output pins for the analog signals to be processed by the D/A converter Comparator output VCOUT Output Comparator output pin ACMPHS IVREF0 to IVREF2 Input Reference voltage input pin IVCMP0 to IVCMP2 Input Analog voltage input pin ACMPLP CMPREF0, CMPREF1 Input Reference voltage input pins CMPIN0, CMPIN1 Input Analog voltage input pins OPAMP AMP0+ to AMP3+ Input Analog voltage input pins AMP0- to AMP3- Input Analog voltage input pins AMP0O to AMP3O Output Analog voltage output pins TS00 to TS22, TS25 to TS29 Input Capacitive touch detection pins (touch pins) TSCAP - Secondary power supply pin for the touch driver KINT KR00 to KR07 Input Key interrupt input pins I/O ports P000 to P004, P010 to P015 I/O General-purpose input/output pins P100 to P113 I/O General-purpose input/output pins P200 Input General-purpose input pin P201, P204 to P206, P212, P213 I/O General-purpose input/output pins P214, P215 Input General-purpose input pins P300 to P304 I/O General-purpose input/output pins P400 to P403, P407 to P411 I/O General-purpose input/output pins P500 to P502 I/O General-purpose input/output pins P914, P915 I/O General-purpose input/output pins CTSU R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 13 of 107 S128 Datasheet 1.6 1. Overview Pin Assignments Figure 1.3 P100 P101 P102 P103 P104 P105 P106 P107 VSS VCC P113 P112 P111 P110 P109 P108/SWDIO 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 Figure 1.3 to Figure 1.8 show the pin assignments. P500 49 32 P300/SWCLK P501 50 31 P301 P502 51 30 P302 P015 52 29 P303 P014 53 28 P304 P013 54 27 P200 P012 55 26 P201/MD AVCC0 56 25 RES AVSS0 57 24 P204 P011/VREFL0 58 23 P205 P010/VREFH0 59 22 P206 P004 60 21 VCC_USB_LDO P003 61 20 VCC_USB P002 62 19 P914/USB_DP P001 63 18 P915/USB_DM P000 64 17 VSS_USB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P400 P401 P402 P403 VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P411 P410 P409 P408 P407 R7FS128783A01CFM Pin assignment for LQFP 64-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 14 of 107 P100 P101 P102 P103 P104 VSS VCC P112 P111 P110 P109 P108/SWDIO 35 34 33 32 31 30 29 28 27 26 25 P500 37 24 P300/SWCLK P015 38 23 P301 P014 39 22 P302 P013 40 21 P200 P012 41 20 P201/MD AVCC0 42 19 RES AVSS0 43 18 P206 P011/VREFL0 44 17 VCC_USB_LDO P010/VREFH0 45 16 VCC_USB P002 46 15 P914/USB_DP P001 47 14 P915/USB_DM P000 48 13 VSS_USB 12 8 P212/EXTAL P407 7 P213/XTAL 11 6 VSS P408 5 P214/XCOUT 10 4 P215/XCIN P409 3 VCL 9 2 P401 VCC 1 P400 R7FS128783A01CFL 25 26 27 28 29 30 31 32 P102 P103 P104 VSS VCC P112 P111 P110 P109 P108/SWDIO 33 34 35 P100 P101 36 Pin assignment for LQFP 48-pin P500 P015 P014 P013 P012 AVCC0 AVSS0 P011/VREFL0 P010/VREFH0 P002 P001 37 24 38 23 44 17 45 16 46 15 47 14 P300/SWCLK P301 P302 P200 P201/MD RES P206 VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM 39 22 40 21 41 20 P000 48 13 VSS_USB 18 12 11 10 9 8 7 6 5 19 P400 P401 VCL P215/XCIN P214/XCOUT VSS P213/XTAL P212/EXTAL VCC P409 P408 P407 4 R7FS128783A01CNE 3 43 2 42 1 Figure 1.4 1. Overview 36 S128 Datasheet Figure 1.5 Pin assignment for QFN 48-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 15 of 107 S128 Datasheet 1. Overview R7FS128782A01CLM Figure 1.7 B C D E F 6 P015 P100 P112 P111 P108 /SWDIO P300 /SWCLK 6 5 P014 P013 P101 P110 P200 VCC_USB _LDO 5 4 AVCC0 P012 P102 P109 P201/MD VCC_USB 4 3 AVSS0 P011 /VREFL0 P103 P213 /XTAL RES P914 /USB_DP 3 2 P010 /VREFH0 P000 P001 P212 /EXTAL P407 P915 /USB_DM 2 1 VCL P215 /XCIN VCC P002 1 A B E F P214 VSS/ /XCOUT VSS_USB C D P100 P101 P102 P103 P112 P110 P109 P108/SWDIO 24 23 22 21 20 19 18 17 Pin assignment for LGA 36-pin (top view, pad side down) P015 25 16 P014 26 15 P300/SWCLK P200 P013 27 14 P201/MD P012 28 13 RES AVCC0 29 12 VCC_USB_LDO AVSS0 30 11 VCC_USB P011/VREFL0 31 10 P914/USB_DP P010/VREFH0 32 9 P915/USB_DM 1 2 3 4 5 6 7 8 VCL P214/XCOUT VSS/VSS_USB P213/XTAL P212/EXTAL VCC P407 R7FS128783A01CFJ P215/XCIN Figure 1.6 A Pin assignment for LQFP 32-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 16 of 107 17 18 19 20 P102 P103 P112 P110 P109 P108/SWDIO 21 22 23 25 16 26 15 27 14 28 29 R7FS128783A01CNG 13 12 8 7 6 P300/SWCLK P200 P201/MD RES VCC_USB_LDO VCC_USB P914/USB_DP P915/USB_DM VCL P215/XCIN P214/XCOUT VSS/VSS_USB P213/XTAL P212/EXTAL VCC P407 5 9 4 10 32 3 11 31 2 30 1 P015 P014 P013 P012 AVCC0 AVSS0 P011/VREFL0 P010/VREFH0 P100 P101 1. Overview 24 S128 Datasheet Figure 1.8 Pin assignment for QFN 32-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 17 of 107 S128 Datasheet Pin Lists TS18 IRQ4 GTIOC3A _B CTS1_RTS 1_B/SS1_B TS17 P213 GTETRGA GTIOC0A _D _D TXD1_A/ MOSI1_A/ SDA1_A IRQ2 P212 AGTEE1 GTETRGB GTIOC0B _D _D RXD1_A/ MISO1_A/ SCL1_A IRQ3 - - - - - - P401 GTETRGA GTIOC6B _B _A GTIOC6A _A CTX0_B 3 - - - - - P402 GTIOC3B _B CRX0_B 4 - - - - - P403 5 3 3 A1 1 1 VCL 6 4 4 B1 2 2 XCIN P215 7 5 5 C1 3 3 XCOUT P214 8 6 6 D1 4 4 VSS 9 7 7 D3 5 5 XTAL 10 8 8 D2 6 6 EXTAL VCC OPAMP RXD1_B/ MISO1_B/ SCL1_B 1 2 DAC8 IRQ5 1 2 ADC14 IRQ0 TS19 1 2 SPI TS20 RTC SCL0_A AGTIO1_ D GPT SCK0_B/ SCK1_B CTS0_RTS SDA0_A 0_B/SS0_B/ TXD1_B/ MOSI1_B/ SDA1_B P400 AGT Interrupt HMI CTSU ACMPHS, ACMPLP Analogs IIC USBFS,CAN, DALI Communication Interfaces SCI CACREF_ C I/O ports Power, System, Clock, Debug, CAC QFN32 Timers LQFP32 LGA36 QFN48 LQFP48 LQFP64 Pin number GPT_OPS, POEG 1.7 1. Overview 11 9 9 E1 7 7 12 - - - - - P411 AGTOA1 GTOVUP_ GTIOC6A B _B TXD0_B/ MOSI0_B/ SDA0_B MOSIA_B TS07 IRQ4 13 - - - - - P410 AGTOB1 GTOVLO_ GTIOC6B B _B RXD0_B/ MISO0_B/ SCL0_B MISOA_B TS06 IRQ5 14 10 10 - - - P409 GTOWUP GTIOC5A _B _B TXD0_E/ MOSI0_E/ SDA0_E/ TXD9_A/ MOSI9_A/ SDA9_A TS05 IRQ6 15 11 11 - - - P408 GTOWLO_ GTIOC5B B _B RXD9_A/ MISO9_A/ SCL9_A TS04 IRQ7 16 12 12 E2 8 8 P407 AGTIO0_ C SCL0_C GTIOC0A RTC USB_VBU CTS0_RTS SDA0_B SSLB3_A ADTRG0_ _E OUT S 0_D/SS0_D B 17 13 13 D1 4 4 18 14 14 F2 9 9 P915 USB_DM 19 15 15 F3 10 10 P914 USB_DP 20 16 16 F4 11 11 VCC_USB 21 17 17 F5 12 12 VCC_USB_ LDO 22 18 18 - - - 23 - - - - - CLKOUT_A P205 AGTO1 GTIV_A 24 - - - - - CACREF_ A P204 AGTIO1_ A GTIW_A 25 19 19 E3 13 13 RES 26 20 20 E4 14 14 MD 27 21 21 E5 15 15 P200 28 - - - - - P304 29 - - - - - P303 GTIOC1B _B 30 22 22 - - - P302 GTOUUP_ GTIOC4A A _A 31 23 23 - - - P301 AGTIO0_ GTOULO_ GTIOC4B D A _A TS03 VSS_USB P206 GTIU_A RXD0_D/ MISO0_D/ SCL0_D SDA1_A SSLB1_A GTIOC4A _B TXD0_D/ MOSI0_D/ SDA0_D/ CTS9_RTS 9_A/SS9_A SCL1_A GTIOC4B _B SCK0_D/ SCK9_A SSLB0_A SCL0_B RSPCKB_ A TS01 IRQ0 TSCAP_ A IRQ1 TS00 P201 NMI GTIOC1A _B 32 24 24 F6 16 16 SWCLK P300 GTOUUP_ GTIOC0A C _A 33 25 25 E6 17 17 SWDIO P108 GTOULO_ GTIOC0B C _A 34 26 26 D4 18 18 CLKOUT_B P109 GTOVUP_ GTIOC1A A _A R01DS0309EU0110 Rev.1.10 Nov 28, 2018 TS02 CTS9_RTS 9_D/ SS9_D SSLB3_B TS08 IRQ5 SSLB2_B TS09 IRQ6 SSLB1_B CTX0_A CTS9_RTS 9_B/SS9_B SSLB0_B SCK1_E/ TXD9_B/ MOSI9_B/ SDA9_B MOSIB_B TS10 Page 18 of 107 S128 Datasheet 1. Overview - P111 AGTOA0 37 29 29 C6 20 20 P112 AGTOB0 38 - - - - - 39 30 30 - - - VCC 40 31 31 - - - VSS 41 - - - - 42 - - - - Interrupt - CTSU D6 RSPCKB_ B TS12 IRQ4 SSLB0_C TSCAP_ C GTIOC3A _A SCK0_C/ SCK9_B GTIOC3B _A TXD0_C/ MOSI0_C/ SDA0_C/ SCK1_D P113 GTIOC2A _C - P107 GTIOC0A _B - P106 GTIOC0B _B OPAMP 28 ACMPHS, ACMPLP 28 DAC8 36 IRQ3 MISOB_B CRX0_A HMI TS11 CTS0_RTS 0_C/ SS0_C/ RXD9_B/ MISO9_B/ SCL9_B GTOVLO_ GTIOC1B A _A ADC14 P110 Analogs SPI 19 IIC 19 USBFS,CAN, DALI QFN32 D5 RTC LQFP32 27 Communication Interfaces GPT LGA36 27 GPT_OPS, POEG QFN48 35 AGT LQFP48 I/O ports LQFP64 Power, System, Clock, Debug, CAC Timers SCI Pin number VCOUT KR07 SSLA3_A AN016 43 - - - - - P105 GTETRGA GTIOC1A _C _C 44 32 32 - - - P104 GTETRGB GTIOC1B _B _C 45 33 33 C3 21 21 P103 46 34 34 C4 22 22 P102 AGTO0 47 35 35 C5 23 23 P101 48 36 36 B6 24 24 P100 49 37 37 - - - P500 AN013 50 - - - - - P501 AN012 AMP3+ 51 - - - - - P502 AN011 AMP3- 52 38 38 A6 25 25 P015 AN010 DA1_A IVCMP1 AMP2+ TS28 53 39 39 A5 26 26 P014 AN009 DA0 IVREF1 AMP2- TS29 54 40 40 B5 27 27 P013 AN008 IVCMP0 AMP1+ 55 41 41 B4 28 28 P012 AN007 IVREF0 AMP1- 56 42 42 A4 29 29 RXD0_C/ MISO0_C/ SCL0_C SSLA2_A AN017 SSLA1_A AN018 SSLA0_A AN019 KR06 GTOWUP GTIOC2A _A _A CTX0_C CTS0_RTS 0_A/SS0_A GTOWLO_ GTIOC2B A _A CRX0_C SCK0_A AGTEE0 GTETRGB GTIOC5A _A _A DTX0 TXD0_A/ MOSI0_A/ SDA0_A/ CTS1_RTS 1_A/SS1_A SDA1_B MOSIA_A AGTIO0_ GTETRGA GTIOC5B A _A _A DRX0 RXD0_A/ MISO0_A/ SCL0_A/ SCK1_A SCL1_B MISOA_A KR05/ IRQ0 TS13 KR04/ IRQ1 CMPREF 1 TS14 KR03 CMPIN1 TS15 KR02 AN021 CMPREF 0 TS16 KR01/ IRQ1 AN022 CMPIN0 TS26 KR00/ IRQ2 RSPCKA_ AN020/ A ADTRG0_ A DA1_B TS27 IRQ7 AVCC0 57 43 43 A3 30 30 AVSS0 58 44 44 B3 31 31 VREFL0 P011 AN006 59 45 45 A2 32 32 VREFH0 P010 AN005 60 - - - - - P004 AN004 61 - - - - - P003 AN003 AMP3O 62 46 46 F1 - - P002 AN002 AMP0O DA2_A AMP2O AMP1O DA2_B TS25 IRQ3 IRQ2 63 47 47 C2 - - P001 AN001 IVREF2 AMP0- TS22 IRQ7 64 48 48 B2 - - P000 AN000 IVCMP2 AMP0+ TS21 IRQ6 Note: Several pin names have the added suffix of _A, _B, _C, _D and _E. The suffix can be ignored when assigning functionality. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 19 of 107 S128 Datasheet 2. 2. Electrical Characteristics Electrical Characteristics Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions: VCC*1 = AVCC0 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5V, VREFH0 = 1.6 to AVCC0, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, Ta = Topr Note 1. The typical condition is set to VCC = 3.3V. Note 2. When USBFS is not used. Figure 2.1 shows the timing conditions. For example P100 C VOH = VCC × 0.7, VOL = VCC × 0.3 VIH = VCC × 0.7, VIL = VCC × 0.3 Load capacitance C = 30pF Figure 2.1 Input or output timing measurement conditions The measurement conditions of the timing specifications for each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities for each pin to meet the conditions of your system. Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the A/C specification of each function is not guaranteed. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 20 of 107 S128 Datasheet 2.1 2. Electrical Characteristics Absolute Maximum Ratings Table 2.1 Absolute maximum ratings Parameter Power supply voltage Input voltage 5 V tolerant ports*1 Symbol Value Unit VCC -0.5 to +6.5 V Vin -0.3 to +6.5 V P000 to P004 P010 to P015 P500 to P502 Vin -0.3 to AVCC0 + 0.3 V Others Vin -0.3 to VCC + 0.3 V Reference power supply voltage VREFH0 -0.3 to +6.5 V Analog power supply voltage AVCC0 -0.5 to +6.5 V USB power supply voltage VCC_USB -0.5 to +6.5 V VCC_USB_LDO -0.5 to +6.5 V VAN -0.3 to AVCC0 + 0.3 V -0.3 to VCC + 0.3 V Analog input voltage When AN000 to AN013 are used When AN016 to AN022 are used Operating temperature*2 *3 Topr -40 to +85 -40 to +105 °C Storage temperature Tstg -55 to +125 °C Note: Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the systematic reduction of load for improved reliability. Note 1. Ports P205, P206, P400, P401, and P407 are 5V-tolerant. Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause degradation of internal elements. Note 2. See section 2.2.1, Tj/Ta Definition. Note 3. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded. To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, and between the VREFH0 and VREFL0 pins. Place capacitors of about 0.1 μF as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect capacitors as stabilization capacitance. Connect the VCL pin to a VSS pin by a 4.7-µF capacitor. The capacitor must be placed close to the pin. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 21 of 107 S128 Datasheet Table 2.2 2. Electrical Characteristics Recommended operating conditions Parameter Symbol Value Min Typ Max Unit Power supply voltages VCC*1, *2 When USBFS is not used 1.6 - 5.5 V When USBFS is used VCC_USB USB Regulator Disable - 3.6 V When USBFS is used VCC_USB USB Regulator _LDO Enable - 5.5 V - 0 - V - VCC - V When USBFS is used 3.0 USB Regulator Disable (Input) 3.3 3.6 V When USBFS is not used - VCC - V When USBFS is used USB Regulator Disable VCC - V When USBFS is used 3.8 USB Regulator Enable - 5.5 V 0 - V VSS USB power supply voltages VCC_USB VCC_USB_LDO When USBFS is not used VSS_USB Analog power supply voltages - AVCC0*1, *2 1.6 - 5.5 V AVSS0 - 0 - V 1.6 - AVCC0 V - 0 - V VREFH0 VREFL0 When used as ADC14 Reference Note 1. Use AVCC0 and VCC under the following conditions: AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 ≥ 2.2 V. AVCC0 = VCC when VCC < 2.2 V or AVCC0 < 2.2 V. Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 22 of 107 S128 Datasheet 2.2 2. Electrical Characteristics DC Characteristics 2.2.1 Tj/Ta Definition Table 2.3 DC characteristics Conditions: Products with operating temperature (Ta) -40 to +105°C Parameter Symbol Typ Max Unit Test conditions Permissible junction temperature Tj - 125 °C High-speed mode Middle-speed mode Low-voltage mode Low-speed mode SubOSC-speed mode 105*1 Note: Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC. Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part Numbering. If the part number shows an operation temperature to 85°C, then Tj max is 105°C, otherwise, it is 125°C. 2.2.2 Table 2.4 I/O VIH, VIL I/O VIH, VIL (1) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 2.7 to 5.5 V Symbol Min Typ Max Unit Test Conditions VIH VCC × 0.7 - 5.8 V - VIL - - VCC × 0.3 ΔVT VCC × 0.05 - - RES, NMI Other peripheral input pins excluding IIC VIH VCC × 0.8 - - VIL - - VCC × 0.2 ΔVT VCC × 0.1 - - IIC (SMBus)*2 VIH 2.2 - - VCC = 3.6 to 5.5 V VIH 2.0 - - VCC =2.7 to 3.6 V VIL - - 0.8 - VIH VCC × 0.8 - 5.8 Parameter Schmitt trigger input voltage Input voltage (except for Schmitt trigger input pin) IIC (except for SMBus)*1 5V-tolerant ports*3 VIL - - VCC × 0.2 P000 to P004 P010 to P015 P500 to P502 VIH AVCC0 × 0.8 - - VIL - - AVCC0 × 0.2 P914, P915 VIH VCC_USB × 0.8 - VCC_USB + 0.3 VIL - - VCC_USB × 0.2 VIH VCC × 0.8 - - VIL - - VCC × 0.2 EXTAL Input ports pins except for P000 to P004, P010 to P015, P500 to P502, P914, P915 Note 1. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A (total 5 pins) Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL0_C, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 9 pins) Note 3. P205, P206, P400, P401, P407 (total 5pins) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 23 of 107 S128 Datasheet Table 2.5 2. Electrical Characteristics I/O VIH, VIL (2) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V Parameter Schmitt trigger input voltage Input voltage (except for Schmitt trigger input pin) RES, NMI Peripheral input pins 5V-tolerant ports*1 Symbol Min Typ Max Unit Test Conditions VIH VCC × 0.8 - - V - VIL - - VCC × 0.2 ΔVT VCC × 0.01 - - VIH VCC × 0.8 - 5.8 VIL - - VCC × 0.2 P000 to P004 P010 to P015 P500 to P502 VIH AVCC0 × 0.8 - - VIL - - AVCC0 × 0.2 P914, P915 VIH VCC_USB × 0.8 - VCC_USB + 0.3 VIL - - VCC_USB × 0.2 VIH VCC × 0.8 - - VIL - - VCC × 0.2 EXTAL Input ports pins except for P000 to P004, P010 to P015, P500 to P502, P914, P915 Note 1. P205, P206, P400, P401, P407 (total 5pins) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 24 of 107 S128 Datasheet 2.2.3 Table 2.6 2. Electrical Characteristics I/O IOH, IOL I/O IOH, IOL Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V Parameter Permissible output current (average value per pin) Ports P000 to P004, P010 to P015, P212, P213, P500 to P502 Ports P408, P409 - Low drive*1 Middle drive*2 VCC = 2.7 to 3.0 V Middle drive*2 VCC = 3.0 to 5.5 V Ports P914, P915 Other output pins*3 Low drive*1 Middle drive*2 Permissible output current (max value per pin) Ports P000 to P004, P010 to P015, P212, P213, P500 to P502 - Ports P408, P409 Low drive*1 drive*2 Middle VCC = 2.7 to 3.0 V drive*2 Middle VCC = 3.0 to 5.5 V Ports P914, P915 Other output pins*3 Low drive*1 Middle Permissible output current (max value total pins) drive*2 Total of ports P000 to P004, P010 to P015, P500 to P502 Total of ports P914, P915 Total of all output pin Symbol Min Typ Max Unit IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA IOH - - -20.0 mA IOL - - 20.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA IOH - - -20.0 mA IOL - - 20.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -4.0 mA IOL - - 4.0 mA IOH - - -8.0 mA IOL - - 8.0 mA ΣIOH (max) - - -30 mA ΣIOL (max) - - 30 mA ΣIOH - - -4.0 mA ΣIOL - - 4.0 mA ΣIOH (max) - - -60 mA ΣIOL (max) - - 60 mA Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during 100 μs. Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Note 3. Except for Ports P200, P214, P215, which are input ports. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 25 of 107 S128 Datasheet 2.2.4 2. Electrical Characteristics I/O VOH, VOL, and Other Characteristics Table 2.7 I/O VOH, VOL (1) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 4.0 to 5.5 V Parameter Output voltage IIC*1, *2 Ports P408, P409*2, *3 Ports P000 to P004, P010 to P015, P500 to P502 Low drive Middle drive Ports P914, P915 Other output pins*4 Low drive Middle drive*5 Note 1. Note 2. Note 3. Note 4. Note 5. Symbol Min Typ Max Unit Test conditions VOL - - 0.4 V VOL - - 0.6 IOL = 6.0 mA VOH VCC - 1.0 - - IOH = -20.0 mA VOL - - 1.0 IOL = 20 mA VOH AVCC0 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA VOH AVCC0 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA VOH VCC_USB 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA IOL = 3.0 mA VOH VCC - 0.8 - - IOH = -2.0 mA VOL - - 0.8 IOL = 2.0 mA VOH VCC - 0.8 - - IOH = -4.0 mA VOL - - 0.8 IOL = 4.0 mA SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL0_C, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 9 pins). This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Based on characterization data, not tested in production. Except for Ports P200, P214, P215, which are input ports. Except for P212, P213. Table 2.8 I/O VOH, VOL (2) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 2.7 to 4.0 V Parameter Output voltage IIC*1, *2 Ports P408, P409*2, *3 Ports P000 to P004, P010 to P015, P500 to P502 Low drive Middle drive Ports P914, P915 Other output pins*4 Low drive Middle drive*5 Symbol Min Typ Max Unit Test conditions VOL - - 0.4 V VOL - - 0.6 IOL = 6.0 mA VOH VCC - 1.0 - - IOH = -20.0 mA VCC = 3.3 V VOL - - 1.0 IOL = 20 mA VCC = 3.3 V VOH AVCC0 - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH AVCC0 - 0.5 - - IOH = -2.0 mA IOL = 3.0 mA VOL - - 0.5 IOL = 2.0 mA VOH VCC_USB 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH VCC - 0.5 - - IOH = -1.0 mA VOL - - 0.5 IOL = 1.0 mA VOH VCC - 0.5 - - IOH = -2.0 mA VOL - - 0.5 IOL = 2.0 mA Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL0_C, SCL1_A, SDA1_A, SCL1_B, SDA1_B (total 9 pins). Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register. Note 3. Based on characterization data, not tested in production. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 26 of 107 S128 Datasheet 2. Electrical Characteristics Note 4. Except for Ports P200, P214, P215, which are input ports. Note 5. Except for P212, P213. Table 2.9 I/O VOH, VOL (3) Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V Parameter Output voltage Ports P000 to P004, P010 to P015, P500 to P502 Low drive Middle drive Ports P914, P915 Other output pins*1 Low drive Middle drive*2 Symbol Min VOH AVCC0 - 0.3 - Typ VOL - 0.3 IOL = 0.5 mA VOH AVCC0 - 0.3 - - IOH = -1.0 mA - Max Unit Test conditions - V IOH = -0.5 mA VOL - - 0.3 IOL = 1.0 mA VOH VCC_USB 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA VOH VCC - 0.3 - - IOH = -0.5 mA VOL - - 0.3 IOL = 0.5 mA VOH VCC - 0.3 - - IOH = -1.0 mA VOL - - 0.3 IOL = 1.0 mA Note 1. Except for Ports P200, P214, P215, which are input ports. Note 2. Except for P212, P213. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 27 of 107 S128 Datasheet Table 2.10 2. Electrical Characteristics I/O other characteristics Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Input leakage current RES, Ports P200, P214, P215 | Iin | - - 1.0 μA Vin = 0 V Vin = VCC Three-state leakage current (off state) 5V-tolerant ports | ITSI | - - 1.0 μA Vin = 0 V Vin = 5.8 V - - 1.0 Other ports Input pull-up resistor Input capacitance All ports (except for P200, P214, P215, P914, P915) RU 10 20 50 kΩ Vin = 0 V USB_DP, USB_DM, P200 Cin - - 30 pF - - 15 Vin = 0 V f = 1 MHz Ta = 25°C Other input pins 2.2.5 Vin = 0 V Vin = VCC Output Characteristics for I/O Pins (Low Drive Capacity) IOH/IOL vs VOH/VOL 60 50 VCC = 5.5 V 40 30 IOH/IOL [mA] 20 VCC = 3.3 V 10 VCC = 2.7 V VCC = 1.6 V 0 VCC = 1.6 V -10 VCC = 2.7 V -20 VCC = 3.3 V -30 -40 -50 VCC = 5.5 V -60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.2 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when low drive output is selected (reference data, except for P914 and P915) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 28 of 107 S128 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 3 Ta = -40C Ta = 25C Ta = 105C 2 IOH/IOL [mA] 1 0 -1 Ta = 105C Ta = 25C Ta = -40C -2 -3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH/VOL [V] Figure 2.3 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 20 15 Ta = -40C Ta = 25C Ta = 105C IOH/IOL [mA] 10 5 0 -5 Ta = 105C -10 Ta = 25C Ta = -40C -15 -20 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.4 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data, except for P914 and P915) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 29 of 107 S128 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 30 Ta = -40C Ta = 25C Ta = 105C 20 IOH/IOL [mA] 10 0 -10 Ta = 105C Ta = 25C -20 Ta = -40C -30 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.5 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 60 Ta = -40C Ta = 25C 40 Ta = 105C IOH/IOL [mA] 20 0 -20 Ta = 105C -40 Ta = 25C Ta = -40C -60 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.6 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected (reference data, except for P914 and P915) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 30 of 107 S128 Datasheet 2.2.6 2. Electrical Characteristics Output Characteristics for I/O Pins (Middle Drive Capacity) IOH/IOL vs VOH/VOL IOH/IOL [mA] 140 120 100 VCC = 5.5 V 80 60 40 20 VCC = 3.3 V VCC = 2.7 V VCC = 1.6 V 0 -20 -40 VCC = 1.6 V VCC = 2.7 V VCC = 3.3 V -60 -80 -100 -120 VCC = 5.5 V -140 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.7 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 6 Ta = -40C Ta = 25C Ta = 105C 4 IOH/IOL [mA] 2 0 -2 Ta = 105C -4 Ta = 25C Ta = -40C -6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH/VOL [V] Figure 2.8 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is selected (reference data, except for P914 and P915) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 31 of 107 S128 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 40 Ta = -40C Ta = 25C 30 Ta = 105C IOH/IOL [mA] 20 10 0 -10 -20 Ta = 105C Ta = 25C -30 Ta = -40C -40 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.9 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data, except for P914 and P915) IOH/IOL vs VOH/VOL 60 Ta = -40C Ta = 25C 40 Ta = 105C IOH/IOL [mA] 20 0 -20 Ta = 105C -40 Ta = 25C Ta = -40C -60 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.10 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data, except for P914 and P915) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 32 of 107 S128 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 140 120 Ta = -40C Ta = 25C IOH/IOL [mA] 100 80 60 Ta = 105C 40 20 0 -20 -40 -60 -80 -100 Ta = 105C Ta = 25C -120 -140 Ta = -40C 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.11 2.2.7 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data, except for P914 and P915) Output Characteristics for P408 and P409 I/O Pins (Middle Drive Capacity) IOH/IOL [mA] IOH/IOL vs VOH/VOL 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 VCC = 5.5 V VCC = 3.3 V VCC = 2.7 V VCC = 2.7 V VCC = 3.3 V VCC = 5.5 V 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.12 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 33 of 107 S128 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 60 Ta = -40C Ta = 25C Ta = 105C 40 IOH/IOL [mA] 20 0 -20 Ta = 105C -40 Ta = 25C Ta = -40C -60 0 0.5 1 1.5 2 2.5 3 VOH/VOL [V] Figure 2.13 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data) IOH/IOL vs VOH/VOL 100 80 Ta = -40C Ta = 25C 60 Ta = 105C IOH/IOL [mA] 40 20 0 -20 -40 Ta = 105C -60 Ta = 25C -80 Ta = -40C -100 0 0.5 1 1.5 2 2.5 3 3.5 VOH/VOL [V] Figure 2.14 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 34 of 107 S128 Datasheet 2. Electrical Characteristics IOH/IOL vs VOH/VOL 220 180 Ta = -40C Ta = 25C 140 Ta = 105C IOH/IOL [mA] 100 60 20 -20 -60 -100 -140 Ta = 105C Ta = 25C -180 Ta = -40C -220 0 1 2 3 4 5 6 VOH/VOL [V] Figure 2.15 2.2.8 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is selected (reference data) Output Characteristics for IIC I/O Pins IOL vs VOL 120 110 VCC = 5.5 V (Middle drive) 100 90 IOL [mA] 80 70 60 50 VCC = 3.3 V (Middle drive) VCC = 5.5 V (Low drive) 40 VCC = 2.7 V (Middle drive) 30 20 VCC = 3.3 V (Low drive) 10 VCC = 2.7 V (Low drive) 0 0 1 2 3 4 5 6 VOL [V] Figure 2.16 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 35 of 107 S128 Datasheet 2.2.9 Table 2.11 2. Electrical Characteristics Operating and Standby Current Operating and standby current (1) (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 High-speed mode*2 Normal mode All peripheral clock disabled, while (1) code executing from flash*5 All peripheral clock disabled, CoreMark code executing from flash*5 All peripheral clock enabled, while (1) code executing from flash*5 Sleep mode ICLK = 32 MHz Symbol Typ*9 Max Unit Test Conditions ICC 4.2 - mA *7 ICLK = 16 MHz 2.6 - ICLK = 8 MHz 1.8 - ICLK = 32 MHz 6.2 - ICLK = 16 MHz 3.6 - ICLK = 8 MHz 2.4 - ICLK = 32 MHz 10.5 - ICLK = 16 MHz 5.8 - ICLK = 8 MHz 3.4 - All peripheral clock enabled, code executing from flash*5 ICLK = 32 MHz - 22.1 All peripheral clock disabled*5 ICLK = 32 MHz 1.6 - All peripheral clock enabled*5 ICLK = 16 MHz 1.2 - ICLK = 8 MHz 0.9 - ICLK = 32 MHz 7.5 - ICLK = 16 MHz 4.1 - ICLK = 8 MHz 2.4 - 2.5 - 1.9 - 1.6 - Increase during BGO operation*6 Middle-speed mode*2 Normal mode Sleep mode All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 12 MHz ICC All peripheral clock disabled, CoreMark code executing from flash*5 ICLK = 12 MHz 2.7 - ICLK = 8 MHz 2.1 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 12 MHz 4.3 - ICLK = 8 MHz 3.1 - All peripheral clock enabled, code executing from flash*5 ICLK = 12 MHz - 8.1 All peripheral clock disabled*5 ICLK = 12 MHz 0.8 - ICLK = 8 MHz 0.8 - All peripheral clock enabled*5 ICLK = 12 MHz 3.0 - ICLK = 8 MHz 2.2 - 2.5 - 0.3 - ICLK = 8 MHz Increase during BGO operation*6 Low-speed mode*3 Normal mode Sleep mode R01DS0309EU0110 Rev.1.10 Nov 28, 2018 ICC *8 *7 *8 mA *7 *8 *7 *8 mA *7 All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 1 MHz All peripheral clock disabled, CoreMark code executing from flash*5 ICLK = 1 MHz 0.4 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 1 MHz 0.5 - All peripheral clock enabled, code executing from flash*5 ICLK = 1 MHz - 2.0 All peripheral clock disabled*5 ICLK = 1 MHz 0.2 - *7 All peripheral clock enabled*5 ICLK = 1 MHz 0.4 - *8 *8 Page 36 of 107 S128 Datasheet Table 2.11 2. Electrical Characteristics Operating and standby current (1) (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 Low-voltage mode*3 Normal mode Sleep mode Suboscspeed mode*4 Normal mode Sleep mode Symbol Typ*9 Max Unit Test Conditions ICC 1.5 - mA *7 All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 4 MHz All peripheral clock disabled, CoreMark code executing from flash*5 ICLK = 4 MHz 1.7 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 4 MHz 2.3 - All peripheral clock enabled, code executing from flash*5 ICLK = 4 MHz - 4.0 All peripheral clock disabled*5 ICLK = 4 MHz 0.9 - *7 All peripheral clock enabled*5 ICLK = 4 MHz 1.7 - *8 All peripheral clock disabled, while (1) code executing from flash*5 ICLK = 32.768 kHz 5.9 - All peripheral clock enabled, while (1) code executing from flash*5 ICLK = 32.768 kHz 13.0 - All peripheral clock enabled, code executing from flash*5 ICLK = 32.768 kHz 128.3 (17.8)*10 163.7 All peripheral clock disabled*5 ICLK = 32.768 kHz 3.2 - *7 All peripheral clock enabled*5 ICLK = 32.768 kHz 10.0 - *8 ICC *8 μA *7 *8 Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state. Note 2. The clock source is HOCO. Note 3. The clock source is MOCO. Note 4. The clock source is the sub-clock oscillator. Note 5. This does not include BGO operation. Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution. Note 7. PCLKB and PCLKD are set to divided by 64. Note 8. PCLKB and PCLKD are the same frequency as that of ICLK. Note 9. VCC = 3.3 V. Note 10. MOCO and DAC is stopped. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 37 of 107 S128 Datasheet 2. Electrical Characteristics 20 T a = 1 0 5  C , IC L K = 3 2 M H z * 2 18 16 ICC (mA) 14 12 T a = 2 5  C , IC L K = 3 2 M H z *1 T a = 1 0 5  C , IC L K = 1 6 M H z *2 10 8 T a = 1 0 5  C , IC L K = 8 M H z *2 T a = 2 5  C , IC L K = 1 6 M H z *1 6 T a = 1 0 5  C , IC L K = 4 M H z *2 T a = 2 5  C , IC L K = 8 M H z *1 T a = 2 5  C , IC L K = 4 M H z *1 4 2 0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 V C C (V ) 4 .5 5 .0 5 .5 6 .0 T a = 2 5  C , IC L K = 3 2 M H z *1 T a = 1 0 5  C , IC L K = 3 2 M H z *2 T a = 2 5  C , IC L K = 1 6 M H z *1 T a = 1 0 5  C , IC L K = 1 6 M H z *2 T a = 2 5  C , IC L K = 8 M H z *1 T a = 1 0 5  C , IC L K = 8 M H z *2 T a = 2 5  C , IC L K = 4 M H z *1 T a = 1 0 5  C , IC L K = 4 M H z *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper-limit samples during product evaluation. Figure 2.17 Voltage dependency in high-speed mode (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 38 of 107 S128 Datasheet 2. Electrical Characteristics 8 Ta = 105 C, ICLK = 12MHz *2 7 ICC (mA) 6 Ta = 105 C, ICLK = 8MHz*2 5 Ta = 25 C, ICLK = 12MHz*1 Ta = 105 C, ICLK = 4MHz*2 Ta = 25 C, ICLK = 8MHz*1 4 3 Ta = 25 C, ICLK = 4MHz*1 2 Ta = 105 C, ICLK = 1MHz*2 1 0 Ta = 25 C, ICLK = 1MHz*1 1.5 2.0 2.5 3.0 3.5 4.0 VCC (V) 4.5 5.0 5.5 6.0 Ta = 25 C, ICLK = 12MHz*1 Ta = 25 C, ICLK = 8MHz*1 Ta = 105C, ICLK = 12MHz*2 Ta = 105C, ICLK = 8MHz *2 Ta = 25 C, ICLK = 4MHz*1 Ta = 25 C, ICLK = 1MHz*1 Ta = 105C, ICLK = 4MHz *2 Ta = 105C, ICLK = 1MHz *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper-limit samples during product evaluation. Figure 2.18 Voltage dependency in middle-speed mode (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 39 of 107 S128 Datasheet 2. Electrical Characteristics 1.2 T a = 1 0 5  C , IC L K = 1M H z *2 ICC (mA) 1.0 0.8 0.6 T a = 2 5  C , IC L K = 1 M H z *1 0.4 0.2 0.0 1.5 2.0 2.5 3.0 3.5 4.0 VCC (V) T a = 2 5  C , IC L K = 1M H z *1 4.5 5.0 5.5 6.0 T a = 1 0 5  C , IC L K = 1 M H z *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper-limit samples during product evaluation. Figure 2.19 Voltage dependency in low-speed mode (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 40 of 107 S128 Datasheet 2. Electrical Characteristics 4. 0 3. 5 T a = 1 0 5  C , IC L K = 4 M H z *2 ICC (mA) 3. 0 2. 5 T a = 2 5  C , IC L K = 4 M H z *1 2. 0 T a = 1 0 5  C , IC L K = 1 M H z *2 1. 5 T a = 2 5  C , IC L K = 1 M H z * 1 1. 0 0. 5 0. 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 V C C (V ) T a = 2 5  C , IC L K = 4 M H z *1  T a = 2 5 C , IC L K = 1 M H z *1 T a = 1 0 5  C , IC L K = 4 M H z *2 T a = 1 0 5  C , IC L K = 1 M H z *2 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper-limit samples during product evaluation. Figure 2.20 Voltage dependency in low-voltage mode (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 41 of 107 S128 Datasheet 2. Electrical Characteristics 16 0 T a = 1 0 5  C , IC L K = 3 2 k H z *2 14 0 T a = 2 5  C , IC L K = 3 2 k H z *1 12 0 ICC (A) 10 0 80 60 40 20 0 T a = 2 5  C , IC L K = 3 2 k H z *1 *3 1.5 2.0 2.5 3.0 3.5 4.0 V C C (V ) 4.5 5.0 T a = 2 5  C , IC L K = 3 2 k H z *1 T a = 2 5  C , IC L K = 3 2 k H z *1 5.5 6.0 T a = 1 0 5  C , IC L K = 3 2 k H z *2 *3 Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual measurements of the sample cores during product evaluation. Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the actual measurements for the upper-limit samples during product evaluation. Note 3. MOCO and DAC are stopped. Figure 2.21 Table 2.12 Voltage dependency in subosc-speed mode (reference data) Operating and standby current (2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Supply current*1 Software Standby mode*2 Ta = 25°C Symbol Typ*3 Max Unit Test conditions ICC μA - 0.5 2.0 Ta = 55°C 0.8 7.0 Ta = 85°C 2.9 12.0 Ta = 105°C 6.3 42.0 Increment for RTC operation with low-speed on-chip oscillator*4 0.4 - - Increment for RTC operation with sub-clock oscillator*4 0.5 - SOMCR.SODRV[1:0] are 11b (Low power mode 3) 1.6 - SOMCR.SODRV[1:0] are 00b (normal mode) Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS transistors are in the off state. Note 2. The IWDT and LVD are not operating. Note 3. VCC = 3.3 V. Note 4. Includes the current of low-speed on-chip oscillator or sub-oscillation circuit. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 42 of 107 S128 Datasheet 2. Electrical Characteristics 10 0 ICC (uA) 10 1 0. 1 -4 0 -2 0 0 20 40 60 80 10 0 T a ( C ) A v e r a g e v a lu e o f th e te s te d m id d le s a m p le s d u r in g p r o d u c t e v a lu a tio n A v e r a g e v a lu e o f th e te s te d u p p le r- lim it s a m p le s d u r in g p r o d u c t e v a lu a tio n Figure 2.22 Temperature dependency in Software Standby mode (reference data) 10 ICC (uA) N orm al d riv e capacity *1 Low  driv e capacity*1 1 0 -4 0 -2 0 0 20 40 60 80 10 0 T a ( C ) L o w d rive ca p a c ity *1 N o rm a l d riv e ca p a city *1 Note 1. Average value of the tested middle sample during product evaluation. Figure 2.23 Temperature dependency of RTC operation (reference data) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 43 of 107 S128 Datasheet Table 2.13 2. Electrical Characteristics Operating and standby current (3) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Analog power supply current Symbol During A/D conversion (at high-speed conversion) Max Unit Test conditions - - 3.0 mA - - - 1.0 mA - *1 - - 1.6 mA - - - 1.0 μA - - - 150 μA - - - 60 nA - (per channel) Waiting for A/D and D/A conversion (all units)*5 Reference power supply current Typ During A/D conversion (at low-power conversion) During D/A conversion IAVCC Min During A/D conversion IREFH0 Waiting for A/D conversion (all units) Temperature sensor ITNS - 75 - μA - Low-power analog comparator (ACMPLP) operating current ICMPLP - 15 - μA - Window comparator (low-speed mode) - 3 - μA - Comparator (high-speed mode) - 10 - μA - Comparator (low-speed mode) - 2 - μA - Window comparator (high-speed mode) High-speed analog comparator (ACMPHS) operating current ICMPHS - 70 100 μA AVCC0  2.7V Operational Amplifier operating current IAMP - 1.0 2.0 μA - 2-unit operating - 1.5 3.0 μA - 3-unit operating - 2.0 3.5 μA - 4-unit operating - 2.5 4.5 μA - Low power mode High speed mode USB operating current PWM Delay Generation Circuit current 1-unit operating 1-unit operating - 200 280 μA - 2-unit operating - 320 450 μA - 3-unit operating - 440 620 μA - 4-unit operating - 560 790 μA - During USB communication under the following settings and conditions:  Function controller is in Full-Speed mode and - Bulk OUT transfer is (64 bytes) × 1 - Bulk IN transfer is (64 bytes) × 1  Host device is connected by a 1-meter USB cable from the USB port. IUSBF*2 - 3.6 (VCC) 1.1 (VCC_USB)*4 - mA - During suspended state under the following setting and conditions:  Function controller is in Full-Speed mode (the USB_DP pin is pulled up)  Software Standby mode  Host device is connected by a 1-meter USB cable from the USB port. ISUSP*3 - 0.35 (VCC) 170 (VCC_USB)*4 - μA - PCLKD = 64 MHz, DLL Mode = 5-bit mode ICC - 3.3 4.6 mA - PCLKD = 64 MHz, DLL Mode = 4-bit mode - 3.0 4.2 mA - PCLKD = 32 MHz, DLL Mode = 5-bit mode - 2.0 2.8 mA - Note 1. The reference power supply current is included in the power supply current value for D/A conversion. Note 2. Current is consumed only by the USBFS. Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU in the suspended state. Note 4. When VCC = VCC_USB = 3.3 V. Note 5. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 module-stop bit) is in the module-stop state. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 44 of 107 S128 Datasheet 2.2.10 Table 2.14 2. Electrical Characteristics VCC Rise and Fall Gradient and Ripple Frequency Rise and fall gradient characteristics Conditions: VCC = AVCC0 = 0 to 5.5 V Parameter Power-on VCC rising gradient Voltage monitor 0 reset disabled at startup Symbol Min Typ Max Unit Test conditions SrVCC 0.02 - 2 ms/V - Voltage monitor 0 reset enabled at startup*1, *2 SCI boot - mode*2 2 Note 1. When OFS1.LVDAS = 0. Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit. Table 2.15 Rising and falling gradient and ripple frequency characteristics Conditions: VCC = AVCC0 = 1.6 to 5.5 V The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met. Parameter Symbol Min Typ Max Allowable ripple frequency fr (VCC) - - 10 - - 1 - - 10 1.0 - - Allowable voltage change rising and falling gradient dt/dVCC Unit Test conditions kHz Figure 2.24 Vr (VCC) ≤ VCC × 0.2 MHz Figure 2.24 Vr (VCC) ≤ VCC × 0.08 MHz Figure 2.24 Vr (VCC) ≤ VCC × 0.06 ms/V When VCC change exceeds VCC ±10% 1/fr(VCC) VCC Figure 2.24 Vr(VCC) Ripple waveform R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 45 of 107 S128 Datasheet 2.3 2. Electrical Characteristics AC Characteristics 2.3.1 Table 2.16 Frequency Operation frequency in high-speed operating mode Conditions: VCC = AVCC0 = 2.4 to 5.5 V Symbol Min Typ Max*5 Unit f 0.032768 - 32 MHz 2.4 to 2.7 V 0.032768 - 16 2.7 to 5.5 V - - 32 2.4 to 2.7 V - - 16 2.7 to 5.5 V - - 64 2.4 to 2.7 V - - 16 Parameter Operation frequency System clock (ICLK)*1, *2, *4 Peripheral module clock Peripheral module clock *4 (PCLKB)*4 (PCLKD)*3, 2.7 to 5.5 V Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use. Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD. Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing. Table 2.17 Operation frequency in middle-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency Symbol System clock (ICLK)*1, *2, *4 Peripheral module clock (PCLKB)*4 Peripheral module clock (PCLKD)*3, *4 2.7 to 5.5 V f Min Typ Max*5 Unit MHz 0.032768 - 12 2.4 to 2.7 V 0.032768 - 12 1.8 to 2.4 V 0.032768 - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 2.7 to 5.5 V - - 12 2.4 to 2.7 V - - 12 1.8 to 2.4 V - - 8 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use. Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD. Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 46 of 107 S128 Datasheet Table 2.18 2. Electrical Characteristics Operation frequency in low-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency Symbol Min Typ Max*5 Unit f 0.032768 - 1 MHz System clock (ICLK)*1, *2, *4 1.8 to 5.5 V Peripheral module clock (PCLKB)*4 1.8 to 5.5 V - - 1 Peripheral module clock (PCLKD)*3, *4 1.8 to 5.5 V - - 1 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use. Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD. Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing. Table 2.19 Operation frequency in low-voltage mode Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Operation frequency Symbol Min Typ Max*5 Unit f 0.032768 - 4 MHz System clock (ICLK)*1, *2, *4 1.6 to 5.5 V Peripheral module clock (PCLKB)*4 1.6 to 5.5 V - - 4 Peripheral module clock (PCLKD)*3, *4 1.6 to 5.5 V - - 4 Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use. Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD. Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing. Table 2.20 Operation frequency in Subosc-speed mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Operation frequency Symbol System clock (ICLK)*1, *3 1.8 to 5.5 V f Min Typ Max Unit kHz 27.8528 32.768 37.6832 Peripheral module clock (PCLKB)*3 1.8 to 5.5 V - - 37.6832 Peripheral module clock (PCLKD)*2, *3 1.8 to 5.5 V - - 37.6832 Note 1. Programming and erasing the flash memory is not possible. Note 2. The 14-bit A/D converter cannot be used. Note 3. See section 8, Clock Generation Circuit in User’s Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 47 of 107 S128 Datasheet 2.3.2 Table 2.21 2. Electrical Characteristics Clock Timing Clock timing (1 of 2) Parameter Symbol Min Typ Max Unit Test conditions EXTAL external clock input cycle time tXcyc 50 - - ns Figure 2.25 EXTAL external clock input high pulse width tXH 20 - - ns EXTAL external clock input low pulse width tXL 20 - - ns EXTAL external clock rising time tXr - - 5 ns EXTAL external clock falling time tXf - - 5 ns tEXWT 0.3 - - μs - fEXTAL - - 20 MHz 2.4 ≤ VCC ≤ 5.5 - - 8 1.8 ≤ VCC < 2.4 - - 1 1.6 ≤ VCC < 1.8 1 - 20 1 - 8 EXTAL external clock input wait time*1 EXTAL external clock input frequency Main clock oscillator oscillation frequency fMAIN MHz 2.4 ≤ VCC ≤ 5.5 1.8 ≤ VCC < 2.4 1.6 ≤ VCC < 1.8 1 - 4 fLOCO 27.8528 32.768 37.6832 kHz LOCO clock oscillation stabilization time tLOCO - - 100 μs Figure 2.26 IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz - MOCO clock oscillation frequency fMOCO 6.8 8 9.2 MHz - MOCO clock oscillation stabilization time tMOCO - - 1 μs - HOCO clock oscillation frequency fHOCO24 23.64 24 24.36 MHz Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 22.68 24 25.32 Ta = -40 to 85°C 1.6 ≤ VCC < 1.8 23.76 24 24.24 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 23.52 24 24.48 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 31.52 32 32.48 Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 30.24 32 33.76 Ta = -40 to 85°C 1.6 ≤ VCC < 1.8 31.68 32 32.32 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 31.36 32 32.64 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 47.28 48 48.72 Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5 47.52 48 48.48 Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5 47.04 48 48.96 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 63.04 64 64.96 Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5 63.36 64 64.64 Ta = -20 to 85°C 2.4 ≤ VCC ≤ 5.5 62.72 64 65.28 Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5 tHOCO24 tHOCO32 - - 37.1 LOCO clock oscillation frequency fHOCO32 fHOCO48*3 fHOCO64*4 HOCO clock oscillation stabilization time*5, *6 Except lowvoltage mode Low-voltage mode Sub-clock oscillator oscillation frequency R01DS0309EU0110 Rev.1.10 Nov 28, 2018 tHOCO48 - - 43.3 tHOCO64 - - 80.6 tHOCO24 tHOCO32 tHOCO48 tHOCO64 - - 100.9 fSUB - 32.768 - - μs Figure 2.27 kHz - Page 48 of 107 S128 Datasheet Table 2.21 2. Electrical Characteristics Clock timing (2 of 2) Parameter Symbol Min Typ Max Unit Test conditions Sub-clock oscillation stabilization time*2 tSUBOSC - 0.5 - s Figure 2.28 Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable. Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer. Note 3. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V. Note 4. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V. Note 5. This is a characteristic when the HOCOCR.HCSTP bit is cleared to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is cleared to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs. Note 6. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed. tXcyc tXH tXL EXTAL external clock input VCC × 0.5 tXr Figure 2.25 tXf EXTAL external clock input timing LOCOCR.LCSTP tLOCO LOCO clock oscillator output Figure 2.26 LOCO clock oscillation start timing HOCOCR.HCSTP tHOCOx*1 HOCO clock Note 1. Figure 2.27 x = 24, 32, 48, 64 HOCO clock oscillation start timing (started by setting the HOCOCR.HCSTP bit) SOSCCR.SOSTP tSUBOSC Sub-clock oscillator output Figure 2.28 Sub-clock oscillation start timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 49 of 107 S128 Datasheet 2.3.3 Table 2.22 2. Electrical Characteristics Reset Timing Reset timing Symbol Min Typ Max Unit Test conditions At power-on tRESWP 3 - - ms Figure 2.29 Not at power-on tRESW 30 - - μs Figure 2.30 tRESWT - 0.7 - ms Figure 2.29 - 0.3 - - 0.5 - ms Figure 2.30 - 0.05 - - 0.6 - - 0.15 - Parameter RES pulse width enabled*1 Wait time after RES cancellation (at power-on) LVD0 Wait time after RES cancellation (during powered-on state) LVD0 enabled*1 Wait time after internal reset cancellation (watchdog timer reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, bus slave MPU error reset, stack pointer error reset, software reset) LVD0 enabled*1 LVD0 disabled*2 LVD0 tRESWT2 disabled*2 tRESWT3 LVD0 disabled*2 ms Note 1. When OFS1.LVDAS = 0. Note 2. When OFS1.LVDAS = 1. VCC RES tRESWP Internal reset tRESWT Figure 2.29 Reset input timing at power-on tRESW RES Internal reset tRESWT2 Figure 2.30 Reset input timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 50 of 107 S128 Datasheet 2.3.4 2. Electrical Characteristics Wakeup Time Table 2.23 Timing of recovery from low power modes (1) Parameter Recovery time from Software Standby mode*1 High-speed mode Symbol Min Typ Max Unit Test conditions Figure 2.31 Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (20 MHz)*2 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (20 MHz)*3 tSBYEX - 14 25 μs System clock source is HOCO*4 (HOCO clock is 32 MHz) tSBYHO - 43 52 μs System clock source is HOCO*4 (HOCO clock is 48 MHz) tSBYHO - 44 52 μs System clock source is HOCO*5 (HOCO clock is 64 MHz) tSBYHO - 82 110 μs System clock source is MOCO tSBYMO - 16 25 μs Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Note 4. The HOCO clock wait control register (HOCOWTCR) is set to 05h. Note 5. The HOCO clock wait control register (HOCOWTCR) is set to 06h. Table 2.24 Timing of recovery from low power modes (2) Parameter Recovery time from Software Standby mode*1 Middle-speed mode Symbol Min Typ Max Unit Test conditions Figure 2.31 Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (12 MHz)*2 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (12 MHz)*3 tSBYEX - 2.9 10 μs System clock source is HOCO*4 tSBYHO - 38 50 μs System clock source is MOCO (8 MHz) tSBYMO - 3.5 5.5 μs Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Note 4. The system clock is 12 MHz. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 51 of 107 S128 Datasheet Table 2.25 2. Electrical Characteristics Timing of recovery from low power modes (3) Parameter Recovery time from Software Standby mode*1 Low-speed mode Symbol Min Typ Max Unit Test conditions Figure 2.31 Crystal resonator connected to main clock oscillator System clock source is main clock oscillator (1 MHz)*2 tSBYMC - 2 3 ms External clock input to main clock oscillator System clock source is main clock oscillator (1 MHz)*3 tSBYEX - 28 50 μs tSBYMO - 25 35 μs System clock source is MOCO (1 MHz) Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Table 2.26 Timing of recovery from low power modes (4) Parameter Recovery time from Software Standby mode*1 Low-voltage mode Crystal resonator connected to main clock oscillator System clock source is main clock oscillator External clock input to main clock oscillator System clock source is main clock oscillator Symbol Min Typ Max Unit Test conditions tSBYMC - 2 3 ms Figure 2.31 tSBYEX - 108 130 μs tSBYHO - 108 130 μs (4 MHz)*2 (4 MHz)*3 System clock source is HOCO (4 MHz) Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source. Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h. Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h. Table 2.27 Timing of recovery from low power modes (5) Symbol Min Typ Max Unit Test conditions System clock source is sub-clock oscillator (32.768 kHz) tSBYSC - 0.85 1 ms Figure 2.31 System clock source is LOCO (32.768 kHz) tSBYLO - 0.85 1.2 ms Parameter Recovery time from Software Standby mode*1 SubOSC-speed mode Note 1. The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 52 of 107 S128 Datasheet 2. Electrical Characteristics Oscillator ICLK IRQ Software Standby mode tSBYMC, tSBYEX, tSBYMO, tSBYHO Oscillator ICLK IRQ Software Standby mode tSBYSC, tSBYLO Figure 2.31 Software Standby mode cancellation timing Table 2.28 Timing of recovery from low power modes (6) Parameter Recovery time from Software Standby mode to Snooze mode Symbol Min Typ Max Unit Test conditions High-speed mode System clock source is HOCO tSNZ - 36 45 μs Figure 2.32 Middle-speed mode System clock source is MOCO (8 MHz) tSNZ - 1.3 3.6 μs Low-speed mode System clock source is MOCO (1 MHz) tSNZ - 10 13 μs Low-voltage mode System clock source is HOCO (4 MHz) tSNZ - 87 110 μs R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 53 of 107 S128 Datasheet 2. Electrical Characteristics O s c illa to r IC L K (e x c e p t D T C , S R A M ) IC L K (to D T C , S R A M ) *1 P C L K IR Q S o ftw a re S ta n d b y m o d e S nooze m ode tS N Z Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM. Figure 2.32 2.3.5 Recovery timing from Software Standby mode to Snooze mode NMI and IRQ Noise Filter Table 2.29 NMI and IRQ noise filter Parameter Symbol Min Typ Max Unit Test conditions NMI pulse width tNMIW 200 - - ns NMI digital filter disabled tPcyc × 2 ≤ 200 ns NMI digital filter enabled tNMICK × 3 ≤ 200 ns tPcyc × IRQ pulse width tIRQW 2*1 - - 200 - - tNMICK × 3.5*2 - - 200 - - tPcyc × 2*1 - - 200 - - - - tIRQCK × 3.5*3 tPcyc × 2 > 200 ns tNMICK × 3 > 200 ns ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns tPcyc × 2 > 200 ns IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns tIRQCK × 3 > 200 ns Note: 200 ns minimum in Software Standby mode. Note 1. tPcyc indicates the PCLKB cycle. Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock. Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7). NMI tNMIW Figure 2.33 NMI interrupt input timing IRQ tIRQW Figure 2.34 IRQ interrupt input timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 54 of 107 S128 Datasheet 2.3.6 Table 2.30 2. Electrical Characteristics I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing Symbol Min Max Unit Test conditions Input data pulse width tPRW 1.5 - tPcyc Figure 2.35 Input/output data cycle (P002, P003, P010, P011) tPOcyc 10 - μs - tPOEW 3 - tPcyc Figure 2.36 tGTICW 1.5 - tPDcyc Figure 2.37 2.5 - Figure 2.38 Parameter I/O Ports POEG POEG input trigger pulse width GPT Input capture pulse width Single edge Dual edge AGT AGTIO, AGTEE input cycle 2.7 V ≤ VCC ≤ 5.5 V tACYC *1 250 - ns 2.4 V ≤ VCC < 2.7 V 500 - ns 1.8 V ≤ VCC < 2.4 V 1000 - ns 2000 - ns 100 - ns 200 - ns 1.6 V ≤ VCC < 1.8 V AGTIO, AGTEE input high level width, low-level width AGTIO, AGTO, AGTOA, AGTOB output cycle 2.7 V ≤ VCC ≤ 5.5 V 2.4 V ≤ VCC < 2.7 V tACKWH, tACKWL 1.8 V ≤ VCC < 2.4 V 400 - ns 1.6 V ≤ VCC < 1.8 V 800 - ns 62.5 - ns 2.4 V ≤ VCC < 2.7 V 125 - ns 1.8 V ≤ VCC < 2.4 V 250 - ns 1.6 V ≤ VCC < 1.8 V 500 - ns 2.7 V ≤ VCC ≤ 5.5 V tACYC2 Figure 2.38 ADC14 14-bit A/D converter trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.39 KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.40 Note 1. Constraints on AGTIO input: tPcyc × 2 (tPcyc: PCLKB cycle) < tACYC. Port tPRW Figure 2.35 I/O ports input timing POEG input trigger tPOEW Figure 2.36 POEG input trigger timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 55 of 107 S128 Datasheet 2. Electrical Characteristics Input capture tGTICW Figure 2.37 GPT input capture timing tACYC tACKWL tACKWH AGTIO, AGTEE (input) tACYC2 AGTIO, AGTO, AGTOA, AGTOB (output) Figure 2.38 AGT I/O timing ADTRG0 tTRGW Figure 2.39 ADC14 trigger input timing KR00 to KR07 tKR Figure 2.40 2.3.7 Table 2.31 Key interrupt input timing PWM Delay Generation Circuit Timing PWM delay generation circuit timing Conditions: VCC = AVCC0 = 2.7 to 5.5 V 32 MHz ≤ PCLKD ≤ 64 MHz Parameter Resolution Min Typ Max Unit Test conditions PCLKD = 64 MHz, DLL Mode = 5-bit mode - 488 - ps - PCLKD = 64 MHz, DLL Mode = 4-bit mode - 976 - ps - PCLKD = 32 MHz, DLL Mode = 5-bit mode - 976 - ps - - 5 - LSB - DNL*1, *2 R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 56 of 107 S128 Datasheet 2. Electrical Characteristics Note 1. The differences among lines in 1-LSB resolution are normalized by this value. Note 2. The drive capability of the PWM delay generation circuit output port is middle drive. 2.3.8 CAC Timing Table 2.32 CAC timing Parameter CAC CACREF input pulse width tPcyc *1 ≤ tcac*2 tPcyc *1 > Symbol Min Typ Max Unit Test conditions tCACREF 4.5 × tcac + 3 × tPcyc - - ns - 5 × tcac + 6.5 × tPcyc - - ns tcac*2 Note 1. tPcyc: PCLKB cycle. Note 2. tcac: CAC count clock source cycle. 2.3.9 SCI Timing Table 2.33 SCI timing (1) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter SCI Input clock cycle Symbol Asynchronous tScyc Clock synchronous Min Max Unit*1 Test conditions 4 - tPcyc Figure 2.41 6 - Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr - 20 ns tSCKf - 20 ns tScyc 6 - tPcyc Input clock fall time Output clock cycle Asynchronous Clock synchronous 4 - tSCKW 0.4 0.6 tScyc tSCKr - 20 ns - 30 - 20 - 30 - 40 1.6V or above - 45 2.7V or above - 55 2.4V or above - 60 1.8V or above - 100 1.6V or above - 125 Output clock pulse width Output clock rise time 1.8V or above Output clock fall time 1.8V or above 1.6V or above tSCKf 1.6V or above Transmit data delay (master) Clock synchro nous Transmit data delay (slave) Clock synchro nous Receive data setup time (master) Clock synchro nous 1.8V or above tTXD 45 - 2.4V or above 55 - 1.8V or above 90 - 1.6V or above 110 - 2.7V or above 40 - 1.6V or above 45 - 2.7V or above tRXS ns ns Figure 2.42 ns ns Receive data setup time (slave) Clock synchro nous ns Receive data hold time (master) Clock synchronous tRXH 5 - ns Receive data hold time (slave) Clock synchronous tRXH 40 - ns Note 1. tPcyc: PCLKB cycle. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 57 of 107 S128 Datasheet 2. Electrical Characteristics tSCKW tSCKr tSCKf SCKn (n = 0, 1, 9) tScyc Figure 2.41 SCK clock input timing SCKn tTXD TXDn tRXS tRXH RXDn n = 0, 1, 9 Figure 2.42 SCI input/output timing in clock synchronous mode R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 58 of 107 S128 Datasheet Table 2.34 2. Electrical Characteristics SCI timing (2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V Parameter Symbol Min Max Unit*1 Test conditions Simple SPI tSPcyc 4 65536 tPcyc Figure 2.43 6 65536 SCK clock cycle output (master) SCK clock cycle input (slave) SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc tSPCKr, tSPCKf - 20 ns - 30 tSU 45 - 2.4V or above 55 - 1.8V or above 80 - 1.6V or above 110 - SCK clock rise and fall time 1.8V or above 1.6V or above Data input setup time Master Slave Data input hold time 2.7V or above 2.7V or above 40 - 1.6V or above 45 - 33.3 - 40 - Master tH Slave tLEAD 1 - tSPcyc SS input hold time tLAG 1 - tSPcyc tOD - 40 ns Data output hold time Master 1.8V or above 1.6V or above - 50 Slave 2.4V or above - 65 1.8V or above - 100 1.6V or above - 125 -10 - 2.4V or above -20 - 1.8V or above -30 - 1.6V or above -40 - -10 - - 20 1.8V or above - 20 1.6V or above - 30 Master 2.7V or above tOH Slave Data rise and fall time tDr, tDf Master Slave Figure 2.44 to Figure 2.47 ns SS input setup time Data output delay Simple SPI ns ns ns Slave access time tSA - 6 tPcyc Slave output release time tREL - 6 tPcyc Figure 2.47 Note 1. tPcyc: PCLKB cycle. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 59 of 107 S128 Datasheet 2. Electrical Characteristics tSPCKr tSPCKWH VOH SCKn master select output VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH SCKn slave select input VIH VIL (n = 0, 1, 9) tSPCKf VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC Figure 2.43 SCI simple SPI mode clock timing SCKn CKPOL = 0 output SCKn CKPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 0, 1, 9) Figure 2.44 SCI simple SPI mode timing (master, CKPH = 1) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 60 of 107 S128 Datasheet 2. Electrical Characteristics SCKn CKPOL = 1 output SCKn CKPOL = 0 output tSU MISOn input tH MSB IN tOH DATA LSB IN tOD MOSIn output MSB IN tDr, tDf MSB OUT DATA LSB OUT IDLE MSB OUT (n = 0, 1, 9) Figure 2.45 SCI simple SPI mode timing (master, CKPH = 0) tTD SSn input tLEAD tLAG SCKn CKPOL = 0 input SCKn CKPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input tOD DATA tREL LSB OUT tH MSB IN MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN (n = 0, 1, 9) Figure 2.46 SCI simple SPI mode timing (slave, CKPH = 1) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 61 of 107 S128 Datasheet 2. Electrical Characteristics tTD SSn input tLEAD tLAG SCKn CKPOL = 1 input SCKn CKPOL = 0 input tSA tOH tOD LSB OUT (Last data) MISOn output MSB OUT tSU MOSIn input tREL DATA tH MSB OUT LSB OUT tDr, tDf MSB IN DATA LSB IN MSB IN (n = 0, 1, 9) Figure 2.47 Table 2.35 SCI simple SPI mode timing (slave, CKPH = 0) SCI timing (3) Conditions: VCC = AVCC0 = 2.7 to 5.5 V Parameter Simple IIC (Standard mode) Simple IIC (Fast mode) Min Max Unit Test conditions Figure 2.48 SDA input rise time tSr - 1000 ns SDA input fall time tSf - 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc ns Data input setup time tSDAS 250 - ns Data input hold time tSDAH 0 - ns - 400 pF SCL, SDA capacitive load Cb *1 SDA input rise time tSr - 300 ns SDA input fall time tSf - 300 ns SDA input spike pulse removal time tSP 0 4 × tIICcyc ns Data input setup time tSDAS 100 - ns Data input hold time tSDAH 0 - ns - 400 pF SCL, SDA capacitive load Note: Symbol Cb *1 Figure 2.48 tIICcyc: IIC internal reference clock (IICφ) cycle. Note 1. Cb indicates the total capacity of the bus line. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 62 of 107 S128 Datasheet 2. Electrical Characteristics VIH SDAn VIL tSr tSf tSP SCLn P*1 (n = 0,1,9) S*1 P*1 Sr*1 tSDAS tSDAH Note 1. S, P, and Sr indicate the following: S: Start condition P: Stop condition Sr: Restart condition Figure 2.48 2.3.10 Test conditions: VIH = VCC × 0.7, VIL = VCC × 0.3 VOL = 0.6 V, IOL = 6 mA SCI simple IIC mode timing SPI Timing Table 2.36 SPI timing (1 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter SPI RSPCK clock cycle Master Symbol Min Max Unit*1 Test conditions tSPcyc 2 4096 tPcyc 6 4096 Figure 2.49 C = 30PF (tSPcyc tSPCKr - tSPCKf) / 2 3 - 3 × tPcyc - (tSPcyc tSPCKr - tSPCKf) / 2 3 - 3 × tPcyc - - 10 Slave RSPCK clock high pulse width Master tSPCKWH Slave RSPCK clock low pulse width Master tSPCKWL Slave RSPCK clock rise and fall time Output 2.7V or above 2.4V or above Input R01DS0309EU0110 Rev.1.10 Nov 28, 2018 tSPCKr, tSPCKf - 15 1.8V or above - 20 1.6V or above - 30 - 1 ns ns ns µs Page 63 of 107 S128 Datasheet Table 2.36 2. Electrical Characteristics SPI timing (2 of 2) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register. Parameter SPI Data input setup time Master Slave Symbol Min Max Unit*1 Test conditions tSU 10 - ns Figure 2.50 to Figure 2.55 C = 30PF 2.4V or above 10 - 1.8V or above 15 - 20 - Master (RSPCK is PCLKB/2) 1.6V or above tHF 0 - Master (RSPCK is not PCLKB/2) tH tPcyc - Slave tH 20 - SSL setup time Master tLEAD - 30 + N x tSpcyc*2 - ns 6 x tPcyc - ns SSL hold time Master tLAG - 30 + N x tSpcyc*3 - ns 6 x tPcyc - ns - 14 ns 2.4V or above - 20 1.8V or above - 25 1.6V or above - 30 2.7V or above - 50 2.4V or above - 60 1.8V or above - 85 Data input hold time Slave Slave Data output delay Master Slave 2.7V or above tOD 1.6V or above Data output hold time Successive transmission delay Master tOH Slave Master tTD Slave MOSI and MISO rise and fall time Output Output Slave output release time R01DS0309EU0110 Rev.1.10 Nov 28, 2018 0 - tSPcyc + 2 × tPcyc 8 × tSPcyc + 2 × tPcyc 6 × tPcyc - ns 10 15 1.8V or above - 20 1.6V or above - 30 - 1 µs - 10 ns 2.4V or above - 15 1.8V or above - 20 1.6V or above - 30 - 1 µs - 2 × tPcyc +100 ns 1.8V or above - 2 × tPcyc +140 1.6V or above - 2 × tPcyc +180 - 2 × tPcyc +100 1.8V or above - 2 × tPcyc +140 1.6V or above - 2 × tPcyc +180 2.7V or above tSSLr, tSSLf 2.4V or above 2.4V or above tSA tREL Figure 2.50 to Figure 2.55 C = 30PF ns - Input Slave access time - - Input SSL rise and fall time 110 0 2.4V or above 2.7V or above tDr, tDf - ns ns Figure 2.54 and Figure 2.55 C = 30PF ns Page 64 of 107 S128 Datasheet 2. Electrical Characteristics Note 1. tPcyc: PCLKB cycle. Note 2. N is set as an integer from 1 to 8 by the SPCKD register. Note 3. N is set as an integer from 1 to 8 by the SSLND register. tSPCKr tSPCKWH VOH RSPCKn master select output VOH VOL tSPCKf VOH VOH VOL tSPCKWL VOL tSPcyc tSPCKr tSPCKWH VIH VIH RSPCKn slave select input VIL VIH VIL tSPCKWL VIH VIL tSPcyc VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC n = A or B Figure 2.49 tSPCKf SPI clock timing t TD SSLn0 to SSLn3 output tLEAD tLAG t SSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output DATA tOH MSB OUT LSB IN MSB IN t OD DATA LSB O UT IDLE MSB OUT n = A or B Figure 2.50 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 65 of 107 S128 Datasheet 2. Electrical Characteristics tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, t SSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU t HF MISOn input t HF MSB IN tDr, tDf MOSIn output LSB IN DATA tOH MSB OUT MSB IN tOD DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.51 SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2) tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH MOSIn output DATA LSB IN tOD MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.52 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to any value other than 1/2) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 66 of 107 S128 Datasheet 2. Electrical Characteristics tTD SSLn0 to SSLn3 output tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tHF MSB IN tOH tH DATA LSB IN tOD MOSIn output MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT n = A or B Figure 2.53 SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2) tTD SSLn0 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input tOD DATA tREL LSB OUT tH MSB IN MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN n = A or B Figure 2.54 SPI timing (slave, CPHA = 0) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 67 of 107 S128 Datasheet 2. Electrical Characteristics tTD SSLn0 input t LEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA MISOn output tOH tOD LSB OUT (Last data) MSB OUT tSU MOSIn input tREL tH MSB IN LSB OUT DATA MSB OUT tDr, tDf DATA LSB IN MSB IN n = A or B Figure 2.55 SPI timing (slave, CPHA = 1) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 68 of 107 S128 Datasheet 2.3.11 2. Electrical Characteristics IIC Timing Table 2.37 IIC timing Conditions: VCC = AVCC0 = 2.7 to 5.5 V Symbol Min*1 Max Unit Test conditions SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 - ns Figure 2.56 Parameter IIC (standard mode, SMBus) IIC (Fast mode) Note: SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr - 1000 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 - ns START condition input hold time (When wakeup function is enabled) tSTAH 1 (5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 1000 - ns STOP condition input setup time tSTOS 1000 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF SCL input cycle time tSCL 6 (12) × tIICcyc + 600 - ns ns SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns SCL, SDA input rise time tSr - 300 ns SCL, SDA input fall time tSf - 300 ns SCL, SDA input spike pulse removal time tSP 0 1 (4) × tIICcyc ns SDA input bus free time (When wakeup function is disabled) tBUF 3 (6) × tIICcyc + 300 - ns SDA input bus free time (When wakeup function is enabled) tBUF 3 (6) × tIICcyc + 4 × tPcyc + 300 - ns START condition input hold time (When wakeup function is disabled) tSTAH tIICcyc + 300 - ns START condition input hold time (When wakeup function is enabled) tSTAH 1(5) × tIICcyc + tPcyc + 300 - ns Repeated START condition input setup time tSTAS 300 - ns STOP condition input setup time tSTOS 300 - ns Data input setup time tSDAS tIICcyc + 50 - ns Data input hold time tSDAH 0 - ns SCL, SDA capacitive load Cb - 400 pF Figure 2.56 tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 69 of 107 S128 Datasheet 2. Electrical Characteristics VIH SDA0 and SDA1 VIL tBUF tSCLH tSTAH tSTAS tSTOS tSP SCL0 and SCL1 P*1 tSf P*1 Sr*1 S*1 tSCLL tSr tSCL tSDAS tSDAH Note 1. S, P, and Sr indicate the following conditions. S: Start condition P: Stop condition Sr: Restart condition Figure 2.56 2.3.12 Table 2.38 I2C bus interface input/output timing CLKOUT Timing CLKOUT timing Parameter CLKOUT CLKOUT pin output cycle*1 Symbol Min Max Unit Test conditions tCcyc 62.5 - ns Figure 2.57 125 - 250 - 15 - 30 - 150 - 15 - 30 - 150 - - 12 VCC = 1.8 V or above - 25 VCC = 1.6 V or above - 50 - 12 VCC = 1.8 V or above - 25 VCC = 1.6 V or above - 50 VCC = 2.7 V or above VCC = 1.8 V or above VCC = 1.6 V or above CLKOUT pin high pulse width*2 VCC = 2.7 V or above tCH VCC = 1.8 V or above VCC = 1.6 V or above CLKOUT pin low pulse width*2 VCC = 2.7 V or above tCL VCC = 1.8 V or above VCC = 1.6 V or above CLKOUT pin output rise time CLKOUT pin output fall time VCC = 2.7 V or above VCC = 2.7 V or above tCr tCf ns ns ns ns Note 1. When the EXTAL external clock input or an oscillator divided by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the CKOCR.CKODIV[2:0] bits are 000b) is used for output from CLKOUT, specifications in Table 2.38 should be satisfied with 45% to 55% of input duty cycle. Note 2. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio to 2 (the CKOCR.CKODIV[2:0] bits are 001b). R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 70 of 107 S128 Datasheet 2. Electrical Characteristics tCcyc tCH tCf CLKOUT pin output tCL tCr Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF Figure 2.57 CLKOUT output timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 71 of 107 S128 Datasheet 2.4 2. Electrical Characteristics USB Characteristics 2.4.1 Table 2.39 USBFS Timing USB characteristics Conditions: VCC = AVCC0 = VCC_USB = 3.0 to 3.6 V, Ta = -20 to +85°C Parameter Input characteristics Output characteristics Symbol Min Max Unit Test conditions Input high level voltage VIH 2.0 - V - Input low level voltage VIL - 0.8 V - Differential input sensitivity VDI 0.2 - V | USB_DP - USB_DM | Differential common mode range VCM 0.8 2.5 V - Output high level voltage VOH 2.8 VCC_USB V IOH = -200 μA Output low level voltage VOL 0.0 0.3 V IOL= 2 mA Cross-over voltage VCRS 1.3 2.0 V ns Figure 2.58, Figure 2.59, Figure 2.60 Rise time FS tr LS Fall time FS Rise/fall time ratio FS tf LS tr/tf LS 4 20 75 300 4 20 75 300 90 111.11 80 125 ns % Output resistance ZDRV 28 44 Ω (Adjusting the resistance of external elements is not necessary.) VBUS characteristics VBUS input voltage VIH VCC × 0.8 - V - VIL - VCC × 0.2 V - Pull-up, pull-down Pull-down resistor RPD 14.25 24.80 kΩ - Pull-up resistor RPUI 0.9 1.575 kΩ During idle state RPUA 1.425 3.09 kΩ During reception D + sink current IDP_SINK 25 175 μA - D - sink current IDM_SINK 25 175 μA - DCD source current IDP_SRC 7 13 μA - Data detection voltage VDAT_REF 0.25 0.4 V - D + source voltage VDP_SRC 0.5 0.7 V Output current = 250 μA D - source voltage VDM_SRC 0.5 0.7 V Output current = 250 μA Battery Charging Specification Ver 1.2 USB_DP, USB_DM VCRS 90% 10% tr Figure 2.58 90% 10% tf USB_DP and USB_DM output timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 72 of 107 S128 Datasheet 2. Electrical Characteristics Observation point USB_DP 50 pF USB_DM 50 pF Figure 2.59 Test circuit for Full-Speed (FS) connection Observation point USB_DP 200 pF to 600 pF 3.6 V 1.5 K USB_DM 200 pF to 600 pF Observation point Figure 2.60 2.4.2 Table 2.40 Test circuit for Low-Speed (LS) connection USB External Supply USB regulator Parameter VCC_USB supply current Min Typ Max VCC_USB_LDO ≥ 3.8V - - 50 mA - VCC_USB_LDO ≥ 4.5V - - 100 mA - - 3.6 V - VCC_USB supply voltage R01DS0309EU0110 Rev.1.10 Nov 28, 2018 3.0 Unit Test conditions Page 73 of 107 S128 Datasheet 2.5 2. Electrical Characteristics ADC14 Characteristics VREFH0 VREFH0 5.5 5.5 A/D Conversion Characteristics (1) 5.0 A/D Conversion Characteristics (2) 4.0 3.0 2.7 2.4 A/D Conversion Characteristics (3) 5.0 3.0 2.7 2.4 2.0 2.0 1.8 1.6 1.0 1.0 2.4 2.7 1.0 2.0 3.0 5.5 4.0 A/D Conversion Characteristics (4) 4.0 A/D Conversion Characteristics (5) A/D Conversion Characteristics (6) A/D Conversion Characteristics (7) AVCC0 1.8 5.0 1.0 ADCSR.ADHSC = 0 Figure 2.61 Table 2.41 2.4 2.7 1.6 2.0 5.5 3.0 4.0 AVCC0 5.0 ADCSR.ADHSC = 1 AVCC0 to VREFH0 voltage range A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions Frequency 1 - 64 MHz - Analog input capacitance*2 Cs - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - 2.5 (reference data) kΩ High-precision channel Analog input resistance Rs - - 6.7 (reference data) kΩ Normal-precision channel Analog input voltage range Ain 0 - VREFH0 V - - - 12 Bit - 0.70 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.13 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h - ±0.5 12-bit mode Resolution time*1 Conversion (Operation at PCLKD = 64 MHz) Permissible signal source impedance Max. = 0.3 kΩ Offset error Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above ±4.5 LSB High-precision channel ±6.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 14-bit mode Resolution R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 74 of 107 S128 Datasheet Table 2.41 2. Electrical Characteristics A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions 0.80 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.22 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±2.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above Conversion time*1 (Operation at PCLKD = 64 MHz) Permissible signal source impedance Max. = 0.3 kΩ DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.42 A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions 1 - 48 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 0.94 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.50 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Frequency Analog input capacitance*2 Cs Analog input resistance Rs Analog input voltage range Ain 12-bit mode Resolution time*1 Conversion (Operation at PCLKD = 48 MHz) Permissible signal source impedance Max. = 0.3 kΩ R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 75 of 107 S128 Datasheet Table 2.42 2. Electrical Characteristics A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 1.06 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 1.63 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±2.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above 14-bit mode Resolution time*1 Conversion (Operation at PCLKD = 48 MHz) Permissible signal source impedance Max. = 0.3 kΩ DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.43 A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions Frequency 1 - 32 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - Analog input capacitance*2 Analog input resistance Analog input voltage range Cs Rs Ain 12-bit mode Resolution R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 76 of 107 S128 Datasheet Table 2.43 2. Electrical Characteristics A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions 1.41 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 2.25 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above Conversion time*1 (Operation at PCLKD = 32 MHz) Permissible signal source impedance Max. = 1.3 kΩ DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - 14-bit mode Resolution - - 14 Bit - 1.59 - - μs High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh 2.44 - - μs Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h Offset error - ±2.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above Conversion time*1 (Operation at PCLKD = 32 MHz) Permissible signal source impedance Max. = 1.3 kΩ DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.44 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Frequency Analog input capacitance*2 R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Cs Min Typ Max Unit Test Conditions 1 - 24 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel Page 77 of 107 S128 Datasheet Table 2.44 2. Electrical Characteristics A/D conversion characteristics (4) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Analog input resistance Rs Analog input voltage range Ain Min Typ Max Unit Test Conditions - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 2.25 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 3.38 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±0.5 12-bit mode Resolution time*1 Conversion (Operation at PCLKD = 24 MHz) Permissible signal source impedance Max. = 1.1 kΩ Offset error ±4.5 LSB High-precision channel ±6.0 LSB Other than above ±4.5 LSB High-precision channel Full-scale error - ±0.75 ±6.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 2.50 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 3.63 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±2.0 14-bit mode Resolution time*1 Conversion (Operation at PCLKD = 24 MHz) Permissible signal source impedance Max. = 1.1 kΩ Offset error Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), seesection 2.2.4, I/O VOH, VOL, and Other Characteristics. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 78 of 107 S128 Datasheet Table 2.45 2. Electrical Characteristics A/D conversion characteristics (5) in low-power A/D conversion mode Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Frequency Analog input capacitance*2 Cs Analog input resistance Rs Analog input voltage range Ain Min Typ Max Unit Test Conditions 1 - 16 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 2.5 (reference data) kΩ High-precision channel - - 6.7 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - 12-bit mode Resolution - - 12 Bit - 3.38 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 5.06 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h Offset error - ±0.5 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Full-scale error - ±0.75 ±4.5 LSB High-precision channel ±6.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel ±8.0 LSB Other than above Conversion time*1 (Operation at PCLKD = 16 MHz) Permissible signal source impedance Max. = 2.2 kΩ DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - 14-bit mode Resolution - - 14 Bit - 3.75 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 5.44 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h Offset error - ±2.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Full-scale error - ±3.0 ±18 LSB High-precision channel ±24.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±5.0 ±20 LSB High-precision channel ±32.0 LSB Other than above Conversion time*1 (Operation at PCLKD = 16 MHz) Permissible signal source impedance Max. = 2.2 kΩ DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 79 of 107 S128 Datasheet 2. Electrical Characteristics accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.46 A/D conversion characteristics (6) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Frequency Analog input capacitance*2 Cs Analog input resistance Rs Analog input voltage range Ain Min Typ Max Unit Test Conditions 1 - 8 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 3.8 (reference data) kΩ High-precision channel - - 8.2 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - 12-bit mode Resolution - - 12 Bit - 6.75 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 10.13 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h Offset error - ±1.0 ±7.5 LSB High-precision channel ±10.0 LSB Other than above Full-scale error - ±1.5 ±7.5 LSB High-precision channel Quantization error - ±0.5 Absolute accuracy - ±3.0 Conversion time*1 (Operation at PCLKD = 8 MHz) Permissible signal source impedance Max. = 5 kΩ ±10.0 LSB Other than above - LSB - ±8.0 LSB High-precision channel ±12.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - 14-bit mode Resolution - - 14 Bit - 7.50 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 10.88 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h Offset error - ±4.0 ±30.0 LSB High-precision channel ±40.0 LSB Other than above Full-scale error - ±6.0 ±30.0 LSB High-precision channel ±40.0 LSB Other than above Quantization error - ±0.5 - LSB - Conversion time*1 (Operation at PCLKD = 8 MHz) Permissible signal source impedance Max. = 5 kΩ R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 80 of 107 S128 Datasheet Table 2.46 2. Electrical Characteristics A/D conversion characteristics (6) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel ±48.0 LSB Other than above DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. Table 2.47 A/D conversion characteristics (7) in low-power A/D conversion mode (1 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions Frequency 1 - 4 MHz - - - 8 (reference data) pF High-precision channel - - 9 (reference data) pF Normal-precision channel - - 13.1 (reference data) kΩ High-precision channel - - 14.3 (reference data) kΩ Normal-precision channel 0 - VREFH0 V - - - 12 Bit - 13.5 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 20.25 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h - ±1.0 Analog input capacitance*2 Cs Analog input resistance Rs Analog input voltage range Ain 12-bit mode Resolution time*1 Conversion (Operation at PCLKD = 4 MHz) Permissible signal source impedance Max. = 9.9 kΩ Offset error Full-scale error - ±1.5 ±7.5 LSB High-precision channel ±10.0 LSB Other than above ±7.5 LSB High-precision channel ±10.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel ±12.0 LSB Other than above DNL differential nonlinearity error - ±1.0 - LSB - INL integral nonlinearity error - ±1.0 ±3.0 LSB - - - 14 Bit - 14-bit mode Resolution R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 81 of 107 S128 Datasheet Table 2.47 2. Electrical Characteristics A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2) Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0. Parameter Min Typ Max Unit Test Conditions 15.0 - - μs High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh 21.75 - - μs Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h Offset error - ±4.0 ±30.0 LSB High-precision channel ±40.0 LSB Other than above Full-scale error - ±6.0 ±30.0 LSB High-precision channel ±40.0 LSB Other than above Quantization error - ±0.5 - LSB - Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel ±48.0 LSB Other than above Conversion time*1 (Operation at PCLKD = 4 MHz) Permissible signal source impedance Max. = 9.9 kΩ DNL differential nonlinearity error - ±4.0 - LSB - INL integral nonlinearity error - ±4.0 ±12.0 LSB - Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors. Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions. Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics. MCU Analog input ANn Rs Sensor Cin ADC Cs Analog input ANn Rs Cin Figure 2.62 Table 2.48 Equivalent circuit for analog input 14-bit A/D converter channel classification (1 of 2) Classification Channel Conditions Remarks High-precision channel AN000 to AN013 AVCC0 = 1.6 to 5.5 V Pins AN000 to AN013 cannot be used as general I/O, IRQ2 input, or for TS transmission when the A/D converter is in use. Normal-precision channel AN016 to AN022 Internal reference voltage input channel Internal reference voltage R01DS0309EU0110 Rev.1.10 Nov 28, 2018 AVCC0 = 2.0 to 5.5 V - Page 82 of 107 S128 Datasheet Table 2.48 2. Electrical Characteristics 14-bit A/D converter channel classification (2 of 2) Classification Channel Conditions Remarks Temperature sensor input channel Temperature sensor output AVCC0 = 2.0 to 5.5 V - Table 2.49 A/D internal reference voltage characteristics Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1 Parameter Min Typ Max Unit Test conditions Internal reference voltage input channel*2 1.36 1.43 1.50 V - Frequency*3 1 - 2 MHz - 5.0 - - μs - Sampling time*4 Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V. Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D converter. Note 3. This is a parameter for ADC14 when the internal reference voltage is used as the high-potential reference voltage. Note 4. This is a parameter for ADC14 when the internal reference voltage is selected for an analog input channel in ADC14. 3FFFh Full-scale error Integral nonlinearity error (INL) A/D converter output code Ideal line of actual A/D conversion characteristic Actual A/D conversion characteristic Ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Differential nonlinearity error (DNL) 1-LSB width for ideal A/D conversion characteristic Absolute accuracy 0000h Offset error 0 Figure 2.63 Analog input voltage VREFH0 (full-scale) Illustration of 14-bit A/D converter characteristic terms R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 83 of 107 S128 Datasheet 2. Electrical Characteristics Absolute accuracy Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D conversion characteristics. Integral nonlinearity error (INL) Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code. Differential nonlinearity error (DNL) Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code. Offset error Offset error is the difference between the transition point of the ideal first output code and the actual first output code. Full-scale error Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 84 of 107 S128 Datasheet 2.6 2. Electrical Characteristics DAC8 Characteristics Table 2.50 D/A conversion characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Min Typ Max Unit Test conditions Resolution - - 8 bit - Charge pump stabilization time - - 100 μs - VCC = 2.7 to 5.5V - - 3.0 μs VCC = 1.8 to 2.7V - - 6.0 μs 35-pF capacitive load VCC = 2.4 to 5.5V - - ±3.0 LSB VCC = 1.8 to 2.4V - - ±3.5 2-MΩ resistive load VCC = 2.4 to 5.5V - - ±2.0 LSB VCC = 1.8 to 2.4V - - ±2.5 4-MΩ resistive load - 7.4 - kΩ - Conversion time Absolute accuracy RO output resistance 2.7 TSN Characteristics Table 2.51 TSN characteristics Conditions: VCC = AVCC0 = 2.0 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions Relative accuracy - - ±1.5 - °C 2.4 V or above - ±2.0 - °C Below 2.4 V - - -3.65 - mV/°C - Output voltage (at 25°C) - - 1.05 - V VCC = 3.3 V Temperature sensor start time tSTART - - 5 μs - Sampling time - 5 - - μs Temperature slope 2.8 OSC Stop Detect Characteristics Table 2.52 Oscillation stop detection circuit characteristics Parameter Symbol Min Typ Max Unit Test conditions Detection time tdr - - 1 ms Figure 2.64 Main clock tdr OSTDSR.OSTDF MOCO clock ICLK Figure 2.64 Oscillation stop detection timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 85 of 107 S128 Datasheet 2.9 2. Electrical Characteristics POR and LVD Characteristics Table 2.53 Power-on reset circuit and voltage detection circuit characteristics (1) Parameter Voltage detection level*1 Symbol Min Typ Max Unit Test Conditions Power-on reset (POR) VPOR 1.27 1.42 1.57 V Figure 2.65, Figure 2.66 Voltage detection circuit (LVD0)*2 Vdet0_0 3.68 3.85 4.00 V Vdet0_1 2.68 2.85 2.96 Figure 2.67 At falling edge VCC Vdet0_2 2.38 2.53 2.64 Vdet0_3 1.78 1.90 2.02 V Figure 2.68 At falling edge VCC V Figure 2.69 At falling edge VCC Voltage detection circuit (LVD1)*3 Voltage detection circuit (LVD2)*4 Vdet0_4 1.60 1.69 1.82 Vdet1_0 4.13 4.29 4.45 Vdet1_1 3.98 4.16 4.30 Vdet1_2 3.86 4.03 4.18 Vdet1_3 3.68 3.86 4.00 Vdet1_4 2.98 3.10 3.22 Vdet1_5 2.89 3.00 3.11 Vdet1_6 2.79 2.90 3.01 Vdet1_7 2.68 2.79 2.90 Vdet1_8 2.58 2.68 2.78 Vdet1_9 2.48 2.58 2.68 Vdet1_A 2.38 2.48 2.58 Vdet1_B 2.10 2.20 2.30 Vdet1_C 1.84 1.96 2.05 Vdet1_D 1.74 1.86 1.95 Vdet1_E 1.63 1.75 1.84 Vdet1_F 1.60 1.65 1.73 Vdet2_0 4.11 4.31 4.48 Vdet2_1 3.97 4.17 4.34 Vdet2_2 3.83 4.03 4.20 Vdet2_3 3.64 3.84 4.01 Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection. Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits. Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits. Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits. Table 2.54 Power-on reset circuit and voltage detection circuit characteristics (2) (1 of 2) Parameter Symbol Min Typ Max Unit Test Conditions Wait time after power-on reset cancellation LVD0:enable tPOR - 1.7 - ms - LVD0:disable tPOR - 1.3 - ms - Wait time after voltage monitor 0,1,2 reset cancellation LVD0:enable*1 tLVD0,1,2 - 0.6 - ms - LVD0:disable*2 tLVD1,2 - 0.2 - ms - Response delay*3 tdet - - 350 μs Figure 2.65, Figure 2.66 Minimum VCC down time tVOFF 450 - - μs Figure 2.65, VCC = 1.0 V or above R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 86 of 107 S128 Datasheet Table 2.54 2. Electrical Characteristics Power-on reset circuit and voltage detection circuit characteristics (2) (2 of 2) Parameter Symbol Min Typ Max Unit Test Conditions Power-on reset enable time tW (POR) 1 - - ms Figure 2.66, VCC = below 1.0 V LVD operation stabilization time (after LVD is enabled) Td (E-A) - - 300 μs Figure 2.68, Figure 2.69 Hysteresis width (POR) VPORH - 110 - mV - Hysteresis width (LVD0, LVD1 and LVD2) VLVH - 60 - mV - 100 - Vdet1_0 to Vdet1_2 selected. - 60 - Vdet1_3 to Vdet1_9 selected. - 50 - Vdet1_A to Vdet1_B selected. - 40 - Vdet1_C to Vdet1_F selected. - 60 - LVD2 selected Note 1. Note 2. LVD0 selected When OFS1.LVDAS = 0 When OFS1.LVDAS = 1 Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR, Vdet0, Vdet1, and Vdet2 for the POR/LVD. tVOFF VCC VPOR 1.0 V Internal reset signal (active-low) tdet Figure 2.65 tdet tPOR Voltage detection reset timing VPOR VCC 1.0 V tw(POR) Internal reset signal (active-low) *1 tdet Note: tPOR tW(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held below the valid voltage (1.0 V). When VCC turns on, maintain tW(POR) for 1.0 ms or more. Figure 2.66 Power-on reset timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 87 of 107 S128 Datasheet 2. Electrical Characteristics tVOFF VCC VLVH Vdet0 Internal reset signal (active-low) tdet Figure 2.67 tdet tLVD0 Voltage detection circuit timing (Vdet0) tVOFF VCC VLVH Vdet1 LVCMPCR.LVD1E Td(E-A) LVD1 Comparator output LVD1CR0.CMPE LVD1SR.MON Internal reset signal (active-low) When LVD1CR0.RN = 0 tdet tdet tLVD1 When LVD1CR0.RN = 1 tLVD1 Figure 2.68 Voltage detection circuit timing (Vdet1) R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 88 of 107 S128 Datasheet 2. Electrical Characteristics tVOFF VCC V LVH V det2 LVCMPCR.LVD2E LVD2 Comparator output T d(E-A) LVD2CR0.CMPE LVD2SR.MON Internal reset signal (active-low) When LVD2CR0.RN = 0 tdet tdet tLVD2 When LVD2CR0.RN = 1 tLVD2 Figure 2.69 2.10 Voltage detection circuit timing (Vdet2) CTSU Characteristics Table 2.55 CTSU characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions External capacitance connected to TSCAP pin Ctscap 9 10 11 nF - TS pin capacitive load Cbase - - 50 pF - Permissible output high current ΣIoH - - -24 mA When the mutual capacitance method is applied R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 89 of 107 S128 Datasheet 2.11 2. Electrical Characteristics Comparator Characteristics Table 2.56 ACMPHS characteristics Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Min Typ Max Unit Test conditions Input offset voltage VIOCMP - ±5 ±40 mV - Input voltage range VICPM 0 - AVCC0 V - Output delay time Td - 50 100 ns Input amplitude ±100 mV Stabilization wait time during input channel switching*1 TWAIT 300 - - ns Input amplitude ±100 mV Operation stabilization wait time*2 Tcmp 1 - - μs 3.3 V ≤ AVCC0 ≤ 5.5 V 3 - - μs 2.7 V ≤ AVCC0  3.3 V Note 1. Period from when the comparator input channel is switched until the switched result reflects in its output. Note 2. Period from when comparator operation is enabled (CPMCTL.HCMPON = 1) until the comparator satisfies the DC/AC characteristics. Table 2.57 ACMPLP characteristics Conditions: VCC = AVCC0 = 1.8 to 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Min Typ Max Unit Test conditions VREF 0 - VCC - 1.4*1 V - IVREF1 (Standard mode) 0 - VCC - 1.4 V IVREF1 (Window mode) 1.4*1 - VCC V VI 0 - VCC V Internal reference voltage - 1.36 1.44 1.50 V - Output delay Td - - 1.2 μs Comparator high-speed mode (Window mode) 2.0 μs VCC = 3.0 Slew rate of input signal > 50 mV/μs Comparator low-speed mode (Standard mode) 5.0 μs 50 mV Comparator high-speed mode (Window mode) 60 mV Comparator low-speed mode (Standard mode) 40 mV - μs Input voltage range IVREF0 IVCMP0, IVCMP1 Comparator high-speed mode (Standard mode) Offset voltage Comparator high-speed mode (Standard mode) Operation stabilization wait time - Tcmp - 100 - - - - Note 1. In window mode, be sure to satisfy the following condition: IVREF1 - IVREF0  0.2 V. 2.12 OPAMP Characteristics Table 2.58 OPAMP characteristics (1 of 2) Conditions: 1.8 V ≤ AVCC0 = VCC ≤ 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Conditions Common mode input range Vicm1 Low-power mode 0.1 Vicm2 High-speed mode 0.2 Output voltage range Vo1 Low-power mode 0.1 - AVCC0 - 0.1 Vo2 High-speed mode 0.1 - AVCC0 - 0.1 Input offset voltage Vioff1 Low-power mode -7 - 7 Vioff2 High-speed mode -5 - 5 R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Min Typ Max Unit - AVCC0 - 0.5 V - AVCC0 - 0.6 V mV Page 90 of 107 S128 Datasheet Table 2.58 2. Electrical Characteristics OPAMP characteristics (2 of 2) Conditions: 1.8 V ≤ AVCC0 = VCC ≤ 5.5 V, VSS = AVSS0 = 0 V Parameter Symbol Conditions Min Typ Max Unit Open gain AV - 80 120 - dB Gain-bandwidth (GB) product GBW1 Low-power mode - 0.012 - MHz GBW2 High-speed mode - 1.7 - PM CL = 20 pF 50 - - Phase margin Gain margin GM CL = 20 pF Equivalent input noise Vnoise1 f = 10 Hz Vnoise2 f = 1 kHz Vnoise3 f = 1 kHz Vnoise4 f = 100 kHz Power supply reduction ratio PSRR Common mode signal reduction ratio Stabilization wait time 10 - - dB - 700 - - 400 - nV/ √Hz - 90 - - 50 - - - 90 - dB CMRR - - 90 - dB Tstd1 CL = 20 pF Only operational amplifier is activated.*1 Low-power mode VCC  3.6V 1800 - - μs Low-power mode VCC  5.5V 2500 - - High-speed mode 13 - - Low-power mode VCC  3.6V 1800 - - Low-power mode VCC  5.5V 2500 - - High-speed mode 13 - - Low-power mode VCC  3.6V - - 1400 μs Low-power mode VCC  5.5V - - 2000 μs High-speed mode - - 13 μs Low-power mode - 0.005 - V/μs High-speed mode - 1.1 - V/μs -100 - 100 μA Tstd2 Tstd4 CL = 20 pF Operational amplifier and reference current circuit are activated simultaneously. Tset1 CL = 20 pF Tstd3 Settling time Tset2 Slew rate deg Tslew1 CL = 20 pF Tslew2 Low-power mode Low-power mode High-speed mode Load current Iload1 Iload2 High-speed mode -100 - 100 Load capacitance CL - - - 20 pF Note 1. When the operational amplifier and the reference current circuit have already been activated. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 91 of 107 S128 Datasheet 2.13 2. Electrical Characteristics Flash Memory Characteristics 2.13.1 Table 2.59 Code Flash Memory Characteristics Code flash characteristics (1) Parameter Symbol Min Typ Max Unit Conditions Reprogramming/erasure cycle*1 NPEC 1000 - - Times - tDRP 20*2, *3 - - Year Ta = +85°C Data hold time After 1000 times NPEC Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/ erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.) Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics. Note 3. This result is obtained from reliability testing. Table 2.60 Code flash characteristics (2) High-speed operating mode Conditions: VCC = AVCC0 = 2.7 to 5.5 V ICLK = 1 MHz Parameter Programming time 4 bytes ICLK = 32 MHz Symbol Min Typ Max Min Typ Max Unit tP4 - 116 998 - 54 506 μs Erasure time 1 KB tE1K - 9.03 287 - 5.67 222 ms Blank check time 4 bytes tBC4 - - 56.8 - - 16.6 μs 1 KB tBC1K - - 1899 - - 140 μs Erase suspended time tSED - - 22.5 - - 10.7 μs Startup area switching setting time tSAS - 21.9 585 - 12.1 447 ms Access window time tAWS - 21.9 585 - 12.1 447 ms OCD/serial programmer ID setting time tOSIS - 21.9 585 - 12.1 447 ms Flash memory mode transition wait time 1 tDIS 2 - - 2 - - μs Flash memory mode transition wait time 2 tMS 5 - - 5 - - μs Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software. Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 92 of 107 S128 Datasheet Table 2.61 2. Electrical Characteristics Code flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C ICLK = 1 MHz Parameter ICLK = 8 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 4 bytes tP4 - 157 1411 - 101 966 μs Erasure time 1 KB tE1K - 9.10 289 - 6.10 228 ms Blank check time 2 bytes tBC4 - - 87.7 - - 52.5 μs 1 KB - - tBC1K - 1930 - 414 μs Erase suspended time tSED - - 32.7 - - 21.6 μs Startup area switching setting time tSAS - 22.8 592 - 14.2 465 ms Access window time tAWS - 22.8 592 - 14.2 465 ms OCD/serial programmer ID setting time tOSIS - 22.8 592 - 14.2 465 ms Flash memory mode transition wait time 1 tDIS 2 - - 2 - - μs Flash memory mode transition wait time 2 tMS 720 - - 720 - - ns Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software. Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. 2.13.2 Table 2.62 Data Flash Memory Characteristics Data flash characteristics (1) Parameter Reprogramming/erasure Data hold time cycle*1 After 10000 times of NDPEC After 100000 times of NDPEC After 1000000 times of NDPEC Symbol Min Typ Max Unit Conditions NDPEC 100000 1000000 - Times - tDDRP 20*2, *3 - - Year Ta = +85°C 5*2, *3 - - Year - 1*2, *3 - Year Ta = +25°C Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.) Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics. Note 3. These results are obtained from reliability testing. R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 93 of 107 S128 Datasheet Table 2.63 2. Electrical Characteristics Data flash characteristics (2) High-speed operating mode Conditions: VCC = AVCC0 = 2.7 to 5.5 V ICLK = 4 MHz Parameter ICLK = 32 MHz Symbol Min Typ Max Min Typ Max Unit Programming time 1-byte tDP1 - 52.4 463 - 42.1 387 μs Erasure time 1-KB tDE1K - 8.98 286 - 6.42 237 ms Blank check time 1-byte tDBC1 - - 24.3 - - 16.6 μs 1-KB - - tDBC1K - 1872 - 512 μs Suspended time during erasing tDSED - - 13.0 - - 10.7 μs Data flash STOP recovery time tDSTOP 5 - - 5 - - μs Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software. Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. Table 2.64 Data flash characteristics (3) Middle-speed operating mode Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to +85°C ICLK = 4 MHz Parameter Programming time 1-byte ICLK = 8 MHz Symbol Min Typ Max Min Typ Max Unit tDP1 - 94.7 886 - 89.3 849 μs Erasure time 1-KB tDE1K - 9.59 299 - 8.29 273 ms Blank check time 1-byte tDBC1 - - 56.2 - - 52.5 μs 1-KB tDBC1K - - 2.17 - - 1.51 ms Suspended time during erasing tDSED - - 23.0 - - 21.7 μs Data flash STOP recovery time tDSTOP 720 - - 720 - - ns Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software. Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source. 2.13.3 Table 2.65 Serial Wire Debug (SWD) SWD characteristics (1) (1 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWCLK clock cycle time tSWCKcyc 80 - - ns Figure 2.70 SWCLK clock high pulse width tSWCKH 35 - - ns SWCLK clock low pulse width tSWCKL 35 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 94 of 107 S128 Datasheet Table 2.65 2. Electrical Characteristics SWD characteristics (1) (2 of 2) Conditions: VCC = AVCC0 = 2.4 to 5.5 V Parameter Symbol Min Typ Max Unit Test conditions SWDIO setup time tSWDS 16 - - ns Figure 2.71 SWDIO hold time tSWDH 16 - - ns SWDIO data delay time tSWDD 2 - 70 ns Symbol Min Typ Max Unit Test conditions Figure 2.70 Table 2.66 SWD characteristics (2) Conditions: VCC = AVCC0 = 1.6 to 2.4 V Parameter SWCLK clock cycle time tSWCKcyc 250 - - ns SWCLK clock high pulse width tSWCKH 120 - - ns SWCLK clock low pulse width tSWCKL 120 - - ns SWCLK clock rise time tSWCKr - - 5 ns SWCLK clock fall time tSWCKf - - 5 ns SWDIO setup time tSWDS 50 - - ns SWDIO hold time tSWDH 50 - - ns SWDIO data delay time tSWDD 2 - 150 ns Figure 2.71 tSWCKcyc tSWCKH tSWCKf SWCLK tSWCKL Figure 2.70 tSWCKr SWD SWCLK timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 95 of 107 S128 Datasheet 2. Electrical Characteristics SWCLK tSWDS tSWDH SWDIO (Input) tSWDD SWDIO (Output) tSWDD SWDIO (Output) tSWDD SWDIO (Output) Figure 2.71 SWD input/output timing R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 96 of 107 S128 Datasheet Appendix 1. Package Dimensions Appendix 1.Package Dimensions Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas Electronics Corporation website. JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP64-10x10-0.50 PLQP0064KB-C — 0.3 Unit: mm HD *1 D 48 33 64 HE 32 *2 E 49 17 1 16 NOTE 4 Index area NOTE 3 F S y S *3 bp 0.25 c A1 T A2 A e Lp L1 Detail F M NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. Reference Dimensions in millimeters Symbol Min Nom Max D 9.9 10.0 10.1 10.1 E 9.9 10.0 A2  1.4  HD 11.8 12.0 12.2 HE 11.8 12.0 12.2 A   1.7 A1 0.05  0.15 bp 0.15 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 1.1 LQFP 64-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 97 of 107 S128 Datasheet Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g] P-LFQFP48-7x7-0.50 PLQP0048KB-B — 0.2 HD Unit: mm *1 D 36 25 *2 48 HE 24 E 37 13 1 12 NOTE 4 Index area NOTE 3 F NOTE) 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH. 2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET. 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA. 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY. S Reference Dimensions in millimeters Symbol y S *3 bp 0.25 M A1 T c A2 A e Lp L1 Detail F Min Nom Max D 6.9 7.0 7.1 E 6.9 7.0 7.1 A2  1.4  HD 8.8 9.0 9.2 HE 8.8 9.0 9.2 A   1.7 A1 0.05  0.15 bp 0.17 0.20 0.27 c 0.09  0.20 T 0q 3.5q 8q e  0.5  x   0.08 y   0.08 Lp 0.45 0.6 0.75 L1  1.0  © 2015 Renesas Electronics Corporation. All rights reserved. Figure 1.2 LQFP 48-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 98 of 107 S128 Datasheet Appendix 1. Package Dimensions JEITA Package Code P-LQFP32-7x7-0.80 RENESAS Code PLQP0032GB-A Previous Code 32P6U-A MASS[Typ.] 0.2g HD *1 D 24 17 NOTE) 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET. 16 25 bp c c1 *2 E HE b1 Reference Symbol 32 9 1 ZE Terminal cross section 8 ZD c A F A2 Index mark A1 S L D E A2 HD HE A A1 bp b1 c c1 L1 y S e Figure 1.3 *3 Detail F bp x e x y ZD ZE L L1 Dimension in Millimeters Min Nom Max 6.9 7.0 7.1 6.9 7.0 7.1 1.4 8.8 9.0 9.2 8.8 9.0 9.2 1.7 0.1 0.2 0 0.32 0.37 0.42 0.35 0.09 0.145 0.20 0.125 0° 8° 0.8 0.20 0.10 0.7 0.7 0.3 0.5 0.7 1.0 LQFP 32-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 99 of 107 S128 Datasheet Appendix 1. Package Dimensions JEITA Package Code RENESAS Code Previous Code MASS (TYP.) [g] P-WFLGA36-4x4-0.50 PWLG0036KA-A P36FC-50-AA4-2 0.023 32x b S AB e ZE w S A M A ZD D x 6 5 B 4 E 3 2.90 2 C INDEX MARK y1 D w S B S 1 F E D C B A E 2.90 A S y S DETAIL C DETAIL E DETAIL D R0.17± 0.05 0.70 ±0.05 0.55 ±0.05 R0.12 ±0.05 0.75 0.55 (UNIT:mm) R0.17 ±0.05 0.70 ±0.05 R0.12 ±0.05 0.55 ±0.05 0.75 0.55 φb (LAND PAD) φ 0.34±0.05 (APERTURE OF SOLDER RESIST) 0.55 0.75 0.55±0.05 0.70± 0.05 0.55 0.75 0.55±0.05 R0.275±0.05 R0.35±0.05 ITEM D DIMENSIONS E 4.00±0.10 w 0.20 4.00±0.10 e 0.50 A 0.69±0.07 b 0.24±0.05 x 0.05 y 0.08 y1 0.20 ZD 0.75 ZE 0.75 0.70±0.05 2012 Renesas Electronics Corporation. All rights reserved. Figure 1.4 LGA 36-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 100 of 107 S128 Datasheet Appendix 1. Package Dimensions JEITA Package code P-HWQFN48-7x7-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0048KB-A 48PJN-A P48K8-50-5B4-6 0.13 D 25 36 DETAIL OF A PART 24 37 E A A1 13 48 c2 12 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 12 1 13 48 Dimension in Millimeters Min Nom Max D 6.95 7.00 7.05 E 6.95 7.00 7.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.30 24 36 25 ZD e b x M 0.40 0.50 x 0.05 y 0.05 0.75 ZE 37 0.30 0.50 ZD ZE 0.25 c2 0.75 0.15 0.20 D2 5.50 E2 5.50 0.25 S AB 2013 Renesas Electronics Corporation. All rights reserved. Figure 1.5 QFN 48-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 101 of 107 S128 Datasheet Appendix 1. Package Dimensions JEITA Package code P-HWQFN32-5x5-0.50 RENESAS code Previous code MASS(TYP.)[g] PWQN0032KB-A P32K8-50-3B4-5 0.06 D 17 24 DETAIL OF A PART 16 25 E A 9 32 A1 C2 8 1 INDEX AREA A S y S Referance Symbol D2 A Lp EXPOSED DIE PAD 1 8 9 32 Dimension in Millimeters Min Nom Max D 4.95 5.00 5.05 E 4.95 5.00 5.05 A 0.80 A1 0.00 b 0.18 e Lp B E2 0.25 0.30 0.40 x 0.05 ZD 16 25 17 24 ZD e b Figure 1.6 x M 0.75 ZE c2 0.50 0.05 y ZE 0.30 0.50 0.75 0.15 0.20 D2 3.50 E2 3.50 0.25 S AB QFN 32-pin R01DS0309EU0110 Rev.1.10 Nov 28, 2018 Page 102 of 107 Revision History S128 Microcontroller Group Datasheet Rev. Date 1.00 Feb 23, 2016 1st release Summary 1.10 Nov 28, 2018 Updated for 1.10 Website and Support Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related documentation, and get support. Synergy Software renesassynergy.com/software Synergy Software Package renesassynergy.com/ssp Software add-ons renesassynergy.com/addons Software glossary renesassynergy.com/softwareglossary Development tools renesassynergy.com/tools Synergy Hardware renesassynergy.com/hardware Microcontrollers renesassynergy.com/mcus MCU glossary renesassynergy.com/mcuglossary Parametric search renesassynergy.com/parametric Kits renesassynergy.com/kits Synergy Solutions Gallery renesassynergy.com/solutionsgallery Partner projects renesassynergy.com/partnerprojects Application projects renesassynergy.com/applicationprojects Self-service support resources: Documentation renesassynergy.com/docs Knowledgebase renesassynergy.com/knowledgebase Forums renesassynergy.com/forum Training renesassynergy.com/training Videos renesassynergy.com/videos Chat and web ticket renesassynergy.com/support Proprietary Notice All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated, transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior written consent from Renesas. Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited. CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium. Magic Packet™ is a trademark of Advanced Micro Devices, Inc. SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan. Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective holders. Colophon S128 Microcontroller Group Datasheet Publication Date: Rev.1.10 Nov 28, 2018 Published by: Renesas Electronics Corporation Address List General Precautions 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during poweroff state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. 4. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338 © 2018 Renesas Electronics Corporation. All rights reserved. Colophon 7.2 Back cover Renesas Synergy™ Platform S128 Microcontroller Group R01DS0309EU0110
R7FS128782A01CLM#AC1 价格&库存

很抱歉,暂时无法提供与“R7FS128782A01CLM#AC1”相匹配的价格&库存,您可以联系我们找货

免费人工找货