Datasheet
S3A1 Microcontroller Group
Datasheet
Renesas Synergy™ Platform
Synergy Microcontrollers
S3 Series
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).
www.renesas.com
Rev.1.00
Oct 2017
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation or any
other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims
any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits,
software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes
involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas
Electronics products or technical information described in this document, including but not limited to, the product data,
drawing, chart, program, algorithm, application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property
rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in
part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising
from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High
Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as
indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and
visual equipment; home electronic appliances; machine tools; personal electronic equipment; and
industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale
communication equipment; key financial terminal systems; safety control equipment; etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct
threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause
serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key
plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses
incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not
intended by Renesas Electronics.
6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals,
application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and
ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings,
operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any
and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond
such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions
under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please
ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by
fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate
treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your
products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please
evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the
inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently
and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics
disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and
regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use
Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use,
stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or
missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the
development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international
peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies
to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party
will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or
technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by
the governments of the countries asserting jurisdiction over the parties or transactions.
10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or
violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics
harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third
party.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written
consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
(Rev.3.0-1 November 2016)
General Precautions
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be
used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices
must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for
printed circuit boards with mounted semiconductor devices.
2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a
finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from
the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product
that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the
power reaches the level at which resetting is specified.
3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes
in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during
power-off state as described in your product documentation.
4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input
pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit
state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows
internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is
generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only
released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an
external resonator or by an external oscillator while program execution is in progress, wait until the target clock
signal is stable.
6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device
stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take
care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition
period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating
margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.
Preface
1.
About this document
This manual describes the functions and electrical characteristics of the Renesas Synergy™ Microcontroller.
This manual is generally organized into an overview of the product, descriptions of the CPU, system control functions,
peripheral functions, electrical characteristics, and usage notes. This manual describes the product specification of the
microcontroller (MCU) superset. Depending on your product, some pins, registers, or functions might not exist. Address
space that store unavailable registers are reserved.
2.
Audience
This manual is written for system designers who are designing and programming applications using the Renesas Synergy
Microcontroller. The user is expected to have basic knowledge of electrical circuits, logic circuits, and the MCU.
3.
Renesas Publications
Renesas provides the following documents for the Renesas Synergy Microcontroller. Before using any of these
documents, visit www.renesas.com for the most up-to-date version of the document.
Component
Microcontrollers
Software
Tools & Kits,
Solutions
Document type
Description
Datasheet
Features, overview, and electrical characteristics of the MCU
User’s Manual: Microcontrollers
MCU specifications such as pin assignments, memory maps, peripheral
functions, electrical characteristics, timing diagrams, and operation
descriptions
Application Notes
Technical notes, board design guidelines, and software migration information
Technical Update (TU)
Preliminary reports on product specifications such as restriction and errata
Datasheet
Functional descriptions and specific performance data for software modules
that are included in Renesas Synergy Software Package (SSP)
User’s Manual: Software
API reference including SSP architecture and programming information
Application Notes
Project files, guidelines for software programming, and application examples
to develop embedded software applications
User’s Manual: Development Tools
User’s manual and quick start guide for developing embedded software
applications with Development Kits (DK), Starter Kits (SK), Promotion Kits
(PK), Product Examples (PE), and Application Examples (AE)
User’s Manual: Software
Quick Start Guide
Application Notes
Project files, guidelines for software programming, and application examples
to develop embedded software applications
4.
Numbering Notation
The following numbering notation is used throughout this manual:
Example
Description
011b
Binary number. For example, the binary equivalent of the number 3 is 011b.
1Fh
Hexadecimal number. For example, the hexadecimal equivalent of the number 31 is described 1Fh. In
some cases, a hexadecimal number is shown with the prefix 0x, based on C/C++ formatting.
1234
Decimal number. Decimal numbers are generally shown without a suffix.
5.
Typographic Notation
The following typographic notation is used throughout this manual:
Example
Description
ICU.NMICR.NMIMD
Periods separate a function module symbol (ICU), register symbol (NMICR), and bit field symbol
(NMIMD)
ICU.NMICR
A period separates a function module symbol (ICU) and register symbol (NMICR)
NMICR.NMIMD
A period separates a register symbol (NMICR) and bit field symbol (NMIMD)
NFCLKSEL[1:0]
In a register bit name, the bit range enclosed in square brackets indicates the number of bits in the field
at this location. In this example, NFCLKSEL[1:0] represents a 2-bit field at the specified location in the
NMI Pin Interrupt Control Register (NMICR).
6.
Unit Prefix
The following unit prefixes are sometimes misleading. Those unit prefixes are described throughout this manual with the
following meaning:
Prefix
Description
b
Bit
B
Byte. This unit prefix is generally used for memory specification of the MCU and address space.
k
1000 = 103. k is also used to denote 1024 (210) but this unit prefix is used to denote 1000 (103)
throughout this manual.
K
1024 = 210. This unit prefix is used to denote 1024 (210) not 1000 (103) throughout this manual.
7.
Special Terms
The following terms have special meanings:
Term
Description
NC
Not connected pin. NC means the pin is not connected to the MCU.
Hi-Z
High impedance
8.
Register Description
Each register description includes both a register diagram that shows the bit assignments and a register bit table that
describes the content of each bit. The example of symbols used in these tables are described in the sections that follow.
The following is an example of a register description and associated bit field definition.
X.X.X
NMI Pin Interrupt Control Register (NMICR)
Address(es):
Value after reset:
(1)
ICU.NMICR 4000 6100h
b7
b6
NFLTE
N
—
0
0
b5
b4
NFCLKSEL[1:0]
0
0
b3
b2
b1
b0
—
—
—
NMIMD
0
0
0
0
(4)
(2)
(3)
(6)
(5)
Bit
Symbol
Bit name
Description
R/W
b0
NMIMD
NMI Detection Set
0: Falling edge
1: Rising edge.
R/W
b3 to b1 —
Reserved
These bits are read as 0. The write value should be 0.
R/W
b5, b4
NFCLKSEL[1:0]
NMI Digital Filter Sampling Clock
Select
b5 b4
R/W
b6
—
Reserved
This bit is read as 0. The write value should be 0.
R/W
b7
NFLTEN
NMI Digital Filter Enable
0: Disable the digital filter
1: Enable the digital filter.
R/W
0
0
1
1
0: PCLKB
1:PCLKB/8
0: PCLKB/32
1: PCLKB/64.
(1) Function module symbol, register symbol, and address assignment
Function module symbol, register symbol, and address assignment of this register are generally expressed. ICU.NMICR
4000 6100h means NMI Pin Interrupt Control Register (NMICR) of Interrupt Controller Unit (ICU) is assigned to
address 4000 6100h.
(2) Bit number
This number indicates the bit number. These bits are shown in order from b31 to b0 for a 32-bit register, from b15 to b0
for a 16-bit register, and from b7 to b0 for an 8-bit register.
(3) Value after reset
This symbol or number indicates the value of each bit after a reset. The value is shown in binary unless specified
otherwise.
0: Indicates that the value is 0 after a reset.
1: Indicates that the value is 1 after a reset.
x: Indicates that the value is undefined after a reset.
(4) Bit symbol
Bit symbol indicates the short name of the bit field. Reserved bit is expressed with a —.
(5) Bit name
Bit name indicates the full name of the bit field.
(6) R/W
The R/W column indicates access type: whether the bit field is read or write.
R/W: The bit field is read and write.
R/(W): The bit field is read and write. But writing to this bit field has some limitations. For details on the limitations,
see the description or notes of respective registers.
R: The bit field is read-only. Writing to this bit field has no effect.
W: The bit field is write-only. The read value is undefined.
9.
Abbreviations
Abbreviations used in this manual are shown in the following table:
Abbreviation
AES
Description
Advanced Encryption Standard
AHB
Advanced High-Performance Bus
AHB-AP
AHB Access Port
APB
Advanced Peripheral Bus
ARC
Alleged RC
ATB
Advanced Trace Bus
BCD
Binary Coded Decimal
BSDL
Boundary Scan Description Language
DES
Data Encryption Standard
DSA
Digital Signature Algorithm
ETB
Embedded Trace Buffer
ETM
Embedded Trace Macrocell
FLL
Frequency Locked Loop
FPU
Floating-Point Unit
GSM
Global System for Mobile communications
HMI
Human Machine Interface
IrDA
Infrared Data Association
LSB
Least Significant Bit
MSB
Most Significant Bit
NVIC
Nested Vector Interrupt Controller
PC
Program Counter
PFS
Port Function Select
PLL
Phase Locked Loop
POR
Power-On Reset
PWM
Pulse Width Modulation
RSA
Rivest Shamir Adleman
SHA
Secure Hash Algorithm
S/H
Sample and Hold
SP
Stack Pointer
SWD
Serial Wire Debug
SW-DP
Serial Wire-Debug Port
TRNG
True Random Number Generator
UART
Universal Asynchronous Receiver/Transmitter
10. Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained
in this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein,
no part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded,
translated, transmitted or distributed in any other medium for publication or distribution or for any commercial
enterprise, without prior written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United
States and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
11. Feedback on the product
If you have any comments or suggestions about this product, go to https://www.renesas.com/en-eu/support/contact.html.
12. Feedback on content
If you have any comments on the document such as general suggestions for improvements, go to
https://www.renesas.com/en-eu/support/contact.html, and provide:
- The title of the Renesas Synergy document
- The document number
- If applicable, the page number(s) to which your comments refer
- A detailed explanation of your comments.
Contents
Features ................................................................................................................................................... 11
1.
2.
Overview ........................................................................................................................................ 12
1.1
Function Outline ................................................................................................................... 12
1.2
Block Diagram ..................................................................................................................... 18
1.3
Part Numbering .................................................................................................................... 19
1.4
Function Comparison ........................................................................................................... 20
1.5
Pin Functions ....................................................................................................................... 21
1.6
Pin Assignments .................................................................................................................. 25
1.7
Pin Lists ............................................................................................................................... 32
Electrical Characteristics ................................................................................................................ 37
2.1
Absolute Maximum Ratings ................................................................................................. 38
2.2
DC Characteristics ............................................................................................................... 40
2.2.1
Tj/Ta Definition ............................................................................................................ 40
2.2.2
I/O VIH, VIL .................................................................................................................. 40
2.2.3
I/O IOH, IOL ................................................................................................................... 42
2.2.4
I/O VOH, VOL, and Other Characteristics ..................................................................... 44
2.2.5
I/O Pin Output Characteristics of Low Drive Capacity ................................................. 46
2.2.6
I/O Pin Output Characteristics of Middle Drive Capacity ............................................. 48
2.2.7
P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity ......................... 51
2.2.8
IIC I/O Pin Output Characteristics ............................................................................... 53
2.2.9
Operating and Standby Current ................................................................................... 54
2.2.10
VCC Rise and Fall Gradient and Ripple Frequency .................................................... 62
2.3
2.4
AC Characteristics ............................................................................................................... 63
2.3.1
Frequency .................................................................................................................... 63
2.3.2
Clock Timing ................................................................................................................ 66
2.3.3
Reset Timing ............................................................................................................... 70
2.3.4
Wakeup Time .............................................................................................................. 71
2.3.5
NMI and IRQ Noise Filter ............................................................................................ 74
2.3.6
Bus Timing ................................................................................................................... 75
2.3.7
I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing ................................ 82
2.3.8
CAC Timing ................................................................................................................. 83
2.3.9
SCI Timing ................................................................................................................... 84
2.3.10
SPI Timing ................................................................................................................... 90
2.3.11
QSPI Timing ................................................................................................................ 95
2.3.12
IIC Timing .................................................................................................................... 97
2.3.13
SSIE Timing ................................................................................................................. 99
2.3.14
SD/MMC Host Interface Timing ................................................................................. 101
2.3.15
CLKOUT Timing ........................................................................................................ 102
USB Characteristics ........................................................................................................... 103
2.4.1
USBFS Timing ........................................................................................................... 103
2.4.2
USB External Supply ................................................................................................. 104
2.5
ADC14 Characteristics ...................................................................................................... 105
2.6
DAC12 Characteristics ...................................................................................................... 115
2.7
TSN Characteristics ........................................................................................................... 117
2.8
OSC Stop Detect Characteristics ...................................................................................... 117
2.9
POR and LVD Characteristics ........................................................................................... 118
2.10
VBATT Characteristics ...................................................................................................... 122
2.11
CTSU Characteristics ........................................................................................................ 124
2.12
Segment LCD Controller Characteristics ........................................................................... 124
2.12.1
Resistance Division Method ...................................................................................... 124
2.12.2
Internal Voltage Boosting Method ............................................................................. 125
2.12.3
Capacitor Split Method .............................................................................................. 126
2.13
Comparator Characteristics ............................................................................................... 127
2.14
OPAMP Characteristics ..................................................................................................... 127
2.15
Flash Memory Characteristics ........................................................................................... 128
2.15.1
Code Flash Memory Characteristics ......................................................................... 128
2.15.2
Data Flash Memory Characteristics .......................................................................... 129
2.16
Boundary Scan .................................................................................................................. 130
2.17
Joint European Test Action Group (JTAG) ........................................................................ 131
2.17.1
Serial Wire Debug (SWD) .......................................................................................... 133
Appendix 1. Package Dimensions ........................................................................................................ 135
Features
S3A1 Microcontroller Group
Datasheet
High efficiency 48-MHz Arm® Cortex®-M4 core, 1-MB code flash memory, 192-KB SRAM, Segment LCD Controller,
Capacitive Touch Sensing Unit, USB 2.0 Full-Speed, 14-Bit A/D Converter, 12-Bit D/A Converter, security and safety
features.
Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)
Armv7E-M architecture with DSP instruction set
Maximum operating frequency: 48 MHz
Support for 4-GB address space
Arm Memory Protection Unit (MPU) with 8 regions
Debug and Trace: ITM, DWT, FPB, TPIU, ETB
CoreSight™ debug port: JTAG-DP and SW-DP
■ Memory
1-MB code flash memory
8-KB data flash memory (up to 100000 erase/write cycles)
192-KB SRAM
Flash Cache (FCACHE)
Memory Protection Units
Memory Mirror Function
128-bit unique ID
■ Connectivity
USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
- Compliant with USB Battery Charging Specification 1.2
Serial Communications Interface (SCI) × 6
- UART
- Simple IIC
- Simple SPI
Serial Peripheral Interface (SPI) × 2
I2C bus interface (IIC) × 3
CAN module (CAN)
Serial Sound Interface Enhanced (SSIE)
SD/MMC Host Interface (SDHI)
Quad Serial Peripheral Interface (QSPI)
External address space
- 8- or 16-bit bus space is selectable per area
■ Analog
14-Bit A/D Converter (ADC14)
12-Bit D/A Converter (DAC12)
8-Bit D/A Converter (DAC8) × 2 (for ACMPLP)
Low Power Analog Comparator (ACMPLP) × 2
Operational Amplifier (OPAMP) × 4
Temperature Sensor (TSN)
■ Timers
General PWM Timer 32-Bit (GPT32) × 4
General PWM Timer 16-Bit (GPT16) × 6
Asynchronous General-Purpose Timer (AGT) × 2
Watchdog Timer (WDT)
■ Safety
ECC in SRAM
SRAM parity error check
Flash area protection
ADC self-diagnosis function
Clock Frequency Accuracy Measurement Circuit (CAC)
Cyclic Redundancy Check (CRC) calculator
Data Operation Circuit (DOC)
Port Output Enable for GPT (POEG)
Independent Watchdog Timer (IWDT)
GPIO readback level detection
Register write protection
Main oscillator stop detection
Illegal memory access
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
■ System and Power Management
Low power modes
Realtime Clock (RTC) with calendar and Battery Backup support
Event Link Controller (ELC)
DMA Controller (DMAC) × 4
Data Transfer Controller (DTC)
Key Interrupt Function (KINT)
Power-on reset
Low voltage detection with voltage settings
■ Security and Encryption
AES128/256
GHASH
True Random Number Generator (TRNG)
■ Human Machine Interface (HMI)
Segment LCD Controller (SLCDC)
- Up to 54 segments × 4 commons
- Up to 50 segments × 8 commons
Capacitive Touch Sensing Unit (CTSU)
■ Multiple Clock Sources
Main clock oscillator (MOSC)
(1 to 20 MHz when VCC = 2.4 to 5.5 V)
(1 to 8 MHz when VCC = 1.8 to 2.4 V)
(1 to 4 MHz when VCC = 1.6 to 1.8 V)
Sub-clock oscillator (SOSC) (32.768 kHz)
High-speed on-chip oscillator (HOCO)
(24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V)
(24, 32, 48 MHz when VCC = 1.8 to 5.5 V)
(24, 32 MHz when VCC = 1.6 to 5.5 V)
Middle-speed on-chip oscillator (MOCO) (8 MHz)
Low-speed on-chip oscillator (LOCO) (32.768 kHz)
Independent watchdog timer OCO (15 kHz)
Clock trim function for HOCO/MOCO/LOCO
Clock out support
■ General Purpose I/O Ports
Up to 126 input/output pins
- Up to 3 CMOS input
- Up to 123 CMOS input/output
- Up to 11 input/output 5 V tolerant
- Up to 2 pins high current (20 mA)
■ Operating Voltage
VCC: 1.6 to 5.5 V
■ Operating Temperature and Packages
Ta = –40°C to +85°C
- 145-pin LGA (7 mm × 7 mm, 0.5 mm pitch)
- 121-pin BGA (8 mm × 8 mm, 0.65 mm pitch)
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)
Ta = –40°C to +105°C
- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)
Page 11 of 145
S3A1 Datasheet
1.
1. Overview
Overview
The S3A1 MCU group integrates multiple series of software- and pin-compatible Arm®-based 32-bit MCUs that share a
common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.
Each MCU provides an optimal combination of low-power, high-performance Arm Cortex®-M4 core running up to
48 MHz, with the following features:
1-MB code flash memory
192-KB SRAM
Segment LCD Controller (SLCDC)
Capacitive Touch Sensing Unit (CTSU)
USB 2.0 Full-Speed Module (USBFS)
14-bit A/D Converter (ADC14)
12-bit D/A Converter (DAC12)
Security features.
1.1
Function Outline
Table 1.1
Arm core
Feature
Functional description
Arm Cortex-M4
Maximum operating frequency: up to 48 MHz
Arm Cortex-M4
- Revision: r0p1-01rel0
- Armv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
Arm Memory Protection Unit (MPU)
- Armv7 Protected Memory System Architecture
- 8 protect regions.
SysTick timer
- Driven by LOCO clock.
Table 1.2
Memory
Feature
Functional description
Code flash memory
Maximum 1-MB code flash memory. See section 47, Flash Memory in the User’s Manual.
Data flash memory
8-KB data flash memory. See section 47, Flash Memory in the User’s Manual.
Option-setting memory
The option-setting memory determines the state of the MCU after a reset. See section 7,
Option-Setting Memory in the User’s Manual.
Memory Mirror Function (MMF)
The MMF can be configured to mirror the target application image load address in code flash
memory to the application image link address in the 23-bit unused memory space (memory
mirror space addresses). Your application code is developed and linked to run from this MMF
destination address. The application code does not need to know the load location where it is
stored in code flash memory. See section 5, Memory Mirror Function (MMF) in the User’s
Manual.
SRAM
On-chip high-speed SRAM providing either parity bit or Error Correction Code (ECC). The first
16 KB in SRAM0 provides error correction capability using ECC. See section 46, SRAM in the
User’s Manual.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 12 of 145
S3A1 Datasheet
Table 1.3
1. Overview
System (1 of 2)
Feature
Functional description
Operating modes
Two operating modes:
Single-chip mode
SCI/USB boot mode.
See section 3, Operating Modes in the User’s Manual.
Resets
14 resets:
RES pin reset
Power-on reset
VBATT-selected voltage power-on reset
Independent watchdog timer reset
Watchdog timer reset
Voltage monitor 0 reset
Voltage monitor 1 reset
Voltage monitor 2 reset
SRAM parity error reset
SRAM ECC error reset
Bus master MPU error reset
Bus slave MPU error reset
Stack pointer error reset
Software reset.
See section 6, Resets in the User’s Manual.
Low Voltage Detection (LVD)
Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the
detection level can be selected using a software program. See section 8, Low Voltage
Detection (LVD) in the User’s Manual.
Clocks
Main clock oscillator (MOSC)
Sub-clock oscillator (SOSC)
High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
PLL frequency synthesizer
Independent watchdog timer on-chip oscillator
Clock out support.
See section 9, Clock Generation Circuit in the User’s Manual.
Clock Frequency Accuracy
Measurement Circuit (CAC)
The Clock Frequency Accuracy Measurement Circuit (CAC) checks the system clock
frequency with a reference clock signal by counting the number of pulses of the system clock
to be measured. The reference clock can be provided externally through a CACREF pin or
internally from various on-chip oscillators.
Event signals can be generated when the clock does not match or measurement ends.
This feature is particularly useful in implementing a fail-safe mechanism for home and
industrial automation applications.
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in the User’s Manual.
Interrupt Controller Unit (ICU)
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt
Controller Unit (ICU) in the User’s Manual.
Key Interrupt Function (KINT)
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function
(KINT) in the User’s Manual.
Low power modes
Power consumption can be reduced in multiple ways, such as by setting clock dividers,
controlling EBCLK output, stopping modules, selecting power control mode in normal
operation, and transitioning to low power modes. See section 11, Low Power Modes in the
User’s Manual.
Battery backup function
A battery backup function is provided for partial powering by a battery. The battery powered
area includes the RTC, SOSC, LOCO, wakeup control, backup memory, VBATT_R low voltage
detection, and switch between VCC and VBATT.
During normal operation, the battery powered area is powered by the main power supply,
which is the VCC pin. When a VCC voltage drop is detected, the power source is switched to
the dedicated battery backup power pin, the VBATT pin.
When the voltage rises again, the power source is switched from the VBATT pin to the VCC
pin. See section 12, Battery Backup Function in the User’s Manual.
Register write protection
The register write protection function protects important registers from being overwritten
because of software errors. See section 13, Register Write Protection in the User’s Manual.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 13 of 145
S3A1 Datasheet
Table 1.3
1. Overview
System (2 of 2)
Feature
Functional description
Memory Protection Unit (MPU)
Four MPUs and a CPU stack pointer monitor function are provided for memory protection. See
section 16, Memory Protection Unit (MPU) in the User’s Manual.
Watchdog Timer (WDT)
The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh the
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.
A refresh-permitted period can be set to refresh the counter and used as the condition for
detecting when the system runs out of control. See section 26, Watchdog Timer (WDT) in the
User’s Manual.
Independent Watchdog Timer (IWDT)
The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be
serviced periodically to prevent counter underflow. It can be used to reset the MCU or to
generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates
with an independent, dedicated clock source, it is particularly useful in returning the MCU to a
known state as a fail-safe mechanism when the system runs out of control.
The IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of
the count value in the registers. See section 27, Independent Watchdog Timer (IWDT) in the
User’s Manual.
Table 1.4
Event link
Feature
Functional description
Event Link Controller (ELC)
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral
modules as event signals to connect them to different modules, enabling direct interaction
between the modules without CPU intervention. See section 19, Event Link Controller (ELC) in
the User’s Manual.
Table 1.5
Direct memory access
Feature
Functional description
Data Transfer Controller (DTC)
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an
interrupt request. See section 18, Data Transfer Controller (DTC) in the User’s Manual.
DMA Controller (DMAC)
A 4-channel DMA Controller (DMAC) module is provided for transferring data without the CPU.
When a DMA transfer request is generated, the DMAC transfers data stored at the transfer
source address to the transfer destination address. See section 17, DMA Controller (DMAC) in
the User’s Manual.
Table 1.6
External bus interface
Feature
Functional description
External bus
CS area: Connected to the external devices (external memory interface)
QSPI area: Connected to the QSPI (external device interface).
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 14 of 145
S3A1 Datasheet
Table 1.7
1. Overview
Timers
Feature
Functional description
General PWM Timer (GPT)
The General PWM Timer (GPT) is a 32-bit timer with 4 channels and a 16-bit timer with 6
channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or
the up- and down-counter. In addition, PWM waveforms can be generated for controlling
brushless DC motors. The GPT can also be used as a general-purpose timer. See section 23,
General PWM Timer (GPT) in the User’s Manual.
Port Output Enable for GPT (POEG)
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)
output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in
the User’s Manual.
Asynchronous General Purpose
Timer (AGT)
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
output, external pulse width or period measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and they can be accessed with the AGT
register. See section 24, Asynchronous General Purpose Timer (AGT) in the User’s Manual.
Realtime Clock (RTC)
The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count
mode, that are controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 25, Realtime Clock (RTC) in the User’s Manual.
Table 1.8
Communication interfaces (1 of 2)
Feature
Functional description
Serial Communications Interface
(SCI)
The Serial Communication Interface (SCI) is configurable to five asynchronous and
synchronous serial interfaces:
Asynchronous interfaces (UART and asynchronous communications interface adapter
(ACIA))
8-bit clock synchronous interface
Simple IIC (master-only)
Simple SPI
Smart card interface.
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
SCI0 and SCI1 have FIFO buffers to enable continuous and full-duplex communication, and
the data transfer speed can be configured independently using an on-chip baud rate generator.
See section 29, Serial Communications Interface (SCI) in the User’s Manual.
I2C Bus Interface (IIC)
The 3-channel IIC module conforms with and provides a subset of the NXP I2C bus (InterIntegrated Circuit bus) interface functions. See section 30, I2C Bus Interface (IIC) in the User’s
Manual.
Serial Peripheral Interface (SPI)
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices.
See section 32, Serial Peripheral Interface (SPI) in the User’s Manual.
Serial Sound Interface Enhanced
(SSIE)
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with
digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The
SSIE supports an audio clock frequency of up to 25 MHz, and can be operated as a slave or
master receiver/transmitter/transceiver to suit various applications. The SSIE includes 8-stage
FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data
reception and transmission. See section 35, Serial Sound Interface Enhanced (SSIE) in the
User’s Manual.
Quad Serial Peripheral Interface
(QSPI)
The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a
serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface.
See section 33, Quad Serial Peripheral Interface (QSPI) in the User’s Manual.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 15 of 145
S3A1 Datasheet
Table 1.8
1. Overview
Communication interfaces (2 of 2)
Feature
Functional description
Controller Area Network (CAN)
Module
The Controller Area Network (CAN) module provides functionality to receive and transmit data
using a message-based protocol between multiple slaves and masters in electromagnetically
noisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 31, Controller Area Network (CAN) Module in the User’s Manual.
USB 2.0 Full-Speed Module (USBFS)
The USBFS is a USB controller that can operate as a host controller or device controller. The
module supports full-speed and low-speed (only for the host controller) transfer as defined in
the Universal Serial Bus specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus specification 2.0. The USB
has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be
assigned any endpoint number based on the peripheral devices used for communication or
based on the your system.
The MCU supports revision 1.2 of the Battery Charging specification. Because the MCU can
be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply
at 3.3 V. See section 28, USB 2.0 Full-Speed Module (USBFS) in the User’s Manual.
SD/MMC Host Interface (SDHI)
The Secure Digital Host Interface (SDHI) and MultiMediaCard (MMC) interface provide the
functionality needed to connect a variety of external memory cards to the MCU. The SDHI
supports both 1-bit and 4-bit buses for connecting different memory cards that support SD,
SDHC, and SDXC formats. When developing host devices that are compliant with the SD
specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD
HALA).
The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51
(JEDEC Standard JESD 84-B451) device access. This interface also provides backward
compatibility and support for high-speed SDR transfer modes. See section 36, SD/MMC Host
Interface (SDHI) in the User’s Manual.
Table 1.9
Analog
Feature
Functional description
14-bit A/D Converter (ADC14)
A 14-bit successive approximation A/D converter is provided. Up to 28 analog input channels
are selectable. Temperature sensor output and internal reference voltage are selectable for
conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion
making it possible to optimize the tradeoff between speed and resolution in generating a digital
value. See section 38, 14-Bit A/D Converter (ADC14) in the User’s Manual.
12-bit D/A Converter (DAC12)
The 12-bit D/A converts data and includes an output amplifier. See section 39, 12-Bit D/A
Converter (DAC12) in the User’s Manual.
8-bit D/A Converter (DAC8) (for
ACMPLP)
The 8-bit D/A converts data and does not include an output amplifier (DAC8). The DAC8 is
used only as the reference voltage for ACMPLP. See section 43, 8-Bit D/A Converter (DAC8)
in the User’s Manual.
Temperature Sensor (TSN)
The on-chip temperature sensor determines and monitors the die temperature for reliable
operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC14 for conversion and can be further used by the end
application. See section 40, Temperature Sensor (TSN) in the User’s Manual.
Low-Power Analog Comparator
(ACMPLP)
The analog comparator compares the reference input voltage and analog input voltage. The
comparison result can be read through software and also be output externally. The reference
input voltage can be selected from an input to the CMPREFi (i = 0, 1) pin, an internal 8-bit D/A
converter output, or the internal reference voltage (Vref) generated internally in the MCU.
The ACMPLP response speed can be set before starting an operation. Setting the High-speed
mode decreases the response delay time, but increases current consumption. Setting the
Low-speed mode increases the response delay time, but decreases current consumption. See
section 42, Low Power Analog Comparator (ACMPLP) in the User’s Manual.
Operational Amplifier (OPAMP)
The operational amplifier amplifies small analog input voltages and outputs the amplified
voltages. A total of four differential operational amplifier units with two input pins and one
output pin are provided. See section 41, Operational Amplifier (OPAMP) in the User’s Manual.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 16 of 145
S3A1 Datasheet
Table 1.10
1. Overview
Human machine interfaces
Feature
Functional description
Segment LCD Controller (SLCDC)
The SLCDC provides the following functions:
Waveform A or B selectable
The LCD driver voltage generator can switch between an internal voltage boosting method,
a capacitor split method, and an external resistance division method
Automatic output of segment and common signals based on automatic display data register
read
The reference voltage generated when operating the voltage boost circuit can be selected in
16 steps (contrast adjustment)
The LCD can be made to blink.
See section 48, Segment LCD Controller (SLCDC) in the User’s Manual.
Capacitive Touch Sensing Unit
(CTSU)
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do
not come into direct contact with the electrodes. See section 44, Capacitive Touch Sensing
Unit (CTSU) in the User’s Manual.
Table 1.11
Data processing
Feature
Functional description
Cyclic Redundancy Check (CRC)
Calculator
The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC
calculation results can be switched for LSB-first or MSB-first communication. Additionally,
various CRC-generating polynomials are available. The snoop function allows monitoring
reads from and writes to specific addresses. This function is useful in applications that require
CRC code to be generated automatically in certain events, such as monitoring writes to the
serial transmit buffer and reads from the serial receive buffer. See section 34, Cyclic
Redundancy Check (CRC) Calculator in the User’s Manual.
Data Operation Circuit (DOC)
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 45,
Data Operation Circuit (DOC) in the User’s Manual.
Table 1.12
Security
Feature
Functional description
Secure Crypto Engine 5 (SCE5)
Security algorithm:
- Symmetric algorithm: AES
Other support features:
- TRNG (True Random Number Generator)
- Hash-value generation: GHASH.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 17 of 145
S3A1 Datasheet
1.2
1. Overview
Block Diagram
Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the
features.
Bus
Memory
1 MB Code Flash
External
Arm Cortex-M4
DSP
System
FPU
POR/LVD
MOSC/SOSC
CSC
8 KB Data Flash
Clocks
MPU
Reset
(H/M/L) OCO
192 KB SRAM
NVIC
Mode Control
PLL
System Timer
Power Control
CAC
Test and DBG Interface
ICU
Battery Backup
KINT
Register Write
Protection
MPU
DMA
DTC
DMAC × 4
Timers
Communication interfaces
GPT32 × 4
SCI × 6
GPT16 × 6
SDHI
×1
SPI × 2
CAN × 1
SSIE × 1
USBFS
with BC1.2
RTC
WDT/IWDT
QSPI
IIC × 3
AGT × 2
Event Link
Human machine interfaces
CTSU
Data Processing
SLCDC
Analog
ELC
CRC
ADC14
TSN
OPAMP × 4
Security
DOC
DAC12
DAC8
ACMPLP × 2
SCE5
Figure 1.1
Block diagram
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 18 of 145
S3A1 Datasheet
1.3
1. Overview
Part Numbering
Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.14 shows
a product list.
R 7 F S 3 A1 7 C 3 A 0 1 C F B #AA 0
Production identification code
Packing, Terminal material (Pb-free)
#AA: Tray/Sn (Tin) only
#AC: Tray/others
Package type
BJ: BGA 121 pins
FB: LQFP 144 pins
FP: LQFP 100 pins
FM: LQFP 64 pins
LK: LGA 145 pins
LJ: LGA 100 pins
NB: QFN 64 pins
Quality ID
Software ID
Operating temperature
2: -40° C to 85° C
3: -40° C to 105° C
Code flash memory size
C: 1 MB
Feature set
7: Superset
Group name
A1: S3A1 Group, Arm Cortex-M4, 48 MHz
Series name
3: High efficiency
Renesas Synergy family
Flash memory
Renesas microcontroller
Renesas
Figure 1.2
Table 1.13
Part numbering scheme
Product list
Operating
temperature
Product part number
Ordering part number
Package code
Code flash
Data flash
SRAM
R7FS3A17C2A01CLK
R7FS3A17C2A01CLK#AC0
PTLG0145KA-A
1 MB
8 KB
192 KB
R7FS3A17C3A01CFB
R7FS3A17C3A01CFB#AA0
PLQP0144KA-B
-40 to +105°C
R7FS3A17C2A01CBJ
R7FS3A17C2A01CBJ#AC0
PLBG0121JA-A
-40 to +85°C
-40 to +85°C
R7FS3A17C3A01CFP
R7FS3A17C3A01CFP#AA0
PLQP0100KB-B
-40 to +105°C
R7FS3A17C2A01CLJ
R7FS3A17C2A01CLJ#AC0
PTLG0100JA-A
-40 to +85°C
R7FS3A17C3A01CFM
R7FS3A17C3A01CFM#AA0
PLQP0064KB-C
-40 to +105°C
R7FS3A17C3A01CNB
R7FS3A17C3A01CNB#AC0
PWQN0064LA-A
-40 to +105°C
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 19 of 145
S3A1 Datasheet
1.4
1. Overview
Function Comparison
Table 1.14
Function comparison
Parts number
R7FS3A17C2A01CLK
R7FS3A17C3A01CFB
R7FS3A17C2A01CBJ
R7FS3A17C3A01CFP
R7FS3A17C2A01CLJ
R7FS3A17C3A01CFM/
R7FS3A17C3A01CNB
Pin count
145
144
121
100
100
64
Package
LGA
LQFP
BGA
LQFP
LGA
LQFP/QFN
1 MB
Code flash memory
8 KB
Data flash memory
192 KB
SRAM
176 KB
Parity
16 KB
ECC
System
48 MHz
CPU clock
512 bytes
Backup
registers
Yes
ICU
KINT
8
Event control
ELC
Yes
DMA
DTC
Yes
4
DMAC
16-bit bus
8-bit bus
Bus
External bus
Timers
GPT32
4
GPT16
6
Communication
AGT
2
RTC
Yes
WDT/IWDT
Yes
6
SCI
3
IIC
2
2
SPI
SSIE
1
No
QSPI
1
No
SDHI
1
Yes
USBFS
28
ADC14
26
1
DAC8
2
OPAMP
18
2
4
4
4
SLCDC
CTSU
CRC
DOC
Security
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
4
4
3
Yes
TSN
Data
processing
25
DAC12
ACMPLP
HMI
No
1
CAN
Analog
No
4 com × 50 seg
and
4 com/seg
4 com × 42 seg
and
4 com/seg
4 com × 34 seg
and
4 com/seg
27
4 com × 17 seg
and
4 com/seg
24
Yes
Yes
SCE5
Page 20 of 145
S3A1 Datasheet
1.5
1. Overview
Pin Functions
Function
Signal
I/O
Description
Power supply
VCC
Input
Power supply pin. Connect it to the system power supply. Connect this pin
to VSS by a 0.1-μF capacitor. The capacitor should be placed close to the
pin.
VCL
Input
Connect this pin to the VSS pin by the smoothing capacitor used to stabilize
the internal power supply. Place the capacitor close to the pin.
VSS
Input
Ground pin. Connect to the system power supply (0 V).
VBATT
Input
Backup power pin
XTAL
Output
EXTAL
Input
Pins for a crystal resonator. An external clock signal can be input through
the EXTAL pin.
Clock
XCIN
Input
XCOUT
Output
Input/output pins for the sub-clock oscillator. Connect a crystal resonator
between XCOUT and XCIN.
EBCLK
Output
Outputs the external bus clock for external devices
CLKOUT
Output
Clock output pin
Operating mode
control
MD
Input
Pins for setting the operating mode. The signal levels on these pins must
not be changed during operation mode transition on release from the reset
state.
System control
RES
Input
Reset signal input pin. The MCU enters the reset state when this signal
goes low.
CAC
CACREF
Input
Measurement reference clock input pin
Interrupt
NMI
Input
Non-maskable interrupt request pin
IRQ0 to IRQ15
Input
Maskable interrupt request pins
KINT
KR00 to KR07
Input
A key interrupt can be generated by inputting a falling edge to the key
interrupt input pins
On-chip debug
TMS
I/O
On-chip emulator or boundary scan pins
TDI
Input
External bus
interface
Battery backup
TCK
Input
TDO
Output
SWDIO
I/O
Serial wire debug data input/output pin
SWCLK
Input
Serial wire clock pin
SWO
Output
Serial wire trace output pin
RD
Output
Strobe signal indicating that reading from the external bus interface space is
in progress, active-low
WR
Output
Strobe signal indicating that writing to the external bus interface space is in
progress, in 1-write strobe mode, active-low
WR0, WR1
Output
Strobe signals indicating that either group of data bus pins (D07 to D00,
D15 to D08) is valid in writing to the external bus interface space, in byte
strobe mode, active-low
BC0, BC1
Output
Strobe signals indicating that either group of data bus pins (D07 to D00,
D15 to D08) is valid in access to the external bus interface space, in 1-write
strobe mode, active-low
ALE
Output
Address latch signal when address/data multiplexed bus is selected
WAIT
Input
Input pin for wait request signals in access to the external space, active-low
CS0 to CS3
Output
Select signals for CS areas, active-low
A00 to A23
Output
Address bus
D00 to D15
I/O
Data bus
VBATWIO0 to
VBATWIO2
I/O
Output wakeup signal for the VBATT wakeup control function.
External event input for the VBATT wakeup control function.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 21 of 145
S3A1 Datasheet
1. Overview
Function
Signal
I/O
Description
GPT
GTETRGA,
GTETRGB
Input
External trigger input pin
GTIOC0A to
GTIOC9A, GTIOC0B
to GTIOC9B
I/O
Input capture, Output capture, or PWM output pin
GTIU
Input
Hall sensor input pin U
GTIV
Input
Hall sensor input pin V
GTIW
Input
Hall sensor input pin W
GTOUUP
Output
3-phase PWM output for BLDC motor control (positive U phase)
AGT
RTC
SCI
IIC
SSIE
SPI
GTOULO
Output
3-phase PWM output for BLDC motor control (negative U phase)
GTOVUP
Output
3-phase PWM output for BLDC motor control (positive V phase)
GTOVLO
Output
3-phase PWM output for BLDC motor control (negative V phase)
GTOWUP
Output
3-phase PWM output for BLDC motor control (positive W phase)
GTOWLO
Output
3-phase PWM output for BLDC motor control (negative W phase)
AGTEE0, AGTEE1
Input
External event input enable
AGTIO0, AGTIO1
I/O
External event input and pulse output
AGTO0, AGTO1
Output
Pulse output
AGTOA0, AGTOA1
Output
Output compare match A output
AGTOB0, AGTOB1
Output
Output compare match B output
RTCOUT
Output
Output pin for 1-Hz/64-Hz clock
RTCIC0 to RTCIC2
Input
Time capture event input pins
SCK0 to SCK4,
SCK9
I/O
Input/output pins for the clock (clock synchronous mode)
RXD0 to RXD4,
RXD9
Input
Input pins for received data (asynchronous mode/clock synchronous mode)
TXD0 to TXD4,
TXD9
Output
Output pins for transmitted data (asynchronous mode/clock synchronous
mode)
CTS0_RTS0 to
CTS4_RTS4,
CTS9_RTS9
I/O
Input/output pins for controlling the start of transmission and reception
(asynchronous mode/clock synchronous mode), active-low
SCL0 to SCL4,
SCL9
I/O
Input/output pins for the I2C clock (simple IIC)
SDA0 to SDA4,
SDA9
I/O
Input/output pins for the I2C data (simple IIC)
SCK0 to SCK4,
SCK9
I/O
Input/output pins for the clock (simple SPI)
MISO0 to MISO4,
MISO9
I/O
Input/output pins for slave transmission of data (simple SPI)
MOSI0 to MOSI4,
MOSI9
I/O
Input/output pins for master transmission of data (simple SPI)
Slave-select input pins (simple SPI), active-low
SS0 to SS4, SS9
Input
SCL0 to SCL2
I/O
Input/output pins for clock
SDA0 to SDA2
I/O
Input/output pins for data
SSIBCK0
I/O
SSIE serial bit clock pin
SSILRCK0/SSIFS0
I/O
Word select pins
SSITXD0
Output
Serial data output pins
SSIRXD0
Input
Serial data input pins
AUDIO_CLK
Input
External clock pin for audio (input oversampling clock)
RSPCKA, RSPCKB
I/O
Clock input/output pin
MOSIA, MOSIB
I/O
Input/output pins for data output from the master
MISOA, MISOB
I/O
Input/output pins for data output from the slave
SSLA0, SSLB0
I/O
Input/output pins for slave selection
SSLA1, SSLA2,
SSLA3, SSLB1,
SSLB2, SSLB3
Output
Output pins for slave selection
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 22 of 145
S3A1 Datasheet
1. Overview
Function
Signal
I/O
Description
QSPI
QSPCLK
Output
QSPI clock output pin
CAN
USBFS
SDHI
Analog power
supply
QSSL
Output
QSPI slave output pin
QIO0
I/O
Master transmit data/data 0
QIO1
I/O
Master input data/data 1
QIO2, QIO3
I/O
Data 2, Data 3
CRX0
Input
Receive data
CTX0
Output
Transmit data
VSS_USB
Input
Ground pins
VCC_USB_LDO
Input
Power supply pin for USB LDO regulator
VCC_USB
I/O
Input: Power supply pin for USB transceiver.
Output: USB LDO regulator output pin. This pin should be connected to an
external capacitor.
USB_DP
I/O
D+ I/O pin of the USB on-chip transceiver. This pin should be connected to
the D+ pin of the USB bus.
USB_DM
I/O
D– I/O pin of the USB on-chip transceiver. This pin should be connected to
the D– pin of the USB bus.
USB_VBUS
Input
USB cable connection monitor pin. This pin should be connected to VBUS
on the USB bus. The VBUS pin status (connected or disconnected) can be
detected when the USB module is operating as a device controller.
USB_EXICEN
Output
Low power control signal for external power supply (OTG) chip
USB_VBUSEN
Output
VBUS (5 V) supply enable signal for external power supply chip
USB_OVRCURA,
USB_OVRCURB
Input
Connect the external overcurrent detection signals to these pins. Connect
the VBUS comparator signals to these pins when the OTG power supply
chip is connected.
USB_ID
Input
Connect the MicroAB connector ID input signal to this pin during operation
in OTG mode
SD0CLK
Output
SD clock output pin
SD0CMD
I/O
SD command output, response input signal pin
SD0DAT0 to
SD0DAT7
I/O
SD data bus pins
SD0CD
Input
SD card detection pin
SD0WP
Input
SD write-protect signal
AVCC0
Input
Analog voltage supply pin
AVSS0
Input
Analog voltage supply ground pin
VREFH0
Input
Analog reference voltage supply pin
VREFL0
Input
Reference power supply ground pin
VREFH
Input
Analog reference voltage supply pin for D/A converter
Analog reference ground pin for D/A converter
VREFL
Input
AN000 to AN027
Input
Input pins for the analog signals to be processed by the A/D converter
ADTRG0
Input
Input pins for the external trigger signals that start the A/D conversion,
active-low
DAC12
DA0
Output
Output pins for the analog signals to be processed by the D/A converter
Comparator output
VCOUT
Output
Comparator output pin
ACMPLP
CMPREF0,
CMPREF1
Input
Reference voltage input pins
CMPIN0, CMPIN1
Input
Analog voltage input pins
OPAMP
AMP0+ to AMP3+
Input
Analog voltage input pins
AMP0- to AMP3-
Input
Analog voltage input pins
AMP0O to AMP3O
Output
Analog voltage output pins
TS00 to TS13,
TS17 to TS22,
TS27 to TS31,
TS34, TS35
Input
Capacitive touch detection pins (touch pins)
TSCAP
—
Secondary power supply pin for the touch driver
ADC14
CTSU
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 23 of 145
S3A1 Datasheet
1. Overview
Function
Signal
I/O
Description
I/O ports
P000 to P015
I/O
General-purpose input/output pins
SLCDC
P100 to P115
I/O
General-purpose input/output pins
P200
Input
General-purpose input pin
P201 to P206,
P212, P213
I/O
General-purpose input/output pins
P214, P215
Input
General-purpose input pins
P300 to P315
I/O
General-purpose input/output pins
P400 to P415
I/O
General-purpose input/output pins
P500 to P507,
P511, P512
I/O
General-purpose input/output pins
P600 to P606,
P608 to P614
I/O
General-purpose input/output pins
P700 to P705,
P708 to P713
I/O
General-purpose input/output pins
P800 to P809
I/O
General-purpose input/output pins
P900 to P902, P914,
P915
I/O
General-purpose input/output pins
VL1, VL2, VL3, VL4
I/O
Voltage pin for driving the LCD
CAPH, CAPL
I/O
Capacitor connection pin for the LCD controller/driver
COM0 to COM7
Output
Common signal output pins for the LCD controller/driver
SEG00 to SEG53
Output
Segment signal output pins for the LCD controller/driver
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 24 of 145
S3A1 Datasheet
1.6
1. Overview
Pin Assignments
Figure 1.3 to Figure 1.9 show the pin assignments.
R7FS3A17C2A01CLK
13
12
A
B
C
D
E
P407
P409
P412
P708
P711
P410
P414
P915/
P914/
USB_DM USB_DP
F
G
H
J
K
L
M
N
VCC
P212
/EXTAL
P215
/XCIN
VCL
P702
P405
P402
P400
13
P710
VSS
P213
/XTAL
P214
/XCOUT
VBATT
P701
P404
P511
VCC
12
11
VCC_
USB
VSS_
USB
VCC_
USB_LDO
P411
P415
P712
P705
P704
P703
P403
P401
P512
VSS
11
10
P205
P206
P204
P408
P413
P709
P713
P700
P406
P003
P000
P002
P001
10
9
P203
P313
P202
P314
P004
P006
P009
P008
9
8
P900
P901
P200
P315
P005
AVSS0
P011
P010
/VREFL0 /VREFH0
8
7
VSS
P902
RES
P310
P007
AVCC0
P013
/VREFL
P012
/VREFH
7
6
VCC
P201/MD
P312
P305
P505
P506
P015
P014
6
5
P309
P311
P308
P303
NC
P503
P504
VSS
VCC
5
4
P307
P306
P304
P109/TDO
/SWO
P114
P608
P604
P600
P105
P500
P502
P501
P507
4
3
P808
P809
P301
P112
P115
P610
P614
P603
P107
P106
P104
P803
P802
3
2
P302
P300/TCK
/SWCLK
P111
P806
P609
P612
VSS
P605
P601
P805
P800
P101
P801
2
P108/TMS
P110/TDI
/SWDIO
P113
P807
P611
P613
VCC
P606
P602
P804
P103
P102
P100
1
C
D
E
F
G
H
J
K
L
1
A
Figure 1.3
B
M
N
Pin assignment for 145-pin LGA (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 25 of 145
VSS
VCC
P614
P613
P612
P611
P610
P609
P608
P807
P806
P115
P114
P113
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
91
90
89
88
87
85
83
81
79
76
75
74
73
P606
92
77
P604
P605
94
78
P602
P603
96
80
P601
97
82
P805
P600
99
84
P804
100
86
P107
101
93
P106
102
95
P104
P105
104
98
P102
P103
103
P101
106
105
P100
107
1. Overview
108
S3A1 Datasheet
P800
109
72
P300/TCK/SWCLK
P801
110
71
P301
P802
111
70
P302
P803
112
69
P303
P500
113
68
P501
114
67
P809
P808
P502
P503
115
66
P304
116
65
P305
P504
117
64
P306
P505
118
63
P307
P506
119
62
P308
P507
120
61
P309
VCC
121
60
P310
VSS
122
59
P311
P015
123
58
P312
P014
124
57
P013/VREFL
P012/VREFH
125
56
P200
P201/MD
55
RES
AVCC0
127
54
VCC
AVSS0
128
53
VSS
P011/VREFL0
129
52
P902
P010VREFH0
130
51
P901
P009
P008
131
50
P900
132
49
P315
P007
133
48
P006
134
47
P314
P313
P005
135
46
P004
136
45
P202
P203
P003
137
44
P204
P002
138
43
P205
P001
P000
139
42
P206
140
41
VCC_USB_LDO
VSS
VCC
P512
141
40
142
39
143
38
VCC_USB
P914/USB_DP
P915/USB_DM
P511
144
37
VSS_USB
Figure 1.4
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
P704
P705
VBATT
VCL
P215/XCIN
P214/XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P713
P712
P711
P710
P709
P708
P415
P414
P413
P412
P411
P410
P409
P408
P407
10
9
P701
P702
5
P404
P405
8
4
P403
7
3
P402
P406
P700
2
P401
6
1
P400
P703
R7FS3A17C3A01CFB
126
Pin assignment for 144-pin LQFP (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 26 of 145
S3A1 Datasheet
1. Overview
R7FS3A17C2A01CBJ
11
10
Figure 1.5
A
B
C
D
E
F
G
H
J
K
L
P407
P408
P411
P414
P212/
EXTAL
P215/
XCIN
VCL
P406
P403
P401
P400
11
P410
P415
P213/
XTAL
P214/
XCOUT
VBATT
P405
P402
P511
P512
10
P915/
P914/
USB_DM USB_DP
9
VCC_
USB
VSS_
USB
P409
P412
P708
VCC
VSS
P404
P002
P001
P000
9
8
P205
VCC_
USB_
LDO
P206
P204
P413
P710
P702
P006
P004
P003
P005
8
7
P203
P202
P313
P314
P315
P709
P701
P007
AVSS0
P011/
P010/
7
VREFL0 VREFH0
6
VSS
VCC
RES
P201/MD
P200
NC
P700
P008
AVCC0
P013/
VREFL
P012/
VREFH
6
5
P308
P309
P307
P302
P304
P612
P601
P506
P505
P015
P014
5
4
P305
P306
P808
P114
P611
P603
P600
P504
P503
VSS
VCC
4
3
P809
P303
P110/TDI
P111
P609
P604
P106
P104
P502
P500
P501
3
2
P301
P108/
TMS/
SWDIO
P113
P608
P613
P605
P602
P105
P102
P801
P800
2
1
P300/
TCK/
SWCLK
P109/
TDO/
SWO
P112
P115
P610
VCC
VSS
P107
P103
P101
P100
1
A
B
C
D
E
F
G
H
J
K
L
Pin assignment for 121-pin BGA (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 27 of 145
Figure 1.6
P100
P101
P102
P103
P104
P105
P106
P107
P600
P601
P602
P603
VSS
VCC
P610
P609
P608
P115
P114
P113
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1. Overview
75
S3A1 Datasheet
P500
76
50
P501
77
49
P300/TCK/SWCLK
P301
P502
78
48
P302
P503
79
47
P303
P504
80
46
P809
P505
81
45
P808
VCC
82
44
P304
VSS
83
43
P305
P015
84
42
P306
P014
85
41
P307
P013/VREFL
86
40
P200
P012/VREFH
87
39
P201/MD
AVCC0
88
38
RES
AVSS0
89
37
VCC
P011/VREFL0
90
36
VSS
P010/VREFH0
91
35
P202
P008
92
34
P203
P007
93
33
P204
P006
94
32
P205
P005
95
31
P206
P004
96
30
VCC_USB_LDO
P003
97
29
VCC_USB
P002
98
28
P914/USB_DP
P001
99
27
P915/USB_DM
P000
100
26
VSS_USB
14
15
16
17
18
19
20
21
22
23
24
25
P212/EXTAL
VCC
P708
P415
P414
P413
P412
P411
P410
P409
P408
P407
9
VCL
13
8
VBATT
P213/XTAL
7
P406
12
6
P405
VSS
5
P404
11
4
P403
P214/XCOUT
3
P402
10
2
P401
P215/XCIN
1
P400
R7FS3A17C3A01CFP
Pin assignment for 100-pin LQFP (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 28 of 145
S3A1 Datasheet
1. Overview
R7FS3A17C2A01CLJ
10
9
Figure 1.7
A
B
C
D
E
F
G
H
J
K
P407
P409
P412
VCC
P212/
EXTAL
P215/
XCIN
VCL
P403
P400
P000
10
P413
VSS
P213/
XTAL
P214/
XCOUT
VBATT
P405
P401
P001
9
P915/
P914/
USB_DM USB_DP
8
VCC_
USB
VSS_
USB
VCC_US
B_LDO
P411
P415
P708
P404
P003
P004
P002
8
7
P205
P204
P206
P408
P414
P406
P006
P007
P008
P005
7
6
VSS
VCC
P202
P203
P410
P402
P505
AVSS0
P011/
P010/
6
VREFL0 VREFH0
5
P200
P201/MD
P307
RES
P113
P600
P504
AVCC0
P013/
VREFL
P012/
VREFH
5
4
P305
P304
P808
P306
P115
P601
P503
P100
P015
P014
4
3
P809
P303
P110/TDI
P111
P609
P602
P107
P103
VSS
VCC
3
2
P300/
TCK/
SWCLK
P302
P301
P114
P610
P603
P106
P101
P501
P502
2
1
P108/
TMS/
SWDIO
P109/
TDO/
SWO
P112
P608
VCC
VSS
P105
P104
P102
P500
1
A
B
C
D
E
F
G
H
J
K
Pin assignment for 100-pin LGA (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 29 of 145
Figure 1.8
P100
P101
P102
P103
P104
P105
P106
P107
VSS
VCC
P113
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
1. Overview
48
S3A1 Datasheet
P500
49
32
P300/TCK/SWCLK
P501
50
31
P301
P502
51
30
P302
P015
52
29
P303
P014
53
28
P304
P013/VREFL
54
27
P200
P012/VREFH
55
26
P201/MD
AVCC0
56
25
RES
AVSS0
57
24
P204
P011/VREFL0
58
23
P205
P010/VREFH0
59
22
P206
P004
60
21
VCC_USB_LDO
P003
61
20
VCC_USB
P002
62
19
P914/USB_DP
P001
63
18
P915/USB_DM
P000
64
17
VSS_USB
8
9
10
11
12
13
14
15
16
P213/XTAL
P212/EXTAL
VCC
P411
P410
P409
P408
P407
VCL
VSS
5
VBATT
7
4
P402
6
3
P401
P215/XCIN
2
P214/XCOUT
1
P400
R7FS3A17C3A01CFM
Pin assignment for 64-pin LQFP (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 30 of 145
33
34
35
36
37
38
39
40
41
42
43
44
P102
P103
P104
P105
P106
P107
VSS
VCC
P113
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
45
46
47
P100
P101
1. Overview
48
S3A1 Datasheet
P500
P501
P502
P015
P014
P013/VREFL
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010/VREFH0
P004
P003
P002
P001
49
32
50
31
58
23
59
22
60
21
61
20
62
19
63
18
P300/TCK/SWCLK
P301
P302
P303
P304
P200
P201/MD
RES
P204
P205
P206
VCC_USB_LDO
VCC_USB
P914/USB_DP
P915/USB_DM
51
30
52
29
53
28
54
27
55
26
P000
64
17
VSS_USB
24
16
15
14
13
12
11
10
9
8
7
6
5
4
25
P400
P401
P402
VBATT
VCL
P215/XCIN
P214/XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P411
P410
P409
P408
P407
3
R7FS3A17C3A01CNB
1
57
2
56
Figure 1.9
Pin assignment for 64-pin QFN (top view)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 31 of 145
S3A1 Datasheet
Pin Lists
N13 1
L11 1
J10 1
1
CACREF
IRQ0
P400 -
AGTIO1 -
GTIOC6A -
L11 2
K11 2
J9
2
2
-
IRQ5
P401 -
-
M1 3
3
J10 3
F6
3
3
VBATWIO0 IRQ4
P402 -
AGTIO0/ AGTIO1
-
K11 4
J11 4
H10 -
-
VBATWIO1 -
P403 -
AGTIO0/ AGTIO1
GTIOC3A RTCIC1
GTETRGA GTIOC6B -
RTCIC0
-
SCK1
SCK4
CTSU
SLCDC
ACMPLP
ADC14
SDHI
SSIE
HMI
DAC12, OPAMP
Analog
SPI/QSPI
IIC
SCI
USBFS, CAN
RTC
GPT
GPT_OPS, POEG
Communication interfaces
AGT
I/O port
External bus
Timers
Power, System, Clock,
Debug, CAC, VBATT
QFN64
LQFP64
LGA100
LQFP100
BGA121
LQFP144
LGA145
Pin number
Interrupt
1.7
1. Overview
SCL0
-
AUDIO_C LK
-
-
-
SEG4
TS20
CTX0 TXD1/ SDA0
MOSI1
/SDA1
CTS4_
RTS4/
SS4
-
-
-
-
-
-
SEG5
TS19
CRX0 RXD1/ MISO1
/SCL1
-
-
-
-
-
-
SEG6
TS18
-
CTS1_ RTS1/
SS1
-
SSIBCK0
-
-
-
-
-
TS17
L12 5
H9
5
G8
-
-
VBATWIO2 -
P404 -
-
-
GTIOC3B RTCIC2
-
-
-
-
SSILRCK0 /SSIFS0
-
-
-
-
-
L13 6
H10 6
H9
-
-
-
-
P405 -
-
-
GTIOC1A -
-
-
-
-
SSITXD0
-
-
-
-
-
-
J10 7
H11 7
F7
-
-
-
-
P406 -
-
-
GTIOC1B -
-
-
-
SSLA3
SSIRXD0 -
-
-
-
-
-
H10 8
G6
-
-
-
-
-
-
P700 -
-
-
GTIOC5A -
-
-
-
MISOA
-
-
-
-
-
-
-
K12 9
G7
-
-
-
-
-
-
P701 -
-
-
GTIOC5B -
-
-
-
MOSIA
-
-
-
-
-
-
-
K13 10
G8
-
-
-
-
-
-
P702 -
-
-
GTIOC6A -
-
-
-
RSPCKA -
-
-
-
-
-
-
J11 11
-
-
-
-
-
-
-
P703 -
-
-
GTIOC6B -
-
-
-
SSLA0
-
-
-
-
VCOUT -
-
H11 12
-
-
-
-
-
-
-
P704 -
AGTO0
-
-
-
-
-
-
SSLA1
-
-
-
-
-
-
-
G11 13
-
-
-
-
-
-
-
P705 -
AGTIO0 -
-
-
-
-
-
SSLA2
-
-
-
-
-
-
-
J12 14
G10 8
G9
4
4
VBATT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J13 15
G11 9
G10 5
5
VCL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H13 16
F11 10
F10 6
6
XCIN
-
P215 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H12 17
F10 11
F9
7
7
XCOUT
-
P214 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F12 18
G9
12
D9
8
8
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G12 19
E10 13
E9
9
9
XTAL
IRQ2
P213 -
-
GTETRGA GTIOC0A -
-
TXD1/ MOSI1
/SDA1
-
-
-
-
-
-
-
-
G13 20
E11 14
E10 10 10
EXTAL
IRQ3
P212 -
AGTEE1 GTETRGB GTIOC0B -
-
RXD1/ MISO1
/SCL1
-
-
-
-
-
-
-
-
F13 21
F9
15
D10 11
11
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G10 22
-
-
-
-
-
-
-
P713 -
AGTOA0 -
GTIOC2A -
-
-
-
-
-
-
-
-
-
-
-
F11 23
-
-
-
-
-
-
-
P712 -
AGTOB0 -
GTIOC2B -
-
-
-
-
-
-
-
-
-
-
-
E13 24
-
-
-
-
-
-
-
P711
AGTEE0 -
-
-
-
CTS1_ RTS1/
SS1
-
-
-
-
-
-
-
-
E12 25
F8
-
-
-
-
-
-
P710 A17 -
-
-
-
-
SCK1
-
-
-
-
-
-
-
-
-
F10 26
F7
-
-
-
-
-
IRQ10 P709 -
-
-
-
-
-
TXD1/ MOSI1
/SDA1
-
-
-
-
-
-
-
-
D13 27
E9
16
F8
-
-
-
IRQ11 P708 -
-
-
-
-
-
RXD1/ MISO1
/SCL1
SSLA3
-
-
-
-
-
-
-
E11 28
D10 17
E8
-
-
-
IRQ8
P415 -
-
-
GTIOC0A -
-
-
-
SSLA2
-
SD0CD
-
-
-
-
-
D12 29
D11 18
E7
-
-
-
IRQ9
P414 -
-
-
GTIOC0B -
-
-
-
SSLA1
-
SD0WP
-
-
-
-
-
E10 30
E8
19
C9
-
-
-
-
P413 -
-
GTOUUP
-
-
-
CTS0_ RTS0/
SS0
SSLA0
-
SD0CLK
-
-
-
-
-
C13 31
D9
20
C10 -
-
-
-
P412 -
-
GTOULO
-
-
-
SCK0
RSPCKA -
SD0CMD -
-
-
-
-
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
-
-
-
-
-
Page 32 of 145
S3A1 Datasheet
1. Overview
CTSU
SLCDC
ACMPLP
ADC14
SDHI
SSIE
HMI
DAC12, OPAMP
Analog
SPI/QSPI
IIC
SCI
USBFS, CAN
RTC
GPT
GPT_OPS, POEG
Communication interfaces
AGT
I/O port
Interrupt
External bus
Timers
Power, System, Clock,
Debug, CAC, VBATT
QFN64
LQFP64
LGA100
LQFP100
BGA121
LQFP144
LGA145
Pin number
D11 32
C11 21
D8
12 12
-
IRQ4
P411
-
AGTOA1 GTOVUP
GTIOC9A -
-
TXD0/ MOSI0
/SDA0
CTS3_
RTS3/
SS3
MOSIA
-
SD0DAT0 -
-
-
SEG7
TS7
C12 33
C10 22
E6
13 13
-
IRQ5
P410 -
AGTOB1 GTOVLO
GTIOC9B -
-
SCK3 RXD0/
MISO0
/SCL0
MISOA
-
SD0DAT1 -
-
-
SEG8
TS6
B13 34
C9
B10 14 14
-
IRQ6
P409 -
-
GTOWUP GTIOC5A -
USB_ TXD3/ EXIC MOSI3
/SDA3
EN
-
-
-
-
-
-
SEG9
TS5
D10 35
B11 24
D7
15 15
-
IRQ7
P408 -
-
GTOWLO GTIOC5B -
USB_ CTS1_ SCL0
ID
RTS1/
SS1
RXD3/
MISO3
/SCL3
-
-
-
-
-
-
SEG10 TS4
A13 36
A11 25
A10 16 16
-
-
P407 -
AGTIO0 -
-
RTCOUT USB_ CTS4_ SDA0
VBUS RTS4/
SS4
SSLB3
-
-
ADTR
G0
-
-
SEG11 TS3
B11 37
B9
26
B8
17 17
VSS_USB -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A12 38
A10 27
A9
18 18
-
-
P915 -
-
-
-
-
USB_ DM
-
-
-
-
-
-
-
-
-
B12 39
B10 28
B9
19 19
-
-
P914 -
-
-
-
-
USB_ DP
-
-
-
-
-
-
-
-
-
A11 40
A9
29
A8
20 20
VCC_USB -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C11 41
B8
30
C8
21 21
VCC_USB _LDO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B10 42
C8
31
C7
22 22
-
IRQ0
P206 WAI T
GTIU
-
-
USB_ RXD4/ SDA1
VBUS MISO4
/SCL4
EN
SSLB1
-
SD0DAT2 -
-
-
SEG12 TS1
A10 43
A8
32
A7
23 23
CLKOUT
IRQ1
P205 A16 AGTO1
GTIV
GTIOC4A -
USB_
OVR
CUR
A
TXD4/ SCL1
MOSI4
/SDA4
CTS9_
RTS9/
SS9
SSLB0
-
SD0DAT3 -
-
-
SEG20 TSCAP
C10 44
D8
33
B7
24 24
CACREF
-
P204 A18 AGTIO1 GTIW
GTIOC4B -
USB_ SCK4
OVR SCK9
CUR
B
RSPCKB -
SD0DAT4 -
-
-
SEG23 TS0
A9
45
A7
34
D6
-
-
-
IRQ2
P203 A19 -
-
GTIOC5A -
-
CTS2_ RTS2/
SS2
TXD9/
MOSI9
/SDA9
MOSIB
-
SD0DAT5 -
-
-
SEG22 TSCAP
C9
46
B7
35
C6
-
-
-
IRQ3
P202 WR1 /BC1
-
GTIOC5B -
-
SCK2 RXD9/
MISO9
/SCL9
MISOB
-
SD0DAT6 -
-
-
SEG21 -
B9
47
C7
-
-
-
-
-
-
P313 A20 -
-
-
-
-
-
-
-
-
SD0DAT7 -
-
-
-
-
D9
48
D7
-
-
-
-
-
-
P314 A21 -
-
-
-
-
-
-
-
-
-
ADTR
G0
-
-
-
-
D8
49
E7
-
-
-
-
-
-
P315 A22 -
-
-
-
-
RXD4/ MISO4
/SCL4
-
-
-
-
-
-
-
-
A8
50
-
-
-
-
-
-
-
P900 A23 -
-
-
-
-
TXD4/ MOSI4
/SDA4
-
-
-
-
-
-
-
-
B8
51
-
-
-
-
-
-
-
P901 -
AGTIO1 -
-
-
-
SCK4
-
-
-
-
-
-
-
-
-
B7
52
-
-
-
-
-
-
-
P902 -
AGTO1
-
-
-
-
CTS4_ RTS4/
SS4
-
-
-
-
-
-
-
-
A7
53
A6
36
A6
-
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A6
54
B6
37
B6
-
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C7
55
C6
38
D5
25 25
RES
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B6
56
D6
39
B5
26 26
MD
-
P201 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
23
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
SCL0
Page 33 of 145
S3A1 Datasheet
1. Overview
-
CTSU
SLCDC
ACMPLP
ADC14
SDHI
SSIE
HMI
DAC12, OPAMP
Analog
SPI/QSPI
IIC
SCI
USBFS, CAN
RTC
GPT
GPT_OPS, POEG
Communication interfaces
AGT
I/O port
Interrupt
External bus
Timers
Power, System, Clock,
Debug, CAC, VBATT
QFN64
LQFP64
LGA100
LQFP100
BGA121
LQFP144
LGA145
Pin number
C8
57
E6
40
A5
27 27
-
NMI
P200 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C6
58
-
-
-
-
-
-
-
P312 CS3 AGTOA1 -
-
-
-
CTS3_ RTS3/
SS3
-
-
-
-
-
-
-
-
B5
59
-
-
-
-
-
-
-
P311
CS2 AGTOB1 -
-
-
-
SCK3
-
-
-
-
-
-
-
-
D7
60
-
-
-
-
-
-
-
P310 A15 AGTEE1 -
-
-
-
TXD3/ MOSI3
/SDA3
QIO3
-
-
-
-
-
-
-
A5
61
B5
-
-
-
-
-
-
P309 A14 -
-
-
-
-
RXD3/ MISO3
/SCL3
QIO2
-
-
-
-
-
-
-
C5
62
A5
-
-
-
-
-
-
P308 A13 -
-
-
-
-
-
-
QIO1
-
-
-
-
-
SEG13 -
A4
63
C5
41
C5
-
-
-
-
P307 A12 -
-
-
-
-
-
-
QIO0
-
-
-
-
-
SEG14 -
-
-
B4
64
B4
42
D4
-
-
-
-
P306 A11 -
-
-
-
-
-
-
QSSL
-
-
-
-
SEG15 -
D6
65
A4
43
A4
-
-
-
IRQ8
P305 A10 -
-
-
-
-
-
-
QSPCLK -
SD0CD
-
-
-
SEG16 -
C4
66
E5
44
B4
28 28
-
IRQ9
P304 A09 -
-
GTIOC7A -
-
-
-
-
-
SD0WP
-
-
-
SEG17 TS11
A3
67
C4
45
C4
-
-
-
-
P808 -
-
-
-
-
-
-
-
-
-
SD0CLK
-
-
-
SEG18 -
B3
68
A3
46
A3
-
-
-
-
P809 -
-
-
-
-
-
-
-
-
-
SD0CMD -
-
-
SEG19 -
D5
69
B3
47
B3
29 29
-
-
P303 A08 -
-
GTIOC7B -
-
-
-
-
-
SD0DAT0 -
-
-
SEG3/ TS2
COM7
A2
70
D5
48
B2
30 30
-
IRQ5
P302 A07 -
GTOUUP
GTIOC4A -
-
TXD2/ MOSI2
/SDA2
SSLB3
-
-
-
-
-
SEG2/ TS8
COM6
C3
71
A2
49
C2
31 31
-
IRQ6
P301 A06 AGTIO0 GTOULO
GTIOC4B -
-
RXD2/ MISO2
/SCL2
CTS9_
RTS9/
SS9
SSLB2
-
-
-
-
-
SEG1/ TS9
COM5
B2
72
A1
50
A2
32 32
TCK/
SWCLK
-
P300 -
-
GTOUUP
GTIOC0A -
-
-
-
SSLB1
-
-
-
-
-
-
-
A1
73
B2
51
A1
33 33
TMS/
SWDIO
-
P108 -
-
GTOULO
GTIOC0B -
-
CTS9_ RTS9/
SS9
SSLB0
-
-
-
-
-
-
-
D4
74
B1
52
B1
34 34
TDO/SWO/ CLKOUT
P109 -
-
GTOVUP
GTIOC1A -
CTX0 SCK1 TXD9/
MOSI9
/SDA9
MOSIB
-
-
-
-
-
SEG52 TS10
B1
75
C3
53
C3
35 35
TDI
IRQ3
P110
-
-
GTOVLO
GTIOC1B -
CRX0 CTS2_ RTS2/
SS2
RXD9/
MISO9
/SCL9
MISOB
-
-
-
-
VCOUT SEG53 -
C2
76
D3
54
D3
36 36
-
IRQ4
P111
A05 -
-
GTIOC3A -
-
SCK2
SCK9
RSPCKB -
-
-
-
-
CAPH TS12
D3
77
C1
55
C1
37 37
-
-
P112
A04 -
-
GTIOC3B -
-
TXD2/ MOSI2
/SDA2
SCK1
SSLB0
SSIBCK0
-
-
-
-
CAPL
C1
78
C2
56
E5
38 38
-
-
P113
A03 -
-
GTIOC2A -
-
RXD2/ MISO2
/SCL2
-
SSILRCK0 /SSIFS0
-
-
-
SEG0/ TS27
COM4
E4
79
D4
57
D2
-
-
-
-
P114
A02 -
-
GTIOC2B -
-
-
-
-
SSIRXD0 -
-
-
-
SEG24 TS29
E3
80
D1
58
E4
-
-
-
-
P115
A01 -
-
GTIOC4A -
-
-
-
-
SSITXD0
-
-
-
-
SEG25 TS35
D2
81
-
-
-
-
-
-
-
P806 -
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG26 -
D1
82
-
-
-
-
-
-
-
P807 -
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG27 -
F4
83
D2
59
D1
-
-
-
-
P608 A00/ BC0
-
GTIOC4B -
-
-
-
-
-
SD0DAT1 -
-
-
SEG28 -
E2
84
E3
60
E3
-
-
-
-
P609 CS1 -
-
GTIOC5A -
-
-
-
-
-
SD0DAT2 -
-
-
SEG29 -
F3
85
E1
61
E2
-
-
-
-
P610 CS0 -
-
GTIOC5B -
-
-
-
-
-
SD0DAT3 -
-
-
SEG30 -
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
-
TSCAP
Page 34 of 145
S3A1 Datasheet
1. Overview
CTSU
SLCDC
ACMPLP
ADC14
SDHI
SSIE
HMI
DAC12, OPAMP
Analog
SPI/QSPI
IIC
SCI
USBFS, CAN
RTC
GPT
GPT_OPS, POEG
Communication interfaces
AGT
I/O port
Interrupt
External bus
Timers
Power, System, Clock,
Debug, CAC, VBATT
QFN64
LQFP64
LGA100
LQFP100
BGA121
LQFP144
LGA145
Pin number
E1
86
E4
-
-
-
-
-
-
P611
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG31 -
F2
87
F5
-
-
-
-
-
-
P612 D08 -
-
-
-
-
-
-
-
-
-
-
-
-
SEG32 -
F1
88
E2
-
-
-
-
-
-
P613 D09 -
-
-
-
-
-
-
-
-
-
-
-
-
SEG33 -
-
-
-
-
-
-
P614 D10 -
-
-
-
-
-
-
-
-
-
-
-
-
SEG34 -
G3 89
G1 90
F1
62
E1
39 39
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G2 91
G1
63
F1
40 40
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H1
92
-
-
-
-
-
-
-
P606 -
-
-
-
RTCOUT -
-
-
-
-
-
-
-
-
SEG35 -
H2
93
F2
-
-
-
-
-
-
P605 D11 -
-
GTIOC8A -
-
-
-
-
-
-
-
-
-
SEG36 -
G4 94
F3
-
-
-
-
-
-
P604 D12 -
-
GTIOC8B -
-
-
-
-
-
-
-
-
-
SEG37 -
H3
95
F4
64
F2
-
-
-
-
P603 D13 -
-
GTIOC7A -
-
CTS9_ RTS9/
SS9
-
-
SD0DAT4 -
-
-
SEG38 -
J1
96
G2
65
F3
-
-
-
-
P602 EBC LK
-
GTIOC7B -
-
TXD9/ MOSI9
/SDA9
-
-
SD0DAT5 -
-
-
SEG39 -
J2
97
G5
66
F4
-
-
-
-
P601 WR/ WR0
-
GTIOC6A -
-
RXD9/ MISO9
/SCL9
-
-
SD0DAT6 -
-
-
SEG40 -
H4
98
G4
67
F5
-
-
-
-
P600 RD
-
-
GTIOC6B -
-
SCK9
-
-
-
SD0DAT7 -
-
-
SEG41 -
K2
99
-
-
-
-
-
-
-
P805
-
-
GTIOC9A -
-
-
-
-
-
-
-
-
-
SEG42 -
K1
100 -
-
-
-
-
-
-
P804
-
-
GTIOC9B -
-
-
-
-
-
-
-
-
-
SEG43 -
J3
101 H1
68
G3
41 41
-
KR07
P107 D07 -
-
GTIOC8A -
-
-
-
-
-
-
-
-
-
COM3 -
K3
102 G3
69
G2
42 42
-
KR06
P106 D06 -
-
GTIOC8B -
-
-
-
SSLA3
-
-
-
-
-
COM2 -
J4
103 H2
70
G1
43 43
-
KR05/ P105 D05 IRQ0
GTETRGA GTIOC1A -
-
-
-
SSLA2
-
-
-
-
-
COM1 TS34
L3
104 H3
71
H1
44 44
-
KR04/ P104 D04 IRQ1
GTETRGB GTIOC1B -
-
RXD0/ MISO0
/SCL0
SSLA1
-
-
-
-
-
COM0 TS13
L1
105 J1
72
H3
45 45
-
KR03
P103 D03 -
GTOWUP GTIOC2A -
CTX0 CTS0_ RTS0/
SS0
SSLA0
-
-
AN019 -
CMPRE VL4
F1
-
M1 106 J2
73
J1
46 46
-
KR02
P102 D02 AGTO0
GTOWLO GTIOC2B -
CRX0 SCK0 TXD2/
MOSI2
/SDA2
RSPCKA -
-
AN020/ ADTR
G0
CMPIN1 VL3
-
M2 107 K1
74
H2
47 47
-
KR01/ P101 D01 AGTEE0 GTETRGB GTIOC5A IRQ1
-
TXD0/ SDA1
MOSI0
/SDA0
CTS1_
RTS1/
SS1
MOSIA
-
-
AN021 -
CMPRE VL2
F0
-
N1
108 L1
75
H4
48 48
-
KR00/ P100 D00 AGTIO0 GTETRGA GTIOC5B IRQ2
-
RXD0/ SCL1
MISO0
/SCL0
SCK1
MISOA
-
-
AN022 -
CMPIN0 VL1
-
L2
109 L2
-
-
-
-
-
-
P800 D14 -
-
-
-
-
-
-
-
-
-
-
-
-
SEG44 -
N2
110 K2
-
-
-
-
-
-
P801 D15 -
-
-
-
-
-
-
-
-
-
-
-
-
SEG45 -
N3
111 -
-
-
-
-
-
-
P802 -
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG46 -
M3 112 -
-
-
-
-
-
-
P803 -
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG47 -
K4
113 K3
76
K1
49 49
-
-
P500 -
AGTOA0 GTIU
GTIOC2A -
USB_ VBUS
EN
-
QSPCLK -
-
AN016 -
CMPRE SEG48 F1
M4 114 L3
77
J2
50 50
-
IRQ11 P501 -
AGTOB0 GTIV
GTIOC2B -
USB_ TXD3/ OVR MOSI3
CUR /SDA3
A
QSSL
-
-
AN017 -
CMPIN1 SEG49 -
L4
78
K2
51 51
-
IRQ12 P502 -
-
GTIOC3B -
USB_ RXD3/ OVR MISO3
CUR /SCL3
B
QIO0
-
-
AN018 -
CMPRE SEG50 F0
115 J3
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
GTIW
Page 35 of 145
S3A1 Datasheet
1. Overview
CTSU
SLCDC
ACMPLP
ADC14
SDHI
SSIE
HMI
DAC12, OPAMP
Analog
SPI/QSPI
IIC
SCI
USBFS, CAN
RTC
GPT
GPT_OPS, POEG
Communication interfaces
AGT
I/O port
Interrupt
External bus
Timers
Power, System, Clock,
Debug, CAC, VBATT
QFN64
LQFP64
LGA100
LQFP100
BGA121
LQFP144
LGA145
Pin number
K5
116 J4
79
G4
-
-
-
-
P503 -
-
GTETRGA -
-
USB_ CTS2_ EXIC RTS2/
SS2
EN
SCK3
QIO1
-
-
AN023 -
CMPIN0 SEG51 -
L5
117 H4
80
G5
-
-
-
-
P504 ALE -
GTETRGB -
-
USB_ SCK2 ID
CTS3_
RTS3/
SS3
QIO2
-
-
AN024 -
-
-
-
K6
118 J5
81
G6
-
-
-
IRQ14 P505 -
-
-
-
-
-
RXD2/ MISO2
/SCL2
QIO3
-
-
AN025 -
-
-
-
L6
119 H5
-
-
-
-
-
IRQ15 P506 -
-
-
-
-
-
TXD2/ MOSI2
/SDA2
-
-
-
AN026 -
-
-
-
N4
120 -
-
-
-
-
-
-
P507 -
-
-
-
-
-
-
-
-
-
-
AN027 -
-
-
-
N5
121 L4
82
K3
-
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M5 122 K4
83
J3
-
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M6 123 K5
84
J4
52 52
-
IRQ7
P015 -
-
-
-
-
-
-
-
-
-
-
AN010 -
-
-
TS28
N6
124 L5
85
K4
53 53
-
-
P014 -
-
-
-
-
-
-
-
-
-
-
AN009 DA0
-
-
-
M7 125 K6
86
J5
54 54
VREFL
-
P013 -
-
-
-
-
-
-
-
-
-
-
AN008 AMP1+ -
-
-
N7
126 L6
87
K5
55 55
VREFH
-
P012 -
-
-
-
-
-
-
-
-
-
-
AN007 AMP1-
-
-
-
L7
127 J6
88
H5
56 56
AVCC0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L8
128 J7
89
H6
57 57
AVSS0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M8 129 K7
90
J6
58 58
VREFL0
IRQ15 P011
-
-
-
-
-
-
-
-
-
-
-
AN006 AMP2+ -
-
TS31
N8
91
K6
59 59
VREFH0
IRQ14 P010 -
-
-
-
-
-
-
-
-
-
-
AN005 AMP2-
-
-
TS30
M9 131 -
-
-
-
-
-
IRQ13 P009 -
-
-
-
-
-
-
-
-
-
-
AN015 -
-
-
-
N9
132 H6
92
J7
-
-
-
IRQ12 P008 -
-
-
-
-
-
-
-
-
-
-
AN014 -
-
-
-
K7
133 H7
93
H7
-
-
-
P007 -
-
-
-
-
-
-
-
-
-
-
AN013 AMP3O -
-
-
L9
134 H8
94
G7
-
-
-
IRQ11 P006 -
-
-
-
-
-
-
-
-
-
-
AN012 AMP3-
-
-
-
K8
135 L8
95
K7
-
-
-
IRQ10 P005 -
-
-
-
-
-
-
-
-
-
-
AN011 AMP3+ -
-
-
K9
136 J8
96
J8
60 60
-
IRQ3
-
-
-
-
-
-
-
-
-
-
AN004 AMP2O -
-
-
130 L7
P004 -
K10 137 K8
97
H8
61 61
-
-
P003 -
-
-
-
-
-
-
-
-
-
-
AN003 AMP1O -
-
-
M1 138 J9
0
98
K8
62 62
-
IRQ2
P002 -
-
-
-
-
-
-
-
-
-
-
AN002 AMP0O -
-
-
N10 139 K9
99
K9
63 63
-
IRQ7
P001 -
-
-
-
-
-
-
-
-
-
-
AN001 AMP0-
-
TS22
L10 140 L9
100 K10 64 64
-
IRQ6
P000 -
-
-
-
-
-
-
-
-
-
-
AN000 AMP0+ -
N11 141 -
-
-
-
-
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N12 142 -
-
-
-
-
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M11 143 L10 -
-
-
-
-
IRQ14 P512 -
-
-
GTIOC0A -
CTX0 TXD4/ SCL2
MOSI4
/SDA4
-
-
-
-
-
-
-
-
M1 144 K10 2
-
-
-
-
IRQ15 P511
-
-
-
GTIOC0B -
CRX0 RXD4/ SDA2
MISO4
/SCL4
-
-
-
-
-
-
-
-
E5
-
-
-
NC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F6
-
-
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
-
-
-
-
TS21
Page 36 of 145
S3A1 Datasheet
2.
2. Electrical Characteristics
Electrical Characteristics
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:
VCC*1 = AVCC0 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5 V, VRERH = VREFH0 = 1.6 to AVCC0, VBATT =
1.6 to 3.6 V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0 V, Ta = Topr.
Note 1. The typical condition is set to VCC = 3.3V.
Note 2. When USBFS is not used.
Figure 2.1 shows the timing conditions.
For example P100
C
VOH = VCC × 0.7, VOL = VCC × 0.3
VIH = VCC × 0.7, VIL = VCC × 0.3
Load capacitance C = 30 pF
Figure 2.1
Input or output timing measurement conditions
The measurement conditions of timing specifications in each peripheral are recommended for the best peripheral
operation. However, make sure to adjust driving abilities of each pin to meet your conditions.
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function
pin is mixed, the AC specification of each function is not guaranteed.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 37 of 145
S3A1 Datasheet
2.1
2. Electrical Characteristics
Absolute Maximum Ratings
Table 2.1
Absolute maximum ratings
Parameter
Power supply voltage
Input voltage
ports*1
Symbol
Value
Unit
VCC
–0.5 to +6.5
V
Vin
–0.3 to +6.5
V
P000 to P015
Vin
–0.3 to AVCC0 + 0.3
V
Others
Vin
–0.3 to VCC + 0.3
V
VREFH0
–0.3 to +6.5
V
5V-tolerant
Reference power supply voltage
VREFH
V
VBATT power supply voltage
VBATT
–0.5 to +6.5
V
Analog power supply voltage
AVCC0
–0.5 to +6.5
V
USB power supply voltage
VCC_USB
–0.5 to +6.5
V
VCC_USB_LDO
–0.5 to +6.5
V
VAN
–0.3 to AVCC0 + 0.3
V
–0.3 to VCC + 0.3
V
Analog input voltage
When AN000 to AN015 are
used
When AN016 to AN027 are
used
LCD voltage
VL1 voltage
VL1
–0.3 to +2.8
V
VL2 voltage
VL2
–0.3 to +6.5
V
VL3 voltage
VL3
–0.3 to +6.5
V
VL4 voltage
VL4
–0.3 to +6.5
V
Topr
–40 to +105
°C
Operating temperature*2, *3, *4
–40 to +85
Storage temperature
Tstg
–55 to +125
°C
Note 1.
Note 2.
Note 3.
Ports P205, P206, P400 to P404, P407, P408, P511, P512 are 5V-tolerant.
See section 2.2.1, Tj/Ta Definition.
Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the
systematic reduction of load for improved reliability.
Note 4. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering.
Caution:
Permanent damage to the MCU may result if absolute maximum ratings are exceeded.
To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics
between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins,
between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 μF
as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect
capacitors as stabilization capacitance.
Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. The capacitor must be placed close to the pin.
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that
results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in
the device at this time might cause degradation of internal elements.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 38 of 145
S3A1 Datasheet
Table 2.2
2. Electrical Characteristics
Recommended operating conditions
Parameter
Symbol
Value
Min
Typ
Max
Unit
Power supply voltages
VCC*1, *2
When USBFS is not
used
1.6
-
5.5
V
When USBFS is used VCC_USB
USB Regulator
Disable
-
3.6
V
When USBFS is used VCC_USB
USB Regulator
_LDO
Enable
-
5.5
V
-
0
-
V
-
VCC
-
V
When USBFS is used 3.0
USB Regulator
Disable
(Input)
3.3
3.6
V
When USBFS is not
used
-
VCC
-
V
When USBFS is used
USB Regulator
Disable
-
VCC
-
V
-
5.5
V
-
0
-
V
When the battery
backup function is not
used
-
VCC
-
V
When the battery
backup function is
used
1.6
-
3.6
V
AVCC0*1, *2
1.6
-
5.5
V
AVSS0
-
0
-
V
1.6
-
AVCC0
V
VSS
USB power supply voltages
VCC_USB
VCC_USB_LDO
When USBFS is not
used
When USBFS is used 3.8
USB Regulator
Enable
VSS_USB
VBATT power supply voltage
Analog power supply voltages
VBATT
VREFH0
VREFL0
VREFH
VREFL
Note 1.
Note 2.
When used as
ADC14 Reference
When used as
DAC12 Reference
-
0
-
V
1.6
-
AVCC0
V
-
0
-
V
Use AVCC0 and VCC under the following conditions:
AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 ≥ 2.2 V
AVCC0 = VCC when VCC < 2.2V or AVCC0 < 2.2V.
When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 39 of 145
S3A1 Datasheet
2.2
2. Electrical Characteristics
DC Characteristics
2.2.1
Tj/Ta Definition
Table 2.3
DC characteristics
Conditions: Products with operating temperature (Ta) –40 to +105°C
Parameter
Symbol
Typ
Max
Unit
Test conditions
Permissible junction temperature
Tj
-
125
°C
High-speed mode
Middle-speed mode
Low-voltage mode
Low-speed mode
Subosc-speed mode
105*1
Note:
Note 1.
Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC – VOH) × ΣIOH + VOL ×
ΣIOL + ICCmax × VCC.
The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise, it
is 125°C.
2.2.2
I/O VIH, VIL
Table 2.4
I/O VIH, VIL (1)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 2.7 to 5.5 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter
Schmitt trigger
input voltage
Input voltage
(except for
Schmitt trigger
input pin)
IIC*1
(except for SMBus)
Typ
Max
Unit
Test conditions
V
-
VIH
VCC × 0.7
-
5.8
VIL
-
-
VCC × 0.3
∆VT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
∆VT
VCC × 0.1
-
-
IIC (SMBus)*2
VIH
2.2
-
-
VCC = 3.6 to 5.5 V
VIH
2.0
-
-
VCC = 2.7 to 3.6 V
VIL
-
-
0.8
-
VIH
VCC × 0.8
-
5.8
VIL
-
-
VCC × 0.2
VIH
VCC_USB × 0.8
-
VCC_USB + 0.3
VIL
-
-
VCC_USB × 0.2
VIH
AVCC0 × 0.8
-
-
VIL
-
-
AVCC0 × 0.2
EXTAL
D00 to D15
Input ports pins except for
P000 to P015, P914, P915
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
P402, P403, P404
VIH
VBATT × 0.8
-
VBATT + 0.3
VIL
-
-
VBATT × 0.2
∆VT
VBATT × 0.05
-
-
ports*3
P914, P915
P000 to P015
Note 1.
Note 2.
Note 3.
Min
RES, NMI
Other peripheral input pins
excluding IIC
5V-tolerant
When VBATT
power supply is
selected
Symbol
P205, P206, P400, P401, P407, P408, P511, P512 (total 8 pins).
P100, P101, P204, P205, P206, P400, P401, P407, P408, P511, P512 (total 11 pins).
P205, P206, P400 to P404, P407, P408, P511, P512 (total 11 pins).
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 40 of 145
S3A1 Datasheet
Table 2.5
2. Electrical Characteristics
I/O VIH, VIL (2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
V
-
Schmitt trigger
input voltage
RES, NMI
Peripheral input pins
Input voltage
(except for
Schmitt trigger
input pin)
5V-tolerant ports*1
VIL
-
-
VCC × 0.2
P914, P915
VIH
VCC_USB × 0.8
-
VCC_USB + 0.3
VIL
-
-
VCC_USB × 0.2
P000 to P015
VIH
AVCC0 × 0.8
-
-
VIL
-
-
AVCC0 × 0.2
EXTAL
D00 to D15
Input ports pins except for
P000 to P015, P914, P915
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
P402, P403, P404
VIH
VBATT × 0.8
-
VBATT + 0.3
VIL
-
-
VBATT × 0.2
∆VT
VBATT × 0.01
-
-
When VBATT
power supply is
selected
Note 1.
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
∆VT
VCC × 0.01
-
-
VIH
VCC × 0.8
-
5.8
P205, P206, P400 to P404, P407, P408, P511, P512 (total 11 pins)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 41 of 145
S3A1 Datasheet
2.2.3
Table 2.6
2. Electrical Characteristics
I/O IOH, IOL
I/O IOH, IOL (1 of 2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V
Parameter
Permissible output current
(average value per pin)
Ports P212, P213
Port P408
-
Low
drive*1
Middle drive for IIC
Fast-mode*4
VCC = 2.7 to 5.5 V
Middle drive*2
VCC = 3.0 to 5.5 V
Port P409
Low drive*1
Middle drive*2
VCC = 2.7 to 3.0 V
Middle drive*2
VCC = 3.0 to 5.5 V
Ports P100 to P115,
P201 to P204, P300 to P315,
P500 to P503, P600 to P606,
P608 to P614, P800 to P809,
P900 to P902
(total 67 pins)
Low drive*1
Ports P914, P915
-
Other output pin*3
Low drive*1
Middle drive*2
Middle drive*2
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Symbol
Min
Typ
Max
Unit
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–8.0
mA
IOL
-
-
8.0
mA
IOH
-
-
–20.0
mA
IOL
-
-
20.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–8.0
mA
IOL
-
-
8.0
mA
IOH
-
-
–20.0
mA
IOL
-
-
20.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
8.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–8.0
mA
IOL
-
-
8.0
mA
Page 42 of 145
S3A1 Datasheet
Table 2.6
2. Electrical Characteristics
I/O IOH, IOL (2 of 2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V
Parameter
Permissible output current
(Max value per pin)
Ports P212, P213
-
Port P408
Low drive*1
Middle drive for IIC
Fast-mode*4
VCC = 2.7 to 5.5 V
Middle drive*2
VCC = 3.0 to 5.5 V
Port P409
Low drive*1
Middle drive*2
VCC = 2.7 to 3.0 V
Middle drive*2
VCC = 3.0 to 5.5 V
Ports P100 to P115,
P201 to P204, P300 to P315,
P500 to P503, P600 to P606,
P608 to P614, P800 to P809,
P900 to P902
(total 67 pins)
Ports P914, P915
Other output pin*3
Low
drive*1
Middle
drive*2
-
Low
drive*1
Middle drive*2
Permissible output current
(max value total pins)
Total of ports P000 to P015
Ports P914, P915
Total of all output pin*5
Caution:
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Symbol
Min
Typ
Max
Unit
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–8.0
mA
IOL
-
-
8.0
mA
IOH
-
-
–20.0
mA
IOL
-
-
20.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–8.0
mA
IOL
-
-
8.0
mA
IOH
-
-
–20.0
mA
IOL
-
-
20.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
8.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
–8.0
mA
IOL
-
-
8.0
mA
ΣIOH (max)
-
-
–30
mA
ΣIOL (max)
-
-
30
mA
ΣIOH (max)
-
-
–4.0
mA
ΣIOL (min)
-
-
4.0
mA
ΣIOH (max)
-
-
–60
mA
ΣIOL (max)
-
-
60
mA
To protect the reliability of the MCU, the output current values should not exceed the values in this table. The
average output current indicates the average value of current measured during 100 μs.
This is the value when low driving ability is selected with the Port Drive Capability bit in PmnPFS register.
This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Except for ports P200, P214, P215, which are input ports.
This is the value when middle driving ability for IIC Fast-mode is selected with the Port Drive Capability bit in PmnPFS register.
For details on the permissible output current used with CTSU, see section 2.11, CTSU Characteristics.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 43 of 145
S3A1 Datasheet
2.2.4
2. Electrical Characteristics
I/O VOH, VOL, and Other Characteristics
Table 2.7
I/O VOH, VOL (1)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 4.0 to 5.5 V
Parameter
Output voltage
IIC*1
Ports P408,
P409*2, *3
Ports P000 to P015
Low drive
Middle drive
Ports P914, P915
Other output pins*4
Low drive
Middle
drive*6
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Symbol
Min
Typ
Max
Unit
Test conditions
VOL
-
-
0.4
V
IOL = 3.0 mA
VOL*2, *5
-
-
0.6
IOL = 6.0 mA
VOH
VCC – 1.0
-
-
IOH = –20 mA
VOL
-
-
1.0
IOL = 20 mA
VOH
AVCC0 – 0.8
-
-
IOH = –2.0 mA
VOL
-
-
0.8
IOL = 2.0 mA
VOH
AVCC0 – 0.8
-
-
IOH = –4.0 mA
VOL
-
-
0.8
IOL = 4.0 mA
VOH
VCC_USB – 0.8
-
-
IOH = –2.0 mA
VOL
-
-
0.8
IOL = 2.0 mA
VOH
VCC – 0.8
-
-
IOH = –2.0 mA
VOL
-
-
0.8
IOL = 2.0 mA
VOH
VCC – 0.8
-
-
IOH = –4.0 mA
VOL
-
-
0.8
IOL = 4.0 mA
P100, P101, P204, P205, P206, P400, P401, P407, P408, P511, P512 (total 11 pins).
This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Based on characterization data, not tested in production.
Except for ports P200, P214, P215, which are input ports.
This is the value when middle driving ability for IIC is selected with the Port Drive Capability bit in PmnPFS register for P408.
Except for P212, P213.
Table 2.8
I/O VOH, VOL (2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 2.7 to 4.0 V
Parameter
Output voltage
IIC*1
Ports P408, P409*2, *3
Ports P000 to P015
Low drive
Middle drive
Ports P914, P915
Other output
pins*4
Low drive
Middle
drive*6
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Symbol
Min
Typ
Max
Unit
Test conditions
VOL
-
-
0.4
V
IOL = 3.0 mA
VOL*2, *5
-
-
0.6
IOL = 6.0 mA
VOH
VCC – 1.0
-
-
IOH = –20 mA
VCC = 3.3 V
VOL
-
-
1.0
IOL = 20 mA
VCC = 3.3 V
VOH
AVCC0 – 0.5
-
-
IOH = –1.0 mA
VOL
-
-
0.5
IOL = 1.0 mA
VOH
AVCC0 – 0.5
-
-
IOH = –2.0 mA
VOL
-
-
0.5
IOL = 2.0 mA
VOH
VCC_USB – 0.5
-
-
IOH = –1.0 mA
VOL
-
-
0.5
IOL = 1.0 mA
VOH
VCC – 0.5
-
-
IOH = –1.0 mA
VOL
-
-
0.5
IOL = 1.0 mA
VOH
VCC – 0.5
-
-
IOH = –2.0 mA
VOL
-
-
0.5
IOL = 2.0 mA
P100, P101, P204, P205, P206, P400, P401, P407, P408, P511, P512 (total 11 pins).
This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Based on characterization data, not tested in production.
Except for ports P200, P214, P215, which are input ports.
This is the value when middle driving ability for IIC is selected with the Port Drive Capability bit in PmnPFS register for P408.
Except for P212, P213.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 44 of 145
S3A1 Datasheet
Table 2.9
2. Electrical Characteristics
I/O VOH, VOL (3)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 2.7 V
Parameter
Output voltage
Ports P000 to P015
Symbol
Min
Typ
Max
Unit
Test conditions
Low drive
VOH
AVCC0 – 0.3
-
-
V
IOH = –0.5 mA
VOL
-
-
0.3
IOL = 0.5 mA
Middle drive
VOH
AVCC0 – 0.3
-
-
IOH = –1.0 mA
Ports P914, P915
Other output pins*1
Low drive
Middle
drive*2
Note 1.
Note 2.
VOL
-
-
0.3
IOL = 1.0 mA
VOH
VCC_USB – 0.3
-
-
IOH = –0.5 mA
VOL
-
-
0.3
IOL = 0.5 mA
VOH
VCC – 0.3
-
-
IOH = –0.5 mA
VOL
-
-
0.3
IOL = 0.5 mA
VOH
VCC – 0.3
-
-
IOH = –1.0 mA
VOL
-
-
0.3
IOL = 1.0 mA
Except for ports P200, P214, P215, which are input ports.
Except for P212, P213.
Table 2.10
I/O other characteristics
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Input leakage current
RES, P200, P214, P215
| Iin |
-
-
1.0
μA
Vin = 0 V
Vin = VCC
Three-state leakage
current (off state)
5V-tolerant ports
| ITSI |
-
-
1.0
μA
Vin = 0 V
Vin = 5.8 V
-
-
1.0
Other ports
(except for ports P200, P214,
P215 and 5 V tolerant)
Vin = 0 V
Vin = VCC
Input pull-up resistor
All ports
(except for ports P200, P214,
P215, P914, P915)
RU
10
20
50
kΩ
Vin = 0 V
Input capacitance
P914, P915,
P100 to P103, P111, P112,
P200
Cin
-
-
30
pF
Vin = 0 V
f = 1 MHz
Ta = 25°C
-
-
15
Other input pins
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 45 of 145
S3A1 Datasheet
2.2.5
2. Electrical Characteristics
I/O Pin Output Characteristics of Low Drive Capacity
IOH/IOL vs VOH/VOL
60
50
VCC = 5.5 V
40
30
VCC = 3.3 V
IOH/IOL [mA]
20
VCC = 2.7 V
10
VCC = 1.6 V
0
VCC = 1.6 V
-10
VCC = 2.7 V
-20
VCC = 3.3 V
-30
-40
-50
VCC = 5.5 V
-60
0
1
2
3
4
5
6
VOH/VOL [V]
Figure 2.2
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when low drive output is selected
(reference data)
IOH/IOL vs VOH/VOL
3
Ta = -40°C
Ta = 25°C
Ta = 105°C
2
IOH/IOL [mA]
1
0
-1
Ta = 105°C
Ta = 25°C
-2
Ta = -40°C
-3
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
VOH/VOL [V]
Figure 2.3
VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected
(reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 46 of 145
S3A1 Datasheet
2. Electrical Characteristics
IOH/IOL vs VOH/VOL
20
15
Ta = -40°C
Ta = 25°C
Ta = 105°C
IOH/IOL [mA]
10
5
0
-5
Ta = 105°C
Ta = 25°C
-10
Ta = -40°C
-15
-20
0
0.5
1
1.5
2
2.5
3
VOH/VOL [V]
Figure 2.4
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected
(reference data)
IOH/IOL vs VOH/VOL
30
Ta = -40°C
Ta = 25°C
Ta = 105°C
20
IOH/IOL [mA]
10
0
-10
Ta = 105°C
Ta = 25°C
-20
Ta = -40°C
-30
0
0.5
1
1.5
2
2.5
3
3.5
VOH/VOL [V]
Figure 2.5
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected
(reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 47 of 145
S3A1 Datasheet
2. Electrical Characteristics
IOH/IOL vs VOH/VOL
60
Ta = -40°C
Ta = 25°C
Ta = 105°C
40
IOH/IOL [mA]
20
0
-20
Ta = 105°C
-40
Ta = 25°C
Ta = -40°C
-60
0
1
2
3
4
5
6
VOH/VOL [V]
Figure 2.6
2.2.6
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected
(reference data)
I/O Pin Output Characteristics of Middle Drive Capacity
IOH/IOL [mA]
IOH/IOL vs VOH/VOL
140
120
100
80
60
40
20
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 1.6 V
0
-20
-40
-60
-80
-100
-120
-140
VCC = 1.6 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
0
1
2
3
4
5
6
VOH/VOL [V]
Figure 2.7
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected
(reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 48 of 145
S3A1 Datasheet
2. Electrical Characteristics
IOH/IOL vs VOH/VOL
6
Ta = -40°C
Ta = 25°C
Ta = 105°C
4
IOH/IOL [mA]
2
0
-2
Ta = 105°C
-4
Ta = 25°C
Ta = -40°C
-6
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
VOH/VOL [V]
Figure 2.8
VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is
selected (reference data)
IOH/IOL vs VOH/VOL
40
Ta = -40°C
Ta = 25°C
Ta = 105°C
30
IOH/IOL [mA]
20
10
0
-10
-20
Ta = 105°C
Ta = 25°C
-30
Ta = -40°C
-40
0
0.5
1
1.5
2
2.5
3
VOH/VOL [V]
Figure 2.9
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is
selected (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 49 of 145
S3A1 Datasheet
2. Electrical Characteristics
IOH/IOL vs VOH/VOL
60
Ta = -40°C
Ta = 25°C
40
Ta = 105°C
IOH/IOL [mA]
20
0
-20
Ta = 105°C
-40
Ta = 25°C
Ta = -40°C
-60
0
0.5
1
1.5
2
2.5
3
3.5
VOH/VOL [V]
Figure 2.10
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is
selected (reference data)
IOH/IOL [mA]
IOH/IOL vs VOH/VOL
140
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
-140
Ta = -40°C
Ta = 25°C
Ta = 105°C
Ta = 105°C
Ta = 25°C
Ta = -40°C
0
1
2
3
4
5
6
VOH/VOL [V]
Figure 2.11
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is
selected (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 50 of 145
S3A1 Datasheet
2.2.7
2. Electrical Characteristics
P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity
IOH/IOL [mA]
IOH/IOL vs VOH/VOL
200
180
160
140
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
0
1
2
3
4
5
6
VOH/VOL [V]
Figure 2.12
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected
(reference data)
IOH/IOL vs VOH/VOL
60
Ta = -40°C
Ta = 25°C
Ta = 105°C
40
IOH/IOL [mA]
20
0
-20
Ta = 105°C
-40
Ta = 25°C
Ta = -40°C
-60
0
0.5
1
1.5
2
2.5
3
VOH/VOL [V]
Figure 2.13
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is
selected (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 51 of 145
S3A1 Datasheet
2. Electrical Characteristics
IOH/IOL vs VOH/VOL
100
Ta = -40°C
Ta = 25°C
Ta = 105°C
80
60
40
IOH/IOL [mA]
20
0
-20
-40
Ta = 105°C
-60
Ta = 25°C
-80
Ta = -40°C
-100
0
0.5
1
1.5
2
2.5
3
3.5
VOH/VOL [V]
Figure 2.14
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is
selected (reference data)
IOH/IOL vs VOH/VOL
220
Ta = -40°C
Ta = 25°C
Ta = 105°C
180
140
IOH/IOL [mA]
100
60
20
-20
-60
-100
-140
Ta = 105°C
Ta = 25°C
-180
Ta = -40°C
-220
0
1
2
3
4
5
6
VOH/VOL [V]
Figure 2.15
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is
selected (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 52 of 145
S3A1 Datasheet
2.2.8
2. Electrical Characteristics
IIC I/O Pin Output Characteristics
IOL vs VOL
120
110
VCC = 5.5 V (Middle drive)
100
90
IOL [mA]
80
70
60
50
VCC = 3.3 V (Middle drive)
VCC = 5.5 V (Low drive)
40
VCC = 2.7 V (Middle drive)
30
VCC = 3.3 V (Low drive)
20
10
VCC = 2.7 V (Low drive)
0
0
1
2
3
4
5
6
VOL [V]
Figure 2.16
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 53 of 145
S3A1 Datasheet
2.2.9
Table 2.11
2. Electrical Characteristics
Operating and Standby Current
Operating and standby current (1) (1 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter
Supply
current*1
High-speed
mode*2
Normal mode
All peripheral clocks
disabled, while (1) code
executing from flash*5
All peripheral clocks
disabled, CoreMark code
executing from flash*5
All peripheral clocks
enabled, while (1) code
executing from flash*5
Sleep mode
ICLK = 48 MHz
Symbol
Typ*10
Max
Unit
Test
conditions
ICC
mA
*7
9.3
-
ICLK = 32 MHz
6.7
-
ICLK = 16 MHz
4.1
-
ICLK = 8 MHz
2.7
-
ICLK = 48 MHz
18.8
-
ICLK = 32 MHz
13.1
-
ICLK = 16 MHz
7.5
-
ICLK = 8 MHz
4.7
-
ICLK = 48 MHz
22.4
-
*9
ICLK = 32 MHz
16.9
-
*8
ICLK = 16 MHz
9.4
-
ICLK = 8 MHz
5.5
-
All peripheral clocks
enabled, code executing
from SRAM*5
ICLK = 48 MHz
-
62.0
*9
All peripheral clocks
disabled*5
ICLK = 48 MHz
4.0
-
*7
ICLK = 32 MHz
3.1
-
ICLK = 16 MHz
2.3
-
ICLK = 8 MHz
1.8
-
ICLK = 48 MHz
16.8
-
*9
ICLK = 32 MHz
13.0
-
*8
All peripheral clocks
enabled*5
ICLK = 16 MHz
7.4
-
ICLK = 8 MHz
4.5
-
Increase during BGO operation*6
Middle-speed
mode*2
Normal mode
All peripheral clocks
disabled, while (1) code
executing from flash*5
All peripheral clocks
disabled, CoreMark code
executing from flash*5
All peripheral clocks
enabled, while (1) code
executing from flash*5
Sleep mode
-
2.8
-
ICLK = 8 MHz
2.3
-
ICLK = 1 MHz
1.1
-
ICLK = 12 MHz
5.4
-
ICLK = 8 MHz
4.2
-
ICLK = 1 MHz
1.4
-
ICLK = 12 MHz
6.9
-
ICLK = 8 MHz
5.1
-
ICC
ICLK = 1 MHz
1.7
-
All peripheral clocks
enabled, code executing
from SRAM*5
ICLK = 12 MHz
-
25.0
All peripheral clocks
disabled*5
ICLK = 12 MHz
1.5
-
ICLK = 8 MHz
1.4
-
All peripheral clocks
enabled*5
Increase during BGO operation*6
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
2.5
ICLK = 12 MHz
ICLK = 1 MHz
1.0
-
ICLK = 12 MHz
5.4
-
ICLK = 8 MHz
4.1
-
ICLK = 1 MHz
1.6
-
2.5
-
mA
*7
*8
*7
*8
-
Page 54 of 145
S3A1 Datasheet
Table 2.11
2. Electrical Characteristics
Operating and standby current (1) (2 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter
Supply
current*1
Low-speed
mode*3
Normal mode
Sleep mode
Low-voltage
mode*3
Normal mode
Sleep mode
Suboscspeed
mode*4
Normal mode
Sleep mode
Symbol
Typ*10
Max
Unit
Test
conditions
ICC
0.4
-
mA
*7
All peripheral clocks
disabled, while (1) code
executing from flash*5
ICLK = 1 MHz
All peripheral clocks
disabled, CoreMark code
executing from flash*5
ICLK = 1 MHz
0.6
-
All peripheral clocks
enabled, while (1) code
executing from flash*5
ICLK = 1 MHz
1.1
-
All peripheral clocks
enabled, code executing
from SRAM*5
ICLK = 1 MHz
-
2.6
All peripheral clocks
disabled*5
ICLK = 1 MHz
0.3
-
*7
All peripheral clocks
enabled*5
ICLK = 1 MHz
1.0
-
*8
All peripheral clocks
disabled, while (1) code
executing from flash*5
ICLK = 4 MHz
2.2
-
All peripheral clocks
disabled, CoreMark code
executing from flash*5
ICLK = 4 MHz
3.3
-
All peripheral clocks
enabled, while (1) code
executing from flash*5
ICLK = 4 MHz
3.7
-
All peripheral clocks
enabled, code executing
from SRAM*5
ICLK = 4 MHz
-
10.0
All peripheral clocks
disabled*5
ICLK = 4 MHz
1.7
-
*7
All peripheral clocks
enabled*5
ICLK = 4 MHz
3.2
-
*8
All peripheral clocks
disabled, while (1) code
executing from flash*5
ICLK = 32.768 kHz
10.0
-
All peripheral clocks
enabled, while (1) code
executing from flash*5
ICLK = 32.768 kHz
17.9
-
All peripheral clocks
enabled, code executing
from SRAM*5
ICLK = 32.768 kHz
-
154.0
All peripheral clocks
disabled*5
ICLK = 32.768 kHz
6.3
-
All peripheral clocks
enabled*5
ICLK = 32.768 kHz
14.0
-
ICC
ICC
*8
mA
*7
*8
μA
*8
Note 1.
Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Note 2. The clock source is HOCO.
Note 3. The clock source is MOCO.
Note 4. The clock source is the sub-clock oscillator.
Note 5. This does not include BGO operation.
Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.
Note 7. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64.
Note 8. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are the same frequency as that of ICLK.
Note 9. FCLK, BCLK, and PCLKB are set to divided by 2 and PCLKA, PCLKC, and PCLKD are the same frequency as that of ICLK.
Note 10. VCC = 3.3 V.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 55 of 145
S3A1 Datasheet
2. Electrical Characteristics
Figure 2.17
Voltage dependency in high-speed mode (reference data)
Figure 2.18
Voltage dependency in middle-speed mode (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 56 of 145
S3A1 Datasheet
2. Electrical Characteristics
Figure 2.19
Voltage dependency in low-speed mode (reference data)
Figure 2.20
Voltage dependency in low-voltage mode (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 57 of 145
S3A1 Datasheet
Figure 2.21
Table 2.12
2. Electrical Characteristics
Voltage dependency in Subosc-speed mode (reference data)
Operating and standby current (2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Symbol
Typ*4
Max
Unit
Test conditions
ICC
0.9
5.5
μA
Ta = 55°C
1.6
10.5
PSMCR.PSMC[1:0] = 01b (48-KB
SRAM on)
Ta = 85°C
4.5
25.4
Ta = 105°C
12.0
64.7
Ta = 25°C
1.1
7.0
Parameter
Supply
current*1
Note 1.
Note 2.
Note 3.
Note 4.
Software Standby
mode*2
Ta = 25°C
PSMCR.PSMC[1:0] = 00b (All SRAM
on)
Ta = 55°C
2.0
14.6
Ta = 85°C
6.6
36.2
Ta = 105°C
17.6
96.3
Increment for RTC operation with
low-speed on-chip oscillator*3
0.5
-
-
Increment for RTC operation with
sub-clock oscillator*3
0.4
-
SOMCR.SODRV[1:0] are 11b
(Low power mode 3)
1.2
-
SOMCR.SODRV[1:0] are 00b
(Normal mode)
Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
The IWDT and LVD are not operating.
Includes the current of sub-oscillation circuit or low-speed on-chip oscillator.
VCC = 3.3 V.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 58 of 145
S3A1 Datasheet
2. Electrical Characteristics
Figure 2.22
Temperature dependency in Software Standby mode 48-KB SRAM on (reference data)
Figure 2.23
Temperature dependency in Software Standby mode all SRAM on (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 59 of 145
S3A1 Datasheet
Table 2.13
2. Electrical Characteristics
Operating and standby current (3)
Conditions: VCC = AVCC0 = 0 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter
Supply
current*1
Note 1.
RTC operation
when VCC is off
Symbol
Typ
Max
Unit
Test conditions
ICC
0.8
-
μA
Ta = 55°C
0.9
-
VBATT = 2.0 V
SOMCR.SORDRV[1:0] = 11b
(Low power mode 3)
Ta = 85°C
1.1
-
Ta = 105°C
1.2
-
Ta = 25°C
0.9
-
Ta = 55°C
1.0
-
Ta = 85°C
1.2
-
Ta = 105°C
1.3
-
Ta = 25°C
Ta = 25°C
1.6
-
Ta = 55°C
1.8
-
Ta = 85°C
2.1
-
Ta = 105°C
2.3
-
Ta = 25°C
1.7
-
Ta = 55°C
1.9
-
Ta = 85°C
2.2
-
Ta = 105°C
2.4
-
VBATT = 3.3 V
SOMCR.SORDRV[1:0] = 11b
(Low power mode 3)
VBATT = 2.0 V
SOMCR.SORDRV[1:0] = 00b
(Normal mode)
VBATT = 3.3 V
SOMCR.SORDRV[1:0] = 00b
(Normal mode)
Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Figure 2.24
Temperature dependency of RTC operation with VCC off (reference data)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 60 of 145
S3A1 Datasheet
Table 2.14
2. Electrical Characteristics
Operating and standby current (4)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VREFH0 = 2.7 V to AVCC0
Parameter
Analog power
supply current
Reference
power supply
current
Symbol
During A/D conversion (at high-speed conversion)
Typ
Max
Unit
Test
conditions
-
-
3.0
mA
-
During A/D conversion (at low power conversion)
-
-
1.0
mA
-
During D/A conversion (per channel)*1
-
0.4
0.8
mA
-
Waiting for A/D and D/A conversion (all units)*6
-
-
1.0
μA
-
-
-
150
μA
-
-
-
60
nA
-
-
50
100
μA
-
During A/D conversion
IAVCC
Min
IREFH0
Waiting for A/D conversion (all units)
During D/A conversion
IREFH
-
-
100
μA
-
Temperature sensor
Waiting for D/A conversion (all units)
ITNS
-
75
-
μA
-
Low-Power
Analog
Comparator
operating
current
Window mode
ICMPLP
-
15
-
μA
-
Comparator High-speed mode
-
10
-
μA
-
Comparator Low-speed mode
-
2
-
μA
-
-
820
-
μA
-
Operational
Amplifier
operating
current
Low power mode
-
2.5
4.0
μA
-
2 units operating
-
4.5
8.0
μA
-
3 units operating
-
6.5
11.0
μA
-
4 units operating
-
8.5
14.0
μA
-
Comparator Low-speed mode using DAC8
High speed mode
1 unit operating
IAMP
1 unit operating
-
140
220
μA
-
2 units operating
-
280
410
μA
-
3 units operating
-
420
600
μA
-
4 units operating
LCD operating
current
USB operating
current
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
-
560
780
μA
-
External resistance division method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD1*5
-
0.34
-
μA
-
Internal voltage boosting method (VLCD.VLCD = 04)
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD2*5
-
0.92
-
μA
-
Capacitor split method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD3*5
-
0.19
-
μA
-
During USB communication operation under the
following settings and conditions:
Host controller operation is set to full-speed mode
Bulk OUT transfer (64 bytes) × 1,
bulk IN transfer (64 bytes) × 1
Connect peripheral devices via a 1-meter USB
cable from the USB port.
IUSBH*2
-
4.3 (VCC)
0.9 (VCC_USB)*4
-
mA
-
During USB communication operation under the
following settings and conditions:
Device controller operation is set to full-speed mode
Bulk OUT transfer (64 bytes) × 1,
bulk IN transfer (64 bytes) × 1
Connect the host device via a 1-meter USB cable
from the USB port.
IUSBF*2
-
3.6 (VCC)
1.1 (VCC_USB)*4
-
mA
-
During suspended state under the following setting
and conditions:
Device controller operation is set to full-speed mode
(pull up the USB_DP pin)
Software standby mode
Connect the host device via a 1-meter USB cable
from the USB port.
ISUSP*3
-
0.35 (VCC)
170 (VCC_USB)*4
-
μA
-
The reference power supply current is included in the power supply current value for D/A conversion.
Current consumed only by the USBFS.
Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition
to the current consumed by the MCU during the suspended state.
When VCC = VCC_USB = 3.3 V.
Current flowing only to the LCD controller. Not including the current that flows through the LCD panel.
When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 Module Stop bit) is in the module-stop
state.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 61 of 145
S3A1 Datasheet
2.2.10
2. Electrical Characteristics
VCC Rise and Fall Gradient and Ripple Frequency
Table 2.15
Rise and fall gradient characteristics
Conditions: VCC = AVCC0 = 0 to 5.5 V
Parameter
Power-on VCC
rising gradient
Note 1.
Note 2.
Symbol
Min
Typ
Max
Unit
Test conditions
SrVCC
0.02
-
2
ms/V
-
Voltage monitor 0 reset enabled at startup*1
0.02
-
-
SCI/USB Boot mode*2
0.02
-
2
Voltage monitor 0 reset disabled at startup (normal
startup)
When OFS1.LVDAS = 0.
At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.
Table 2.16
Rising and falling gradient and ripple frequency characteristics
Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit
(1.6 V).
When VCC change exceeds VCC ± 10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Allowable ripple frequency
fr(VCC)
-
-
10
kHz
Figure 2.25
Vr(VCC) ≤ VCC × 0.2
-
-
1
MHz
Figure 2.25
Vr(VCC) ≤ VCC × 0.08
-
-
10
MHz
Figure 2.25
Vr(VCC) ≤ VCC × 0.06
1.0
-
-
ms/V
When VCC change exceeds VCC ± 10%
Allowable voltage change rising and
falling gradient
dt/dVCC
1/fr(VCC)
VCC
Figure 2.25
Vr(VCC)
Ripple waveform
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 62 of 145
S3A1 Datasheet
2.3
2. Electrical Characteristics
AC Characteristics
2.3.1
Frequency
Table 2.17
Operation frequency value in high-speed operating mode
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Symbol
Min
Typ
Max*5
Unit
f
0.032768
-
48
MHz
2.4 to 2.7 V
0.032768
-
16
2.7 to 5.5 V
0.032768
-
32
2.4 to 2.7 V
0.032768
-
16
2.7 to 5.5 V
-
-
48
2.4 to 2.7 V
-
-
16
2.7 to 5.5 V
-
-
32
2.4 to 2.7 V
-
-
16
2.7 to 5.5 V
-
-
64
2.4 to 2.7 V
-
-
16
2.7 to 5.5 V
-
-
64
2.4 to 2.7 V
-
-
16
2.7 to 5.5 V
-
-
24
2.4 to 2.7 V
-
-
16
Parameter
Operation
frequency
System clock (ICLK)*4
FlashIF clock
(FCLK)*1, *2, *4
Peripheral module clock
Peripheral module clock
Peripheral module clock
Peripheral module clock
External bus clock
EBCLK pin output
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
2.7 to 5.5 V
(PCLKA)*4
(PCLKB)*4
(PCLKC)*3, *4
(PCLKD)*4
(BCLK)*4
2.7 to 5.5 V
-
-
12
2.4 to 2.7 V
-
-
8
The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in
use.
See section 9, Clock Generation Circuit in the User’s Manual for the relationship of frequencies between ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
The maximum value of operation frequency does not include the internal oscillator errors. The operation can be guaranteed
with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 63 of 145
S3A1 Datasheet
Table 2.18
2. Electrical Characteristics
Operation frequency value in Middle-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Symbol
Min
Typ
Max*5
Unit
f
0.032768
-
12
MHz
2.4 to 2.7 V
0.032768
-
12
1.8 to 2.4 V
0.032768
-
8
2.7 to 5.5 V
0.032768
-
12
2.4 to 2.7 V
0.032768
-
12
1.8 to 2.4 V
0.032768
-
8
2.7 to 5.5 V
-
-
12
2.4 to 2.7 V
-
-
12
1.8 to 2.4 V
-
-
8
2.7 to 5.5 V
-
-
12
2.4 to 2.7 V
-
-
12
1.8 to 2.4 V
-
-
8
2.7 to 5.5 V
-
-
12
2.4 to 2.7 V
-
-
12
1.8 to 2.4 V
-
-
8
2.7 to 5.5 V
-
-
12
2.4 to 2.7 V
-
-
12
1.8 to 2.4 V
-
-
8
2.7 to 5.5 V
-
-
12
2.4 to 2.7 V
-
-
12
Parameter
Operation
frequency
System clock (ICLK)*4
FlashIF clock
2.7 to 5.5 V
(FCLK)*1, *2, *4
Peripheral module clock (PCLKA)*4
Peripheral module clock
Peripheral module clock
(PCLKB)*4
(PCLKC)*3, *4
Peripheral module clock (PCLKD)*4
External bus clock
(BCLK)*4
EBCLK pin output
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
1.8 to 2.4 V
-
-
8
2.7 to 3.6 V
-
-
12
2.4 to 2.7 V
-
-
8
1.8 to 2.4 V
-
-
8
The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
See section 9, Clock Generation Circuit in the User’s Manual for the relationship of frequencies between ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed
with errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.
Table 2.19
Operation frequency value in Low-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter
Operation
frequency
Min
Typ
Max*4
Unit
f
0.032768
-
1
MHz
System clock (ICLK)*3
1.8 to 5.5 V
FlashIF clock (FCLK)*1, *3
1.8 to 5.5 V
0.032768
-
1
Peripheral module clock (PCLKA)*3
1.8 to 5.5 V
-
-
1
(PCLKB)*3
1.8 to 5.5 V
-
-
1
1.8 to 5.5 V
-
-
1
Peripheral module clock
Peripheral module clock (PCLKC)*2, *3
Peripheral module clock
Note 1.
Note 2.
Symbol
(PCLKD)*3
1.8 to 5.5 V
-
-
1
External bus clock (BCLK)*3
1.8 to 5.5 V
-
-
1
EBCLK pin output
1.8 to 5.5 V
-
-
1
The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory.
The lower-limit frequency of PCLKC is 1 MHz when the A/D converter is in use.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 64 of 145
S3A1 Datasheet
Note 3.
Note 4.
2. Electrical Characteristics
See section 9, Clock Generation Circuit in the User’s Manual for the relationship of frequencies between ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
The maximum value of operation frequency does not include the internal oscillator errors. The operation can be guaranteed
with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.
Table 2.20
Operation frequency value in Low-voltage mode
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter
Operation
frequency
Note 4.
Note 5.
Max*5
Unit
f
0.032768
-
4
MHz
FlashIF clock (FCLK)*1, *2, *4
1.6 to 5.5 V
0.032768
-
4
Peripheral module clock (PCLKA)*4
1.6 to 5.5 V
-
-
4
(PCLKB)*4
1.6 to 5.5 V
-
-
4
1.6 to 5.5 V
-
-
4
Peripheral module clock
Note 3.
Typ
1.6 to 5.5 V
Peripheral module clock (PCLKC)*3, *4
Note 2.
Min
System clock (ICLK)*4
Peripheral module clock
Note 1.
Symbol
(PCLKD)*4
1.6 to 5.5 V
-
-
4
External bus clock (BCLK)*4
1.6 to 5.5 V
-
-
4
EBCLK pin output
1.8 to 5.5 V
-
-
4
1.6 to 1.8 V
-
-
2
The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in
use.
See section 9, Clock Generation Circuit in the User’s Manual for the relationship of frequencies between ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed
with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.
Table 2.21
Operation frequency value in Subosc-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter
Operation
frequency
Symbol
System clock
(ICLK)*3
Unit
kHz
27.8528
32.768
37.6832
27.8528
32.768
37.6832
Peripheral module clock (PCLKA)*3
1.8 to 5.5 V
-
-
37.6832
Peripheral module clock (PCLKB)*3
1.8 to 5.5 V
-
-
37.6832
1.8 to 5.5 V
-
-
37.6832
1.8 to 5.5 V
-
-
37.6832
Peripheral module clock (PCLKD)*3
External bus clock
EBCLK pin output
Note 1.
Note 2.
Note 3.
Max
1.8 to 5.5 V
(PCLKC)*2, *3
(BCLK)*3
f
Typ
FlashIF clock (FCLK)*1, *3
Peripheral module clock
1.8 to 5.5 V
Min
1.8 to 5.5 V
-
-
37.6832
1.8 to 5.5 V
-
-
37.6832
Programming and erasing the flash memory are not possible.
The 14-bit A/D converter cannot be used.
See section 9, Clock Generation Circuit in the User’s Manual for the relationship of frequencies between ICLK, PCLKA,
PCLKB, PCLKC, PCLKD, FCLK, and BCLK.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 65 of 145
S3A1 Datasheet
2.3.2
Table 2.22
2. Electrical Characteristics
Clock Timing
Clock timing (1 of 2)
Parameter
EBCLK pin output cycle time
EBCLK pin output high pulse
width
Symbol
Min
Typ
Max
Unit
Test conditions
tBcyc
83.3
-
-
ns
Figure 2.26
VCC = 1.8 V or above
125
-
-
VCC = 1.6 V or above
500
-
-
VCC = 2.7 V or above
VCC = 2.7 V or above
tCH
20
-
-
30
-
-
150
-
-
20
-
-
VCC = 1.8 V or above
30
-
-
VCC = 1.6 V or above
150
-
-
VCC = 1.8 V or above
VCC = 1.6 V or above
EBCLK pin output low pulse width
EBCLK pin output rise time
EBCLK pin output fall time
VCC = 2.7 V or above
VCC = 2.7 V or above
tCL
tCr
-
-
15
VCC = 2.4 V or above
-
-
25
VCC = 1.8 V or above
-
-
30
VCC = 1.6 V or above
-
-
50
VCC = 2.7 V or above
tCf
-
-
15
VCC = 2.4 V or above
-
-
25
VCC = 1.8 V or above
-
-
30
VCC = 1.6 V or above
-
-
50
ns
ns
ns
ns
EXTAL external clock input cycle time
tXcyc
50
-
-
ns
EXTAL external clock input high pulse width
tXH
20
-
-
ns
EXTAL external clock input low pulse width
tXL
20
-
-
ns
EXTAL external clock rising time
tXr
-
-
5
ns
EXTAL external clock falling time
tXf
-
-
5
ns
EXTAL external clock input wait time*1
tEXWT
0.3
-
-
μs
-
EXTAL external clock input frequency
fEXTAL
-
-
20
MHz
2.4 ≤ VCC ≤ 5.5
-
-
8
Main clock oscillator oscillation frequency
fMAIN
1.8 ≤ VCC < 2.4
-
-
1
1
-
20
1.6 ≤ VCC < 1.8
1
-
8
1.8 ≤ VCC < 2.4
1
-
4
1.6 ≤ VCC < 1.8
MHz
2.4 ≤ VCC ≤ 5.5
tMAINOSCWT
-
-
-*9
ms
-
fLOCO
27.8528
32.768
37.6832
kHz
-
LOCO clock oscillation stabilization time
tLOCO
-
-
100
μs
Figure 2.28
IWDT-dedicated clock oscillation frequency
fILOCO
12.75
15
17.25
kHz
-
MOCO clock oscillation frequency
fMOCO
6.8
8
9.2
MHz
-
MOCO clock oscillation stabilization time
tMOCO
-
-
1
μs
-
Main clock oscillation stabilization wait time
LOCO clock oscillation frequency
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
(crystal)*9
Figure 2.27
Page 66 of 145
S3A1 Datasheet
Table 2.22
2. Electrical Characteristics
Clock timing (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
HOCO clock oscillation frequency
fHOCO24
23.64
24
24.36
MHz
Ta = –40 to –20°C
1.8 ≤ VCC ≤ 5.5
22.68
24
25.32
Ta = –40 to 85°C
1.6 ≤ VCC < 1.8
23.76
24
24.24
Ta = –20 to 85°C
1.8 ≤ VCC ≤ 5.5
23.52
24
24.48
Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
31.52
32
32.48
Ta = –40 to -20°C
1.8 ≤ VCC ≤ 5.5
30.24
32
33.76
Ta = –40 to 85°C
1.6 ≤ VCC < 1.8
31.68
32
32.32
Ta = –20 to 85°C
1.8 ≤ VCC ≤ 5.5
31.36
32
32.64
Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
47.28
48
48.72
Ta = –40 to –20°C
1.8 ≤ VCC ≤ 5.5
47.52
48
48.48
Ta = –20 to 85°C
1.8 ≤ VCC ≤ 5.5
47.04
48
48.96
Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
63.04
64
64.96
Ta = –40 to –20°C
2.4 ≤ VCC ≤ 5.5
63.36
64
64.64
Ta = –20 to 85°C
2.4 ≤ VCC ≤ 5.5
62.72
64
65.28
Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
tHOCO24
tHOCO32
-
-
37.1
tHOCO48
-
-
43.3
fHOCO32
fHOCO48*4
fHOCO64*5
HOCO clock oscillation
stabilization time*6, *7
Except Low-voltage
mode
μs
Figure 2.29
-
tHOCO64
-
-
80.6
tHOCO24
tHOCO32
tHOCO48
tHOCO64
-
-
100.9
fPLLIN
4
-
12.5
MHz
fPLL
24
-
64
MHz
-
tPLL
-
-
55.5
μs
Figure 2.31
PLL free-running oscillation frequency
fPLLFR
-
8
-
MHz
-
Sub-clock oscillator oscillation frequency
fSUB
-
32.768
-
kHz
-
Sub-clock oscillation stabilization time*3
tSUBOSC
-
-
-*3
s
Figure 2.32
Low-voltage mode
PLL input frequency*2
PLL circuit oscillation
frequency*2
PLL clock oscillation stabilization time*8
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Note 7.
Note 8.
Note 9.
Time until the clock can be used after the Main Clock Oscillator Stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the
external clock is stable.
The VCC range that the PLL can be used is 2.4 to 5.5 V.
After changing the setting of the SOSCCR.SOSTP bit so that the sub-clock oscillator operates, only start using the sub-clock
oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time recommended by the
oscillator manufacturer.
The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.
The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.
This is a characteristic when HOCOCR.HCSTP bit is set to 0 (oscillation) in MOCO stop state.
When HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs.
Whether stabilization time has elapsed can be confirmed by OSCSF.HOCOSF.
This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in MOCO stop state.
When PLLCR.PLLSTP bit is set to 0 (operation) during MOCO oscillation, this specification is shortened by 1 μs.
When setting up the main clock, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended
stabilization time. After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the
OSCSF.MOSCSF flag to confirm that it is 1, then start using the main clock.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 67 of 145
S3A1 Datasheet
2. Electrical Characteristics
tBcyc
tCH
tCf
EBCLK pin output
tCr
tCL
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF
Figure 2.26
EBCLK pin output timing
tXcyc
tXL
tXH
EXTAL external clock input
VCC × 0.5
tXr
Figure 2.27
tXf
EXTAL external clock input timing
LOCOCR.LCSTP
tLOCO
LOCO clock oscillator output
Figure 2.28
LOCO clock oscillation start timing
HOCOCR.HCSTP
tHOCOx*1
HOCO clock
Note 1.
Figure 2.29
x = 24, 32, 48, 64
HOCO clock oscillation start timing (started by setting HOCOCR.HCSTP bit)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 68 of 145
S3A1 Datasheet
2. Electrical Characteristics
MOSCCR.MOSTP
Main clock oscillator output
tMAINOSCWT
Main clock
Figure 2.30
Main clock oscillation start timing
PLLCR.PLLSTP
tPLL
PLL clock
Figure 2.31
PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled)
SOSCCR.SOSTP
tSUBOSC
Sub-clock oscillator output
Figure 2.32
Sub-clock oscillation start timing
MOCOCR.MCSTP
tMOCO
MOCO clock oscillator output
Figure 2.33
MOCO clock oscillation start timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 69 of 145
S3A1 Datasheet
2.3.3
2. Electrical Characteristics
Reset Timing
Table 2.23
Reset timing
Symbol
Min
Typ
Max
Unit
Test
conditions
At power-on
tRESWP
3
-
-
ms
Figure 2.34
Other than above
tRESW
30
-
-
μs
Figure 2.35
tRESWT
-
0.7
-
ms
Figure 2.34
-
0.3
-
-
0.5
-
ms
Figure 2.35
-
0.05
-
-
0.6
-
-
0.15
-
Parameter
RES pulse width
Wait time after RES cancellation
(at power-on)
LVD0:
LVD0: disable*2
LVD0: enable*1
Wait time after RES cancellation
(during powered-on state)
LVD0:
Internal reset cancellation time (Watchdog
timer reset, SRAM parity error reset,
SRAM ECC error reset, Bus master MPU
error reset, Bus slave MPU error reset,
Stack pointer error reset, Software reset)
Note 1.
Note 2.
enable*1
tRESWT2
disable*2
LVD0: enable*1
tRESWT3
LVD0: disable*2
ms
When OFS1.LVDAS = 0.
When OFS1.LVDAS = 1.
VCC
RES
tRESWP
Internal reset
tRESWT
Figure 2.34
Reset input timing at power-on
tRESW
RES
Internal reset
tRESWT2
Figure 2.35
Reset input timing (1)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 70 of 145
S3A1 Datasheet
2.3.4
2. Electrical Characteristics
Wakeup Time
Table 2.24
Timing of recovery from low power modes (1)
Parameter
Recovery time
from Software
Standby mode*1
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
High-speed
mode
Typ
Max
Unit
Test
conditions
Figure 2.36
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(20 MHz)*2
tSBYMC
-
2
3
ms
System clock source is
PLL (48 MHz) with Main
clock oscillator*2
tSBYPC
-
2
3
ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(20 MHz)*3
tSBYEX
-
14
25
μs
System clock source is
PLL (48 MHz) with Main
clock oscillator*3
tSBYPE
-
53
76
μs
System clock source is HOCO*4
(HOCO clock is 32 MHz)
tSBYHO
-
43
52
μs
System clock source is HOCO*4
(HOCO clock is 48 MHz)
tSBYHO
-
44
52
μs
System clock source is HOCO*5
(HOCO clock is 64 MHz)
tSBYHO
-
82
110
μs
System clock source is MOCO
tSBYMO
-
16
25
μs
Timing of recovery from low power modes (2)
Parameter
Recovery time
from Software
Standby mode*1
Note 2.
Note 3.
Min
The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h.
The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h.
Table 2.25
Note 1.
Symbol
Middle-speed
mode
Symbol
Min
Typ
Max
Unit
Test
conditions
Figure 2.36
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(12 MHz)*2
tSBYMC
-
2
3
ms
System clock source is
PLL (24 MHz) with main
clock oscillator*2
tSBYPC
-
2
3
ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(12 MHz)*3
tSBYEX
-
2.9
10
μs
System clock source is
PLL (24 MHz) with main
clock oscillator*3
tSBYPE
-
49
76
μs
System clock source is HOCO (24 MHz)
tSBYHO
-
38
50
μs
System clock source is MOCO
tSBYMO
-
3.5
5.5
μs
The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 71 of 145
S3A1 Datasheet
Table 2.26
2. Electrical Characteristics
Timing of recovery from low power modes (3)
Parameter
Recovery time
from Software
Standby mode*1
Low-speed
mode
Note 2.
Note 3.
Unit
Test
conditions
Figure 2.36
tSBYMC
-
2
3
ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(1 MHz)*3
tSBYEX
-
28
50
μs
tSBYMO
-
25
35
μs
Timing of recovery from low power modes (4)
Recovery time
from Software
Standby mode*1
Low-voltage
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
Symbol
Min
Typ
Max
Unit
Test
conditions
tSBYMC
-
2
3
ms
Figure 2.36
tSBYEX
-
108
130
μs
tSBYHO
-
108
130
μs
(4 MHz)*2
(4 MHz)*3
System clock source is HOCO
The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be
determined by the following expression.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Table 2.28
Timing of recovery from low power modes (5)
Symbol
Min
Typ
Max
Unit
Test
conditions
System clock source is sub-clock
oscillator (32.768 kHz)
tSBYSC
-
0.85
1
ms
Figure 2.36
System clock source is LOCO
(32.768 kHz)
tSBYLO
-
0.85
1.2
ms
Parameter
Recovery time
from Software
Standby mode*1
Note 1.
Max
System clock source is
main clock oscillator
(1 MHz)*2
Parameter
Note 2.
Note 3.
Typ
The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Table 2.27
Note 1.
Min
Crystal
resonator
connected to
main clock
oscillator
System clock source is MOCO
Note 1.
Symbol
Subosc-speed mode
The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 72 of 145
S3A1 Datasheet
2. Electrical Characteristics
Oscillator
ICLK
IRQ
Software Standby mode
tSBYMC, tSBYPC, tSBYEX,
tSBYPE, tSBYMO, tSBYHO
Oscillator
ICLK
IRQ
Software Standby mode
tSBYSC, tSBYLO
Figure 2.36
Software Standby mode cancellation timing
Table 2.29
Timing of recovery from low power modes (6)
Parameter
Recovery time from
Software Standby
mode to Snooze
mode
Symbol
Min
Typ
Max
Unit
Test conditions
High-speed mode
System clock source is HOCO
tSNZ
-
36
45
μs
Figure 2.37
Middle-speed mode
System clock source is MOCO
tSNZ
-
1.3
3.6
μs
Low-speed mode
System clock source is MOCO
tSNZ
-
10
13
μs
Low-voltage mode
System clock source is HOCO
tSNZ
-
87
110
μs
Oscillator
ICLK (except DTC, SRAM)
ICLK (to DTC, SRAM)*1 PCLK
IRQ
Software Standby mode
Snooze mode
tSNZ
Note 1.
Figure 2.37
When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.
Recovery timing from Software Standby mode to Snooze mode
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 73 of 145
S3A1 Datasheet
2.3.5
2. Electrical Characteristics
NMI and IRQ Noise Filter
Table 2.30
NMI and IRQ noise filter
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
NMI pulse width
tNMIW
200
-
-
ns
NMI digital filter disabled
tPcyc × 2 ≤ 200 ns
-
-
200
-
-
NMI digital filter enabled
tNMICK × 3 ≤ 200 ns
tNMICK × 3.5*2
-
-
200
-
-
tPcyc × 2*1
-
-
200
-
-
-
-
tPcyc ×
IRQ pulse width
tIRQW
2*1
tIRQCK ×
Note:
Note 1.
Note 2.
Note 3.
3.5*3
tPcyc × 2 > 200 ns
tNMICK × 3 > 200 ns
ns
IRQ digital filter disabled
tPcyc × 2 ≤ 200 ns
tPcyc × 2 > 200 ns
IRQ digital filter enabled
tIRQCK × 3 ≤ 200 ns
tIRQCK × 3 > 200 ns
200 ns minimum in Software Standby mode.
tPcyc indicates the cycle of PCLKB.
tNMICK indicates the cycle of the NMI digital filter sampling clock.
tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 15).
NMI
tNMIW
Figure 2.38
NMI interrupt input timing
IRQ
tIRQW
Figure 2.39
IRQ interrupt input timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 74 of 145
S3A1 Datasheet
2.3.6
2. Electrical Characteristics
Bus Timing
Table 2.31
Bus timing (1)
Conditions: Low drive output is selected in the Port Drive Capability in PmnPFS register
VCC = 2.7 to 5.5 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay
tAD
-
55
ns
Byte control delay
tBCD
-
55
ns
Figure 2.42
to Figure 2.45
CS delay
tCSD
-
55
ns
ALE delay time
tALED
-
55
ns
RD delay
tRSD
-
55
ns
Read data setup time
tRDS
37
-
ns
Read data hold time
tRDH
0
-
ns
WR delay
tWRD
-
55
ns
Write data delay
tWDD
-
55
ns
Write data hold time
tWDH
0
-
ns
WAIT setup time
tWTS
37
-
ns
WAIT hold time
tWTH
0
-
ns
Table 2.32
Figure 2.46
Bus timing (2)
Conditions: Low drive output is selected in the Port Drive Capability in PmnPFS register
VCC = 2.4 to 2.7 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay
tAD
-
55
ns
Byte control delay
tBCD
-
55
ns
Figure 2.42
to Figure 2.45
CS delay
tCSD
-
55
ns
ALE delay time
tALED
-
55
ns
RD delay
tRSD
-
55
ns
Read data setup time
tRDS
45
-
ns
Read data hold time
tRDH
0
-
ns
WR delay
tWRD
-
55
ns
Write data delay
tWDD
-
55
ns
Write data hold time
tWDH
0
-
ns
WAIT setup time
tWTS
45
-
ns
WAIT hold time
tWTH
0
-
ns
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Figure 2.46
Page 75 of 145
S3A1 Datasheet
Table 2.33
2. Electrical Characteristics
Bus timing (3)
Conditions: Low drive output is selected in the Port Drive Capability in PmnPFS register
VCC = 1.8 to 2.4 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay
tAD
-
90
ns
Byte control delay
tBCD
-
90
ns
Figure 2.42
to Figure 2.45
CS delay
tCSD
-
90
ns
ALE delay time
tALED
-
90
ns
RD delay
tRSD
-
90
ns
Read data setup time
tRDS
70
-
ns
Read data hold time
tRDH
0
-
ns
WR delay
tWRD
-
90
ns
Write data delay
tWDD
-
90
ns
Write data hold time
tWDH
0
-
ns
WAIT setup time
tWTS
70
-
ns
WAIT hold time
tWTH
0
-
ns
Table 2.34
Figure 2.46
Bus timing (4)
Conditions: Low drive output is selected in the Port Drive Capability in PmnPFS register
VCC = 1.6 to 1.8 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay
tAD
-
120
ns
Byte control delay
tBCD
-
120
ns
Figure 2.42
to Figure 2.45
CS delay
tCSD
-
120
ns
ALE delay time
tALED
-
120
ns
RD delay
tRSD
-
120
ns
Read data setup time
tRDS
90
-
ns
Read data hold time
tRDH
0
-
ns
WR delay
tWRD
-
120
ns
Write data delay
tWDD
-
120
ns
Write data hold time
tWDH
0
-
ns
WAIT setup time
tWTS
90
-
ns
WAIT hold time
tWTH
0
-
ns
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Figure 2.46
Page 76 of 145
S3A1 Datasheet
2. Electrical Characteristics
Data cycle
Address cycle
Ta1
Ta1
Tan
TW1
TW2
TW3
TW4
Tend
TW5
Tn1
Tn2
EBCLK
tAD
A23 to A00
tAD
A15/D15 to A00/
D00 (Read)
tRDS
tAD
tRDH
tALED
tALED
ALE
tRSD
tRSD
RD (Read)
tCSD
tCSD
CS3 to CS0
Figure 2.40
Address/data multiplexed bus read access timing
Data cycle
Address cycle
Ta1
Ta1
Tan
TW1
TW2
TW3
TW4
TW5
Tend
Tn1
Tn2
Tn3
EBCLK
tAD
A23 to A00
A15/D15 to A00/
D00 (Write)
tAD
tAD
tALED
tWDD
tWDH
tALED
ALE
tWRD
tWRD
WR1, WR0,
WR (Write)
tCSD
tCSD
CS3 to CS0
Figure 2.41
Address/data multiplexed bus write access timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 77 of 145
S3A1 Datasheet
2. Electrical Characteristics
CSRWAIT: 2
RDON:1
CSROFF: 2
CSON: 0
TW1
TW2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
A23 to A00
1-write strobe mode
A23 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS3 to CS0
tRSD
tRSD
RD (Read)
tRDS
tRDH
D15 to D00 (Read)
Figure 2.42
External bus timing/normal read cycle (bus clock synchronized)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 78 of 145
S3A1 Datasheet
2. Electrical Characteristics
CSWWAIT: 2
WRON: 1
WDON: 1*1
CSWOFF: 2
WDOFF: 1*1
CSON:0
TW1
TW2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
A23 to A00
1-write strobe mode
A23 to A01
tBCD
tBCD
tCSD
tCSD
BC1 to BC0
Common to both byte strobe mode
and 1-write strobe mode
CS3 to CS0
tWRD
tWRD
WR1, WR0, WR (Write)
tWDD
tWDH
D15 to D00 (Write)
Note 1.
Figure 2.43
Be sure to specify WDON and WDOFF as at least 1 cycle of EBCLK.
External bus timing/normal write cycle (bus clock synchronized)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 79 of 145
S3A1 Datasheet
2. Electrical Characteristics
CSRWAIT:2
CSPRWAIT:2
RDON:1
CSON:0
TW1
TW2
Tend
CSPRWAIT:2
CSPRWAIT:2
RDON:1
RDON:1
Tpw1
Tpw2
Tend
CSROFF:2
RDON:1
Tpw1
Tpw2
Tend
Tpw1
Tpw2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
A23 to A00
1-write strobe mode
A23 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS3 to CS0
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
RD (Read)
tRDS
tRDH
tRDS
tRDH
tRDS
tRDH
tRDS
tRDH
D15 to D00 (Read)
Figure 2.44
External bus timing/page read cycle (bus clock synchronized)
CSPWWAIT:2
CSWWAIT:2
WRON:1
WDON:1*1
WDOFF:1*1
CSON:0 TW1
TW2
Tend
Tdw1
WRON:1
WDON:1*1
Tpw1
CSPWWAIT:2
WDOFF:1*1
Tpw2
Tend
Tdw1
WRON:1
WDON:1*1
Tpw1
CSWOFF:2
WDOFF:1*1
Tpw2
Tend
Tn1
Tn2
EBCLK
Byte strobe mode
tAD
tAD
tAD
tAD
tAD
tAD
tAD
tAD
A23 to A00
1-write strobe mode
A23 to A01
tBCD
tBCD
tCSD
tCSD
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
CS3 to CS0
tWRD
tWRD
tWRD
tWRD
tWRD
tWRD
WR1, WR0, WR (Write)
tWDD
tWDH
tWDD
tWDH
tWDD
tWDH
D15 to D00 (Write)
Note 1.
Figure 2.45
Be sure to specify WDON and WDOFF as at least 1 cycle of EBCLK.
External bus timing/page write cycle (bus clock synchronized)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 80 of 145
S3A1 Datasheet
2. Electrical Characteristics
CSRWAIT:3
CSWWAIT:3
TW1
TW2
TW3
(Tend)
Tend
Tn1
Tn2
EBCLK
A23 to A00
CS3 to CS0
RD (Read)
WR (Write)
External wait
tWTS tWTH
tWTS tWTH
WAIT
Figure 2.46
External bus timing/external wait control
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 81 of 145
S3A1 Datasheet
2.3.7
2. Electrical Characteristics
I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing
Table 2.35
I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing
Symbol
Min
Max
Unit
Test
conditions
Input data pulse width
tPRW
1.5
-
tPcyc
Figure 2.47
Input/output data cycle (P002, P003, P004, P007)
tPOcyc
10
-
us
tPOEW
3
-
tPcyc
Figure 2.48
tGTICW
1.5
-
tPDcyc
Figure 2.49
2.5
Figure 2.50
Parameter
I/O ports
POEG
POEG input trigger pulse width
GPT
Input capture pulse width
Single edge
Dual edge
AGT
AGTIO, AGTEE input cycle
*1
250
-
ns
2.4 V ≤ VCC < 2.7 V
500
-
ns
1.8 V ≤ VCC < 2.4 V
1000
-
ns
2.7 V ≤ VCC ≤ 5.5 V
tACYC
1.6 V ≤ VCC < 1.8 V
AGTIO, AGTEE input high level
width, low-level width
AGTIO, AGTO, AGTOA, AGTOB
output frequency
2.7 V ≤ VCC ≤ 5.5 V
2.4 V ≤ VCC < 2.7 V
tACKWH,
tACKWL
2000
-
ns
100
-
ns
200
-
ns
1.8 V ≤ VCC < 2.4 V
400
-
ns
1.6 V ≤ VCC < 1.8 V
800
-
ns
62.5
-
ns
2.7 V ≤ VCC ≤ 5.5 V
tACYC2
2.4 V ≤ VCC < 2.7 V
125
-
ns
1.8 V ≤ VCC < 2.4 V
250
-
ns
1.6 V ≤ VCC < 1.8 V
500
-
ns
Figure 2.50
ADC14
14-bit A/D converter trigger input pulse width
tTRGW
1.5
-
tPcyc
Figure 2.51
KINT
Key interrupt input low-level width
tKR
250
-
ns
Figure 2.52
Note 1.
Note:
Constraints on AGTIO input: tPcyc × 2 < tACYC
tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle
Port
tPRW
Figure 2.47
I/O ports input timing
POEG input trigger
tPOEW
Figure 2.48
POEG input trigger timing
Input capture
tGTICW
Figure 2.49
GPT input capture timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 82 of 145
S3A1 Datasheet
2. Electrical Characteristics
tACYC
tACKWL
tACKWH
AGTIO, AGTEE
(input)
tACYC2
AGTIO, AGTO,
AGTOA, AGTOB
(output)
Figure 2.50
AGT I/O timing
ADTRG0
tTRGW
Figure 2.51
ADC14 trigger input timing
KR00 to KR07
tKR
Figure 2.52
2.3.8
Key interrupt input timing
CAC Timing
Table 2.36
CAC timing
Parameter
CAC
CACREF input pulse width
tPBcyc*1 ≤ tcac*2
tPBcyc*1
Note 1.
Note 2.
>
tcac*2
Typ
Max
Unit
Test
conditions
4.5 × tcac + 3 × tPBcyc*1
-
-
ns
-
tPBcyc*1
-
-
ns
Symbol
Min
tCACREF
5 × tcac + 6.5 ×
tPBcyc: PCLKB cycle.
tcac: CAC count clock source cycle.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 83 of 145
S3A1 Datasheet
2.3.9
2. Electrical Characteristics
SCI Timing
Table 2.37
SCI timing (1)
Parameter
SCI
Symbol
Input clock cycle
Asynchronous
tScyc
Clock synchronous
Unit*1
Test
conditions
4
-
tPcyc
Figure 2.53
6
-
Input clock pulse width
tSCKW
0.4
0.6
tScyc
Input clock rise time
tSCKr
-
20
ns
tSCKf
-
20
ns
tScyc
6
-
tPcyc
4
-
0.4
0.6
tScyc
-
20
ns
-
30
Input clock fall time
Output clock cycle
Asynchronous
Clock synchronous
Output clock pulse width
Output clock rise time
tSCKW
1.8 V or above
tSCKr
1.6 V or above
Output clock fall time
1.8 V or above
tSCKf
1.6 V or above
-
20
-
30
Transmit data delay
(master)
Clock
synchronous
1.8 V or above
-
40
1.6 V or above
-
45
Transmit data delay
(slave)
Clock
synchronous
2.7 V or above
-
55
2.4 V or above
-
60
1.8 V or above
-
100
-
125
45
-
2.4 V or above
55
-
1.8 V or above
90
-
tTXD
1.6 V or above
Receive data setup
time (master)
Note 1.
Max
Min
Clock
synchronous
2.7 V or above
tRXS
ns
ns
ns
ns
1.6 V or above
110
-
2.7 V or above
40
-
45
-
5
-
ns
40
-
ns
tSCKr
tSCKf
Receive data setup
time (slave)
Clock
synchronous
Receive data hold
time (master)
Clock synchronous
tRXH
Receive data hold
time (slave)
Clock synchronous
tRXH
1.6 V or above
Figure 2.54
ns
tPcyc: PCLKA cycle.
tSCKW
SCKn
(n = 0 to 4, 9)
tScyc
Figure 2.53
SCK clock input timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 84 of 145
S3A1 Datasheet
2. Electrical Characteristics
SCKn
tTXD
TXDn
tRXS tRXH
RXDn
n = 0 to 4, 9
Figure 2.54
Table 2.38
SCI input/output timing in clock synchronous mode
SCI timing (2) (1 of 2)
Parameter
Symbol
Simple
SPI
tSPcyc
SCK clock cycle output (master)
0.4
0.6
tSPCKWL
0.4
0.6
tSPcyc
-
20
ns
-
30
45
-
2.4 V or above
55
-
1.8 V or above
80
-
1.6 V or above
tSPCKr,
tSPCKf
Data input setup
time
2.7 V or above
tSU
1.6 V or above
110
-
2.7 V or above
40
-
1.6 V or above
Master
tH
Slave
SS input setup time
SS input hold time
45
-
33.3
-
tLAG
1
-
tSPcyc
tOD
-
40
ns
1.6 V or above
-
50
Slave
2.4 V or above
-
65
1.8 V or above
-
100
1.6 V or above
-
125
–10
-
2.4 V or above
–20
-
1.8 V or above
–30
-
tOH
1.6 V or above
Master
Slave
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
1.8 V or above
tDr, tDf
–40
-
–10
-
-
20
1.6 V or above
-
30
1.8 V or above
-
20
1.6 V or above
-
30
Figure 2.56 to
Figure 2.59
ns
1
1.8 V or above
2.7 V or above
ns
40
Master
Master
tSPcyc
tLEAD
Slave
Data rise and fall
time
Figure 2.55
tSPCKWH
1.8 V or above
Data output hold
time
tPcyc
65536
SCK clock rise and fall time
Data output delay
Test conditions
65536
SCK clock low pulse width
Data input hold time
Unit
4
SCK clock high pulse width
Slave
Max
6
SCK clock cycle input (slave)
Master
Min
tSPcyc
ns
ns
Page 85 of 145
S3A1 Datasheet
Table 2.38
2. Electrical Characteristics
SCI timing (2) (2 of 2)
Parameter
Symbol
Min
Max
Unit
Test conditions
Simple
SPI
Slave access time
tSA
-
10 (PCLKA >
32 MHz),
6 (PCLKA ≤
32 MHz)
tPcyc
Figure 2.58 and
Figure 2.59
Slave output release time
tREL
-
10 (PCLKA >
32 MHz),
6 (PCLKA ≤
32 MHz)
tPcyc
tSPCKr
tSPCKWH
VOH
SCKn
master select
output
VOH
VOL
tSPCKf
VOH
VOH
VOL
tSPCKWL
VOL
tSPcyc
tSPCKr
tSPCKWH
VIH
VIH
SCKn
slave select input
VIL
(n = 0 to 4, 9)
tSPCKf
VIH
VIL
tSPCKWL
VIH
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
Figure 2.55
SCI simple SPI mode clock timing
SCKn
CKPOL = 0
output
SCKn
CKPOL = 1
output
tSU
MISOn
input
tH
MSB IN
tDr, tDf
MOSIn
output
DATA
tOH
MSB OUT
LSB IN
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
(n = 0 to 4, 9)
Figure 2.56
SCI simple SPI mode timing (master, CKPH = 1)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 86 of 145
S3A1 Datasheet
2. Electrical Characteristics
SCKn
CKPOL = 1
output
SCKn
CKPOL = 0
output
tSU
MISOn
input
tH
MSB IN
tOH
DATA
LSB IN
tOD
MOSIn
output
MSB IN
tDr, tDf
MSB OUT
DATA
LSB OUT
IDLE
MSB OUT
(n = 0 to 4, 9)
Figure 2.57
SCI simple SPI mode timing (master, CKPH = 0)
tTD
SSn
input
tLEAD
tLAG
SCKn
CKPOL = 0
input
SCKn
CKPOL = 1
input
tSA
tOH
MISOn
output
MSB OUT
tSU
MOSIn
input
tOD
DATA
tREL
LSB OUT
tH
MSB IN
MSB IN
MSB OUT
tDr, tDf
DATA
LSB IN
MSB IN
(n = 0 to 4, 9)
Figure 2.58
SCI simple SPI mode timing (slave, CKPH = 1)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 87 of 145
S3A1 Datasheet
2. Electrical Characteristics
tTD
SSn
input
tLEAD
tLAG
SCKn
CKPOL = 1
input
SCKn
CKPOL = 0
input
tSA
tOH
tOD
LSB OUT
(Last data)
MISOn
output
MSB OUT
tSU
MOSIn
input
tREL
LSB OUT
DATA
tH
MSB OUT
tDr, tDf
MSB IN
DATA
LSB IN
MSB IN
(n = 0 to 4, 9)
Figure 2.59
Table 2.39
SCI simple SPI mode timing (slave, CKPH = 0)
SCI timing (3)
Conditions: VCC = 2.7 to 5.5 V
Parameter
Simple IIC
(Standard
mode)
Simple IIC
(Fast mode)
Note 1.
Note 2.
Symbol
Min
Max
Unit
Test conditions
SDA input rise time
tSr
-
1000
ns
Figure 2.60
SDA input fall time
tSf
-
300
ns
*1
SDA input spike pulse removal time
tSP
0
4 × tIICcyc
Data input setup time
tSDAS
250
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb*2
-
400
pF
SDA input rise time
tSr
-
300
ns
SDA input fall time
tSf
-
300
ns
SDA input spike pulse removal time
tSP
0
4 × tIICcyc*1
ns
Data input setup time
tSDAS
100
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb*2
-
400
pF
ns
Figure 2.60
For all ports except
P408, use
PmnPFS.DSCR of
middle drive.
For port P408, use
PmnPFS.DSCR1/
DSCR of middle drive
for IIC
fast-mode.
tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits.
Cb indicates the total capacity of the bus line.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 88 of 145
S3A1 Datasheet
2. Electrical Characteristics
VIH
SDAn
VIL
tSr
tSf
tSP
SCLn
(n = 0 to 4, 9)
P*1
tSDAH
Note 1.
Figure 2.60
S, P, and Sr indicate the following conditions:
S: Start condition
P: Stop condition
Sr: Restart condition.
P*1
Sr*1
S*1
tSDAS
Test conditions:
VIH = VCC × 0.7, VIL = VCC × 0.3
VOL = 0.6 V, IOL = 6 mA
SCI simple IIC mode timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 89 of 145
S3A1 Datasheet
2.3.10
Table 2.40
2. Electrical Characteristics
SPI Timing
SPI timing (1 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability in PmnPFS register
Parameter
SPI
RSPCK clock cycle
Master
Symbol
Min
Max
Unit*1
Test conditions
tSPcyc
2*4
4096
tPcyc
Figure 2.61
6
4096
(tSPcyc – tSPCKR
– tSPCKF) / 2 – 3
-
3 × tPcyc
-
(tSPcyc – tSPCKR
– tSPCKF) / 2 – 3
-
3 × tPcyc
-
Slave
RSPCK clock high
pulse width
Master
tSPCKWH
Slave
RSPCK clock low
pulse width
Master
tSPCKWL
Slave
RSPCK clock rise
and fall time
Output
2.7 V or above
tSPCKr,
tSPCKf
-
10
15
1.8 V or above
-
20
1.6 V or above
-
30
-
1
µs
10
-
ns
2.4 V or above
10
-
1.8 V or above
15
-
Master
Slave
tSU
1.6 V or above
Data input hold time
20
-
Master
(RSPCK is PCLKA/2)
tHF
0
-
Master
(RSPCK is other than
above.)
tH
tPcyc
-
tH
20
-
tLEAD
-30 + N × tSpcyc*2
-
tSpcyc*2
-
Slave
SSL setup time
Master
1.8 V or above
1.6 V or above
-50 + N ×
Slave
SSL hold time
Master
Slave
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
ns
-
2.4 V or above
Input
Data input setup
time
ns
tLAG
6 × tPcyc
-
-30 + N × tSpcyc*3
-
6 × tPcyc
-
ns
Figure 2.62 to
Figure 2.67
ns
ns
Page 90 of 145
S3A1 Datasheet
Table 2.40
2. Electrical Characteristics
SPI timing (2 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability in PmnPFS register
Symbol
Min
Max
Unit*1
Test conditions
tOD
-
14
ns
2.4 V or above
-
20
Figure 2.62 to
Figure 2.67
1.8 V or above
-
25
Parameter
SPI
Data output delay
Master
Slave
2.7 V or above
1.6 V or above
-
30
2.7 V or above
-
50
2.4 V or above
-
60
1.8 V or above
-
85
-
110
0
-
0
-
tSPcyc + 2 × tPcyc
8 × tSPcyc
+ 2 × tPcyc
1.6 V or above
Data output hold
time
Master
Successive
transmission delay
Master
tOH
Slave
tTD
Slave
MOSI and MISO
rise and fall time
Output
6 × tPcyc
-
-
10
2.4 V or above
-
15
1.8 V or above
-
20
2.7 V or above
tDr, tDf
1.6 V or above
Input
SSL rise and fall
time
Output
Note 1.
Note 2.
Note 3.
Note 4.
ns
-
30
-
1
µs
ns
-
10
15
1.8 V or above
-
20
1.6 V or above
-
30
-
1
-
2 × tPcyc + 100 ns
1.8 V or above
-
2 × tPcyc + 140
1.6 V or above
-
2 × tPcyc + 180
tSSLr,
tSSLf
Input
Slave output release time
ns
-
2.7 V or above
2.4 V or above
Slave access time
ns
2.4 V or above
tSA
µs
-
2 × tPcyc + 100 ns
1.8 V or above
-
2 × tPcyc + 140
1.6 V or above
-
2 × tPcyc + 180
2.4 V or above
tREL
Figure 2.66 and
Figure 2.67
tPcyc: PCLKA cycle.
N is set as an integer from 1 to 8 by the SPCKD register.
N is set as an integer from 1 to 8 by the SSLND register.
The upper limit of RSPCK is 16 MHz.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 91 of 145
S3A1 Datasheet
2. Electrical Characteristics
tSPCKr
tSPCKWH
VOH
RSPCKn
master select
output
VOH
VOL
tSPCKf
VOH
VOH
VOL
tSPCKWL
VOL
tSPcyc
tSPCKr
tSPCKWH
VIH
VIH
RSPCKn
slave select input
Figure 2.61
VIH
VIL
(n = A or B)
tSPCKf
VIL
tSPCKWL
VIH
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
SPI clock timing
tTD
SSLn0 to
SSLn3
output
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tH
MSB IN
tDr, tDf
MOSIn
output
DATA
tOH
MSB OUT
LSB IN
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
(n = A or B)
Figure 2.62
SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to any value other than 1/2)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 92 of 145
S3A1 Datasheet
2. Electrical Characteristics
tTD
SSLn0 to
SSLn3
output
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
tHF
tHF
MSB IN
tDr, tDf
MOSIn
output
LSB IN
DATA
tOH
MSB OUT
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
(n = A or B)
Figure 2.63
SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to 1/2)
tTD
SSLn0 to
SSLn3
output
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tH
MSB IN
tOH
MOSIn
output
DATA
LSB IN
tOD
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
(n = A or B)
Figure 2.64
SPI timing (master, CPHA = 1) (bit rate: PCLKA division ratio is set to any value other than 1/2)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 93 of 145
S3A1 Datasheet
2. Electrical Characteristics
tTD
SSLn0 to
SSLn3
output
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tHF
MSB IN
tOH
tH
DATA
LSB IN
tOD
MOSIn
output
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
(n = A or B)
Figure 2.65
SPI timing (master, CPHA = 1) (bit rate: PCLKA division ratio is set to 1/2)
tTD
SSLn0
input
tLEAD
tLAG
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
tSA
tOH
MISOn
output
MSB OUT
tSU
MOSIn
input
tOD
DATA
tREL
LSB OUT
tH
MSB IN
MSB IN
MSB OUT
tDr, tDf
DATA
LSB IN
MSB IN
(n = A or B)
Figure 2.66
SPI timing (slave, CPHA = 0)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 94 of 145
S3A1 Datasheet
2. Electrical Characteristics
tTD
SSLn0
input
tLEAD
tLAG
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
tSA
tOH
tOD
LSB OUT
(Last data)
MISOn
output
MSB OUT
tSU
MOSIn
input
tREL
LSB OUT
DATA
tH
MSB OUT
tDr, tDf
MSB IN
DATA
LSB IN
MSB IN
(n = A or B)
Figure 2.67
2.3.11
SPI timing (slave, CPHA = 1)
QSPI Timing
Table 2.41
QSPI timing
Conditions: VCC = 1.8 to 5.5 V
Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register
Symbol
Min
Max
Unit*1
Test conditions
QSPCLK clock cycle
tQScyc
2*4
48
tPcyc
Figure 2.68
QSPCLK clock high-level pulse width
tQSWH
tQScyc × 0.4
-
ns
QSPCLK clock low-level pulse width
tQSWL
tQScyc × 0.4
-
ns
Data input setup time
tSU
25
-
ns
Data input hold time
tIH
2
-
ns
SSL setup time
tLEAD
(N + 0.5) ×
tQscyc - 15*2
(N + 0.5) ×
tQscyc + 100*2
ns
SSL hold time
tLAG
(N + 0.5) ×
tQscyc - 15*3
(N + 0.5) ×
tQscyc + 100*3
ns
ns
Parameter
QSPI
Data output delay
2.7 V or above
tOD
2.4 V or above
1.8 V or above
Data output hold time
2.7 V or above
tOH
1.8 V or above
Successive transmission delay
Note 1.
Note 2.
Note 3.
Note 4.
tTD
-
14
-
20
-
30
–3.3
-
–10
-
1
16
Figure 2.69
ns
tQscyc
tPcyc: PCLKA cycle.
N is set to 0 or 1 in SFMSLD.
N is set to 0 or 1 in SFMSHD.
The upper limit of QSPCLK is 16MHz.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 95 of 145
S3A1 Datasheet
2. Electrical Characteristics
tQSWH
tQSWL
QSPCLK output
tQScyc
Figure 2.68
QSPI clock timing
tTD
QSSL
output
tLEAD
tLAG
QSPCLK
output
tSU
QIO0 to 3
input
tH
MSB IN
DATA
tOH
QIO0 to 3
output
Figure 2.69
MSB OUT
LSB IN
tOD
DATA
LSB OUT
IDLE
Transfer/receive timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 96 of 145
S3A1 Datasheet
2.3.12
2. Electrical Characteristics
IIC Timing
Table 2.42
IIC timing
Conditions: VCC = 2.7 to 5.5 V
Symbol
Min*1
Max
Unit
Test
conditions
SCL input cycle time
tSCL
6 (12) × tIICcyc + 1300
-
ns
Figure 2.70
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 300
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 300
-
ns
SCL, SDA input rise time
tSr
-
1000
ns
SCL, SDA input fall time
tSf
-
300
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time
(When wakeup function is disabled)
tBUF
3 (6) × tIICcyc + 300
-
ns
SDA input bus free time
(When wakeup function is enabled)
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 300
-
ns
START condition input hold time
(When wakeup function is disabled)
tSTAH
tIICcyc + 300
-
ns
START condition input hold time
(When wakeup function is enabled)
tSTAH
1 (5) × tIICcyc + tPcyc +
300
-
ns
Repeated START condition input
setup time
tSTAS
1000
-
ns
STOP condition input setup time
tSTOS
1000
-
ns
Data input setup time
tSDAS
tIICcyc + 50
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
400
pF
SCL input cycle time
tSCL
6 (12) × tIICcyc + 600
-
ns
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 300
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 300
-
ns
SCL, SDA input rise time
tSr
-
300
ns
SCL, SDA input fall time
tSf
-
300
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time
(When wakeup function is disabled)
tBUF
3 (6) × tIICcyc + 300
-
ns
SDA input bus free time
(When wakeup function is enabled)
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 300
-
ns
START condition input hold time
(When wakeup function is disabled)
tSTAH
tIICcyc + 300
-
ns
START condition input hold time
(When wakeup function is enabled)
tSTAH
1(5) × tIICcyc + tPcyc +
300
-
ns
Repeated START condition input
setup time
tSTAS
300
-
ns
STOP condition input setup time
tSTOS
300
-
ns
Data input setup time
tSDAS
tIICcyc + 50
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
400
pF
Parameter
IIC
(standard mode,
SMBus)
IIC
(Fast mode)
Note:
Note 1.
Figure 2.70
For all ports
except P408,
use
PmnPFS.DSCR
of middle drive.
For port P408,
use
PmnPFS.DSCR
1/DSCR of
middle drive for
IIC fast-mode.
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle
The value in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 97 of 145
S3A1 Datasheet
2. Electrical Characteristics
VIH
SDA0 to SDA2
VIL
tBUF
tSCLH
tSTAH
tSTAS
tSTOS
tSP
SCL0 to SCL2
P*1
tSf
tSCLL
tSr
tSCL
Note 1.
Figure 2.70
P*1
Sr*1
S*1
tSDAS
tSDAH
S, P, and Sr indicate the following conditions.
S: Start condition
P: Stop condition
Sr: Restart condition
I2C bus interface input/output timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 98 of 145
S3A1 Datasheet
2.3.13
Table 2.43
2. Electrical Characteristics
SSIE Timing
SSIE timing
Conditions: VCC = 1.6 to 5.5 V
Symbol
Min
Max
Unit
Test conditions
tAUDIO
-
25
MHz
-
-
4
tO
250
-
ns
Figure 2.71
tI
250
-
ns
tHC
100
-
ns
200
-
100
-
200
-
tRC
-
25
ns
tDTR
-
65
ns
1.8 V or above
-
105
1.6 V or above
-
140
65
-
90
-
Parameter
SSIE
AUDIO_CLK input
frequency
2.7 V or above
1.6 V or above
Output clock period
Input clock period
Clock high pulse
width
1.8 V or above
Clock low pulse
width
1.8 V or above
1.6 V or above
tLC
1.6 V or above
Clock rise time
Data delay
2.7 V or above
Set-up time
2.7 V or above
tSR
1.8 V or above
1.6 V or above
Hold time
SSITXD0 output
delay from
SSILRCK/SSIFS
change time
1.8 V or above
1.6 V or above
Figure 2.72,
Figure 2.73
ns
140
-
tHTR
40
-
ns
tDTRW
-
105
ns
-
140
Figure 2.74
tRC
tHC
SSIBCK0
ns
tLC
tI, tO
Figure 2.71
SSIE clock input/output timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 99 of 145
S3A1 Datasheet
2. Electrical Characteristics
SSIBCK0 (Input or Output)
SSILRCK0/SSIFS0 (Input),
SSIRXD0 (Input)
tSR
tHTR
SSILRCK0/SSIFS0 (Output),
SSITXD0 (Output)
tDTR
Figure 2.72
SSIE data transmit/receive timing (SSICR.BCKP = 0)
SSIBCK0 (Input or Output)
SSILRCK0/SSIFS0 (Input),
SSIRXD0 (Input)
tSR
tHTR
SSILRCK0/SSIFS0 (Output),
SSITXD0 (Output)
tDTR
Figure 2.73
SSIE data transmit/receive timing (SSICR.BCKP = 1)
SSILRCK0/SSIFS0 (Input)
SSITXD0 (Output)
tDTRW
MSB bit output delay from SSILRCK0/SSIFS0 change time for slave
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0]
Figure 2.74
SSIE data output delay from SSILRCK0/SSIFS0 change time
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 100 of 145
S3A1 Datasheet
2.3.14
Table 2.44
2. Electrical Characteristics
SD/MMC Host Interface Timing
SD/MMC host interface signal timing
Conditions: VCC = 2.7 to 5.5 V
Middle drive output is selected in the Port Drive Capability in PmnPFS register
Parameter
Symbol
Min
Max
Unit
Test
conditions
SDCLK clock cycle
tSDCYC
62.5
-
ns
Figure 2.75
SDCLK clock high-level pulse width
tSDWH
18.25
-
ns
SDCLK clock low-level pulse width
tSDWL
18.25
-
ns
SDCLK clock rising time
tSDLH
-
10
ns
SDCLK clock falling time
tSDHL
-
10
ns
SDCMD/SDDAT output data delay
tSDODLY
–18.25
18.25
ns
SDCMD/SDDAT input data setup
tSDIS
9.25
-
ns
SDCMD/SDDAT input data hold
tSDIH
23.25
-
ns
tSDCYC
tSDWL
SD0CLK
(output)
tSDHL
tSDODLY(max)
tSDWH
tSDLH
tSDODLY(min)
SD0CMD/SD0DATm
(output)
tSDIS
tSDIH
SD0CMD/SD0DATm
(input)
(m = 0 to 7)
Figure 2.75
SD/MMC host interface signal timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 101 of 145
S3A1 Datasheet
2.3.15
2. Electrical Characteristics
CLKOUT Timing
Table 2.45
CLKOUT timing
Symbol
Min
Max
Unit*1
Test conditions
tCcyc
62.5
-
ns
Figure 2.76
VCC = 1.8 V or above
125
-
VCC = 1.6 V or above
250
-
15
-
30
-
Parameter
CLKOUT
CLKOUT pin output cycle*1
CLKOUT pin high pulse
width*2
VCC = 2.7 V or above
VCC = 2.7 V or above
tCH
VCC = 1.8 V or above
VCC = 1.6 V or above
CLKOUT pin low pulse width*2
CLKOUT pin output rise time
CLKOUT pin output fall time
Note 1.
Note 2.
150
-
15
-
VCC = 1.8 V or above
30
-
VCC = 1.6 V or above
150
-
VCC = 2.7 V or above
tCL
-
12
VCC = 1.8 V or above
-
25
VCC = 1.6 V or above
-
50
VCC = 2.7 V or above
tCr
-
12
VCC = 1.8 V or above
-
25
VCC = 1.6 V or above
-
50
VCC = 2.7 V or above
tCf
ns
ns
ns
ns
When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and
the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to
55%.
When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division
ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).
tCcyc
tCH
tCf
CLKOUT pin output
tCL
tCr
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF
Figure 2.76
CLKOUT output timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 102 of 145
S3A1 Datasheet
2.4
2. Electrical Characteristics
USB Characteristics
2.4.1
Table 2.46
USBFS Timing
USB characteristics
Conditions: VCC = VCC_USB = 3.0 to 3.6 V, Ta = -20 to +85°C (USBCLKSEL = 1), Ta = -40 to +105°C (USBCLKSEL = 0)
Parameter
Input
characteristics
Output
characteristics
Symbol
Min
Max
Unit
Test conditions
Input high level voltage
VIH
2.0
-
V
-
Input low level voltage
VIL
-
0.8
V
-
Differential input sensitivity VDI
0.2
-
V
| USB_DP - USB_DM |
Differential common mode
range
VCM
0.8
2.5
V
-
Output high level voltage
VOH
2.8
VCC_USB
V
IOH = –200 μA
Output low level voltage
VOL
0.0
0.3
V
IOL = 2 mA
Cross-over voltage
VCRS
1.3
2.0
V
ns
Figure 2.77,
Figure 2.78,
Figure 2.79
Rise time
FS
tr
LS
Fall time
FS
Rise/fall time ratio
FS
tf
LS
tr/tf
LS
VBUS
characteristics
Pull-up,
pull-down
Battery Charging
Specification
Ver 1.2
4
20
75
300
4
20
75
300
90
111.11
80
125
%
Output resistance
ZDRV
28
44
Ω
(Adjusting the resistance
of external elements is not
required.)
VBUS input voltage
VIH
VCC × 0.8
-
V
-
VIL
-
VCC × 0.2
V
-
Pull-down resistor
RPD
14.25
24.80
kΩ
-
Pull-up resistor
RPUI
0.9
1.575
kΩ
During idle state
RPUA
1.425
3.09
kΩ
During reception
D+ sink current
IDP_SINK
25
175
μA
-
D– sink current
IDM_SINK
25
175
μA
-
DCD source current
IDP_SRC
7
13
μA
-
Data detection voltage
VDAT_REF
0.25
0.4
V
-
D+ source voltage
VDP_SRC
0.5
0.7
V
Output current = 250 μA
D– source voltage
VDM_SRC
0.5
0.7
V
Output current = 250 μA
USB_DP,
USB_DM
VCRS
90%
90%
10%
10%
tr
Figure 2.77
ns
tf
USB_DP and USB_DM output timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 103 of 145
S3A1 Datasheet
2. Electrical Characteristics
Observation
point
DP
50 pF
DM
50 pF
Figure 2.78
Test circuit for Full-Speed (FS) connection
Observation
point
DP
200 pF to
600 pF
3.6 V
1.5 K
DM
200 pF to
600 pF Observation
point
Figure 2.79
2.4.2
Table 2.47
Test circuit for Low-Speed (LS) connection
USB External Supply
USB regulator
Parameter
VCC_USB supply current
Min
Typ
Max
Unit
Test conditions
VCC_USB_LDO ≥ 3.8V
-
-
50
mA
-
VCC_USB_LDO ≥ 4.5V
-
-
100
mA
-
3.0
-
3.6
V
-
VCC_USB supply voltage
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 104 of 145
S3A1 Datasheet
2.5
2. Electrical Characteristics
ADC14 Characteristics
VREFH0
VREFH0
5.5
5.5
A/D Conversion
Characteristics (1)
5.0
5.0
A/D Conversion
Characteristics (2)
4.0
3.0
2.7
2.4
A/D Conversion
Characteristics (4)
4.0
3.0
2.7
2.4
A/D Conversion
Characteristics (3)
2.0
A/D Conversion
Characteristics (5)
A/D Conversion
Characteristics (6)
2.0
1.8
1.6
1.0
A/D Conversion
Characteristics (7)
1.0
2.4 2.7
1.0
2.0
3.0
5.5
4.0
AVCC0
1.8
5.0
1.0
ADCSR.ADHSC = 0
Figure 2.80
2.4 2.7
1.6 2.0
3.0
5.5
4.0
AVCC0
5.0
ADCSR.ADHSC = 1
AVCC0 to VREFH0 voltage range
Table 2.48
A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
64
MHz
-
-
-
8 (reference data)
pF
High-precision channel
-
-
9 (reference data)
pF
Normal-precision channel
-
-
2.5 (reference data)
kΩ
High-precision channel
-
-
6.7 (reference data)
kΩ
Normal-precision channel
0
-
VREFH0
V
-
-
-
12
Bit
-
0.70
-
-
μs
High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.13
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error
-
±0.5
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
Full-scale error
-
±0.75
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
Analog input
capacitance*2
Analog input resistance
Analog input voltage range
Cs
Rs
Ain
12-bit mode
Resolution
Conversion time*1
(Operation at
PCLKC = 64 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±1.25
±5.0
LSB
High-precision channel
±8.0
LSB
Other than above
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
-
-
14
Bit
-
14-bit mode
Resolution
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 105 of 145
S3A1 Datasheet
Table 2.48
2. Electrical Characteristics
A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
time*1
Conversion
(Operation at
PCLKC = 64 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
Offset error
Full-scale error
Min
Typ
Max
Unit
Test conditions
0.80
-
-
μs
High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.22
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
-
±2.0
-
±3.0
±18
LSB
High-precision channel
±24.0
LSB
Other than above
±18
LSB
High-precision channel
±24.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±5.0
±20
LSB
High-precision channel
±32.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Table 2.49
A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
48
MHz
-
capacitance*2
-
-
8 (reference data)
pF
High-precision channel
-
-
9 (reference data)
pF
Normal-precision channel
-
-
2.5 (reference data)
kΩ
High-precision channel
-
-
6.7 (reference data)
kΩ
Normal-precision channel
0
-
VREFH0
V
-
-
-
12
Bit
-
0.94
-
-
μs
High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.50
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error
-
±0.5
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
Full-scale error
-
±0.75
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
Analog input
Analog input resistance
Analog input voltage range
Cs
Rs
Ain
12-bit mode
Resolution
Conversion time*1
(Operation at
PCLKC = 48 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±1.25
±5.0
LSB
High-precision channel
±8.0
LSB
Other than above
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 106 of 145
S3A1 Datasheet
Table 2.49
2. Electrical Characteristics
A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
-
-
14
Bit
-
1.06
-
-
μs
High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.63
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
-
±2.0
14-bit mode
Resolution
time*1
Conversion
(Operation at
PCLKC = 48 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
Offset error
Full-scale error
-
±3.0
±18
LSB
High-precision channel
±24.0
LSB
Other than above
±18
LSB
High-precision channel
±24.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±5.0
±20
LSB
High-precision channel
±32.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Table 2.50
A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
32
MHz
-
Analog input
capacitance*2
Analog input resistance
Analog input voltage range
Cs
Rs
Ain
-
-
8 (reference data)
pF
High-precision channel
-
-
9 (reference data)
pF
Normal-precision channel
-
-
2.5 (reference data)
kΩ
High-precision channel
-
-
6.7 (reference data)
kΩ
Normal-precision channel
0
-
VREFH0
V
-
-
-
12
Bit
-
1.41
-
-
μs
High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
2.25
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
-
±0.5
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
12-bit mode
Resolution
Conversion time*1
(Operation at
PCLKC = 32 MHz)
Permissible signal
source impedance
Max. = 1.3 kΩ
Offset error
Full-scale error
-
±0.75
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±1.25
±5.0
LSB
High-precision channel
±8.0
LSB
Other than above
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 107 of 145
S3A1 Datasheet
Table 2.50
2. Electrical Characteristics
A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
-
-
14
Bit
-
1.59
-
-
μs
High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
2.44
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
-
±2.0
14-bit mode
Resolution
time*1
Conversion
(Operation at
PCLKC = 32 MHz)
Permissible signal
source impedance
Max. = 1.3 kΩ
Offset error
Full-scale error
-
±3.0
±18
LSB
High-precision channel
±24.0
LSB
Other than above
±18
LSB
High-precision channel
±24.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±5.0
±20
LSB
High-precision channel
±32.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Table 2.51
A/D conversion characteristics (4) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
24
MHz
-
Analog input
capacitance*2
Analog input resistance
Analog input voltage range
Cs
Rs
Ain
-
-
8 (reference data)
pF
High-precision channel
-
-
9 (reference data)
pF
Normal-precision channel
-
-
2.5 (reference data)
kΩ
High-precision channel
-
-
6.7 (reference data)
kΩ
Normal-precision channel
0
-
VREFH0
V
-
-
-
12
Bit
-
2.25
-
-
μs
High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
3.38
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
-
±0.5
12-bit mode
Resolution
Conversion time*1
(Operation at
PCLKC = 24 MHz)
Permissible signal
source impedance
Max. = 1.1 kΩ
Offset error
Full-scale error
Quantization error
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
-
±0.75
±0.5
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
-
LSB
-
Page 108 of 145
S3A1 Datasheet
Table 2.51
2. Electrical Characteristics
A/D conversion characteristics (4) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
Absolute accuracy
-
±1.25
±5.0
LSB
High-precision channel
±8.0
LSB
Other than above
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
-
-
14
Bit
-
2.50
-
-
μs
High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
3.63
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
-
±2.0
14-bit mode
Resolution
time*1
Conversion
(Operation at
PCLKC = 24 MHz)
Permissible signal
source impedance
Max. = 1.1 kΩ
Offset error
±18
LSB
High-precision channel
±24.0
LSB
Other than above
±18
LSB
High-precision channel
Full-scale error
-
±3.0
±24.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±5.0
±20
LSB
High-precision channel
±32.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Table 2.52
A/D conversion characteristics (5) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
Frequency
1
-
16
MHz
-
Analog input
capacitance*2
Analog input resistance
Analog input voltage range
Cs
Rs
Ain
-
-
8 (reference data)
pF
High-precision channel
-
-
9 (reference data)
pF
Normal-precision channel
-
-
2.5 (reference data)
kΩ
High-precision channel
-
-
6.7 (reference data)
kΩ
Normal-precision channel
0
-
VREFH0
V
-
-
-
12
Bit
-
3.38
-
-
μs
High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
5.06
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
-
±0.5
12-bit mode
Resolution
time*1
Conversion
(Operation at
PCLKC = 16 MHz)
Permissible signal
source impedance
Max. = 2.2 kΩ
Offset error
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
Page 109 of 145
S3A1 Datasheet
Table 2.52
2. Electrical Characteristics
A/D conversion characteristics (5) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Full-scale error
-
±0.75
Max
Unit
Test conditions
±4.5
LSB
High-precision channel
±6.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±1.25
±5.0
LSB
High-precision channel
±8.0
LSB
Other than above
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
14-bit mode
Resolution
Conversion time*1
(Operation at
PCLKC = 16 MHz)
Permissible signal
source impedance
Max. = 2.2 kΩ
Offset error
Full-scale error
-
-
14
Bit
-
3.75
-
-
μs
High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
5.44
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
-
±2.0
-
±3.0
±18
LSB
High-precision channel
±24.0
LSB
Other than above
±18
LSB
High-precision channel
±24.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±5.0
±20
LSB
High-precision channel
±32.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Table 2.53
A/D conversion characteristics (6) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Frequency
Analog input capacitance*2
Analog input resistance
Analog input voltage range
Cs
Rs
Ain
Min
Typ
Max
Unit
Test conditions
1
-
8
MHz
-
-
-
8 (reference data)
pF
High-precision
channel
-
-
9 (reference data)
pF
Normal-precision
channel
-
-
3.8 (reference data)
kΩ
High-precision
channel
-
-
8.2 (reference data)
kΩ
Normal-precision
channel
0
-
VREFH0
V
-
-
-
12
Bit
-
12-bit mode
Resolution
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 110 of 145
S3A1 Datasheet
Table 2.53
2. Electrical Characteristics
A/D conversion characteristics (6) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Typ
Max
Unit
Test conditions
6.75
-
-
μs
High-precision
channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0]
= 0Dh
10.13
-
-
μs
Normal-precision
channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0]
= 28h
Offset error
-
±1.0
±7.5
LSB
High-precision
channel
±10.0
LSB
Other than above
Full-scale error
-
±1.5
±7.5
LSB
High-precision
channel
±10.0
LSB
Other than above
time*1
Conversion
(Operation at
PCLKC = 8 MHz)
Permissible signal
source impedance
Max. = 5 kΩ
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±3.0
±8.0
LSB
High-precision
channel
±12.0
LSB
Other than above
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
-
-
14
Bit
-
7.50
-
-
μs
High-precision
channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0]
= 0Dh
10.88
-
-
μs
Normal-precision
channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0]
= 28h
-
±4.0
±30.0
LSB
High-precision
channel
±40.0
LSB
Other than above
14-bit mode
Resolution
Conversion time*1
(Operation at
PCLKC = 8 MHz)
Permissible signal
source impedance
Max. = 5 kΩ
Offset error
Full-scale error
-
±6.0
±30.0
LSB
High-precision
channel
±40.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±12.0
±32.0
LSB
High-precision
channel
±48.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 111 of 145
S3A1 Datasheet
Table 2.54
2. Electrical Characteristics
A/D conversion characteristics (7) in low power A/D conversion mode
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter
Min
Frequency
Typ
Max
Unit
Test conditions
1
-
4
MHz
-
Analog input capacitance*2
Cs
-
-
8 (reference data)
pF
High-precision channel
-
-
9 (reference data)
pF
Normal-precision channel
Analog input resistance
Rs
-
-
13.1 (reference data)
kΩ
High-precision channel
-
-
14.3 (reference data)
kΩ
Normal-precision channel
Analog input voltage range
Ain
0
-
VREFH0
V
-
-
-
12
Bit
-
13.5
-
-
μs
High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
20.25
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error
-
±1.0
±7.5
LSB
High-precision channel
±10.0
LSB
Other than above
Full-scale error
-
±1.5
±7.5
LSB
High-precision channel
±10.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±3.0
±8.0
LSB
High-precision channel
±12.0
LSB
Other than above
12-bit mode
Resolution
time*1
Conversion
(Operation at
PCLKC = 4 MHz)
Permissible signal
source impedance
Max. = 9.9 kΩ
DNL differential nonlinearity error
-
±1.0
-
LSB
-
INL integral nonlinearity error
-
±1.0
±3.0
LSB
-
-
-
14
Bit
-
15.0
-
-
μs
High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
21.75
-
-
μs
Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
-
±4.0
14-bit mode
Resolution
time*1
Conversion
(Operation at
PCLKC = 4 MHz)
Permissible signal
source impedance
Max. = 9.9 kΩ
Offset error
Full-scale error
-
±6.0
±30.0
LSB
High-precision channel
±40.0
LSB
Other than above
±30.0
LSB
High-precision channel
±40.0
LSB
Other than above
Quantization error
-
±0.5
-
LSB
-
Absolute accuracy
-
±12.0
±32.0
LSB
High-precision channel
±48.0
LSB
Other than above
DNL differential nonlinearity error
-
±4.0
-
LSB
-
INL integral nonlinearity error
-
±4.0
±12.0
LSB
-
Note:
Note 1.
Note 2.
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 112 of 145
S3A1 Datasheet
2. Electrical Characteristics
MCU
Analog input
ANn
Sensor
Rs
Cin
ADC
Cs
Analog input
ANn
Rs
Cin
Figure 2.81
Table 2.55
Equivalent circuit for analog input
14-bit A/D converter channel classification
Classification
Channel
Conditions
Remarks
High-precision channel
AN000 to AN015
AVCC0 = 1.6 to 5.5 V
Normal-precision channel
AN016 to AN027
Pins AN000 to AN015 cannot be used
as general I/O, IRQ2, IRQ3 inputs,
and TS transmission, when the A/D
converter is in use
Internal reference voltage
input channel
Internal reference voltage
AVCC0 = 2.0 to 5.5 V
-
Temperature sensor input
channel
Temperature sensor output
AVCC0 = 2.0 to 5.5 V
-
Table 2.56
A/D internal reference voltage characteristics
Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1
Parameter
Min
Typ
Max
Unit
Test conditions
Internal reference voltage input
channel*2
1.36
1.43
1.50
V
-
Sampling time
5.0
-
-
µs
-
Note 1.
Note 2.
The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.
The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D
converter.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 113 of 145
S3A1 Datasheet
2. Electrical Characteristics
3FFFh
Full-scale error
Integral nonlinearity
error (INL)
A/D converter
output code
Ideal line of actual A/D
conversion characteristic
Actual A/D conversion
characteristic
Ideal A/D conversion
characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
Absolute accuracy
0000h
Offset error
0
Figure 2.82
Analog input voltage
VREFH0
(full-scale)
Illustration of 14-bit A/D converter characteristic terms
Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog
input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion
result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D
conversion characteristics.
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics
and the width of the actually output code.
Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.
Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 114 of 145
S3A1 Datasheet
2.6
2. Electrical Characteristics
DAC12 Characteristics
Table 2.57
D/A conversion characteristics (1)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = VREFH or VREFL selected
Parameter
Min
Typ
Max
Unit
Test conditions
Resolution
-
-
12
bit
-
Resistive load
30
-
-
kΩ
-
Capacitive load
-
-
50
pF
-
Output voltage range
0.35
-
AVCC0 – 0.47
V
-
DNL differential nonlinearity error
-
±0.5
±1.0
LSB
-
INL integral nonlinearity error
-
±2.0
±8.0
LSB
-
Offset error
-
-
±20
mV
-
Full-scale error
-
-
±20
mV
-
Output impedance
-
5
-
Ω
-
Conversion time
-
-
30
μs
-
Table 2.58
D/A conversion characteristics (2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = AVCC0 or AVSS0 selected
Parameter
Min
Typ
Max
Unit
Test conditions
Resolution
-
-
12
bit
-
Resistive load
30
-
-
kΩ
-
Capacitive load
-
-
50
pF
-
Output voltage range
0.35
-
AVCC0 – 0.47
V
-
DNL differential nonlinearity error
-
±0.5
±2.0
LSB
-
INL integral nonlinearity error
-
±2.0
±8.0
LSB
-
Offset error
-
-
±30
mV
-
Full-scale error
-
-
±30
mV
-
Output impedance
-
5
-
Ω
-
Conversion time
-
-
30
μs
-
Table 2.59
D/A conversion characteristics (3)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = internal reference voltage selected
Parameter
Min
Typ
Max
Unit
Test conditions
Resolution
-
-
12
bit
-
Internal reference voltage (Vbgr)
1.36
1.43
1.50
V
-
Resistive load
30
-
-
kΩ
-
Capacitive load
-
-
50
pF
-
Output voltage range
0.35
-
Vbgr
V
-
DNL differential nonlinearity error
-
±2.0
±16.0
LSB
-
INL integral nonlinearity error
-
±8.0
±16.0
LSB
-
Offset error
-
-
±30
mV
-
Output impedance
-
5
-
Ω
-
Conversion time
-
-
30
μs
-
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 115 of 145
S3A1 Datasheet
2. Electrical Characteristics
Gain error
Full-scale error
Upper output limit
Integral nonlinearity error (INL)
Offset error
Output analog voltage
1-LSB width for ideal D/A conversion
characteristic
Ideal output voltage
Differential nonlinearity error
(DNL)
*1
Lower output limit
Actual D/A conversion characteristic
Offset error
Ideal output voltage
000h
Note 1.
Figure 2.83
D/A converter input code
FFFh
Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed.
Illustration of D/A converter characteristic terms
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion
characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion
characteristics and the width of the actual output voltage.
Offset error
Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the
ideal output voltage based on the input code.
Full-scale error
Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the
ideal output voltage based on the input code.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 116 of 145
S3A1 Datasheet
2.7
2. Electrical Characteristics
TSN Characteristics
Table 2.60
TSN characteristics
Conditions: VCC = AVCC0 = 2.0 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Relative accuracy
-
-
±1.5
-
°C
2.4 V or above
-
-
±2.0
-
°C
Below 2.4 V
Temperature slope
-
-
–3.65
-
mV/°C
-
Output voltage (at 25°C)
-
-
1.05
-
V
VCC = 3.3 V
Temperature sensor start time
tSTART
-
-
5
μs
-
Sampling time
-
5
-
-
μs
-
2.8
OSC Stop Detect Characteristics
Table 2.61
Oscillation stop detection circuit characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Detection time
tdr
-
-
1
ms
Figure 2.84
Main clock
Main clock
tdr
tdr
OSTDSR.OSTDF
OSTDSR.OSTDF
MOCO clock
PLL clock
ICLK
MOCO clock
ICLK
When the main clock is selected
When the PLL clock is selected
Figure 2.84
Oscillation stop detection timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 117 of 145
S3A1 Datasheet
2.9
2. Electrical Characteristics
POR and LVD Characteristics
Table 2.62
Power-on reset circuit and voltage detection circuit characteristics (1)
Parameter
Voltage detection
level*1
Symbol
Min
Typ
Max
Unit
Test conditions
Power-on reset (POR)
VPOR
1.27
1.42
1.57
V
Figure 2.85,
Figure 2.86
Voltage detection circuit (LVD0)*2
Vdet0_0
3.68
3.85
4.00
V
Vdet0_1
2.68
2.85
2.96
Figure 2.87
At falling edge
VCC
Vdet0_2
2.38
2.53
2.64
Vdet0_3
1.78
1.90
2.02
V
Figure 2.88
At falling edge
VCC
V
Figure 2.89
At falling edge
VCC
Voltage detection circuit (LVD1)*3
Voltage detection circuit
Note 1.
Note 2.
Note 3.
Note 4.
(LVD2)*4
Vdet0_4
1.60
1.69
1.82
Vdet1_0
4.13
4.29
4.45
Vdet1_1
3.98
4.16
4.30
Vdet1_2
3.86
4.03
4.18
Vdet1_3
3.68
3.86
4.00
Vdet1_4
2.98
3.10
3.22
Vdet1_5
2.89
3.00
3.11
Vdet1_6
2.79
2.90
3.01
Vdet1_7
2.68
2.79
2.90
Vdet1_8
2.58
2.68
2.78
Vdet1_9
2.48
2.58
2.68
Vdet1_A
2.38
2.48
2.58
Vdet1_B
2.10
2.20
2.30
Vdet1_C
1.84
1.96
2.05
Vdet1_D
1.74
1.86
1.95
Vdet1_E
1.63
1.75
1.84
Vdet1_F
1.60
1.65
1.73
Vdet2_0
4.11
4.31
4.48
Vdet2_1
3.97
4.17
4.34
Vdet2_2
3.83
4.03
4.20
Vdet2_3
3.64
3.84
4.01
These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection
level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage
detection.
# in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits.
# in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.
# in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 118 of 145
S3A1 Datasheet
Table 2.63
2. Electrical Characteristics
Power-on reset circuit and voltage detection circuit characteristics (2)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Wait time after power-on
reset cancellation
LVD0: enable
tPOR
-
1.7
-
ms
-
LVD0: disable
tPOR
-
1.3
-
ms
-
Wait time after voltage
monitor 0, 1, 2 reset
cancellation
LVD0: enable*1
tLVD0,1,2
-
0.6
-
ms
-
LVD0: disable*2
tLVD1,2
-
0.2
-
ms
-
Response delay*3
tdet
-
-
350
μs
Figure 2.85,
Figure 2.86
Minimum VCC down time
tVOFF
450
-
-
μs
Figure 2.85,
VCC = 1.0 V or above
Power-on reset enable time
tW(POR)
1
-
-
ms
Figure 2.86,
VCC = below 1.0 V
LVD operation stabilization time (after LVD is
enabled)
td(E-A)
-
-
300
μs
Figure 2.88,
Figure 2.89
Hysteresis width (POR)
VPORH
-
110
-
mV
-
Hysteresis width (LVD0, LVD1, and LVD2)
VLVH
-
60
-
mV
-
100
-
Vdet1_0 to Vdet1_2 selected
-
60
-
Vdet1_3 to Vdet1_9 selected
-
50
-
Vdet1_A or Vdet1_B selected
-
40
-
Vdet1_C or Vdet1_F selected
-
60
-
LVD2 selected
Note 1.
Note 2.
Note 3.
LVD0 selected
When OFS1.LVDAS = 0.
When OFS1.LVDAS = 1.
The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR,
Vdet0, Vdet1, and Vdet2 for the POR/LVD.
tVOFF
VCC
VPOR
1.0 V
Internal reset signal
(active-low)
tdet
Figure 2.85
tdet
tPOR
Voltage detection reset timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 119 of 145
S3A1 Datasheet
2. Electrical Characteristics
VPOR
VCC
1.0 V
tw(POR)
Internal reset signal
(active-low)
*1
tdet
Note:
Figure 2.86
tPOR
tW(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held
below the valid voltage (1.0 V).
When VCC turns on, maintain tW(POR) for 1.0 ms or more.
Power-on reset timing
tVOFF
VCC
VLVH
Vdet0
Internal reset signal
(active-low)
tdet
Figure 2.87
tdet
tLVD0
Voltage detection circuit timing (Vdet0)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 120 of 145
S3A1 Datasheet
2. Electrical Characteristics
tVOFF
VCC
VLVH
Vdet1
LVCMPCR.LVD1E
td(E-A)
LVD1
Comparator output
LVD1CR0.CMPE
LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0
tdet
tdet
tLVD1
When LVD1CR0.RN = 1
tLVD1
Figure 2.88
Voltage detection circuit timing (Vdet1)
tVOFF
VCC
VLVH
Vdet2
LVCMPCR.LVD2E
td(E-A)
LVD2
Comparator output
LVD2CR0.CMPE
LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0
tdet
tdet
tLVD2
When LVD2CR0.RN = 1
tLVD2
Figure 2.89
Voltage detection circuit timing (Vdet2)
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 121 of 145
S3A1 Datasheet
2.10
2. Electrical Characteristics
VBATT Characteristics
Table 2.64
Battery backup function characteristics
Conditions: VCC = AVCC0 = 1.6 V to 5.5 V, VBATT = 1.6 to 3.6 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Voltage level for switching to battery backup (falling)
VDETBATT
1.99
2.09
2.19
V
Hysteresis width for switching to battery back up
VVBATTH
-
100
-
mV
Figure 2.90,
Figure 2.91
VCC-off period for starting power supply switching
tVOFFBATT
300
-
-
μs
-
Voltage detection level
VBATT_Power-on reset (VBATT_POR)
VVBATPOR
1.30
1.40
1.50
V
Figure 2.90,
Figure 2.91
Wait time after VBATT_POR reset time cancellation
tVBATPOR
-
-
3
mS
-
Level for detection of voltage drop on
the VBATT pin (falling)
VDETBATLVD
2.11
2.2
2.29
V
Figure 2.92
1.92
2
2.08
V
VBTLVDLVL[1:0] = 10b
VBTLVDLVL[1:0] = 11b
Hysteresis width for VBATT pin LVD
VVBATLVDTH
-
50
-
mV
VBATT pin LVD operation stabilization time
td_vbat
-
-
300
μs
Figure 2.92
VBATT pin LVD response delay time
tdet_vbat
-
-
350
μs
Allowable voltage change rising/falling gradient
dt/dVCC
1.0
-
-
ms/V
-
VCC voltage level for access to the VBATT backup registers
V_BKBATT
1.8
-
-
V
-
Note:
The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the
voltage level for switching to battery backup (VDETBATT).
VLVH
Vdet0
VCC
VVBATH
VDETBATT
VPOR
VBATT
VVBATPOR
Internal reset signal
(active-low)
VCC supplied
Figure 2.90
tdet tLVD0
tdet
Backup power area
VBATT supplied
VCC supplied
Power supply switching and LVD0 reset timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 122 of 145
S3A1 Datasheet
2. Electrical Characteristics
VCC
VVBATH
VDETBATT
VBATT
VVBATPOR
VBATT_POR
(active-low)
tVBATPOR
Backup power area
VCC supplied
Figure 2.91
VBATT supplied
Not supplied
VCC supplied
VBATT_POR reset timing
VBATT
VVBATLVDTH
VDETBATLVD
VBTCR2.VBTLVDEN
td_vbat
VBATT pin LVD
Comparator output
VBTCMPCR.VBTCMPE
VBTSR.VBTBLDF
tdet_vbat
Figure 2.92
tdet_vbat
VBATT pin voltage detection circuit timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 123 of 145
S3A1 Datasheet
Table 2.65
2. Electrical Characteristics
VBATT-I/O characteristics
Parameter
VBATWIOn I/O
output
characteristics
(n = 0 to 2)
VCC > VDETBATT
VCC = 4.0 to 5.5 V
VCC = 2.7 to 4.0 V
Symbol
Min
Typ
Max
Unit
Test conditions
VOH
VCC - 0.8
-
-
V
IOH = -200 µA
VOL
-
-
0.8
IOL = 200 µA
VOH
VCC - 0.5
-
-
IOH = -100 µA
VOL
-
-
0.5
IOL = 100 µA
VCC = VDETBATT to 2.7 V VOH
VCC < VDETBATT
VBATT = 2.7 to 3.6 V
VBATT = 1.6 to 2.7 V
2.11
VCC - 0.3
-
-
IOH = -50 µA
VOL
-
-
0.3
IOL = 50 µA
VOH
VBATT - 0.5
-
-
IOH = -100 µA
VOL
-
-
0.5
IOL = 100 µA
VOH
VBATT - 0.3
-
-
IOH = -50 µA
VOL
-
-
0.3
IOL = 50 µA
CTSU Characteristics
Table 2.66
CTSU characteristics
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
External capacitance connected to TSCAP pin
Ctscap
9
10
11
nF
-
TS pin capacitive load
Cbase
-
-
50
pF
-
Permissible output high current
ΣIoH
-
-
-24
mA
When the mutual
capacitance method
is applied
2.12
Segment LCD Controller Characteristics
2.12.1
Resistance Division Method
[Static Display Mode]
Table 2.67
Resistance division method LCD characteristics (1)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
LCD drive voltage
VL4
2.0
-
VCC
V
-
[1/2 Bias Method, 1/4 Bias Method]
Table 2.68
Resistance division method LCD characteristics (2)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
LCD drive voltage
VL4
2.7
-
VCC
V
-
[1/3 Bias Method]
Table 2.69
Resistance division method LCD characteristics (3)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
LCD drive voltage
VL4
2.5
-
VCC
V
-
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 124 of 145
S3A1 Datasheet
2.12.2
2. Electrical Characteristics
Internal Voltage Boosting Method
[1/3 Bias Method]
Table 2.70
Internal voltage boosting method LCD characteristics
Conditions: VCC = 1.8 V to 5.5 V
Parameter
Symbol Conditions
LCD output voltage
variation range
VL1
C1 to C4*1 = 0.47 μF
Min
Typ
Max
Unit
Test
conditions
VLCD = 04h
0.90
1.0
1.08
V
-
VLCD = 05h
0.95
1.05
1.13
V
-
VLCD = 06h
1.00
1.10
1.18
V
-
VLCD = 07h
1.05
1.15
1.23
V
-
VLCD = 08h
1.10
1.20
1.28
V
-
VLCD = 09h
1.15
1.25
1.33
V
-
VLCD = 0Ah
1.20
1.30
1.38
V
-
VLCD = 0Bh
1.25
1.35
1.43
V
-
VLCD = 0Ch
1.30
1.40
1.48
V
-
VLCD = 0Dh
1.35
1.45
1.53
V
-
VLCD = 0Eh
1.40
1.50
1.58
V
-
VLCD = 0Fh
1.45
1.55
1.63
V
-
VLCD = 10h
1.50
1.60
1.68
V
-
VLCD = 11h
1.55
1.65
1.73
V
-
VLCD = 12h
1.60
1.70
1.78
V
-
VLCD = 13h
1.65
1.75
1.83
V
-
Doubler output voltage
VL2
C1 to C4*1 = 0.47 μF
2 × VL1 - 0.1
2 × VL1
2 × VL1
V
-
Tripler output voltage
VL4
C1 to C4*1 = 0.47 μF
3 × VL1 - 0.15 3 × VL1
3 × VL1
V
-
Reference voltage
setup time*2
tVL1S
5
-
-
ms
Figure 2.93
LCD output voltage
variation range*3
tVLWT
500
-
-
ms
Note 1.
Note 2.
Note 3.
C1 to C4*1 = 0.47 μF
This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = 0.47 μF ± 30%
This is the time required to wait from when the reference voltage is specified using the VLCD register (or when the internal
voltage boosting method is selected (by setting the MDSET[1:0] bits in the LCDM0 register to 01b) if the default value reference
voltage is used) until voltage boosting starts (VLCON = 1).
This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 125 of 145
S3A1 Datasheet
2. Electrical Characteristics
[1/4 Bias Method]
Table 2.71
Internal voltage boosting method LCD characteristics
Conditions: VCC = 1.8 V to 5.5 V
Parameter
Symbol Conditions
LCD output voltage
variation range
VL1
Doubler output voltage
VL2
C1 to C5*1 = 0.47 μF
Min
Typ
Max
Unit
Test
conditions
VLCD = 04h
0.90
1.0
1.08
V
-
VLCD = 05h
0.95
1.05
1.13
V
-
VLCD = 06h
1.00
1.10
1.18
V
-
VLCD = 07h
1.05
1.15
1.23
V
-
VLCD = 08h
1.10
1.20
1.28
V
-
VLCD = 09h
1.15
1.25
1.33
V
-
VLCD = 0Ah
1.20
1.30
1.38
V
-
VLCD = 0Bh
1.25
1.35
1.43
V
-
VLCD = 0Ch
1.30
1.40
1.48
V
-
C1 to
C5*1
= 0.47 μF
2VL1 - 0.08
2VL1
2VL1
V
-
C5*1
Tripler output voltage
VL3
C1 to
= 0.47 μF
3VL1 - 0.12
3VL1
3VL1
V
-
Quadruply output
voltage
VL4*4
C1 to C5*1 = 0.47 μF
4VL1 - 0.16
4VL1
4VL1
V
-
Reference voltage
setup time*2
tVL1S
5
-
-
ms
Figure 2.93
LCD output voltage
variation range*3
tVLWT
500
-
-
ms
Note 1.
Note 2.
Note 3.
Note 4.
C1 to C5*1 = 0.47 μF
This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = C5 = 0.47 μF ± 30%
This is the time required to wait from when the reference voltage is specified by using the VLCD register or when the internal
voltage boosting method is selected (by setting the MDSET[1] and MDSET[0] bits in the LCDM0 register to 01b) if the default
value reference voltage is used) until voltage boosting starts (VLCON = 1).
This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
VL4 must be 5.5 V or lower.
2.12.3
Capacitor Split Method
[1/3 Bias Method]
Table 2.72
Internal voltage boosting method LCD characteristics
Conditions: VCC = 2.2 V to 5.5 V
Min
Typ
Max
Unit
Test
conditions
C1 to C4 = 0.47 μF*2
-
VCC
-
V
-
VL2
C1 to C4 = 0.47 μF*2
2/3 × VL4 - 0.07
2/3 × VL4
2/3 × VL4 + 0.07
V
-
VL1
μF*2
1/3 × VL4 - 0.08
1/3 × VL4
1/3 × VL4 + 0.08
V
-
100
-
-
ms
Figure 2.93
Parameter
Symbol Conditions
VL4 voltage*1
VL4
VL2 voltage*1
VL1
voltage*1
Capacitor split wait time*1
Note 1.
Note 2.
tWAIT
C1 to C4 = 0.47
This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = 0.47 μF ± 30%.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 126 of 145
S3A1 Datasheet
2. Electrical Characteristics
MDSET0,
MDSET1
00b
01b or 10b
tVL1S
VLCON
tVLWT, tWAIT
LCDON
Figure 2.93
2.13
LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time
Comparator Characteristics
Table 2.73
ACMPLP characteristics
Conditions: VCC = 1.8 to 5.5 V
Parameter
Reference voltage
range
Standard mode
Window mode
IVREFn
(n = 0,1)
Max
Unit
Test conditions
-
VCC - 1.4
V
-
VREFH
1.4
-
VCC
V
-
VREFL
0
-
VCC - 1.4
V
-
VI
0
-
VCC
V
-
-
1.36
1.44
1.50
V
-
Td
-
-
1.2
μs
Low-speed mode
-
-
5
μs
VCC = 3.0
Slew rate of input
signal > 50 mV/μs
Window mode
-
-
2
μs
High-speed mode
High-speed mode
-
-
-
50
mV
-
Low-speed mode
-
-
-
40
mV
-
Window mode
-
-
-
60
mV
-
Tcmp
100
-
-
μs
-
Operation stabilization wait time
Note:
Note:
Typ
0
IVREF1
Internal reference voltage
Offset voltage
Min
VREF
IVREF0
Input voltage range
Output delay
Symbol
When 8-bit DAC output is used as the reference voltage, the offset voltage increases up to 2.5 × VCC/256.
In window mode, be sure to satisfy the following condition: IVREF1 - IVREF0 > 0.2 V.
2.14
OPAMP Characteristics
Table 2.74
OPAMP characteristics (1 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V)
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
Common mode input
range
Vicm1
Low-power mode
0.2
-
AVCC0 – 0.5
V
Vicm2
High-speed mode
0.3
-
AVCC0 – 0.6
V
Output voltage range
Vo1
Low-power mode
0.1
-
AVCC0 – 0.1
V
Vo2
High-speed mode
0.1
-
AVCC0 – 0.1
V
Vioff
3σ
–10
-
10
mV
Input offset voltage
Open gain
Av
60
120
-
dB
Gain-bandwidth (GB)
product
GBW1
Low-power mode
-
0.04
-
MHz
GBW2
High-speed mode
-
1.7
-
MHz
Phase margin
PM
CL = 20 pF
50
-
-
deg
Gain margin
GM
CL = 20 pF
10
-
-
dB
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 127 of 145
S3A1 Datasheet
Table 2.74
2. Electrical Characteristics
OPAMP characteristics (2 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V)
Parameter
Symbol
Conditions
Equivalent input noise
Vnoise1
f = 1 kHz
Vnoise2
f = 10 kHz
Vnoise3
f = 1 kHz
Vnoise4
f = 2 kHz
Low power mode
High-speed mode
Min
Typ
Max
Unit
-
230
-
nV/√Hz
-
200
-
nV/√Hz
-
90
-
nV/√Hz
-
70
-
nV/√Hz
Power supply
reduction ratio
PSRR
-
90
-
dB
Common mode signal
reduction ratio
CMRR
-
90
-
dB
Stabilization wait time
Tstd1
CL = 20 pF
Only operational amplifier is
activated *1
Low power mode
650
-
-
μs
High-speed mode
13
-
-
μs
CL = 20 pF
Operational amplifier and
reference current circuit are
activated simultaneously
Low power mode
650
-
-
μs
Tstd4
High-speed mode
13
-
-
μs
Tset1
CL = 20 pF
Low power mode
-
-
750
μs
High-speed mode
-
-
13
μs
Low power mode
-
0.02
-
V/μs
High-speed mode
-
1.1
-
V/μs
Tstd2
Tstd3
Settling time
Tset2
Slew rate
Tslew1
CL = 20 pF
Tslew2
Load current
Load capacitance
Note 1.
2.15
Iload1
Low power mode
–100
-
100
μA
Iload2
High-speed mode
–100
-
100
μA
-
-
20
pF
CL
When the operational amplifier reference current circuit is activated in advance.
Flash Memory Characteristics
2.15.1
Code Flash Memory Characteristics
Table 2.75
Code flash characteristics (1)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Reprogramming/erasure cycle*1
NPEC
1000
-
-
Times
-
Data hold time
tDRP
20*2, *3
-
-
Year
Ta = +85°C
Note 1.
Note 2.
Note 3.
After 1000 times of NPEC
The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1000),
erasing can be done n times for each block. For instance, when 8-byte programming is performed 256 times for different
addresses in 2-KB blocks, and the entire block is erased, the reprogram/erase cycle is counted as one. However, programming
the same address for several times as one erasure is not enabled (overwriting is prohibited).
Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.
This result is obtained from reliability testing.
Table 2.76
Code flash characteristics (2) (1 of 2)
High-speed operating mode
Conditions: VCC = 2.7 to 5.5 V
FCLK = 1 MHz
Parameter
FCLK = 32 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Programming time
8-byte
tP8
-
116
998
-
54
506
μs
Erasure time
2-KB
tE2K
-
9.03
287
-
5.67
222
ms
Blank check time
8-byte
tBC8
-
-
56.8
-
-
16.6
μs
2-KB
tBC2K
-
-
1899
-
-
140
μs
tSED
-
-
22.5
-
-
10.7
μs
Startup area switching setting time
tSAS
-
21.7
585
-
12.1
447
ms
Access window time
tAWS
-
21.7
585
-
12.1
447
ms
Erase suspended time
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 128 of 145
S3A1 Datasheet
Table 2.76
2. Electrical Characteristics
Code flash characteristics (2) (2 of 2)
High-speed operating mode
Conditions: VCC = 2.7 to 5.5 V
FCLK = 1 MHz
Parameter
Symbol
Min
FCLK = 32 MHz
Typ
Max
Min
Typ
Max
Unit
OCD/serial programmer ID setting time
tOSIS
-
21.7
585
-
12.1
447
ms
Flash memory mode transition wait time 1
tDIS
2
-
-
2
-
-
μs
Flash memory mode transition wait time 2
tMS
5
-
-
5
-
-
μs
Note:
Note:
Note:
Does not include the time until each operation of the flash memory is started after instructions are executed by software.
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency value, such as 1.5 MHz, cannot be set.
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Table 2.77
Code flash characteristics (3)
Middle-speed operating mode
Conditions: VCC = 1.8 to 5.5 V, Ta = –40 to +85°C
FCLK = 1 MHz
Parameter
Programming time
8-byte
FCLK = 8 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
tP8
-
157
1411
-
101
966
μs
Erasure time
2-KB
tE2K
-
9.10
289
-
6.10
228
ms
Blank check time
8-byte
tBC8
-
-
87.7
-
-
52.5
μs
2-KB
tBC2K
-
-
1930
-
-
414
μs
Erase suspended time
tSED
-
-
32.7
-
-
21.6
μs
Startup area switching setting time
tSAS
-
22.5
592
-
14.0
464
ms
Access window time
tAWS
-
22.5
592
-
14.0
464
ms
OCD/serial programmer ID setting time
tOSIS
-
22.5
592
-
14.0
464
ms
Flash memory mode transition wait time 1 tDIS
2
-
-
2
-
-
μs
Flash memory mode transition wait time 2 tMS
720
-
-
720
-
-
ns
Note:
Note:
Note:
Does not include the time until each operation of the flash memory is started after instructions are executed by software.
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
2.15.2
Data Flash Memory Characteristics
Table 2.78
Data flash characteristics (1)
Parameter
Reprogramming/erasure
Data hold time
cycle*1
After 10000 times of NDPEC
After 100000 times of NDPEC
After 1000000 times of NDPEC
Note 1.
Note 2.
Note 3.
Symbol
Min
Typ
Max
Unit
Test conditions
NDPEC
100000
1000000
tDDRP
20*2, *3
-
-
Times
-
-
Year
Ta = +85°C
5*2, *3
-
-
Year
-
1*2, *3
-
Year
Ta = +25°C
The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100000),
erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different
addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address for several times as one erasure is not enabled. (overwriting is prohibited).
Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.
These results are obtained from reliability testing.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 129 of 145
S3A1 Datasheet
Table 2.79
2. Electrical Characteristics
Data flash characteristics (2)
High-speed operating mode
Conditions: VCC = 2.7 to 5.5 V
FCLK = 4 MHz
Parameter
FCLK = 32 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Programming time
1-byte
tDP1
-
52.4
463
-
42.1
387
μs
Erasure time
1-KB
tDE1K
-
8.98
286
-
6.42
237
ms
Blank check time
1-byte
tDBC1
-
-
24.3
-
-
16.6
μs
tDBC1K
-
-
1872
-
-
512
μs
Suspended time during erasing
tDSED
-
-
13.0
-
-
10.7
μs
Data flash STOP recovery time
tDSTOP
5
-
-
5
-
-
μs
1-KB
Note:
Note:
Note:
Does not include the time until each operation of the flash memory is started after instructions are executed by software.
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Table 2.80
Data flash characteristics (3)
Middle-speed operating mode
Conditions: VCC = 1.8 to 5.5 V, Ta = –40 to +85°C
FCLK = 4 MHz
Parameter
Programming time
1-byte
FCLK = 8 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
tDP1
-
94.7
886
-
89.3
849
μs
Erasure time
1-KB
tDE1K
-
9.59
299
-
8.29
273
ms
Blank check time
1-byte
tDBC1
-
-
56.2
-
-
52.5
μs
1-KB
tDBC1K
-
-
2.17
-
-
1.51
ms
Suspended time during erasing
tDSED
-
-
23.0
-
-
21.7
μs
Data flash STOP recovery time
tDSTOP
720
-
-
720
-
-
ns
Note:
Note:
Note:
2.16
Does not include the time until each operation of the flash memory is started after instructions are executed by software.
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Boundary Scan
Table 2.81
Boundary scan
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
TCK clock cycle time
tTCKcyc
100
-
-
ns
Figure 2.94
TCK clock high pulse width
tTCKH
45
-
-
ns
TCK clock low pulse width
tTCKL
45
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
TMS setup time
tTMSS
20
-
-
ns
TMS hold time
tTMSH
20
-
-
ns
TDI setup time
tTDIS
20
-
-
ns
TDI hold time
tTDIH
20
-
-
ns
TDO data delay
tTDOD
-
-
70
ns
Boundary Scan circuit start up time*1
tBSSTUP
tRESWP
-
-
-
Note 1.
Figure 2.95
Figure 2.96
Boundary scan does not function until power-on-reset becomes negative.
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 130 of 145
S3A1 Datasheet
2. Electrical Characteristics
tTCKcyc
tTCKH
tTCKf
TCK
tTCKL
Figure 2.94
tTCKr
Boundary scan TCK timing
TCK
tTMSS
tTMSH
tTDIS
tTDIH
TMS
TDI
tTDOD
TDO
Figure 2.95
Boundary scan input/output timing
VCC
RES
tBSSTUP
(= tRESWP)
Figure 2.96
2.17
Boundary scan
execute
Boundary scan circuit start up timing
Joint European Test Action Group (JTAG)
Table 2.82
JTAG (debug) characteristics (1) (1 of 2)
Conditions: VCC = 2.4 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
TCK clock cycle time
tTCKcyc
80
-
-
ns
Figure 2.97
TCK clock high pulse width
tTCKH
35
-
-
ns
TCK clock low pulse width
tTCKL
35
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 131 of 145
S3A1 Datasheet
Table 2.82
2. Electrical Characteristics
JTAG (debug) characteristics (1) (2 of 2)
Conditions: VCC = 2.4 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
TMS setup time
tTMSS
16
-
-
ns
Figure 2.98
TMS hold time
tTMSH
16
-
-
ns
TDI setup time
tTDIS
16
-
-
ns
TDI hold time
tTDIH
16
-
-
ns
TDO data delay time
tTDOD
-
-
70
ns
Table 2.83
JTAG (debug) characteristics (2)
Conditions: VCC = 1.6 to 2.4 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
TCK clock cycle time
tTCKcyc
250
-
-
ns
Figure 2.97
TCK clock high pulse width
tTCKH
120
-
-
ns
TCK clock low pulse width
tTCKL
120
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
TMS setup time
tTMSS
50
-
-
ns
TMS hold time
tTMSH
50
-
-
ns
TDI setup time
tTDIS
50
-
-
ns
TDI hold time
tTDIH
50
-
-
ns
TDO data delay time
tTDOD
-
-
150
ns
Figure 2.98
tTCKcyc
tTCKH
TCK
tTCKf
tTCKr
tTCKL
Figure 2.97
JTAG TCK timing
TCK
tTMSS
tTMSH
tTDIS
tTDIH
TMS
TDI
tTDOD
TDO
Figure 2.98
JTAG input/output timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 132 of 145
S3A1 Datasheet
2.17.1
Table 2.84
2. Electrical Characteristics
Serial Wire Debug (SWD)
SWD characteristics (1)
Conditions: VCC = 2.4 to 5.5 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
SWCLK clock cycle time
tSWCKcyc
80
-
-
ns
Figure 2.99
SWCLK clock high pulse width
tSWCKH
35
-
-
ns
SWCLK clock low pulse width
tSWCKL
35
-
-
ns
SWCLK clock rise time
tSWCKr
-
-
5
ns
SWCLK clock fall time
tSWCKf
-
-
5
ns
SWDIO setup time
tSWDS
16
-
-
ns
SWDIO hold time
tSWDH
16
-
-
ns
SWDIO data delay time
tSWDD
2
-
70
ns
Table 2.85
Figure 2.100
SWD characteristics (2)
Conditions: VCC = 1.6 to 2.4 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
SWCLK clock cycle time
tSWCKcyc
250
-
-
ns
Figure 2.99
SWCLK clock high pulse width
tSWCKH
120
-
-
ns
SWCLK clock low pulse width
tSWCKL
120
-
-
ns
SWCLK clock rise time
tSWCKr
-
-
5
ns
SWCLK clock fall time
tSWCKf
-
-
5
ns
SWDIO setup time
tSWDS
50
-
-
ns
SWDIO hold time
tSWDH
50
-
-
ns
SWDIO data delay time
tSWDD
2
-
150
ns
Figure 2.100
tSWCKcyc
tSWCKH
SWCLK
tSWCKf
tSWCKL
Figure 2.99
tSWCKr
SWD SWCLK timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 133 of 145
S3A1 Datasheet
2. Electrical Characteristics
SWCLK
tSWDS
tSWDH
SWDIO
(Input)
tSWDD
SWDIO
(Output)
tSWDD
SWDIO
(Output)
tSWDD
SWDIO
(Output)
Figure 2.100
SWD input/output timing
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 134 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
Appendix 1. Package Dimensions
Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas
Electronics Corporation website.
JEITA Package Code
P-TFLGA145-7x7-0.50
RENESAS Code
PTLG0145KA-A
Previous Code
145F0G
MASS[Typ.]
0.1g
w S B
φb1
D
φ
φb
φ
w S A
ZD
A
M S AB
M S AB
e
A
e
N
M
L
K
J
E
H
B
G
F
E
D
C
B
y S
x4
v
Index mark
(Laser mark)
Figure 1.1
S
ZE
A
1
2
3
4
5
6
7
8
9
10 11 12 13
Reference Dimension
Symbol
Min
D
E
v
w
A
e
b
b1
x
y
ZD
ZE
in Millimeters
Nom
7.0
7.0
Max
0.15
0.20
1.05
0.21
0.29
0.5
0.25
0.34
0.29
0.39
0.08
0.08
0.5
0.5
LGA 145-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 135 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP144-20x20-0.50
PLQP0144KA-B
—
1.2
Unit: mm
HD
*1 D
108
73
*2
E
72
144
37
1
36
NOTE 4
Index area
NOTE 3
F
S
*3
bp
0.25
A1
T
c
y S
A2
A
e
Lp
L1
Detail F
Figure 1.2
HE
109
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
Reference Dimensions in millimeters
Symbol
M
Min
Nom
Max
D
19.9
20.0
20.1
20.1
E
19.9
20.0
A2
1.4
HD
21.8
22.0
22.2
HE
21.8
22.0
22.2
A
1.7
A1
0.05
0.15
bp
0.17
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.10
Lp
0.45
0.6
0.75
L1
1.0
LQFP 144-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 136 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFBGA121-8x8-0.65
PLBG0121JA-A
—
0.15
Unit: mm
w S A
D
A
ZD
ZE
11
10
9
8
7
6
5
4
3
2
1
B
E
L K J H G F E D C B A
w S B
INDEX MARK
INDEX MARK
A
y1
A2
S
S
Reference Dimensions in millimeters
Symbol
y
e
S
Ib
Figure 1.3
Ix
M
Min
Nom
Max
D
7.90
8.00
8.10
8.10
A1
S AB
E
7.90
8.00
w
—
0.20
—
A
1.11
1.21
1.31
A1
0.25
0.30
0.35
A2
—
0.91
—
e
—
0.65
—
b
0.35
0.40
0.45
x
—
0.08
—
y
—
0.10
—
y1
—
0.20
—
ZD
—
0.75
—
ZE
—
0.75
—
BGA 121-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 137 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
P-TFLGA100-7x7-0.65
RENESAS Code
PTLG0100JA-A
Previous Code
100F0G
MASS[Typ.]
0.1g
w S B
φ b1
D
φ× M S
φb
w S A
ZD
φ× M S
AB
e
A
e
A
AB
K
J
H
G
B
E
F
E
D
C
B
×4
y S
v
Index mark
(Laser mark)
Figure 1.4
S
ZE
A
1
2
3
Index mark
4
5
6
7
8
9
10
Reference
Symbol
Dimension in Millimeters
Min Nom
D
7.0
E
7.0
v
w
A
e
0.65
b
0.31 0.35
b1 0.385 0.435
x
y
ZD
0.575
ZE
0.575
Max
0.15
0.20
1.05
0.39
0.485
0.08
0.10
LGA 100-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 138 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP100-14x14-0.50
PLQP0100KB-B
—
0.6
HD
Unit: mm
*1 D
51
75
*2
E
50
100
26
1
25
NOTE 4
Index area
NOTE 3
F
S
y S
*3
0.25
T
A1
Lp
L1
Detail F
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
Reference Dimensions in millimeters
Symbol
bp
M
Min
Nom
Max
D
13.9
14.0
14.1
14.1
E
13.9
14.0
A2
1.4
HD
15.8
16.0
16.2
HE
15.8
16.0
16.2
A
1.7
A1
0.05
0.15
bp
0.15
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.08
Lp
0.45
0.6
0.75
L1
1.0
c
A2
A
e
Figure 1.5
HE
76
LQFP 100-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 139 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP64-10x10-0.50
PLQP0064KB-C
—
0.3
Unit: mm
HD
*1 D
48
33
64
HE
32
*2 E
49
17
1
16
NOTE 4
Index area
NOTE 3
F
S
y S
*3
bp
0.25
c
A1
T
A2
A
e
Lp
L1
Detail F
Figure 1.6
M
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
Reference Dimensions in millimeters
Symbol
Min
Nom
Max
D
9.9
10.0
10.1
10.1
E
9.9
10.0
A2
1.4
HD
11.8
12.0
12.2
HE
11.8
12.0
12.2
A
1.7
A1
0.05
0.15
bp
0.15
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.08
Lp
0.45
0.6
0.75
L1
1.0
LQFP 64-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 140 of 145
S3A1 Datasheet
Appendix 1. Package Dimensions
JEITA Package code
P-HWQFN64-8x8-0.40
RENESAS code
Previous code
MASS(TYP.)[g]
PWQN0064LA-A
P64K8-40-9B5-3
0.16
D
33
48
DETAIL OF A PART
32
49
E
A
A1
17
64
c2
16
1
INDEX AREA
A
S
y
S
Referance
Symbol
D2
A
Lp
EXPOSED DIE PAD
16
1
64
17
Dimension in Millimeters
Min
Nom
Max
D
7.95
8.00
8.05
E
7.95
8.00
8.05
A
0.80
A1
0.00
b
0.17
e
Lp
B
E2
32
49
0.30
33
ZD
e
b
Figure 1.7
x
M
0.40
0.50
x
0.05
y
0.05
1.00
ZE
c2
48
0.23
0.40
ZD
ZE
0.20
1.00
0.15
0.20
D2
6.50
E2
6.50
0.25
S AB
QFN 64-pin
R01DS0324EU0100 Rev.1.00
Oct 30, 2017
Page 141 of 145
Revision History
Rev.
Date
1.00
Oct 30, 2017
S3A1 Microcontroller Group Datasheet
Summary
1st release
Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior
written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States
and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
Colophon
S3A1 Microcontroller Group Datasheet
Publication Date:
Rev.1.00
Oct 30, 2017
Published by:
Renesas Electronics Corporation
Address List
http://www.renesas.com
SALES OFFICES
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141
© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 4.1
Back cover
Renesas Synergy™ Platform
S3A1 Microcontroller Group
R01DS0324EU0100