0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R7S910006CBG#AC0

R7S910006CBG#AC0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    FBGA320

  • 描述:

    ICMCU32BITROMLESS320FBGA

  • 数据手册
  • 价格&库存
R7S910006CBG#AC0 数据手册
Datasheet RZ/T1 Group R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 300 MHz/450 MHz/600 MHz, MCU with Arm® Cortex®-R4 and -M3*1, on-chip FPU, 498/747/996 DMIPS, up to 1 Mbyte of on-chip extended SRAM, Ethernet MAC, EtherCAT*1, USB 2.0 high-speed, CAN, various communications interfaces such as an SPI multi-I/O bus controller, ΔΣ interface, safety functions, encoder interfaces*1, and security functions*1 Features ■ On-chip 32-bit Arm Cortex-R4 processor • • • • • • • • • High-speed realtime control with maximum operating frequency of 300/450/600 MHz Capable of 498/747/996 DMIPS (in operation at 300/450/600 MHz) On-chip 32-bit Arm Cortex-R4 (revision r1p4) Tightly coupled memory (TCM) with ECC: 512 Kbytes/32 Kbytes Instruction cache/data cache with ECC: 8 Kbytes per cache High-speed interrupt The FPU supports addition, subtraction, multiplication, division, multiply-and-accumulate, and square-root operations at singleprecision and double-precision. Harvard architecture with 8-stage pipeline Supports the memory protection unit (MPU) Arm CoreSight architecture, includes support for debugging through JTAG and SWD interfaces ■ On-chip 32-bit Arm Cortex-M3 processor (in products incorporating an R-IN engine) • • • • 150-MHz operating frequency On-chip 32-bit Arm Cortex-M3 (revision r2p1) RISC Harvard architecture with 3-stage pipeline Supports the memory protection unit (MPU) ■ Low power consumption • Standby mode, sleep mode, and module stop function ■ On-chip extended SRAM • • Up to 1 Mbyte of the on-chip extended SRAM with ECC 150 MHz ■ Data transfer • • DMAC: 16 channels × 2 units DMAC for the Ethernet controller: 1 channel ■ Event link controller • • Module operations can be started by event signals rather than by interrupt handlers. Linked operation of modules is available even while the CPU is in the sleep state. ■ Reset and power supply voltage control • • Four reset sources including a pin reset Dual power-voltage configuration: 3.3 V (I/O unit), 1.2 V (internal) ■ Clock functions • • • External clock/oscillator input frequency: 25 MHz CPU clock frequency: Up to 300/450/600 MHz Low-speed on-chip oscillator (LOCO): 240 kHz ■ Independent watchdog timer • Operated by a clock signal obtained by frequency-dividing the clock signal from the low-speed on-chip oscillator: Up to 120 kHz ■ Safety functions • • Register write protection, input clock oscillation stop detection, CRC, IWDTa, and A/D self-diagnosis An error control module is incorporated to generate a pin signal output, interrupt, or internal reset in response to errors originating in the various modules. ■ Security functions (optional)*2 • Boot mode with security through encryption ■ Encoder interfaces (optional) • • • PRBG0320GA-A 17×17 mm, 0.8-mm pitch PLQP0176LD-A 20 × 20 mm, 0.4-mm pitch ■ Various communications interfaces • • Ethernet - EtherCAT slave controller: 2 ports (optional) - Ethernet MAC: 1 port (an Ethernet switch is not used) or - Ethernet MAC: 1 port (an Ethernet switch to support 2 ports is used) USB 2.0 high-speed host/function : 1 channel CAN (compliant with ISO11898-1): 2 channels (max.) SCIFA with 16-byte transmission and reception FIFOs: 5 channels I2C bus interface: 2 channels for transfer at up to 400 kbps RSPIa: 4 channels SPIBSC: Provides a single interface for multi-I/O compatible • • • Buses for high-speed data transfer at 75 MHz (max.) Support for up to 6 CS areas 8-, 16-, or 32-bit bus space is selectable per area • • • • • serial flash memory ■ External address space ■ Up to 33 extended-function timers • • 16-bit TPUa (12 channels), MTU3a (9 channels), GPTa (4 channels): Input capture, output compare, PWM waveform output 16-bit CMT (6 channels), 32-bit CMTW (2 channels) ■ Serial sound interface (1 channel) ■ ΔΣ interface • Up to 4 ΔΣ modulators are connectable externally. ■ 12-bit A/D converters • • • 12 bits × 2 units (max.) (8 channels for unit 0; 16 channels for unit 1) Self diagnosis Detection of analog input disconnection ■ Temperature sensor for measuring temperature within the chip ■ General-purpose I/O ports • 5-V tolerance, open drain, input pull-up ■ Multi-function pin controller • The locations of input/output functions for peripheral modules are selectable from among multiple pins. ■ Operating temperature range • Tj = -40°C to +125°C Tj: Junction temperature 2 channels*3 EnDat 2.2, BiSS-C, FA-CODER, A-format, and HIPERFACE DSL-compliant interfaces*4 Frequency-divided output from an encoder Note 1. Note 2. Note 3. Note 4. Optional Details of these optional functions will only be disclosed after completion of a binding non-disclosure agreement. For details, contact our sales representative. For use of two channels, use them in combination of any two protocols among EnDat2.2, BiSS-C, FA-CODER, and A-format. BiSS is a registered trademark of iC-Haus GmbH. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 1 of 136 RZ/T1 Group 1. Overview 1. Overview 1.1 Outline of Specifications This LSI circuit is a high-performance MCU equipped with the Arm® Cortex®-R4 processor with FPU and Cortex-M3 processor (for products incorporating an R-IN engine), and incorporating integrated peripheral functions necessary for system configuration. Table 1.1 lists the specifications in outline, and Table 1.2 gives a comparison of the functions of products in different packages. Table 1.1 shows the outline of maximum specifications, and the number of peripheral module channels differs depending on the pin number on the package. For details, see Table 1.2, List of Functions. Table 1.1 Outline of Specifications (1 / 7) Classification Module/Function Description CPU Central processing unit (Cortex-R4) • Maximum operating frequency 320-pin FBGA: 300 MHz/450 MHz/600 MHz 176-pin HLFQFP: 450 MHz • 32-bit CPU Cortex-R4 designed by Arm (core revision r1p4) • Address space: 4 Gbytes • Instruction cache: 8 Kbytes (with ECC) • Data cache: 8 Kbytes (with ECC) • Tightly coupled memory (TCM) ATCM: 512 Kbytes (with ECC) BTCM: 32 Kbytes (with ECC) • Instruction set: Arm v7-R architecture, so support includes Thumb® and Thumb-2 • Data arrangement Instructions: Little endian Data: Little endian • Memory protection unit (MPU) Central processing unit (Cortex-M3) (for products incorporating an R-IN engine) • • • • • FPU (Cortex-R4) • Supports addition, subtraction, multiplication, division, multiply-and-accumulate, and square-root operations at single- and double-precision. • Registers 32-bit single-word registers: 32 bits × 32 (can be used as 16 double-word registers: 64 bits × 16) On-chip extended SRAM with ECC • Capacity: Up to 1 Mbyte • Operating frequency: 150 MHz • SEC-DED (single error correction/double error detection) Memory • The operating mode can be selected from the following three boot modes SPI boot mode (for booting up from serial flash memory) 16-bit bus boot mode (NOR Flash) 32-bit bus boot mode (NOR Flash) Operating modes Clock Operating frequency: 150 MHz 32-bit CPU Cortex-M3 designed by Arm (core revision r2p1) Address space: 4 Gbytes Instruction set: Arm v7-M architecture, so support includes Thumb® and Thumb-2 Data arrangement Instructions: Little endian Data: Little endian • Memory protection unit (MPU) Clock generation circuit Reset R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 • The input clock can be selected from an external clock or external resonator. • Detection of input clock oscillation stopping • The following clocks are generated. CPU clock: 300/450/600 MHz (max.) System clock: 150 MHz (fixed) High-speed peripheral module clock: 150 MHz (fixed) Low-speed peripheral module clock: 75 MHz (fixed) ADCCLK in the 12-bit A/D converter (S12ADCa): 60 MHz (max.) External bus clock: 75 MHz (max.) Low-speed on-chip oscillator: 240 kHz (fixed) RES# pin reset, error control module (ECM) reset, software reset Page 2 of 136 RZ/T1 Group Table 1.1 1. Overview Outline of Specifications (2 / 7) Classification Module/Function Description Low power Low-power consumption function • Standby mode (Cortex-R4) • Sleep mode (Cortex-M3) (for products incorporating an R-IN engine) • Module stop function Interrupt Cortex-R4 vector interrupt controller (VIC) • Peripheral function interrupts: 290 sources / 292 sources (for products incorporating an R-IN engine) • External interrupts: 20 sources (NMI, IRQ0 to IRQ15, ETH0_INT, ETH1_INT, and ETH2_INT pins) • Software interrupts: 1 source • Non-maskable interrupts: 2 sources • Sixteen levels specifiable for the order of priority Cortex-M3 nested-type vector interrupt controller (NVIC) (only included in products incorporating an R-IN engine) • Peripheral function interrupts: 101 sources • External interrupts: 19 sources (IRQ0 to IRQ15, ETH0_INT, ETH1_INT, and ETH2_INT pins) • Software interrupts: 1 source • Non-maskable interrupts: 1 source • Sixteen levels specifiable for the order of priority External bus extension Bus state controller (BSC) • The external address space is divided into six areas (CS0 to CS5) for management. • The following features settable for each area independently. Bus size (8, 16, or 32 bits): Available sizes depend on the area. Number of access wait cycles (different wait cycles can be specified for read and write access cycles in some areas) Idle wait cycle insertion (between same area access cycles or different area access cycles) Specifying the memory to be connected to each area enables direct connection to SRAM, SRAM with byte selection, SDRAM, and burst ROM (clocked synchronous or asynchronous). The address/data multiplexed I/O (MPX) interface is also available. • Outputs a chip select signal (CS0# to CS5#) according to the target area (CS assert or negate timing can be selected by software) • SDRAM refresh Auto refresh or self-refresh mode selectable • SDRAM burst access Data transfer Direct memory access controller (DMAC) • 2 units (16 channels for unit 0, 16 channels for unit 1) • Transfer modes: Single transfer mode and block transfer mode • Transfer size Unit 0: 1/2/4/16/32/64 bytes Unit 1: 1/2/4/16 bytes • Activation sources: External requests (DREQ0 to DREQ2), external interrupts, on-chip peripheral module requests, and software requests I/O ports General-purpose I/O ports • 320-pin FBGA I/O pins: 209 Input pins: 9 Pull-up/pull-down resistors: 209 5-V tolerance: 9 • 176-pin HLFQFP I/O pins: 97 Input pins: 5 Pull-up/pull-down resistors: 97 5-V tolerance: 5 Event link controller (ELC) • Up to 103 event signals can be interlinked with the operation of modules. • In particular, the operation of timer modules can be started by input event signals. • Event-linked operation of signals of ports B and E is to be possible. Multi-function pin controller (MPC) The locations of input/output functions are selectable from among multiple pins. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 3 of 136 RZ/T1 Group Table 1.1 1. Overview Outline of Specifications (3 / 7) Classification Module/Function Description Timers 16-bit timer pulse unit (TPUa) • (16 bits × 6 channels) × 2 units*1 • Maximum 16 lines of pulse input/output × 2 units • Select from among seven or eight counter-input clock signals for each channel (with maximum operating frequency of 75 MHz) • Input capture/output compare function • Counter clear operation (synchronous clearing by compare match/input capture) • Simultaneous writing to multiple timer counters (TCNT) • Simultaneous register input/output by synchronous counter operation • Output of PWM waveforms in up to 15 phases × 2 units in PWM mode • Support for buffered operation, phase-counting mode (two phase encoder input) and cascade-connected operation (32 bits × 4 channels) depending on the channel. • PPG output trigger can be generated (unit 0 only) • Capable of generating conversion start triggers for the A/D converters • Digital noise filtering of signals from the input capture pins • Event linking by the ELC (unit 0 only) Multifunction timer pulse unit (MTU3a) • 9 channels (16 bits × 8 channels, 32 bits × 1 channel) • Maximum of 28 pulse-input/output and 3 pulse-input possible • Select from among 10, 11, 12 or 14 counter-input clock signals for each channel (with maximum operating frequency of 150 MHz) • Input capture function • 39 output compare/input capture registers • Counter clear operation (synchronous clearing by compare match/input capture) • Simultaneous writing to multiple timer counters (TCNT) • Simultaneous register input/output by synchronous counter operation • Buffered operation • Support for cascade-connected operation • Pulse output mode Toggle/PWM/complementary PWM/reset-synchronized PWM • Complementary PWM output mode Outputs non-overlapping waveforms for controlling 3-phase inverters Automatic specification of dead times PWM duty cycle: Selectable as any value from 0% to 100% Delay can be applied to requests for A/D conversion. Non-generation of interrupt requests at crest or trough values of counters can be selected. Double buffer configuration • Reset synchronous PWM mode Three phases of positive and negative PWM waveforms can be output with desired duty cycles. • Phase-counting mode: 16-bit mode (channels 1 and 2); 32-bit mode (channels 1 and 2 in cascade connection) • Counter functionality for dead-time compensation • Generation of triggers for A/D converter conversion • A/D converter start triggers can be skipped • Digital noise filter function for signals on the input capture and external counter clock pins • PPG output trigger can be generated • Event linking by the ELC R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 4 of 136 RZ/T1 Group Table 1.1 1. Overview Outline of Specifications (4 / 7) Classification Module/Function Description Timers General PWM timer (GPTa) • 16 bits × 4 channels • Counting up or down (saw-wave), counting up and down (triangle-wave) selectable for all channels • Select from among four counter-input clock signals for each channel (with maximum operating frequency of 150 MHz) • 2 input/output pins per channel • 2 output compare/input capture registers per channel • For the 2 output compare/input capture registers of each channel, 4 registers are provided as buffer registers and are capable of operating as compare registers when buffering is not in use. • In output compare operation, buffer switching can be at crests or troughs, enabling the generation of laterally asymmetrically PWM waveforms. • Registers for setting up frame intervals on each channel (with capability for generating interrupts on overflow or underflow) • Synchronizable operation of the several counters • Modes of synchronized operation (synchronized, or displaced by desired times for phase shifting) • Generation of dead times in PWM operation • Through combination of three counters, generation of automatic three-phase PWM waveforms incorporating dead times • Starting, clearing, and stopping counters in response to external or internal triggers • Internal trigger sources: software, and compare-match • Generation of triggers for A/D converter conversion • Digital noise filter function for signals on the input capture and external trigger pins • Event linking by the ELC Programmable pulse generator (PPG) • (4 bits × 4 groups) × 2 units*1 • Pulse output with the MTU3a or TPUa output as a trigger • Maximum of 32 pulse-output possible Compare match timer (CMT) • (16 bits × 2 channels) × 3 units • Select from among four counter-input clock signals for each channel (with maximum operating frequency of 75 MHz) • Event linking by the ELC (channel 1 of unit 0 only) Compare match timer W (CMTW) • (32 bits × 1 channel) × 2 units • Compare-match, input-capture input, and output-comparison output are available. • Select from among four counter-input clock signals for each channel (with maximum operating frequency of 75 MHz) • Interrupt requests can be output in response to compare-match, input-capture, and output-comparison events. • Digital noise filter function for signals on the input capture pins • Event linking by the ELC Watchdog timer (WDTA) • 14 bits × 1 channel Products incorporating an R-IN engine: 14 bits × 2 channels • Select from among six counter-input clock signals for each channel (with maximum operating frequency of 75 MHz) Independent watchdog timer (IWDTa) • 14 bits × 1 channel • Counter-input clock: Low-speed on-chip oscillator (LOCO)/2 Dedicated clock/1, dedicated clock/16, dedicated clock/32, dedicated clock/64, dedicated clock/128, dedicated clock/256 (with maximum operating frequency of 120 kHz) Port output enable 3 (POE3) • Control of the high-impedance state of the MTU3a / GPTa's waveform output pins • Initiation by inputs on 4 pins, POE0#, POE4#, POE8#, and POE10# • Initiation on detection of short-circuited outputs (detection of simultaneous PWM output to the active level) • Initiation by input clock oscillation-stoppage detection, PLL oscillation abnormality detection, or software • Additional programming of output control target pins is enabled R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 5 of 136 RZ/T1 Group Table 1.1 1. Overview Outline of Specifications (5 / 7) Classification Module/Function Description Communication function Ethernet MAC (ETHERC) • • • • • • • 1 port (Use of two ports is possible with the Ethernet switch function) IEEE802.3 is supported 10BASE and 100BASE are supported Full duplex and half duplex are supported Automatic pause packet transmission function Auto broadcast suspension function by the pause packet reception MII/RMII interface is supported Ethernet switch • • • • • • • 2-port PHY interfaces IEEE802.3 10BASE and 100BASE are supported Full and half duplex Hardware switching, lookup, and filtering QoS with frame prioritization Priority control based on VLAN Priority (IEEE802.1q), which enables priority reassignment Classification and priority assignment based on IPv4 DiffServ Code Point Field, IPv6 Class of Service Queue with four priority levels Multicasting and broadcasting VLAN frame IEEE1588 timer module Cut-through and hub features Device level ring (DLR) • • • • • • • EtherCAT Slave Controller (ECATC)*2 • 1 channel (2 ports)*3 • EtherCAT Slave Controller IP core (made by Beckhoff Automation GmbH) implemented USB 2.0 HS host/ function module • 1 port • Compliance with the USB 2.0 specification • Transfer rate High speed (480 Mbps), full speed (12 Mbps) • Communications buffer Incorporates 1 Kbyte of RAM for host mode Incorporates 8 Kbytes of RAM for function mode Serial communication interface with FIFO (SCIFA) • • • • • 5 channels Serial communications modes: Asynchronous, clock synchronous On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Both the transmission and reception sections are equipped with 16-byte FIFO buffers, allowing continuous transmission and reception. • Bit rate modulation I2C bus interface (RIICa) • • • • • CAN module (RSCAN) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 2 channels Supports I2C bus format Supports the multi-master Max. transfer rate: 400 kbps Event linking by the ELC • 2 channels • Compliance with the ISO11898-1 specification (standard frame and extended frame) • Message buffers Max. 64 × 2 channels of reception message buffers, which are used by all channels 16 transmission message buffers per channel • Max. transfer rate: 1 Mbps Page 6 of 136 RZ/T1 Group Table 1.1 1. Overview Outline of Specifications (6 / 7) Classification Module/Function Description Communication function Serial peripheral interface (RSPIa) • 4 channels • RSPI transfer facility Using the MOSI (master out slave in), MISO (master in slave out), SSL (slave select), and RSPCK (RSPI clock) signals enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave • Data formats Switching between MSB first and LSB first The number of bits in each transfer can be changed to any number of bits from 8 to 16, or 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) • Buffered structure Double buffers for both transmission and reception • RSPCK can be stopped automatically with the reception buffer full for master reception • Event linking by the ELC SPI multi I/O bus • 1 channel • One serial flash memory with multiple I/O bus sizes (single/dual/quad) can be connected. • External address space read mode (built-in read cache) • SPI operating mode • Clock polarity and clock phase can be selected. • Maximum transfer rate: 300 Mbps (for quad) controller (SPIBSC) Serial sound interface (SSI) • • • • • • • • ΔΣ interface (DSMIF) • 4 channels (unit 0: 3 channels, unit 1: 1 channel) • Up to 4 ΔΣ modulators are externally connectable • Sync filter can be selected as first, second, or third order 12-bit A/D converter (S12ADCa) • 12 bits × 2 units (unit 0: 8 channels, unit 1: 16 channels)*1 • 12-bit resolution • Conversion time Unit 0: 0.483 µs per channel Unit 1: 0.883 µs per channel • Operating mode Scan mode (single scan mode, continuous scan mode, or group scan mode) Group A priority control (only for group scan mode) • Sample-and-hold function Common sample-and-hold circuit included In addition, channel-dedicated sample-and-hold function (4 channels: in unit 0 only) included • Sampling variable Sampling time can be set up for each channel • Self-diagnostic function The self-diagnostic function internally generates three analog input voltages (unit 0: VREFL0, VREFH0 × 1/2, VREFH0; unit 1: VREFL1, VREFH1 × 1/2, VREFH1) • Double trigger mode (A/D conversion data duplicated) • Detection of analog input disconnection • Three ways to start A/D conversion Software trigger, timer (MTU3a, GPTa, TPUa) trigger, external trigger • Event linking by the ELC Temperature sensor • 1 channel • Relative precision: ±1°C • The voltage of the temperature is converted into a digital value by the 12-bit A/D converter (unit 0). R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 1 channel Duplex communication Support of various serial audio formats Support of master and slave functions Generation of serial bit clock Support of 8, 16, 18, 20, 22, 24, and 32-bit data formats Support of eight-stage FIFO for transmission and reception Support of WS continue mode in which the SSIWS signal is not stopped. Page 7 of 136 RZ/T1 Group Table 1.1 1. Overview Outline of Specifications (7 / 7) Classification Module/Function Description Safety Register write protection function Protects important registers from being overwritten in cases where a program runs out of control. CRC calculator (CRC) • CRC code generation for arbitrary amounts of data in 8-, 16-, or 32-bit units • Select any of four generating polynomials: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1 (32Ethernet), X16 + X12 + X5 + 1 (16-CCITT), X8 + X4 + X3 + X2 + 1 (8-SAEJ1850), X8 + X5 + X3 + X2 + X + 1 (8-0x2F) Input clock oscillation stop function Input clock oscillation stop detection: Available Clock monitor circuit (CLMA) Monitors the abnormal output clock frequency from the PLL circuit or low-speed on-chip oscillator. Data operation circuit (DOC) The function to compare, add, or subtract 16-bit data Error control module (ECM) • Generates an interrupt, internal reset, or error output for the error signal input from each module. • Time-out function • The error control is duplicated in the master and the checker. Secure boot mode*4 As an option, a boot mode with encryption as a security function is available. Security Encoder interfaces*5 • 2 channels*6 • EnDat 2.2, BiSS-C, FA-CODER, A-format, and HIPERFACE DSL-compliant interfaces • Frequency-divided output from an encoder Power supply voltage VDD = PLLVDD0 = PLLVDD1 = DVDD_USB = 1.14 to 1.26 V VCCQ33 = AVCC0 = AVCC1 = VREFH0 = VREFH1 = VDD33_USB = 3.0 to 3.6 V Operating temperature Tj = -40 to +125°C Package 320-pin FBGA: 17 × 17 mm, 0.8-mm pitch PRBG0320GA-A 176-pin HLFQFP: 20 × 20 mm, 0.4-mm pitch PLQP0176LD-A Debugging interface • CoreSight architecture designed by Arm • Debugging function by the JTAG/SWD interface, and trace function by the trace port/ SWV interface Note 1. Note 2. Note 3. Note 4. One unit for 176-pin devices (only unit 0 is provided) EtherCAT is a registered trademark of Beckhoff Automation GmbH, Germany. (optional) Not included in 176-pin devices. See Table 1.3, List of Products, for the products that have the secure boot mode. Details of these optional functions will only be disclosed after completion of a binding non-disclosure agreement. For details, contact our sales representative. Note 5. This applies to the devices with the encoder interfaces. For details, contact our sales representative. Note 6. For use of two channels, use them in combination of any two protocols among EnDat2.2, BiSS-C, FA-CODER, and A-format. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 8 of 136 RZ/T1 Group Table 1.2 1. Overview Comparison of Functions for Different Packages RZ/T1 Group 320 Pins Module/Function External bus External bus width Interrupt External interrupt R-IN Engine Incorporated R-IN Engine NotIncorporated 176 Pins 32 bits NMI, IRQ0 to IRQ15, ETH0_INT, ETH1_INT, ETH2_INT NMI, IRQ0 to IRQ15, ETH0_INT, ETH1_INT DMA DMA controller (DMAC) Timers 16-bit timer pulse unit (TPUa) ch0 to ch31 ch0 to ch11 (Unit 0, Unit 1) Multi-function timer pulse unit 3 (MTU3a) ch0 to ch8 General-purpose PWM timer (GPTa) ch0 to ch3 Port output enable 3 (POE3) Programmable pulse generator (PPG) Available Unit 0, Unit 1 Compare match timer (CMT) ch0, ch1 ch0, ch1 Independent watchdog timer (IWDTa) Communication function ch0 Available 1 port*1 Ethernet controller (ETHERC) EtherCAT slave controller (ECATC) 2 ports*1 2 ports*1 (optional) USB 2.0 HS host/function module (USB) Serial communications interface with FIFO (SCIFA) I2C bus interface (RIICa) Serial peripheral interface (RSPIa) CAN module (RSCAN) ch0 ch0, ch1 ch0 to ch3 ch0, ch1 SPI multi I/O bus controller (SPIBSC) 12-bit A/D converter (S12ADCa) ch0 ch0 ch0 to ch3 AN000 to AN007 (unit 0) AN100 to AN115 (unit 1) Temperature sensor Available CRC calculator (CRC) Available Data operation circuit (DOC) Available Clock monitor circuit (CLMA) Available Secure boot mode*2 Optional Event link controller (ELC) Available Encoder interfaces*3 Not supported ch0 to ch4 Serial sound interface (SSI) ΔΣ interface (DSMIF) Unit 0 ch0 to ch5 Compare match timer W (CMTW) Watchdog timer (WDTA) ch0 to ch5 (Unit 0) Optional AN000 to AN007 (unit 0) Not supported Note 1. Combining the Ethernet controller and the EtherCAT slave controller (optional) makes a total of three ports. The Ethernet controller can support two ports with the use of the Ethernet switch. Note 2. See Table 1.3, List of Products for the products that have the secure boot mode. Details of these optional functions will only be disclosed after completion of a binding non-disclosure agreement. For details, contact our sales representative. Note 3. For details, contact our sales representative. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 9 of 136 RZ/T1 Group 1.2 1. Overview List of Products Table 1.3 is a list of products. Table 1.3 List of Products (1 / 2) On-Chip Extended SRAM Capacity EtherCAT Operating Frequency (max.) Security Function *1 Optional Function Part No. Package CPU R7S910001CFP 176 pins (PLQP0176LD-A) Cortex-R4 Not supported Not supported 450 MHz Not supported — R7S910101CFP 176 pins (PLQP0176LD-A) Cortex-R4 Not supported Not supported 450 MHz Available — R7S910002CBG 320 pins (PRBG0320GA-A) Cortex-R4 Not supported Not supported 450 MHz Not supported — R7S910102CBG 320 pins (PRBG0320GA-A) Cortex-R4 Not supported Not supported 450 MHz Available — R7S910006CBG 320 pins Cortex-R4 1 Mbyte Not supported 450 MHz Not supported — Cortex-R4 1 Mbyte Not supported 450 MHz Available — Cortex-R4 1 Mbyte Not supported 600 MHz Not supported — Cortex-R4 1 Mbyte Not supported 600 MHz Available — Cortex-R4 Not supported Not supported 450 MHz Not supported Encoder I/F Cortex-R4 Not supported Not supported 450 MHz Available Encoder I/F Cortex-R4 1 Mbyte Not supported 600 MHz Not supported Encoder I/F Cortex-R4 1 Mbyte Not supported 600 MHz Available Encoder I/F Cortex-R4 (1 MB for RIN Engine) Supported 450 MHz Not supported R-IN Engine (CM3 : 150MHz) Cortex-R4 (1 MB for RIN Engine) Supported 450 MHz Available R-IN Engine (CM3 : 150MHz) Cortex-R4 (1 MB for RIN Engine) Supported 450 MHz Not supported Encoder I/F R-IN Engine (CM3 : 150MHz) Cortex-R4 (1 MB for RIN Engine) Supported 450 MHz Available Encoder I/F R-IN Engine (CM3 : 150MHz) Cortex-R4 (1 MB for RIN Engine) Supported 600 MHz Not supported R-IN Engine (CM3 : 150MHz) Cortex-R4 (1 MB for RIN Engine) Supported 600 MHz Available R-IN Engine (CM3 : 150MHz) Cortex-R4 (1 MB for RIN Engine) Supported 600 MHz Not supported Encoder I/F R-IN Engine (CM3 : 150MHz) (PRBG0320GA-A) R7S910106CBG 320 pins (PRBG0320GA-A) R7S910007CBG 320 pins (PRBG0320GA-A) R7S910107CBG 320 pins (PRBG0320GA-A) R7S910011CBG 320 pins (PRBG0320GA-A) R7S910111CBG 320 pins (PRBG0320GA-A) R7S910013CBG 320 pins (PRBG0320GA-A) R7S910113CBG 320 pins (PRBG0320GA-A) R7S910015CBG 320 pins (PRBG0320GA-A) R7S910115CBG 320 pins (PRBG0320GA-A) R7S910016CBG 320 pins (PRBG0320GA-A) R7S910116CBG 320 pins (PRBG0320GA-A) R7S910017CBG 320 pins (PRBG0320GA-A) R7S910117CBG 320 pins (PRBG0320GA-A) R7S910018CBG 320 pins (PRBG0320GA-A) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 10 of 136 RZ/T1 Group Table 1.3 1. Overview List of Products (2 / 2) On-Chip Extended SRAM Capacity EtherCAT Operating Frequency (max.) Security Function *1 Optional Function Part No. Package CPU R7S910118CBG 320 pins Cortex-R4 (1 MB for RIN Engine) Supported 600 MHz Available Encoder I/F R-IN Engine (CM3 : 150 MHz) (PRBG0320GA-A) R7S910025CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 450 MHz Not supported — R7S910125CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 450 MHz Available — R7S910026CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 450 MHz Not supported Encoder I/F R7S910126CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 450 MHz Available Encoder I/F R7S910027CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 600 MHz Not supported — R7S910127CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 600 MHz Available — R7S910028CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 600 MHz Not supported Encoder I/F R7S910128CBG 320 pins (PRBG0320GA-A) Cortex-R4 1 MB Supported 600 MHz Available Encoder I/F R7S910035CBG 320 pins (PRBG0320GA-A) Cortex-R4 Not supported Supported 300 MHz Not supported — R7S910135CBG 320 pins (PRBG0320GA-A) Cortex-R4 Not supported Supported 300 MHz Available — R7S910036CBG 320 pins (PRBG0320GA-A) Cortex-R4 Not supported Supported 300 MHz Not supported Encoder I/F R7S910136CBG 320 pins (PRBG0320GA-A) Cortex-R4 Not supported Supported 300 MHz Available Encoder I/F Note: See the separate documents regarding the encoder I/F. Note 1. Details of these optional functions will only be disclosed after completion of a binding non-disclosure agreement. For details, contact our sales representative. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 11 of 136 RZ/T1 Group 1.3 1. Overview Block Diagram Figure 1.1 shows a block diagram of a 320-pin device. ELC Port 0 TPUa × 6 ch (unit 0) Port 1 TPUa × 6 ch (unit 1) Port 2 POE3 Port 3 PPG (unit 0) MTU3a × 9 ch PPG (unit 1) GPTa × 4 ch CMT × 2 ch (unit 0) CMT × 2 ch (unit 1) SCIFA × 5 ch Internal peripheral buses 1 to 7 ECATC × 2 ports*1 ETHERC × 1 port* CMTW × 1 ch (unit 0) CMTW × 1 ch (unit 1) Port 7 Port 8 Port 9 IWDTa Port A RIIC × 2 ch Port B RSCAN × 2 ch Instruction bus Port C Port D DSMIF × 3 ch (unit 0) DSMIF × 1 ch (unit 1) CRC Internal main bus 2 Cortex-M3 MPU Port 6 WDTA × 1 ch Products incorporating an R-IN engine: WDTA × 2ch SSI Operand bus System bus 1 NVIC Port 5 CMT × 2 ch (unit 2) RSPIa × 4 ch On-chip extended SRAM with ECC Port 4 DMAC × 16 ch (unit 0) DMAC × 16 ch (unit 1) USB × 1 port Port E Port F CLMA Port G DOC Port H ECM 12-bit A/D converter × 8 ch (unit 0) Port J Port K 12-bit A/D converter × 16 ch (unit 1) Temperature sensor Port L Port M Port N Cortex-R4 MPU TCM Clock generation circuit Internal main bus 1 VIC Port P Port R Port S SPIBSC BSC ETHERC: ECATC: DMAC: BSC: SPIBSC: WDTA: IWDTa: SCIFA: RSPIa: USB: VIC: NVIC: MPU: ELC: TPUa: MTU3a: POE3: Figure 1.1 Ethernet controller EtherCAT slave controller DMA controller Bus state controller SPI multi I/O bus controller Watchdog timer Independent watchdog timer Serial communication interface with FIFO Serial peripheral interface USB 2.0 HS host/function module Vector interrupt controller Nested-type vector interrupt controller Memory protection unit Event link controller 16-bit timer pulse unit Multi-function timer pulse unit 3 Port output enable 3 GPTa: PPG: CMT: CMTW: RIICa: RSCAN: SSI: DSMIF: CRC: CLMA: DOC: ECM: Port T Port U General-purpose PWM timer Programmable pulse generator Compare match timer Compare match timer W I2C bus interface CAN module Serial sound interface ΔΣ interface CRC (cyclic redundancy check) calculator Clock monitor circuit Data operation circuit Error control module Note 1. Combining the Ethernet controller and the EtherCAT slave controller (optional) makes a total of three ports. The Ethernet controller can support two ports with the use of the Ethernet switch. Block Diagram R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 12 of 136 RZ/T1 Group 1.4 1. Overview Pin Functions Table 1.4 lists the pin functions. Table 1.4 Pin Functions (1 / 7) Classifications Pin Name I/O Description Power supply VDD Input Power supply pin. Connect this pin to the system power supply. VSS Input Ground pin. Connect this pin to the system power supply (0 V). VCCQ33 Input Power supply pin for I/O pins PLLVDD0, PLLVDD1 Input Power supply pins for the on-chip PLL oscillator PLLVSS0, PLLVSS1 Input Ground pins for the on-chip PLL oscillator. Connect these pins to the system power supply (0 V). XTAL Output EXTAL Input Connected to a crystal resonator. An external clock signal may also be input to the EXTAL pin. CKIO Output Clock Outputs the external bus clock for external devices. AUDIO_CLK Input Inputs the external clock for audio. CLKOUT25M0, CLKOUT25M1, CLKOUT25M2 Output Output the external clock for Ethernet PHY. Operating mode control MD0 to MD2 Input Input the operating mode select signal. System control RES# Input Reset signal input pin. This LSI enters the reset state when this signal goes low. BSCANP Input Inputs the boundary scan enable signal. Boundary scan is enabled when this pin goes high. When not used, it should be driven low. OSCTH Input Inputs the clock input mode select signal. When an external clock is input, this pin should be driven high. When a crystal resonator is connected, it should be driven low. ERROROUT# Output Outputs the error signal from the error control module (ECM). RSTOUT# Output Outputs the reset signal externally. TRST# Input Test reset pin for on-chip emulator TMS I/O Test mode select pin for on-chip emulator TDI Input Test data input pin for on-chip emulator Debugging interface TDO Output Test data output pin for on-chip emulator TCK Input Test clock pin for on-chip emulator TRACECLK Output Outputs the clock for synchronization with the trace data. TRACECTL Output Outputs the enable signal for trace control. TRACEDATA0 to TRACEDATA7 Output Output the trace data. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 13 of 136 RZ/T1 Group Table 1.4 1. Overview Pin Functions (2 / 7) Classifications Pin Name I/O Description Output Output the address. D31 to D0 I/O Input and output the data. CS0# to CS5# Output Output the chip select signal for the external memory or device. RD# Output Outputs the strobe signal which indicates reading is in progress. Bus state controller (BSC) A25 to A0 Direct memory access controller (DMAC) Interrupt RD/WR# Output Outputs the strobe signal which indicates the read or write access. BS# Output Outputs the status signal which indicates the start of bus cycles. AH# Output Outputs the address hold signal for the device that uses the multiplexed I/O bus. WAIT# Input Inputs the external wait control signal which inserts a wait cycle into the bus cycles. WE0# Output Outputs the write strobe signal to D7 to D0. WE1# Output Outputs the write strobe signal to D15 to D8. WE2# Output Outputs the write strobe signal to D23 to D16. WE3# Output Outputs the write strobe signal to D31 to D24. DQMLL Output Outputs the data mask enable signal to D7 to D0 when SDRAM is connected. DQMLU Output Outputs the data mask enable signal to D15 to D8 when SDRAM is connected. DQMUL Output Outputs the data mask enable signal to D23 to D16 when SDRAM is connected. DQMUU Output Outputs the data mask enable signal to D31 to D24 when SDRAM is connected. RAS# Output Outputs the low-address strobe signal to the SDRAM. This pin should be connected to the RAS# pin on the SDRAM. CAS# Output Outputs the column-address strobe signal to the SDRAM. This pin should be connected to the CAS# pin on the SDRAM. CKE Output Outputs the clock enable signal to the SDRAM. This pin should be connected to the CKE pin on the SDRAM. DREQ0 to DREQ2 Input Input the DMA transfer request signal from the external device. DACK0 to DACK2 Output Output the acknowledge signal which indicates acceptance of the DMA transfer request from the external device. TEND0 to TEND2 Output Output the DMA transfer end signal. NMI Input Inputs the non-maskable interrupt request signal. IRQ0 to IRQ15 Input Input the external interrupt request signal. ETH0_INT, ETH1_INT, ETH2_INT Input Input the Ethernet PHY interrupt request signal. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 14 of 136 RZ/T1 Group Table 1.4 1. Overview Pin Functions (3 / 7) Classifications Pin Name I/O Description Multi-function timer pulse unit 3 (MTU3a) MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D I/O MTU0.TGRA to MTU0.TGRD input capture input/output compare output/PWM output pins MTIOC1A, MTIOC1B I/O MTU1.TGRA and MTU1.TGRB input capture input/output compare output/PWM output pins MTIOC2A, MTIOC2B I/O MTU2.TGRA and MTU2.TGRB input capture input/output compare output/PWM output pins MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D I/O MTU3.TGRA to MTU3.TGRD input capture input/output compare output/PWM output pins MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D I/O MTU4.TGRA to MTU4.TGRD input capture input/output compare output/PWM output pins MTIC5U, MTIC5V, MTIC5W Input MTU5.TGRU, MTU5.TGRV, and MTU5.TGRW input capture input/ dead time compensation input pins MTIOC6A, MTIOC6B, MTIOC6C, MTIOC6D I/O MTU6.TGRA to MTU6.TGRD input capture input/output compare output/PWM output pins MTIOC7A, MTIOC7B, MTIOC7C, MTIOC7D I/O MTU7.TGRA to MTU7.TGRD input capture input/output compare output/PWM output pins MTIOC8A, MTIOC8B, MTIOC8C, MTIOC8D I/O MTU8.TGRA to MTU8.TGRD input capture input/output compare output MTCLKA, MTCLKB, MTCLKC, MTCLKD Input External clock input pins for MTU3a Port output enable 3 (POE3) POE0#, POE4#, POE8#, POE10# Input Input the request signal to place the MTU3a or GPTa in the high impedance state. General-purpose PWM timer (GPTa) GTIOC0A, GTIOC0B I/O GPT0.GTCCRA and GPT0.GTCCRB input capture input/output compare output/PWM output pins GTIOC1A, GTIOC1B I/O GPT1.GTCCRA and GPT1.GTCCRB input capture input/output compare output/PWM output pins GTIOC2A, GTIOC2B I/O GPT2.GTCCRA and GPT2.GTCCRB input capture input/output compare output/PWM output pins GTIOC3A, GTIOC3B I/O GPT3.GTCCRA and GPT3.GTCCRB input capture input/output compare output/PWM output pins GTETRG Input External trigger input pin for GPTa R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 15 of 136 RZ/T1 Group Table 1.4 1. Overview Pin Functions (4 / 7) Classifications Pin Name I/O Description 16-bit timer pulse unit (TPUa) TIOCA0, TIOCB0, TIOCC0, TIOCD0 I/O TGRA0 to TGRD0 input capture input/output compare output/ PWM output pins TIOCA1, TIOCB1 I/O TGRA1 and TGRB1 input capture input/output compare output/ PWM output pins TIOCA2, TIOCB2 I/O TGRA2 and TGRB2 input capture input/output compare output/ PWM output pins TIOCA3, TIOCB3, TIOCC3, TIOCD3 I/O TGRA3 to TGRD3 input capture input/output compare output/ PWM output pins TIOCA4, TIOCB4 I/O TGRA4 and TGRB4 input capture input/output compare output/ PWM output pins TIOCA5, TIOCB5 I/O TGRA5 and TGRB5 input capture input/output compare output/ PWM output pins TCLKA, TCLKB, TCLKC, TCLKD Input External clock input pins for TPUa (unit 0) TIOCA6, TIOCB6, TIOCC6, TIOCD6 I/O TGRA6 to TGRD6 input capture input/output compare output/ PWM output pins TIOCA7, TIOCB7 I/O TGRA7 and TGRB7 input capture input/output compare output/ PWM output pins TIOCA8, TIOCB8 I/O TGRA8 and TGRB8 input capture input/output compare output/ PWM output pins TIOCA9, TIOCB9, TIOCC9, TIOCD9 I/O TGRA9 to TGRD9 input capture input/output compare output/ PWM output pins TIOCA10, TIOCB10 I/O TGRA10 and TGRB10 input capture input/output compare output/ PWM output pins TIOCA11, TIOCB11 I/O TGRA11 and TGRB11 input capture input/output compare output/ PWM output pins TCLKE, TCLKF, TCLKG, TCLKH Input External clock input pins for TPUa (unit 1) Programmable pulse generator (PPG) PO0 to PO31 Output Pulse output pins Compare match timer W (CMTW) TIC0 to TIC3 Input CMTW input capture input pins TOC0 to TOC3 Output CMTW output compare output pins Serial communication interface with FIFO (SCIFA) SCK0 to SCK4 I/O Clock I/O pins RXD0 to RXD4 Input Input the receive data. I2C bus interface (RIICa) TXD0 to TXD4 Output Output the transmit data. CTS0# to CTS4# I/O Hardware flow control input (transmission enable signal)/general output RTS0# to RTS4# Output Hardware flow control output (transmission request signal)/general output SCL0, SCL1 I/O Clock I/O pins. The bus can be directly driven by the N-channel open drain. SDA0, SDA1 I/O Data I/O pins. The bus can be directly driven by the N-channel open drain. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 16 of 136 RZ/T1 Group Table 1.4 1. Overview Pin Functions (5 / 7) Classifications Pin Name I/O Description Ethernet controller (ETHERC) ETH0_TXC, ETH1_TXC, ETH2_TXC Input Input the 10 M/100 M transmission clock (2.5 MHz/25 MHz). ETH0_TXEN, ETH1_TXEN, ETH2_TXEN Output Output the transmission enable signal. ETH0_TXER, ETH1_TXER, ETH2_TXER Output Output the transmission error signal. ETH0_TXD0 to 3, ETH1_TXD0 to 3, ETH2_TXD0 to 3 Output Output the transmission data signal. ETH0_RXC, ETH1_RXC, ETH2_RXC Input Receive clock input pins ETH0_RXDV, ETH1_RXDV, ETH2_RXDV Input Input the receive data enable signal. ETH0_RXER, ETH1_RXER, ETH2_RXER Input Input the receive data error signal. ETH0_RXD0 to 3, ETH1_RXD0 to 3, ETH2_RXD0 to 3 Input Input the receive data signal. ETH0_CRS, ETH1_CRS, ETH2_CRS Input Input the carrier sense signal. ETH0_COL, ETH1_COL, ETH2_COL Input Input the collision detection signal. ETH_MDC, MII2_MDC Output Output the management interface clock. ETH_MDIO, MII2_MDIO I/O Management data signal I/O pins PHYLINK0, PHYLINK1 Input Input the PHY Link signal. ETHSWSECOUT Output Outputs the Ethernet switch SYNCOUT signal. PHYRESETOUT#, PHYRESETOUT2# Output Output the PHY RESET signal (PHYRESETOUT#: for Ether0 and Ether1, PHYRESETOUT2#: for Ether2) CATLEDRUN Output Outputs the EtherCAT RUN LED signal. CATIRQ Output Outputs the EtherCAT IRQ signal. CATLEDSTER Output Outputs the EtherCAT Dual-color state LED signal. CATLEDERR Output Outputs the EtherCAT error LED signal. CATLINKACT0, CATLINKACT1 Output Output the EtherCAT link/activity LED signal. CATSYNC0, CATSYNC1 Output Output the EtherCAT SYNC signal. CATLATCH0 Input Input the EtherCAT LATCH signal. EtherCAT slave controller (ECATC) (optional) CATLATCH1 Input Input the EtherCAT LATCH signal. CATI2CCLK Output Outputs the EtherCAT EEPROM I2C clock signal. CATI2CDATA I/O Inputs/outputs the EtherCAT EEPROM I2C data signal. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 17 of 136 RZ/T1 Group Table 1.4 1. Overview Pin Functions (6 / 7) Classifications Pin Name I/O Description USB 2.0 host/function module VDD33_USB Input Power supply input pin for USB VSS_USB Input Ground input pin for USB DVDD_USB Input Digital power supply input pin for USB USB_RREF Input Reference current input pin for USB. Connect this pin to the VSS_USB pin via 200 Ω (±1%). USB_DP I/O USB bus D+ data I/O pin CAN module (RSCAN) Serial peripheral interface (RSPIa) SPI multi I/O bus controller (SPIBSC) Serial sound interface (SSI) ΔΣ interface (DSMIF) 12-bit A/D converter (S12ADCa) Analog power supply USB_DM I/O USB bus D- data I/O pin USB_VBUSEN Output Outputs the VBUS power enable signal for USB. USB_OVRCUR Input Inputs the overcurrent signal for USB. USB_VBUSIN Input USB cable connection/disconnection detection input pin CRXD0, CRXD1 Input Receive data input pins CTXD0, CTXD1 Output Transmit data output pins RSPCK0 to RSPCK3 I/O Clock I/O pins MOSI0 to MOSI3 I/O Master transmit data I/O pins MISO0 to MISO3 I/O Slave transmit data I/O pins SSL00, SSL10, SSL20, SSL30 I/O Slave select signal I/O pins SSL01, SSL02, SSL03, SSL11 Output Slave select signal output pins SPBCLK Output Clock output pin SPBSSL Output Slave select signal output pin SPBMO/SPBIO0 I/O Master transmit data/data 0 I/O pin SPBMI/SPBIO1 I/O Master input data/data 1 I/O pin SPBIO2, SPBIO3 I/O Data 2, data 3 I/O pins SSISCK0 I/O SSI serial bit clock I/O pin SSIWS0 I/O Word select I/O pin SSITXD0 Output Serial data output pin SSIRXD0 Input Serial data input pin AUDIO_CLK Input Master clock pin for audio MCLK0 to MCLK3 I/O Clock I/O pins MDAT0 to MDAT3 Input Data input pins AN000 to AN007, AN100 to AN115 Input Analog input pins for A/D converter ADTRG0, ADTRG1 Input External trigger input pins for the start of A/D conversion AN1_ANEX0 Output Extended analog outpu pin AN1_ANEX1 Input Extended analog input pin AVCC0 Input Analog power supply input pin for the 12-bit A/D converter (unit 0). Connect this pin to the VCCQ33 pin if the 12-bit A/D converter is not to be used. AVSS0 Input Analog ground input pin for the 12-bit A/D converter (unit 0). Connect this pin to the VSS pin if the 12-bit A/D converter is not to be used. VREFH0 Input Reference power supply input pin for the 12-bit A/D converter (unit 0). Connect this pin to the VCCQ33 pin if the 12-bit A/D converter is not to be used. VREFL0 Input Reference ground pin for the 12-bit A/D converter (unit 0). Connect this pin to the VSS pin if the 12-bit A/D converter is not to be used. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 18 of 136 RZ/T1 Group Table 1.4 1. Overview Pin Functions (7 / 7) Classifications Pin Name I/O Description Analog power supply AVCC1 Input Analog power supply input pin for the 12-bit A/D converter (unit 1). Connect this pin to the VCCQ33 pin if the 12-bit A/D converter is not to be used. AVSS1 Input Analog ground input pin for the 12-bit A/D converter (unit 1). Connect this pin to the VSS pin if the 12-bit A/D converter is not to be used. VREFH1 Input Reference power supply input pin for the 12-bit A/D converter (unit 1). Connect this pin to the VCCQ33 pin if the 12-bit A/D converter is not to be used. VREFL1 Input Reference ground pin for the 12-bit A/D converter (unit 1). Connect this pin to the VSS pin if the 12-bit A/D converter is not to be used. P00 to P07 I/O 8-bit I/O pin I/O ports Encoder I/F*1 P10 to P17 I/O 8-bit I/O pin P20 to P27 I/O 8-bit I/O pins P30 to P37 Input, I/O 1-bit input pin (P30), 7-bit I/O pins (P31 to P37) I/O pins P40 to P47 I/O 8-bit I/O pins P50 to P56 I/O 7-bit I/O pins P60 to P67 I/O 8-bit I/O pins P70 to P77 I/O 8-bit I/O pins P80 to P87 I/O 8-bit I/O pins P90 to P97 I/O 8-bit I/O pins PA0 to PA7 I/O 8-bit I/O pins PB0 to PB7 I/O 8-bit I/O pins PC0 to PC7 Input 8-bit input pins PD0 to PD7 I/O 8-bit I/O pins PE0 to PE7 I/O 8-bit I/O pins PF5 to PF7 I/O 3-bit I/O pins PG0 to PG7 I/O 8-bit I/O pins PH0 to PH7 I/O 8-bit I/O pins PJ0 to PJ7 I/O 8-bit I/O pins PK0 to PK7 I/O 8-bit I/O pins PL0 to PL7 I/O 8-bit I/O pins PM0 to PM7 I/O 8-bit I/O pins PN0 to PN7 I/O 8-bit I/O pins PP0 to PP7 I/O 8-bit I/O pins PR0 to PR7 I/O 8-bit I/O pins PS0 to PS7 I/O 8-bit I/O pins PT0 to PT7 I/O 8-bit I/O pins PU0 to PU7 I/O 8-bit I/O pins ENCIF00 to ENCIF12 I/O I/O pins for multi-protocol encoder interface Note 1. Only in products with the encoder interfaces. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 19 of 136 RZ/T1 Group 1.5 1. Overview Pin Assignments Figure 1.2 and Figure 1.3 show the pin arrangement. Table 1.5 and Table 1.6 show the pin assignments. Table 1.7 and Table 1.8 show the lists of pin functions. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A VSS PC2 PJ3 PJ1 PF7 PB4 PB0 PC0 PF6 VCC Q33 P54 VSS AN0 07 AN0 05 AN0 02 AVC C0 AVC C1 VRE FH1 P17 VSS A B PJ5 PJ4 PC3 PJ2 PJ0 PB5 PB2 PC1 PB7 P86 PD7 P52 AN0 06 AN0 03 AN0 01 AVS S0 AVS S1 VRE FL1 P16 P15 B C PJ7 PJ6 PU2 PL7 PL5 PB6 PB3 PB1 PF5 P87 PD6 P53 P51 AN0 04 AN0 00 VRE FL0 VRE FH0 PD2 P14 P13 C D P81 P80 PU3 PD0 P96 P95 D E P84 P82 PU1 PU0 PL6 PL4 PL2 PL0 PK7 PK6 PD5 P56 PD4 VCC Q33 PD1 P97 P94 P93 E F PC4 P83 P85 PU4 VSS VCC Q33 PL3 PL1 PK5 PK4 P55 P50 PD3 PK2 P90 P92 P91 P12 F G PU6 PC5 VCC Q33 PU5 PM0 PK3 PA7 PA4 PA3 P11 G H PU7 PM1 P35 ERR ORO UT# VCC Q33 VDD VDD VDD VDD VDD VSS PA6 PA5 PA2 PK0 PK1 H J PM6 PM3 PM2 P33 TRS T# VDD VSS VSS VSS VSS VDD VCC Q33 PA1 PA0 PT7 PT6 J K PM7 PM5 PM4 P34 PLL VDD 1 VDD VSS VSS VSS VSS VDD VSS P77 P76 P75 PT5 K L MD1 MD2 TMS TCK PLL VSS 1 VDD VSS VSS VSS VSS VDD VSS PE7 P72 P73 P74 L M XTA L EXT AL OSC TH BSC ANP PLL VDD 0 VDD VSS VSS VSS VSS VDD VCC Q33 PE6 P70 PT4 P71 M N VSS MD0 RST OUT # RES # PLL VSS 0 VDD VSS VDD VDD VDD VDD PE2 PE4 PE5 PT2 PT3 N P VSS _US B VDD 33_ USB USB _RR EF P31 VCC Q33 P06 P07 PE3 PT0 PT1 P R USB _DP USB _DM P30 PN0 PN2 PG0 PG2 PG7 PH2 PH4 PH6 P23 P27 P47 VCC Q33 VCC Q33 PS6 PS7 R T DVD D_U SB VDD 33_ USB P32 PC6 P37 P36 PG3 PG6 PH3 VCC Q33 PH5 VCC Q33 P26 VCC Q33 VSS VSS PE0 PE1 T U P60 P63 PN1 P00 P04 P03 U V P61 P64 PN3 PN4 PC7 PG1 PG4 PG5 PH0 PH1 PH7 P20 P21 VSS P45 P46 PS2 P05 P01 P02 V W P62 P65 PN5 PN6 PP0 PP2 PP4 PP6 PP7 PR1 PR3 PR5 P24 P22 P44 P43 PS1 PS3 PS4 PS5 W Y VSS P67 P66 PN7 PP1 PP3 PP5 VSS PR0 PR2 PR4 PR6 PR7 P25 P41 P42 P40 PS0 P10 VSS Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Figure 1.2 Pin Arrangement (320-Pin FBGA) (Top View) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 20 of 136 1. Overview 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 133 88 134 87 135 86 136 85 137 84 138 83 139 82 140 81 141 80 142 79 143 78 144 77 145 76 146 75 147 74 148 73 RZ/T Group 149 150 151 72 71 70 152 69 153 68 67 154 (176-pin HLFQFP) (Top view) 155 156 157 158 159 160 66 65 64 63 62 61 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 VSS P10 VCCQ33 P47 P43 P40 P42 VSS VDD P27 P26 P25 P20 P23 P22 P21 P24 PH7 PH6 PH5 PH4 VSS VDD PH3 PH2 PH1 PH0 PG7 PG6 PG5 PG4 PG3 PG2 VCCQ33 PG1 PG0 P37 P36 VDD VSS P65 P64 P63 VSS PC3 VCCQ33 VSS VDD P82 P85 ERROROUT# P35 TRST# P33 P34 TMS TCK BSCANP VDD VSS MD2 MD1 PLLVDD1 PLLVSS1 OSCTH VCCQ33 EXTAL XTAL VSS MD0 PLLVDD0 PLLVSS0 RES# RSTOUT# VDD VSS VDD33_USB VSS_USB USB_RREF USB_DM USB_DP VDD33_USB DVDD_USB P30 P60 P61 VCCQ33 P62 18 45 17 46 176 16 47 175 15 48 174 14 49 173 13 50 172 12 51 171 11 52 170 10 53 169 9 54 168 8 55 167 7 56 166 6 57 165 5 58 164 4 59 163 3 60 162 2 161 1 P16 P17 VCCQ33 VREFH0 VREFL0 AVSS0 AVCC0 AN000 AN001 AN002 AN003 AN004 AN005 AN006 AN007 VDD VSS P51 P54 P56 PD5 PD6 PD7 P86 P87 PF5 VCCQ33 VDD VSS PF6 PB7 PC0 PC1 PB0 PB1 PB2 VCCQ33 PB3 PB4 PB5 VSS VDD PB6 PC2 132 P15 P14 P13 VSS VDD PA7 VCCQ33 PA6 PA5 PA4 PA3 PA2 VDD VSS PA1 PA0 P77 P76 P75 P74 P73 P72 P71 P70 VDD VSS PE7 PE6 PE5 PE4 PE3 PE2 VSS PE1 PE0 P07 P06 P05 P04 P03 VCCQ33 P02 P01 P00 RZ/T1 Group Note 1. This figure indicates the power supply pins and I/O port pins. For the pin configuration, see Table 1.8, List of Pin and Pin Functions (176-Pin HLFQFP). Note 2. It is recommended to connect the exposed die pad of HLFQFP to VSS. Figure 1.3 Pin Arrangement (176-pin HLFQFP) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 21 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (1 / 8) Pin Number Pin Name A1 VSS A2 PC2 / ETH0_TXC / ETH1_RXD2 / CATI2CDATA / SDA0 A3 PJ3 / IRQ11 / ETH0_TXD0 / ADTRG0 A4 PJ1 / ETH0_TXD2 / CATLEDSTER / RSPCK3 A5 PF7 / IRQ7 / A25 / ETH0_TXER / RTS3# / SSL30 A6 PB4 / A24 / ETH1_COL / ETH0_RXER / CATSYNC0 / CATLATCH0 / RXD3 / MOSI3 / MDAT0 A7 PB0 / ETH1_RXDV / MTCLKB / TCLKD / TIC3 A8 PC0 / WAIT# / ETH1_RXD2 / GTETRG / SCL1 / MDAT3 A9 PF6 / ETH1_RXD0 / MTIOC3D / GTIOC0B / TOC2 A10 VCCQ33 A11 P54 / CLKOUT25M1 / MOSI2 A12 VSS A13 AN007 A14 AN005 A15 AN002 A16 AVCC0 A17 AVCC1 A18 VREFH1 A19 P17 / CS5# / ETH1_TXER / PHYRESETOUT# / ADTRG0 A20 VSS B1 PJ5 / ETH0_RXD1 / TIOCD0 / RXD3 B2 PJ4 / ETH0_RXD0 / TXD3 B3 PC3 / ETH0_RXC / ETH0_RXDV / CATI2CCLK / RXD4 / SCL0 / CRXD1 B4 PJ2 / IRQ10 / ETH0_TXD1 / MISO3 B5 PJ0 / IRQ8 / ETH0_TXD3 / CATLEDERR / MOSI3 B6 PB5 / ETH_MDIO / TCLKB / POE0# / POE10# / CTS3# / RSPCK3 B7 PB2 / ETH1_RXC / ETH0_RXD1 / CATSYNC1 / CATLATCH1 / MTIOC1A / SSL30 / MDAT1 B8 PC1 / IRQ9 / ETH1_RXD3 / PHYLINK0 / SDA1 / MDAT2 B9 PB7 / ETH1_RXD1 / MTIOC3B / GTIOC0A / TOC3 B10 P86 / AN1_ANEX0 / ETH1_TXD0 / MTIOC4B / GTIOC2A / TOC1 / RSPCK2 B11 PD7 / AN115 / ETH1_TXD1 / MTIOC4D / GTIOC2B / TOC0 B12 P52 / ETH0_INT / SSL20 B13 AN006 B14 AN003 B15 AN001 B16 AVSS0 B17 AVSS1 B18 VREFL1 B19 P16 / CS4# / CS2# / MTIOC3B / GTIOC0A / ENCIF12 B20 P15 / CS3# / CKE / MTIOC3D / GTIOC0B / ENCIF11 C1 PJ7 / IRQ15 / ETH0_RXD3 / CATLEDRUN / CTS3# C2 PJ6 / IRQ14 / ETH0_RXD2 / CATIRQ / SCK3 C3 PU2 / IRQ2 / ETH2_CRS / TIOCD9 / RXD3 C4 PL7 / IRQ15 / ETH2_RXDV R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 22 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (2 / 8) Pin Number Pin Name C5 PL5 / ETH2_RXD2 / TIOCA8 C6 PB6 / ETH_MDC / TCLKA / SCK3 / RTS4# / MISO3 C7 PB3 / IRQ3 / CS1# / ETH1_CRS / PHYRESETOUT# / TXD3 / CTXD1 / MCLK0 C8 PB1 / ETH1_RXER / MTCLKA / TCLKC / CTS4# C9 PF5 / ETH1_TXEN / MTIOC4A / GTIOC1A / TIC2 C10 P87 / AN1_ANEX1 / A23 / ETH1_TXC / ETH0_RXD0 / MTIOC4C / GTIOC1B / MCLK1 C11 PD6 / AN114 / A22 / ETH1_TXD2 / ETH0_TXD1 / TIC1 / MISO2 / MCLK2 C12 P53 / ETH1_INT / MISO2 C13 P51 / IRQ1 / PHYLINK1 / RSPCK2 C14 AN004 C15 AN000 C16 VREFL0 C17 VREFH0 C18 PD2 / AN110 / WAIT# C19 P14 / CAS# / MTIOC4A / GTIOC1A / ENCIF10 C20 P13 / RAS# / MTIOC4C / GTIOC1B D1 P81 / ETH0_RXER / TIOCC0 / CTS4# D2 P80 / IRQ8 / ETH0_RXDV / TIOCC3 / RTS4# D3 PU3 / ETH2_COL / TIOCD6 / TXD3 D18 PD0 / AN108 / CS4# D19 P96 / AN106 / POE0# / POE10# / ENCIF09 D20 P95 / AN105 / IRQ13 / MTCLKA / CTS2# E1 P84 / ETH0_COL / CATLINKACT1 / RXD4 E2 P82 / ETH0_TXEN / ETH1_CRS / TIOCD3 / SCK4 / RTS3# / USB_OVRCUR E3 PU1 / ETH2_RXC / TIOCA11 / SCK3 E5 PU0 / ETH2_RXER / TIOCA10 E6 PL6 / ETH2_RXD3 / TIOCA9 E7 PL4 / IRQ4 / ETH2_RXD1 E8 PL2 / ETH2_TXEN / TIOCA6 / ADTRG1 E9 PL0 / ETH2_TXD0 / TIOCB9 E10 PK7 / ETH2_TXD2 / TIOCB7 E11 PK6 / ETH2_TXD3 / TIOCB6 E12 PD5 / AN113 / A21 / ETH1_TXD3 / ETH0_TXD0 / TIC0 / SSL20 / MCLK3 E13 P56 / BS# / ETH1_TXER E14 PD4 / AN112 / ETH2_INT E15 VCCQ33 E16 PD1 / AN109 / CS1# E18 P97 / AN107 / IRQ7 / A25 / ADTRG1 E19 P94 / AN104 / IRQ4 / MTCLKB / RTS2# / ENCIF08 E20 P93 / AN103 / MTIOC1A / TIC3 / SCK2 / ENCIF07 F1 PC4 / CATI2CCLK / TCLKH / SCL0 F2 P83 / IRQ11 / ETH0_CRS / CATLINKACT0 / TXD4 F3 P85 / IRQ5 / CLKOUT25M0 / TXD4 / SCK4 / USB_VBUSEN F5 PU4 / MII2_MDC / TIOCC9 / CTS3# F6 VSS R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 23 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (3 / 8) Pin Number Pin Name F7 VCCQ33 F8 PL3 / ETH2_RXD0 / TIOCA7 F9 PL1 / ETH2_TXC / TIOCB10 F10 PK5 / ETH2_TXD1 / TIOCB8 F11 PK4 / ETH2_TXER / TIOCB11 / MOSI2 F12 P55 / IRQ5 / A24 / ETHSWSECOUT F13 P50 / IRQ8 / CS1# / PHYLINK0 F14 PD3 / AN111 / PHYRESETOUT2# F15 PK2 / A23 F16 P90 / AN100 / RAS# / TIOCA5 / TXD4 F18 P92 / AN102 / CS5# / TOC3 / RXD2 F19 P91 / AN101 / CAS# / TXD2 / ENCIF06 F20 P12 / MTIOC4B / GTIOC2A G1 PU6 / PHYRESETOUT# / TCLKF / CTS4# G2 PC5 / CATI2CDATA / TCLKG / SDA0 G3 VCCQ33 G5 PU5 / IRQ13 / MII2_MDIO / TIOCC6 / RTS3# G6 PM0 / CLKOUT25M2 / TXD4 G15 PK3 / A24 G16 PA7 / IRQ7 / D31 / A22 / MTIOC6B / GTIOC3B / RTS2# / MCLK0 G18 PA4 / D28 / ETH1_INT / TIOCA3 / ADTRG0 / RXD2 / TEND2 / MDAT1 G19 PA3 / D27 / ETHSWSECOUT / GTETRG / TIOCA2 / SCK2 / DACK2 / MCLK2 G20 P11 / IRQ9 / MTIOC4D / GTIOC2B H1 PU7 / CATIRQ / RXD4 H2 PM1 / CATLEDERR / SCK4 H3 P35 / NMI H5 ERROROUT# H6 VCCQ33 H8 VDD H9 VDD H10 VDD H11 VDD H12 VDD H13 VSS H15 PA6 / IRQ6 / D30 / A21 / GTIOC3A / CTS2# / MDAT0 H16 PA5 / D29 / ETH0_INT / ETH1_TXER / TIOCA4 / TXD2 / MCLK1 H18 PA2 / D26 / MTIOC3B / GTIOC0A / SSL02 / DREQ2 / MDAT2/ ENCIF05 H19 PK0 / CAS# / PO31 / ENCIF11 H20 PK1 / CS5# / ENCIF12 J1 PM6 / IRQ6 / CATLINKACT0 / PO19 J2 PM3 / CATSYNC0 / CATLATCH0 / PO16 J3 PM2 / CATSYNC1 / CATLATCH1 / TCLKE / RTS4# J5 P33 / TDO J6 TRST# J8 VDD R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 24 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (4 / 8) Pin Number Pin Name J9 VSS J10 VSS J11 VSS J12 VSS J13 VDD J15 VCCQ33 J16 PA1 / D25 / MTIOC3D / GTIOC0B / MISO0 / AUDIO_CLK / TRACEDATA7 / MCLK3 J18 PA0 / D24 / MTIOC4A / GTIOC1A / MOSI0 / TRACEDATA6 / MDAT3 J19 PT7 / A22 / DACK2 / ENCIF10 J20 PT6 / A21 / DREQ2 K1 PM7 / CATLINKACT1 / PO20 K2 PM5 / CATLEDSTER / PO18 K3 PM4 / CATLEDRUN / PO17 K5 P34 / TDI K6 PLLVDD1 K8 VDD K9 VSS K10 VSS K11 VSS K12 VSS K13 VDD K15 VSS K16 P77 / D23 / MTIOC4C / GTIOC1B / RSPCK0 / TRACEDATA5 K18 P76 / D22 / MTIOC4B / GTIOC2A / SSL01 / SSIWS0 / TRACEDATA4 K19 P75 / IRQ13 / D21 / MTIOC4D / GTIOC2B / SSL00 / TRACEDATA3/ ENCIF04 K20 PT5 / BS# / PO30 / TEND2 L1 MD1 L2 MD2 L3 TMS L5 TCK L6 PLLVSS1 L8 VDD L9 VSS L10 VSS L11 VSS L12 VSS L13 VDD L15 VSS L16 PE7 / D15 / MTIOC7A / TIOCD3 / POE8# / SCK1 / RSPCK0 / TRACEDATA7 L18 P72 / D18 / MTIOC1A / TIC2 / TXD1 / SSITXD0 / TRACEDATA0 / ENCIF02 L19 P73 / IRQ3 / D19 / MTCLKB / RXD1 / SSIRXD0 / TRACEDATA1 / ENCIF03 L20 P74 / D20 / MTCLKA / CTS1# / SSL03 / SSISCK0 / TRACEDATA2 M1 XTAL M2 EXTAL M3 OSCTH R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 25 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (5 / 8) Pin Number Pin Name M5 BSCANP M6 PLLVDD0 M8 VDD M9 VSS M10 VSS M11 VSS M12 VSS M13 VDD M15 VCCQ33 M16 PE6 / IRQ6 / D14 / MTIOC0A / TIOCD0 / RXD1 / MISO0 / TRACEDATA6 M18 P70 / IRQ0 / D16 / MTIOC6D / RTS1# / USB_OVRCUR / TRACECLK / ENCIF00 M19 PT4 / CS3# / PO29 M20 P71 / D17 / POE0# / POE10# / TOC2 / SCK1 / TRACECTL / ENCIF01 N1 VSS N2 MD0 N3 RSTOUT# N5 RES# N6 PLLVSS0 N8 VDD N9 VSS N10 VDD N11 VDD N12 VDD N13 VDD N15 PE2 / IRQ2 / D10 / MTCLKC / TIOCB4 / SSL02 / TRACEDATA2 N16 PE4 / D12 / MTIOC0B / TIOCC0 / RTS1# / SSL00 / TRACEDATA4 N18 PE5 / D13 / MTIOC0C / TIOCC3 / TXD1 / MOSI0 / TRACEDATA5 N19 PT2 / TIOCA1 / TIOCB1 / PO27 N20 PT3 / IRQ11 / TIOCA0 / TIOCB0 / PO28 / CTS2# / ENCIF09 P1 VSS_USB P2 VDD33_USB P3 USB_RREF P5 P31 / USB_VBUSEN P6 VCCQ33 P15 P06 / D6 / MTIOC2B / TIOCB0 P16 P07 / D7 / MTIOC2A / TIOCB1 P18 PE3 / IRQ3 / D11 / MTIOC0D / TIOCB5 / CTS1# / SSL01 / TRACEDATA3 P19 PT0 / IRQ0 / TIOCA3 / TIOCB3 / PO25 / SCK2 / ENCIF07 P20 PT1 / TIOCA2 / TIOCB2 / PO26 / RTS2# / ENCIF08 R1 USB_DP R2 USB_DM R3 P30 / CRXD0 / USB_VBUSIN R5 PN0 / MTIOC8D / SSL10 R6 PN2 / IRQ10 / MTIOC8B / MOSI1 R7 PG0 / A1 / PO2 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 26 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (6 / 8) Pin Number Pin Name R8 PG2 / A3 / PO4 / TOC0 / RSPCK1 R9 PG7 / A8 / PO9 R10 PH2 / A11 / MTIOC2A / PO12 R11 PH4 / IRQ4 / A13 / PO14 R12 PH6 / A15 / MTIOC7D / RTS0# R13 P23 / A0 / MTIC5U / TXD0 / DACK1 R14 P27 / A20 / MTIOC8C / TIOCB0 / RTS0# R15 P47 / WE3#/DQMUU/AH# / MTIOC6C R16 VCCQ33 R18 VCCQ33 R19 PS6 / IRQ14 / TIOCA5 / TIOCB5 / PO23 / RXD2 / ENCIF06 R20 PS7 / TIOCA4 / TIOCB4 / PO24 / TXD2 T1 DVDD_USB T2 VDD33_USB T3 P32 / IRQ10 / USB_OVRCUR T5 PC6 / TCLKC / SCL1 / CRXD0 / DREQ0 / USB_VBUSIN T6 P37 / WE1#/DQMLU / PO1 T7 P36 / WE0#/DQMLL / PO0 T8 PG3 / A4 / PO5 / TIC1 / MISO1 T9 PG6 / A7 / TCLKB / PO8 / SSL11 T10 PH3 / A12 / MTIOC1B / PO13 T11 VCCQ33 T12 PH5 / A14 / PO15 T13 VCCQ33 T14 P26 / A19 / MTIOC8D / DREQ1 T15 VCCQ33 T16 VSS T18 VSS T19 PE0 / D8 / MTIOC1B / TIOCB2 / TRACEDATA0 T20 PE1 / D9 / MTCLKD / TIOCB3 / SSL03 / TRACEDATA1 U1 P60 / SPBSSL / CTXD0 / TEND0 U2 P63 / SPBMO/SPBIO0 U3 PN1 / MTIOC8C / PO21 / MISO1 / ENCIF09 U18 P00 / D0 / MTIOC6A / TIOCA1 / ADTRG1 / TRACECTL U19 P04 / D4 / MTIOC3C / TIOCA5 U20 P03 / D3 / MTIC5U / TIOCA4 V1 P61 / SPBIO3 / CTXD1 / DACK0 V2 P64 / SPBMI/SPBIO1 V3 PN3 / MTIOC8A / RSPCK1 V4 PN4 / IRQ12 / MTIOC6C / TIOCC6 / SSL11 V5 PC7 / TIC0 / SDA1 / CRXD1 V6 PG1 / A2 / PO3 V7 PG4 / A5 / PO6 / TOC1 / MOSI1 V8 PG5 / A6 / TCLKA / PO7 / SSL10 V9 PH0 / A9 / PO10 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 27 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (7 / 8) Pin Number Pin Name V10 PH1 / A10 / MTIOC2B / PO11 V11 PH7 / A16 / MTIC5W V12 P20 / A17 / MTCLKD V13 P21 / IRQ1 / CS0# / MTIC5V / TIOCB1 / CTS0# V14 VSS V15 P45 / CS2# V16 P46 / CKE V17 PS2 / MTIOC7C / SSIWS0 V18 P05 / D5 / MTIOC3A V19 P01 / D1 / MTIC5W / TIOCA2 V20 P02 / D2 / MTIC5V / TIOCA3 W1 P62 / SPBCLK W2 P65 / SPBIO2 / DREQ0 W3 PN5 / IRQ5 / MTIOC6A / TIOCD9 / ENCIF10 W4 PN6 / MTIOC3C / TIOCC9 / MCLK3 / ENCIF11 W5 PP0 / POE8# / TEND0 / MCLK2 W6 PP2 / MTIOC0C / TCLKH / MCLK1 W7 PP4 / MTIOC0A / MCLK0 W8 PP6 / TIOCA11 / RXD1 / TRACECTL / ENCIF06 W9 PP7 / TCLKF / TCLKH / SCK1 / DACK1 / TRACECLK W10 PR1 / IRQ9 / POE4# / CTS1# / TEND1 / TRACEDATA1 / ENCIF08 W11 PR3 / TIOCA10 / TIOCB10 / TRACEDATA3 / ENCIF01 W12 PR5 / TIOCA8 / TIOCB8 / TRACEDATA5 / ENCIF03 W13 P24 / IRQ12 / RD/WR# / RXD0 W14 P22 / IRQ2 / RD# / MTIOC7B / TIOCD0 / SCK0 W15 P44 / IRQ12 / WAIT# / TCLKD / ADTRG0 / CTS0# W16 P43 / WE2#/DQMUL / MTIOC8B / USB_VBUSEN W17 PS1 / IRQ1 / MTIOC7B / SSISCK0 W18 PS3 / MTIOC7A / SSIRXD0 W19 PS4 / MTIOC6D / SSITXD0 W20 PS5 / MTIOC6B Y1 VSS Y2 P67 / IRQ15 / GTIOC3B / CTXD0 / TEND0 / USB_OVRCUR Y3 P66 / IRQ14 / GTIOC3A / CTXD1 / DACK0 / USB_VBUSEN Y4 PN7 / MTIOC3A / TIOCD6 / DREQ0 / MDAT3 / ENCIF12 Y5 PP1 / MTIOC0D / DACK0 / MDAT2 Y6 PP3 / MTIOC0B / TCLKC / MDAT1 Y7 PP5 / PO22 / MDAT0 Y8 VSS Y9 PR0 / TCLKE / TCLKG / TXD1 / DREQ1 / TRACEDATA0 / ENCIF07 Y10 PR2 / TIOCA11 / TIOCB11 / RTS1# / TRACEDATA2 / ENCIF00 Y11 PR4 / TIOCA9 / TIOCB9 / TRACEDATA4 / ENCIF02 Y12 PR6 / TIOCA7 / TIOCB7 / TRACEDATA6 / ENCIF04 Y13 PR7 / TIOCA6 / TIOCB6 / TRACEDATA7 / ENCIF05 Y14 P25 / A18 / MTCLKC / TEND1 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 28 of 136 RZ/T1 Group Table 1.5 1. Overview Pin Assignments (320-Pin FBGA) (8 / 8) Pin Number Pin Name Y15 P41 / BS# / SCK0 Y16 P42 / MTIOC7C / RXD0 Y17 P40 / MTIOC8A / TXD0 Y18 PS0 / MTIOC7D / AUDIO_CLK Y19 P10 / IRQ0 / CKIO / TIOCA0 / TRACECLK Y20 VSS R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 29 of 136 RZ/T1 Group Table 1.6 1. Overview Pin Assignments (176-Pin HLFQFP) (1 / 4) Pin Number Pin Name 1 PC3 / ETH0_RXC / ETH0_RXDV / RXD4 / SCL0 / CRXD1 2 VCCQ33 3 VSS 4 VDD 5 P82 / ETH0_TXEN / ETH1_CRS / TIOCD3 / SCK4 / RTS3# / USB_OVRCUR 6 P85 / IRQ5 / CLKOUT25M0 / TXD4 / SCK4 / USB_VBUSEN 7 ERROROUT# 8 P35 / NMI 9 TRST# 10 P33 / TDO 11 P34 / TDI 12 TMS 13 TCK 14 BSCANP 15 VDD 16 VSS 17 MD2 18 MD1 19 PLLVDD1 20 PLLVSS1 21 OSCTH 22 VCCQ33 23 EXTAL 24 XTAL 25 VSS 26 MD0 27 PLLVDD0 28 PLLVSS0 29 RES# 30 RSTOUT# 31 VDD 32 VSS 33 VDD33_USB 34 VSS_USB 35 USB_RREF 36 USB_DM 37 USB_DP 38 VDD33_USB 39 DVDD_USB 40 P30 / CRXD0 / USB_VBUSIN 41 P60 / SPBSSL / CTXD0 / TEND0 42 P61 / SPBIO3 / CTXD1 / DACK0 43 VCCQ33 44 P62 / SPBCLK R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 30 of 136 RZ/T1 Group Table 1.6 1. Overview Pin Assignments (176-Pin HLFQFP) (2 / 4) Pin Number Pin Name 45 VSS 46 P63 / SPBMO/SPBIO0 47 P64 / SPBMI/SPBIO1 48 P65 / SPBIO2 / DREQ0 49 VSS 50 VDD 51 P36 / WE0#/DQMLL / PO0 52 P37 / WE1#/DQMLU / PO1 53 PG0 / A1 / PO2 54 PG1 / A2 / PO3 55 VCCQ33 56 PG2 / A3 / PO4 / TOC0 / RSPCK1 57 PG3 / A4 / PO5 / TIC1 / MISO1 58 PG4 / A5 / PO6 / TOC1 / MOSI1 59 PG5 / A6 / TCLKA / PO7 / SSL10 60 PG6 / A7 / TCLKB / PO8 / SSL11 61 PG7 / A8 / PO9 62 PH0 / A9 / PO10 63 PH1 / A10 / MTIOC2B / PO11 64 PH2 / A11 / MTIOC2A / PO12 65 PH3 / A12 / MTIOC1B / PO13 66 VDD 67 VSS 68 PH4 / IRQ4 / A13 / PO14 69 PH5 / A14 / PO15 70 PH6 / A15 / MTIOC7D / RTS0# 71 PH7 / A16 / MTIC5W 72 P24 / IRQ12 / RD/WR# / RXD0 73 P21 / IRQ1 / CS0# / MTIC5V / TIOCB1 / CTS0# 74 P22 / IRQ2 / RD# / MTIOC7B / TIOCD0 / SCK0 75 P23 / A0 / MTIC5U / TXD0 / DACK1 76 P20 / A17 / MTCLKD 77 P25 / A18 / MTCLKC / TEND1 78 P26 / A19 / MTIOC8D / DREQ1 79 P27 / A20 / MTIOC8C / TIOCB0 / RTS0# 80 VDD 81 VSS 82 P42 / MTIOC7C / RXD0 83 P40 / MTIOC8A / TXD0 84 P43 / WE2#/DQMUL / MTIOC8B / USB_VBUSEN 85 P47 / WE3#/DQMUU/AH# / MTIOC6C 86 VCCQ33 87 P10 / IRQ0 / CKIO / TIOCA0 / TRACECLK 88 VSS 89 P00 / D0 / MTIOC6A / TIOCA1 / TRACECTL R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 31 of 136 RZ/T1 Group Table 1.6 1. Overview Pin Assignments (176-Pin HLFQFP) (3 / 4) Pin Number Pin Name 90 P01 / D1 / MTIC5W / TIOCA2 91 P02 / D2 / MTIC5V / TIOCA3 92 VCCQ33 93 P03 / D3 / MTIC5U / TIOCA4 94 P04 / D4 / MTIOC3C / TIOCA5 95 P05 / D5 / MTIOC3A 96 P06 / D6 / MTIOC2B / TIOCB0 97 P07 / D7 / MTIOC2A / TIOCB1 98 PE0 / D8 / MTIOC1B / TIOCB2 / TRACEDATA0 99 PE1 / D9 / MTCLKD / TIOCB3 / SSL03 / TRACEDATA1 100 VSS 101 PE2 / IRQ2 / D10 / MTCLKC / TIOCB4 / SSL02 / TRACEDATA2 102 PE3 / IRQ3 / D11 / MTIOC0D / TIOCB5 / CTS1# / SSL01 / TRACEDATA3 103 PE4 / D12 / MTIOC0B / TIOCC0 / RTS1# / SSL00 / TRACEDATA4 104 PE5 / D13 / MTIOC0C / TIOCC3 / TXD1 / MOSI0 / TRACEDATA5 105 PE6 / IRQ6 / D14 / MTIOC0A / TIOCD0 / RXD1 / MISO0 / TRACEDATA6 106 PE7 / D15 / MTIOC7A / TIOCD3 / POE8# / SCK1 / RSPCK0 / TRACEDATA7 107 VSS 108 VDD 109 P70 / IRQ0 / D16 / MTIOC6D / RTS1# / USB_OVRCUR / TRACECLK 110 P71 / D17 / POE0# / POE10# / TOC2 / SCK1 / TRACECTL 111 P72 / D18 / MTIOC1A / TIC2 / TXD1 / SSITXD0 / TRACEDATA0 112 P73 / IRQ3 / D19 / MTCLKB / RXD1 / SSIRXD0 / TRACEDATA1 113 P74 / D20 / MTCLKA / CTS1# / SSL03 / SSISCK0 / TRACEDATA2 114 P75 / IRQ13 / D21 / MTIOC4D / GTIOC2B / SSL00 / TRACEDATA3 115 P76 / D22 / MTIOC4B / GTIOC2A / SSL01 / SSIWS0 / TRACEDATA4 116 P77 / D23 / MTIOC4C / GTIOC1B / RSPCK0 / TRACEDATA5 117 PA0 / D24 / MTIOC4A / GTIOC1A / MOSI0 / TRACEDATA6 / MDAT3 118 PA1 / D25 / MTIOC3D / GTIOC0B / MISO0 / AUDIO_CLK / TRACEDATA7 / MCLK3 119 VSS 120 VDD 121 PA2 / D26 / MTIOC3B / GTIOC0A / SSL02 / DREQ2 / MDAT2 122 PA3 / D27 / ETHSWSECOUT / GTETRG / TIOCA2 / SCK2 / DACK2 / MCLK2 123 PA4 / D28 / ETH1_INT / TIOCA3 / ADTRG0 / RXD2 / TEND2 / MDAT1 124 PA5 / D29 / ETH0_INT / ETH1_TXER / TIOCA4 / TXD2 / MCLK1 125 PA6 / IRQ6 / D30 / A21 / GTIOC3A / CTS2# / MDAT0 126 VCCQ33 127 PA7 / IRQ7 / D31 / A22 / MTIOC6B / GTIOC3B / RTS2# / MCLK0 128 VDD 129 VSS 130 P13 / RAS# / MTIOC4C / GTIOC1B 131 P14 / CAS# / MTIOC4A / GTIOC1A 132 P15 / CS3# / CKE / MTIOC3D / GTIOC0B 133 P16 / CS4# / CS2# / MTIOC3B / GTIOC0A 134 P17 / CS5# / ETH1_TXER / PHYRESETOUT# / ADTRG0 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 32 of 136 RZ/T1 Group Table 1.6 1. Overview Pin Assignments (176-Pin HLFQFP) (4 / 4) Pin Number Pin Name 135 VCCQ33 136 VREFH0 137 VREFL0 138 AVSS0 139 AVCC0 140 AN000 141 AN001 142 AN002 143 AN003 144 AN004 145 AN005 146 AN006 147 AN007 148 VDD 149 VSS 150 P51 / IRQ1 / PHYLINK1 / RSPCK2 151 P54 / CLKOUT25M1 / MOSI2 152 P56 / BS# / ETH1_TXER 153 PD5 / A21 / ETH1_TXD3 / ETH0_TXD0 / TIC0 / SSL20 / MCLK3 154 PD6 / A22 / ETH1_TXD2 / ETH0_TXD1 / TIC1 / MISO2 / MCLK2 155 PD7 / ETH1_TXD1 / MTIOC4D / GTIOC2B / TOC0 156 P86 / ETH1_TXD0 / MTIOC4B / GTIOC2A / TOC1 / RSPCK2 157 P87 / A23 / ETH1_TXC / ETH0_RXD0 / MTIOC4C / GTIOC1B / MCLK1 158 PF5 / ETH1_TXEN / MTIOC4A / GTIOC1A / TIC2 159 VCCQ33 160 VDD 161 VSS 162 PF6 / ETH1_RXD0 / MTIOC3D / GTIOC0B / TOC2 163 PB7 / ETH1_RXD1 / MTIOC3B / GTIOC0A / TOC3 164 PC0 / WAIT# / ETH1_RXD2 / GTETRG / SCL1 / MDAT3 165 PC1 / IRQ9 / ETH1_RXD3 / PHYLINK0 / SDA1 / MDAT2 166 PB0 / ETH1_RXDV / MTCLKB / TCLKD / TIC3 167 PB1 / ETH1_RXER / MTCLKA / TCLKC / CTS4# 168 PB2 / ETH1_RXC / ETH0_RXD1 / MTIOC1A / SSL30 / MDAT1 169 VCCQ33 170 PB3 / IRQ3 / CS1# / ETH1_CRS / PHYRESETOUT# / TXD3 / CTXD1 / MCLK0 171 PB4 / A24 / ETH1_COL / ETH0_RXER / RXD3 / MOSI3 / MDAT0 172 PB5 / ETH_MDIO / TCLKB / POE0# / POE10# / CTS3# / RSPCK3 173 VSS 174 VDD 175 PB6 / ETH_MDC / TCLKA / SCK3 / RTS4# / MISO3 176 PC2 / ETH0_TXC / ETH1_RXD2 / SDA0 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 33 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (1 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control A1 VSS I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) A2 PC2 ETH0_TXC / ETH1_RXD2 / CATI2CDATA / SDA0 A3 PJ3 ETH0_TXD0 A4 PJ1 ETH0_TXD2 / CATLEDSTER / RSPCK3 A5 PF7 A25 ETH0_TXER / RTS3# / SSL30 A6 PB4 A24 ETH1_COL / ETH0_RXER / CATSYNC0 / CATLATCH0 / RXD3 / MOSI3 A7 PB0 A8 PC0 A9 PF6 A10 ETH1_RXDV GTETRG ETH1_RXD2 / SCL1 MTIOC3D / GTIOC0B / TOC2 ETH1_RXD0 S12ADCa IRQ11 ADTRG0 IRQ7 MDAT0 MDAT3 VCCQ33 A11 A12 WAIT# MTCLKB / TCLKD / TIC3 Interrupt P54 CLKOUT25M1 / MOSI2 VSS A13 AN007 A14 AN005 A15 AN002 A16 AVCC0 A17 AVCC1 A18 VREFH1 A19 A20 P17 CS5# ETH1_TXER / PHYRESETOUT# ADTRG0 VSS B1 PJ5 B2 PJ4 ETH0_RXD0 / TXD3 B3 PC3 ETH0_RXC / ETH0_RXDV / CATI2CCLK / RXD4 / SCL0 / CRXD1 B4 PJ2 ETH0_TXD1 / MISO3 IRQ10 B5 PJ0 ETH0_TXD3 / CATLEDERR / MOSI3 IRQ8 B6 PB5 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 TIOCD0 TCLKB / POE0# / POE10# ETH0_RXD1 / RXD3 ETH_MDIO / CTS3# / RSPCK3 Page 34 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (2 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) MTIOC1A ETH1_RXC / ETH0_RXD1 / CATSYNC1 / CATLATCH1 / SSL30 MDAT1 ETH1_RXD3 / PHYLINK0 / SDA1 MDAT2 Interrupt S12ADCa B7 PB2 B8 PC1 B9 PB7 MTIOC3B / GTIOC0A / TOC3 ETH1_RXD1 B10 P86 MTIOC4B / GTIOC2A / TOC1 ETH1_TXD0 / RSPCK2 AN1_ ANEX0 B11 PD7 MTIOC4D / GTIOC2B / TOC0 ETH1_TXD1 AN115 B12 P52 IRQ9 ETH0_INT / SSL20 B13 AN006 B14 AN003 B15 AN001 B16 AVSS0 B17 AVSS1 B18 VREFL1 B19 P16 CS4# / CS2# MTIOC3B / GTIOC0A ENCIF12 B20 P15 CS3# / CKE MTIOC3D / GTIOC0B ENCIF11 C1 PJ7 ETH0_RXD3 / CATLEDRUN / CTS3# IRQ15 C2 PJ6 ETH0_RXD2 / CATIRQ / SCK3 IRQ14 C3 PU2 ETH2_CRS / RXD3 IRQ2 C4 PL7 ETH2_RXDV IRQ15 TIOCD9 C5 PL5 TIOCA8 ETH2_RXD2 C6 PB6 TCLKA ETH_MDC / SCK3 / RTS4# / MISO3 C7 PB3 C8 PB1 MTCLKA / TCLKC ETH1_RXER / CTS4# C9 PF5 MTIOC4A / GTIOC1A / TIC2 ETH1_TXEN C10 P87 A23 MTIOC4C / GTIOC1B ETH1_TXC / ETH0_RXD0 MCLK1 AN1_ ANEX1 C11 PD6 A22 TIC1 ETH1_TXD2 / ETH0_TXD1 / MISO2 MCLK2 AN114 C12 P53 ETH1_INT / MISO2 C13 P51 PHYLINK1 / RSPCK2 C14 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 CS1# ETH1_CRS / PHYRESETOUT# / TXD3 / CTXD1 MCLK0 IRQ3 IRQ1 AN004 Page 35 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (3 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) Interrupt C15 AN000 C16 VREFL0 C17 VREFH0 C18 PD2 WAIT# C19 P14 CAS# MTIOC4A / GTIOC1A C20 P13 RAS# MTIOC4C / GTIOC1B D1 P81 TIOCC0 ETH0_RXER / CTS4# D2 P80 TIOCC3 ETH0_RXDV / RTS4# D3 PU3 TIOCD6 ETH2_COL / TXD3 D18 PD0 AN110 ENCIF10 AN108 P96 POE0# / POE10# D20 P95 MTCLKA E1 P84 E2 P82 TIOCD3 ETH0_TXEN / ETH1_CRS / SCK4 / RTS3# / USB_OVRCUR E3 PU1 TIOCA11 ETH2_RXC / SCK3 E5 PU0 TIOCA10 ETH2_RXER E6 PL6 TIOCA9 E7 PL4 E8 PL2 TIOCA6 E9 PL0 TIOCB9 ETH2_TXD0 E10 PK7 TIOCB7 ETH2_TXD2 E11 PK6 TIOCB6 ETH2_TXD3 E12 PD5 A21 TIC0 ETH1_TXD3 / ETH0_TXD0 / SSL20 E13 P56 BS# E14 IRQ8 CS4# D19 E15 S12ADCa ENCIF09 CTS2# AN106 IRQ13 AN105 ETH0_COL / CATLINKACT1 / RXD4 ETH2_RXD3 ETH2_RXD1 IRQ4 ETH2_TXEN ADTRG1 MCLK3 AN113 ETH1_TXER PD4 ETH2_INT AN112 VCCQ33 E16 PD1 CS1# E18 P97 A25 E19 P94 E20 F1 F2 P83 AN109 MTCLKB RTS2# ENCIF08 P93 MTIOC1A / TIC3 SCK2 ENCIF07 PC4 TCLKH CATI2CCLK / SCL0 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 ETH0_CRS / CATLINKACT0 / TXD4 IRQ7 ADTRG1 / AN107 IRQ4 AN104 AN103 IRQ11 Page 36 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (4 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) P85 F5 PU4 TIOCC9 MII2_MDC / CTS3# PL3 TIOCA7 ETH2_RXD0 F9 PL1 TIOCB10 ETH2_TXC F10 PK5 TIOCB8 ETH2_TXD1 F11 PK4 TIOCB11 ETH2_TXER / MOSI2 F12 P55 A24 ETHSWSECOUT IRQ5 F13 P50 CS1# PHYLINK0 IRQ8 F14 PD3 F15 PK2 A23 F16 P90 RAS# F18 P92 CS5# F19 P91 CAS# F20 P12 MTIOC4B / GTIOC2A G1 PU6 TCLKF PHYRESETOUT# / CTS4# G2 PC5 TCLKG CATI2CDATA / SDA0 G5 PU5 TIOCC6 MII2_MDIO / RTS3# G6 PM0 F6 VSS F7 VCCQ33 F8 G3 CLKOUT25M0 / TXD4 / SCK4 / USB_VBUSEN Interrupt F3 S12ADCa IRQ5 PHYRESETOUT2# AN111 TIOCA5 TXD4 AN100 TOC3 RXD2 AN102 TXD2 ENCIF06 AN101 VCCQ33 IRQ13 CLKOUT25M2 / TXD4 G15 PK3 A24 G16 PA7 D31 / A22 MTIOC6B / GTIOC3B RTS2# MCLK0 G18 PA4 D28 / TEND2 TIOCA3 ETH1_INT / RXD2 MDAT1 G19 PA3 D27 / DACK2 GTETRG / TIOCA2 ETHSWSECOUT / SCK2 MCLK2 G20 P11 H1 PU7 CATIRQ / RXD4 H2 PM1 CATLEDERR / SCK4 H3 P35 H5 ERROROUT# H6 VCCQ33 H8 VDD H9 VDD H10 VDD H11 VDD R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 MTIOC4D / GTIOC2B IRQ7 ADTRG0 IRQ9 NMI Page 37 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (5 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control H12 VDD H13 VSS Timer Communication Others (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) Interrupt IRQ6 I/O Port Bus (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) H15 PA6 D30 / A21 GTIOC3A CTS2# MDAT0 H16 PA5 D29 TIOCA4 ETH0_INT / ETH1_TXER / TXD2 MCLK1 H18 PA2 D26 / DREQ2 MTIOC3B / GTIOC0A SSL02 MDAT2 / ENCIF05 H19 PK0 CAS# PO31 H20 PK1 CS5# J1 PM6 PO19 CATLINKACT0 J2 PM3 PO16 CATSYNC0 / CATLATCH0 J3 PM2 TCLKE CATSYNC1 / CATLATCH1 / RTS4# J5 TDO J6 TRST# J8 VDD J9 VSS J10 VSS J11 VSS J12 VSS J13 VDD ENCIF11 ENCIF12 IRQ6 P33 J15 VCCQ33 J16 TRACEDATA7 PA1 D25 MTIOC3D / GTIOC0B MISO0 AUDIO_CLK / MCLK3 J18 TRACEDATA6 PA0 D24 MTIOC4A / GTIOC1A MOSI0 MDAT3 J19 PT7 A22 / DACK2 J20 PT6 A21 / DREQ2 ENCIF10 K1 PM7 PO20 CATLINKACT1 K2 PM5 PO18 CATLEDSTER PM4 PO17 CATLEDRUN MTIOC4C / GTIOC1B RSPCK0 K3 K5 TDI K6 PLLVDD1 K8 VDD K9 VSS K10 VSS K11 VSS K12 VSS K13 VDD K15 VSS K16 TRACEDATA5 S12ADCa P34 P77 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 D23 Page 38 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (6 / 10) Pin Number Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) MTIOC4B / GTIOC2A SSL01 SSIWS0 D21 MTIOC4D / GTIOC2B SSL00 ENCIF04 PT5 BS# / TEND2 PO30 320-Pin FBGA Power Supply Clock System Control I/O Port Bus K18 TRACEDATA4 P76 D22 K19 TRACEDATA3 P75 K20 L1 MD1 L2 MD2 L3 TMS L5 TCK L6 PLLVSS1 L8 VDD L9 VSS L10 VSS L11 VSS L12 VSS L13 VDD L15 VSS L16 TRACEDATA7 PE7 D15 MTIOC7A / TIOCD3 / POE8# SCK1 / RSPCK0 L18 TRACEDATA0 P72 D18 MTIOC1A / TIC2 TXD1 SSITXD0 / ENCIF02 L19 TRACEDATA1 P73 D19 MTCLKB RXD1 SSIRXD0 / ENCIF03 L20 TRACEDATA2 P74 D20 MTCLKA CTS1# / SSL03 SSISCK0 M1 XTAL M2 EXTAL M3 OSCTH M5 BSCANP M6 PLLVDD0 M8 VDD M9 VSS M10 VSS M11 VSS M12 VSS M13 VDD M15 VCCQ33 M16 TRACEDATA6 PE6 D14 MTIOC0A / TIOCD0 RXD1 / MISO0 M18 TRACECLK P70 D16 MTIOC6D RTS1# / USB_OVRCUR ENCIF00 PT4 CS3# PO29 P71 D17 POE0# / POE10# / TOC2 SCK1 ENCIF01 M19 M20 TRACECTL N1 VSS N2 MD0 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Interrupt S12ADCa IRQ13 IRQ3 IRQ6 IRQ0 Page 39 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (7 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control N3 RSTOUT# N5 RES# N6 PLLVSS0 N8 VDD N9 VSS N10 VDD N11 VDD N12 VDD N13 VDD N15 N16 N18 TRACEDATA5 Timer Communication Others (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) I/O Port Bus (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) TRACEDATA2 PE2 D10 MTCLKC / TIOCB4 SSL02 TRACEDATA4 PE4 D12 MTIOC0B / TIOCC0 RTS1# / SSL00 PE5 D13 MTIOC0C / TIOCC3 TXD1 / MOSI0 N19 PT2 TIOCA1 / TIOCB1 / PO27 N20 PT3 TIOCA0 / TIOCB0 / PO28 P1 VSS_USB P2 VDD33_USB P3 USB_RREF P5 P6 P31 S12ADCa IRQ2 ENCIF09 IRQ11 USB_VBUSEN VCCQ33 P15 P06 D6 MTIOC2B / TIOCB0 P16 P07 D7 MTIOC2A / TIOCB1 PE3 D11 P18 CTS2# Interrupt MTIOC0D / TIOCB5 CTS1# / SSL01 P19 TRACEDATA3 PT0 TIOCA3 / TIOCB3 / PO25 SCK2 ENCIF07 P20 PT1 TIOCA2 / TIOCB2 / PO26 RTS2# ENCIF08 R1 USB_DP R2 USB_DM R3 P30 R5 PN0 R6 PN2 R7 PG0 A1 PO2 R8 PG2 A3 PO4 / TOC0 R9 PG7 A8 PO9 R10 PH2 A11 MTIOC2A / PO12 R11 PH4 A13 PO14 R12 PH6 A15 MTIOC7D RTS0# R13 P23 A0 / DACK1 MTIC5U TXD0 R14 P27 A20 MTIOC8C / TIOCB0 RTS0# R15 P47 WE3# / DQMUU / AH# MTIOC6C R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 IRQ3 IRQ0 CRXD0 / USB_VBUSIN MTIOC8D SSL10 MTIOC8B MOSI1 IRQ10 RSPCK1 IRQ4 Page 40 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (8 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control R16 VCCQ33 R18 VCCQ33 I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) Interrupt ENCIF06 IRQ14 R19 PS6 TIOCA5 / TIOCB5 / PO23 RXD2 R20 PS7 TIOCA4 / TIOCB4 / PO24 TXD2 T1 DVDD_USB T2 VDD33_USB T3 P32 USB_OVRCUR T5 PC6 DREQ0 TCLKC T6 P37 WE1# / DQMLU PO1 T7 P36 WE0# / DQMLL PO0 T8 PG3 A4 PO5 / TIC1 MISO1 SSL11 T9 PG6 A7 TCLKB / PO8 T10 PH3 A12 MTIOC1B / PO13 PH5 A14 PO15 P26 A19 / DREQ1 MTIOC8D T11 SCL1 / CRXD0 / USB_VBUSIN VCCQ33 T14 T15 VCCQ33 T16 VSS T18 VSS T19 TRACEDATA0 PE0 D8 MTIOC1B / TIOCB2 T20 TRACEDATA1 PE1 D9 MTCLKD / TIOCB3 P60 TEND0 U1 U2 P63 U3 PN1 U18 IRQ10 VCCQ33 T12 T13 S12ADCa TRACECTL SSL03 CTXD0 / SPBSSL SPBMO / SPBIO0 MTIOC8C / PO21 P00 D0 MTIOC6A / TIOCA1 U19 P04 D4 MTIOC3C / TIOCA5 U20 P03 D3 MTIC5U / TIOCA4 V1 P61 DACK0 MISO1 ADTRG1 CTXD1 / SPBIO3 V2 P64 V3 PN3 MTIOC8A V4 PN4 MTIOC6C / TIOCC6 SSL11 V5 PC7 TIC0 SDA1 / CRXD1 SPBMI / SPBIO1 RSPCK1 V6 PG1 A2 PO3 V7 PG4 A5 PO6 / TOC1 MOSI1 V8 PG5 A6 TCLKA / PO7 SSL10 V9 PH0 A9 PO10 V10 PH1 A10 MTIOC2B / PO11 V11 PH7 A16 MTIC5W R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 ENCIF09 IRQ12 Page 41 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (9 / 10) Pin Number 320-Pin FBGA Power Supply Clock System Control V12 V13 V14 Timer Communication Others (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) I/O Port Bus (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) P20 A17 MTCLKD P21 CS0# MTIC5V / TIOCB1 CTS0# S12ADCa IRQ1 VSS V15 P45 CS2# V16 P46 CKE V17 PS2 V18 P05 D5 MTIOC3A V19 P01 D1 MTIC5W / TIOCA2 V20 P02 D2 MTIC5V / TIOCA3 MTIOC7C SSIWS0 W1 P62 W2 P65 W3 PN5 MTIOC6A / TIOCD9 ENCIF10 W4 PN6 MTIOC3C / TIOCC9 MCLK3 / ENCIF11 W5 PP0 POE8# MCLK2 SPBCLK DREQ0 TEND0 SPBIO2 W6 PP2 MTIOC0C / TCLKH MCLK1 W7 PP4 MTIOC0A MCLK0 W8 TRACECTL PP6 TIOCA11 RXD1 W9 TRACECLK PP7 DACK1 TCLKF / TCLKH SCK1 W10 TRACEDATA1 PR1 TEND1 POE4# CTS1# ENCIF08 TRACEDATA3 PR3 TIOCA10 / TIOCB10 ENCIF01 W12 TRACEDATA5 PR5 TIOCA8 / TIOCB8 ENCIF03 W13 P24 RD/WR# W14 P22 RD# W15 P44 WAIT# W16 P43 WE2# / DQMUL W17 PS1 IRQ9 RXD0 IRQ12 SCK0 IRQ2 TCLKD CTS0# IRQ12 MTIOC8B USB_VBUSEN MTIOC7B / TIOCD0 MTIOC7B SSISCK0 W18 PS3 MTIOC7A SSIRXD0 W19 PS4 MTIOC6D SSITXD0 PS5 MTIOC6B W20 IRQ5 ENCIF06 W11 Y1 Interrupt ADTRG0 IRQ1 VSS Y2 P67 TEND0 GTIOC3B CTXD0 / USB_OVRCUR IRQ15 Y3 P66 DACK0 GTIOC3A CTXD1 / USB_VBUSEN IRQ14 Y4 PN7 DREQ0 MTIOC3A / TIOCD6 MDAT3 / ENCIF12 Y5 PP1 DACK0 MTIOC0D MDAT2 Y6 PP3 MTIOC0B / TCLKC MDAT1 Y7 PP5 PO22 MDAT0 Y8 VSS Y9 TRACEDATA0 PR0 Y10 TRACEDATA2 PR2 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 DREQ1 TCLKE / TCLKG TXD1 ENCIF07 TIOCA11 / TIOCB11 RTS1# ENCIF00 Page 42 of 136 RZ/T1 Group Table 1.7 1. Overview List of Pin and Pin Functions (320-Pin FBGA) (10 / 10) Pin Number Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, ECATC*1, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF, Encoder I/F) 320-Pin FBGA Power Supply Clock System Control I/O Port Y11 TRACEDATA4 PR4 TIOCA9 / TIOCB9 ENCIF02 Y12 TRACEDATA6 PR6 TIOCA7 / TIOCB7 ENCIF04 Y13 TRACEDATA7 PR7 TIOCA6 / TIOCB6 ENCIF05 Y14 Bus P25 A18 / TEND1 Y15 P41 BS# Y16 P42 MTIOC7C RXD0 Y17 P40 MTIOC8A TXD0 Y18 PS0 MTIOC7D Y19 TRACECLK Y20 VSS P10 CKIO Interrupt S12ADCa MTCLKC SCK0 TIOCA0 AUDIO_CLK IRQ0 Note 1. Optional R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 43 of 136 RZ/T1 Group Table 1.8 Pin Number 176-Pin HLFQFP 1. Overview List of Pin and Pin Functions (176-Pin HLFQFP) (1 / 6) Power Supply Clock System Control 1 I/O Port Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF) PC3 2 VCCQ33 3 VSS 4 VDD 5 P82 6 P85 7 Bus Timer Interrupt S12ADCa ETH0_RXC / ETH0_RXDV / RXD4 / SCL0 / CRXD1 TIOCD3 ETH0_TXEN / ETH1_CRS / SCK4 / RTS3# / USB_OVRCUR CLKOUT25M0 / TXD4 / SCK4 / USB_VBUSEN IRQ5 ERROROUT # 8 P35 9 TRST# 10 TDO P33 11 TDI P34 12 TMS 13 TCK 14 BSCANP 15 VDD 16 VSS 17 MD2 18 MD1 19 PLLVDD1 20 PLLVSS1 21 OSCTH 22 VCCQ33 23 EXTAL 24 XTAL 25 VSS 26 MD0 27 PLLVDD0 28 PLLVSS0 29 RES# 30 RSTOUT# 31 VDD 32 VSS 33 VDD33_USB 34 VSS_USB 35 USB_RREF R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 NMI Page 44 of 136 RZ/T1 Group Table 1.8 Pin Number 1. Overview List of Pin and Pin Functions (176-Pin HLFQFP) (2 / 6) 176-Pin HLFQFP Power Supply Clock System Control 36 USB_DM 37 USB_DP 38 VDD33_USB 39 DVDD_USB I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF) 40 P30 41 P60 TEND0 CTXD0 / SPBSSL 42 P61 DACK0 CTXD1 / SPBIO3 43 CRXD0 / USB_VBUSIN P62 SPBCLK 46 P63 SPBMO / SPBIO0 47 P64 SPBMI / SPBIO1 48 P65 DREQ0 51 P36 WE0# / DQMLL PO0 52 P37 WE1# / DQMLU PO1 53 PG0 A1 PO2 54 PG1 A2 PO3 PG2 A3 PO4 / TOC0 VSS 49 VSS 50 VDD 55 SPBIO2 VCCQ33 56 RSPCK1 57 PG3 A4 PO5 / TIC1 MISO1 58 PG4 A5 PO6 / TOC1 MOSI1 59 PG5 A6 TCLKA / PO7 SSL10 SSL11 60 PG6 A7 TCLKB / PO8 61 PG7 A8 PO9 62 PH0 A9 PO10 63 PH1 A10 MTIOC2B / PO11 64 PH2 A11 MTIOC2A / PO12 65 PH3 A12 MTIOC1B / PO13 PH4 A13 PO14 66 VDD 67 VSS 68 S12ADCa VCCQ33 44 45 Interrupt IRQ4 69 PH5 A14 PO15 70 PH6 A15 MTIOC7D 71 PH7 A16 MTIC5W 72 P24 RD/WR# RXD0 IRQ12 73 P21 CS0# MTIC5V / TIOCB1 CTS0# IRQ1 74 P22 RD# MTIOC7B / TIOCD0 SCK0 IRQ2 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 RTS0# Page 45 of 136 RZ/T1 Group Table 1.8 Pin Number 1. Overview List of Pin and Pin Functions (176-Pin HLFQFP) (3 / 6) Power Supply Clock System Control Timer Communication Others (ETHERC, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF) TXD0 I/O Port Bus (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) 75 P23 A0 / DACK1 MTIC5U 76 P20 A17 MTCLKD 77 P25 A18 / TEND1 MTCLKC 78 P26 A19 / DREQ1 MTIOC8D 79 P27 A20 176-Pin HLFQFP 80 VDD 81 VSS MTIOC8C / TIOCB0 P42 MTIOC7C RXD0 83 P40 MTIOC8A TXD0 84 P43 WE2# / DQMUL MTIOC8B USB_VBUSEN 85 P47 WE3# / MTIOC6C DQMUU/AH# P10 CKIO TIOCA0 P00 D0 MTIOC6A / TIOCA1 P01 D1 MTIC5W / TIOCA2 P02 D2 MTIC5V / TIOCA3 93 P03 D3 MTIC5U / TIOCA4 94 P04 D4 MTIOC3C / TIOCA5 95 P05 D5 MTIOC3A 96 P06 D6 MTIOC2B / TIOCB0 97 P07 D7 MTIOC2A / TIOCB1 VCCQ33 87 TRACECLK 88 VSS 89 TRACECTL 90 91 92 S12ADCa RTS0# 82 86 Interrupt IRQ0 VCCQ33 98 TRACEDATA 0 PE0 D8 MTIOC1B / TIOCB2 99 TRACEDATA 1 PE1 D9 MTCLKD / TIOCB3 SSL03 100 VSS 101 TRACEDATA 2 PE2 D10 MTCLKC / TIOCB4 SSL02 IRQ2 102 TRACEDATA 3 PE3 D11 MTIOC0D / TIOCB5 CTS1# / SSL01 IRQ3 103 TRACEDATA 4 PE4 D12 MTIOC0B / TIOCC0 RTS1# / SSL00 104 TRACEDATA 5 PE5 D13 MTIOC0C / TIOCC3 TXD1 / MOSI0 105 TRACEDATA 6 PE6 D14 MTIOC0A / TIOCD0 RXD1 / MISO0 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 IRQ6 Page 46 of 136 RZ/T1 Group Table 1.8 Pin Number 176-Pin HLFQFP 106 1. Overview List of Pin and Pin Functions (176-Pin HLFQFP) (4 / 6) Power Supply Clock System Control TRACEDATA 7 Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF) I/O Port Bus PE7 D15 MTIOC7A / TIOCD3 / POE8# SCK1 / RSPCK0 Interrupt 107 VSS 108 VDD 109 TRACECLK P70 D16 MTIOC6D RTS1# / USB_OVRCUR 110 TRACECTL P71 D17 POE0# / POE10# / TOC2 SCK1 111 TRACEDATA 0 P72 D18 MTIOC1A / TIC2 TXD1 SSITXD0 112 TRACEDATA 1 P73 D19 MTCLKB RXD1 SSIRXD0 113 TRACEDATA 2 P74 D20 MTCLKA CTS1# / SSL03 SSISCK0 114 TRACEDATA 3 P75 D21 MTIOC4D / GTIOC2B SSL00 115 TRACEDATA 4 P76 D22 MTIOC4B / GTIOC2A SSL01 116 TRACEDATA 5 P77 D23 MTIOC4C / GTIOC1B RSPCK0 117 TRACEDATA 6 PA0 D24 MTIOC4A / GTIOC1A MOSI0 MDAT3 118 TRACEDATA 7 PA1 D25 MTIOC3D / GTIOC0B MISO0 AUDIO_CLK / MCLK3 121 PA2 D26 / DREQ2 MTIOC3B / GTIOC0A SSL02 MDAT2 122 PA3 D27 / DACK2 GTETRG / TIOCA2 ETHSWSECOUT / SCK2 MCLK2 123 PA4 D28 / TEND2 TIOCA3 ETH1_INT / RXD2 MDAT1 124 PA5 D29 TIOCA4 ETH0_INT / ETH1_TXER / TXD2 MCLK1 PA6 D30 / A21 GTIOC3A CTS2# MDAT0 IRQ6 PA7 D31 / A22 MTIOC6B / GTIOC3B RTS2# MCLK0 IRQ7 130 P13 RAS# MTIOC4C / GTIOC1B 131 P14 CAS# MTIOC4A / GTIOC1A 132 P15 CS3# / CKE MTIOC3D / GTIOC0B 133 P16 CS4# / CS2# MTIOC3B / GTIOC0A 119 VSS 120 VDD 125 126 S12ADCa IRQ0 IRQ3 IRQ13 SSIWS0 ADTRG0 VCCQ33 127 128 VDD 129 VSS R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 47 of 136 RZ/T1 Group Table 1.8 Pin Number 176-Pin HLFQFP 1. Overview List of Pin and Pin Functions (176-Pin HLFQFP) (5 / 6) Power Supply Clock System Control 134 135 VCCQ33 136 VREFH0 137 VREFL0 138 AVSS0 139 AVCC0 I/O Port Bus P17 CS5# Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF) Interrupt ETH1_TXER / PHYRESETOUT# S12ADCa ADTRG0 140 AN000 141 AN001 142 AN002 143 AN003 144 AN004 145 AN005 146 AN006 147 AN007 148 VDD 149 VSS 150 P51 PHYLINK1 / RSPCK2 151 P54 CLKOUT25M1 / MOSI2 152 P56 BS# 153 PD5 A21 TIC0 ETH1_TXD3 / ETH0_TXD0 / SSL20 MCLK3 154 PD6 A22 TIC1 ETH1_TXD2 / ETH0_TXD1 / MISO2 MCLK2 155 PD7 MTIOC4D / GTIOC2B / TOC0 ETH1_TXD1 156 P86 MTIOC4B / GTIOC2A / TOC1 ETH1_TXD0 / RSPCK2 157 P87 MTIOC4C / GTIOC1B ETH1_TXC / ETH0_RXD0 158 PF5 MTIOC4A / GTIOC1A / TIC2 ETH1_TXEN 162 PF6 MTIOC3D / GTIOC0B / TOC2 ETH1_RXD0 163 PB7 MTIOC3B / GTIOC0A / TOC3 ETH1_RXD1 164 PC0 GTETRG ETH1_RXD2 / SCL1 159 VCCQ33 160 VDD 161 VSS R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 A23 WAIT# IRQ1 ETH1_TXER MCLK1 MDAT3 Page 48 of 136 RZ/T1 Group Table 1.8 Pin Number 176-Pin HLFQFP 1. Overview List of Pin and Pin Functions (176-Pin HLFQFP) (6 / 6) Power Supply Clock System Control I/O Port Bus Timer Communication Others (MTU3a, GPTa, TPUa, PPG, POE3, CMTW) (ETHERC, SCIFA, RSPIa, RIICa, RSCAN, SPIBSC, USB) (SSI, DSMIF) Interrupt MDAT2 IRQ9 165 PC1 166 PB0 MTCLKB / TCLKD / TIC3 167 PB1 MTCLKA / TCLKC ETH1_RXER / CTS4# 168 PB2 MTIOC1A 169 ETH1_RXD3 / PHYLINK0 / SDA1 S12ADCa ETH1_RXDV ETH1_RXC / ETH0_RXD1 / SSL30 MDAT1 VCCQ33 170 PB3 CS1# ETH1_CRS / PHYRESETOUT# / TXD3 / CTXD1 MCLK0 171 PB4 A24 ETH1_COL / RXD3 / MOSI3 / ETH0_RXER MDAT0 172 PB5 TCLKB / POE0# / POE10# ETH_MDIO / CTS3# / RSPCK3 175 PB6 TCLKA ETH_MDC / SCK3 / RTS4# / MISO3 176 PC2 173 VSS 174 VDD R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 IRQ3 ETH0_TXC / ETH1_RXD2 / SDA0 Page 49 of 136 RZ/T1 Group 2. Electrical Characteristics 2. Electrical Characteristics 2.1 Absolute Maximum Ratings Table 2.1 Absolute Maximum Rating Conditions: VSS = PLLVSS0 = PLLVSS1 = AVSS0 = AVSS1 = VREFL0 = VREFL1 = VSS_USB = 0 V Item Symbol Value Unit Power supply voltage (I/O) VCCQ33 -0.3 to +4.2 V Power supply voltage (internal) VDD -0.3 to +1.6 V PLLVDD0, PLLVDD1 -0.3 to +1.6 PLL power supply voltage tolerant*1) Vin1 -0.3 to VCCQ33 + Input voltage (ports for 5-V tolerant*1) Vin2 -0.3 to +5.5*3 Analog power supply voltage AVCC0, AVCC1*2 -0.3 to +4.2 Input voltage (except for ports for 5-V V 0.3*5 Reference power supply voltage VREFH0, VREFH1 -0.3 to (AVCC0, AVCC1) + USB digital power supply voltage DVDD_USB -0.3 to +1.6 USB power supply voltage VDD33_USB*2 -0.3 to +4.2 V V V 0.3*5 V V V 0.3*5 Analog input voltage VAN -0.3 to (AVCC0, AVCC1) + Operating temperature (junction temperature) Tj*4 -40 to +125 °C V Storage temperature Tstg -55 to +125 °C [Usage Notes] 1. Do not directly connect output pins (I/O pins in output state) of IC products to other output pins (including I/O pins in output state) , power pins, or GND pins. However, output pins are directly connectable in an external circuit where timing design is provided to avoid conflict of outputs of high-impedance pins such as I/O pins. 2. If even a single item exceeds the absolute maximum rating for even a moment, it may degrade the product's quality. In other words, the absolute maximum rating is a rated value that potentially causes physical damage to products. Use products with a margin of the absolute maximum rating. Specified values and conditions shown in DC characteristics and AC characteristics are the range of normal operation and quality assurance of products. Note 1. Ports PC0 to PC7 and P30 are 5-V tolerant. Note 2. When the A/D converter unit 0 is not to be used, connect the AVCC0 and VREFH0 pins to VCCQ33 and the AVSS0 and VREFL0 pins to VSS, respectively. Do not leave these pins open. In the same way, when the A/D converter unit 1 is not to be used, connect the AVCC1 and VREFH1 pins to VCCQ33 and the AVSS1 and VREFL1 pins to VSS, respectively. Do not leave these pins open. When the USB is not to be used, connect the VDD33_USB pin to VCCQ33, the VSS_USB pin to VSS, and the DVDD_USB pin to VDD, respectively. Do not leave these pins open. Note 3. When VCCQ33 is less than 3.0 V, the rated value of ports for 5-V tolerant is 3.6 V. Note 4. For operations at the temperatures over 110 °C (junction temperature), refer to the RZ/T1 Group Application Note: Precautions for High-Temperature Operations (R01AN3116). Note 5. Do not exceed the absolute maximum rating, 4.2 V. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 50 of 136 RZ/T1 Group 2.2 2. Electrical Characteristics Power On/Off Sequence Turn on and off each power supply voltage according to the procedure shown in the figure below. When turning on the power, be sure to fix TRST# pins and RES# pins to the low level. Otherwise, initialization is not performed successfully. Powered down Power up sequence Power down sequence (reverse order) Active (1)Trisepwr Powered down VDD 1.2 V for Digital (8)Tdlypwr (1)Trisepwr DVDD_USB (2)Tdly12 1.2 V for USB PLLVDD0, PLLVDD1 (2)Tdly12 1.2 V for PLL (8)Tdlypwr (1)Trisepwr (3)Tdlyana33 AVCC0, AVCC1 VREFH0, VREFH1 (8)Tdlypwr 3.3 V for Analog (1)Trisepwr (4)Tdlyusb33 VDD33_USB 3.3 V for USB (1)Trisepwr (5)Tdly33 VCCQ33 3.3 V for I/O Oscillation XTAL/EXTAL (7)Trisereset (6)Tdlyreset RES# TRST# Timing Value No. Item min typ max (1) Trisepwr 100 μs ― 50 ms (2) Tdly12 0 ms ― 100 ms (3) Tdlyana33 0 ms ― 100 ms (4) Tdlyusb33 0 ms ― 100 ms (5) Tdly33 0 ms ― 100 ms (6) Tdlyreset 10 ms ― ― (7) Trisereset ― ― 150 μs (8) Tdlypwr 0 ms ― ― Note 1. Turn on all power supply voltages and reset signals with a monotonic increase and turn off with a monotonic decrease. Note 2. Do not apply a negative voltage to power supply voltages. Note 3. Before turning on the power, be sure to make reset pins (TRST# and RES#) active (low). Otherwise, inputs and outputs on the pins may be unstable. If this may also be a problem when turning off the power, make reset pins (TRST# and RES#) active (low.) Note: If the power on/off sequence is not met (out of operation guarantee range), the pin input state and output state may be undefined. Figure 2.1 Power On/Off Sequence R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 51 of 136 RZ/T1 Group 2.3 2. Electrical Characteristics DC Characteristics • Conditions: VDD = PLLVDD0 = PLLVDD1 = DVDD_USB = 1.14 to 1.26 V, VCCQ33 = AVCC0 = AVCC1 = VREFH0 = VREFH1 = VDD33_USB = 3.0 to 3.6 V VSS = PLLVSS0 = PLLVSS1 = AVSS0 = AVSS1 = VREFL0 = VREFL1 = VSS_USB = 0 V, Tj = -40 to 125°C Note: The 176-pin HLFQFP does not have pins AVCC1, AVSS1, VREFH1, and VREFL1. Table 2.2 DC Characteristics (1) Item Symbol min typ max Unit Power supply voltage (I/O) VCCQ33 3.0 3.3 3.6 V Power supply voltage (internal) VDD 1.14 1.2 1.26 V PLL power supply voltage PLLVDD0, PLLVDD1 1.14 1.2 1.26 V USB digital power supply voltage DVDD_USB 1.14 1.2 1.26 V Analog power supply voltage AVCC0, AVCC1 3.0 3.3 3.6 V USB power supply voltage VDD33_USB 3.0 3.3 3.6 V R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Test Conditions Page 52 of 136 RZ/T1 Group Table 2.3 2. Electrical Characteristics DC Characteristics (2) [Power Supply] (1 / 2) Item Type Normal operation VDD Symbol typ max Unit Test Conditions VIcc 330 820 mA Tj = -40 to 125 °C (R7S910018CBG, R7S910118CBG) 273 752 mA Tj = -40 to 125 °C (R7S910017CBG, R7S910117CBG) 265 740 mA Tj = -40 to 125 °C (R7S910028CBG, R7S910128CBG) 258 731 mA Tj = -40 to 125 °C (R7S910013CBG, R7S910113CBG) 209 673 mA Tj = -40 to 125 °C (R7S910027CBG, R7S910127CBG) 201 663 mA Tj = -40 to 125 °C (R7S910007CBG, R7S910107CBG) 310 798 mA Tj = -40 to 125 °C (R7S910016CBG, R7S910116CBG) 253 730 mA Tj = -40 to 125 °C (R7S910015CBG, R7S910115CBG) 245 718 mA Tj = -40 to 125 °C (R7S910026CBG, R7S910126CBG) 238 709 mA Tj = -40 to 125 °C (R7S910011CBG, R7S910111CBG) 189 651 mA Tj = -40 to 125 °C (R7S910025CBG, R7S910125CBG) 181 641 mA Tj = -40 to 125 °C (R7S910002CBG, R7S910006CBG, R7S910102CBG, R7S910106CBG) 180 640 mA Tj = -40 to 125 °C (R7S910001CFP, R7S910101CFP) 225 696 mA Tj = -40 to 125 °C (R7S910036CBG, R7S910136CBG) 169 629 mA Tj = -40 to 125 °C (R7S910035CBG, R7S910135CBG) PLLIcc 3.2 5 mA VCCQ33 V33Icc 19*1, *2 — mA AVCC0 AV0Icc 2 5 mA A/D conversion (unit 0) AVCC1 AV1Icc 0.7 1.5 mA A/D conversion (unit 1) 600MHz 450MHz 300MHz PLLVDD0 + PLLVDD1 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 53 of 136 RZ/T1 Group Table 2.3 2. Electrical Characteristics DC Characteristics (2) [Power Supply] (2 / 2) Item Type Symbol typ max Unit Test Conditions Normal operation VREFH0 VRF0Icc 0.07 0.2 mA A/D conversion (unit 0) VREFH1 VRF1Icc 0.07 0.2 mA A/D conversion (unit 1) DVDD_USB V12UIcc 5.1 9 mA USB high-speed communication 3.5 9 mA USB full-speed communication 15*1 — mA USB high-speed communication 10*1 — mA USB full-speed communication VIcc 41 ― mA PLLIcc 3.2 ― mA V33Icc 0.35*1, *2 ― mA AVCC0 AV0Icc 0.64 ― μA AVCC1 AV1Icc 0.32 ― μA VREFH0 VRF0Icc 0.24 ― μA VREFH1 VRF1Icc 0.24 ― μA DVDD_USB V12UIcc 3.5 ― mA UTMI suspend mode VDD33_USB V33UIcc 9.6*1 ― mA UTMI suspend mode VDD33_USB Standby mode with all VDD modules being inactive PLLVDD0 + PLLVDD1 (reference value) VCCQ33 V33UIcc Note 1. These values are reference values. The actual operating current greatly depends on the system (such as unsharpened waveforms due to I/O load and toggle frequency). Be sure to measure these current values in the system. Note 2. V33Icc must be 80 mA or less. (ΣIOH in Table 2.9) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 54 of 136 RZ/T1 Group Table 2.4 2. Electrical Characteristics DC Characteristics (3) [Except for USB2.0 Host/Function-Related Pins] Item Symbol min typ max Unit VIH1 2.4 ― VCCQ33 + 0.3 V VIL1 –0.3 ― 0.8 V ΔVT1 VCCQ33 × 0.05 ― ― V VIH2 VCCQ33 × 0.7 ― 5.3*2 V VIL2 –0.3 ― VCCQ33 × 0.3 V ΔVT2 VCCQ33 × 0.05 ― ― V Input high level voltage (except for schmitt trigger input pins) VIH3 2.4 ― VCCQ33 + 0.3 V Input low level voltage (except for schmitt trigger input pins) VIL3 –0.3 ― 0.8 V Output high level voltage Other than 5-V tolerant pins VOH VCCQ33 – 0.5 ― ― V IOH = -2 mA Output low level voltage Other than 5-V tolerant pins VOL1 ― ― 0.4 V IOL1 = 2 mA VOL2 ― ― 0.4 V IOL2 = 3 mA Schmitt trigger Input voltage Other than 5-V tolerant pins 5-V tolerant pins*1 5-V tolerant pins*1 Input leakage current Test Conditions ― ― 0.6 V IOL2 = 6 mA | Iin | ― ― 1.0 μA Vin1 = Vin2 = 0 V Vin1 = Vin2 = VCCQ33 |ITSI| ― ― 1.0 μA Vin1 = 0 V Vin1 = VCCQ33 Three-state leakage current (off state) Input/output and output pins excluding 5-V tolerant pins 5-V tolerant pins*1 ― ― 5.0 μA Vin2 = 0 V Vin2 = VCCQ33 Input pull-up MOS current and resistance Ports P50 to P56, P86 to Ipu1 P87, P90 to P97, PD0 to PD7 Rpu1 –300 ― –30 μA 10 ― 120 kΩ VCCQ33 = 3.0 to 3.6 V Vin1 = Vin2 = 0 V Pins other than the above*3 Ipu2 –120 ― –7 μA Rpu2 25 ― 515 kΩ Ports P50 to P56, P86 to Ipd1 P87, P90 to P97, PD0 to PD7 Rpd1 30 ― 300 μA 10 ― 120 kΩ Ipd2 7 ― 120 μA Rpd2 25 ― 515 kΩ ― ― 10 pF Input pull-down MOS current and resistance Pins other than the Pin capacity above*3 All input/output and input pins Cin VCCQ33 = 3.0 to 3.6 V Vin1 = Vin2 = 0 V VCCQ33 = 3.0 to 3.6 V Vin1 = Vin2 = VCCQ33 VCCQ33 = 3.0 to 3.6 V Vin1 = Vin2 = VCCQ33 Note 1. Ports PC0 to PC7 and P30 are 5-V tolerant. Note 2. When VCCQ33 is less than 3.00 V, do not apply voltage of 3.6 V or higher to 5-V tolerant pins. Note 3. 5-V tolerant pins are not included. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 55 of 136 RZ/T1 Group Table 2.5 2. Electrical Characteristics DC Characteristics (4) [USB2.0 USB_RREF Pin] Item Symbol min Reference resistor RREF 200 ±1% Table 2.6 typ max Unit Test Conditions Ω DC Characteristics (5) [USB2.0 Host/Function-Related Pins (Items for Both Full Speed and High Speed)*1] Item Symbol min typ max Unit Test Conditions DP pull-up resistor (when the function controller operation is selected) RPU 0.900 ― 1.575 kΩ Idle 1.425 ― 3.090 kΩ Transmission/ reception DP/DM pull-down resistors (when the host function is selected) RPD 14.25 ― 24.80 kΩ Note 1. USB_DP and USB_DM pins Table 2.7 DC Characteristics (6) [USB2.0 Host/Function-Related Pins (Full Speed)*1] Item Symbol min typ max Unit Input high level voltage VFSIH 2.0 ― ― V Measuring Condition Input low level voltage VFSIL ― ― 0.8 V Differential input sensitivity VFSDI 0.2 ― ― V Differential common mode range VFSCM 0.8 ― 2.5 V Output high level voltage VFSOH 2.8 ― 3.6 V IFSOH = -200 μA Output low level voltage VFSOL 0.0 ― 0.3 V IFSOL = 2 mA Output signal crossover voltage VFSCRS 1.3 ― 2.0 V CL = 50 pF (full-speed) | (USB_DP) – (USB_DM) | Note 1. USB_DP and USB_DM pins Table 2.8 DC Characteristics (7) [USB2.0 Host/Function-Related Pins (High Speed)*1] Item Symbol min typ max Unit Squelch detection threshold voltage (differential voltage) VHSSQ 100 ― 150 mV Common mode voltage range VHSCM -50 ― 500 mV Idle state VHSOI -10.0 ― 10.0 mV Output high level voltage VHSOH 360 ― 440 mV Output low level voltage VHSOL -10.0 ― 10.0 mV Chirp J output voltage (differential) VCHIRPJ 700 ― 1100 mV Chirp K output voltage (differential) VCHIRPK -900 ― -500 mV Test Conditions Note 1. USB_DP and USB_DM pins R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 56 of 136 RZ/T1 Group Table 2.9 2. Electrical Characteristics Permissible Output Currents Item Symbol min typ max Unit Other than 5-V tolerant pins IOL1 ― ― 2.0 mA 5-V tolerant pins IOL2 ― ― 3.0 mA Other than 5-V tolerant pins IOL1 ― ― 4.0 mA 5-V tolerant pins IOL2 ― ― 6.0 mA Permissible output low current (total) Total of all output pins ΣIOL ― ― 80 mA Permissible output high current (average value per pin) All output pins IOH ― ― -2.0 mA Permissible output high current (maximum value per pin) All output pins IOH ― ― -4.0 mA ΣIOH ― ― -80 mA Permissible output low current (average value per pin) Permissible output low current (maximum value per pin) Permissible output high current (total) Total of all output pins [Usage Note] All output current values shall be within the values in Table 2.9 to ensure the reliability of this LSI. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 57 of 136 RZ/T1 Group 2.4 2. Electrical Characteristics AC Characteristics • Conditions: VDD = PLLVDD0 = PLLVDD1 = DVDD_USB = 1.14 to 1.26 V, VCCQ33 = AVCC0 = AVCC1 = VREFH0 = VREFH1 = VDD33_USB = 3.0 to 3.6 V VSS = PLLVSS0 = PLLVSS1 = AVSS0 = AVSS1 = VREFL0 = VREFL1 = VSS_USB = 0 V, Tj = -40 to 125°C Note: The 176-pin HLFQFP does not have pins AVCC1, AVSS1, VREFH1, and VREFL1. Table 2.10 Operating Frequency Operating frequency CPU clock (CPUCLK) Item Symbol min max Unit f 150 600 MHz *2 150 450 *3 150 *1 300 System clock (ICLK) 150 Peripheral module clock (PCLKA) 150 Peripheral module clock (PCLKB) 75 Peripheral module clock (PCLKC) 150 Peripheral module clock (PCLKD) 75 Peripheral module clock (PCLKE) 18.75 75 Peripheral module clock (PCLKF) 7.5 60 Peripheral module clock (PCLKG) 7.5 60 Peripheral module clock (PCLKH) 60 High-speed serial clock (SERICLK) 120 150 ΔΣ interface clock output (DSCLK0, DSCLK1) 6.25 25 External bus clock output (CKIO) 18.75 75 External clock output for Ethernet PHY (CLKOUT25M) 25 50 Note 1. For R7S910007CBG, R7S910107CBG, R7S910013CBG, R7S910113CBG, R7S910017CBG, R7S910117CBG, R7S910018CBG, R7S910118CBG, R7S910027CBG, R7S910127CBG, R7S910028CBG, and R7S910128CBG only. Note 2. For R7S910001CFP, R7S910101CFP, R7S910002CBG, R7S910102CBG, R7S910006CBG, R7S910106CBG, R7S910011CBG, R7S910111CBG, R7S910015CBG, R7S910115CBG, R7S910016CBG, R7S910116CBG, R7S910025CBG, R7S910125CBG, R7S910026CBG, and R7S910126CBG only. Note 3. For R7S910035CBG, R7S910135CBG, R7S910036CBG, and R7S910136CBG only. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 58 of 136 RZ/T1 Group 2.4.1 Table 2.11 2. Electrical Characteristics Clock Timing CKIO Pin Output Timing Output load condition: C = 30 pF Item Symbol min typ max Unit Test Conditions CKIO pin output cycle time tCKcyc 13.3 ― 53.4 ns Figure 2.2 CKIO pin output high level pulse width tCKH tCKcyc/2 – tCKr ― ― ns CKIO pin output low level pulse width tCKL tCKcyc/2 – tCKf ― ― ns CKIO pin output rising time 1 tCKr ― ― 5 ns CKIO pin output falling time 1 tCKf ― ― 5 ns CKIO pin output rising time 2 tCKr ― ― 9 ns CKIO pin output falling time 2 tCKf ― ― 9 ns CKIO pin output rising time 3 tCKr ― ― 2.5 ns CKIO pin output falling time 3 tCKf ― ― 2.5 ns CKIO pin output rising time 4 tCKr ― ― 4.5 ns CKIO pin output falling time 4 tCKf ― ― 4.5 ns CKIO: High drive output setting*1 VOH = VCCQ33 – 0.5 V VOL1 = 0.4 V CKIO: Normal output setting VOH = VCCQ33 – 0.5 V VOL1 = 0.4 V CKIO: High drive output setting*1 VOH = 2.0 V VOL1 = 0.8 V CKIO: Normal output setting VOH = 2.0 V VOL1 = 0.8 V Note 1. When connecting SDRAM, be sure to set the B0 bit in the drive capacity control register (DSCR) to 1 to be a high drive output. tCKcyc tCKH CKIO pin output 1/2 VCCQ33 VOH tCKL VOH VOL1 tCKf Figure 2.2 VOH VOL1 1/2 VCCQ33 tCKr CKIO Pin Output Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 59 of 136 RZ/T1 Group Table 2.12 2. Electrical Characteristics CLKOUT25Mn Timing Output load conditions: VOH = 2.0 V, VOL1 = 0.8 Vn, C = 25 pF (RMII) VOH = VCCQ33 – 0.5 V, VOL1 = 0.4 V, C = 30 pF (MII) Item CLKOUT25Mn (RMII) CLKOUT25Mn (MII) CLKOUT25Mn cycle time CLKOUT25Mn frequency Typ. 50 MHz Symbol min max Unit Test Conditions Tck1 20 ― ns Figure 2.3 ― 50 ± 50 ppm MHz CLKOUT25Mn duty ― 35 65 % CLKOUT25Mn output low pulse width 1 Tckl1 Tck1/2 – Tckf1 Tck1/2 + Tckf1 ns CLKOUT25Mn output high pulse width 1 Tckh1 Tck1/2 – Tckr1 Tck1/2 + Tckr1 ns CLKOUT25Mn rising/falling time 1 Tckr1/ckf1 0.5 4 ns CLKOUT25Mn cycle time Tck2 40 ― ns CLKOUT25Mn frequency Typ. 25 MHz ― 25 ± 50 ppm Figure 2.4 MHz CLKOUT25Mn duty ― 35 65 % CLKOUT25Mn output low pulse width 2 Tckl2 Tck2/2 – Tckf2 Tck2/2 + Tckf2 ns CLKOUT25Mn output high pulse width 2 Tckh2 Tck2/2 – Tckr2 Tck2/2 + Tckr2 ns CLKOUT25Mn rising/falling time 2 Tckr2/ckf2 0.5 9 ns n = 0 to 2 Tck1 Tckh1 CLKOUT25Mn pin output 50% 0.8 V Tckr1 Figure 2.3 2.0 V 0.8 V 0.8 V 2.0 V Tckl1 Tckf1 CLKOUT25Mn Pin Output Timing 1 Tck2 Tckh2 CLKOUT25Mn pin output 1/2 × VCCQ33 Tckr2 Figure 2.4 VOH VOL1 VOL1 VOH VOL1 Tckf2 1/2 × VCCQ33 Tckl2 CLKOUT25Mn Pin Output Timing 2 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 60 of 136 RZ/T1 Group Table 2.13 2. Electrical Characteristics EXTAL Clock Timing Item Symbol EXTAL external clock input cycle time tEXcyc min typ max Unit 40.00 ± 50 ppm ns 25.00 ± 25ppm*1 MHz Note 1. When EtherCAT is in use. tEXcyc EXTAL external clock input 1/2 × VCCQ33 1/2 × VCCQ33 Figure 2.5 Table 2.14 EXTAL External Clock Input Timing XTAL Clock Timing Item Symbol XTAL clock oscillator output cycle*1 min tXTALcyc typ 40.00 ± 50 max Unit ppm*2 ns Note 1. When using the XTAL clock, ask the oscillator manufacturer to evaluate oscillation of the oscillator. For the oscillation stabilization time, see the evaluation result provided by the oscillator manufacturer. Note 2. When using the EtherCAT, make sure that the clock timing satisfies 25.00 MHz ± 25 ppm. tXTALcyc XTAL clock oscillator output 1/2 × VCCQ33 Figure 2.6 Table 2.15 1/2 × VCCQ33 XTAL Clock Oscillator Output Timing LOCO Clock Timing Item Symbol min typ max Unit LOCO clock cycle time tLcyc 4.62 4.17 3.79 μs LOCO clock oscillation frequency fLOCO 216 240 264 kHz LOCO clock oscillation stabilization wait time tLOCOWT ― ― 40 μs R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Test Conditions Figure 2.7 Page 61 of 136 RZ/T1 Group 2. Electrical Characteristics LOCOCR.LCSTP Low-speed on-chip oscillator output tLOCOWT LOCO clock Figure 2.7 LOCO Clock Oscillation Start Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 62 of 136 RZ/T1 Group 2.4.2 2. Electrical Characteristics Reset Timing and Interrupt Timing Table 2.16 Reset Timing and Interrupt Timing Item RES# pulse width At power on Symbol Min*1 typ max Unit Test Conditions Tdlyreset 10 ― ― ms Figure 2.8 Tdlyreset2 1 ― ― ms Trisereset ― ― 150 μs At power on Tdlyreset 10 ― ― ms Other than above Tdlyreset2 1 ― ― ms TRST# rising time Trisereset ― ― 150 μs Other than above RES# rising time TRST# pulse width NMI pulse width tNMIW tIcyc × 2 ― ― ns Figure 2.9 IRQ pulse width tIRQW tIcyc × 2 ― ― ns Figure 2.10 ETH_INT pulse width tEINTW tIcyc × 2 ― ― ns Figure 2.11 Note 1. tIcyc: ICLK cycle trisereset RES# TRST# Figure 2.8 VIH1 VIL1 VIL1 tdlyreset, tdlyreset2 Reset Input Timing NMI tNMIW Figure 2.9 NMI Interrupt Input Timing IRQ0 to IRQ15 tIRQW Figure 2.10 IRQ Interrupt Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 63 of 136 RZ/T1 Group 2. Electrical Characteristics ETH0_INT to ETH2_INT tEINTW Figure 2.11 ETH_INT Interrupt Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 64 of 136 RZ/T1 Group 2.4.3 Table 2.17 2. Electrical Characteristics Bus Timing Bus Timing (1 / 2) Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF CKIO = 1/tCKcyc*1 Item Address delay time 1 Symbol SDRAM*3 tAD1 Other than the above Min. Max. Unit 2 10 ns 0 10 ns Reference Figure Figure 2.12 to Figure 2.36 Address delay time 2 tAD2 1/2tCKcyc 1/2tCKcyc + 10 ns Figure 2.19 Address setup time tAS 0 ― ns Figure 2.12 to Figure 2.15, Figure 2.19 Chip enable setup time tcs 0 ― ns Figure 2.12 to Figure 2.15, Figure 2.19 Address hold time tAH 0 ― ns Figure 2.12 to Figure 2.15 BS# delay time tBSD ― 10 ns Figure 2.12 to Figure 2.33 tCSD1 2 10 ns 0 10 ns Figure 2.12 to Figure 2.36 CS# delay time 1 SDRAM*3 Other than the above Read/write delay time 1 SDRAM*3 tRWD1 2 10 ns 0 10 ns tRSD 1/2tCKcyc 1/2tCKcyc + 10 ns Figure 2.12 to Figure 2.19 tRDS1 1/2tCKcyc + 4 ― ns 1/2tCKcyc + 7 ― ns Figure 2.12 to Figure 2.18 6.6 ― ns 10 ― ns Figure 2.20 to Figure 2.23, Figure 2.28 to Figure 2.30 1/2tCKcyc + 4 ― ns Figure 2.19 1/2tCKcyc + 7 ― ns Other than the above Read strobe delay time Read data setup time 1*4 High-drive output Read data setup time 2*4 High-drive output Read data setup time 3*4 High-drive output Normal output tRDS2 Normal output tRDS3 Normal output Figure 2.12 to Figure 2.36 Read data hold time 1 tRDH1 0 ― ns Figure 2.12 to Figure 2.18 Read data hold time 2 tRDH2 2 ― ns Figure 2.20 to Figure 2.23, Figure 2.28 to Figure 2.30 Read data hold time 3 tRDH3 0 ― ns Figure 2.19 Write enable delay time 1 tWED1 1/2tCKcyc 1/2tCKcyc + 10 ns Figure 2.12 to Figure 2.17 Write enable delay time 2 tWED2 ― 10 ns Figure 2.18 Write data delay time 1 tWDD1 ― 10 ns Figure 2.12 to Figure 2.18 Write data delay time 2 tWDD2 ― 10 ns Figure 2.24 to Figure 2.27, Figure 2.31 to Figure 2.33 Write data hold time 1 tWDH1 1 ― ns Figure 2.12 to Figure 2.18 R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 65 of 136 RZ/T1 Group Table 2.17 2. Electrical Characteristics Bus Timing (2 / 2) Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF CKIO = 1/tCKcyc*1 Reference Figure Item Symbol Min. Max. Unit Write data hold time 2 tWDH2 2 ― ns Figure 2.24 to Figure 2.27, Figure 2.31 to Figure 2.33 Write data hold time 4 tWDH4 0 ― ns Figure 2.12 to Figure 2.16 Figure 2.13 to Figure 2.19 WAIT# setup time*4 High-drive output tWTS Normal output 1/2tCKcyc + 4.5 ― ns 1/2tCKcyc + 8 ― ns WAIT# hold time tWTH 1/2tCKcyc + 3.5 ― ns Figure 2.13 to Figure 2.19 RAS# delay time 1 tRASD1 2 10 ns Figure 2.20 to Figure 2.36 CAS# delay time 1 tCASD1 2 10 ns Figure 2.20 to Figure 2.36 DQM delay time 1 tDQMD1 2 10 ns Figure 2.20 to Figure 2.33 CKE delay time 1 tCKED1 2 10 ns Figure 2.35 AH# delay time tAHD 1/2tCKcyc 1/2tCKcyc + 10 ns Figure 2.16 Multiplex address delay time tMAD ― 10 ns Figure 2.16 Multiplex address hold time tMAH 1 ― ns Figure 2.16 Address setup time to AH# tAVVH 1/2tCKcyc – 2 ― ns Figure 2.16 DACK/TEND delay time tDACD See DMAC timing See DMAC timing ns Figure 2.12 to Figure 2.33 Note 1. Take the number of cycles of waiting that suits the system configuration into consideration with regard to the fmax value for CKIO (the external bus clock). When CKIO is running at 50 MHz or a higher frequency, set the B0 bit of the driving ability control register (DSCR) to 1 to select high-drive output. When CKIO is running at less than 50 MHz, normal output of CKIO can be used (DSCR.B0 bit = 0). Note 2. Notation of 1/2tCKcyc in the delay time, setup time, and hold time shows 1/2 cycles from the clock rising edge, that is, the reference of clock falling. Note 3. These are values when SDRAM (TYPE[2:0] bits = 100b) is selected in the CSn space bus control register (CSnBCR) and highdrive output (B0 bit = 1) is selected in the driving ability control register (DSCR) for CKIO. Note 4. These are values when high-drive output (B0 bit = 1) and normal output (B0 bit = 0) are respectively selected in the driving ability control register (DSCR) for CKIO. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 66 of 136 RZ/T1 Group 2. Electrical Characteristics T1 T2 CKIO tAD1 tAD1 A25 to A0 tAS tCSD1 tCSD1 CS5# to CS0# tCS tRWD1 tRWD1 RD/WR# tRSD tRSD RD# tAH tRDH1 tRDS1 Read D31 to D0 tWED1 tWED1 WE3# to WE0# tWDH4 tWDD1 Write tAH tWDH1 D31 to D0 tBSD tBSD BS# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*1 Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.12 SRAM Interface Basic Bus Cycle (No Wait) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 67 of 136 RZ/T1 Group 2. Electrical Characteristics T1 Tw T2 CKIO tAD1 tAD1 A25 to A0 tAS tCSD1 tCSD1 CS5# to CS0# tCS tRWD1 tRWD1 RD/WR# tRSD tRSD RD# tAH tRDH1 tRDS1 Read D31 to D0 tWED1 tWED1 WE3# to WE0# tWDH4 tWDD1 Write tAH tWDH1 D31 to D0 tBSD tBSD BS# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*1 tWTH tWTS WAIT# Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.13 SRAM Interface Basic Bus Cycle (Software Wait 1) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 68 of 136 RZ/T1 Group 2. Electrical Characteristics T1 Tw TwX T2 CKIO tAD1 tAD1 A25 to A0 tAS tCSD1 tCSD1 CS5# to CS0# tCS tRWD1 tRWD1 RD/WR# tRSD tRSD RD# tAH tRDH1 tRDS1 Read D31 to D0 tWED1 tWED1 WE3# to WE0# tAH tWDH4 tWDD1 Write tWDH1 D31 to D0 tBSD tBSD BS# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*1 tWTH tWTH tWTS tWTS WAIT# Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.14 SRAM Interface Basic Bus Cycle (Software Wait 1, External Wait 1 Inserted) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 69 of 136 RZ/T1 Group 2. Electrical Characteristics T1 CKIO Tw Taw T2 tAD1 tAD1 T1 Tw T2 Taw tAD1 tAD1 A25 to A0 tCSD1 tAS tCSD1 tAS tCSD1 tRWD1 tRWD1 tCSD1 CS5# to CS0# tRWD1 tCS tCS tRWD1 RD/WR# tRSD tRSD RD# tAH tRSD tRSD tRDH1 tRDH1 tRDS1 Read tAH tRDS1 D31 to D0 tWED1 tWED1 tWED1 tWED1 tAH tAH WE3# to WE0# tWDH4 Write tWDD1 tWDH4 tWDH1 tWDD1 tWDH1 D31 to D0 tBSD tBSD tBSD tBSD BS# tDACD DACK2 to DACK0 TEND2 to END0*1 tDACD tDACD tWTH tWTS tDACD tWTH tWTS WAIT# Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.15 SRAM Interface Basic Bus Cycle (Software Wait 1, External wait Enabled (WM Bit = 0), No Idle Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 70 of 136 RZ/T1 Group 2. Electrical Characteristics Ta1 Ta2 Ta3 T1 Tw TwX T2 CKIO tAD1 tAD1 tCSD1 tCSD1 tRWD1 tRWD1 A25 to A0 CS5# RD/WR# tAHD tAHD tAHD AH# tRSD tRSD RD# tMAD Read D31 to D0 tRDH1 tRDS1 tMAH Address Data tAVVH tWED1 WE1#, WE0# tAVVH Write tMAD D31 to D0 tWED1 tWDD1 tWDH4 tMAH tWDH1 Address tBSD Data tBSD BS# tWTH tWTS tWTH tWTS WAIT# tDACD tDACD 1 DACK2 to DACK0* tDACD tDACD TEND2 to TEND0*1 Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.16 MPX-I/O Interface Bus Cycle (Address Cycle 3, Software Wait 1, External Wait 1 Inserted) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 71 of 136 RZ/T1 Group 2. Electrical Characteristics Th T1 Twx Tf T2 CKIO tAD1 tAD1 tCSD1 tCSD1 A25 to A0 CS5# to CS0# tWED1 tWED1 WE3# to WE0# tRWD1 tRWD1 RD/WR# tRSD tRSD Read RD# tRDH1 tRDS1 D31 to D0 tRWD1 tRWD1 tWDD1 tWDH1 RD/WR# Write D31 to D0 tBSD tBSD BS# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*1 tWTH tWTH WAIT# tWTS tWTS Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.17 SRAM Bus Cycle with Byte Selection (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1 Inserted, BAS = 0 (Write Cycle UB#/LB# Control)) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 72 of 136 RZ/T1 Group 2. Electrical Characteristics Th T1 Twx Tf T2 CKIO tAD1 tAD1 tCSD1 tCSD1 tWED2 tWED2 A25 to A0 CS5# to CS0# WE3# to WE0# tRWD1 RD/WR# tRSD tRSD Read RD# tRDH1 tRDS1 D31 to D0 tRWD1 tRWD1 tRWD1 RD/WR# tWDD1 Write tWDH1 D31 to D0 tBSD tBSD BS# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*1 tWTH tWTH WAIT# tWTS tWTS Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.18 SRAM Bus Cycle with Byte Selection (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1 Inserted, BAS = 1 (Write Cycle WE# Control)) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 73 of 136 RZ/T1 Group 2. Electrical Characteristics T1 Tw Twx Twb T2B T2B CKIO tAD1 tAD2 tAD2 tAD1 A25 to A0 tCSD1 tAS tCSD1 CS4#, CS0# tCS tRWD1 tRWD1 RD/WR# tRSD tRSD RD# tRDH3 tRDH3 tRDS3 tRDS3 D31 to D0 WE3# to WE0# tBSD tBSD BS# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*1 tWTH tWTH WAIT# tWTS tWTS Note 1. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.19 Burst ROM Read Cycle (Software Wait 1, Asynchronous External Wait 1 Inserted, Burst Wait 1, 2) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 74 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Tc1 Tcw Td1 Tde CKIO tAD1 A25 to A0 Row address tAD1 A12/A11* tAD1 1 tAD1 Column address tAD1 tAD1 READA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.20 Synchronous DRAM Single-Read Bus Cycle (with Auto Precharge, CAS Latency 2, WTRCD = 0 Cycles, WTRP = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 75 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Trw Tcw Tc1 Td1 Tde Tap CKIO tAD1 tAD1 Row address A25 to A0 tAD1 tAD1 Column address tAD1 A12/A11*1 tAD1 READA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.21 Synchronous DRAM Single-Read Bus Cycle (with Auto Precharge, CAS Latency 2, WTRCD = 1 Cycle, WTRP = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 76 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Tc1 Tc2 Td1 Td2 Tc3 Tc4 Td3 Td4 Tde CKIO tAD1 A25 to A0 tAD1 tAD1 Row address tAD1 tAD1 Column address tAD1 (1 to 4) tAD1 A12/A11*1 tAD1 tAD1 READ command tAD1 READA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.22 Synchronous DRAM Burst-Read Bus Cycle (Read for 4 Cycles) (with Auto Precharge, CAS Latency 2, WTRCD = 0 Cycles, WTRP = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 77 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Trw Tc1 Tc2 Td1 Td2 Tc3 Tc4 Td3 Td4 Tde CKIO tAD1 tAD1 tAD1 Row address A25 to A0 tAD1 tAD1 Column address tAD1 (1 to 4) tAD1 A12/A11*1 tAD1 tAD1 READ command tAD1 READA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.23 Synchronous DRAM Burst-Read Bus Cycle (Read for 4 Cycles) (with Auto Precharge, CAS Latency 2, WTRCD = 1 Cycle, WTRP = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 78 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Tc1 Trwl CKIO tAD1 A25 to A0 Row address tAD1 A12/A11*1 tAD1 tAD1 Column address tAD1 tAD1 WRITA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRASD1 tRASD1 tRWD1 RD/WR# RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tBSD tBSD D31 to D0 BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.24 Synchronous DRAM Single-Write Bus Cycle (with Auto Precharge, TRWL = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 79 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Trw Trw Tc1 Trwl CKIO tAD1 tAD1 A25 to A0 tAD1 Column address Row address tAD1 tAD1 A12/A11*1 tAD1 WRITA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRWD1 tCASD1 tCASD1 RD/WR# tRASD1 tRASD1 RAS# CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tBSD tBSD D31 to D0 BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.25 Synchronous DRAM Single-Write Bus Cycle (with Auto Precharge, WTRCD = 2 Cycles, TRWL = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 80 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Tc1 Tc2 Tc3 Tc4 Trwl CKIO tAD1 A25 to A0 tAD1 Row address tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 Column address tAD1 A12/A11*1 WRIT command WRITA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRASD1 tRASD1 tRWD1 RD/WR# RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tWDD2 tWDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.26 Synchronous DRAM Burst-Write Bus Cycle (Write for 4 Cycles) (with Auto Precharge, WTRCD = 0 Cycles, TRWL = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 81 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Trw Tc1 Tc2 Tc3 Tc4 Trwl CKIO tAD1 tAD1 Row address A25 to A0 tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 Column address tAD1 A12/A11*1 WRIT command WRITA command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRWD1 tCASD1 tCASD1 RD/WR# tRASD1 tRASD1 RAS# CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tWDD2 tWDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.27 Synchronous DRAM Burst-Write Bus Cycle (Write for 4 Cycles) (with Auto Precharge, WTRCD = 1 Cycle, TRWL = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 82 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Tc1 Tc2 Td1 Td2 Tc3 Tc4 Td3 Td4 Tde CKIO tAD1 A25 to A0 tAD1 Row address tAD1 tAD1 tAD1 tAD1 tAD1 Column address tAD1 A12/A11*1 tAD1 READ command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.28 Synchronous DRAM Burst-Read Bus Cycle (Read for 4 Cycles) (Bank Active Mode: ACT + READ Command, CAS Latency 2, WTRCD = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 83 of 136 RZ/T1 Group 2. Electrical Characteristics Tc1 Tc2 Td1 Td2 Tc3 Tc4 Td3 Td4 Tde CKIO tAD1 A25 to A0 tAD1 tAD1 tAD1 Column address tAD1 A12/A11*1 tAD1 tAD1 READ command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 RD/WR# tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.29 Synchronous DRAM Burst-Read Bus Cycle (Read for 4 Cycles) (Bank Active Mode: READ Command, Same Row Address, CAS Latency 2, WTRCD = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 84 of 136 RZ/T1 Group 2. Electrical Characteristics Tp Trw Tr Tc1 Tc2 Td1 Td2 Tc3 Tc4 Td3 Td4 Tde CKIO tAD1 tAD1 Row address A25 to A0 tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 Column address tAD1 A12/A11*1 tAD1 READ command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tRDS2 tRDH2 tRDS2 tRDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.30 Synchronous DRAM Burst-Read Bus Cycle (Read for 4 Cycles) (Bank Active Mode: PRE + ACT + READ Command, Different Row Address, CAS Latency 2, WTRCD = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 85 of 136 RZ/T1 Group 2. Electrical Characteristics Tr Tc1 Tc3 Tc2 Tc4 CKIO tAD1 A25 to A0 tAD1 Row address tAD1 tAD1 tAD1 tAD1 tAD1 Column address tAD1 tAD1 A12/A11*1 WRIT command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRASD1 tRASD1 tRWD1 RD/WR# RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tWDD2 tWDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.31 Synchronous DRAM Burst-Write Bus Cycle (Write for 4 Cycles) (Bank Active Mode: ACT + WRITE Command, WTRCD = 0 Cycles, TRWL = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 86 of 136 RZ/T1 Group 2. Electrical Characteristics Tnop Tc1 Tc3 Tc2 Tc4 CKIO tAD1 tAD1 tAD1 tAD1 tAD1 Column address A25 to A0 tAD1 tAD1 tAD1 A12/A11*1 WRIT command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRWD1 tCASD1 tCASD1 RD/WR# RAS# CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tWDD2 tWDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.32 Synchronous DRAM Burst-Write Bus Cycle (Write for 4 Cycles) (Bank Active Mode: WRITE Command, Same Row Address, WTRCD = 0 Cycles, TRWL = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 87 of 136 RZ/T1 Group 2. Electrical Characteristics Tp Tpw Tr Tc1 Tc2 Tc3 Tc4 CKIO tAD1 A25 to A0 tAD1 tAD1 Column address Row address tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 tAD1 A12/A11*1 WRIT command tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRASD1 tRASD1 tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 RAS# tCASD1 tCASD1 CAS# tDQMD1 tDQMD1 DQMUU, DQMUL, DQMLU, DQMLL tWDD2 tWDH2 tWDD2 tWDH2 D31 to D0 tBSD tBSD BS# (High) CKE# tDACD tDACD DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.33 Synchronous DRAM Burst-Write Bus Cycle (Write for 4 Cycles) (Bank Active Mode: PRE + ACT + WRITE Command, Different Row Address, WTRCD = 0 Cycles, TRWL = 0 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 88 of 136 RZ/T1 Group 2. Electrical Characteristics Tp Tpw Trr Trc Trc Trc CKIO tAD1 tAD1 tAD1 tAD1 A25 toA0 A12/A11*1 tCSD1 tCSD1 tRWD1 tRWD1 tRASD1 tRASD1 tCSD1 tCSD1 CS3#, CS2# tRWD1 RD/WR# tRASD1 tRASD1 tCASD1 tCASD1 RAS# CAS# DQMUU, DQMUL, DQMLU, DQMLL D31 to D0 (Hi-Z) BS# CKE# (High) DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.34 Synchronous DRAM Auto-Refresh Timing (WTRP = 1 Cycle, WTRC = 3 Cycles) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 89 of 136 RZ/T1 Group 2. Electrical Characteristics Tp Tpw Trr Trc Trc Trc CKIO tAD1 tAD1 tAD1 tAD1 A25 to A0 A12/A11*1 tCSD1 tCSD1 tRWD1 tRWD1 tRASD1 tRASD1 tCSD1 tCSD1 CS3#, CS2# tRWD1 RD/WR# tRASD1 tRASD1 tCASD1 tCASD1 RAS# CAS# DQMUU, DQMUL, DQMLU, DQMLL (Hi-Z) D31 to D0 BS# tCKED1 tCKED1 CKE# DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.35 Synchronous DRAM Self-Refresh Timing (WTRP = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 90 of 136 RZ/T1 Group 2. Electrical Characteristics Tp Tpw Trr Trc Trc Trr Trc Trc Tmw Tde CKIO PALL REF REF MRS tAD1 tAD1 tAD1 A25 to A0 tAD1 tAD1 A12/A11*1 tCSD1 tCSD1 tCSD1 tCSD1 tCSD1 tCSD1 tCSD1 tCSD1 CS3#, CS2# tRWD1 tRWD1 tRWD1 tRWD1 tRWD1 RD/WR# tRASD1 tRASD1 tRASD1 tRASD1 tRASD1 tRASD1 tRASD1 tRASD1 tCASD1 tCASD1 tCASD1 tCASD1 tCASD1 RAS# tCASD1 CAS# DQMUU, DQMUL, DQMLU, DQMLL D31 to D0 (Hi-Z) BS# CKE# DACK2 to DACK0 TEND2 to TEND0*2 Note 1. Address pin to be connected to A10 of SDRAM Note 2. DACKn and TENDn are waveforms when “active low” is specified. Figure 2.36 Synchronous DRAM Mode Register Write Timing (WTRP = 1 Cycle) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 91 of 136 RZ/T1 Group 2.4.4 Table 2.18 2. Electrical Characteristics DMAC Timing DMAC Timing Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Symbol min*1 max Unit Test Conditions DREQ pulse width tDRQW tPBcyc × 2 ― ns Figure 2.37 DACK and TEND delay time tDACD 0 10 ns Figure 2.38 Item DMAC Note 1. tPBcyc: PCLKB cycle DREQ0 to DREQ2 tDRQW Figure 2.37 DREQ Input Timing CKIO tDACD tDACD DACK0 to DACK2 TEND0 to TEND2 Figure 2.38 DACK and TEND Output Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 92 of 136 RZ/T1 Group 2.4.5 2.4.5.1 Table 2.19 2. Electrical Characteristics On-Chip Peripheral Module Timing I/O Port Timing I/O Port Timing Item I/O port Input data pulse width Symbol min max Unit*1 Test Conditions tPRW 1.5 ― tPBcyc Figure 2.39 Note 1. tPBcyc: PCLKB cycle PCLKB Port tPRW Figure 2.39 I/O Port Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 93 of 136 RZ/T1 Group 2. Electrical Characteristics 2.4.5.2 TPUa Timing Table 2.20 TPUa Timing Item TPUa Input capture input pulse width Single-edge setting Symbol min max Unit*1 Test Conditions tTICW 1.5 ― tPDcyc Figure 2.40 2.5 ― tPDcyc Figure 2.41 Both-edge setting Timer clock pulse width Single-edge Both-edge setting Phase counting mode tTCKWH, tTCKWL 1.5 ― 2.5 ― 2.5 ― Note 1. tPDcyc: PCLKD cycle PCLKD Input capture input Figure 2.40 tTICW TPUa Input Capture Input Timing PCLKD TCLKA to TCLKD tTCKWL Figure 2.41 tTCKWH TPUa Clock Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 94 of 136 RZ/T1 Group 2. Electrical Characteristics 2.4.5.3 CMTW Timing Table 2.21 CMTW Timing Item CMTW Input capture input pulse width Single-edge setting Both-edge setting Symbol min max Unit*1 Test Conditions tCMTWICW 1.5 ― tPDcyc Figure 2.42 2.5 ― Note 1. tPDcyc: PCLKD cycle PCLKD Input capture input t CM TW IC W Figure 2.42 CMTW Input Capture Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 95 of 136 RZ/T1 Group 2. Electrical Characteristics 2.4.5.4 Table 2.22 MTU3a Timing MTU3a Timing Item MTU3a Input capture input pulse width Single-edge setting Timer clock pulse width Single-edge setting Symbol min max Unit*1 Test Conditions tMTICW 1.5 ― tPCcyc Figure 2.43 2.5 ― 1.5 ― tPCcyc Figure 2.44 Both-edge setting Both-edge setting Phase counting mode tMTCKWH, tMTCKWL 2.5 ― 2.5 ― Note 1. tPCcyc: PCLKC cycle PCLKC Input capture input t MTICW Figure 2.43 MTU3a Input Capture Input Timing PCLKC MTCLKA to MTCLKD tMTCKWL Figure 2.44 tMTCKWH MTU3a Clock Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 96 of 136 RZ/T1 Group 2.4.5.5 Table 2.23 2. Electrical Characteristics POE3 Timing POE3 Timing Item POE3 POEn# input pulse width Symbol min max Unit*1 Test Conditions tPOEW 1.5 ― tPDcyc Figure 2.45 Note 1. tPDcyc: PCLKD cycle PCLKD POEn# input (n = 0, 4, 8, 10) Figure 2.45 tPOEW POEn# Input Pulse Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 97 of 136 RZ/T1 Group 2. Electrical Characteristics 2.4.5.6 Table 2.24 GPTa Timing GPTa Timing Item GPTa Input capture input pulse width Single-edge setting External trigger input pulse width Single-edge setting Symbol min max Unit*1 Test Conditions tGTICW 3 ― tPCcyc Figure 2.46 5 ― 1.5 ― tPCcyc Figure 2.47 2.5 ― Both-edge setting Both-edge setting tGTEW Note 1. tPCcyc: PCLKC cycle PCLKC Input capture input tG TICW Figure 2.46 GPTa Input Capture Input Timing PCLKC External trigger tGTEW Figure 2.47 GPTa External Trigger Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 98 of 136 RZ/T1 Group 2.4.5.7 Table 2.25 2. Electrical Characteristics A/D Converter Trigger Timing A/D Converter Trigger Timing Item A/D converter A/D converter trigger input pulse width ADTRG0 Symbol min max Unit*1 Test Conditions tTRGW 1.5 ― tPFcyc Figure 2.48 tPGcyc Figure 2.49 ADTRG1 1.5 Note 1. tPFcyc: PCLKF cycle, tPGcyc: PCLKG cycle PCLKF ADTRG0 tTRGW Figure 2.48 A/D Converter Trigger Input Timing (ADTRG0) PCLKG ADTRG1 tTRGW Figure 2.49 A/D Converter Trigger Input Timing (ADTRG1) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 99 of 136 RZ/T1 Group 2.4.5.8 2. Electrical Characteristics SCIFA Timing Table 2.26 SCIFA Timing Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Item SCIFA Symbol Input clock cycle Asynchronous tScyc Clock synchronous min*1 max*1 Unit*1 Test Conditions tSEcyc Figure 2.50 4 ― 12 ― Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rising time tSCKr ― 5 ns tSCKf ― 5 ns tScyc 8 ― tSEcyc 4 ― Input clock falling time Asynchronous*2 Output clock cycle Clock synchronous Output clock pulse width tSCKW 0.4 0.6 tScyc Output clock rising time tSCKr ― 9 ns Output clock falling time tSCKf ― 9 ns tTXD -10 10 ns 3 × tSEcyc 4 × tSEcyc + 20 tRXS 3 × tSEcyc + 20 ― tSEcyc + 10 ― -3 × tSEcyc ― 2 × tSEcyc + 10 ― Transmit data delay time Internal clock Receive data setup time Internal clock External clock External clock Receive data hold time Internal clock tRXH External clock Figure 2.51 ns ns Note 1. tSEcyc: SERICLK cycle Note 2. When the SEMR.ABCS0 bit = 1 and the SEMR.BGDM bit = 1 tSCKW tSCKr tSCKf SCKn (n = 0 to 4) t Scyc Figure 2.50 SCK Clock Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 100 of 136 RZ/T1 Group 2. Electrical Characteristics SCKn tTXD TXDn tRXS tRXH RXDn n = 0 to 4 Figure 2.51 SCIFA Input/Output Timing/Clock Synchronous Mode R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 101 of 136 RZ/T1 Group 2.4.5.9 Table 2.27 2. Electrical Characteristics RSPIa Timing RSPIa Timing Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Item RSPIa RSPCK clock cycle Master Symbol*1 Min*1 Max*1 Unit*1 Test Conditions tSPcyc 4 4096 tSEcyc Figure 2.52 8 4096 (tSPcyc – tSPCKR – tSPCKF) / 2 – 3 ― ns 0.4 ― tSPcyc (tSPcyc – tSPCKR – tSPCKF) / 2 – 3 ― ns 0.4 ― tSPcyc ― 9 ns ― 10 ns ns Slave*4 RSPCK clock high level pulse width Master tSPCKWH Slave RSPCK clock low level pulse width Master tSPCKWL RSPCK clock rising/ falling time Output Input tSPCKr, tSPCKf Data input setup time Master tSU Slave Slave Data input hold time Master SSL setup time Master tH Slave tLEAD Slave SSL hold time Master tLAG Slave Data output delay time Master tOD Slave 6 ― 8 – tSEcyc ― tSEcyc ― 8 + 2 × tSEcyc ― N × tSpcyc – 3*2 N × tSpcyc + 3*2 ns 4 ― tSEcyc N × tSpcyc – 3*3 N × tSpcyc + Figure 2.53 to Figure 2.56 ns 3*3 ns 4 ― tSEcyc ― 6 ns ― 3 × tSEcyc + 20 *4 Data output hold time Master tOH Slave Continuous transmission delay Master tTD Slave MOSI, MISO rising/ falling time SSL rising/falling time Output tDr, tDf Input Output ― ― tSPcyc + 2 × tSEcyc 8 × tSPcyc + 2 × tSEcyc 4 × tSEcyc ― ns ns ― 9 ns ― 10 ns 9 ns tSSLr, tSSLf ― Input Note 1. Note 2. Note 3. Note 4. 0 0 ― 10 ns Slave access time tSA ― 4 tSEcyc Slave output release time tREL ― 3 tSEcyc Figure 2.55 to Figure 2.56 tSEcyc: SERICLK cycle N = SPCKD set value + 1 (1 to 8) N = SSLND set value + 1 (1 to 8) The data output delay time may become longer than half a cycle of the RSPCK clock depending on the bit rate setting. Be sure to satisfy the conditions required for the electrical characteristics of the master device. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 102 of 136 RZ/T1 Group 2. Electrical Characteristics tSPCKr tSPCKWH tSPCKf RSPI VOH VOH RSPCKn master select output VOH VOH VOL1 VOL1 tSPCKWL VOL1 tSPcyc tSPCKr tSPCKWH VIH1, VIH3 VIH1, VIH3 RSPCKn slave select input VIL1, VIL3 VIL1, VIL3 tSPCKWL (n = 0 to 3) tSPCKf VIH1, VIH3 VIH1, VIH3 VIL1, VIL3 tSPcyc VOH = VCCQ33 - 0.5, VOL1 = 0.4, VIH1 = VIH3 = 2.4, VIL1 = VIL3 = 0.8 Figure 2.52 RSPIa Clock Timing RSPI SSLn0 to SSLn3 output tTD tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tDr, tDf MOSIn output DATA tOH MSB OUT LSB IN MSB IN tOD DATA LSB OUT IDLE MSB OUT (n = 0 to 3) Figure 2.53 RSPIa Timing (Master, CPHA = 0) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 103 of 136 RZ/T1 Group 2. Electrical Characteristics RSPI SSLn0 to SSLn3 output tTD tLEAD tLAG tSSLr, tSSLf RSPCKn CPOL = 0 output RSPCKn CPOL = 1 output tSU MISOn input tH MSB IN tOH DATA LSB IN tOD MOSIn output MSB OUT MSB IN tDr, tDf DATA LSB OUT IDLE MSB OUT (n = 0 to 3) Figure 2.54 RSPIa Timing (Master, CPHA = 1) RSPI tTD SSLn0 to SSLn3 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA tOH MISOn output MSB OUT tSU MOSIn input tOD DATA tREL LSB OUT tH MSB IN MSB IN MSB OUT tDr, tDf DATA LSB IN MSB IN (n = 0 to 3) Figure 2.55 RSPI Timing (Slave, CPHA = 0) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 104 of 136 RZ/T1 Group 2. Electrical Characteristics RSPI tTD SSLn0 to SSLn3 input tLEAD tLAG RSPCKn CPOL = 0 input RSPCKn CPOL = 1 input tSA MISOn output tOH tOD LSB OUT (Last data) MSB OUT tSU MOSIn input tREL DATA tH MSB IN LSB OUT MSB OUT tDr, tDf DATA LSB IN MSB IN (n = 0 to 3) Figure 2.56 RSPI Timing (Slave, CPHA = 1) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 105 of 136 RZ/T1 Group 2.4.5.10 2. Electrical Characteristics SPIBSC Timing Table 2.28 SPIBSC Timing Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Item SPIBSC Unit*1 Test Conditions 4080 tPAcyc Figure 2.57 0.55 tSPBcyc Symbol min max SPBCLK clock cycle tSPBcyc 2 SPBCLK high level pulse width tSPBWH 0.45 SPBCLK low level pulse width tSPBWL 0.45 0.55 tSPBcyc Data input setup time tSU 3.5 ― ns Data input hold time tH 0.5 ― ns SSL setup time tLEAD 1 × tSPBcyc – 3 8 × tSPBcyc ns SSL hold time tLAG 1.5 × tSPBcyc 8.5 × tSPBcyc + 3 ns Continuous transfer delay time tTD 1 8 tSPBcyc Data output delay time tOD ― 3.6 ns Data output hold time tOH -1 ― ns Data output buffer on time tBON ― 3.6 ns Data output buffer off time tBOFF -7 0 ns Figure 2.58, Figure 2.59, Figure 2.60 Figure 2.61, Figure 2.62, Figure 2.63 Note 1. tPAcyc: PCLKA cycle tSPBcyc tSPBWL tSPBWH SPBCLK output Figure 2.57 SPIBSC Clock Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 106 of 136 RZ/T1 Group 2. Electrical Characteristics tTD SPBSSL output tLEAD SPBCLK CPOL = 0 output SPBCLK CPOL = 1 output tSU SPBMI, SPBIO0 to SPBIO3 input tH MSB IN DATA LSB IN tOH SPBMO SPBIO0 to SPBIO3 output Figure 2.58 tLAG tOD MSB OUT DATA LSB OUT IDLE SPIBSC Transmit/Receive Timing (CPHAT = 0, CPHAR = 0) tTD SPBSSL output tLEAD tLAG SPBCLK CPOL = 0 output SPBCLK CPOL = 1 output SPBMI, SPBIO0 to SPBIO3 input SPBMO, SPBIO0 to SPBIO3 output Figure 2.59 tSU tH MSB IN tOH DATA LSB IN tOD MSB OUT DATA LSB OUT IDLE SPIBSC Transmit/Receive Timing (CPHAT = 1, CPHAR = 1) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 107 of 136 RZ/T1 Group 2. Electrical Characteristics tTD SPBSSL output tLEAD tLAG SPBCLK CPOL = 0 output SPBCLK CPOL = 1 output SPBMI, SPBIO0 to SPBIO3 input SPBMO, SPBIO0 to SPBIO3 output Figure 2.60 tSU tH MSB IN DATA tOH LSB IN tOD MSB OUT DATA LSB OUT IDLE SPIBSC Transmit/Receive Timing (CPHAT = 0, CPHAR = 1) SPBCLK CPOL = 0 output SPBCLK CPOL = 1 output tBON tBOFF SPBMO, SPBIO0 to SPBIO3 output Figure 2.61 SPIBSC Buffer On/Off Timing (CPHAT = 0, CPHAR = 0) SPBCLK CPOL = 0 output SPBCLK CPOL = 1 output tBOFF tBON SPBMO, SPBIO0 to SPBIO3 output Figure 2.62 SPIBSC Buffer On/Off Timing (CPHAT = 1, CPHAR = 1) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 108 of 136 RZ/T1 Group 2. Electrical Characteristics SPBCLK CPOL = 0 output SPBCLK CPOL = 1 output tBOFF tBON SPBMO, SPBIO0 to SPBIO3 output Figure 2.63 SPIBSC Buffer On/Off Timing (CPHAT = 0, CPHAR = 1) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 109 of 136 RZ/T1 Group 2.4.5.11 Table 2.29 2. Electrical Characteristics RIICa Timing RIICa Timing Output load conditions: VOL2 = 0.4 V, IOL2 = 3 mA symbol min*2 max*2 Unit*1 Test Conditions SCL input cycle time tSCL 6(12) × tIICcyc + 1300 ― ns Figure 2.64 SCL input high pulse width tSCLH 3(6) × tIICcyc + 300 ― ns SCL input low pulse width tSCLL 3(6) × tIICcyc + 300 ― ns SCL, SDA input rising time tsr ― 1000 ns SCL, SDA input falling time tsf ― 300 ns SCL, SDA input spike pulse removal time tSP 0 1(4) × tIICcyc ns SDA input bus free time tBUF 3(6) × tIICcyc + 300 ― ns Start condition input hold time tSTAH tIICcyc + 300 ― ns Restart condition input setup time tSTAS 1000 ― ns Stop condition input setup time tSTOS 1000 ― ns Data input setup time tSDAS tIICcyc + 50 ― ns Data input hold time tSDAH 0 ― ns SCL, SDA capacitive load Cb ― 400 pF SCL input cycle time tSCL 6(12) × tIICcyc + 600 ― ns Item RIICa (Standardmode) RIICa (Fast-mode) SCL input high pulse width tSCLH 3(6) × tIICcyc + 300 ― ns SCL input low pulse width tSCLL 3(6) × tIICcyc + 300 ― ns SCL, SDA input rising time tsr ―*4 300 ns SCL, SDA input falling time tsf ―*4 300 ns SCL, SDA input spike pulse removal time tSP 0 1(4) × tIICcyc ns SDA input bus free time tBUF 3(6) × tIICcyc + 300 ― ns Start condition input hold time tSTAH tIICcyc + 300 ― ns Restart condition input setup time tSTAS 300 ― ns Stop condition input setup time tSTOS 300 ― ns Data input setup time tSDAS tIICcyc + 50 ― ns tSDAH 0 ― ns Cb ― 400 pF Data input hold time SCL, SDA capacitive load*3 Note 1. tIICcyc: RIIC internal reference clock (IICɸ) cycle Note 2. The value out of parentheses is applicable when the value of the ICMR3.NF[1:0] bits is 00b while the digital filter is enabled by setting ICFER.NFE = 1. The value within parentheses is applicable when the value of the ICMR3.NF[1:0] bits is 11b while the digital filter is enabled by setting ICFER.NFE = 1. Note 3. Cb is the total capacitance of the bus lines. Note 4. The minimum values are not specified for tsr and tsf in Fast-mode. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 110 of 136 RZ/T1 Group 2. Electrical Characteristics VIH2 SDA0 to SDA1 VIL2 tBUF tSCLH tSTAH tSTAS tSTOS tSP SCL0 to SCL1 P*1 S*1 tSf P*1 Sr*1 tSCLL tSr tSCL tSDAS tSDAH Test Conditions VIH2 = VCCQ33 × 0.7, VIL2 = VCCQ33 × 0.3, VOL2 = 0.4V (IOL2 = 3mA) Note 1. S, P, and Sr indicate the following conditions. S: Start condition P: Stop condition Sr: Restart condition Figure 2.64 RIICa Bus Interface Input/Output Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 111 of 136 RZ/T1 Group 2.4.5.12 Table 2.30 2. Electrical Characteristics Serial Sound Interface Timing Serial Sound Interface Timing Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Item SSI Symbol Min. Max. Unit AUDIO_CLK input frequency tAUDIO 1 50 MHz Output clock cycle tO 150 64000 ns Input clock cycle tI 150 64000 ns Clock high level tHC 60 ― ns Clock low level tLC 60 ― ns Clock rising time tRC ― 25 ns Data delay time tDTR -5 25 ns Setup time tSR 25 ― ns Hold time tHTR 25 ― ns WS change edge SSITXD0 output delay TDTRW ― 25 ns tHC Test Conditions Figure 2.65 Figure 2.66, Figure 2.67 Figure 2.68 tRC SSISCK0 tLC Figure 2.65 tI, tO Clock Input/Output Timing SSISCK0 (input or output) SSIWS0, SSIRXD0 (input) tSR tHTR SSIWS0, SSITXD0 (output) tDTR Figure 2.66 Transmit/Receive Timing (SSISCK0 Rising Synchronous) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 112 of 136 RZ/T1 Group 2. Electrical Characteristics SSISCK0 (input or output) SSIWS0, SSIRXD0 (input) tSR tHTR SSIWS0, SSITXD0 (output) tDTR Figure 2.67 Transmit/Receive Timing (SSISCK0 Falling Synchronous) SSIWS0 (input) SSITXD0 (output) tDTRW MSB bit output timing in slave transmission from SSIWS0 with the settings of DEL = 1, SDTA = 0, or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] Figure 2.68 SSITXD0 Output Delay from SSIWS0 Change Edge R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 113 of 136 RZ/T1 Group 2.4.5.13 Table 2.31 2. Electrical Characteristics CAN Interface Timing CAN Interface Timing Item Symbol min max Unit Test Conditions Internal delay time tnode ― 100 ns Figure 2.69 ― 1 Mbps Transmission rate Internal delay time (tnode) = Internal transmission delay time (toutput) + Internal reception delay time (tinput) Internal transmission delay time (toutput) CTXD0, CTXD1 pins CAN controller Internal reception delay time (tinput) Figure 2.69 CRXD0, CRXD1 pins CAN Interface Conditions R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 114 of 136 RZ/T1 Group 2.4.5.14 2. Electrical Characteristics ETHERC Timing Table 2.32 ETHERC Timing Output load conditions: VOH = 2.0 V, VOL1 = 0.8 V, C = 25 pF (RMII) VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF (MII) Item Symbol ETHERC (RMII) ETHERC (MII) min max Unit Test Conditions Figure 2.70 to Figure 2.73 CLKOUT25Mn cycle time Tck 20 ― ns ETHn_Txxx*1 output delay time Tco 2 16 ns ETHn_Rxxx*2 setup time Tsu 4 ― ns ETHn_Rxxx*2 hold time Thd 2 ― ns ETHn_xxxx*1, *2 rising/falling time Tr, Tf 0.5 5 ns ETHn_TXC cycle time tTcyc 40 ― ns ― ETHn_TXEN output delay time tTENd 0 25 ns Figure 2.74 ETHn_TXD0 to ETHn_TXD3 output delay time tMTDd 0 25 ns ETHn_TXER output delay time tTERd ― 25 ns Figure 2.75 ETHn_RXC cycle time tTRcyc 40 ― ns ― ETHn_RXDV setup time tRDVs 10 ― ns Figure 2.76 ETHn_RXDV hold time tRDVh 10 ― ns ETHn_RXD0 to ETHn_RXD3 setup time tMRDs 10 ― ns ETHn_RXD0 to ETHn_RXD3 hold time tMRDh 10 ― ns ETHn_RXER setup time tRERs 10 ― ns ETHn_RXER hold time tRERh 10 ― ns Figure 2.77 Note 1. ETHn_TXEN, ETHn_TXD1, ETHn_TXD0 Note 2. ETHn_RXDV, ETHn_RXD1, ETHn_RXD0, ETHn_RXER n = 0 to 2 Tck CLKOUT25Mn (50MHz REFCLK) 50% Tco Tr Tf 2.0V 2.0V *1 ETHn_Txxx Change in signal level 2.0V Change in signal level Signal 0.8V 0.8V 0.8V Thd Tsu 2.4V *2 ETHn_Rxxx Change in signal level Signal Change in signal level Signal Change in signal level 2.4V Change in signal level Signal 0.8V 0.8V Note 1. ETHn_TXEN, ETHn_TXD1, ETHn_TXD0 Note 2. ETHn_RXDV, ETHn_RXD1, ETHn_RXD0, ETHn_RXER Figure 2.70 Timing with the CLKOUT25Mn and RMII Signals R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 115 of 136 RZ/T1 Group 2. Electrical Characteristics TCK CLKOUT25Mn (50 MHz REFCLK) TCO ETHn_TXEN TCO ETHn_TXD1 ETHn_TXD0 Figure 2.71 Preamble SFD DATA CRC RMII Transmission Timing CLKOUT25Mn (50 MHz REFCLK) Tsu Thd ETHn_RXDV Thd Tsu ETHn_RXD1 ETHn_RXD0 J/K Preamble DATA CRC SFD ETHn_RXER Figure 2.72 L RMII Reception Timing (Normal Operation) CLKOUT25Mn (50 MHz REFCLK) ETHn_RXDV ETHn_RXD1 ETHn_RXD0 J/K Preamble SFD DATA xxxx Thd Tsu ETHn_RXER Figure 2.73 RMII Reception Timing (Error Occurrence) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 116 of 136 RZ/T1 Group 2. Electrical Characteristics ETHn_TXC tTENd ETHn_TXEN tMTDd ETHn_TXD[3:0] SFD Preamble DATA CRC ETHn_TXER ETHn_RXC Figure 2.74 MII Transmission Timing ETHn_TXC ETHn_TXEN x 0001 ETHn_TXD[3:0] tTERd Figure 2.75 x x wake time Enter low-power state ETHn_TXER x Enter low-power state MII Transmission Timing ETHn_RXC tRDVs tRDVh ETHn_RXDV tMRDs ETHn_RXD[3:0] J/K tMRDh Preamble DATA CRC SFD ETHn_RXER Figure 2.76 MII Reception Timing (Normal Operation) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 117 of 136 RZ/T1 Group 2. Electrical Characteristics ETHn_RXC ETHn_RXDV ETHn_RXD[3:0] J/K Preamble SFD DATA xxxx tRERh tRERs ETHn_RXER Figure 2.77 MII Reception Timing (Error Occurrence) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 118 of 136 RZ/T1 Group 2.4.5.15 2. Electrical Characteristics Serial Management Interface Timing Table 2.33 Serial Management Interface Output load conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Symbol min max Unit Test Conditions ETH_MDC output cycle tMDC 80 ― ns Figure 2.78 ETH_MDIO input setting time (to ETH_MDC↑) tSMDIO 10 ― ns ETH_MDIO input hold time (to ETH_MDC↑) tHMDIO 0 ― ns ETH_MDIO output delay time (to ETH_MDC↓) tDMDIO ― 20 ns Item MDIO Note: MII2_MDC is the same as for ETH_MDC and the MII2_MDIO is the same as for ETH_MDIO. tM D C ETH _M D C (O utput) t S M D IO t H M D IO ETH _M D IO (Input) t D M D IO t D M D IO ETH _M D IO (O utput) Figure 2.78 Serial Management Access Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 119 of 136 RZ/T1 Group 2.4.5.16 Table 2.34 2. Electrical Characteristics Delta-Sigma Interface Timing ∆Σ Interface Timing Conditions: VOH = VCCQ33 × 0.5, VOL1 = VCCQ33 × 0.5, C = 30 pF Item Symbol DSMIF Clock cycle Master tDScyc Slave Clock high level Master tDSCKWH Slave Clock low level Master Setup time Master tDSCKWL Slave tSU Slave Hold time Master tH Slave Note: min max Unit Test Conditions Figure 2.79 1 1 tDCcyc 40 200 ns 16 ― ns 16 ― ns 16 ― ns 16 ― ns 15 ― ns 10 ― ns 0 ― ns 10 ― ns Figure 2.80, Figure 2.81 tDCcyc: One cycle time of the ∆Σ interface clock (DSCLK0, DSCLK1) tDSCKWH tDSCKWL MCLKn tDScyc Figure 2.79 Clock Input/Output Timing MCLKn (input or output) MDATn (input) tSU Figure 2.80 tH Reception Timing (MCLKn Rising Synchronous) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 120 of 136 RZ/T1 Group 2. Electrical Characteristics MCLKn (input or output) MDATn (input) tSU Figure 2.81 tH Reception Timing (MCLKn Falling Synchronous) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 121 of 136 RZ/T1 Group 2.5 2. Electrical Characteristics USB Characteristics • Conditions: VDD = PLLVDD0 = PLLVDD1 = DVDD_USB = 1.14 to 1.26 V, VCCQ33 = AVCC0 = AVCC1 = VREFH0 = VREFH1 = VDD33_USB = 3.0 to 3.6 V VSS = PLLVSS0 = PLLVSS1 = AVSS0 = AVSS1 = VREFL0 = VREFL1 = VSS_USB = 0 V, Tj = -40 to 125 °C Note: The 176-pin HLFQFP does not have pins AVCC1, AVSS1, VREFH1, and VREFL1. Table 2.35 On-chip USB Full-Speed Characteristics (USB_DP, USB_DM Pin Characteristics) Item Symbol min typ max Unit Test Conditions Rising time tFR 4 ― 20 ns Figure 2.82 Falling time tFF 4 ― 20 ns Rising/falling time ratio tFR / tFF 90 ― 111.11 % USB_DP, VCRS USB_DM 90% Figure 2.82 90% 10% tFR tFR / tFF 10% tFF USB_DP, USB_DM Output Timing (Full Speed) Observation point USB_DP 50 pF USB_DM 50 pF Figure 2.83 Measurement Circuit (Full Speed) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 122 of 136 RZ/T1 Group Table 2.36 2. Electrical Characteristics On-chip USB High-Speed Characteristics (USB_DP, USB_DM Pin Characteristics) Item AC characteristics Symbol min typ max Unit Test Conditions Rising time tHSR 500 ― ― ps Figure 2.84 Falling time tHSF 500 ― ― ps Output resistance ZHSDRV 40.5 ― 49.5 Ω USB_DP, USB_DM 90% tHSR Figure 2.84 90% 10% 10% tHSF USB_DP, USB_DM Output Timing (High Speed) Observation point USB_DP 45Ω USB_DM 45Ω Figure 2.85 Measurement Circuit (High Speed) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 123 of 136 RZ/T1 Group 2.6 2. Electrical Characteristics A/D Conversion Characteristics • Conditions: VDD = PLLVDD0 = PLLVDD1 = DVDD_USB = 1.14 to 1.26 V, VCCQ33 = AVCC0 = AVCC1 = VREFH0 = VREFH1 = VDD33_USB = 3.0 to 3.6 V VSS = PLLVSS0 = PLLVSS1 = AVSS0 = AVSS1 = VREFL0 = VREFL1 = VSS_USB = 0 V, Tj = -40 to 125°C Note: The 176-pin HLFQFP does not have pins AVCC1, AVSS1, VREFH1, and VREFL1. Table 2.37 12-Bit A/D (Unit 0) Conversion Characteristics Item min typ max Unit Resolution 8 ― 12 Bit ― ― 30 pF Conversion (Operation at PCLKF = 60 MHz) Permissible signal source impedance Max. = 1.0 kΩ 1.2 (0.4 + 0.4) ― 3.6 μs Offset error ― ― ±7.5 LSB Full-scale error ― ― ±7.5 LSB Analog input capacitance Channel-dedicated sample-and-hold circuits in use (AN000 to AN003) When disconnection detection assistance is in use Channel-dedicated sample-and-hold circuits in use (AN000 to AN003) When disconnection detection assistance is not in use Channel-dedicated sample-and-hold circuits not in use (AN000 to AN007) time*1 *2 Quantization error ― ±0.5 ― LSB Absolute accuracy ― ― ±7.5 LSB DNL differential nonlinearity error ― ― ±3.0 LSB INL integral nonlinearity error ― ― ±4.0 LSB Holding characteristics of sample-and-hold circuits ― ― 3.2 μs Dynamic range 0.25 ― VREFH0 – 0.25 V Conversion time*1 (Operation at PCLKF = 60 MHz) Permissible signal source impedance Max. = 1.0 kΩ 1.2 (0.4 + 0.4) ― 3.6 μs Offset error ― ― ±6.5 LSB Full-scale error ― ― ±6.5 LSB Quantization error ― ±0.5 ― LSB Absolute accuracy ― ― ±6.5 LSB *2 DNL differential nonlinearity error ― ― ±3.0 LSB INL integral nonlinearity error ― ― ±4.0 LSB Holding characteristics of sample-and-hold circuits ― ― 3.2 μs Dynamic range 0.25 ― VREFH0 – 0.25 V Conversion time*1 (Operation at PCLKF = 60 MHz) Permissible signal source impedance Max. = 1.0 kΩ 0.483 (0.267)*2 ― ― μs Offset error ― ― ±5.0 LSB Full-scale error ― ― ±5.0 LSB Quantization error ― ±0.5 ― LSB Absolute accuracy ― ― ±6.0 LSB DNL differential nonlinearity error ― ― ±2.5 LSB INL integral nonlinearity error ― ±3.0 LSB R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 ― Test Conditions • Sampling of channeldedicated sample-andhold circuits in 24 states • Sampling in 24 states Self-diagnosis + 4-channel simultaneous sampling • Sampling of channeldedicated sample-andhold circuits in 24 states • Sampling in 24 states Self-diagnosis + 4-channel simultaneous sampling Sampling in 16 states Page 124 of 136 RZ/T1 Group 2. Electrical Characteristics Note: The above specified values apply when there is no access to the external bus during A/D conversion. If access proceeds during A/D conversion, values may not fall within the above ranges. Note 1. The conversion time is the total of the sampling time and the comparison time (tSPLSH + tCONV in Figure 43.31 and Figure 43.32 in section 43, 12-Bit A/D Converter (S12ADCa), in the RZ/T1 Group User’s Manual: Hardware). The number of sampling states is indicated for each item in Test Conditions. Note 2. The value in parentheses indicates the sampling time. Table 2.38 12-Bit A/D (Unit 1) Conversion Characteristics Item min typ max Unit Resolution 8 ― 12 Bit 0.883 (0.667)*2 ― ― μs Analog input capacitance ― ― 30 pF Offset error ― ― ±6.0 LSB Full-scale error ― ― ±6.0 LSB Conversion time*1 (Operation at PCLKF = 60 MHz) Permissible signal source impedance Max. = 1.0 kΩ Quantization error ― ±0.5 ― LSB Absolute accuracy ― ― ±6.0 LSB DNL differential nonlinearity error ― ― ±3.0 LSB INL integral nonlinearity error ― ― ±4.0 LSB Test Conditions Sampling in 40 states Note: The above specified values apply when there is no access to the external bus during A/D conversion. If access proceeds during A/D conversion, values may not fall within the above ranges. Note 1. The conversion time is the total of the sampling time and the comparison time (tSPLSH + tCONV in Figure 43.31 and Figure 43.32 in section 43, 12-Bit A/D Converter (S12ADCa), in the RZ/T1 Group User’s Manual: Hardware). The number of sampling states is indicated for each item in Test Conditions. Note 2. The value in parentheses indicates the sampling time. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 125 of 136 RZ/T1 Group 2.7 2. Electrical Characteristics Temperature Sensor Characteristics • Conditions: VDD = PLLVDD0 = PLLVDD1 = DVDD_USB = 1.14 to 1.26 V, VCCQ33 = AVCC0 = AVCC1 = VREFH0 = VREFH1 = VDD33_USB = 3.0 to 3.6 V VSS = PLLVSS0 = PLLVSS1 = AVSS0 = AVSS1 = VREFL0 = VREFL1 = VSS_USB = 0 V, Tj = -40 to 125°C Note: The 176-pin HLFQFP does not have pins AVCC1, AVSS1, VREFH1, and VREFL1. Table 2.39 Temperature Sensor Characteristics Item min typ max Unit Relative accuracy ― ±1 ― °C Temperature slope ― 4.1 ― mV/°C Output voltage (at 25°C) ― 1.21 ― V Temperature sensor start time ― ― 30 μs Sampling time 4.25 ― ― μs 2.8 Test Conditions ADSSTRT.SST[7:0] = 255 states (when PCLKF [ADC (unit0) sampling CLK] = 60 MHz) Oscillation Stop Detection Timing Table 2.40 Oscillation Stop Detection Circuit Characteristics Item Symbol min typ max Unit Test Conditions Clock switching time tdr ― ― 1 ms Figure 2.86 PLL clock LOCO clock CPUCLK tdr Figure 2.86 Oscillation Stop Detection Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 126 of 136 RZ/T1 Group 2.9 2. Electrical Characteristics Debug Interface Timing Table 2.41 Debug Interface Timing Output load conditions: VOH = VCCQ33 – 0.5 V, VOL1 = 0.4 V Item Symbol Min. Max. Unit Reference Figure TCK cycle time tTCKcyc 30 ― ns Figure 2.87 TCK high pulse width tTCKH 0.4 0.6 tTCKcyc TCK low pulse width tTCKL 0.4 0.6 tTCKcyc TDI setup time tTDIS 5 ― ns TDI hold time tTDIH 5 ― ns TMS/SWDIO setup time tTMSS 5 ― ns TMS/SWDIO hold time tTMSH 5 ― ns SWDIO delay time tSWDO ― 15 ns TDO delay time tTDOD ― 15 ns Capture register setup time tCAPTS 5 ― ns Capture register hold time tCAPTH 5 ― ns Update register delay time tUPDATED ― 15 ns Trace clock cycle tTCYC 26.6 ― ns Trace data delay time tTDT 0.25 × tTCYC – 2 0.25 × tTCYC + 2 ns Figure 2.88 Output load: 30 pF Figure 2.89 Figure 2.90 Output load: 15 pF tTCKcyc tTCKL tTCKH VIH TCK Figure 2.87 VIH 1/2PVCC VIH VIL VIL 1/2PVCC TCK Input Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 127 of 136 RZ/T1 Group 2. Electrical Characteristics tTCKcyc TCK tTDIS tTDIH TDI tTMSS tTMSH TMS/SWDIO (input) tSWDO SWDIO (output) tTDOD TDO Figure 2.88 Data Transfer Timing TCK tCAPTS tCAPTH Capture register tUPDATED Update register Figure 2.89 Boundary Scan Input/Output Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 128 of 136 RZ/T1 Group 2. Electrical Characteristics tTCYC TRACECLK (output) TRACECTL, TRACEDATA7 to TRACEDATA0 (output) Figure 2.90 tTDT tTDT Trace Interface Timing R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 129 of 136 REVISION HISTORY RZ/T1 Group REVISION HISTORY RZ/T1 Group Datasheet Description Rev. Date 0.60 Nov. 14, 2014 0.70 Dec. 25, 2014 Page ― Summary First edition, issued Features 1 ■ Operating temperature range: Heading title and description corrected Section 1 Overview 1.10 Jul. 08, 2016 11 Table 1.3 List of Products (2 / 2): Note corrected 21 Figure 1.3 Pin Arrangement (176-pin HLQFP): The names of pins 33, 34, 38, 39, and 91, corrected 26 Table 1.5 Pin Assignments (320-Pin FBGA) (5 / 8): The names of pins M20 and P19, corrected 27 Table 1.5 Pin Assignments (320-Pin FBGA) (6 / 8): The names of pins R14, R19, R20, T9, V7, and V8, corrected 29 Table 1.5 Pin Assignments (320-Pin FBGA) (8 / 8): The names of pins Y16 and Y17, corrected 30 Table 1.6 Pin Assignments (176-Pin HLQFP) (1 / 4): The names of pins 33, 34, 38, and 39, corrected 31 Table 1.6 Pin Assignments (176-Pin HLQFP) (2 / 4): The names of pins 58, 59, 60, 79, 82, and 83, corrected 32 Table 1.6 Pin Assignments (176-Pin HLQFP) (3 / 4): The names of pins 91 and 110, corrected 33 Table 1.6 Pin Assignments (176-Pin HLQFP) (4 / 4): The names of pins 136, 153, 154, 155, 156, and 157, corrected 39 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (6 / 10): The name of pin M20, corrected 40 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (7 / 10): The names of pins P19, R8, and R14, corrected 41 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (8 / 10): The names of pins R19, R20, T9, V7, and V8, corrected 42 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (9 / 10): The names of pins Y16 and Y17, corrected Feature 1 Wholly amended 1. Overview 2 to 49 Wholly amended 2. Electrical Characteristics 50 to 129 1.20 Newly added Mar. 02, 2017 1. Overview 9 Table 1.2 Comparison of Functions for Different Packages: Functions of ETHERC and ECATC, modified. Note 1 added. 12 Figure 1.1 Block Diagram: Functional blocks of ECATC and ETHERC, modified. Note 1 modified. 20 Figure 1.2 Pin Arrangement (320-Pin FBGA) (Top View): Pin ERROROUT#, modified 2. Electrical Characteristics 53 Table 2.3 DC Characteristics (2) [Power Supply] Test conditions, modified: Product part no. added 55 Table 2.4 DC Characteristics (3) [Except for USB2.0 Host/Function-Related Pins] Item modified: "Input pull-up MOS current and resistance" and "Input pull-down MOS current and resistance" Rpu1, Rpu2, Rpd1, and Rpd2 were added. Test conditions for "Input pull-down MOS current and resistance" were modified. 58 Table 2.10 Operating Frequency: Notes 1 to 3, added. The max. value of the CPU clock (CPUCLK), modified. R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 130 of 136 RZ/T1 Group Description Rev. Date Page 1.30 Apr. 25, 2017 1. Overview 49 Summary Table 1.8 List of Pin and Pin Functions (176-Pin HLQFP) (6/6): The communication function of pin 171, modified 2. Electrical Characteristics 1.40 Nov. 15, 2017 107 Figure 2.60 SPIBSC Transmit/Receive Timing (CPHAT = 0, CPHAR = 1): Modified All Cortex-R4F changed to Cortex-R4 Features 1 ■ Encoder interfaces, changed ■ Various communications interfaces: Features of Ethernet changed 1. Overview 2 1.1 Outline of Specifications: "Cortex®-R4F processor" changed to "Cortex®-R4 processor with FPU" 8 Table 1.1 Outline of Specifications (7 / 7): Description of the encoder interfaces changed 16 Table 1.4 Pin Functions (4 / 7): CTS0# to CTS4#: I/O and functional description changed; RTS0# to RTS4#: Functional description changed 19 Table 1.4 Pin Functions (7 / 7): ENCIF07 to ENCIF12 changed to ENCIF00 to ENCIF12 22 Table 1.5 Pin Assignments (320-Pin FBGA) (1 / 8): ENCIF12 added to B19; ENCIF11 added to B20 23 Table 1.5 Pin Assignments (320-Pin FBGA) (2 / 8): ENCIF10 added to C19; ENCIF09 added to D19; ENCIF08 added to E19 24 Table 1.5 Pin Assignments (320-Pin FBGA) (3 / 8): ENCIF11 added to H19; ENCIF12 added to H20 25 Table 1.5 Pin Assignments (320-Pin FBGA) (4 / 8): ENCIF10 added to J19 26 Table 1.5 Pin Assignments (320-Pin FBGA) (5 / 8): ENCIF09 added to N20; ENCIF08 added to P20 27 Table 1.5 Pin Assignments (320-Pin FBGA) (6 / 8): ENCIF09 added to U3 28 Table 1.5 Pin Assignments (320-Pin FBGA) (7 / 8): ENCIF10 added to W3; ENCIF11 added to W4; ENCIF08 added to W10; ENCIF12 added to Y4 35 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (2 / 10): ENCIF12 added to B19 under "Others"; ENCIF11 added to B20 under "Others" 36 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (3 / 10): ENCIF10 added to C19 under "Others"; ENCIF09 added to D19 under "Others"; ENCIF08 added to E19 under "Others" 38 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (5 / 10); ENCIF11 added to H19 under "Others"; ENCIF12 added to H20 under "Others"; ENCIF10 added to J19 under "Others" 40 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (7 / 10): ENCIF09 added to N20 under "Others"; ENCIF08 added to P20 under "Others" 41 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (8 / 10): ENCIF09 added to U3 under "Others" 42 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (9 / 10): ENCIF10 added to W3 under "Others"; ENCIF11 added to W4 under "Others"; ENCIF08 added to W10 under "Others; ENCIF12 added to Y4 2. Electrical Characteristics 65, 66 Table 2.17 Bus Timing: "CKIO = 75MHz" changed to "CKIO = 1/tCKcyc; "tcyc" changed to "tCKcyc"; entries for "Address delay time 1", "CS# delay time 1", "Read/write delay time 1", "Read data setup time 1 to 3" and "WAIT# setup time" changed; Notes 1, 3, and 4 changed 102 Table 2.27 RSPIa Timing: Note 2 changed (SSLND → SPCKD): Note 3 added 111 Figure 2.64 RIICa Bus Interface Input/Output Timing: SDA0 to SDA3 and SCL0 to SCL3 deleted R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 131 of 136 RZ/T1 Group Description Rev. Date 1.40 Jan. 19, 2018 Page All Summary Cortex-R4F changed to Cortex-R4 Terms corrected (Ether Switch → Ethernet switch; Ether Mac → Ethernet Mac; Ether PHY → Ethernet PHY; Ether clock(s) → Ethernet clock(s); receive buffer(s) → reception buffer(s); transmit buffer(s) → transmission buffer(s); transmit/receive buffer(s) → transmission/reception buffer(s); transmit mode → transmission mode; receive mode → reception mode; compare match counter (CMCNT) → compare match timer counter (CMCNT); compare match constant register (CMCOR) → compare match timer constant register (CMCOR); low active → active low; high active → active high; valley → trough) Features 1 ■ Encoder interfaces, changed ■ Various communications interfaces: Features of Ethernet changed 1. Overview 2 1.1 Outline of Specifications: "Cortex®-R4F processor" changed to "Cortex®-R4 processor with FPU" 2 Table 1.1 Outline of Specifications (1 / 7): Registered trademark symbol added to "Thumb"; description of "Clock" changed 8 Table 1.1 Outline of Specifications (7 / 7): Description of the encoder interfaces changed 16 Table 1.4 Pin Functions (4 / 7): CTS0# to CTS4#: I/O and functional description changed; RTS0# to RTS4#: Functional description changed 19 Table 1.4 Pin Functions (7 / 7): ENCIF07 to ENCIF12 changed to ENCIF00 to ENCIF12 22 Table 1.5 Pin Assignments (320-Pin FBGA) (1 / 8): ENCIF12 added to B19; ENCIF11 added to B20 23 Table 1.5 Pin Assignments (320-Pin FBGA) (2 / 8): ENCIF10 added to C19; ENCIF09 added to D19; ENCIF08 added to E19 24 Table 1.5 Pin Assignments (320-Pin FBGA) (3 / 8): ENCIF11 added to H19; ENCIF12 added to H20 25 Table 1.5 Pin Assignments (320-Pin FBGA) (4 / 8): ENCIF10 added to J19 26 Table 1.5 Pin Assignments (320-Pin FBGA) (5 / 8): ENCIF09 added to N20; ENCIF08 added to P20 27 Table 1.5 Pin Assignments (320-Pin FBGA) (6 / 8): ENCIF09 added to U3 28 Table 1.5 Pin Assignments (320-Pin FBGA) (7 / 8): ENCIF10 added to W3; ENCIF11 added to W4; ENCIF08 added to W10; ENCIF12 added to Y4 35 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (2 / 10): ENCIF12 added to B19 under "Others"; ENCIF11 added to B20 under "Others" 36 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (3 / 10): ENCIF10 added to C19 under "Others"; ENCIF09 added to D19 under "Others"; ENCIF08 added to E19 under "Others" 38 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (5 / 10); ENCIF11 added to H19 under "Others"; ENCIF12 added to H20 under "Others"; ENCIF10 added to J19 under "Others" 40 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (7 / 10): ENCIF09 added to N20 under "Others"; ENCIF08 added to P20 under "Others" 41 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (8 / 10): ENCIF09 added to U3 under "Others" 42 Table 1.7 List of Pin and Pin Functions (320-Pin FBGA) (9 / 10): ENCIF10 added to W3 under "Others"; ENCIF11 added to W4 under "Others"; ENCIF08 added to W10 under "Others; ENCIF12 added to Y4 2. Electrical Characteristics 54 65, 66 Table 2.3 DC Characteristics (2) [Power Supply]: Entries added to the "300MHz" row of VDD Table 2.17 Bus Timing: "CKIO = 75MHz" changed to "CKIO = 1/tCKcyc; "tcyc" changed to "tCKcyc"; entries for "Address delay time 1", "CS# delay time 1", "Read/write delay time 1", "Read data setup time 1 to 3" and "WAIT# setup time" changed; Notes 1, 3, and 4 changed 102 Table 2.27 RSPIa Timing: Note 2 changed (SSLND → SPCKD): Note 3 added 111 Figure 2.64 RIICa Bus Interface Input/Output Timing: SDA0 to SDA3 and SCL0 to SCL3 deleted R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 132 of 136 RZ/T1 Group Description Rev. Date Page Summary 1.50 Dec. 26, 2018 All The company name, modified (ARM → Arm) Features 1 ■ Encoder interfaces (optional): The descriptions and related note 4, added Section 1 Overview 2 Table 1.1 Outline of Specifications (1/7): Central processing unit (Cortex-M3): The architecture type, corrected (Arm v7-R architecture → Arm v7-M architecture) 2 Table 1.1 Outline of Specifications (1/7): On-chip extended SRAM with ECC: The entry "Operating frequency", added 2 Table 1.1 Outline of Specifications (1/7): Operating modes: The description, modified 3 Table 1.1 Outline of Specifications (2/7): DMAC: Activation sources, modified 3 Table 1.1 Outline of Specifications (2/7): ELC: The number of event signals, modified 4 Table 1.1 Outline of Specifications (3/7): TPUa: The descriptions for pulse input/output, PWM mode, PPG output trigger, event linking, modified 4 Table 1.1 Outline of Specifications (3/7): MTU3a: The number of counter-input clock signals, modified; the feature "automatic transfer of register data", deleted; the description of phasecounting mode, modified 5 Table 1.1 Outline of Specifications (4/7): CMT: Event linking, modified 5 Table 1.1 Outline of Specifications (4/7): POE3: Pin names, corrected 6 Table 1.1 Outline of Specifications (5/7): ETHERC: The description in relation with "1 port", modified 7 Table 1.1 Outline of Specifications (6/7): SSI: "programmable word clock", deleted from the clock to be generated 7 Table 1.1 Outline of Specifications (6/7): DSMIF: The description in relation with channel, modified 8 Table 1.1 Outline of Specifications (7/7): Encoder interfaces: The number of channels and note 6, added 12 Figure 1.1 Block Diagram: The number of channels of MTU3a and DSMIF, modified 14 Table 1.4 Pin Functions (2/7): Pin names, modified (A0 to A25 → A25 to A0, D0 to D31 → D31 to D0); the "Description" column for RAS# and CAS#, modified 15 Table 1.4 Pin Functions (3/7): The "Description" column for MTIOC8A to MTIOC8D and for GPTa, modified 16 Table 1.4 Pin Functions (4/7): The "Description" column for each TPUa pin, modified 17 Table 1.4 Pin Functions (5/7): Ethernet controller (ETHERC): ETH0_RXC, ETH1_RXC, ETH2_RXC: The "I/O" and "Description" columns, modified (I/O → Input, Receive clock I/O pins → Receive clock input pins) 18 Table 1.4 Pin Functions (6/7): The AUDIO_CLK pin, added 2. Electrical Characteristics 51 Figure 2.1 Power On/Off Sequence: "Timing" table: "―" was added to the "Value (typ)" column for Nos (3), (4), and (5). 53 Table 2.3 DC Characteristics (2) [Power Supply] (1 / 2): VIcc when VDD is 300 MHz in normal operation, modified 56 Table 2.5 DC Characteristics (4) [USB2.0 USB_RREF Pin]: The "min" column, modified (200Ω ±1% → 200 ±1%); the "Ω" in the "Unit" column, added 60 Table 2.12 CLKOUT25Mn Timing, modified (CLKOUT25Mn (RMII): Tck → Tck1, CLKOUT25Mn (MII): Tck → Tck2) 60 Figure 2.3 CLKOUT25Mn Pin Output Timing 1: Symbols, modified 60 Figure 2.4 CLKOUT25Mn Pin Output Timing 2: Symbols, modified 61 Table 2.13 EXTAL Clock Timing: Time value, modified (40.00 + 50 ppm → 40.00 ± 50 ppm) 61 Table 2.14 XTAL Clock Timing: Time value, modified (40.00 + 50 ppm → 40.00 ± 50 ppm) 98 Table 2.24 GPTa Timing: The symbol, modified (TOTETW → tGTEW) 102 Table 2.27 RSPIa Timing: Note 4, added R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 133 of 136 RZ/T1 Group Description Rev. Date Page Summary 1.60 Nov. 30, 2020 All Registered trademark symbol added (Arm → Arm®) All Package name changed (HLQFP → HLFQFP) Features 1 Note 3 deleted (renumbering the subsequent note numbers: Note 4 → Note 3, Note 5 → Note 4) 1. Overview 3 Table 1.1 Outline of Specifications (2 / 7): VIC, NVIC: Peripheral function interrupts: Number of sources, modified 4 Table 1.1 Outline of Specifications (3 / 7): TPUa: The footnote number for the number of units, modified 5 Table 1.1 Outline of Specifications (4 / 7): IWDTa: The unit of frequency, modified 12 Figure 1.1 Block Diagram: The number of MTU3a channels, modified 15 Table 1.4 Pin Functions (3 / 7): MTU3a: The function of pins MTIOC0m to MTIOC8m, modified 15 Table 1.4 Pin Functions (3 / 7): GPTa: The function of pins GTIOC0A, GTIOC0B to GTIOC3A, and GTIOC3B, modified 17 Table 1.4 Pin Functions (5 / 7): ETHERC: The function of pin ETHSWSECOUT, modified 21 Figure 1.3 Pin Arrangement (176-pin HLFQFP): Note 2 added 2. Electrical Characteristics 55 Table 2.4 DC Characteristics (3) [Except for USB2.0 Host/Function-Related Pins] The footnote number added: Three-state leakage current (off state) / 5-V tolerant pins / |ITSI| → Three-state leakage current (off state) / 5-V tolerant pins*1 / |ITSI| 60 Table 2.12 CLKOUT25Mn Timing: CLKOUT25Mn (RMII) / CLKOUT25Mn frequency, CLKOUT25Mn (MII) / CLKOUT25Mn frequency: The max. and min. values modified; index (n = 0 to 2) added 66 Table 2.17 Bus Timing (2 / 2): The border under "tWTS", deleted 72 Figure 2.17 SRAM Bus Cycle with Byte Selection (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1 Inserted, BAS = 0 (Write Cycle UB#/LB# Control)): The title modified 73 Figure 2.18 SRAM Bus Cycle with Byte Selection (SW = 1 Cycle, HW = 1 Cycle, Asynchronous External Wait 1 Inserted, BAS = 1 (Write Cycle WE# Control)): The title modified 94 Figure 2.41 TPUa Clock Input Timing: Text modified (TCLK0A to TCLK0D, TCLK1A to TCLK1D → TCLKA to TCLKD) 97 Figure 2.45 POEn# Input Pulse Timing: Index (n = 0, 4, 8, 10), added 103 Figure 2.53 RSPIa Timing (Master, CPHA = 0): Changed to the correct figure 110 Table 2.29 RIICa Timing: Note 4 modified 115 Table 2.32 ETHERC Timing: Index (n = 0 to 2), added 119 Table 2.33 Serial Management Interface: The entries modified (ETHn_MDC, ETHn_MDIO → ETH_MDC, ETH_MDIO; Note added 123 Table 2.36 On-chip USB High-Speed Characteristics (USB_DP, USB_DM Pin Characteristics): The header notation modified (Typ → typ) R01DS0228EJ0160 Rev.1.60 Nov. 30, 2020 Page 134 of 136 General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 1. Precaution against Electrostatic Discharge (ESD) A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 2. Processing at power-on The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified. 3. Input of signal during power-off state Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation. 4. Handling of unused pins Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. 5. Clock signals After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 7. Prohibition of access to reserved addresses Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed. 8. Differences between products Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product. Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note1) (Note2) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
R7S910006CBG#AC0 价格&库存

很抱歉,暂时无法提供与“R7S910006CBG#AC0”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R7S910006CBG#AC0
    •  国内价格
    • 1+136.87752
    • 5+114.63492
    • 10+108.64653
    • 50+97.52523

    库存:90