0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RAA2100404GLG#HD0

RAA2100404GLG#HD0

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    FDFN10_EP

  • 描述:

    非隔离 PoL 模块 直流转换器 1 输出 0.6 ~ 5V 4A 2.7V - 5.5V 输入

  • 详情介绍
  • 数据手册
  • 价格&库存
RAA2100404GLG#HD0 数据手册
Datasheet RAA210040 5V, 4A Step-Down DC/DC Mini Module with Integrated Inductor The RAA210040 power module is a compact, synchronous step-down, non-isolated complete power supply, capable of delivering up to 4A of continuous current. By operating from a single 2.7V to 5.5V input power rail and integrating the controller, gate driver, power inductor, and MOSFETs, the RAA210040 is optimized for space-constrained applications. Based on a peak current mode control scheme, the RAA210040 provides fast transient response and excellent loop stability. The output voltage can be set as low as 0.6V, with setpoint accuracy better than 1.5% over line, load, and temperature. The operating frequency has a 2MHz default setting; however, it can also be set from 500kHz to 4MHz by an external resistor. The external synchronization is supported with an external clock signal up to 4MHz. The RAA210040 supports a 100% duty cycle operation to minimize the switching losses and allows less than 200mV dropout voltage. A dedicated enable pin and power-good flag allows for easy system power rails sequencing. An array of protection features, including input Undervoltage Lockout (UVLO), Overcurrent Protection (OCP), output Overvoltage Protection (OVP), and Over-temperature Protection (OTP), ensures safe operations under abnormal operating conditions. Features ▪ 4A complete power supply • Integrates controller, gate driver, MOSFETs, and inductor ▪ 2.7V to 5.5V input voltage range ▪ Adjustable output voltage • As low as 0.6V with ±1.5% accuracy over line, load, and temperature • Up to 95% efficiency ▪ Default 2MHz current mode control operation • 500kHz to 4MHz resistor adjustable • External synchronization up to 4MHz • 100% duty cycle ▪ Dedicated enable pin and power-good flag ▪ Internal 1ms soft start-up time ▪ Soft-stop output discharge ▪ UVLO, OCP, negative OCP, OVP, and OTP • OCP/Short-Circuit Protection (SCP) hiccup mode ▪ Compact RoHS compliant 3mmx3mmx1.7mm 10 lead dual flat embedded laminate package Applications ▪ Telecom, Industrial, optical, and medical equipment ▪ Point-of-load conversions ▪ MCU, MPU, DSP, and FPGA 95 RAA210040 CIN VIN 100k COMP EN FS 169k PGND 390pF FB SYNC 100k 820pF SGND PGOOD 90 1.2V 4A Output VOUT Power-Good COUT Efficiency (%) 2.7V to 5.5V Input 85 80 75 70 3.3Vin, 1.2MHz 65 5Vin, 1.2MHz 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Load Current (A) Figure 1. Typical Application Circuit R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Figure 2. Efficiency VOUT = 1.2V Page 1 © 2021-2023 Renesas Electronics RAA210040 Datasheet Contents 1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 1.2 2. Pin Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 2.2 3. 15 15 16 16 16 17 17 17 17 17 17 18 Output Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 19 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1 8.2 8.3 8.4 9. PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative Current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1 7.2 8. Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Load Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Start-Up Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1 6.2 6.3 6.4 7. 7 7 7 7 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 6. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 4.2 4.3 4.4 4.5 5. Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 3.2 3.3 3.4 4. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 PCB Layout Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 22 22 22 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 11. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 2 RAA210040 Datasheet 1. 1.1 Overview Typical Application Circuits RAA210040 2.7V to 5.5V Input VIN R1 100k CIN 2x22µF COMP C1 390pF EN FS RFS PGND RRS 2  COUT 2x22µF FB R2 100k SYNC 169k 1.2V 4A Output VOUT C2 820pF SGND PGOOD Power-Good Figure 3. VOUT = 1.2V, fSW = 1.2MHz, PWM Mode, tSS = 1ms R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 3 RAA210040 Datasheet 1.2 Block Diagram Bandgap SYNC 6 8 Shutdown 100k Shutdown 7 FS 3 55pF SoftStart EN COMP VREF Oscillator COMP EAMP PWM Logic Controller Protection HS Driver 3pF FB VIN 5 VOUT 1 PGND 4 SGND 0.47µH LS Driver 2 6k L 10 0.8V Slope COMP OV CSA 0.85 x VREF UV OCP ISET Threshold SKIP PG 9 1ms Delay Negative Current Sensing Zero-Crossing Sensing 0.5V SCP 100 Shutdown Figure 4. Block Diagram R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 4 RAA210040 Datasheet 2. Pin Information 2.1 Pin Assignments PGND 1 10 VIN FB 2 9 PG COMP 3 8 SYNC SGND 4 7 EN VOUT 5 6 FS EPAD 1.7mm 3mm 3mm Top View 2.2 Pin Descriptions Pin Number Pin Name Function 1 PGND Power ground. Connect it close to the (-) terminals of the external input capacitors and output capacitors. 2 FB Voltage setting pin. The module output voltage is set by an external resistor divider connected to FB. With a properly selected divider, the output voltage is set to any voltage between 0.6V and 5V. Renesas also recommends placing a ceramic capacitor in parallel to ensure system stability at extreme operating conditions. Table 1 lists the resistor and capacitor values for various typical output voltages. 3 COMP Compensation pin. COMP is the output of the transconductance error amplifier. For most applications, directly connect COMP to VIN to select internal compensation to stabilize the system and achieve an optimal transient response. For applications where external compensation is required, connect COMP to SGND with an external compensation network. 4 SGND Signal ground. Must connect it to EPAD for proper electrical performance.See Layout Guidelines for more information. 5 VOUT Power output of the module. Place the output capacitors as close as possible to the module output. See Layout Guidelines for more information. 6 FS Frequency selection pin. This pin sets the module switching frequency by connecting a resistor to SGND. The frequency of operation can be programmed between 500kHz to 4MHz. The default frequency is 2MHz if FS is connected to VIN. 7 EN Module enable pin. Enable the module by driving EN high. Shuts down the module and discharge the output capacitor when driven low. Typically tied to VIN directly. Note: Do not leave this pin floating. 8 SYNC 9 PG Power-good pin. Power-good is an open-drain output. Use a 10kΩ to 100kΩ pull-up resistor connected between VIN and PG. During power-up or EN start-up, the PG rising edge is delayed by 1ms after the output is in regulation. 10 VIN Power input of the module. Tie directly to the input rail between 2.7V~5.5V. Note: You must place minimum total 2x22µF X7R input ceramic capacitors as close as possible to the module input. Add additional capacitance if possible. See Layout Guidelines for more information. - EPAD Power ground. Must connect it to SGND for proper electrical performance. Place as many vias as possible under the EPAD for optimal thermal performance. Synchronization pin. Connect to logic high or the input voltage (VIN) for PWM mode. Drive with a 500kHz to 4MHz square wave for external synchronization. Note: Do not leave this pin floating. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 5 RAA210040 Datasheet Table 1. RAA210040 Design Guide Matrix (See Figure 3) CIN COUT VIN VOUT R1 R2 (Ceramic) (Ceramic) Freq RFS C1 C2 Case (V) (V) (kΩ) (kΩ) (µF) (µF) (MHz) (kΩ) (pF) (pF) 1 3.3 0.6 100 open 2x22 1x47 0.8 261 390 820 2 3.3 0.8 100 301 2x22 2x22 0.9 232 390 820 3 3.3 0.9 100 200 2x22 2x22 1 205 390 820 4 3.3 1 100 150 2x22 2x22 1 205 390 820 5 3.3 1.2 100 100 2x22 2x22 1.2 169 390 820 6 3.3 1.5 100 66.5 2x22 2x22 1.3 154 390 680 7 3.3 1.8 100 49.9 2x22 2x22 1.5 133 390 560 8 3.3 2.5 100 31.6 2x22 2x22 1.8 107 390 470 9 5 1 100 150 2x22 2x22 1 205 390 820 10 5 1.2 100 100 2x22 2x22 1.2 169 390 820 11 5 1.5 100 66.5 2x22 2x22 1.3 154 390 680 12 5 1.8 100 49.9 2x22 2x22 1.5 133 390 560 13 5 2.5 100 31.6 2x22 2x22 1.8 107 390 470 14 5 3.3 100 22.1 2x22 2x22 2.4 76.8 390 470 Table 2. Recommended Input/Output Capacitor Vendor Value Part Number Murata, Input Ceramic 22µF, 10V, 1206, X7R GRM31CR71A226KE15L Murata, Output Ceramic 22uF, 6.3V, 1206, X7R GRM31CR70J226KE19L Murata, Output Ceramic 47µF, 6.3V, 1206, X7R GRM32ER70J476ME20L R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 6 RAA210040 Datasheet 3. Specifications 3.1 Absolute Maximum Ratings CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty. Parameter Minimum Maximum Unit VIN to PGND -0.3 +5.8 (DC) or +7V (20ms) V EN, FS, PG, FB, SYNC, COMP to SGND -0.3 VIN + 0.3 V VOUT to PGND -0.3 VIN + 0.3 V Maximum Storage Temperature Range -65 +150 °C Human Body Model (Tested per JS-001-2014) - 2.0 kV Charged Device Model (Tested per JS-002-2014) - 750 V Latch-Up (Tested per JESD78E; Class II, Level A, +125°C) - 100 mA 3.2 Thermal Information Parameter Package Symbol Thermal Resistance 10 Lead Dual Flat Embedded Laminate Package θJA[1] θJC[2] Typical Value Unit Junction to air 33.84 °C/W Junction to case 16.4 °C/W Conditions 1. JA is measured in free air with the module mounted on a 4-layer thermal test board 3x4.5 inch in size with significant coverage of 2oz Cu on both top and bottom layers, and 1oz Cu on internal layers, with numerous vias. 2. For JC, the case temperature location is the center of the exposed metal pad on the package underside. 3.3 Recommended Operating Conditions Parameter Minimum Maximum Unit VIN to GND 2.7 5.5 V Output Voltage, VOUT 0.6 5 V Output Current, IOUT 0 4 A -40 +125 °C Junction Temperature Range, TJ 3.4 Electrical Specifications .5 Unless otherwise noted, all parameter limits are established across the recommended operating conditions and the specification limits are measured at the following conditions: TA=-40°C to +125°C, VIN = 3.6V, VOUT = 1.2V, unless otherwise noted. Typical specifications are measured at TA= +25°C. Boldface limits apply across the internal junction temperature range, -40°C to +125°C. Parameter Symbol Test Conditions Min[1] Typ Max[1] Unit 5.5 V Module Input Supply Input Voltage Range R16DS0137EU0101 Rev.1.01 Jun 15, 2023 VIN 2.7 Page 7 RAA210040 Datasheet Unless otherwise noted, all parameter limits are established across the recommended operating conditions and the specification limits are measured at the following conditions: TA=-40°C to +125°C, VIN = 3.6V, VOUT = 1.2V, unless otherwise noted. Typical specifications are measured at TA= +25°C. Boldface limits apply across the internal junction temperature range, -40°C to +125°C. (Cont.) Parameter VIN Undervoltage Lockout Threshold Symbol VUVLO Test Conditions Rising, no load Falling, no load Quiescent Supply Current Shutdown Supply Current IVIN ISD Min[1] 2.2 Typ Max[1] Unit 2.5 2.7 V 2.45 V SYNC = VIN=3.6V, fSW = 2MHz, EN = high, IOUT = 0A 19 25 mA SYNC = VIN=5V, fSW = 2MHz, EN = high, IOUT = 0A 23 30 mA SYNC=VIN=5.5V, EN=low 4.5 10 uA Output Regulation Output Continuous Current Range[2] Output Voltage Range[2] Output Voltage Accuracy[2] IOUT 0 4 A VOUT_RANGE 0.6 5 V Total variation with line, load, and temperature (-40°C ≤ TJ ≤ +125°C) -1.5 1.5 % VIN from 2.7V to 5.5V, IOUT = 0A -1 1 % From 0A to 4A, VIN = 5V -1 1 % VOUT_ACCY Line Regulation[2] ∆VOUT/VOUT_S Load Regulation[2] ∆VOUT/VOUT_S ET ET Output Ripple Voltage VOUT(AC) VIN = 5V, VOUT = 1.2V, IOUT = 4A, fSW = 1.2MHz, 2x22µF ceramic capacitor 8 mVPP Dynamic Characteristics Voltage Change of Positive Load Step VOUT_DP Current slew rate = 2.5A/µs, VIN = 5V, 2x22µF ceramic capacitor VOUT = 1.2V, IOUT = 0A to 4A 60 mV Voltage Change of Negative Load Step VOUT_DN Current slew rate = 2.5A/µs, VIN = 5V, 2x22µF ceramic capacitor VOUT = 1.2V, IOUT = 4A to 0A 60 mV Current Protection Current Limit Blanking Time tOCON 17 clock puls es Hiccup Time thiccup 8 ms Positive Peak Current Limit IPLIMIT 5.2 6.6 9 A Negative Current Limit INLIMIT -6 -3 -0.6 A 0.4 V EN Threshold Logic Input Low Logic Input High 0.9 EN Logic Input Leakage Current Pulled up to 3.6V V 0.1 1 uA Default Internal Soft-Starting Default Internal Output Ramping Time R16DS0137EU0101 Rev.1.01 Jun 15, 2023 tSS SS=SGND 1 ms Page 8 RAA210040 Datasheet Unless otherwise noted, all parameter limits are established across the recommended operating conditions and the specification limits are measured at the following conditions: TA=-40°C to +125°C, VIN = 3.6V, VOUT = 1.2V, unless otherwise noted. Typical specifications are measured at TA= +25°C. Boldface limits apply across the internal junction temperature range, -40°C to +125°C. (Cont.) Parameter Symbol Test Conditions Min[1] Typ Max[1] Unit 0.3 V 2 ms Power-Good Output Low Voltage IPG =1mA PG Delay Time (Rising Edge) tPGR PG Delay Time (Falling Edge) tPGF PG Leakage Current IPGLKG OVP PG Rising Threshold VPGR_OVP UVP PG Rising Threshold VPGR_UVP Time from VOUT reached regulation 0.5 1 6.5 PG = 3.6V 10 us 100 0.8 80 UVP PG Hysteresis 86 nA V 90 5.4 % % Reference Section Internal Reference Voltage FB Bias Current VREF IFBLKG 0.593 0.60 0 0.606 V FB = 0.75V 0.1 uA Internal Compensation 126 uA/V External Compensation 132 uA/V Compensation Error Amplifier Transconductance Current Sense Gain 0.145 0.2 0.25 Ω PWM Regulator Maximum Duty Cycle Minimum On-Time dMAX 100 tON_MIN SYNC=high fSW fSW=2MHz % 100 ns Oscillator Switching Frequency 1.7 2 2.35 MHz Switching Frequency RFS= 402kΩ 0.475 0.5 0.525 MHz Switching Frequency RFS= 42.2kΩ 3.94 4 4.125 MHz 4 MHz 0.84 V Synchronization SYNC Synchronization Range fSYNC 0.5 SYNC Logic Low-to-High Transition Range 0.67 SYNC Hysteresis 0.76 0.17 SYNC Logic Input Leakage Current VIN = 3.6V 4 V 5 uA Over-Temperature Over-Temperature Shutdown TOT-TH 150 °C Over-Temperature Hysteresis TOT-HYS 25 °C 1. Compliance to datasheet limit is assured by one or more methods: production test, characterization and/or design. 2. Compliance to limits is assured by characterization and design. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 9 RAA210040 Datasheet 4. Typical Performance Graphs 4.1 Efficiency Performance Operating condition: TA = +25°C, no air flow, PWM mode. Typical values are used unless otherwise noted. 95 95 90 85 Efficiency (%) Efficiency (%) 90 80 75 0.8Vout, 900kHz 1Vout, 1MHz 1.5Vout, 1.3MHz 2.5Vout, 1.8MHz 70 65 0.9Vout, 1MHz 1.2Vout, 1.2MHz 1.8Vout, 1.5MHz 85 80 75 70 65 1.2Vout, 1.2MHz 1.5Vout, 1.3MHz 1.8Vout, 1.5MHz 2.5Vout, 1.8MHz 3.3Vout, 2.4MHz 60 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 Load Current (A) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Load Current (A) Figure 5. VIN = 3.3V 4.2 1Vout, 1MHz Figure 6. VIN = 5V Output Voltage Ripple Operating condition: TA = +25°C, no air flow, PWM mode. Typical values are used unless otherwise noted. IOUT 0A VOUT 10mV/Div IOUT 0A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div 500ns/Div 500ns/Div Figure 7. Output Ripple, VIN = 3.3V, VOUT = 0.8V, fSW = 900kHz, COUT = 2x22µF Ceramic Figure 8. Output Ripple, VIN = 3.3V, VOUT = 0.9V, fSW = 1MHz, COUT = 2x22µF Ceramic IOUT 0A VOUT 10mV/Div IOUT 0A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div 500ns/Div Figure 9. Output Ripple, VIN = 5V, VOUT = 1V, fSW = 1MHz, COUT = 2x22µF Ceramic R16DS0137EU0101 Rev.1.01 Jun 15, 2023 500ns/Div Figure 10. Output Ripple, VIN = 5V, VOUT = 1.2V, fSW = 1.2MHz, COUT = 2x22µF Ceramic Page 10 RAA210040 Datasheet Operating condition: TA = +25°C, no air flow, PWM mode. Typical values are used unless otherwise noted. (Cont.) IOUT 0A VOUT 10mV/Div IOUT 0A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div 500ns/Div 500ns/Div Figure 11. Output Ripple, VIN = 5V, VOUT = 1.8V, fSW = 1.5MHz, COUT = 2x22µF Ceramic Figure 12. Output Ripple, VIN = 5V, VOUT = 3.3V, fSW = 2.4MHz, COUT = 2x22µF Ceramic IOUT 0A VOUT 10mV/Div IOUT 0A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div IOUT 4A VOUT 10mV/Div 500ns/Div Figure 13. Output Ripple, VIN = 3.3V, VOUT = 0.8V, fSW = 2MHz, COUT = 2x22µF Ceramic 4.3 500ns/Div Figure 14. Output Ripple, VIN = 3.3V, VOUT = 0.9V, fSW = 2MHz, COUT = 2x22µF Ceramic Load Transient Response Performance Operating condition: TA = +25°C, no air flow, PWM mode, 0.4A - 3.6A, 2.5A/µs step load. Typical values are used unless otherwise noted. IOUT 2A/Div VOUT 100mV/Div 100µs/Div Figure 15. VIN= 3.3V, VOUT = 0.8V, fSW = 900kHz, COUT = 2x22µF Ceramic R16DS0137EU0101 Rev.1.01 Jun 15, 2023 IOUT 2A/Div VOUT 100mV/Div 100µs/Div Figure 16. VIN= 3.3V, VOUT = 0.9V, fSW = 1MHz, COUT = 2x22µF Ceramic Page 11 RAA210040 Datasheet Operating condition: TA = +25°C, no air flow, PWM mode, 0.4A - 3.6A, 2.5A/µs step load. Typical values are used unless otherwise noted. (Cont.) IOUT 2A/Div IOUT 2A/Div VOUT 100mV/Div VOUT 100mV/Div 100µs/Div 100µs/Div Figure 17. VIN = 5V, VOUT = 1V, fSW = 1MHz, COUT = 2x22µF Ceramic Figure 18. VIN = 5V, VOUT = 1.2V, fSW = 1.2MHz, COUT = 2x22µF Ceramic IOUT 2A/Div IOUT 2A/Div VOUT 100mV/Div 4.4 VOUT 100mV/Div 100µs/Div 100µs/Div Figure 19. VIN = 5V, VOUT = 1.8V, fSW = 1.5MHz, COUT = 2x22µF Ceramic Figure 20. VIN = 5V, VOUT = 3.3V, fSW = 2.4MHz, COUT = 2x22µF Ceramic Start-Up Waveforms Operating condition: TA = +25°C, no air flow. Typical values are used unless otherwise noted. EN 1.5V/Div EN 1.5V/Div IOUT 2A/Div IOUT 2A/Div VOUT 500mV/Div VOUT 500mV/Div PG 2V/Div PG 2V/Div 500µs/Div 500µs/Div Figure 21. Start-Up Waveforms; VIN = 3.3V, VOUT = 0.8V, IOUT = 4A Figure 22. Start-Up Waveforms; VIN = 3.3V, VOUT = 0.9V, IOUT = 4A R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 12 RAA210040 Datasheet Operating condition: TA = +25°C, no air flow. Typical values are used unless otherwise noted. (Cont.) EN 1.5V/Div EN 1.5V/Div IOUT 2A/Div IOUT 2A/Div VOUT 500mV/Div VOUT 500mV/Div PG 2V/Div PG 2V/Div 500µs/Div 500µs/Div Figure 23. Start-Up Waveforms; VIN = 5V, VOUT = 1V, IOUT = 4A Figure 24. Start-Up Waveforms; VIN = 5V, VOUT = 1.2V, IOUT = 4A EN 1.5V/Div EN 1.5V/Div IOUT 2A/Div IOUT 2A/Div VOUT 1.5V/Div VOUT 1V/Div PG 2V/Div PG 5V/Div 500µs/Div 500µs/Div Figure 25. Start-Up Waveforms; VIN = 5V, VOUT = 1.8V, IOUT = 4A Figure 26. Start-Up Waveforms; VIN = 5V, VOUT = 3.3V, IOUT = 4A 4.5 Derating 5 5 4 4 Load Current (A) Load Current (A) PWM operation. All of the following curves were plotted at TJ = +120°C. For the test conditions, see Table 1. 3 2 0 LFM 200 LFM 1 3 2 0 LFM 200 LFM 1 400 LFM 400 LFM 0 0 25 35 45 55 65 75 85 95 105 Ambient Temperature (°C) Figure 27. VIN = 3.3V, VOUT = 0.8V, fSW = 900kHz R16DS0137EU0101 Rev.1.01 Jun 15, 2023 115 25 35 45 55 65 75 85 95 105 115 Ambient Temperature (°C) Figure 28. VIN = 3.3V, VOUT = 0.9V, fSW = 1MHz Page 13 RAA210040 Datasheet 5 5 4 4 Load Current (A) Load Current (A) PWM operation. All of the following curves were plotted at TJ = +120°C. For the test conditions, see Table 1. (Cont.) 3 2 0 LFM 200 LFM 1 3 2 0 LFM 200 LFM 1 400 LFM 400 LFM 0 0 25 35 45 55 65 75 85 95 105 115 25 35 45 Ambient Temperature (°C) 5 5 4 4 3 0 LFM 200 LFM 1 65 75 85 95 105 115 Figure 30. VIN = 5V, VOUT = 1.2V, fSW = 1.2MHz Load Current (A) Load Current (A) Figure 29. VIN = 5V, VOUT = 1V, fSW = 1MHz 2 55 Ambient Temperature (°C) 3 2 0 LFM 200 LFM 1 400 LFM 400 LFM 0 0 25 35 45 55 65 75 85 95 105 Ambient Temperature (°C) Figure 31. VIN = 5V, VOUT = 1.8V, fSW = 1.5MHz R16DS0137EU0101 Rev.1.01 Jun 15, 2023 115 25 35 45 55 65 75 85 95 105 115 Ambient Temperature (°C) Figure 32. VIN = 5V, VOUT = 2.5V, fSW = 1.8MHz Page 14 RAA210040 Datasheet 5. Functional Description The RAA210040 is a compact 4A step-down high-efficiency power module optimized for space-constrained applications. The module switches at 2MHz by default when the FS pin is shorted to VIN. The switching frequency is also adjustable from 500kHz to 4MHz through a resistor, RFS, from FS to SGND. Peak current mode control scheme is implemented for a fast transient response. By shorting the COMP pin to VIN, the module uses internal compensation to stabilize the system and optimize transient response. Other features include soft-stop output discharge, external synchronization, 100% duty cycle operation, and low quiescent current. The supply current is typically only 4.5µA when the module is shut down. 5.1 PWM Control Scheme The RAA210040 employs peak current-mode Pulse-Width Modulation (PWM) for fast transient response and pulse-by-pulse current limiting. Pulling the SYNC pin high (>0.8V) forces the module into PWM mode. As shown in Figure 4, the current loop consists of the oscillator, PWM comparator, a current-sensing circuit, and slope compensation for the current loop stability. The slope compensation is 440mV/Ts, which changes with frequency. The gain for the current-sensing circuit is typically 200mV/A. The control reference for the current loops comes from the output of the Error Amplifier (EAMP). The PWM operation is initialized by the clock from the oscillator. The P-channel MOSFET is turned on at the beginning of a PWM cycle and the current in the MOSFET starts to ramp up. When the sum of the Current-Sense Amplifier (CSA) and the slope compensation reaches the control reference of the current loop, the PWM comparator COMP sends a signal to the PWM logic to turn off the P-channel MOSFET and turn on the N-channel MOSFET. The N-channel MOSFET stays on until the end of the PWM cycle. Figure 33 shows the typical operating waveforms during the PWM operation. The dotted lines illustrate the sum of the slope compensation ramp and the output of the CSA. VEAMP VCSA DUTY CYCLE IL VOUT Figure 33. PWM Operation Waveforms The output voltage is regulated by controlling the VEAMP voltage to the current loop. The bandgap circuit outputs a 0.6V reference voltage to the voltage loop. The feedback signal comes from the FB pin. The soft start-up block only affects the operation during start-up and is discussed separately, see Soft Start-Up. The error amplifier is a transconductance amplifier that converts the voltage error signal to a current output. When the COMP is tied to VIN, the voltage loop is internally compensated with the 55pF and 100kΩ RC network. 5.2 Frequency Adjustment The switching frequency of RAA210040 is adjustable ranging from 500kHz to 4MHz using a simple resistor RFS across FS to SGND. The switching frequency setting is based on Equation 1: (EQ. 1) 220  10 3 R FS  k  = ------------------------------ – 14 f OSC  kHz  R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 15 RAA210040 Datasheet When the FS pin is directly tied to VIN, the frequency of operation is fixed at 2MHz. See Table 1 to help with the selection of switching frequency for typical operation conditions. More detailed information on recommended switching frequency is provided in the Switching Frequency Selection section. 5.3 Overcurrent Protection (OCP) The overcurrent protection is implemented by monitoring the CSA output with the OCP comparator, as shown in Figure 4. The current-sensing circuit has a gain of 200mV/A, from the P-channel MOSFET current to the CSA output. When the CSA output reaches the threshold, the OCP comparator is tripped and turns off the P-channel MOSFET immediately. The overcurrent function protects the module from a shorted output by monitoring the current flowing through the P-channel MOSFET. With the detection of an overcurrent condition, the P-channel MOSFET is immediately turned off and is not turned on again until the next switching cycle. With the detection of the initial overcurrent condition, the overcurrent fault counter is set to 1. During the subsequent cycle, if another overcurrent condition is detected, the OC fault counter is incremented. If there are 17 sequential OC fault detections, the module shuts down under an overcurrent fault condition. An overcurrent fault condition results in the module attempting to restart in Hiccup mode within the delay of eight soft start-up periods. At the end of the eighth soft start-up wait period, the fault counters are reset and soft start-up is attempted again. If the overcurrent condition goes away during the delay of eight soft start-up periods, the output resumes back into regulation after the Hiccup mode expires as shown in Figure 34. 8ms VOUT 1V/Div IIN 2A/Div PG 5V/Div 500µs/Div Figure 34. OCP Response; Output Short-Circuited from No Load to Ground and Released, VOUT = 1.2V 5.4 Negative Current Protection Similar to overcurrent, the negative current protection is realized by monitoring the current across the low-side N-channel MOSFET, as shown in Figure 4. When the valley point of the inductor current reaches -3A for four consecutive cycles, both P-channel MOSFET and N-channel MOSFET are turned off. The 100Ω in parallel to the N-channel MOSFET activates discharging the output into regulation. The control begins to switch when output is within regulation. 5.5 Power-Good Power-Good (PG) is the open-drain output of a window comparator that continuously monitors the module output voltage. PG is actively held low when EN is low and during the module soft start-up period. After the 1ms delay of the soft start-up period, PG becomes high impedance as long as the output voltage is within the nominal regulation voltage set by VFB. During an output overvoltage fault condition (output voltage is 33% higher than nominal value) or an output undervoltage fault condition (output voltage is 15% lower than nominal value), PG is pulled low. Any fault condition forces PG low until the fault condition is cleared during soft start-up. For logic level output voltages, connect an external pull-up resistor between PG and VIN. A 100kΩ resistor works well in most applications. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 16 RAA210040 Datasheet 5.6 Undervoltage Lockout (UVLO) When the input voltage is below the Undervoltage Lockout (UVLO) threshold, the module is disabled. 5.7 Soft Start-Up The soft start-up reduces the inrush current during soft start-up. The soft-start block outputs a ramp reference to the input of the error amplifier. This voltage ramp limits the inductor current and the output voltage rise time so that the output voltage rises in a controlled fashion. When VFB is less than 0.1V at the beginning of the soft start-up, the switching frequency is reduced to 200kHz, so that the output can start-up smoothly at light load conditions. The RAA210040 supports pre-biased output condition during soft start-up. The default soft start-up period is approximately 1ms. 5.8 External Synchronization Control The operating frequency can be synchronized up to 4MHz by an external signal applied to the SYNC pin. The rising edge of the SYNC signal triggers the rising edge of the PWM ON pulse. To ensure proper operation, Renesas recommends using an external SYNC frequency within ±25% of the switching frequency set by the FS pin. 1.5MHz VSYNC 2V/Div VOUT 10mV/Div 500ns/Div Figure 35. External Frequency Synchronization Waveform, VIN = 5V, VOUT = 1.2V, fSYNC = 1.5MHz, IOUT = 0A 5.9 Enable The enable (EN) input allows you to control the turning on or off of the module for purposes such as power-up sequencing. When the module is enabled, there is typically a 600µs delay for waking up the bandgap reference, and then the soft start-up begins. EN should be held below the logic input low until VIN exceeds VUVLO rising threshold. 5.10 Discharge Mode (Soft-Stop) When a transition to shutdown mode occurs or the VIN UVLO is set, the discharge function is to ensure a defined down-ramp of the output voltage and keep the output voltage close to 0V. The output voltage is discharged to SGND through an internal 100Ω switch. 5.11 100% Duty Cycle The RAA210040 features a 100% duty cycle operation to minimize the switching losses. When the input voltage drops to a level that the RAA210040 can no longer maintain regulation at the output, the module completely turns on the P-channel MOSFET. This is particularly useful in battery-powered applications to make full use of the battery voltage and maximize the operation time. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 17 RAA210040 Datasheet 5.12 Thermal Shutdown The RAA210040 has built-in thermal protection. When the internal temperature reaches +150°C, the module shuts down. Both MOSFETs are turned off and PG goes low. As the temperature drops to +125°C, the RAA210040 resumes operation by stepping through the soft start-up. 6. 6.1 Application Information Output Voltage Programming The output voltage of the module is programmed by an external resistor divider (R1 and R2 in Figure 3). R2 combined with the internal 100kΩ 0.5% resistor connected from FB to VSENSE forms a resistor divider that sets the output voltage. The output voltage is governed by Equation 2. (EQ. 2) R2 + R1 V OUT = V REF  --------------------R 2 Note: The output voltage accuracy is also dependent on the resistor accuracy of R1 and R2. You need to select high accuracy resistors to achieve the overall output accuracy. Table 3. Output Voltage Resistor Settings 6.2 VOUT (V) R1 (kΩ) R2 (kΩ) 0.6 100 open 0.8 100 301 0.9 100 200 1.0 100 150 1.2 100 100 1.5 100 66.5 1.8 100 49.9 2.5 100 31.6 3.3 100 22.1 Switching Frequency Selection With varieties of input and output voltage combinations, you must choose wisely on which frequency to operate at according to the specific applications. The selection of switching frequency for each VIN and VOUT combination needs to take into account a few trade-offs. Generally, lower switching frequency leads to higher efficiency at the cost of higher output voltage ripple. Do not decrease the switching frequency too low because of the negative current protection limit. Do not increase the switching frequency too high because of the minimum on-time limit, especially at low VOUT. Moreover, when the output voltage is relatively high, low switching frequency results in more sub-harmonic oscillation. Therefore, operating frequency needs to be kept relatively high under high VOUT conditions. However, to ensure better thermal performance, the switching frequency cannot be increased too much. 6.3 Input Capacitor Selection The selection of the input filter capacitor is based on how much ripple the supply can tolerate on the DC input line. The larger the capacitor, the less ripple expected; however, you need to consider the higher surge current during power-up. The RAA210040 provides a soft start-up function that controls and limits the current surge. The total capacitance of the input capacitor is calculated using Equation 3: R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 18 RAA210040 Datasheet (EQ. 3) IO  D  1 – D  C IN  MIN  = ---------------------------------V P-P  f SW where: ▪ CIN(MIN) is the minimum required input capacitance (µF) ▪ IO is the output current (A) ▪ D is the duty cycle ▪ VP-P is the allowable peak-to-peak input voltage (V) ▪ fSW is the switching frequency (Hz) Renesas recommends placing a low Equivalent Series Resistance (ESR) ceramic capacitor as close as possible to the module input. This input capacitor reduces voltage ringing created by the switching current across parasitic circuit elements. It also reduces the input noise seen by the module. Moreover, you need to consider the estimated RMS ripple current in choosing ceramic capacitors. The RMS ripple current is calculated using Equation 4. (EQ. 4) Io D  1 – D  I IN  RMS  = -------------------------------- Each 22µF X7R ceramic capacitor is typically good for 2A to 3A of RMS ripple current. See the capacitor datasheet for the RMS current ratings. Based on the previous considerations, a minimum total input capacitance of 2x22µF is required for the RAA210040. Add additional capacitance if possible. Use X7R ceramic capacitors. The placement of the input ceramic capacitors should be as close as possible to the module input. See PCB Layout Pattern Design for more information. A bulk input capacitance may also be needed if the input source does not have enough output capacitance. The typical value of a bulk input capacitor is 47µF. In such conditions, this bulk input capacitance can supply the current during output load transient conditions. 6.4 Output Capacitor Selection Ceramic capacitors with low ESR are typically used as the output capacitors for the RAA210040. To keep the low resistance up to high frequencies and to get narrow capacitance variations with the temperatures, Renesas recommends using dielectric X7R or equivalent. See Table 2 for recommended output capacitor values. Bulk output capacitors that have adequately low ESR, such as low ESR polymer capacitors or a low ESR tantalum capacitor, can also be used in combination with the ceramic capacitors, depending on the output voltage ripple and transient requirements. 7. Layout Guidelines Careful attention to layout requirements is necessary for successful implementation of the RAA210040 power module. The RAA210040 operates at high switching frequencies. Therefore, an optimized layout can minimize the impacts of high di/dt and dv/dt. Conversely, a poor layout can lead to poor regulation (both line and load), degraded efficiency, increased EMI radiation, noise sensitivity, and thermal stress. 7.1 Layout Considerations The following are the layout considerations. ▪ Place the input ceramic capacitors as close as possible to the module input. These ceramic capacitors minimize the high frequency noise by reducing the parasitic inductance of the power loop. Proper placement of these capacitors not only leads to less PHASE node spikes and ringing, but also minimizes the switching noise coupled to the module. Renesas recommends using dielectric X7R or equivalent with a minimum total capacitance of 44µF at the module input. A layout example is shown in Figure 36 and Figure 37. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 19 RAA210040 Datasheet ▪ Use large copper planes to minimize conduction loss and thermal stress for VIN, VOUT, and PGND. Use multiple vias to connect the power planes in different layers. ▪ Use a separate SGND plane for components that are connected to SGND. Connect SGND and PGND at a single point on the top layer as shown in Figure 38. ▪ Use a remote-sensing trace to connect to the point-of-load and achieve tight output voltage regulation. Route the remote-sensing trace underneath the PGND layer and avoid routing it near noisy planes. Place a 2Ω resistor close to the output voltage resistor divider and FB pin to damp the noise on the trace. CIN PGND CIN VIN COUT COUT COUT VOUT PGND Figure 36. Layout Example - Top Layer VIN PGND CIN U1 SGND Figure 37. Layout Example - Bottom Layer R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 20 RAA210040 Datasheet RAA210610 SGND Pad PGND Inner Layer SGND Inner Layer RAA210610 PGND Pad Inner Layer Slots in PCB Figure 38. Layout Example - SGND is Connected to PGND at Single Point 7.2 Thermal Considerations Experimental power loss curves, along with JA from thermal modeling analysis, can evaluate the thermal consideration for the module. The derating curves are derived from the maximum power allowed while maintaining the temperature below the maximum junction temperature of +120°C. In applications in which the system parameters and layout are different from the evaluation board, the customer can adjust the margin of safety. All derating curves are obtained from tests on a 4-layer thermal test board 4.5x3 inches in size with 2oz copper on both top and bottom layers and 1oz copper on internal layers. See TB379 for more details. In the actual application, other heat sources and design margins should be considered. 8. Package Description The RAA210040 is integrated into a 10 Lead Dual Flat Embedded Laminate Package with exposed copper thermal pads. This package has such advantages as good thermal and electrical conductivity, low weight, and small size. The package is applicable for surface mounting technology and is becoming more common in the industry. The embedded laminate substrate and inductor are overmolded with a polymer mold compound to protect these devices. The package outline, typical PCB layout pattern, and typical stencil pattern design are shown in the Package Outline Drawing. R70TB0004EU: PCB Design and Assembly Recommendations for Renesas Power Modules shows the typical reflow profile parameters. These guidelines are general design rules. You can modify parameters according to your specific application. 8.1 PCB Layout Pattern Design The bottom of RAA210040 is an embedded laminate substrate, which is attached to the PCB by surface mounting. The PCB layout pattern is in the Y10.3x3 Package Outline Drawing. The PCB layout pattern is essentially 1:1 with the package exposed pad and the I/O termination dimensions, except that the PCB lands are slightly longer than the dual flat embedded laminate package terminations by about 0.3mm. This extension allows for solder filleting around the package periphery and ensures a more complete and inspectable solder joint. The thermal lands on the PCB layout should match 1:1 with the package exposed die pads. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 21 RAA210040 Datasheet 8.2 Thermal Vias Place a grid of 1.0mm to 1.2mm pitched thermal vias, which drops down and connects to buried copper planes under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter, with the barrel plated to about 2.0 ounce copper. Although adding more vias (by decreasing pitch) improves thermal performance, it also diminishes results as more vias are added. Use only as many vias as needed for the thermal land size and as your board design rules allow. 8.3 Stencil Pattern Design Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2 mil to 3 mil) standoff height. The solder paste stencil design is the first step in developing optimized, reliable solder joins. The stencil aperture size to land size ratio should typically be 1:1. Reduce the aperture width slightly to help prevent solder bridging between adjacent I/O lands. Renesas recommends using an array of smaller apertures instead of one large aperture to reduce the solder paste volume on larger thermal lands. The stencil printing area should cover 50% to 80% of the PCB layout pattern. Consider the symmetry of the whole stencil pattern when designing the pads. Renesas recommends using a laser-cut, stainless-steel stencil with electropolished trapezoidal walls. Electropolishing smooths the aperture walls, resulting in reduced surface friction and better paste release, which reduces voids. Using a Trapezoidal Section Aperture (TSA) also promotes paste release and forms a brick-like paste deposit, which assists in firm component placement. 8.4 Reflow Parameters Renesas recommends using a No Clean Type 3 solder paste, per ANSI/J-STD-005 because of the low mount height of the package. Nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass of the entire populated board, therefore, it is not practical to define a specific soldering profile just for the package. The profile given in R70TB0004EU is provided as a guideline to customize for varying manufacturing practices and applications. R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 22 RAA210040 Datasheet 9. Package Outline Drawing For the most recent package outline drawing, see Y10.3x3. Y10.3x3 10 Lead Dual Flat Embedded Laminate Package Rev 1, 9/20 R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 23 RAA210040 Datasheet 10. Ordering Information Part Part Number[1][2] RAA2100404GLG#HD0 0040 RAA2100404GLG#MD0 RTKA210040DR0000BU Package Description[3] (RoHS Compliant) Marking 10 Lead Dual Flat Embedded Laminate Package Pkg. Dwg. # Carrier Type[4] Junction Temperature Y10.3x3 Reel, 3k -40 to +125 Reel, 1k Demonstration Board 1. These plastic packaged products are RoHS compliant by EU exemption 7C-I and employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish which is compatible with both SnPb and Pb-free soldering operations. RoHS compliant products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J-STD-020. 2. For Moisture Sensitivity Level (MSL), see the RAA210040 device page. For information about MSL, see TB363. 3. For the Pb-Free Reflow Profile, refer to R70TB0004EU. 4. See TB347 for details about reel specifications. 11. Revision History Rev. Date 1.01 Jun 15, 2023 Description Changed all references for TB493 to R70TB0004EU. Updated the package description throughout document. 1.00 Apr 13, 2021 Initial release R16DS0137EU0101 Rev.1.01 Jun 15, 2023 Page 24 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. ('LVFODLPHURev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 202 Renesas Electronics Corporation. All rights reserved.
RAA2100404GLG#HD0
物料型号:RAA2100405V 器件简介:RAA210040 是一款紧凑型同步降压非隔离式完整电源模块,能够提供高达4A的连续电流。

它集成了控制器、栅极驱动器、功率电感和MOSFET,优化了空间受限的应用。

引脚分配:RAA210040 有10个引脚,包括PGND、VIN、FB、COMP、SGND、VOUT、FS、EN、SYNC、PG和EPAD。

参数特性: - 输入电压范围:2.7V至5.5V - 可调输出电压:低至0.6V,线、负载和温度下的准确度优于±1.5% - 默认工作频率:2MHz,可通过外部电阻调整在500kHz至4MHz之间 - 支持100%占空比操作,以最小化开关损耗 - 专门的使能引脚和电源良好标志 - 内部1ms软启动时间 - 软停止输出放电 - 保护特性:包括输入欠压锁定(UVLO)、过流保护(OCP)、输出过压保护(OVP)和过温保护(OTP) 功能详解: - PWM控制方案:采用峰值电流模式控制,提供快速瞬态响应和出色的环路稳定性 - 频率调整:通过FS引脚与SGND之间的电阻调整工作频率 - 过流保护(OCP):通过监测CSA输出实现,保护模块免受短路损坏 - 电源良好(PG):持续监测模块输出电压,输出电压在规定范围内时保持高阻态 - 欠压锁定(UVLO):输入电压低于阈值时禁用模块 - 软启动:减少启动时的浪涌电流,控制输出电压上升 应用信息: - 适用于电信、工业、光学和医疗设备 - 点对点转换 - 微控制器(MCU)、微处理器(MPU)、数字信号处理器(DSP)和现场可编程门阵列(FPGA) 封装信息:RAA210040采用10引脚双平嵌入层封装,尺寸为3mm x 3mm x 1.7mm,符合RoHS标准。

封装底部为嵌入层基板,通过表面贴装固定在PCB上。

封装图和PCB布局图案在文档中有详细描述。
RAA2100404GLG#HD0 价格&库存

很抱歉,暂时无法提供与“RAA2100404GLG#HD0”相匹配的价格&库存,您可以联系我们找货

免费人工找货