Datasheet
Cover
S5D3 Microcontroller Group
Datasheet
Renesas Synergy™ Platform
Synergy Microcontrollers
S5 Series
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).
www.renesas.com
Rev.1.00 Aug 2018
S5D3 Microcontroller Group
Datasheet
Leading performance 120-MHz Arm® Cortex®-M4 core, 512-KB code flash memory, 256-KB SRAM, Capacitive
Touch Sensing Unit, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog.
Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)
Armv7E-M architecture with DSP instruction set
Maximum operating frequency: 120 MHz
Support for 4-GB address space
On-chip debugging system: JTAG, SWD, and ETM
Boundary scan and Arm Memory Protection Unit (Arm MPU)
■ Memory
512-KB code flash memory (40 MHz zero wait states)
8-KB data flash memory (125,000 erase/write cycles)
256-KB SRAM
Flash Cache (FCACHE)
Memory Protection Units (MPU)
Memory Mirror Function (MMF)
128-bit unique ID
■ Connectivity
USB 2.0 Full-Speed (USBFS) module
- On-chip transceiver
Serial Communications Interface (SCI) with FIFO × 7
Serial Peripheral Interface (SPI) × 2
I2C bus interface (IIC) × 2
CAN module (CAN) × 2
Serial Sound Interface Enhanced (SSIE)
SD/MMC Host Interface (SDHI) × 2
Quad Serial Peripheral Interface (QSPI)
IrDA interface
Sampling Rate Converter (SRC)
External address space
- 8-bit bus space
■ Analog
12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits
each × 2
12-bit D/A Converter (DAC12) × 2
High-Speed Analog Comparator (ACMPHS) × 6
Programmable Gain Amplifier (PGA) × 6
Temperature Sensor (TSN)
■ Timers
General PWM Timer 32-bit Enhanced High Resolution
(GPT32EH) × 4
General PWM Timer 32-bit Enhanced (GPT32E) × 4
General PWM Timer 32-bit (GPT32) × 5
Asynchronous General-Purpose Timer (AGT) × 2
Watchdog Timer (WDT)
■ Safety
■ System and Power Management
Low power modes
Realtime Clock (RTC) with calendar and VBATT support
Event Link Controller (ELC)
DMA Controller (DMAC) × 8
Data Transfer Controller (DTC)
Key Interrupt Function (KINT)
Power-on reset
Low Voltage Detection (LVD) with voltage settings
■ Security and Encryption
AES128/192/256
3DES/ARC4
SHA1/SHA224/SHA256/MD5
GHASH
RSA/DSA/ECC
True Random Number Generator (TRNG)
■ Human Machine Interface (HMI)
Capacitive Touch Sensing Unit (CTSU)
■ Multiple Clock Sources
Main clock oscillator (MOSC) (8 to 24 MHz)
Sub-clock oscillator (SOSC) (32.768 kHz)
High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
Middle-speed on-chip oscillator (MOCO) (8 MHz)
Low-speed on-chip oscillator (LOCO) (32.768 kHz)
IWDT-dedicated on-chip oscillator (15 kHz)
Clock trim function for HOCO/MOCO/LOCO
Clock out support
■ General-Purpose I/O Ports
Up to 76 input/output pins
- Up to 9 CMOS input
- Up to 67 CMOS input/output
- Up to 14 input/output 5 V tolerant
- Up to 13 high current (20 mA)
■ Operating Voltage
VCC: 2.7 to 3.6 V
■ Operating Temperature and Packages
Ta = -40°C to +85°C
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)
Ta = -40°C to +105°C
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)
Error Code Correction (ECC) in SRAM
SRAM parity error check
Flash area protection
ADC self-diagnosis function
Clock Frequency Accuracy Measurement Circuit (CAC)
Cyclic Redundancy Check (CRC) calculator
Data Operation Circuit (DOC)
Port Output Enable for GPT (POEG)
Independent Watchdog Timer (IWDT)
GPIO readback level detection
Register write protection
Main oscillator stop detection
Illegal memory access
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 2 of 92
S5D3 Datasheet
1.
1. Overview
Overview
The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU in this series incorporates a high-performance Arm Cortex®-M4 core running up to 120 MHz with the
following features:
512-KB code flash memory
256-KB SRAM
Capacitive Touch Sensing Unit (CTSU)
USBFS
SD/MMC Host Interface
Quad Serial Peripheral Interface (QSPI)
Security and safety features
12-bit A/D Converter (ADC12)
12-bit D/A Converter (DAC12)
Analog peripherals.
1.1
Function Outline
Table 1.1
Arm core
Feature
Functional description
Arm Cortex-M4 core
Maximum operating frequency: up to 120 MHz
Arm Cortex-M4 core:
- Revision: r0p1-01rel0
- Armv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
Arm Memory Protection Unit (Arm MPU):
- Armv7 Protected Memory System Architecture
- 8 protect regions.
SysTick timer:
- Driven by SYSTICCLK (LOCO) or ICLK.
Table 1.2
Memory
Feature
Functional description
Code flash memory
512 KB of code flash memory. See section 50, Flash Memory in User’s Manual.
Data flash memory
8 KB of data flash memory. See section 50, Flash Memory in User’s Manual.
Memory Mirror Function (MMF)
The Memory Mirror Function (MMF) can be configured to mirror the target application image
load address in code flash memory to the application image link address in the 23-bit unused
memory space (memory mirror space addresses). Your application code is developed and
linked to run from this MMF destination address. Your application code does not need to know
the load location where it is stored in code flash memory. See section 5, Memory Mirror
Function (MMF) in User’s Manual.
Option-setting memory
The option-setting memory determines the state of the MCU after a reset. See section 7,
Option-Setting Memory in User’s Manual.
SRAM
On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). The first
32 KB in SRAM0 provides error correction capability using ECC. Parity check is performed for
other areas. See section 48, SRAM in User’s Manual.
Standby SRAM
On-chip SRAM that can retain data in Deep Software Standby mode. See section 49, Standby
SRAM in User’s Manual.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 3 of 92
S5D3 Datasheet
Table 1.3
1. Overview
System (1 of 2)
Feature
Functional description
Operating modes
Two operating modes:
Single-chip mode
SCI or USB boot mode.
See section 3, Operating Modes in User’s Manual.
Resets
14 resets:
RES pin reset
Power-on reset
Voltage monitor 0 reset
Voltage monitor 1 reset
Voltage monitor 2 reset
Independent watchdog timer reset
Watchdog timer reset
Deep Software Standby reset
SRAM parity error reset
SRAM ECC error reset
Bus master MPU error reset
Bus slave MPU error reset
Stack pointer error reset
Software reset.
See section 6, Resets in User’s Manual.
Low Voltage Detection (LVD)
The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and
the detection level can be selected using a software program. See section 8, Low Voltage
Detection (LVD) in User’s Manual.
Clocks
Main clock oscillator (MOSC)
Sub-clock oscillator (SOSC)
High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
PLL frequency synthesizer
IDWT-dedicated on-chip oscillator
Clock out support.
See section 9, Clock Generation Circuit in User’s Manual.
Clock Frequency Accuracy
Measurement Circuit (CAC)
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be
measured (measurement target clock) within the time generated by the clock to be used as a
measurement reference (measurement reference clock), and determines the accuracy
depending on whether the number of pulses is within the allowable range.
When measurement is complete or the number of pulses within the time generated by the
measurement reference clock is not within the allowable range, an interrupt request is
generated.
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.
Interrupt Controller Unit (ICU)
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt
Controller Unit (ICU) in User’s Manual.
Key Interrupt Function (KINT)
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function
(KINT) in User’s Manual.
Low power modes
Power consumption can be reduced in multiple ways, such as by setting clock dividers,
controlling EBCLK output, stopping modules, selecting power control mode in normal
operation, and transitioning to low power modes. See section 11, Low Power Modes in User’s
Manual.
Battery backup function
A battery backup function is provided for partial powering by a battery. The battery-powered
area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See
section 12, Battery Backup Function in User’s Manual.
Register write protection
The register write protection function protects important registers from being overwritten
because of software errors. See section 13, Register Write Protection in User’s Manual.
Memory Protection Unit (MPU)
Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided
for memory protection. See section 16, Memory Protection Unit (MPU) in User’s Manual.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 4 of 92
S5D3 Datasheet
Table 1.3
1. Overview
System (2 of 2)
Feature
Functional description
Watchdog Timer (WDT)
The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh the
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.
A refresh-permitted period can be set to refresh the counter and used as the condition for
detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in
User’s Manual.
Independent Watchdog Timer (IWDT)
The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset
the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because
the timer operates with an independent, dedicated clock source, it is particularly useful in
returning the MCU to a known state as a fail-safe mechanism when the system runs out of
control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by
a refresh of the count value in the registers. See section 28, Independent Watchdog Timer
(IWDT) in User’s Manual.
Table 1.4
Event link
Feature
Functional description
Event Link Controller (ELC)
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral
modules as event signals to connect them to different modules, enabling direct interaction
between the modules without CPU intervention. See section 19, Event Link Controller (ELC)
in User’s Manual.
Table 1.5
Direct memory access
Feature
Functional description
Data Transfer Controller (DTC)
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an
interrupt request. See section 18, Data Transfer Controller (DTC) in User’s Manual.
DMA Controller (DMAC)
An 8-channel DMA Controller (DMAC) module is provided for transferring data without the
CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the
transfer source address to the transfer destination address. See section 17, DMA Controller
(DMAC) in User’s Manual.
Table 1.6
External bus interface
Feature
Functional description
External buses
CS area (EXBIU): Connected to the external devices (external memory interface)
QSPI area (EXBIUT2): Connected to the QSPI (external device interface).
Table 1.7
Timers (1 of 2)
Feature
Functional description
General PWM Timer (GPT)
The General PWM Timer (GPT) is a 32-bit timer with 13 channels. PWM waveforms can be
generated by controlling the up-counter, down-counter, or up- and down-counter. In addition,
PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be
used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User’s
Manual.
Port Output Enable for GPT (POEG)
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)
output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in
User’s Manual.
Asynchronous General-Purpose
Timer (AGT)
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
output, external pulse width or period measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and can be accessed with the AGT register.
See section 25, Asynchronous General-Purpose Timer (AGT) in User’s Manual.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 5 of 92
S5D3 Datasheet
Table 1.7
1. Overview
Timers (2 of 2)
Feature
Functional description
Realtime Clock (RTC)
The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count
mode, that are controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 26, Realtime Clock (RTC) in User’s Manual.
Table 1.8
Communication interfaces (1 of 2)
Feature
Functional description
Serial Communications Interface
(SCI)
The Serial Communications Interface (SCI) is configurable to five asynchronous and
synchronous serial interfaces:
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter
(ACIA))
8-bit clock synchronous interface
Simple IIC (master-only)
Simple SPI
Smart card interface.
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data
transfer speed can be configured independently using an on-chip baud rate generator. See
section 30, Serial Communications Interface (SCI) in User’s Manual.
IrDA Interface (IrDA)
The IrDA interface sends and receives IrDA data communication waveforms in cooperation
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 31,
IrDA Interface in User’s Manual.
I2C bus interface (IIC)
The 2-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C bus
(Inter-Integrated Circuit) bus interface functions. See section 32, I2C Bus Interface (IIC) in
User’s Manual.
Serial Peripheral Interface (SPI)
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, fullduplex synchronous serial communications with multiple processors and peripheral devices.
See section 34, Serial Peripheral Interface (SPI) in User’s Manual.
Serial Sound Interface Enhanced
(SSIE)
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with
digital audio devices for transmitting I2S (Inter-Integrated Sound) 2ch, 4ch, 6ch, 8ch, Word
Select (WS) Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an
audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver,
transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO
buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception
and transmission. See section 37, Serial Sound Interface Enhanced (SSIE) in User’s Manual.
Quad Serial Peripheral Interface
(QSPI)
The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial
ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM)
that has an SPI-compatible interface. See section 35, Quad Serial Peripheral Interface (QSPI)
in User’s Manual.
Controller Area Network (CAN)
module
The Controller Area Network (CAN) module provides functionality to receive and transmit data
using a message-based protocol between multiple slaves and masters in electromagneticallynoisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 33, Controller Area Network (CAN) Module in User’s Manual.
USB 2.0 Full-Speed Module (USBFS)
module
The USB 2.0 Full-Speed (USBFS) module can operate as a host controller or device controller.
The module supports full-speed and low-speed (host controller only) transfer as defined in the
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.
The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9
can be assigned any endpoint number based on the peripheral devices used for
communication or based on your system. See section 29, USB 2.0 Full-Speed Module
(USBFS) in User’s Manual.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 6 of 92
S5D3 Datasheet
Table 1.8
1. Overview
Communication interfaces (2 of 2)
Feature
Functional description
SD/MMC Host Interface (SDHI)
The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to
connect a variety of external memory cards to the MCU. The SDHI supports both 1-bit and 4bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When
developing host devices that are compliant with the SD Specifications, you must comply with
the SD Host/Ancillary Product License Agreement (SD HALA).
The MMC interface supports 1-bit and 4-bit MMC buses that provide eMMC 4.51 (JEDEC
Standard JESD 84-B451) device access. This interface also provides backward compatibility
and supports high-speed SDR transfer modes. See section 39, SD/MMC Host Interface
(SDHI) in User’s Manual.
Table 1.9
Analog
Feature
Functional description
12-bit A/D Converter (ADC12)
Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up
to 11 analog input channels are selectable. In unit 1, up to eight analog input channels, the
temperature sensor output, and an internal reference voltage are selectable for conversion.
The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it
possible to optimize the tradeoff between speed and resolution in generating a digital value.
See section 42, 12-Bit A/D Converter (ADC12) in User’s Manual.
12-bit D/A Converter (DAC12)
A 12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section
43, 12-Bit D/A Converter (DAC12) in User’s Manual.
Temperature Sensor (TSN)
The on-chip Temperature Sensor (TSN) can determine and monitor the die temperature for
reliable operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC12 for conversion and can also be used by the end
application. See section 44, Temperature Sensor (TSN) in User’s Manual.
High-Speed Analog Comparator
(ACMPHS)
The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference
voltage and provides a digital output based on the conversion result.
Both the test and reference voltages can be provided to the comparator from internal sources
such as the DAC12 output and internal reference voltage, and an external source with or
without an internal PGA.
Such flexibility is useful in applications that require go/no-go comparisons to be performed
between analog signals without necessarily requiring A/D conversion. See section 45, HighSpeed Analog Comparator (ACMPHS) in User’s Manual.
Table 1.10
Human machine interfaces
Feature
Functional description
Capacitive Touch Sensing Unit
(CTSU)
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does
not come into direct contact with the electrodes. See section 46, Capacitive Touch Sensing
Unit (CTSU) in User’s Manual.
Table 1.11
Data processing (1 of 2)
Feature
Functional description
Cyclic Redundancy Check (CRC)
calculator
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first
communication. Additionally, various CRC-generating polynomials are available. The snoop
function allows monitoring reads from and writes to specific addresses. This function is useful
in applications that require CRC code to be generated automatically in certain events, such as
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See
section 36, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.
Data Operation Circuit (DOC)
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 47,
Data Operation Circuit (DOC) in User’s Manual.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 7 of 92
S5D3 Datasheet
Table 1.11
1. Overview
Data processing (2 of 2)
Feature
Functional description
Sampling Rate Converter (SRC)
The Sampling Rate Converter (SRC) converts the sampling rate of data produced by various
audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are
supported.
See section 38, Sampling Rate Converter (SRC) in User’s Manual.
Table 1.12
Security
Feature
Functional description
Secure Crypto Engine 7 (SCE7)
Security algorithms:
- Symmetric algorithms: AES, 3DES, and ARC4
- Asymmetric algorithms: RSA, DSA, and ECC.
Other support features:
- TRNG (True Random Number Generator)
- Hash-value generation: SHA1, SHA224, SHA256, GHASH, and MD5
- 128-bit unique ID.
1.2
Block Diagram
Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the
features.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 8 of 92
S5D3 Datasheet
1. Overview
Memory
Bus
Arm Cortex-M4
512 KB code flash
External
8 KB data flash
CSC
DSP
System
FPU
Clocks
POR/LVD
MOSC/SOSC
MPU
Reset
(H/M/L) OCO
256 KB SRAM
MPU
NVIC
8 KB Standby
SRAM
Mode control
PLL
Power control
CAC
ICU
Battery backup
KINT
Register write
protection
System timer
DMA
Test and DBG interface
DTC
DMAC × 8
Timers
GPT32EH x 4
GPT32E x 4
GPT32 x 5
AGT × 2
Communication interfaces
SCI × 7
Human machine interfaces
QSPI
CTSU
IrDA × 1
IIC × 2
SDHI × 2
SPI × 2
CAN × 2
SSIE
USBFS
RTC
WDT/IWDT
Event link
Data processing
ELC
CRC
Security
DOC
SRC
Analog
ADC12 with
PGA × 2
TSN
DAC12
ACMPHS × 6
SCE7
Figure 1.1
Block diagram
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 9 of 92
S5D3 Datasheet
1.3
1. Overview
Part Numbering
Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.13 shows
a list of products.
R 7 F S 5 D 3 7A 3 A 0 1 C F P # A A 0
Production identification code
Packaging, Terminal material (Pb-free)
#AA: Tray/Sn (Tin) only
#AC: Tray/others
Package type
FP: LQFP 100 pins
FM: LQFP 64 pins
LJ: LGA 100 pins
NB: QFN 64 pins
Quality ID
Software ID
Operating temperature
2: -40°C to 85°C
3: -40°C to 105°C
Code flash memory size
A: 512 KB
Feature set
7: Superset
D3 : S5D3 Group, Arm Cortex-M4, 120MHz
Series name
5: High integration
Renesas Synergy™ family
Flash memory
Renesas microcontroller unit
Renesas
Figure 1.2
Table 1.13
Part numbering scheme
Product list
Product part number
Orderable part number
Package code
Code flash
Data flash
SRAM
Operating
temperature
R7FS5D37A2A01CLJ
R7FS5D37A2A01CLJ#AC0
PTLG0100JA-A
512 KB
8 KB
256 KB
-40 to +85°C
R7FS5D37A3A01CFP
R7FS5D37A3A01CFP#AA0
PLQP0100KB-B
-40 to +105°C
R7FS5D37A3A01CFM
R7FS5D37A3A01CFM#AA0
PLQP0064KB-C
-40 to +105°C
R7FS5D37A3A01CNB
R7FS5D37A3A01CNB#AC0
PWQN0064LA-A
-40 to +105°C
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 10 of 92
S5D3 Datasheet
1.4
1. Overview
Function Comparison
Table 1.14
Functional comparison
Part numbers
Function
R7FS5D37A2A01CLJ
R7FS5D37A3A01CFP
R7FS5D37A3A01CFM
R7FS5D37A3A01CNB
Pin count
100
100
64
64
Package
LGA
LQFP
LQFP
QFN
Code flash memory
512 KB
Data flash memory
8 KB
SRAM
256 KB
Parity
224 KB
ECC
32 KB
Standby SRAM
System
8 KB
CPU clock
120 MHz
Backup
registers
512 B
ICU
Yes
KINT
8
Event link
ELC
Yes
DMA
DTC
Yes
BUS
External bus
Timers
GPT32EH
DMAC
Communication
8
8-bit bus
GPT32E
4
3
GPT32
5
4
AGT
2
RTC
Yes
WDT/IWDT
Yes
SCI
7
IIC
2
SPI
SSIE
2
1
QSPI
SDHI
2
Yes
19
DAC12
6
TSN
CTSU
Data processing
CRC
10
2
ACMPHS
HMI
No
2
USBFS
ADC12
No
1
CAN
Analog
No
4
Yes
12
7
Yes
DOC
Yes
SRC
Yes
Security
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
SCE7
Page 11 of 92
S5D3 Datasheet
1.5
1. Overview
Pin Functions
Table 1.15
Pin functions (1 of 4)
Function
Signal
I/O
Description
Power supply
VCC
Input
Power supply pin. This is used as the digital power supply for the respective
modules and internal voltage regulator, and used to monitor the voltage of
the POR/LVD. Connect this pin to the system power supply. Connect it to
VSS by a 0.1-μF capacitor. Place the capacitor close to the pin.
VCL0
-
VCL
-
Connect this pin to VSS through a 0.1-μF smoothing capacitor close to each
VCL pin. Stabilize the internal power supply.
VSS
Input
Ground pin. Connect to the system power supply (0 V).
VBATT
Input
Backup power pin
XTAL
Output
EXTAL
Input
Pins for a crystal resonator. An external clock signal can be input through the
EXTAL pin.
Clock
XCIN
Input
XCOUT
Output
Input/output pins for the sub-clock oscillator. Connect a crystal resonator
between XCOUT and XCIN.
EBCLK
Output
Outputs the external bus clock for external devices
CLKOUT
Output
Clock output pin
Operating mode
control
MD
Input
Pin for setting the operating mode. The signal level on this pin must not be
changed during operation mode transition on release from the reset state.
System control
RES
Input
Reset signal input pin. The MCU enters the reset state when this signal goes
low.
CAC
CACREF
Input
Measurement reference clock input pin
Interrupt
NMI
Input
Non-maskable interrupt request pin
IRQ0 to IRQ13
Input
Maskable interrupt request pins
KINT
KR00 to KR07
Input
A key interrupt can be generated by inputting a falling edge to the key
interrupt input pins
On-chip emulator
TMS
I/O
On-chip emulator or boundary scan pins
External bus
interface
TDI
Input
TCK
Input
TDO
Output
TCLK
Output
TDATA0 to TDATA3
Output
Trace data output
SWDIO
I/O
Serial wire debug data input/output pin
SWCLK
Input
Serial wire clock pin
SWO
Output
Serial wire trace output pin
RD
Output
Strobe signal indicating that reading from the external bus interface space is
in progress, active-low
WR0
Output
Strobe signal indicating that writing to the external bus interface space is in
progress, active-low
ALE
Output
Address latch signal when address/data multiplexed bus is selected
WAIT
Input
Input pin for wait request signals in access to the external space, active-low
CS0, CS1,
CS4 to CS7
Output
Select signals for CS areas, active-low
A00 to A12
Output
Address bus
D00 to D07
I/O
Data bus
A00/D00 to A07/D07
I/O
Address/data multiplexed bus
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
This pin outputs the clock for synchronization with the trace data
Page 12 of 92
S5D3 Datasheet
Table 1.15
1. Overview
Pin functions (2 of 4)
Function
Signal
I/O
Description
GPT
GTETRGA,
GTETRGB,
GTETRGC,
GTETRGD
Input
External trigger input pins
GTIOC0A to
GTIOC12A,
GTIOC0B to
GTIOC12B
I/O
Input capture, output compare, or PWM output pins
GTIU
Input
Hall sensor input pin U
GTIV
Input
Hall sensor input pin V
GTIW
Input
Hall sensor input pin W
AGT
RTC
SCI
IIC
SSIE
GTOUUP
Output
3-phase PWM output for BLDC motor control (positive U phase)
GTOULO
Output
3-phase PWM output for BLDC motor control (negative U phase)
GTOVUP
Output
3-phase PWM output for BLDC motor control (positive V phase)
GTOVLO
Output
3-phase PWM output for BLDC motor control (negative V phase)
GTOWUP
Output
3-phase PWM output for BLDC motor control (positive W phase)
GTOWLO
Output
3-phase PWM output for BLDC motor control (negative W phase)
AGTEE0, AGTEE1
Input
External event input enable signals
AGTIO0, AGTIO1
I/O
External event input and pulse output pins
AGTO0, AGTO1
Output
Pulse output pins
AGTOA0, AGTOA1
Output
Output compare match A output pins
AGTOB0, AGTOB1
Output
Output compare match B output pins
RTCOUT
Output
Output pin for 1-Hz or 64-Hz clock
RTCIC0 to RTCIC2
Input
Time capture event input pins
SCK0 to SCK4,
SCK8, SCK9
I/O
Input/output pins for the clock (clock synchronous mode)
RXD0 to RXD4,
RXD8, RXD9
Input
Input pins for received data (asynchronous mode/clock synchronous mode)
TXD0 to TXD4,
TXD8, TXD9
Output
Output pins for transmitted data (asynchronous mode/clock synchronous
mode)
CTS0_RTS0 to
CTS4_RTS4,
CTS8_RTS8,
CTS9_RTS9
I/O
Input/output pins for controlling the start of transmission and reception
(asynchronous mode/clock synchronous mode), active-low
SCL0 to SCL4,
SCL8, SCL9
I/O
Input/output pins for the IIC clock (simple IIC mode)
SDA0 to SDA4,
SDA8, SDA9
I/O
Input/output pins for the IIC data (simple IIC mode)
SCK0 to SCK4,
SCK8, SCK9
I/O
Input/output pins for the clock (simple SPI mode)
MISO0 to MISO4,
MISO8, MISO9
I/O
Input/output pins for slave transmission of data (simple SPI mode)
MOSI0 to MOSI4,
MOSI8, MOSI9
I/O
Input/output pins for master transmission of data (simple SPI mode)
SS0 to SS4, SS8,
SS9
Input
Chip-select input pins (simple SPI mode), active-low
SCL0, SCL1
I/O
Input/output pins for the clock
SDA0, SDA1
I/O
Input/output pins for data
SSIBCK0
I/O
SSIE serial bit clock pins
SSILRCK0/SSIFS0
I/O
LR clock/frame synchronization pins
SSITXD0
Output
Serial data output pins
SSIRXD0
Input
Serial data input pins
AUDIO_CLK
Input
External clock pin for audio (input oversampling clock)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 13 of 92
S5D3 Datasheet
Table 1.15
1. Overview
Pin functions (3 of 4)
Function
Signal
I/O
Description
SPI
RSPCKA, RSPCKB
I/O
Clock input/output pin
MOSIA, MOSIB
I/O
Input or output pins for data output from the master
MISOA, MISOB
I/O
Input or output pins for data output from the slave
SSLA0, SSLB0
I/O
Input or output pin for slave selection
SSLA1 to SSLA3,
SSLB1 to SSLB3
Output
Output pins for slave selection
QSPCLK
Output
QSPI clock output pin
QSSL
Output
QSPI slave output pin
QSPI
CAN
USBFS
SDHI
Analog power
supply
QIO0 to QIO3
I/O
Data0 to Data3
CRX0, CRX1
Input
Receive data
CTX0, CTX1
Output
Transmit data
VCC_USB
Input
Power supply pins
VSS_USB
Input
Ground pins
USB_DP
I/O
D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of
the USB bus
USB_DM
I/O
D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of
the USB bus
USB_VBUS
Input
USB cable connection monitor pin. Connect this pin to VBUS of the USB
bus. The VBUS pin status (connected or disconnected) can be detected
when the USB module is operating as a device controller.
USB_EXICEN
Output
Low-power control signal for external power supply (OTG) chip
USB_VBUSEN
Output
VBUS (5 V) supply enable signal for external power supply chip
USB_OVRCURA,
USB_OVRCURB
Input
Connect the external overcurrent detection signals to these pins. Connect
the VBUS comparator signals to these pins when the OTG power supply
chip is connected.
USB_ID
Input
Connect the MicroAB connector ID input signal to this pin during operation in
OTG mode
SD0CLK, SD1CLK
Output
SD clock output pins
SD0CMD, SD1CMD
I/O
Command output pin and response input signal pins
SD0DAT0 to
SD0DAT3,
SD1DAT0 to
SD1DAT3
I/O
SD and MMC data bus pins
SD0CD
Input
SD card detection pins
SD0WP
Input
SD write-protect signals
AVCC0
Input
Analog voltage supply pin. This is used as the analog power supply for the
respective modules. Supply this pin with the same voltage as the VCC pin.
AVSS0
Input
Analog ground pin. This is used as the analog ground for the respective
modules. Supply this pin with the same voltage as the VSS pin.
VREFH0
Input
Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin
to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for
AN000 to AN002.
VREFL0
Input
Analog reference ground pin for the ADC12. Connect this pin to VSS when
not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to
AN002
VREFH
Input
Analog reference voltage supply pin for the ADC12 (unit 1) and D/A
Converter. Connect this pin to VCC when not using the ADC12 (unit 1),
sample-and-hold circuit for AN100 to AN102, and D/A Converter.
VREFL
Input
Analog reference ground pin for the ADC12 and D/A Converter. Connect this
pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for
AN100 to AN102, and D/A Converter.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 14 of 92
S5D3 Datasheet
Table 1.15
1. Overview
Pin functions (4 of 4)
Function
Signal
I/O
Description
ADC12
AN000 to AN003,
AN005 to AN007,
AN016 to AN018,
AN020
Input
Input pins for the analog signals to be processed by the ADC12
AN100 to AN102,
AN105 to AN107,
AN116, AN117
Input
ADTRG0
Input
ADTRG1
Input
PGAVSS000,
PGAVSS100
Input
Input pins for the external trigger signals that start the A/D conversion
Differential input pins
DAC12
DA0, DA1
Output
Output pins for the analog signals processed by the D/A converter
ACMPHS
VCOUT
Output
Comparator output pin
CTSU
I/O ports
IVREF0 to IVREF3
Input
Reference voltage input pins for comparator
IVCMP0 to IVCMP3
Input
Analog voltage input pins for comparator
TS01 to TS12
Input
Capacitive touch detection pins (touch pins)
TSCAP
-
Secondary power supply pin for the touch driver
P000 to P007
Input
General-purpose input pins
P008, P014, P015
I/O
General-purpose input/output pins
P100 to P115
I/O
General-purpose input/output pins
P200
Input
General-purpose input pin
P201, P205 to P214
I/O
General-purpose input/output pins
P300 to P307
I/O
General-purpose input/output pins
P400 to P415
I/O
General-purpose input/output pins
P500 to P504, P508
I/O
General-purpose input/output pins
P600 to P602,
P608 to P610
I/O
General-purpose input/output pins
P708
I/O
General-purpose input/output pin
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 15 of 92
S5D3 Datasheet
1.6
1. Overview
Pin Assignments
Figure 1.3 to Figure 1.6 show the pin assignments.
R7FS5D37A2A01CLJ
10
A
B
C
D
E
F
G
H
J
K
P407
P409
P412
VCC
P212/
EXTAL
XCOUT
VCL0
P403
P400
P000
10
P411
VSS
P213/
XTAL
XCIN
VBATT
P405
P401
P001
9
9 USB_DM USB_DP
Figure 1.3
8
VCC_
USB
VSS_
USB
P207
P413
P415
P708
P404
P003
P004
P002
8
7
P205
P214
P206
P408
P414
P406
P006
P007
P008
P005
7
6
P209
P208
P210
P211
P410
P402
P508
AVSS0
VREFL0 VREFH0 6
5
P200
P201/MD
P307
RES
P113
P600
P504
AVCC0
VREFL
VREFH
5
4
VCC
P304
P305
P306
P115
P601
P503
P100
P015
P014
4
3
VSS
P303
P110/TDI
P111
P609
P602
P107
P103
VSS
VCC
3
2
P300/
TCK/
SWCLK
P302
P301
P114
P610
VSS
P106
P101
P501
P502
2
1
P108/
TMS/
SWDIO
P109/
TDO
P112
P608
VCC
VCL
P105
P104
P102
P500
1
A
B
C
D
E
F
G
H
J
K
Pin assignment for 100-pin LGA (top view)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 16 of 92
Figure 1.4
P100
P101
P102
P103
P104
P105
P106
P107
P600
P601
P602
VCL
VSS
VCC
P610
P609
P608
P115
P114
P113
P112
P111
P110/TDI
P109/TDO
P108/TMS/SWDIO
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1. Overview
75
S5D3 Datasheet
P500
76
50
P501
77
49
P300/TCK/SWCLK
P301
P502
78
48
P302
P503
79
47
P303
P504
80
46
VCC
P508
81
45
VSS
VCC
82
44
P304
VSS
83
43
P305
P015
84
42
P306
P014
85
41
P307
VREFL
86
40
P200
VREFH
87
39
P201/MD
AVCC0
88
38
RES
AVSS0
89
37
P208
VREFL0
90
36
P209
VREFH0
91
35
P210
P008
92
34
P211
P007
93
33
P214
P006
94
32
P205
P005
95
31
P206
P004
96
30
P207
P003
97
29
VCC_USB
P002
98
28
USB_DP
P001
99
27
USB_DM
P000
100
26
VSS_USB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
P400
P401
P402
P403
P404
P405
P406
VBATT
VCL0
XCIN
XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P708
P415
P414
P413
P412
P411
P410
P409
P408
P407
R7FS5D37AXA01CFP
Pin assignment for 100-pin LQFP (top view)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 17 of 92
Figure 1.5
P100
P101
P102
P103
P104
P105
P106
P107
VCL
VSS
VCC
P112
P111
P110/TDI
P109/TDO
P108/TMS/SWDIO
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
1. Overview
48
S5D3 Datasheet
P500
49
32
P300/TCK/SWCLK
P501
50
31
P301
VCC
51
30
P302
VSS
52
29
VCC
P015
53
28
VSS
P014
54
27
P200
VREFL
55
26
P201/MD
VREFH
56
25
RES
AVCC0
57
24
P210
AVSS0
58
23
P205
VREFL0
59
22
P206
VREFH0
60
21
P207
P003
61
20
VCC_USB
P002
62
19
USB_DP
P001
63
18
USB_DM
P000
64
17
VSS_USB
13
14
15
16
P410
P409
P408
P407
VSS
12
8
XCOUT
11
7
XCIN
VCC
6
VCL0
P411
5
VBATT
10
4
P402
9
3
P401
P213/XTAL
2
P212/EXTAL
1
P400
R7FS5D37A3A01CFM
Pin assignment for 64-pin LQFP (top view)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 18 of 92
33
34
35
36
37
38
39
40
41
42
43
44
P102
P103
P104
P105
P106
P107
VCL
VSS
VCC
P112
P111
P110/TDI
P109/TDO
P108/TMS/SWDIO
45
46
47
P100
P101
1. Overview
48
S5D3 Datasheet
P500
P501
VCC
VSS
P015
P014
VREFL
VREFH
AVCC0
AVSS0
VREFL0
VREFH0
P003
P002
P001
49
32
50
31
58
23
59
22
60
21
61
20
62
19
63
18
P300/TCK/SWCLK
P301
P302
VCC
VSS
P200
P201/MD
RES
P210
P205
P206
P207
VCC_USB
USB_DP
USB_DM
51
30
52
29
53
28
54
27
55
26
P000
64
17
VSS_USB
24
16
15
14
13
12
11
10
9
8
7
6
5
4
3
25
P400
P401
P402
VBATT
VCL0
XCIN
XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P411
P410
P409
P408
P407
1
57
2
R7FS5D37A3A01CNB
56
Figure 1.6
Pin assignment for 64-pin QFN (top view)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 19 of 92
S5D3 Datasheet
Pin Lists
J10
1
1
1
-
IRQ0
-
AGTIO1
GTETRGA
CTSU
DAC12,
ACMPHS
HMI
ADC12
SDHI
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,9
(30 MHz)
USBFS,
CAN
RTC
GPT
GPT
P400
SCI0,2,4,8
(30 MHz)
Communication interfaces
AGT
I/O port
External bus
Timers
Interrupt
QFN64
LQFP64
LGA100
LQFP100
Pin number
Power, System,
Clock, Debug,
CAC
1.7
1. Overview
GTIOC6 A
-
SCK4
-
SCL0_ A
AUDIO_ CLK
ADTRG1 -
-
GTIOC6 B
CTX0
CTS4_RT S4/SS4
SDA0_ A
-
-
-
-
-
-
CRX0
-
-
-
-
AUDIO_ CLK
-
-
-
J9
2
2
2
-
IRQ5DS
P401
-
-
F6
3
3
3
CACREF
IRQ4DS
P402
-
AGTIO0/A GTIO1
H10
4
-
-
-
-
P403
-
AGTIO0/A GTIO1
GTIOC3 RTCI
A
C1
-
-
-
-
-
SSIBCK 0_A
-
-
-
G8
5
-
-
-
-
P404
-
-
-
GTIOC3 RTCI
B
C2
-
-
-
-
-
SSILRC K0/SSIF
S0_A
-
-
-
H9
6
-
-
-
-
P405
-
-
-
GTIOC1 A
-
-
-
-
-
SSITXD 0_A
-
-
-
RTCI
C0
F7
7
-
-
-
-
P406
-
-
-
GTIOC1 B
-
-
-
-
-
SSIRXD 0_A
-
-
-
G9
8
4
4
VBATT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G10
9
5
5
VCL0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F9
10
6
6
XCIN
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F10
11
7
7
XCOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D9
12
8
8
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E9
13
9
9
XTAL
IRQ2
P213
-
-
GTETRGC
GTIOC0 A
-
-
TXD1/MO SI1/SDA1
-
-
-
ADTRG1 -
-
E10
14
10
10
EXTAL
IRQ3
P212
-
AGTEE1
GTETRGD
GTIOC0 B
-
-
RXD1/MIS O1/SCL1
-
-
-
-
-
-
D10
15
11
11
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F8
16
-
-
CACREF
IRQ11
P708
-
-
-
-
-
-
-
RXD1/MIS O1/SCL1
SSLA3_ AUDIO_ B
CLK
-
-
TS12
E8
17
-
-
-
IRQ8
P415
-
-
-
GTIOC0 A
USB_V BUSEN
-
-
SSLA2_ B
SD0CD
-
-
TS11
E7
18
-
-
-
IRQ9
P414
-
-
-
GTIOC0 B
-
-
-
SSLA1_ B
SD0WP
-
-
TS10
D8
19
-
-
-
-
P413
-
-
GTOUUP
-
-
-
CTS0_RT S0/SS0
-
SSLA0_ B
SD0CLK _A
-
TS09
C10
20
-
-
-
-
P412
-
AGTEE1
GTOULO
-
-
-
SCK0
-
RSPCK A_B
SD0CMD _A
-
TS08
C9
21
12
12
-
IRQ4
P411
-
AGTOA1
GTOVUP
GTIOC9 A
-
TXD0/MO CTS3_RT SI0/SDA0 S3/SS3
MOSIA_ B
SD0DAT 0_A
-
TS07
E6
22
13
13
-
IRQ5
P410
-
AGTOB1
GTOVLO
GTIOC9 B
-
RXD0/MIS SCK3
O0/SCL0
MISOA_ B
SD0DAT 1_A
-
TS06
-
-
-
-
B10
23
14
14
-
IRQ6
P409
-
-
GTOWUP
GTIOC10 A
USB_E XICEN
TXD3/MO SI3/SDA3
-
-
-
-
-
TS05
D7
24
15
15
-
IRQ7
P408
-
-
GTOWLO
GTIOC10 B
USB_ID -
RXD3/MIS SCL0_ O3/SCL3 B
-
-
-
-
TS04
A10
25
16
16
-
-
P407
-
AGTIO0
-
-
RTCO USB_V CTS4_RT UT
BUS
S4/SS4
SDA0_ B
-
-
ADTRG0 -
TS03
B8
26
17
17
VSS_USB -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A9
27
18
18
-
-
-
-
-
-
-
-
USB_D M
-
-
-
-
-
-
-
-
B9
28
19
19
-
-
-
-
-
-
-
-
USB_D P
-
-
-
-
-
-
-
-
A8
29
20
20
VCC_USB -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C8
30
21
21
-
-
P207
-
-
-
-
-
-
-
-
-
QSSL
-
-
-
-
TS02
C7
31
22
22
-
IRQ0DS
P206
WAIT -
GTIU
-
-
USB_V RXD4/MIS BUSEN O4/SCL4
SDA1_ A
-
SD0DAT 2_A
-
TS01
A7
32
23
23
CLKOUT
IRQ1DS
P205
-
AGTO1
GTIV
GTIOC4 A
USB_O TXD4/MO CTS9_RT SCL1_ VRCUR SI4/SDA4 S9/SS9
A
A-DS
-
SD0DAT 3_A
-
TSCAP
B7
33
-
-
TRCLK
-
P214
-
-
GTIU
-
-
-
-
-
-
QSPCL K
SD0CLK _B
-
-
D6
34
-
-
TRDATA0 -
P211
CS7
-
GTIV
-
-
-
-
-
-
QIO0
SD0CMD _B
-
-
C6
35
24
24
TRDATA1 -
P210
CS6
-
GTIW
-
-
-
-
-
-
QIO1
-
SD0CD
-
-
-
A6
36
-
-
TRDATA2 -
P209
CS5
-
GTOVUP
-
-
-
-
-
-
QIO2
-
SD0WP
-
-
-
B6
37
-
-
TRDATA3 -
P208
CS4
-
GTOVLO
-
-
-
-
-
-
QIO3
-
SD0DAT 0_B
-
-
D5
38
25
25
RES
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B5
39
26
26
MD
-
P201
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A5
40
27
27
-
NMI
P200
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C5
41
-
-
-
-
P307
A12
-
GTOUUP
-
-
-
-
-
-
QIO0
-
-
-
-
-
D4
42
-
-
-
-
P306
A11
-
GTOULO
-
-
-
-
-
-
QSSL
-
-
-
-
-
C4
43
-
-
-
IRQ8
P305
A10
-
GTOWUP
-
-
-
-
-
-
QSPCL K
-
-
-
-
B4
44
-
-
-
IRQ9
P304
A09
-
GTOWLO
GTIOC7 A
-
-
-
-
-
-
-
-
-
A3
45
28
28
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A4
46
29
29
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B3
47
-
-
-
-
P303
A08
-
-
GTIOC7 B
-
-
-
-
-
-
-
-
-
-
B2
48
30
30
-
IRQ5
P302
A07
-
GTOUUP
GTIOC4 A
-
TXD2/MO SI2/SDA2
-
SSLB3_ B
-
-
-
-
C2
49
31
31
-
IRQ6
P301
A06
AGTIO0
GTOULO
GTIOC4 B
-
RXD2/MIS CTS9_RT O2/SCL2 S9/SS9
SSLB2_ B
-
-
-
-
A2
50
32
32
TCK/SWC LK
P300
-
-
GTOUUP
GTIOC0 A_A
-
-
-
-
SSLB1_ B
-
-
-
-
A1
51
33
33
TMS/SWD IO
P108
-
-
GTOULO
GTIOC0 B_A
-
-
CTS9_RT S9/SS9
SSLB0_ B
-
-
-
-
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 20 of 92
S5D3 Datasheet
B1
52
34
34
P109
-
-
GTIOC1 A_A
CTX1
-
TXD9/MO SI9/SDA9
C3
53
35
35
TDI
IRQ3
P110
-
-
GTOVLO
GTIOC1 B_A
CRX1
CTS2_RT RXD9/MIS S2/SS2
O9/SCL9
D3
54
36
36
-
IRQ4
P111
A05
-
-
GTIOC3 A_A
-
SCK2
CTSU
DAC12,
ACMPHS
HMI
ADC12
SDHI
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,9
(30 MHz)
USBFS,
CAN
RTC
GPT
GPT
GTOVUP
SCI0,2,4,8
(30 MHz)
Communication interfaces
AGT
I/O port
Interrupt
CLKOUT/T DO/SWO
External bus
Timers
Power, System,
Clock, Debug,
CAC
QFN64
LQFP64
LGA100
LQFP100
Pin number
1. Overview
MOSIB_ B
-
-
-
-
MISOB_ B
-
-
VCOUT
-
SCK9
-
RSPCK B_B
-
-
-
-
C1
55
37
37
-
-
P112
A04
-
-
GTIOC3 B_A
-
TXD2/MO SCK1
SI2/SDA2
-
SSLB0_ SSIBCK B
0_B
-
-
-
E5
56
-
-
-
-
P113
A03
-
-
GTIOC2 A
-
RXD2/MIS O2/SCL2
-
-
SSILRC K0/SSIF
S0_B
-
-
-
D2
57
-
-
-
-
P114
A02
-
-
GTIOC2 B
-
-
-
-
SSIRXD 0_B
-
-
-
-
E4
58
-
-
-
-
P115
A01
-
-
GTIOC4 A
-
-
-
-
-
SSITXD 0_B
-
-
-
D1
59
-
-
-
-
P608
A00
-
-
GTIOC4 B
-
-
-
-
-
-
-
-
-
-
E3
60
-
-
-
-
P609
CS1
-
-
GTIOC5 A
CTX1
-
-
-
-
-
-
-
-
-
E2
61
-
-
-
-
P610
CS0
-
-
GTIOC5 B
CRX1
-
-
-
-
-
-
-
-
-
E1
62
38
38
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F2
63
39
39
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F1
64
40
40
VCL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F3
65
-
-
-
-
P602
EBCL K
-
GTIOC7 B
-
-
TXD9
-
-
-
-
-
-
-
-
F4
66
-
-
-
-
P601
WR0
-
-
GTIOC6 A
-
-
RXD9
-
-
-
-
-
-
-
F5
67
-
-
CLKOUT/
CACREF
-
P600
RD
-
-
GTIOC6 B
-
-
SCK9
-
-
-
-
-
-
-
G3
68
41
41
-
KR07
P107
D07[A AGTOA0
07/D0
7]
-
GTIOC8 A
-
CTS8_RT S8/SS8
-
QIO3
-
-
-
-
-
G2
69
42
42
-
KR06
P106
D06[A AGTOB0
06/D0
6]
-
GTIOC8 B
-
SCK8
-
-
SSLA3_ A/QIO2
-
-
-
-
G1
70
43
43
-
IRQ0/K P105
R05
D05[A 05/D0
5]
GTETRGA
GTIOC1 A
-
TXD8/MO SI8/SDA8
-
SSLA2_ A/QIO1
-
-
-
-
H1
71
44
44
-
IRQ1/K P104
R04
D04[A 04/D0
4]
GTETRGB
GTIOC1 B
-
RXD8/MIS O8/SCL8
-
SSLA1_ A/QIO0
-
-
-
-
H3
72
45
45
-
KR03
P103
D03[A 03/D0
3]
GTOWUP
GTIOC2 A_A
CTX0
CTS0_RT S0/SS0
-
SSLA0_ A
-
-
-
-
J1
73
46
46
-
KR02
P102
D02[A AGTO0
02/D0
2]
GTOWLO
GTIOC2 B_A
CRX0
SCK0
-
RSPCK A_A
-
ADTRG0 -
-
H2
74
47
47
-
IRQ1/K P101
R01
D01[A AGTEE0
01/D0
1]
GTETRGB
GTIOC5 A
-
TXD0/MO CTS1_RT SDA1_ MOSIA_ SI0/SDA0 S1/SS1
B
A
-
-
-
-
H4
75
48
48
-
IRQ2/K P100
R00
D00[A AGTIO0
00/D0
0]
GTETRGA
GTIOC5 B
-
RXD0/MIS SCK1
O0/SCL0
SCL1_ MISOA_ B
A
-
-
-
-
K1
76
49
49
-
-
P500
-
AGTOA0
GTIU
GTIOC11 A
USB_V BUSEN
-
-
QSPCL K
SD1CLK AN016
_A
IVREF0
-
J2
77
50
50
-
IRQ11
P501
-
AGTOB0
GTIV
GTIOC11 B
USB_O VRCUR
A
-
-
QSSL
-
SD1CMD AN116
_A
IVREF1
-
K2
78
-
-
-
IRQ12
P502
-
-
GTIW
GTIOC12 A
USB_O VRCUR
B
-
-
QIO0
-
SD1DAT AN017
0_A
IVCMP0
-
G4
79
-
-
-
-
P503
-
-
GTETRGC
GTIOC12 B
USB_E XICEN
-
-
QIO1
-
SD1DAT AN117
1_A
-
-
G5
80
-
-
-
-
P504
ALE
-
GTETRGD
-
-
USB_ID -
-
-
QIO2
-
SD1DAT AN018
2_A
-
-
G6
81
-
-
-
-
P508
-
-
-
-
-
-
-
-
-
-
-
SD1DAT AN020
3_A
-
-
K3
-
82
51
51
VCC
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J3
83
52
52
VSS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J4
84
53
53
-
IRQ13
P015
-
-
-
-
-
-
-
-
-
-
-
-
AN006/A
N106
DA1/
IVCMP1
-
K4
85
54
54
-
-
P014
-
-
-
-
-
-
-
-
-
-
-
-
AN005/A
N105
DA0/
IVREF3
-
J5
86
55
55
VREFL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K5
87
56
56
VREFH
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H5
88
57
57
AVCC0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H6
89
58
58
AVSS0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J6
90
59
59
VREFL0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K6
91
60
60
VREFH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J7
92
-
-
-
IRQ12- P008
DS
-
-
-
-
-
-
-
-
-
-
-
-
AN003
-
-
H7
93
-
-
-
-
P007
-
-
-
-
-
-
-
-
-
-
-
-
PGAVSS1 00/AN107
-
G7
94
-
-
-
IRQ11- P006
DS
-
-
-
-
-
-
-
-
-
-
-
-
AN102
IVCMP2
-
K7
95
-
-
-
IRQ10- P005
DS
-
-
-
-
-
-
-
-
-
-
-
-
AN101
IVCMP2
-
IVCMP2
-
J8
96
-
-
-
IRQ9DS
P004
-
-
-
-
-
-
-
-
-
-
-
-
AN100
H8
97
61
61
-
-
P003
-
-
-
-
-
-
-
-
-
-
-
-
PGAVSS0 00/AN007
-
K8
98
62
62
-
IRQ8DS
P002
-
-
-
-
-
-
-
-
-
-
-
-
AN002
-
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
IVCMP2
Page 21 of 92
HMI
CTSU
DAC12,
ACMPHS
ADC12
SDHI
SSIE
SPI, QSPI
Analog
IIC
SCI1,3,9
(30 MHz)
USBFS,
CAN
RTC
GPT
GPT
SCI0,2,4,8
(30 MHz)
Communication interfaces
AGT
I/O port
External bus
Timers
Interrupt
QFN64
LQFP64
LGA100
LQFP100
Pin number
1. Overview
Power, System,
Clock, Debug,
CAC
S5D3 Datasheet
K9
99
63
63
-
IRQ7DS
P001
-
-
-
-
-
-
-
-
-
-
-
-
AN001
IVCMP2
-
K10
100
64
64
-
IRQ6DS
P000
-
-
-
-
-
-
-
-
-
-
-
-
AN000
IVCMP2
-
Note:
Some pin names have the added suffix of _A and _B. When assigning the GPT, IIC, SPI, SSIE, and SDHI functionality, select
the functional pins with the same suffix.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 22 of 92
S5D3 Datasheet
2.
2. Electrical Characteristics
Electrical Characteristics
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V
2.7 ≤ VREFH0/VREFH ≤ AVCC0
VSS = AVSS0 = VREFL0/VREFL = VSS_USB = 0 V
Ta = Topr.
Figure 2.1 shows the timing conditions.
For example P100
C
VOH = VCC × 0.7, VOL = VCC × 0.3
VIH = VCC × 0.7, VIL = VCC × 0.3
Load capacitance C = 30 pF
Figure 2.1
Input or output timing measurement conditions
The measurement conditions for the timing specification of each peripheral are recommended for the best peripheral
operation. However, make sure to adjust the driving abilities of each pin to meet the conditions of your system.
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function
pin is mixed, the A/C specification of each function is not guaranteed.
2.1
Absolute Maximum Ratings
Table 2.1
Absolute maximum ratings
Parameter
Symbol
Value
Unit
Power supply voltage
VCC, VCC_USB *2
-0.3 to +4.0
V
VBATT power supply voltage
VBATT
-0.3 to +4.0
V
Input voltage (except for 5 V-tolerant ports*1)
Vin
-0.3 to VCC + 0.3
V
Input voltage (5 V-tolerant ports*1)
Vin
-0.3 to + VCC + 4.0 (max. 5.8)
V
Reference power supply voltage
VREFH/VREFH0
-0.3 to AVCC0 + 0.3
V
Analog power supply voltage
AVCC0 *2
-0.3 to +4.0
V
Analog input voltage (except for P000 to P007)
VAN
-0.3 to AVCC0 + 0.3
V
Analog input voltage (P000 to P007) when PGA
differential input is disabled
VAN
-0.3 to AVCC0 + 0.3
V
Analog input voltage (P000 to P002, P004 to P006)
when PGA differential input is enabled
VAN
-1.3 to AVCC0 + 0.3
V
Analog input voltage (P003, P007) when PGA differential
input is enabled
VAN
-0.8 to AVCC0 + 0.3
V
Operating temperature*3, *4, *5
Topr
-40 to +85
-40 to +105
°C
Storage temperature
Tstg
-55 to +125
°C
Caution:
Permanent damage to the MCU might result if absolute maximum ratings are exceeded.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 23 of 92
S5D3 Datasheet
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
2. Electrical Characteristics
Ports P205, P206, P400, P401, P407 to P415, and P708 are 5 V tolerant.
Connect AVCC0 and VCC_USB to VCC.
See section 2.2.1, Tj/Ta Definition.
Contact Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the
systematic reduction of load for improved reliability.
The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part
Numbering.
Table 2.2
Recommended operating conditions
Parameter
Symbol
Value
Min
Typ
Max
Unit
Power supply voltages
VCC
When USB is not used
2.7
-
3.6
V
When USB is used
3.0
-
3.6
V
VSS
-
0
-
V
VCC_USB
-
VCC
-
V
VSS_USB
-
0
-
V
VBATT power supply voltage
VBATT
1.8
-
3.6
V
Analog power supply voltages
AVCC0*1
-
VCC
-
V
AVSS0
-
0
-
V
USB power supply voltages
Note 1.
Connect AVCC0 to VCC. When the A/D converter, the D/A converter, or the comparator are not in use, do not leave the
AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC,
and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.
2.2
DC Characteristics
2.2.1
Tj/Ta Definition
Table 2.3
DC characteristics
Conditions: Products with operating temperature (Ta) -40 to +105°C.
Parameter
Permissible junction temperature
Note:
100-pin LQFP
64-pin LQFP
Symbol
Typ
Max
Unit
Test conditions
Tj
-
125
°C
High-speed mode
Low-speed mode
Subosc-speed mode.
64-pin QFN
117
100-pin LGA
105
Make sure that Tj = Ta + θja × total power consumption (W),
where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC.
The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part
Numbering.
2.2.2
Table 2.4
I/O VIH, VIL
I/O VIH, VIL (1 of 2)
Parameter
Input voltage
(except for
Schmitt trigger
input pins)
Peripheral
function
pin
EXTAL(external clock input), WAIT, SPI
(except RSPCK)
D00 to D07
IIC (SMBus)*1
IIC (SMBus)*2
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Symbo
l
Min
Typ
Max
Unit
VIH
VCC × 0.8
-
-
V
VIL
-
-
VCC × 0.2
VIH
VCC × 0.7
-
-
VIL
-
-
VCC × 0.3
VIH
2.1
-
-
VIL
-
-
0.8
VIH
2.1
-
VCC + 3.6
(max 5.8)
VIL
-
-
0.8
Page 24 of 92
S5D3 Datasheet
Table 2.4
2. Electrical Characteristics
I/O VIH, VIL (2 of 2)
Parameter
Schmitt trigger
input voltage
Peripheral
function
pin
IIC (except for SMBus)*1
IIC (except for SMBus)*2
5 V-tolerant ports*3, *7
RTCIC0,
RTCIC1,
RTCIC2
When using the
battery backup
function
When VBATT
power supply is
selected
When VCC
power supply is
selected
When not using the battery backup
function
Other input pins*4
Ports
5 V-tolerant ports*5, *7
Other input
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Note 7.
pins*6
Symbo
l
Min
Typ
Max
Unit
VIH
VCC × 0.7
-
-
V
VIL
-
-
VCC × 0.3
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.7
-
VCC + 3.6
(max 5.8)
VIL
-
-
VCC × 0.3
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
VCC + 3.6
(max 5.8)
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
VIH
VBATT ×
0.8
-
VBATT + 0.3
VIL
-
-
VBATT × 0.2
ΔVT
VBATT ×
0.05
-
-
VIH
VCC × 0.8
-
Higher
voltage
either
VCC + 0.3 V
or
VBATT + 0.3
V
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
VCC + 0.3
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
ΔVT
VCC × 0.05
-
-
VIH
VCC × 0.8
-
VCC + 3.6
(max 5.8)
VIL
-
-
VCC × 0.2
VIH
VCC × 0.8
-
-
VIL
-
-
VCC × 0.2
V
V
SCL1_B, SDA1_B (total 2 pins).
SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A (total 6 pins).
RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P708 (total 15 pins).
All input pins except for the peripheral function pins already described in the table.
P205, P206, P400, P401, P407 to P415, P708 (total 14 pins).
All input pins except for the ports already described in the table.
When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur
because 5 V-tolerant ports are electrically controlled so as not to violate the breakdown voltage.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 25 of 92
S5D3 Datasheet
2.2.3
2. Electrical Characteristics
I/O IOH, IOL
Table 2.5
I/O IOH, IOL
Parameter
Permissible output current
(average value per pin)
Ports P008, P201
-
Ports P014, P015
-
Ports P205, P206, P407 to P415,
P602, P708 (total 13 pins)
Low drive*1
Middle drive*2
High drive*3
Low drive*1
Middle drive*2
High drive*3
Other output pins*4
Permissible output current
(max value per pin)
Caution:
Note 1.
Note 2.
Note 3.
Note 4.
Min
Typ
Max
Unit
IOH
-
-
-2.0
mA
IOL
-
-
2.0
mA
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
-2.0
mA
IOL
-
-
2.0
mA
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
-20
mA
IOL
-
-
20
mA
IOH
-
-
-2.0
mA
IOL
-
-
2.0
mA
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
IOH
-
-
-16
mA
IOL
-
-
16
mA
IOH
-
-
-4.0
mA
Ports P008, P201
-
IOL
-
-
4.0
mA
Ports P014, P015
-
IOH
-
-
-8.0
mA
IOL
-
-
8.0
mA
Ports P205, P206, P407 to P415,
P602, P708 (total 13 pins)
Low drive*1
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
Middle drive*2
IOH
-
-
-8.0
mA
IOL
-
-
8.0
mA
High drive*3
IOH
-
-
-40
mA
IOL
-
-
40
mA
Low drive*1
IOH
-
-
-4.0
mA
IOL
-
-
4.0
mA
Middle drive*2
IOH
-
-
-8.0
mA
IOL
-
-
8.0
mA
High drive*3
IOH
-
-
-32
mA
Other output pins*4
Permissible output current
(max value of total of all pins)
Symbol
Maximum of all output pins
IOL
-
-
32
mA
ΣIOH (max)
-
-
-80
mA
ΣIOL (max)
-
-
80
mA
To protect the reliability of the MCU, the output current values should not exceed the values in this table. The
average output current indicates the average value of current measured during 100 μs.
This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving
ability is retained in Deep Software Standby mode.
This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected
driving ability is retained in Deep Software Standby mode.
This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected
driving ability is retained in Deep Software Standby mode.
Except for P000 to P007, P200, which are input ports.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 26 of 92
S5D3 Datasheet
2.2.4
2. Electrical Characteristics
I/O VOH, VOL, and Other Characteristics
Table 2.6
I/O VOH, VOL, and other characteristics
Parameter
Output voltage
Symbol
Min
Typ
Max
Unit
Test conditions
IIC
VOL
-
-
0.4
V
IOL = 3.0 mA
VOL
-
-
0.6
IOL = 6.0 mA
IIC*1
VOL
-
-
0.4
IOL = 15.0 mA
(ICFER.FMPE = 1)
VOL
-
0.4
-
IOL = 20.0 mA
(ICFER.FMPE = 1)
VOH
VCC - 1.0
-
-
IOH = -20 mA
VCC = 3.3 V
VOL
-
-
1.0
IOL = 20 mA
VCC = 3.3 V
Other output pins
VOH
VCC - 0.5
-
-
IOH = -1.0 mA
VOL
-
-
0.5
RES
|Iin|
-
-
5.0
Ports P000 to P002, P004 to P006,
P200
-
-
1.0
Vin = 0 V
Vin = VCC
Ports P003, P007
Before
initialization*3
-
-
45.0
Vin = 0 V
Vin = VCC
After
initialization*4
-
-
1.0
Vin = 0 V
Vin = VCC
-
-
5.0
-
-
1.0
Ports P205, P206, P407 to P415,
P602, P708 (total of 13 pins)*2
Input leakage current
Three-state leakage
current (off state)
5 V-tolerant ports
|ITSI|
Other ports (except for ports P000
to P007, P200)
IOL = 1.0 mA
μA
μA
Vin = 0 V
Vin = 5.5 V
Vin = 0 V
Vin = 5.5 V
Vin = 0 V
Vin = VCC
Input pull-up MOS current
Ports P0 to P7 (except for ports
P000 to P007)
Ip
-300
-
-10
μA
VCC = 2.7 to 3.6 V
Vin = 0 V
Input capacitance
USB_DP, USB_DM, and ports
P003, P007, P014, P015, P400,
P401
Cin
-
-
16
pF
-
-
8
Vbias = 0 V
Vamp = 20 mV
f = 1 MHz
Ta = 25°C
Other input pins
Note 1.
Note 2.
Note 3.
Note 4.
SCL0_A, SDA0_A (total 2 pins).
This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register.
The selected driving ability is retained in Deep Software Standby mode.
P0nPFS.ASEL(n = 3 or 7) = 1
P0nPFS.ASEL(n = 3 or 7) = 0
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 27 of 92
S5D3 Datasheet
2.2.5
2. Electrical Characteristics
Operating and Standby Current
Table 2.7
Operating and standby current (1 of 2)
Parameter
Maximum*2
Supply
current*1
Symbol
Min
Typ
Max
Unit
Test conditions
ICC*3
-
-
87
mA
ICLK = 120 MHz
PCLKA = 120 MHz
PCLKB = 60 MHz
PCLKC = 60 MHz
PCLKD = 120 MHz
FCLK = 60 MHz
BCLK = 120 MHz
CoreMark®*5
High-speed mode
Normal mode
-
17
-
All peripheral clocks enabled,
while (1) code executing from
flash*4
-
24
-
All peripheral clocks disabled,
while (1) code executing from
flash*5, *6
-
12
-
-
9
33.5
Sleep mode*5, *6
Increase during BGO
operation
Data flash P/E
-
6
-
Code flash P/E
-
8
-
-
1.2
-
ICLK = 1 MHz
Low-speed mode*5
-
1.0
-
ICLK = 32.768 kHz
Software Standby mode
-
1.3
13
Ta ≤ 85°C
-
1.3
21
Power supplied to Standby SRAM and USB resume
detecting unit
-
28
65
-
28
93
Ta ≤ 105°C
Power not supplied to
SRAM or USB resume
detecting unit
Power-on reset circuit low
power function disabled
-
11.6
28
Ta ≤ 85°C
-
11.6
32
Ta ≤ 105°C
Power-on reset circuit low
power function enabled
-
4.9
21
Ta ≤ 85°C
-
4.9
26
Ta ≤ 105°C
When the low-speed on-chip
oscillator (LOCO) is in use
-
4.4
-
-
When a crystal oscillator for
low clock loads is in use
-
1.0
-
-
When a crystal oscillator for
standard clock loads is in use
-
1.4
-
-
When a crystal
oscillator for low clock
loads is in use
-
0.9
-
VBATT = 1.8 V,
VCC = 0 V
-
1.1
-
VBATT = 3.3 V,
VCC = 0 V
When a crystal
oscillator for standard
clock loads is in use
-
1.0
-
VBATT = 1.8 V,
VCC = 0 V
-
1.6
-
VBATT = 3.3 V,
VCC = 0 V
Deep Software Standby mode
Subosc-speed mode*5
Increase when the RTC
and AGT are operating
RTC operating while VCC is off (with
the battery backup function, only the
RTC and sub-clock oscillator
operate)
Analog
power
supply
current
Ta ≤ 105°C
μA
Ta ≤ 85°C
-
0.8
1.1
mA
During 12-bit A/D conversion with S/H amp
-
2.3
3.3
mA
-
PGA (1ch)
-
1
3
mA
-
ACMPHS (1 unit)
-
100
150
µA
-
Temperature sensor
-
0.1
0.2
mA
-
-
0.1
0.2
mA
-
During 12-bit A/D conversion
During D/A conversion (per unit)
AICC
Without AMP output
With AMP output
-
-
0.6
1.1
mA
Waiting for A/D, D/A conversion (all units)
-
0.9
1.6
mA
-
ADC12, DAC12 in standby modes (all units)*7
-
2
8
µA
-
-
70
120
μA
-
Reference
power
supply
current
(VREFH0)
During 12-bit A/D conversion (unit 0)
Reference
power
supply
current
(VREFH)
During 12-bit A/D conversion (unit 1)
AIREFH0
Waiting for 12-bit A/D conversion (unit 0)
-
0.07
0.5
μA
-
ADC12 in standby modes (unit 0)
-
0.07
0.5
µA
-
During D/A conversion
(per unit)
AIREFH
-
70
120
µA
-
Without AMP output
-
0.1
0.4
mA
-
With AMP ouput
-
0.1
0.4
mA
-
Waiting for 12-bit A/D (unit 1), D/A (all units) conversion
-
0.07
0.8
µA
-
ADC12 unit 1 in standby modes
-
0.07
0.8
µA
-
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 28 of 92
S5D3 Datasheet
Table 2.7
2. Electrical Characteristics
Operating and standby current (2 of 2)
Parameter
USB
operating
current
Note 1.
Note 2.
Note 3.
Note 4.
Note 5.
Note 6.
Note 7.
Symbol
Min
Typ
Max
Unit
Test conditions
Low speed
USB
ICCUSBLS
-
3.5
6.5
mA
VCC_USB
Full speed
USB
ICCUSBFS
-
4.0
10.0
mA
VCC_USB
Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.
Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCK:EBCLK = 2:2:1:1:2:1:1)
ICC Max. = 0.53 x f + 23 (maximum operation in High-speed mode)
ICC Typ. = 0.08 x f + 2.4 (normal operation in High-speed mode)
ICC Typ. = 0.1 x f + 1.1 (Low-speed mode)
ICC Max. = 0.09 x f + 23 (Sleep mode).
This does not include the BGO operation.
Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz).
When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-bit A/D Converter 0 Module Stop bit) and
MSTPCRD.MSTPD15 (12-bit A/D Converter 1 Module Stop bit) are in the module-stop state.
See section 42.6.8, Available functions and register settings of AN000 to AN002, AN007, AN100 to AN102, and AN107 in
User’s Manual.
100.0
ICC (mA)
10.0
1.0
-40
-20
0.1
0
20
40
60
80
100
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
Figure 2.2
Temperature dependency in Software Standby mode (reference data)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 29 of 92
S5D3 Datasheet
2. Electrical Characteristics
Figure 2.3
Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and
USB resume detecting unit (reference data)
Figure 2.4
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low power function disabled (reference data)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 30 of 92
S5D3 Datasheet
Figure 2.5
2.2.6
2. Electrical Characteristics
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low power function enabled (reference data)
VCC Rise and Fall Gradient and Ripple Frequency
Table 2.8
Rise and fall gradient characteristics
Parameter
VCC rising gradient
Voltage monitor 0 reset disabled at startup
Symbol
Min
Typ
Max
Unit
Test conditions
SrVCC
0.0084
-
20
ms/V
-
0.0084
-
-
0.0084
-
20
0.0084
-
-
Voltage monitor 0 reset enabled at startup
SCI/USB boot
mode*1
VCC falling gradient*2
Note 1.
Note 2.
SfVCC
ms/V
-
At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.
This applies when VBATT is used.
Table 2.9
Rise and fall gradient and ripple frequency characteristics
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit
(2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Allowable ripple frequency
fr (VCC)
-
-
10
kHz
Figure 2.6
Vr (VCC) ≤ VCC × 0.2
-
-
1
MHz
Figure 2.6
Vr (VCC) ≤ VCC × 0.08
-
-
10
MHz
Figure 2.6
Vr (VCC) ≤ VCC × 0.06
1.0
-
-
ms/V
When VCC change exceeds VCC ±10%
Allowable voltage change rising
and falling gradient
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
dt/dVCC
Page 31 of 92
S5D3 Datasheet
2. Electrical Characteristics
1/fr(VCC)
VCC
Figure 2.6
2.3
Vr( VCC)
Ripple waveform
AC Characteristics
2.3.1
Frequency
Table 2.10
Operation frequency value in high-speed mode
Parameter
Symbol
Operation frequency
System clock
(ICLK*2)
120
120
Peripheral module clock (PCLKB)*2
-
-
60
Peripheral module clock (PCLKC)*2
-*3
-
60
-
-
120
-*1
-
60
(PCLKD)*2
(BCLK)*2
-
-
120
-
-
60
FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.
Table 2.11
Operation frequency value in low-speed mode
Parameter
Operation frequency
Symbol
System clock
(ICLK)*2
Typ
Max
Unit
MHz
-
-
1
-
-
1
Peripheral module clock (PCLKB)*2
-
-
1
Peripheral module clock (PCLKC)*2,*3
-*3
-
1
-
-
1
-
-
1
Peripheral module clock
f
Min
Peripheral module clock (PCLKA)*2
(PCLKD)*2
Flash interface clock (FCLK)*1, *2
Note 3.
MHz
-
External bus clock
Note 1.
Note 2.
Unit
-
EBCLK pin output
Note 3.
Max
-
Flash interface clock (FCLK)*2
Note 1.
Note 2.
Typ
Peripheral module clock (PCLKA)*2
Peripheral module clock
f
Min
External bus clock (BCLK)
-
-
1
EBCLK pin output
-
-
1
Programming or erasing the flash memory is disabled in Low-speed mode.
See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 32 of 92
S5D3 Datasheet
Table 2.12
2. Electrical Characteristics
Operation frequency value in Subosc-speed mode
Parameter
Operation frequency
Symbol
Min
Typ
Max
Unit
f
29.4
-
36.1
kHz
Peripheral module clock (PCLKA)*2
-
-
36.1
Peripheral module clock (PCLKB)*2
-
-
36.1
-
-
36.1
-
-
36.1
System clock (ICLK)*2
Peripheral module clock
(PCLKC)*2,*3
Peripheral module clock (PCLKD)*2
Flash interface clock
Note 1.
Note 2.
Note 3.
(FCLK)*1, *2
29.4
-
36.1
External bus clock (BCLK)*2
-
-
36.1
EBCLK pin output
-
-
36.1
Programming or erasing the flash memory is disabled in Subosc-speed mode.
See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
The ADC12 cannot be used.
2.3.2
Table 2.13
Clock Timing
Clock timing except for sub-clock oscillator (1 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Figure 2.7
EBCLK pin output cycle time
tBcyc
16.6
-
-
ns
EBCLK pin output high pulse width
tCH
3.3
-
-
ns
EBCLK pin output low pulse width
tCL
3.3
-
-
ns
EBCLK pin output rise time
tCr
-
-
5.0
ns
EBCLK pin output fall time
tCf
-
-
5.0
ns
EXTAL external clock input cycle time
tEXcyc
41.66
-
-
ns
EXTAL external clock input high pulse width
tEXH
15.83
-
-
ns
EXTAL external clock input low pulse width
tEXL
15.83
-
-
ns
EXTAL external clock rise time
tEXr
-
-
5.0
ns
EXTAL external clock fall time
tEXf
-
-
5.0
ns
Main clock oscillator frequency
fMAIN
8
-
24
MHz
-
Main clock oscillation stabilization wait time
(crystal) *1
tMAINOSCWT
-
-
-*1
ms
Figure 2.9
LOCO clock oscillation frequency
fLOCO
29.4912
32.768
36.0448
kHz
-
LOCO clock oscillation stabilization wait time
tLOCOWT
-
-
60.4
μs
Figure 2.10
ILOCO clock oscillation frequency
fILOCO
13.5
15
16.5
kHz
-
MOCO clock oscillation frequency
FMOCO
6.8
8
9.2
MHz
-
MOCO clock oscillation stabilization wait time
tMOCOWT
-
-
15.0
μs
-
HOCO clock oscillator
oscillation frequency
fHOCO16
15.78
16
16.22
MHz
-20 ≤ Ta ≤ 105°C
fHOCO18
17.75
18
18.25
fHOCO20
19.72
20
20.28
fHOCO16
15.71
16
16.29
fHOCO18
17.68
18
18.32
Without FLL
Figure 2.8
-40 ≤ Ta ≤ -20°C
fHOCO20
19.64
20
20.36
fHOCO16
15.955
16
16.045
fHOCO18
17.949
18
18.051
fHOCO20
19.944
20
20.056
tHOCOWT
-
-
64.7
FLL stabilization wait time
tFLLWT
-
-
1.8
ms
-
PLL clock frequency
fPLL
120
-
240
MHz
-
With FLL
HOCO clock oscillation stabilization wait time*2
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
-40 ≤ Ta ≤ 105°C
Sub-clock
frequency accuracy
is ±50 ppm.
μs
-
Page 33 of 92
S5D3 Datasheet
Table 2.13
2. Electrical Characteristics
Clock timing except for sub-clock oscillator (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
PLL clock oscillation stabilization wait time
tPLLWT
-
-
174.9
μs
Figure 2.11
Note 1.
Note 2.
When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as
the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the
recommended value.
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm
that it is 1, and then start using the main clock oscillator.
This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed
operation.
Table 2.14
Clock timing for the sub-clock oscillator
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Sub-clock frequency
fSUB
-
32.768
-
kHz
-
Sub-clock oscillation stabilization wait time
tSUBOSCWT
-
-
-*1
s
-
Note 1.
When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time.
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after
the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is
recommended.
tBcyc
tCH
tCf
EBCLK pin output
tCL
Figure 2.7
tCr
EBCLK output timing
tEXcyc
tEXH
EXTAL external clock input
VCC × 0.5
tEXr
Figure 2.8
tEXL
tEXf
EXTAL external clock input timing
MOSCCR.MOSTP
Main clock oscillator output
tMAINOSCWT
Main clock
Figure 2.9
Main clock oscillation start timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 34 of 92
S5D3 Datasheet
2. Electrical Characteristics
LOCOCR.LCSTP
On-chip oscillator output
tLOCOWT
LOCO clock
Figure 2.10
LOCO clock oscillation start timing
PLLCR.PLLSTP
PLL circuit output
tPLLWT
OSCSF.PLLSF
PLL clock
Figure 2.11
Note:
PLL clock oscillation start timing
Only operate the PLL after the main clock oscillation has stabilized.
SOSCCR.SOSTP
tSUBOSC
Sub-clock oscillator output
Sub-clock
Figure 2.12
2.3.3
Table 2.15
Sub-clock oscillation start timing
Reset Timing
Reset timing (1 of 2)
Symbol
Min
Typ
Max
Unit
Test
conditions
Power-on
tRESWP
1
-
-
ms
Figure 2.13
Deep Software Standby mode
tRESWD
0.6
-
-
ms
Figure 2.14
Software Standby mode, Subosc-speed
mode
tRESWS
0.3
-
-
ms
All other
tRESW
200
-
-
μs
tRESWT
-
29
32
μs
Parameter
RES pulse width
Wait time after RES cancellation
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Figure 2.13
Page 35 of 92
S5D3 Datasheet
Table 2.15
2. Electrical Characteristics
Reset timing (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
Wait time after internal reset cancellation (IWDT reset, WDT
reset, software reset, SRAM parity error reset, SRAM ECC error
reset, bus master MPU error reset, bus slave MPU error reset,
stack pointer error reset)
tRESW2
-
320
390
μs
-
VCC
RES
Internal reset signal
(active-low)
tRESWP
tRESWT
Figure 2.13
Power-on reset timing
tRESWD, tRESWS, tRESW
RES
Internal reset signal
(active-low)
tRESWT
Figure 2.14
2.3.4
Table 2.16
Reset input timing
Wakeup Timing
Timing of recovery from low power modes (1 of 2)
Parameter
Recovery time
from Software
Standby mode*1
Symbol
Min
Typ
Max
Unit
Crystal
resonator
connected
to main
clock
oscillator
System clock source is main
clock oscillator*2
tSBYMC
-
2.4*9
2.8*9
ms
System clock source is PLL
with main clock oscillator*3
tSBYPC
-
2.7*9
3.2*9
ms
External
clock input
to main
clock
oscillator
System clock source is main
clock oscillator*4
tSBYEX
-
230*9
280*9
μs
System clock source is PLL
with main clock oscillator*5
tSBYPE
-
570*9
700*9
μs
System clock source is sub-clock
oscillator*8
tSBYSC
-
1.2*9
1.3*9
ms
System clock source is LOCO*8
tSBYLO
-
1.2*9
1.4*9
ms
300
*9, *10
µs
300*9
µs
HOCO*6
tSBYHO
-
240*9, *10
System clock source is MOCO*7
tSBYMO
-
220*9
System clock source is
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Test
conditions
Figure 2.15
The division
ratio of all
oscillators is 1.
Page 36 of 92
S5D3 Datasheet
Table 2.16
2. Electrical Characteristics
Timing of recovery from low power modes (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
Recovery time from Deep Software Standby mode
tDSBY
-
0.65
1.0
ms
Figure 2.16
Wait time after cancellation of Deep Software Standby mode
tDSBYWT
34
-
35
tcyc
70
*9, *10
μs
14*9
μs
Recovery time
from Software
Standby mode to
Snooze mode
High-speed mode when system clock
source is HOCO (20 MHz)
tSNZ
-
35*9, *10
High-speed mode when system clock
source is MOCO (8 MHz)
tSNZ
-
11*9
Figure 2.17
Note 1.
The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be
determined with the following equation:
Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any
oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3
SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For
other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
05h))
Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
05h))
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).
For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
00h))
Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
00h))
Note 6. The HOCO frequency is 20 MHz.
Note 7. The MOCO frequency is 8 MHz.
Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time:
STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum)
STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).
Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 37 of 92
S5D3 Datasheet
2. Electrical Characteristics
Oscillator
(system clock)
tSBYOSCWT
tSBYSEQ
Oscillator
(not the system clock)
ICLK
IRQ
Software Standby mode
tSBYMC, tSBYEX, tSBYPC, tSBYPE,
tSBYPH, tSBYSC, tSBYHO, tSBYLO
When stabilization of the system clock oscillator is slower
Oscillator
(system clock)
tSBYOSCWT
tSBYSEQ
Oscillator
(not the system clock)
tSBYOSCWT
ICLK
IRQ
Software Standby mode
tSBYMC, tSBYEX, tSBYPC, tSBYPE,
tSBYPH, tSBYSC, tSBYHO, tSBYLO
When stabilization of an oscillator other than the system clock is slower
Figure 2.15
Software Standby mode cancellation timing
Oscillator
IRQ
Deep Software Standby reset
(active-low)
Internal reset
(active-low)
Deep Software Standby mode
tDSBY
tDSBYWT
Reset exception handling start
Figure 2.16
Deep Software Standby mode cancellation timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 38 of 92
S5D3 Datasheet
2. Electrical Characteristics
Oscillator
ICLK(except DTC, SRAM)
ICLK(to DTC, SRAM)*1 PCLK
IRQ
Software Standby mode
Snooze mode
tSNZ
Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.
Figure 2.17
2.3.5
Recovery timing from Software Standby mode to Snooze mode
NMI and IRQ Noise Filter
Table 2.17
NMI and IRQ noise filter
Parameter
Symbol
Min
NMI pulse width
tNMIW
200
tPcyc × 2*1
200
-
-
tNMICK ×
IRQ pulse width
Note:
Note 1.
Note 2.
Note 3.
tIRQW
Typ
3.5*2
Max
Unit
Test conditions
-
-
ns
NMI digital filter disabled
-
-
-
-
200
-
-
tPcyc × 2*1
-
-
200
-
-
tIRQCK × 3.5*3
-
-
tPcyc × 2 ≤ 200 ns
tPcyc × 2 > 200 ns
NMI digital filter enabled
tNMICK × 3 ≤ 200 ns
IRQ digital filter disabled
tPcyc × 2 ≤ 200 ns
tNMICK × 3 > 200 ns
ns
tPcyc × 2 > 200 ns
IRQ digital filter enabled
tIRQCK × 3 ≤ 200 ns
tIRQCK × 3 > 200 ns
200 ns minimum in Software Standby mode.
tPcyc indicates the PCLKB cycle.
tNMICK indicates the cycle of the NMI digital filter sampling clock.
tIRQCK indicates the cycle of the IRQi digital filter sampling clock.
NMI
tNMIW
Figure 2.18
NMI interrupt input timing
IRQ
tIRQW
Figure 2.19
IRQ interrupt input timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 39 of 92
S5D3 Datasheet
2.3.6
2. Electrical Characteristics
Bus Timing
Table 2.18
Bus timing
Conditions:
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz.
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF.
EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test conditions
Address delay
tAD
-
12.5
ns
CS delay
tCSD
-
12.5
ns
Figure 2.22 to
Figure 2.25
ALE delay time
tALED
-
12.5
ns
RD delay
tRSD
-
12.5
ns
Read data setup time
tRDS
12.5
-
ns
Read data hold time
tRDH
0
-
ns
WR0 delay
tWRD
-
12.5
ns
Write data delay
tWDD
-
12.5
ns
Write data hold time
tWDH
0
-
ns
WAIT setup time
tWTS
12.5
-
ns
WAIT hold time
tWTH
0
-
ns
Figure 2.26
Data cycle
Address cycle
Ta1
Ta1
Tan
TW1
TW2
TW3
TW4
TW5
Tend
Tn1
Tn2
EBCLK
tAD
Address bus
Address bus/
data bus
tAD
tRDS
tAD
tALED
tRDH
tALED
Address latch
(ALE)
tRSD
tRSD
Data read
(RD)
tCSD
Chip select
(CSn)
Figure 2.20
tCSD
Address/data multiplexed bus read access timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 40 of 92
S5D3 Datasheet
2. Electrical Characteristics
Data cycle
Address cycle
Ta1
Ta1
Tan
TW1
TW2
TW3
TW4
TW5
Tend
Tn1
Tn2
Tn3
EBCLK
tAD
Address bus
Address bus/
data bus
tAD
tAD
tALED
tWDD
tWDH
tALED
Address latch
(ALE)
tWRD
tWRD
Data write
(WR0)
tCSD
Chip select
(CSn)
Figure 2.21
tCSD
Address/data multiplexed bus write access timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 41 of 92
S5D3 Datasheet
2. Electrical Characteristics
CSRWAIT: 2
RDON:1
CSROFF: 2
CSON: 0
TW1
TW2
Tend
Tn1
Tn2
EBCLK
tAD
tAD
A12 to A00
tCSD
tCSD
CS7 to CS4, CS1, CS0
tRSD
tRSD
RD (read)
tRDS
tRDH
D07 to D00 (read)
Figure 2.22
External bus timing for normal read cycle with bus clock synchronized
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 42 of 92
S5D3 Datasheet
2. Electrical Characteristics
CSWWAIT: 2
WRON: 1
WDON: 1*1
CSWOFF: 2
WDOFF: 1*1
CSON:0
TW1
TW2
Tend
Tn1
Tn2
EBCLK
tAD
tAD
A12 to A00
tCSD
tCSD
CS7 to CS4, CS1, CS0
tWRD
tWRD
WR0 (write)
tWDD
tWDH
D07 to D00 (write)
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.
Figure 2.23
External bus timing for normal write cycle with bus clock synchronized
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 43 of 92
S5D3 Datasheet
2. Electrical Characteristics
CSRWAIT:2
CSPRWAIT:2
RDON:1
CSON:0
TW1
TW2
Tend
CSPRWAIT:2
CSPRWAIT:2
RDON:1
RDON:1
Tpw1
Tpw2
Tend
CSROFF:2
RDON:1
Tpw1
Tpw2
Tend
Tpw1
Tpw2
Tend
Tn1
Tn2
EBCLK
tAD
tAD
tAD
tAD
tAD
A12 to A00
tCSD
tCSD
CS7 to CS4, CS1, CS0
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
tRSD
RD (Read)
tRDS
tRDH
tRDS
tRDH
tRDS
tRDH
tRDS
tRDH
D07 to D00 (Read)
Figure 2.24
External bus timing for page read cycle with bus clock synchronized
CSPWWAIT:2
CSWWAIT:2
WRON:1
WDON:1*1
CSON:0 TW1
WDOFF:1*1
TW2
Tend
Tdw1
WRON:1
WDON:1*1
Tpw1
CSPWWAIT:2
WDOFF:1*1
Tpw2
Tend
Tdw1
WRON:1
WDON:1*1
Tpw1
CSWOFF:2
WDOFF:1*1
Tpw2
Tend
Tn1
Tn2
EBCLK
tAD
tAD
tAD
tAD
A12 to A00
tCSD
tCSD
CS7 to CS4, CS1, CS0
tWRD
tWRD
tWRD
tWRD
tWRD
tWRD
WR0 (write)
tWDD
tWDH
tWDD
tWDH
tWDD
tWDH
D07 to D00 (write)
Note 1.
Figure 2.25
Always specify WDON and WDOFF as at least one EBCLK cycle.
External bus timing for page write cycle with bus clock synchronized
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 44 of 92
S5D3 Datasheet
2. Electrical Characteristics
CSRWAIT:3
CSWWAIT:3
TW1
TW2
TW3
(Tend)
Tend
Tn1
Tn2
EBCLK
A12 to A00
CS7 to CS4, CS1, CS0
RD (read)
WR0 (write)
External wait
tWTS tWTH
tWTS tWTH
WAIT
Figure 2.26
2.3.7
Table 2.19
External bus timing for external wait control
I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2)
GPT32 conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
AGT conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test
conditions
I/O ports
Input data pulse width
tPRW
1.5
-
tPcyc
Figure 2.27
POEG
POEG input trigger pulse width
tPOEW
3
-
tPcyc
Figure 2.28
GPT32
Input capture pulse width
tGTICW
1.5
-
tPDcyc
Figure 2.29
2.5
-
-
4
ns
Figure 2.30
Single edge
Dual edge
GPT
(PWM Delay
Generation
Circuit)
tGTISK*2
GTIOCxY output skew
(x = 0 to 7, Y= A or B)
Middle drive buffer
High drive buffer
-
4
GTIOCxY output skew
(x = 8 to 12, Y = A or B)
Middle drive buffer
-
4
High drive buffer
-
4
GTIOCxY output skew
(x = 0 to 12, Y = A or B)
Middle drive buffer
-
6
High drive buffer
-
6
OPS output skew
GTOUUP, GTOULO, GTOVUP,
GTOVLO, GTOWUP, GTOWLO
tGTOSK
-
5
ns
Figure 2.31
GTIOCxY_Z output skew
(x = 0 to 3, Y = A or B, Z = A)
tHRSK*3
-
2.0
ns
Figure 2.32
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 45 of 92
S5D3 Datasheet
Table 2.19
2. Electrical Characteristics
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2)
GPT32 conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
AGT conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Symbol
Min
Max
Unit
Test
conditions
AGTIO, AGTEE input cycle
tACYC*4
100
-
ns
Figure 2.33
AGTIO, AGTEE input high width, low width
tACKWH,
tACKWL
40
-
ns
Parameter
AGT
AGTIO, AGTO, AGTOA, AGTOB output cycle
tACYC2
62.5
-
ns
ADC12
ADC12 trigger input pulse width
tTRGW
1.5
-
tPcyc
Figure 2.34
KINT
KRn(n = 00 to 07) pulse width
tKR
250
-
ns
Figure 2.35
Note 1.
Note 2.
Note 3.
Note 4.
tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.
This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not
guaranteed.
The load is 30 pF.
Constraints on AGTIO input: tPcyc × 2 (tPcyc: PCLKB cycle) < tACYC.
Port
tPRW
Figure 2.27
I/O ports input timing
POEG input trigger
tPOEW
Figure 2.28
POEG input trigger timing
Input capture
tGTICW
Figure 2.29
GPT32 input capture timing
PCLKD
Output delay
GPT32 output
tGTISK
Figure 2.30
GPT32 output delay skew
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 46 of 92
S5D3 Datasheet
2. Electrical Characteristics
PCLKD
Output delay
GPT32 output
tGTOSK
Figure 2.31
GPT32 output delay skew for OPS
PCLKD
Output delay
GPT32 output
(PWM delay
generation circuit)
tHRSK
Figure 2.32
GPT32 (PWM delay generation circuit) output delay skew
tACYC
tACKWL
tACKWH
AGTIO, AGTEE
(input)
tACYC2
AGTIO, AGTO,
AGTOA, AGTOB
(output)
Figure 2.33
AGT input/output timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 47 of 92
S5D3 Datasheet
2. Electrical Characteristics
ADTRG0,
ADTRG1
tTRGW
Figure 2.34
ADC12 trigger input timing
KR00 to KR07
tKR
Figure 2.35
2.3.8
Key interrupt input timing
PWM Delay Generation Circuit Timing
Table 2.20
PWM Delay Generation Circuit timing
Parameter
Min
Typ
Max
Unit
Test conditions
Operation frequency
80
-
120
MHz
-
Resolution
-
260
-
ps
PCLKD = 120 MHz
DNL*1
-
±2.0
-
LSB
-
Note 1.
This value normalizes the differences between lines in 1-LSB resolution.
2.3.9
CAC Timing
Table 2.21
CAC timing
Parameter
CAC
CACREF input pulse width
tPBcyc ≤ tcac*2
tPBcyc >
Note 1.
Note 2.
tcac*2
Symbol
Min
Typ
Max
Unit
Test
conditions
tCACREF
4.5 × tcac + 3 × tPBcyc
-
-
ns
-
5 × tcac + 6.5 × tPBcyc
-
-
ns
tPBcyc: PCLKB cycle.
tcac: CAC count clock source cycle.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 48 of 92
S5D3 Datasheet
2.3.10
2. Electrical Characteristics
SCI Timing
Table 2.22
SCI timing (1)
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK4,
SCK8, SCK9.
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
SCI
Input clock cycle
Asynchronous
Unit*1
Test
conditions
4
-
tPcyc
Figure 2.36
6
-
Min
tScyc
Clock
synchronous
Input clock pulse width
tSCKW
0.4
0.6
tScyc
Input clock rise time
tSCKr
-
5
ns
tSCKf
-
5
ns
tScyc
6
-
tPcyc
4
-
Input clock fall time
Output clock cycle
Asynchronous
Clock
synchronous
Note 1.
Max
Symbol
Output clock pulse width
tSCKW
0.4
0.6
tScyc
Output clock rise time
tSCKr
-
5
ns
Output clock fall time
tSCKf
-
5
ns
Transmit data delay
Clock
synchronous
tTXD
-
25
ns
Receive data setup time
Clock
synchronous
tRXS
15
-
ns
Receive data hold time
Clock
synchronous
tRXH
5
-
ns
Figure 2.37
tPcyc: PCLKA cycle.
tSCKW
tSCKr
tSCKf
SCKn
(n = 0 to 4, 8, 9)
tScyc
Figure 2.36
SCK clock input/output timing
SCKn
tTXD
TxDn
tRXS tRXH
RxDn
(n = 0 to 4, 8, 9)
Figure 2.37
SCI input/output timing in clock synchronous mode
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 49 of 92
S5D3 Datasheet
Table 2.23
2. Electrical Characteristics
SCI timing (2)
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK4,
SCK8, SCK9.
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit
Test
conditions
Simple
SPI
tSPcyc
4 (PCLKA ≤ 60 MHz)
8 (PCLKA > 60 MHz)
65536
tPcyc
Figure 2.38
SCK clock cycle input (slave) -
6 (PCLKA ≤ 60 MHz)
12 (PCLKA > 60 MHz)
65536
SCK clock high pulse width
tSPCKWH
0.4
0.6
tSPcyc
SCK clock low pulse width
tSPCKWL
0.4
0.6
tSPcyc
SCK clock rise and fall time
tSPCKr, tSPCKf
-
20
ns
Data input setup time
tSU
33.3
-
ns
Data input hold time
tH
33.3
-
ns
SS input setup time
tLEAD
1
-
tSPcyc
SS input hold time
tLAG
1
-
tSPcyc
Data output delay
tOD
-
33.3
ns
Data output hold time
tOH
-10
-
ns
Data rise and fall time
tDr, tDf
-
16.6
ns
SS input rise and fall time
tSSLr, tSSLf
-
16.6
ns
Slave access time
tSA
-
4 (PCLKA ≤ 60 MHz)
8 (PCLKA > 60 MHz)
tPcyc
Slave output release time
tREL
-
5 (PCLKA ≤ 60 MHz)
10 (PCLKA > 60 MHz)
tPcyc
SCK clock cycle output
(master)
tSPCKr
tSPCKWH
SCKn
master select
output
VOH
VOH
VOL
Figure 2.39 to
Figure 2.42
Figure 2.42
tSPCKf
VOH
VOH
VOL
tSPCKWL
VOL
tSPcyc
tSPCKr
tSPCKWH
VIH
SCKn
slave select input
VIH
VIL
(n = 0 to 4, 8, 9)
tSPCKf
VIH
VIL
tSPCKWL
VIH
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
Figure 2.38
SCI simple SPI mode clock timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 50 of 92
S5D3 Datasheet
2. Electrical Characteristics
SCKn
CKPOL = 0
output
SCKn
CKPOL = 1
output
tSU
MISOn
input
tH
MSB IN
DATA
tDr, tDf
MOSIn
output
tOH
MSB OUT
LSB IN
MSB IN
tOD
DATA
LSB OUT
IDLE
MSB OUT
(n = 0 to 4, 8, 9)
Figure 2.39
SCI simple SPI mode timing for master when CKPH = 1
SCKn
CKPOL = 1
output
SCKn
CKPOL = 0
output
tSU
MISOn
input
tH
MSB IN
tOH
DATA
LSB IN
tOD
MOSIn
output
MSB IN
tDr, tDf
MSB OUT
DATA
LSB OUT
IDLE
MSB OUT
(n = 0 to 4, 8, 9)
Figure 2.40
SCI simple SPI mode timing for master when CKPH = 0
tTD
SSn
input
tLEAD
tLAG
SCKn
CKPOL = 0
input
SCKn
CKPOL = 1
input
tSA
tOH
MISOn
output
MSB OUT
tSU
MOSIn
input
tOD
DATA
tREL
LSB OUT
tH
MSB IN
MSB IN
MSB OUT
tDr, tDf
DATA
LSB IN
MSB IN
(n = 0 to 4, 8, 9)
Figure 2.41
SCI simple SPI mode timing for slave when CKPH = 1
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 51 of 92
S5D3 Datasheet
2. Electrical Characteristics
tTD
SSn
input
tLEAD
tLAG
SCKn
CKPOL = 1
input
SCKn
CKPOL = 0
input
tSA
tOH
tOD
LSB OUT
(Last data)
MISOn
output
MSB OUT
tSU
MOSIn
input
tREL
LSB OUT
DATA
tH
MSB OUT
tDr, tDf
MSB IN
DATA
LSB IN
MSB IN
(n = 0 to 4, 8, 9)
Figure 2.42
Table 2.24
SCI simple SPI mode timing for slave when CKPH = 0
SCI timing (3)
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Simple IIC
(Standard mode)
Simple IIC
(Fast mode)
Note:
Note 1.
Symbol
Min
Max
Unit
Test conditions
Figure 2.43
SDA input rise time
tSr
-
1000
ns
SDA input fall time
tSf
-
300
ns
SDA input spike pulse removal time
tSP
0
4 × tIICcyc
ns
Data input setup time
tSDAS
250
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb*1
-
400
pF
SDA input rise time
tSr
-
300
ns
SDA input fall time
tSf
-
300
ns
SDA input spike pulse removal time
tSP
0
4 × tIICcyc
ns
Data input setup time
tSDAS
100
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb*1
-
400
pF
Figure 2.43
tIICcyc: IIC internal reference clock (IICφ) cycle.
Cb indicates the total capacity of the bus line.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 52 of 92
S5D3 Datasheet
2. Electrical Characteristics
VIH
SDAn
VIL
tSr
tSf
tSP
SCLn
(n = 0 to 4, 8, 9)
P*1
S*1
tSDAH
Note 1. S, P, and Sr indicate the following:
S: Start condition
P: Stop condition
Sr: Restart condition
Figure 2.43
P*1
Sr*1
tSDAS
Test conditions:
VIH = VCC × 0.7, VIL = VCC × 0.3
VOL = 0.6 V, IOL = 6 mA
SCI simple IIC mode timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 53 of 92
S5D3 Datasheet
2.3.11
2. Electrical Characteristics
SPI Timing
Table 2.25
SPI timing
Conditions:
For RSPCKA and RSPCKB pins, high drive output is selected with the Port Drive Capability bit in the PmnPFS register.
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Symbol
Min
Max
Unit*1
Test conditions*2
tSPcyc
2 (PCLKA 60 MHz)
4 (PCLKA > 60 MHz)
4096
tPcyc
Figure 2.44
C = 30 pF
4
4096
(tSPcyc - tSPCKr tSPCKf) / 2 - 3
-
2 × tPcyc
-
tSPCKWL
(tSPcyc - tSPCKr tSPCKf) / 2 - 3
-
2 × tPcyc
-
-
5
ns
Slave
tSPCKr,
tSPCKf
-
1
µs
Master
tSU
ns
Parameter
SPI
RSPCK clock cycle
Master
Slave
RSPCK clock high
pulse width
Master
tSPCKWH
Slave
RSPCK clock low pulse
width
Master
Slave
RSPCK clock rise and
fall time
Data input setup time
Master
Slave
Data input hold time
SSL setup time
tHF
0
-
Master
(PCLKA division ratio
set to a value other
than 1/2)
tH
tPcyc
-
Slave
tH
20
-
Master
tLEAD
N × tSPcyc - 10*3
N×
tSPcyc +
100*3
ns
6 x tPcyc
-
ns
N×
tSPcyc +
100*4
ns
6 x tPcyc
-
ns
-
6.3
ns
Master
tLAG
Slave
Data output delay
Master
Data output hold time
Master
tOD
Slave
tOH
Slave
Successive
transmission delay
Master
tTD
Slave
MOSI and MISO rise
and fall time
Output
SSL rise and fall time
Output
N × tSPcyc - 10
*4
Figure 2.45 to
Figure 2.50
C = 30 pF
ns
-
20
0
-
0
-
tSPcyc + 2 × tPcyc
8×
tSPcyc +
2 × tPcyc
ns
5
ns
ns
6 × tPcyc
tDr, tDf
-
1
μs
tSSLr,
tSSLf
-
5
ns
-
1
μs
Slave access time
tSA
-
2 x tPcyc
+ 28
ns
Slave output release time
tREL
-
2 x tPcyc
+ 28
Input
Input
Note 1.
-
ns
Master
(PCLKA division ratio
set to 1/2)
Slave
SSL hold time
4
5
ns
Figure 2.49 and
Figure 2.50
C = 30PF
tPcyc: PCLKA cycle.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 54 of 92
S5D3 Datasheet
Note 2.
Note 3.
Note 4.
2. Electrical Characteristics
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI
interface, the AC portion of the electrical characteristics is measured for each group.
N is set to an integer from 1 to 8 by the SPCKD register.
N is set to an integer from 1 to 8 by the SSLND register.
tSPCKr
tSPCKWH
SPI
VOH
RSPCKn
master select
output
VOH
tSPCKf
VOH
VOL
VOH
VOL
VOL
tSPCKWL
tSPcyc
tSPCKr
tSPCKWH
VIH
VIH
RSPCKn
slave select input
tSPCKf
VIH
VIL
VIH
VIL
VIL
tSPCKWL
tSPcyc
n = A or B
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
Figure 2.44
SPI clock timing
SPI
tTD
SSLn0 to
SSLn3
output
tLEAD
t LAG
tSSLr, t SSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
t SU
MISOn
input
tH
MSB IN
tDr, t Df
MOSIn
output
DATA
tOH
MSB OUT
LSB IN
MSB IN
t OD
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.45
SPI timing for master when CPHA = 0
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 55 of 92
S5D3 Datasheet
2. Electrical Characteristics
SPI
SSLn0 to
SSLn3
output
tTD
tLEAD
t LAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tHF
tHF
MSB IN
tDr, tDf
MOSIn
output
LSB IN
DATA
tOH
MSB OUT
MSB IN
t OD
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.46
SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2
SPI
tTD
SSLn0 to
SSLn3
output
t LEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tH
MSB IN
tOH
MOSIn
output
DATA
LSB IN
tOD
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.47
SPI timing for master when CPHA = 1
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 56 of 92
S5D3 Datasheet
2. Electrical Characteristics
SPI
tTD
SSLn0 to
SSLn3
output
tLEAD
tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
tSU
MISOn
input
tHF
MSB IN
tOH
tH
DATA
LSB IN
tOD
MOSIn
output
MSB OUT
MSB IN
tDr, tDf
DATA
LSB OUT
IDLE
MSB OUT
n = A or B
Figure 2.48
RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2
SPI
tTD
SSLn0
input
tLEAD
tLAG
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
tSA
tOH
MISOn
output
MSB OUT
tSU
MOSIn
input
tOD
DATA
tREL
LSB OUT
tH
MSB IN
MSB IN
MSB OUT
tDr, tDf
DATA
LSB IN
MSB IN
n = A or B
Figure 2.49
SPI timing for slave when CPHA = 0
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 57 of 92
S5D3 Datasheet
2. Electrical Characteristics
SPI
tTD
SSLAn
input
tLEAD
tLAG
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
tSA
tOH
MISOn
output
tOD
LSB OUT
(last data)
MSB OUT
tSU
MOSIn
input
tREL
LSB OUT
DATA
MSB OUT
tDr, tDf
tH
MSB IN
DATA
LSB IN
MSB IN
n = A or B
Figure 2.50
2.3.12
SPI timing for slave when CPHA = 1
QSPI Timing
Table 2.26
QSPI timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Max
Unit*1
Test conditions
QSPI
tQScyc
2
48
tPcyc
Figure 2.51
Note 1.
Note 2.
Note 3.
QSPCK clock cycle
QSPCK clock high pulse width
tQSWH
tQScyc × 0.4
-
ns
QSPCK clock low pulse width
tQSWL
tQScyc × 0.4
-
ns
Data input setup time
tSu
8
-
ns
Data input hold time
tIH
0
-
ns
QSSL setup time
tLEAD
(N+0.5) x
tQscyc - 5 *2
(N+0.5) x
tQscyc +100 *2
ns
QSSL hold time
tLAG
(N+0.5) x
tQscyc - 5 *3
(N+0.5) x
tQscyc +100 *3
ns
Data output delay
tOD
-
4
ns
Data output hold time
tOH
-3.3
-
ns
Successive transmission delay
tTD
1
16
tQScyc
Figure 2.52
tPcyc: PCLKA cycle.
N is set to 0 or 1 in SFMSLD.
N is set to 0 or 1 in SFMSHD.
tQSWH
tQSWL
QSPCLK output
tQScyc
Figure 2.51
QSPI clock timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 58 of 92
S5D3 Datasheet
2. Electrical Characteristics
tTD
QSSL
output
tLEAD
tLAG
QSPCLK
output
tSU
QIO0-3
input
tH
MSB IN
DATA
tOH
QIO0-3
output
Figure 2.52
2.3.13
Table 2.27
LSB IN
tOD
MSB OUT
DATA
LSB OUT
IDLE
Transmit and receive timing
IIC Timing
IIC timing (1) (1 of 2)
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.
Symbol
Min*1
Max
Unit
Test
conditions*3
SCL input cycle time
tSCL
6 (12) × tIICcyc + 1300
-
ns
Figure 2.53
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 300
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 300
-
ns
SCL, SDA input rise time
tSr
-
1000
ns
SCL, SDA input fall time
tSf
-
300
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time when
wakeup function is disabled
tBUF
3 (6) × tIICcyc + 300
-
ns
SDA input bus free time when
wakeup function is enabled
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 300
-
ns
START condition input hold time
when wakeup function is disabled
tSTAH
tIICcyc + 300
-
ns
START condition input hold time
when wakeup function is enabled
tSTAH
1 (5) × tIICcyc + tPcyc +
300
-
ns
Repeated START condition input
setup time
tSTAS
1000
-
ns
STOP condition input setup time
tSTOS
1000
-
ns
Data input setup time
tSDAS
tIICcyc + 50
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
400
pF
Parameter
IIC
(Standard mode,
SMBus)
ICFER.FMPE = 0
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 59 of 92
S5D3 Datasheet
Table 2.27
2. Electrical Characteristics
IIC timing (1) (2 of 2)
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.
Symbol
Min*1
Max
Unit
Test
conditions*3
SCL input cycle time
tSCL
6 (12) × tIICcyc + 600
-
ns
Figure 2.53
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 300
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 300
-
ns
SCL, SDA input rise time
tSr
20 × (external pullup
voltage/5.5V)*2
300
ns
SCL, SDA input fall time
tSf
20 × (external pullup
voltage/5.5V)*2
300
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time when
wakeup function is disabled
tBUF
3 (6) × tIICcyc + 300
-
ns
SDA input bus free time when
wakeup function is enabled
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 300
-
ns
START condition input hold time
when wakeup function is disabled
tSTAH
tIICcyc + 300
-
ns
START condition input hold time
when wakeup function is enabled
tSTAH
1 (5) × tIICcyc + tPcyc +
300
-
ns
Repeated START condition input
setup time
tSTAS
300
-
ns
STOP condition input setup time
tSTOS
300
-
ns
Data input setup time
tSDAS
tIICcyc + 50
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
400
pF
Parameter
IIC
(Fast mode)
Note:
Note 1.
Note 2.
Note 3.
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.
Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Only supported for SCL0_A, SDA0_A.
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC
interface, the AC portion of the electrical characteristics is measured for each group.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 60 of 92
S5D3 Datasheet
Table 2.28
2. Electrical Characteristics
IIC timing (2)
Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.
Symbol
Min*1,*2
Max
Unit
Test
conditions
SCL input cycle time
tSCL
6 (12) × tIICcyc + 240
-
ns
Figure 2.53
SCL input high pulse width
tSCLH
3 (6) × tIICcyc + 120
-
ns
SCL input low pulse width
tSCLL
3 (6) × tIICcyc + 120
-
ns
SCL, SDA input rise time
tSr
-
120
ns
SCL, SDA input fall time
tSf
-
120
ns
SCL, SDA input spike pulse removal
time
tSP
0
1 (4) × tIICcyc
ns
SDA input bus free time when
wakeup function is disabled
tBUF
3 (6) × tIICcyc + 120
-
ns
SDA input bus free time when
wakeup function is enabled
tBUF
3 (6) × tIICcyc + 4 × tPcyc
+ 120
-
ns
Start condition input hold time when
wakeup function is disabled
tSTAH
tIICcyc + 120
-
ns
START condition input hold time
when wakeup function is enabled
tSTAH
1 (5) × tIICcyc + tPcyc +
120
-
ns
Restart condition input setup time
tSTAS
120
-
ns
Stop condition input setup time
tSTOS
120
-
ns
Parameter
IIC
(Fast mode+)
ICFER.FMPE = 1
Note:
Note 1.
Note 2.
Data input setup time
tSDAS
tIICcyc + 30
-
ns
Data input hold time
tSDAH
0
-
ns
SCL, SDA capacitive load
Cb
-
550
pF
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.
Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Cb indicates the total capacity of the bus line.
VIH
SDA0, SDA1
VIL
tBUF
tSCLH
tSTAH
tSTAS
tSTOS
tSP
SCL0, SCL1
P*1
S*1
tSf
tSCLL
tSr
tSCL
tSDAS
tSDAH
Note 1. S, P, and Sr indicate the following:
S: Start condition
P: Stop condition
Sr: Restart condition
Figure 2.53
P*1
Sr*1
Test conditions:
VIH = VCC × 0.7, VIL = VCC × 0.3
VOL = 0.6 V, IOL = 6 mA (ICFER.FMPE = 0)
VOL = 0.4 V, IOL = 15 mA (ICFER.FMPE = 1)
I2C bus interface input/output timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 61 of 92
S5D3 Datasheet
2.3.14
2. Electrical Characteristics
SSIE Timing
Table 2.29
SSIE timing
(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.
(2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface,
the AC portion of the electrical characteristics is measured for each group.
Target specification
Parameter
SSIBCK0
Symbol
Min.
Max.
Unit
Comments
Master
tO
80
-
ns
Figure 2.54
Slave
tI
80
-
ns
High level/low level
Master
tHC/tLC
0.35
-
tO
0.35
-
tI
Rising time/falling time
Master
-
0.15
tO / tI
-
0.15
tO / tI
Cycle
Slave
tRC/tFC
Slave
SSILRCK0/SSIFS0,
SSITXD0, SSIRXD0
Input set up time
Master
tSR
12
-
ns
12
-
ns
8
-
ns
15
-
ns
-10
5
ns
0
20
ns
Figure 2.56,
Figure 2.57
tDTRW
-
20
ns
Figure 2.58*1
Cycle
tEXcyc
20
-
ns
Figure 2.55
High level/low level
tEXL/
tEXH
0.4
0.6
tEXcyc
Slave
Input hold time
Master
Output delay time
Master
tHR
Slave
tDTR
Slave
Output delay time from
SSILRCK0/SSIFS0
change
GTIOC1A,
AUDIO_CLK
Note 1.
Slave
Figure 2.56,
Figure 2.57
For slave-mode transmission, SSIE has a path through which the signal input from the SSILRCK0/SSIFS0 pin is used to
generate transmit data, and the transmit data is logically output to the SSITXD0 pin.
tHC
SSIBCK0
tRC
tFC
tLC
tO, tI
Figure 2.54
SSIE clock input/output timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 62 of 92
S5D3 Datasheet
2. Electrical Characteristics
tEXcyc
tEXH
tEXL
GTIOC1A,
AUDIO_CLK
(input)
1/2 VCC
tEXf
Figure 2.55
tEXr
Clock input timing
SSIBCK0
(input or output)
SSILRCK0/SSIFS0 (input),
SSIRXD0 (input)
tSR
tHR
SSILRCK0/SSIFS0 (output),
SSITXD0 (output)
tDTR
Figure 2.56
SSIE data transmit and receive timing when SSICR.BCKP = 0
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 63 of 92
S5D3 Datasheet
2. Electrical Characteristics
SSIBCK0
(input or output)
SSILRCK0/SSIFS0 (input),
SSIRXD0 (input)
tSR
tHR
SSILRCK0/SSIFS0 (output),
SSITXD0 (output)
tDTR
Figure 2.57
SSIE data transmit and receive timing when SSICR.BCKP = 1
SSILRCK0/SSIFS0 (input)
SSITXD0 (output)
tDTRW
MSB bit output delay after SSILRCK0/SSIFS0 change for slave
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR.
Figure 2.58
2.3.15
Table 2.30
SSIE data output delay after SSILRCK0/SSIFS0 change
SD/MMC Host Interface Timing
SD/MMC Host Interface signal timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Clock duty ratio is 50%.
Parameter
Symbol
Min
Max
Unit
Test conditions*1
SDCLK clock cycle
TSDCYC
20
-
ns
Figure 2.59
SDCLK clock high pulse width
TSDWH
6.5
-
ns
SDCLK clock low pulse width
TSDWL
6.5
-
ns
SDCLK clock rise time
TSDLH
-
3
ns
SDCLK clock fall time
TSDHL
-
3
ns
SDCMD/SDDAT output data delay
TSDODLY
-6
5
ns
SDCMD/SDDAT input data setup
TSDIS
4
-
ns
SDCMD/SDDAT input data hold
TSDIH
2
-
ns
Note 1. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership.
For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 64 of 92
S5D3 Datasheet
2. Electrical Characteristics
T SD C YC
T SD W L
SDnCLK
(output)
T SD HL
T SD W H
T SD LH
T SD O D LY(m ax)
T SD O DLY(m in)
SD nCM D /SDnDATm
(output)
T SD IS
T SD IH
SD nCM D /SDnDATm
(input)
n = 0, 1, m = 0 to 3
Figure 2.59
2.4
SD/MMC Host Interface signal timing
USB Characteristics
2.4.1
Table 2.31
USBFS Timing
USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz
Parameter
Input
characteristics
Output
characteristics
Pull-up and pulldown
characteristics
Symbol
Min
Typ
Max
Unit
Test conditions
Input high voltage
VIH
2.0
-
-
V
-
Input low voltage
VIL
-
-
0.8
V
-
Differential input sensitivity
VDI
0.2
-
-
V
| USB_DP - USB_DM |
Differential common-mode
range
VCM
0.8
-
2.5
V
-
Output high voltage
VOH
2.8
-
3.6
V
IOH = -200 μA
Output low voltage
VOL
0.0
-
0.3
V
IOL= 2 mA
Cross-over voltage
VCRS
1.3
-
2.0
V
Figure 2.60
Rise time
tLR
75
-
300
ns
Fall time
tLF
75
-
300
ns
Rise/fall time ratio
tLR / tLF
80
-
125
%
tLR/ tLF
USB_DP and USB_DM pulldown resistance in host
controller mode
Rpd
14.25
-
24.80
kΩ
-
USB_DP,
USB_DM
VCRS
90%
90%
10%
tLR
Figure 2.60
10%
tLF
USB_DP and USB_DM output timing in low-speed mode
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 65 of 92
S5D3 Datasheet
2. Electrical Characteristics
Observation
point
USB_DP
200 pF to
600 pF
27
3.6 V
1.5 K
USB_DM
200 pF to
600 pF
Figure 2.61
Table 2.32
Test circuit in low-speed mode
USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz
Parameter
Input
characteristics
Output
characteristics
Pull-up and pulldown
characteristics
Symbol
Min
Typ
Max
Unit
Test conditions
Input high voltage
VIH
2.0
-
-
V
-
Input low voltage
VIL
-
-
0.8
V
-
Differential input sensitivity
VDI
0.2
-
-
V
| USB_DP - USB_DM |
Differential common-mode
range
VCM
0.8
-
2.5
V
-
Output high voltage
VOH
2.8
-
3.6
V
IOH = -200 μA
Output low voltage
VOL
0.0
-
0.3
V
IOL= 2 mA
Cross-over voltage
VCRS
1.3
-
2.0
V
Figure 2.62
Rise time
tLR
4
-
20
ns
Fall time
tLF
4
-
20
ns
Rise/fall time ratio
tLR / tLF
90
-
111.11
%
Output resistance
ZDRV
28
-
44
Ω
USBFS: Rs = 27 Ω included
DM pull-up resistance in
device controller mode
Rpu
0.900
-
1.575
kΩ
During idle state
1.425
-
3.090
kΩ
During transmission and
reception
USB_DP and USB_DM pulldown resistance in host
controller mode
Rpd
14.25
-
24.80
kΩ
-
USB_DP,
USB_DM
VCRS
90%
90%
10%
tFR
Figure 2.62
tFR/ tFF
10%
tFF
USB_DP and USB_DM output timing in full-speed mode
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 66 of 92
S5D3 Datasheet
2. Electrical Characteristics
Observation
point
USB_DP
50 pF
27
USB_DM
50 pF
Figure 2.63
2.5
Test circuit in full-speed mode
ADC12 Characteristics
Table 2.33
A/D conversion characteristics for unit 0 (1 of 2)
Conditions: PCLKC = 1 to 60 MHz
Parameter
Min
Typ
Max
Unit
Frequency
1
-
60
MHz
Test conditions
-
Analog input capacitance
-
-
30
pF
-
Quantization error
-
±0.5
-
LSB
-
Resolution
-
-
12
Bits
-
1.06
(0.4 + 0.25)*2
-
-
μs
Sampling of channeldedicated sample-and-hold
circuits in 24 states
Sampling in 15 states
Offset error
-
±1.5
±3.5
LSB
AN000 to AN002 = 0.25 V
Full-scale error
-
±1.5
±3.5
LSB
AN000 to AN002 =
VREFH0- 0.25 V
Absolute accuracy
-
±2.5
±5.5
LSB
-
DNL differential nonlinearity error
-
±1.0
±2.0
LSB
-
INL integral nonlinearity error
-
±1.5
±3.0
LSB
-
Holding characteristics of sample-and hold
circuits
-
-
20
μs
-
Dynamic range
0.25
-
VREFH0
- 0.25
V
-
0.48 (0.267)*2
-
-
μs
Sampling in 16 states
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
0.48 (0.267)*2
-
-
μs
Sampling in 16 states
Max. = 400 Ω
0.40 (0.183)*2
-
-
μs
Sampling in 11 states
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH0 ≤ AVCC0
-
±1.0
±2.5
LSB
-
Channel-dedicated
sample-and-hold
circuits in use*3
(AN000 to AN002)
Channel-dedicated
sample-and-hold
circuits not in use
(AN000 to AN002)
High-precision
channels
(AN003, AN005,
AN006)
Conversion time*1
(operation at
PCLKC = 60 MHz)
Conversion time*1
(operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 67 of 92
S5D3 Datasheet
Table 2.33
2. Electrical Characteristics
A/D conversion characteristics for unit 0 (2 of 2)
Conditions: PCLKC = 1 to 60 MHz
Parameter
High-precision
channels
(AN007)
Min
Typ
Max
INL integral nonlinearity error
-
±1.0
Conversion time*1
(operation at
PCLKC = 60 MHz)
0.75 (0.533)*2
-
-
±1.0
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
Note:
Note 1.
Note 2.
Note 3.
Test conditions
±2.5
LSB
-
-
μs
Sampling in 32 states
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
-
-
μs
Sampling in 40 states
±1.0
±5.5
LSB
-
time*1
Normal-precision
channels
(AN016 to AN018,
AN020)
Unit
Conversion
(Operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
0.88
Offset error
(0.667)*2
-
Full-scale error
-
±1.0
±5.5
LSB
-
Absolute accuracy
-
±2.0
±7.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±4.5
LSB
-
INL integral nonlinearity error
-
±1.0
±5.5
LSB
-
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, the values might not fall within the indicated ranges.
The use of ports 0 as digital outputs is not allowed when the 12-bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage
are stable.
The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Values in parentheses indicate the sampling time.
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.35.
Table 2.34
A/D conversion characteristics for unit 1 (1 of 2)
Conditions: PCLKC = 1 to 60 MHz
Parameter
Min
Typ
Max
Unit
Frequency
1
-
60
MHz
Test conditions
-
Analog input capacitance
-
-
30
pF
-
Quantization error
-
±0.5
-
LSB
-
Resolution
-
-
12
Bits
-
1.06
(0.4 + 0.25)*2
-
-
μs
Sampling of channeldedicated sample-and-hold
circuits in 24 states
Sampling in 15 states
Channel-dedicated
sample-and-hold
circuits in use*3
(AN100 to AN102)
Conversion time*1
(operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
-
±1.5
±3.5
LSB
AN100 to AN102 = 0.25 V
Full-scale error
-
±1.5
±3.5
LSB
AN100 to AN102 =
VREFH - 0.25 V
Absolute accuracy
-
±2.5
±5.5
LSB
-
DNL differential nonlinearity error
-
±1.0
±2.0
LSB
-
INL integral nonlinearity error
-
±1.5
±3.0
LSB
-
Holding characteristics of sample-and
hold circuits
-
-
20
μs
-
Dynamic range
0.25
-
VREFH - 0.25
V
-
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 68 of 92
S5D3 Datasheet
Table 2.34
2. Electrical Characteristics
A/D conversion characteristics for unit 1 (2 of 2)
Conditions: PCLKC = 1 to 60 MHz
Parameter
Channel-dedicated
sample-and-hold
circuits not in use
(AN100 to AN102)
High-precision
channels
(AN105, AN106)
High-precision
channels
(AN107)
Normal-precision
channels
(AN116, AN117)
time*1
Conversion
(Operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
Note 1.
Note 2.
Note 3.
Typ
Max
Unit
Test conditions
0.48
(0.267)*2
-
-
μs
Sampling in 16 states
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(Operation at
PCLKC = 60 MHz)
Permissible signal
source impedance
Max. = 1 kΩ
0.48
(0.267)*2
-
-
μs
Sampling in 16 states
Max. = 400 Ω
0.40
(0.183)*2
-
-
μs
Sampling in 11 states
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH ≤ AVCC0
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(Operation at
PCLKC = 60 MHz)
0.75
(0.533)*2
-
-
μs
Sampling in 32 states
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
-
±1.0
±2.5
LSB
-
Full-scale error
-
±1.0
±2.5
LSB
-
Absolute accuracy
-
±2.0
±4.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±1.5
LSB
-
INL integral nonlinearity error
-
±1.0
±2.5
LSB
-
Conversion time*1
(Operation at
PCLKC = 60 MHz)
0.88
(0.667)*2
-
-
μs
Sampling in 40 states
-
±1.0
±5.5
LSB
-
Permissible signal
source impedance
Max. = 1 kΩ
Offset error
Note:
Min
Full-scale error
-
±1.0
±5.5
LSB
-
Absolute accuracy
-
±2.0
±7.5
LSB
-
DNL differential nonlinearity error
-
±0.5
±4.5
LSB
-
INL integral nonlinearity error
-
±1.0
±5.5
LSB
-
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, the values might not fall within the indicated ranges.
The use of ports 0 as digital outputs is not allowed when the 12-bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage
are stable.
The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Values in parentheses indicate the sampling time.
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.35.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 69 of 92
S5D3 Datasheet
Table 2.35
2. Electrical Characteristics
A/D conversion characteristics for simultaneous use of channel-dedicated sample-and-hold
circuits in unit 0 and unit 1
Conditions: PCLKC = 30/60 MHz
Parameter
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN000 to AN002)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN100 to AN102)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN000 to AN002)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN100 to AN102)
Note:
Min
Typ
Max
Test conditions
Offset error
-
±1.5
±5.0
Full-scale error
-
±2.5
±5.0
PCLKC = 60 MHz
Sampling in 15 states
Absolute accuracy
-
±4.0
±8.0
Offset error
-
±1.5
±5.0
Full-scale error
-
±2.5
±5.0
Absolute accuracy
-
±4.0
±8.0
Offset error
-
±1.5
±3.5
Full-scale error
-
±1.5
±3.5
Absolute accuracy
-
±3.0
+4.5/-6.5
Offset error
-
±1.5
±3.5
Full-scale error
-
±1.5
±3.5
Absolute accuracy
-
±3.0
+4.5/-6.5
PCLKC = 30 MHz
Sampling in 7 states
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, setting the ADSHMSR.SHMD bit
to 1 is recommended.
Table 2.36
A/D internal reference voltage characteristics
Parameter
Min
Typ
Max
Unit
Test conditions
A/D internal reference voltage
1.13
1.18
1.23
V
-
Sampling time
4.15
-
-
μs
-
FFFh
Full-scale error
Integral nonlinearity
error (INL)
A/D converter
output code
Ideal line of actual A/D
conversion characteristic
Actual A/D conversion
characteristic
Ideal A/D conversion
characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
Absolute accuracy
000h
Offset error
0
Figure 2.64
Analog input voltage
VREFH0
(full-scale)
Illustration of ADC12 characteristic terms
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 70 of 92
S5D3 Datasheet
2. Electrical Characteristics
Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 is 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the
analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D
conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical
A/D conversion characteristics.
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion
characteristics and the width of the actual output code.
Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.
Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.
2.6
DAC12 Characteristics
Table 2.37
D/A conversion characteristics
Parameter
Min
Typ
Max
Unit
Test conditions
Resolution
-
-
12
Bits
-
Absolute accuracy
-
-
±24
LSB
Resistive load 2 MΩ
INL
-
±2.0
±8.0
LSB
Resistive load 2 MΩ
DNL
-
±1.0
±2.0
LSB
-
Output impedance
-
8.5
-
kΩ
-
Conversion time
-
-
3.0
μs
Resistive load 2 MΩ,
Capacitive load 20 pF
Output voltage range
0
-
VREFH
V
-
INL
-
±2.0
±4.0
LSB
-
DNL
-
±1.0
±2.0
LSB
-
Without output amplifier
With output amplifier
Conversion time
-
-
4.0
μs
-
Resistive load
5
-
-
kΩ
-
Capacitive load
-
-
50
pF
-
Output voltage range
0.2
-
VREFH - 0.2
V
-
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 71 of 92
S5D3 Datasheet
2.7
2. Electrical Characteristics
TSN Characteristics
Table 2.38
TSN characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Relative accuracy
-
-
±1.0
-
°C
-
Temperature slope
-
-
4.0
-
mV/°C
-
Output voltage (at 25°C)
-
-
1.24
-
V
-
Temperature sensor start time
tSTART
-
-
30
μs
-
Sampling time
-
4.15
-
-
μs
-
2.8
OSC Stop Detect Characteristics
Table 2.39
Oscillation stop detection circuit characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Detection time
tdr
-
-
1
ms
Figure 2.65
Main clock
tdr
OSTDSR.OSTDF
MOCO clock
ICLK
Figure 2.65
2.9
Oscillation stop detection timing
POR and LVD Characteristics
Table 2.40
Power-on reset circuit and voltage detection circuit characteristics (1 of 2)
Parameter
Voltage detection
level
Power-on reset
(POR)
Module-stop function
disabled*2
Symbol
Min
Typ
Max
Unit
Test conditions
VPOR
2.5
2.6
2.7
V
Figure 2.66
1.8
2.25
2.7
Module-stop function
enabled*3
Voltage detection circuit (LVD0)
Voltage detection circuit (LVD1)
Voltage detection circuit (LVD2)
Internal reset time
Vdet0_1
2.84
2.94
3.04
Vdet0_2
2.77
2.87
2.97
Vdet0_3
2.70
2.80
2.90
Vdet1_1
2.89
2.99
3.09
Vdet1_2
2.82
2.92
3.02
Vdet1_3
2.75
2.85
2.95
Vdet2_1
2.89
2.99
3.09
Vdet2_2
2.82
2.92
3.02
Figure 2.67
Figure 2.68
Figure 2.69
Vdet2_3
2.75
2.85
2.95
Power-on reset time
tPOR
-
4.5
-
LVD0 reset time
tLVD0
-
0.51
-
Figure 2.67
LVD1 reset time
tLVD1
-
0.38
-
Figure 2.68
LVD2 reset time
tLVD2
-
0.38
-
Figure 2.69
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
ms
Figure 2.66
Page 72 of 92
S5D3 Datasheet
Table 2.40
2. Electrical Characteristics
Power-on reset circuit and voltage detection circuit characteristics (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
tVOFF
200
-
-
μs
Figure 2.66,
Figure 2.67
Response delay
tdet
-
-
200
μs
Figure 2.66 to
Figure 2.69
LVD operation stabilization time (after LVD is enabled)
td(E-A)
-
-
10
μs
Hysteresis width (LVD1 and LVD2)
VLVH
-
70
-
mV
Figure 2.68,
Figure 2.69
Minimum VCC down
Note 1.
Note 2.
Note 3.
time*1
The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR,
Vdet1, and Vdet2 for POR and LVD.
The low power function is disabled and DEEPCUT[1:0] = 00b or 01b.
The low power function is enabled and DEEPCUT[1:0] = 11b.
tVOFF
VPOR
VCC
Internal reset signal
(active-low)
tdet
Figure 2.66
tPOR
tdet
tdet
tPOR
Power-on reset timing
tVOFF
VCC
Vdet0
Internal reset signal
(active-low)
tdet
Figure 2.67
tdet
tLVD0
Voltage detection circuit timing (Vdet0)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 73 of 92
S5D3 Datasheet
2. Electrical Characteristics
tVOFF
VCC
VLVH
Vdet1
LVCMPCR.LVD1E
td(E-A)
LVD1
Comparator output
LVD1CR0.CMPE
LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0
tdet
tdet
tLVD1
When LVD1CR0.RN = 1
tLVD1
Figure 2.68
Voltage detection circuit timing (Vdet1)
tVOFF
VCC
VLVH
Vdet2
LVCMPCR.LVD2E
LVD2
Comparator output
td(E-A)
LVD2CR0.CMPE
LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0
tdet
tdet
tLVD2
When LVD2CR0.RN = 1
tLVD2
Figure 2.69
Voltage detection circuit timing (Vdet2)
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 74 of 92
S5D3 Datasheet
2.10
2. Electrical Characteristics
VBATT Characteristics
Table 2.41
Battery backup function characteristics
Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Voltage level for switching to battery backup
VDETBATT
2.50
2.60
2.70
V
Figure 2.70
Lower-limit VBATT voltage for power supply
switching caused by VCC voltage drop
VBATTSW
2.70
-
-
V
VCC-off period for starting power supply switching
tVOFFBATT
200
-
-
μs
Note:
The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum
value of the voltage level for switching to battery backup (VDETBATT).
tVOFFBATT
VDETBATT
VCC
VBATT
Backup power
area
Figure 2.70
2.11
VBATTSW
VCC supply
VBATT supply
VCC supply
Battery backup function characteristics
CTSU Characteristics
Table 2.42
CTSU characteristics
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
External capacitance connected to TSCAP pin
Ctscap
9
10
11
nF
-
TS pin capacitive load
Cbase
-
-
50
pF
-
Permissible output high current
ΣIoH
-
-
-40
mA
When the mutual
capacitance method
is applied
Parameter
Symbol
Min
Typ
Max
Unit
Test conditions
Reference voltage range
VREF
0
-
AVCC0
V
-
Input voltage range
VI
0
-
AVCC0
V
-
Td
-
50
100
ns
VI = VREF ± 100 mV
Vref
1.13
1.18
1.23
V
-
2.12
ACMPHS Characteristics
Table 2.43
Output
ACMPHS characteristics
delay*1
Internal reference voltage
Note 1.
This value is the internal propagation delay.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 75 of 92
S5D3 Datasheet
2.13
2. Electrical Characteristics
PGA Characteristics
Table 2.44
PGA characteristics in single mode
Parameter
Symbol
Min
Typ
Max
Unit
PGAVSS input voltage range
PGAVSS
0
-
0
V
AIN0 (G = 2.000)
0.050 × AVCC0
-
0.45 × AVCC0
V
AIN1 (G = 2.500)
0.047 × AVCC0
-
0.360 × AVCC0
V
AIN2 (G = 2.667)
0.046 × AVCC0
-
0.337 × AVCC0
V
AIN3 (G = 2.857)
0.046 × AVCC0
-
0.32 × AVCC0
V
AIN4 (G = 3.077)
0.045 × AVCC0
-
0.292 × AVCC0
V
AIN5 (G = 3.333)
0.044 × AVCC0
-
0.265 × AVCC0
V
AIN6 (G = 3.636)
0.042 × AVCC0
-
0.247 × AVCC0
V
AIN7 (G = 4.000)
0.040 × AVCC0
-
0.212 × AVCC0
V
AIN8 (G = 4.444)
0.036 × AVCC0
-
0.191 × AVCC0
V
AIN9 (G = 5.000)
0.033 × AVCC0
-
0.17 × AVCC0
V
AIN10 (G = 5.714)
0.031 × AVCC0
-
0.148 × AVCC0
V
AIN11 (G = 6.667)
0.029 × AVCC0
-
0.127 × AVCC0
V
AIN12 (G = 8.000)
0.027 × AVCC0
-
0.09 × AVCC0
V
AIN13 (G = 10.000)
0.025 × AVCC0
-
0.08 × AVCC0
V
Gain error
Offset error
Table 2.45
AIN14 (G = 13.333)
0.023 × AVCC0
-
0.06 × AVCC0
V
Gerr0 (G = 2.000)
-1.0
-
1.0
%
Gerr1 (G = 2.500)
-1.0
-
1.0
%
Gerr2 (G = 2.667)
-1.0
-
1.0
%
Gerr3 (G = 2.857)
-1.0
-
1.0
%
Gerr4 (G = 3.077)
-1.0
-
1.0
%
Gerr5 (G = 3.333)
-1.5
-
1.5
%
Gerr6 (G = 3.636)
-1.5
-
1.5
%
Gerr7 (G = 4.000)
-1.5
-
1.5
%
Gerr8 (G = 4.444)
-2.0
-
2.0
%
Gerr9 (G = 5.000)
-2.0
-
2.0
%
Gerr10 (G = 5.714)
-2.0
-
2.0
%
Gerr11 (G = 6.667)
-2.0
-
2.0
%
Gerr12 (G = 8.000)
-2.0
-
2.0
%
Gerr13 (G = 10.000)
-2.0
-
2.0
%
Gerr14 (G = 13.333)
-2.0
-
2.0
%
Voff
-8
-
8
mV
PGA characteristics in differential mode (1 of 2)
Parameter
Symbol
Min
PGAVSS input voltage range
PGAVSS
-0.5
-
0.3
V
Differential input
voltage range
AIN-PGAVSS
-0.5
-
0.5
V
-0.4
-
0.4
V
G = 1.500
G = 2.333
Typ
Max
Unit
G = 4.000
-0.2
-
0.2
V
G = 5.667
-0.15
-
0.15
V
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 76 of 92
S5D3 Datasheet
Table 2.45
2. Electrical Characteristics
PGA characteristics in differential mode (2 of 2)
Parameter
Gain error
2.14
Symbol
Min
Typ
Max
Unit
Gerr
-1.0
-
1.0
%
G = 2.333
-1.0
-
1.0
G = 4.000
-1.0
-
1.0
G = 5.667
-1.0
-
1.0
G = 1.500
Flash Memory Characteristics
2.14.1
Code Flash Memory Characteristics
Table 2.46
Code flash memory characteristics
Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz
FCLK = 4 MHz
Parameter
20 MHz ≤ FCLK ≤ 60 MHz
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Programming time
NPEC 100 times
128-byte
tP128
-
0.75
13.2
-
0.34
6.0
ms
8-KB
tP8K
-
49
176
-
22
80
ms
32-KB
tP32K
-
194
704
-
88
320
ms
Programming time
NPEC > 100 times
128-byte
tP128
-
0.91
15.8
-
0.41
7.2
ms
8-KB
tP8K
-
60
212
-
27
96
ms
32-KB
tP32K
-
234
848
-
106
384
ms
Erasure time
NPEC 100 times
8-KB
tE8K
-
78
216
-
43
120
ms
32-KB
tE32K
-
283
864
-
157
480
ms
Erasure time
NPEC > 100 times
8-KB
tE8K
-
94
260
-
52
144
ms
32-KB
tE32K
-
341
1040
-
189
576
ms
NPEC
10000*1
-
-
10000*1
-
-
Times
tSPD
Reprogramming/erasure
cycle*4
-
-
264
-
-
120
μs
First suspend delay during erasure in tSESD1
suspend priority mode
-
-
216
-
-
120
μs
Second suspend delay during
erasure in suspend priority mode
tSESD2
-
-
1.7
-
-
1.7
ms
Suspend delay during erasure in
erasure priority mode
tSEED
-
-
1.7
-
-
1.7
ms
Forced stop command
tFD
-
-
32
-
-
20
μs
Data hold time*2
tDRP
10*2, *3
-
-
10*2, *3
-
-
Years
-
30*2, *3
-
-
Suspend delay during programming
30*2, *3
Note 1.
Note 2.
Note 3.
Note 4.
-
Test
conditions
Ta = +85°C
This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
This result is obtained from reliability testing.
The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10000),
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 77 of 92
S5D3 Datasheet
2. Electrical Characteristics
• Suspension during programming
FCU command
Program
Suspend
tSPD
FSTATR0.FRDY
Ready
Not Ready
Programming pulse
Ready
Programming
• Suspension during erasure in suspend priority mode
FCU command
Erase
Suspend
Resume
Suspend
tSESD1
FSTATR0.FRDY
Ready
tSESD2
Not Ready
Erasure pulse
Ready
Erasing
Not Ready
Erasing
• Suspension during erasure in erasure priority mode
FCU command
Erase
Suspend
tSEED
FSTATR0.FRDY
Ready
Not Ready
Erasure pulse
Ready
Erasing
• Forced Stop
FACI command
Forced Stop
tFD
FSTATR.FRDY
Figure 2.71
Not Ready
Ready
Suspension and forced stop timing for flash memory programming and erasure
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 78 of 92
S5D3 Datasheet
2.14.2
2. Electrical Characteristics
Data Flash Memory Characteristics
Table 2.47
Data flash memory characteristics
Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz
FCLK = 4 MHz
Parameter
Programming time
Erasure time
Blank check time
Min
Typ
Max
Min
Typ
Max
Unit
tDP4
-
0.36
3.8
-
0.16
1.7
ms
8-byte
tDP8
-
0.38
4.0
-
0.17
1.8
16-byte
tDP16
-
0.42
4.5
-
0.19
2.0
64-byte
tDE64
-
3.1
18
-
1.7
10
128-byte
tDE128
-
4.7
27
-
2.6
15
256-byte
tDE256
-
8.9
50
-
4.9
28
4-byte
tDBC4
-
-
84
-
-
30
μs
NDPEC
125000*2
-
-
125000*2
-
-
-
tDSPD
-
-
264
-
-
120
μs
-
-
264
-
-
120
4-byte
Reprogramming/erasure
Suspend delay during
programming
20 MHz ≤ FCLK ≤ 60 MHz
Symbol
cycle*1
4-byte
8-byte
16-byte
First suspend delay
64-byte
during erasure in
128-byte
suspend priority mode
256-byte
Second suspend
delay during erasure
in suspend priority
mode
64-byte
Suspend delay during
erasing in erasure
priority mode
64-byte
tDSESD1
tDSESD2
128-byte
256-byte
tDSEED
128-byte
256-byte
-
-
264
-
-
120
-
-
216
-
-
120
-
-
216
-
-
120
-
-
216
-
-
120
-
-
300
-
-
300
-
-
390
-
-
390
-
-
570
-
-
570
-
-
300
-
-
300
-
-
390
-
-
390
ms
μs
μs
μs
-
-
570
-
-
570
Forced stop command
tFD
-
-
32
-
-
20
μs
Data hold time*3
tDRP
10*3,*4
-
-
10*3,*4
-
-
Year
-
30*3,*4
-
-
30*3,*4
Note 1.
Note 2.
Note 3.
Note 4.
2.15
-
Test
conditions
Ta = +85°C
The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125000),
erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different
addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
This result is obtained from reliability testing.
Boundary Scan
Table 2.48
Boundary scan characteristics (1 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TCK clock cycle time
tTCKcyc
100
-
-
ns
Figure 2.72
TCK clock high pulse width
tTCKH
45
-
-
ns
TCK clock low pulse width
tTCKL
45
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 79 of 92
S5D3 Datasheet
Table 2.48
2. Electrical Characteristics
Boundary scan characteristics (2 of 2)
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TMS setup time
tTMSS
20
-
-
ns
Figure 2.73
TMS hold time
tTMSH
20
-
-
ns
TDI setup time
tTDIS
20
-
-
ns
TDI hold time
tTDIH
20
-
-
ns
tTDOD
-
-
40
ns
TBSSTUP
tRESWP
-
-
-
TDO data delay
Boundary scan circuit startup
Note 1.
time*1
Figure 2.74
Boundary scan does not function until the power-on reset becomes negative.
tTCKcyc
tTCKH
tTCKf
TCK
tTCKr
tTCKL
Figure 2.72
Boundary scan TCK timing
TCK
tTMSS
tTMSH
tTDIS
tTDIH
TMS
TDI
tTDOD
TDO
Figure 2.73
Boundary scan input/output timing
VCC
RES
tBSSTUP
(= tRESWP)
Figure 2.74
Boundary scan
execute
Boundary scan circuit startup timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 80 of 92
S5D3 Datasheet
2.16
2. Electrical Characteristics
Joint Test Action Group (JTAG)
Table 2.49
JTAG
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TCK clock cycle time
tTCKcyc
40
-
-
ns
Figure 2.72
TCK clock high pulse width
tTCKH
15
-
-
ns
TCK clock low pulse width
tTCKL
15
-
-
ns
TCK clock rise time
tTCKr
-
-
5
ns
TCK clock fall time
tTCKf
-
-
5
ns
TMS setup time
tTMSS
8
-
-
ns
TMS hold time
tTMSH
8
-
-
ns
TDI setup time
tTDIS
8
-
-
ns
TDI hold time
tTDIH
8
-
-
ns
TDO data delay time
tTDOD
-
-
20
ns
Figure 2.73
tTCKcyc
tTCKH
TCK
tTCKf
tTCKr
tTCKL
Figure 2.75
JTAG TCK timing
TCK
tTMSS
tTMSH
TMS
tTDIS
tTDIH
TDI
tTDOD
TDO
Figure 2.76
JTAG input/output timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 81 of 92
S5D3 Datasheet
2.17
2. Electrical Characteristics
Serial Wire Debug (SWD)
Table 2.50
SWD
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
SWCLK clock cycle time
tSWCKcyc
40
-
-
ns
Figure 2.77
SWCLK clock high pulse width
tSWCKH
15
-
-
ns
SWCLK clock low pulse width
tSWCKL
15
-
-
ns
SWCLK clock rise time
tSWCKr
-
-
5
ns
SWCLK clock fall time
tSWCKf
-
-
5
ns
SWDIO setup time
tSWDS
8
-
-
ns
SWDIO hold time
tSWDH
8
-
-
ns
SWDIO data delay time
tSWDD
2
-
28
ns
Figure 2.78
tSWCKcyc
tSWCKH
SWCLK
tSWCKL
Figure 2.77
SWD SWCLK timing
SWCLK
tSWDS
tSWDH
SWDIO
(input)
tSWDD
SWDIO
(output)
tSWDD
SWDIO
(output)
tSWDD
SWDIO
(output)
Figure 2.78
SWD input/output timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 82 of 92
S5D3 Datasheet
2.18
2. Electrical Characteristics
Embedded Trace Macro Interface (ETM)
Table 2.51
ETM
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Parameter
Symbol
Min
Typ
Max
Unit
Test
conditions
TCLK clock cycle time
tTCLKcyc
33.3
-
-
ns
Figure 2.79
TCLK clock high pulse width
tTCLKH
13.6
-
-
ns
TCLK clock low pulse width
tTCLKL
13.6
-
-
ns
TCLK clock rise time
tTCLKr
-
-
3
ns
TCLK clock fall time
tTCLKf
-
-
3
ns
TDATA[3:0] output setup time
tTRDS
3.5
-
-
ns
TDATA[3:0] output hold time
tTRDH
2.5
-
-
ns
Figure 2.80
tTCLKcyc
tTCLKH
TCLK
tTCLKf
tTCLKL
Figure 2.79
tTCLKr
ETM TCLK timing
TCLK
tTRDS
tTRDH
tTRDS
tTRDH
TDATA[3:0]
Figure 2.80
ETM output timing
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 83 of 92
S5D3 Datasheet
Appendix 1. Package Dimensions
Appendix 1.Package Dimensions
Information on the latest version of the package dimensions or mountings is shown in “Packages” on the Renesas
Electronics Corporation website.
JEITA Package Code
P-TFLGA100-7x7-0.65
RENESAS Code
PTLG0100JA-A
Previous Code
100F0G
MASS[Typ.]
0.1g
w S B
φ b1
D
φ× M S
φb
w S A
ZD
AB
e
A
e
A
AB
φ× M S
K
J
H
G
B
E
F
E
D
C
B
×4
y S
v
Index mark
(Laser mark)
Figure 1.1
S
ZE
A
1
2
3
Index mark
4
5
6
7
8
9
10
Reference Dimension in Millimeters
Symbol
Min Nom
D
7.0
E
7.0
v
w
A
e
0.65
b
0.31 0.35
b1 0.385 0.435
x
y
ZD
0.575
ZE
0.575
Max
0.15
0.20
1.05
0.39
0.485
0.08
0.10
100-pin LGA
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 84 of 92
S5D3 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP100-14x14-0.50
PLQP0100KB-B
—
0.6
HD
Unit: mm
*1 D
75
51
*2
E
50
100
HE
76
26
1
25
NOTE 4
Index area
NOTE 3
F
S
y S
*3
0.25
T
A1
Lp
L1
Detail F
Reference Dimensions in millimeters
Symbol
bp
M
Min
Nom
Max
D
13.9
14.0
14.1
14.1
E
13.9
14.0
A2
1.4
HD
15.8
16.0
16.2
HE
15.8
16.0
16.2
A
1.7
A1
0.05
0.15
bp
0.15
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.08
Lp
0.45
0.6
0.75
L1
1.0
c
A2
A
e
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
© 2015 Renesas Electronics Corporation. All rights reserved.
Figure 1.2
100-pin LQFP
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 85 of 92
S5D3 Datasheet
Appendix 1. Package Dimensions
JEITA Package Code
RENESAS Code
Previous Code
MASS (Typ) [g]
P-LFQFP64-10x10-0.50
PLQP0064KB-C
—
0.3
Unit: mm
HD
*1 D
48
33
64
HE
32
*2 E
49
17
1
16
NOTE 4
Index area
NOTE 3
F
S
y S
*3
bp
0.25
c
A1
T
A2
A
e
Lp
L1
Detail F
M
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
Reference Dimensions in millimeters
Symbol
Min
Nom
Max
D
9.9
10.0
10.1
10.1
E
9.9
10.0
A2
1.4
HD
11.8
12.0
12.2
HE
11.8
12.0
12.2
A
1.7
A1
0.05
0.15
bp
0.15
0.20
0.27
c
0.09
0.20
T
0q
3.5q
8q
e
0.5
x
0.08
y
0.08
Lp
0.45
0.6
0.75
L1
1.0
© 2015 Renesas Electronics Corporation. All rights reserved.
Figure 1.3
64-pin LQFP
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 86 of 92
S5D3 Datasheet
Appendix 1. Package Dimensions
JEITA Package code
P-HWQFN64-8x8-0.40
RENESAS code
Previous code
MASS(TYP.)[g]
PWQN0064LA-A
P64K8-40-9B5-3
0.16
D
33
48
DETAIL OF A PART
32
49
E
A
A1
17
64
c2
16
1
INDEX AREA
A
S
y
S
Referance
Symbol
D2
A
Lp
EXPOSED DIE PAD
16
1
64
17
Dimension in Millimeters
Min
Nom
Max
D
7.95
8.00
8.05
E
7.95
8.00
8.05
A
0.80
A1
0.00
b
0.17
e
Lp
B
E2
0.20
0.30
0.40
x
y
32
49
0.05
48
33
ZD
e
b
x
M
1.00
ZE
c2
0.50
0.05
ZD
ZE
0.23
0.40
1.00
0.15
0.20
D2
6.50
E2
6.50
0.25
S AB
2013 Renesas Electronics Corporation. All rights reserved.
Figure 1.4
64-pin QFN
R01DS0328EU0100 Rev.1.00
Aug 10, 2018
Page 87 of 92
Revision History
Rev.
Date
1.00
Aug 10, 2018
S5D3 Microcontroller Group Datasheet
Summary
First release
Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related
documentation, and get support.
Synergy Software
renesassynergy.com/software
Synergy Software Package
renesassynergy.com/ssp
Software add-ons
renesassynergy.com/addons
Software glossary
renesassynergy.com/softwareglossary
Development tools
renesassynergy.com/tools
Synergy Hardware
renesassynergy.com/hardware
Microcontrollers
renesassynergy.com/mcus
MCU glossary
renesassynergy.com/mcuglossary
Parametric search
renesassynergy.com/parametric
Kits
renesassynergy.com/kits
Synergy Solutions Gallery
renesassynergy.com/solutionsgallery
Partner projects
renesassynergy.com/partnerprojects
Application projects
renesassynergy.com/applicationprojects
Self-service support resources:
Documentation
renesassynergy.com/docs
Knowledgebase
renesassynergy.com/knowledgebase
Forums
renesassynergy.com/forum
Training
renesassynergy.com/training
Videos
renesassynergy.com/videos
Chat and web ticket
renesassynergy.com/support
Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior
written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States
and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
Colophon
S5D3 Microcontroller Group Datasheet
Publication Date:
Rev.1.00
Aug 10, 2018
Published by:
Renesas Electronics Corporation
Address List
General Precautions
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit
boards with mounted semiconductor devices.
2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches
the level at which resetting is specified.
3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during poweroff state as described in your product documentation.
4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device
stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the
input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.
S5D3 Datasheet
Notice
1.
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.
2.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.
3.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
5.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
you or third parties arising from such alteration, modification, copying or reverse engineering.
product’s quality grade, as indicated below.
"Standard":
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.
6.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.
7.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
9.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1)
“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2)
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.4.0-1 November 2017)
http://www.renesas.com
SALES OFFICES
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.1
Back cover
Renesas Synergy™ Platform
S5D3 Microcontroller Group
R01DS0328EU0100