0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RT5041ABGQW

RT5041ABGQW

  • 厂商:

    RICHTEK(台湾立锜)

  • 封装:

    WFQFN28_EP

  • 描述:

    IC REG CTRLR DDR 5OUT 28WQFN

  • 数据手册
  • 价格&库存
RT5041ABGQW 数据手册
® RT5041AB Multi-Output Integrated Chip (MOIC) for Intel Braswell Platform General Description Features RT5041AB integrates 2 buck converters, 3 LDOs and 2 power switches in one package. This MOIC is designed for Braswell M/D SOC. Braswell M/D SOC controls the power sequence by simple I/O. RT5041AB has UVLO, OVP, UVP, OTP and current limit protections. RT5041AB is available in WQFN-28L 4x4 package.     Ordering Information  RT5041AB  Package Type QW : WQFN-28L 4x4 (W-Type) Note :   Lead Plating System G : Green (Halogen Free and Pb Free) Applications  Richtek products are :  2 Channels Low Power Consumption Step-Down DC/DC Converters Low On-Resistance for DC/DC Converters  50mΩ Ω of High Side MOSFET  45mΩ Ω of Low Side MOSFET 3 Channels LDO Voltage Regulators 2 Channels Switches Input Voltage Range : 2.7V to 5.5V Internal Soft-Start and Soft-Discharge Cycle-by-Cycle Current Limit and UVP Thermal Shutdown Ultra book and Tablet Computers RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.  Suitable for use in SnPb or Pb-free soldering processes. Simplified Application Circuit RT5041AB V1P8 IN_1P24A IN_1P8 VIN V1P8 IN_1P15A V1P24A IN_1P5S O_1P24A LX_1P8 V1P15A O_1P15A IN_1P05A VIN V1P5S O_1P5S LX_1P05A V1P05A O_1P8 V1P8 SWIN_1P8A V1P8A SWO_1P8A O_1P05A VCC EN_1P05A SLP_S0iX_B SUSPWRDNACK SLP_S3_B V3P3 IN_3P3A V3P3A O_3P3A GND Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 RSMRST PGND VCC V1P05A Enable S0iX SUSPWRDNACK S3 PG for V3P3A is a registered trademark of Richtek Technology Corporation. www.richtek.com 1 RT5041AB Pin Configurations Marking Information (TOP VIEW) LX_1P8 LX_1P8 EN_1P05A SLP_S0iX_B SUSPWRDNACK LX_1P05A LX_1P05A 3D= : Product Code YMDNN : Date Code 3D=YM DNN 28 27 26 25 24 23 22 IN_1P8 IN_1P8 O_1P8 SLP_S3_B O_1P24A O_1P15A IN_1P24A 1 2 3 4 5 6 7 PGND 29 21 20 19 18 17 16 15 IN_1P05A IN_1P05A O_1P05A O_3P3A IN_3P3A SWO_1P8A PGND IN_1P15A IN_1P5S O_1P5S VCC GND RSMRST SWIN_1P8A 8 9 10 11 12 13 14 WQFN-28L 4x4 Functional Pin Description Pin No. Pin Name Pin Function 1, 2 IN_1P8 Input Voltage for V1P8 Buck Converter. 3 O_1P8 Output Voltage Feedback of V1P8 Buck Converter. 4 SLP_S3_B Enable Signal for V1P5S LDO. 5 O_1P24A LDO Output for V1P24A. 6 O_1P15A LDO Output for V1P15A. 7 IN_1P24A LDO Input for V1P24A. 8 IN_1P15A LDO Input for V1P15A. 9 IN_1P5S LDO Input for V1P5S. 10 O_1P5S LDO Output for V1P5S. 11 VCC Analog Power for Internal Circuit. 12 GND Analog Ground. 13 RSMRST Power Good Signal for V3P3A Switch. 14 SWIN_1P8A Switch Input for V1P8A. 15, PGND 29 (Exposed Pad) Power Ground. The Exposed Pad must be soldered to a large PCB and connected to GND for maximum power dissipation. 16 SWO_1P8A Switch Output for V1P8A. 17 IN_3P3A Switch Input for V3P3A. 18 O_3P3A Switch Output for V3P3A. 19 O_1P05A Output Voltage Feedback for V1P05A Buck Converter. 20, 21 IN_1P05A Input Voltage for V1P05A Buck Converter. 22, 23 LX_1P05A Phase Node for V1P05A Buck Converter. SUSPWRDNACK Disable Signal for All Power Rails. 24 Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 2 is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB Pin No. Pin Name Pin Function 25 SLP_S0iX_B Input Pin. LDO_V1P15A will recognize this first rising edge during power up sequence to achieve SLP_S0iX_B function. When SLP_S0iX_B = High, LDO_V1P15A_VOUT = 1.15V. When SLP_S0iX_B = Low, LDO_V1P15A_VOUT = 0.75V. 26 EN_1P05A Enable Signal for RT5041AB. Start to power up all voltage rails with a sequence. LX_1P8 Phase Node for V1P8 Buck Converter. 27, 28 Function Block Diagram VCC IN_1P05A V1P05A + VNN LX_1P05A V1P8 PG_V1P05A PG_V1P8A IN_1P8 LX_1P8 PGND PGND O_1P05A O_1P8 EN_1P05A IN_1P24A LDO V1P24A SW V3P3A PG_V1P24A IN_3P3A PG_V3P3A_S O_1P24A O_3P3A IN_1P15A LDO V1P15A RSMRST PG_V1P15A SW V1P8A O_1P15A SLP_S0iX_B IN_1P5S SWIN_1P8A PG_V1P8A_S LDO V1P5S SWO_1P8A PG_V1P5S O_1P5S SLP_S3_B Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 SUSPWRDNACK GND is a registered trademark of Richtek Technology Corporation. www.richtek.com 3 RT5041AB Absolute Maximum Ratings             (Note 1) Supply Input Voltage, IN_1P8, IN_1P05A, IN_3P3A ---------------------------------------------------------Supply Input Voltage, IN_1P24A, IN_1P15A, IN_V1P5S, IN_V1P8A ------------------------------------Supply Voltage, VCC ------------------------------------------------------------------------------------------------Switch Node Voltage, LX_V1P05A, LX_V1P8 -----------------------------------------------------------------Other Pins --------------------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C WQFN-28L 4x4 -------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2) WQFN-28L 4x4, θJA --------------------------------------------------------------------------------------------------WQFN-28L 4x4, θJC -------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) --------------------------------------------------------------------------Junction Temperature ------------------------------------------------------------------------------------------------Storage Temperature Range ---------------------------------------------------------------------------------------ESD Susceptibility (Note 3) HBM (Human Body Model) ------------------------------------------------------------------------------------------ Recommended Operating Conditions        −0.3V to 6V −0.3V to 6V −0.3V to 6V −0.3V to 6V −0.3V to 6V 3.5W 28.5°C/W 7°C/W 260°C 150°C −65°C to 150°C 2kV (Note 4) Supply Input Voltage, IN_1P05A, IN_1P8 ----------------------------------------------------------------------Supply Input Voltage, IN_1P24A, IN_1P15A, IN_1P5S -----------------------------------------------------Supply Input Voltage, IN_3P3A -----------------------------------------------------------------------------------Supply Input Voltage, SWIN_1P8A ------------------------------------------------------------------------------Supply Voltage, VCC ------------------------------------------------------------------------------------------------Ambient Temperature Range ---------------------------------------------------------------------------------------Junction Temperature Range ---------------------------------------------------------------------------------------- 2.7V to 5.5V 1.8V to 2V 3.3V to (VCC − 2)V 1.8V to (VCC − 2)V 4.5V to 5.5V −40°C to 85°C −40°C to 125°C Electrical Characteristics (VCC = 5V, TA = 25°C, No load, for every voltage rails unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit 4.5 -- 5.5 V -- -- 5 A MOIC Supply Voltage VCC Shutdown Current ISHDN UVLO Threshold VUVLO -- -- 4 V UVLO Hysteresis VUVLO_HYS -- 150 -- mV Enable Input High Voltage VEN_H Measured VEN_1P05A, VSUSPWRDNACK, VSLP_S3_B, VSLP_S0iX_B 1 -- VCC V Enable Input Low Voltage VEN_L Measured VEN_1P05A, VSUSPWRDNACK, VSLP_S3_B, VSLP_S0iX_B -- -- 0.4 V Thermal Shutdown Threshold TSD -- 150 -- °C Thermal Shutdown Hysteresis TSD_HYS -- 25 -- °C VEN_1P05A = 0V Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 4 is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB Parameter Symbol Test Conditions Min Typ Max Unit 2.7 -- 5.5 V 0 20 55 A CONVERTER_V1P8 (4.1A) Supply Voltage VIN Supply Quiescent Current IQ Enabled, no switching. Output Voltage VOUT CCM 1.799 1.818 1.836 V Soft-Start Time TSS 10% to 90% VOUT 0.58 0.9 1.35 ms Switch On Resistance RDS(ON),H VIN = 5V 30 50 85 m Switch On Resistance RDS(ON),L VIN = 5V 30 45 75 m Current Limit IOC Inductor valley current 4.7 6 8.8 A Switching Frequency f SW 1 1.2 1.4 MHz Minimum Off Time TOFF -- 120 -- ns OVP Trip Threshold VOVP 115 120 125 % -- 5 -- s 55 60 65 % -- 5 -- s -- 1 --  2.7 -- 5.5 V 0 20 55 A OVP Deglitch Time (Note 5) UVP Trip Threshold UVP Deglitch Time TOVD VUVP (Note 5) Discharge Resistance OVP detected UVP detected TUVD RDIS EN = Low, VTEST = 1V CONVERTER_V1P05A (4.6A) Supply Voltage VIN Supply Quiescent Current IQ Enabled, no switching. Output Voltage VOUT CCM 1.039 1.05 1.06 V Soft-Start Time TSS 10% to 90% VOUT 0.58 0.9 1.35 ms Switch On Resistance RDS(ON),H VIN = 5V 30 50 85 m Switch On Resistance RDS(ON),L VIN = 5V 30 45 75 m Current Limit IOC Inductor valley current 5.2 6 8.8 A Switching Frequency f SW 1 1.2 1.4 MHz Minimum Off Time TOFF -- 120 -- ns OVP Trip Threshold VOVP 115 120 125 % -- 5 -- s 55 60 65 % -- 5 -- s -- 1.8 --  1.6 -- 2 V 0 20 50 A OVP Deglitch Time (Note 5) UVP Trip Threshold UVP Deglitch Time TOVD VUVP (Note 5) Discharge Resistance OVP detected UVP detected TUVD RDIS EN = Low, VTEST = 1V LDO_V1P24A (1A) Supply Voltage VIN Supply Current (Quiescent) IQ Enabled Output Voltage VOUT VIN = 1.8V 1.227 1.24 1.252 V Soft-Start Time TSS 10% to 90% VOUT 0.33 0.5 0.67 ms Dropout Voltage VDROP IOUT = 0.9A 20 200 300 mV Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 is a registered trademark of Richtek Technology Corporation. www.richtek.com 5 RT5041AB Parameter Symbol Current Limit IOC UVP Trip Threshold VUVP UVP Deglitch Time (Note 5) Discharge Resistance Test Conditions Min Typ 1.1 1.5 55 60 65 % -- 5 -- s EN = Low, VTEST = 1V -- 6 --  IOUT = 100mA, f = 100Hz -- 60 -- IOUT = 100mA, f = 10kHz -- 30 -- 1.6 -- 2 V 0 20 50 A VIN = 1.8V, VSLP_S0iX_B = 1 1.138 1.15 1.161 VIN = 1.8V, VSLP_S0iX_B = 0 0.735 0.75 0.765 10% to 90% VOUT 0.33 0.5 0.67 ms Ramp up from 0.75V to 1.15V -- 42 -- V/ms IOUT = 1A 20 400 500 mV 1.1 1.5 2.05 A 55 60 65 % -- 5 -- s EN = Low, VTEST = 1V -- 6 --  IOUT = 100mA, f = 100Hz -- 60 -- IOUT = 100mA, f = 10kHz -- 30 -- 1.6 -- 2 V 0 20 50 A UVP detected TUVD RDIS Power Supply Rejection Rate Max Unit A dB LDO_V1P15A (1A) Supply Voltage VIN Supply Quiescent Current IQ Output Voltage VOUT Soft-Start Time TSS Slew Rate Dropout Voltage VDROP Current Limit IOC UVP Trip Threshold VUVP UVP Deglitch Time (Note 5) Discharge Resistance Enabled UVP detected TUVD RDIS Power Supply Rejection Rate V dB LDO_V1P5S (0.1A) Supply Voltage VIN Supply Quiescent Current IQ Enabled Output Voltage VOUT VIN = 1.8V 1.485 1.5 1.515 V Soft-Start Time TSS 10% to 90% VOUT 0.33 0.5 0.67 ms Dropout Voltage VDROP IOUT = 100mA 5 20 100 mV Current Limit IOC 0.15 0.2 0.55 A UVP Trip Threshold VUVP 55 60 65 % -- 5 -- s EN = Low, VTEST = 1V -- 6 --  IOUT = 100mA, f = 100Hz -- 60 -- IOUT = 100mA, f = 10kHz -- 30 -- UVP Deglitch Time (Note 5) Discharge Resistance Power Supply Rejection Rate UVP detected TUVD RDIS Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 6 dB is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB Parameter Symbol Test Conditions Min Typ Max Unit 2.7 3.3 VCC 2 V SW_V3P3A (450mA) Supply Voltage VIN Supply Quiescent Current IQ VEN_1P05A = 2V 0 5 25 A On-state Resistance RDS(ON) VIN = 3.333V, IOUT = 100mA -- 90 -- m Soft-Start Time TSS 10% to 90% VOUT 40 300 510 s Dropout Voltage VDROP IOUT = 400mA -- 33 -- mV Current Limit IOC 0.55 1 2.6 A UVP Trip Threshold VUVP -- 60 -- % -- 5 -- s -- 6 25  1.6 1.8 VCC 2 V UVP Deglitch Time (Note 5) Discharge Resistance UVP detected TUVD RDIS EN = Low, VTEST = 1V SW_V1P8A (1A) Supply Voltage VIN Supply Current (Quiescent) IQC VEN_1P05A = 2V 0 5 25 A On-state Resistance RDS(ON) VIN = 1.818V, IOUT = 100mA -- 60 -- m Soft-Start Time TSS 10% to 90% VOUT 40 300 455 s Dropout Voltage VDROP IOUT = 300mA -- 18 -- mV Current Limit IOC 1.1 1.4 2.6 A UVP Trip Threshold VUVP -- 60 -- % -- 5 -- s -- 6 --  UVP Deglitch Time (Note 5) Discharge Resistance UVP detected TUVD RDIS EN = Low, VTEST = 1V Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is measured at the exposed pad of the package. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Guaranteed by design. Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 is a registered trademark of Richtek Technology Corporation. www.richtek.com 7 RT5041AB Typical Application Circuit V1P8 7 10µF x 3 8 9 5 V1P24A RT5041AB IN_1P24A 1, 2 IN_1P5S O_1P24A 6 O_1P15A 22µF LX_1P8 O_1P8 IN_1P05A 27, 28 LX_1P05A 14 SWIN_1P8A 2.2µF 16 V1P8A 2.2µF V3P3 2.2µF V3P3A 2.2µF V1P8 22µF x 4 * Optional 1 4.7R 20, 21 VIN 10µF x 3 4.7µF V1P8 1µH 3 10 O_1P5S V1P5S VIN 10µF x 3 IN_1P15A 22µF V1P15A IN_1P8 O_1P05A VCC 22, 23 0.47µH V1P05A 22µF x 7 ** Optional 2 19 11 VCC 1µF SWO_1P8A 26 EN_1P05A 25 17 IN_3P3A SLP_S0iX_B 24 SUSPWRDNACK 4 SLP_S3_B 18 O_3P3A 13 RSMRST GND 12 V1P05A Enable S0iX SUSPWRDNACK 10k S3 PG for V3P3A PGND 15, 29 (Exposed Pad) * For Intel transient test condition, Loading = 2.6A to 4.1A, SR = 1.5A/µs. ** For Intel transient test condition, Loading = 2.35A to 4.6A, SR = 2.25A/µs. Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 8 is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB Typical Operating Characteristics Power On from EN_1P05A Power On from EN_1P05A EN_1P05A (5V/Div) EN_1P05A (5V/Div) V1P8 (1V/Div) V1P24A (1V/Div) V1P05A (1V/Div) V1P15A (1V/Div) V1P8A (1V/Div) Time (2ms/Div) Time (2ms/Div) Power On from EN_1P05A Power On from V1P5S EN_1P05A (5V/Div) EN_1P05A (5V/Div) SLP_S3_B (5V/Div) V3P3A (2V/Div) RSMRST (5V/Div) VIN = 5V, VCC = 5V, SUSPWRDNACK Low, No Load VIN = 5V, VCC = 5V, SUSPWRDNACK Low, No Load VIN = 5V, VCC = 5V, SUSPWRDNACK Low, No Load V1P5S (1V/Div) VIN = 5V, VCC = 5V, SUSPWRDNACK Low, No Load Time (2ms/Div) Time (1ms/Div) Power Off EN_1P05A Power Off EN_1P05A EN_1P05A (5V/Div) EN_1P05A (5V/Div) V1P05A (1V/Div) V1P24A (1V/Div) V1P5S (1V/Div) V1P8 (1V/Div) V1P15A (1V/Div) VIN = 5V, VCC = 5V, SUSPWRDNACK Low, No Load Time (500μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 V1P8A (1V/Div) V = 5V, V = 5V, SUSPWRDNACK Low, No Load IN CC Time (500μs/Div) is a registered trademark of Richtek Technology Corporation. www.richtek.com 9 RT5041AB Power Off EN_1P05A Power On from SUSPWRNACK EN_1P05A (5V/Div) SUSPWRNACK (5V/Div) V3P3A (2V/Div) V1P05A (1V/Div) V1P8 (1V/Div) RSMRST (5V/Div) VIN = 5V, VCC = 5V, SUSPWRDNACK Low, No Load V1P15A (1V/Div) Time (500μs/Div) Time (2ms/Div) Power On from SUSPWRNACK Power On from SUSPWRNACK SUSPWRNACK (5V/Div) SUSPWRNACK (5V/Div) V1P24A (1V/Div) V3P3A (2V/Div) V1P8A (1V/Div) VIN = 5V, VCC = 5V, EN_1P05A High, No Load RSMRST (5V/Div) Time (2ms/Div) Power Off SUSPWRNACK Power Off SUSPWRNACK SUSPWRNACK (5V/Div) V1P05A (1V/Div) V1P24A (1V/Div) V1P5S (1V/Div) V1P8 (1V/Div) VIN = 5V, VCC = 5V, EN_1P05A High, No Load Time (500μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 10 VIN = 5V, VCC = 5V, EN_1P05A High, No Load Time (2ms/Div) SUSPWRNACK (5V/Div) V1P15A (1V/Div) VIN = 5V, VCC = 5V, EN_1P05A High, No Load V1P8A (1V/Div) VIN = 5V, VCC = 5V, EN_1P05A High, No Load Time (500μs/Div) is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB Power Off SUSPWRNACK SUSPWRNACK (5V/Div) S0iX Enter Sequence SLP_S0iX_B (5V/Div) V1P15A (1V/Div) V3P3A (2V/Div) SLP_S3_B (5V/Div) RSMRST (5V/Div) V1P5S (1V/Div) VIN = 5V, VCC = 5V, EN_1P05A High, No Load Time (500μs/Div) Time (500μs/Div) S0iX Exit Sequence S3 (S4/S5) Enter Sequence SLP_S0iX_B (5V/Div) SLP_S0iX_B (5V/Div) V1P15A (1V/Div) V1P15A (1V/Div) SLP_S3_B (5V/Div) SLP_S3_B (5V/Div) V1P5S (1V/Div) VIN = 5V, VCC = 5V, V1P15A Load 1mA VIN = 5V, VCC = 5V, V1P15A Load 1mA V1P5S (1V/Div) VIN = 5V, VCC = 5V, V1P15A Load 1mA Time (500μs/Div) Time (500μs/Div) S3 (S4/S5) Exit Sequence Shutdown Current vs. VCC 1.0 VIN = 5V, EN_1P05A = 0V 0.9 Shutdown Current (μA)1 SLP_S0iX_B (5V/Div) V1P15A (1V/Div) SLP_S3_B (5V/Div) V1P5S (1V/Div) VIN = 5V, VCC = 5V, V1P15A Load 1mA Time (500μs/Div) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 4.5 4.7 4.9 5.1 5.3 5.5 VCC (V) Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 is a registered trademark of Richtek Technology Corporation. www.richtek.com 11 RT5041AB Input High/Low Voltage vs. Temperature Quiescent Current vs. VCC 143 1.0 Input High/Low Voltage (V) Quiescent Current (μA) 142 141 140 139 138 137 EN_1P05A Rising 0.8 Falling 0.6 0.4 0.2 VIN = 5V, EN_1P05A = 2V VIN = 5V, VCC = 5V 136 0.0 4.5 4.7 4.9 5.1 5.3 5.5 -50 -25 0 VCC (V) 0.8 Falling 0.6 0.4 0.2 SLP_S3_B 0.8 Falling 0.6 0.4 0.2 25 50 75 100 125 -50 -25 0 25 50 75 100 Temperature (°C) Temperature (°C) Input High/Low Voltage vs. Temperature V1P05A Load Transient Response 1.0 Input High/Low Voltage (V) VIN = 5V, VCC = 5V 0.0 0 125 Rising VIN = 5V, VCC = 5V 0.0 -25 100 Input High/Low Voltage vs. Temperature SUSPWRDNACK Rising -50 75 1.0 Input High/Low Voltage (V) Input High/Low Voltage (V) 50 Temperature (°C) Input High/Low Voltage vs. Temperature 1.0 25 SLP_S0iX_B 125 Converter Rising 0.8 IOUT (1A/Div) Falling 0.6 VOUT (20mV/Div) 0.4 0.2 VIN = 5V, VCC = 5V VIN = 5V, VCC = 5V, ILOAD = 1A to 1.9A, SR = 0.9A/μs, COUT = 22μF/0603/6.3V x 3 LX (5V/Div) 0.0 -50 -25 0 25 50 75 100 125 Time (10μs/Div) Temperature (°C) Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 12 is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB V1P05A Load Transient Response V1P05A Load Transient Response Converter Converter IOUT (1A/Div) IOUT (2A/Div) VOUT (20mV/Div) VOUT (20mV/Div) VIN = 3.3V, VCC = 5V, ILOAD = 1A to 1.9A, SR = 0.9A/μs, COUT = 22μF/0603/6.3V x 3 LX (5V/Div) LX (5V/Div) IOUT (2A/Div) VOUT (20mV/Div) VIN = 5V, VCC = 5V, ILOAD = 2.85A to 4.6A, SR = 1.75A/μs, COUT = 22μF/0603/6.3V x 5 Time (10μs/Div) Time (10μs/Div) V1P05A Load Transient Response V1P05A Load Transient Response Converter Converter VIN = 3.3V, VCC = 5V, ILOAD = 2.85A to 4.6A, SR = 1.75A/μs, COUT = 22μF/0603/6.3V x 5 IOUT (2A/Div) VOUT (20mV/Div) LX (5V/Div) VIN = 5V, VCC = 5V, ILOAD = 2.35A to 4.6A, SR = 2.25A/μs, COUT = 22μF/0603/6.3V x 6 LX (5V/Div) Time (10μs/Div) Time (10μs/Div) V1P05A Load Transient Response V1P8 Load Transient Response Converter IOUT (2A/Div) VOUT (20mV/Div) VIN = 3.3V, VCC = 5V ILOAD = 2.35A to 4.6A, SR = 2.25A/μs, COUT = 22μF/0603/6.3V x 7 Converter IOUT (1A/Div) VOUT (20mV/Div) VIN = 5V, VCC = 5V, ILOAD = 0.6A to 1.717A SR = 1.117A/μs, COUT = 22μF/0603/6.3V x 3 LX (5V/Div) LX (5V/Div) Time (10μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 Time (10μs/Div) is a registered trademark of Richtek Technology Corporation. www.richtek.com 13 RT5041AB V1P8 Load Transient Response V1P8 Load Transient Response Converter Converter VIN = 3.3V, VCC = 5V, ILOAD = 0.6A to 1.717A IOUT (1A/Div) VOUT (20mV/Div) SR = 1.117A/μs, COUT = 22μF/0603/6.3V x 3 LX (5V/Div) IOUT (2A/Div) VOUT (20mV/Div) LX (5V/Div) Time (10μs/Div) Time (10μs/Div) V1P8 Load Transient Response V1P8 Load Transient Response Converter Converter IOUT (2A/Div) VOUT (20mV/Div) VIN = 5V, VCC = 5V, ILOAD = 3.65A to 4.1A, SR = 0.45A/μs, COUT = 22μF/0603/6.3V x 3 VIN = 3.3V, VCC = 5V, ILOAD = 3.65A to 4.1A SR = 0.45A/μs, COUT = 22μF/0603/6.3V x 3 VIN = 5V, VCC = 5V, IOUT (2A/Div) VOUT (20mV/Div) ILOAD = 2.6A to 4.1A, SR = 1.5A/μs, COUT = 22μF/0603/6.3V x 3 LX (5V/Div) LX (5V/Div) Time (10μs/Div) Time (10μs/Div) V1P8 Load Transient Response V1P05A OVP Converter VIN = 3.3V, VCC = 5V, IOUT (2A/Div) VOUT (20mV/Div) ILOAD = 2.6A to 4.1A SR = 1.5A/μs, COUT = 22μF/0603/6.3V x 4 LX (10V/Div) VOUT (500mV/Div) LX (5V/Div) VIN = 5V, VCC = 5V, Load = 2A Time (10μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 14 Converter RSMRST (5V/Div) Time (50μs/Div) is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB V1P05A UVP V1P8 OVP Converter RSMRST (5V/Div) Converter RSMRST (5V/Div) LX (10V/Div) LX (10V/Div) VOUT 1V/Div) VOUT (500mV/Div) VIN = 5V, VCC = 5V VIN = 5V, VCC = 5V, Load = 2A Time (50μs/Div) Time (10μs/Div) V1P8 UVP V1P05A OCP Converter RSMRST (5V/Div) LX (10V/Div) Converter RSMRST (5V/Div) LX (10V/Div) VOUT (1V/Div) VOUT 1V/Div) VIN = 5V, VCC = 5V IL (5A/Div) VIN = 5V, VCC = 5V Time (10μs/Div) Time (10μs/Div) Output Voltage vs. Load Current V1P18 OCP 1.060 Converter VOUT (1V/Div) Converter V1P05A 1.058 Output Voltage (V) RSMRST (5V/Div) LX (10V/Div) 1.056 1.054 1.052 1.050 VIN = 5V VIN = 3.3V 1.048 1.046 1.044 IL (5A/Div) VIN = 5V, VCC = 5V 1.042 VCC = 5V 1.040 Time (10μs/Div) 0 1 2 3 4 5 Load Current (A) Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 is a registered trademark of Richtek Technology Corporation. www.richtek.com 15 RT5041AB Output Voltage vs. Load Current 1.830 Switch Frequency vs. Load Current 1160 Converter V1P8 Switch Frequency (kHz)1 Output Voltage (V) 1.825 1.820 VIN = 5V VIN = 3.3V 1.815 1.810 1.805 Converter V1P05A 1140 VIN = 3.3V 1120 VIN = 5V 1100 1080 1060 1040 1020 VCC = 5V 1.800 VCC = 5V 1000 0 1 2 3 4 5 1 2 Load Current (A) Switch Frequency vs. Load Current 1160 Converter V1P05A 90 VIN = 3.3V 85 1120 VIN = 5V Efficiency (%) Switch Frequency (kHz)1 5 Efficiency vs. Load Current 1140 1100 1080 1060 1040 VIN = 5V 80 75 70 65 60 1020 55 VCC = 5V 1000 VCC = 5V 50 1 2 3 4 90 1 2 3 4 Load Current (A) Efficiency vs. Load Current V1P15A Load Transient Response Converter V1P8 VIN = 3.3V 95 0 5 Load Current (A) 100 Efficiency (%) 4 95 Converter V1P8 VIN = 3.3V 3 Load Current (A) 5 LDO VIN = 5V IOUT (1A/Div) 85 80 VOUT (20mV/Div) 75 70 VIN = V1P8, VCC = 5V, ILOAD = 0.5A to 1A, SR = 0.5A/μs, COUT = 22μF x 1 65 VCC = 5V 60 0 1 2 3 4 5 Time (10μs/Div) Load Current (A) Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 16 is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB V1P24A Load Transient Response V1P5S Load Transient Response LDO LDO IOUT (100mA/Div) IOUT (1A/Div) VOUT (20mV/Div) VOUT (10mV/Div) VIN = V1P8, VCC = 5V, ILOAD = 0.5A to 1A, SR = 0.5A/μs, COUT = 22μF x 1 VIN = V1P8, VCC = 5V, SLP_S3_B = High, ILOAD = 83mA to 100mA, SR = 17mA/μs, COUT = 4.7μF x 1 Time (10μs/Div) Time (10μs/Div) Output Voltage vs. Load Current Output Voltage vs. Load Current 0.752 LDO V1P15A 1.149 LDO V1P15A 0.750 Output Voltage (V) Output Voltage (V) 1.153 1.145 1.141 1.137 0.748 0.746 0.744 VIN = V1P8, VCC = 5V, SLP_S0iX_B = High VIN = V1P8, VCC = 5V, SLP_S0iX_B = Low 1.133 0.742 0 200 400 600 800 1000 0 100 Load Current (mA) LDO V1P24A Output Voltage (V) 1.236 1.232 1.228 500 LDO V1P5S 1.4990 1.4985 1.4980 1.4975 1.224 VIN = V1P8, VCC = 5V, SLP_S3_B = High VIN = V1P8, VCC = 5V 1.220 1.4970 0 200 400 600 800 Load Current (mA) Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 400 Output Voltage vs. Load Current 1.4995 1.240 Output Voltage (V) 300 Load Current (mA) Output Voltage vs. Load Current 1.244 200 September 2015 1000 0 10 20 30 40 50 60 70 80 90 100 Load Current (mA) is a registered trademark of Richtek Technology Corporation. www.richtek.com 17 RT5041AB Output Voltage vs. Temperature 1.16 Output Voltage vs. Temperature 0.76 LDO V1P15A 0.75 Output Voltage (V) Output Voltage (V) 1.15 LDO V1P15A 0mA 100mA 500mA 1000mA 1.14 1.13 1.12 1.11 -50 -40 -20 0 25 50 75 100 0.73 0.72 0.71 VIN = V1P8, VCC = 5V, SLP_S0iX_B = High Temperature from −40°C to 125°C 1.10 0mA 100mA 500mA 0.74 VIN = V1P8, VCC = 5V, SLP_S0iX_B = Low Temperature from −40°C to 125°C 0.70 125 -50 -40 -20 Temperature (°C) Output Voltage vs. Temperature 1.26 25 50 75 100 125 Output Voltage vs. Temperature 1.52 LDO V1P24A 1.25 LDO V1P5S 1.50 Output Voltage (V) Output Voltage (V) 0 Temperature (°C) 1.24 1.23 0mA 100mA 500mA 1000mA 1.22 0mA 10mA 50mA 100mA 1.48 1.46 1.44 1.21 VIN = V1P8, VCC = 5V, Temperature from −40°C to 125°C 1.20 -50 -40 -20 0 25 50 75 100 1.42 -50 125 -40 -20 0 25 50 Temperature (°C) Temperature (°C) V1P15A UVP V1P15A UVP LDO RSMRST (5V/Div) 75 100 125 LDO RSMRST (5V/Div) VOUT (500mV/Div) VOUT (500mV/Div) VIN = V1P8, VCC = 5V, SLP_S0iX_B = High Time (10μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 18 VIN = V1P8, VCC = 5V, SLP_S3_B = High Temperature from −40°C to 125°C VIN = V1P8, VCC = 5V, SLP_S0iX_B = Low Time (10μs/Div) is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB V1P24A UVP V1P5S UVP LDO RSMRST (5V/Div) VOUT (500mV/Div) VOUT (500mV/Div) VIN = V1P8, VCC = 5V VIN = V1P8, VCC = 5V, SLP_S3_B = High Time (10μs/Div) Time (10μs/Div) V1P15A OCP V1P15A OCP LDO RSMRST (5V/Div) VOUT (500mV/Div) IOUT (1A/Div) IOUT (1A/Div) VIN = V1P8, VCC = 5V, SLP_S0iX_B = High LDO RSMRST (5V/Div) VOUT (500mV/Div) VIN = V1P8, VCC = 5V, SLP_S0iX_B = Low Time (100μs/Div) Time (100μs/Div) V1P24A OCP V1P5S OCP LDO RSMRST (5V/Div) VOUT (500mV/Div) IOUT (1A/Div) IOUT (100mA/Div) VIN = V1P8, VCC = 5V Time (100μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. September 2015 LDO RSMRST (5V/Div) VOUT (500mV/Div) DS5041AB-00 LDO RSMRST (5V/Div) VIN = V1P8, VCC = 5V, SLP_S3_B = High Time (100μs/Div) is a registered trademark of Richtek Technology Corporation. www.richtek.com 19 RT5041AB RON vs. Load Current RON vs. Load Current 90 SW V1P8A 80 80 70 70 RON (m Ω) RON (m Ω) 90 60 60 50 50 40 40 VIN = 3.3V, VCC = 5V VIN = V1P8, VCC = 5V 30 30 0 200 400 600 800 SW V3P3A 0 1000 100 200 Load Current (mA) 80 70 70 RON (m Ω) RON (m Ω) 80 60 50 VIN = V1P8, VCC = 5V, IOUT = 300mA, Temperature from −40°C to 125°C 30 -50 -25 0 25 50 75 100 600 125 SW V3P3A 60 50 40 VIN = 3.3V, VCC = 5V, IOUT = 400mA, Temperature from −40°C to 125°C 30 -50 -25 0 25 50 75 Temperature (°C) Temperature (°C) V1P8A UVP V3P3A UVP SW RSMRST (5V/Div) 100 125 SW RSMRST (5V/Div) VOUT (1V/Div) VOUT (500mV/Div) VIN = V1P8, VCC = 5V Time (10μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 20 500 RON vs. Temperature 90 SW V1P8A 40 400 Load Current (mA) RON vs. Temperature 90 300 VIN = 3.3V, VCC = 5V Time (10μs/Div) is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB V1P8A OCP V3P3A OCP SW RSMRST (5V/Div) VOUT (1V/Div) VOUT (2V/Div) IOUT (1A/Div) IOUT (500mA/Div) VIN = V1P8, VCC = 5V Time (50μs/Div) Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 SW RSMRST (5V/Div) VIN = 3.3V, VCC = 5V Time (50μs/Div) is a registered trademark of Richtek Technology Corporation. www.richtek.com 21 RT5041AB Application Information Power Path RT5041AB is a MOIC (Multi Output Integrated Circuit) and is an integral part of the Braswell Platform focused on power solution integration to minimize system board area. The simplicity of MOIC allows easy adoption without any system firmware changes and can be a direct replacement of most of the SOC VR rails. The RT5041AB is an integrated power solution for the Braswell platform. It includes two DC to DC Buck converters, three Linear Dropout regulators and two power switches. Expect Core power, DDR power and System 3V/5V power, RT5041AB package the rest power paths into one. System Power 3.3V/5V Battery Charger (2SXP) DDR Power Core Power RT5041AB_MOIC VIN V1P05A V1P8 V1P5S V1P24A SOC + Platform Device V1P15A SW_V3P3A SW_V1P8A EN_V1P05A SLP_S3_B SLP_S0iX_B SUSPWRDNACK RSMRST(PG) Figure 1. Simplified MOIC Power Rails Apply Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 22 is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB All data of the power paths provided by RT5041AB device is listed as Table 1. Table1. Power Path Resource Name Type Voltage Range Peak Current Rating V1P05A Buck Converter 1.05V 4600mA V1P8 Buck Converter 1.8V 4100mA* V1P5S LDO 1.5V 100mA V1P24A LDO 1.24V 1000mA V1P15A LDO 0.75V / 1.15V 1000mA** V3P3A Switch 3.3V 450mA V1P8A Switch 1.8V 1000mA * VIN = 5V only ** VOUT @ 1.15V Buck Converter Buck Over-Current Protection RT5041AB applies two synchronous step-down buck converters with both integrated a P-Channel high side MOSFET and a N-Channel low side MOSFET. The converter control scheme is based on current mode constant-on-time (COT) architecture, which has fast transient response and minimizes external components. Based on the internal current ramp information, it can used multi-layer ceramic capacitors (MLCC) as the output capacitors without high-ESR bulk or virtual ESR network required for the loop stability. The OCP is implemented using a cycle-by-cycle valley detected control circuit. The switch current is monitored by measuring the low-side voltage between the LX pin and PGND. The voltage is proportional to the switch current and the on-resistance of the low-side MOSFET. To improve accuracy, the low-side voltage sensing is temperature compensated. Buck converters of RT5041AB applies Power-Saving feature by automatic enabling diode emulation mode (DEM) as load decrease. When the load makes converter work at continuous current mode (CCM) the frequency is fixed at 1.2MHz. A soft-start function is built inside. The internal current source charges an internal capacitor to make the softstart ramp voltage. When buck converter powers up, the output voltage will track the internal ramp voltage during soft-start interval to prevent inrush current. When EN_1P05A goes low to let buck converters shutdown mode occur, or the output under-voltage fault latch is set, the output discharge mode will be triggered. During discharge mode, an internal switch creates a path for discharging the output capacitors’ residual charge to GND. When high side MOSFET turn-on, the high-side switch current increases at a linear rate and determines by VIN, VOUT, TON and inductance. And when low side MOSFET turn-on, the low-side switch current decreases linearly. The average value of the switch current is the output load current. If the sensing voltage of the low-side MOSFET is above the voltage proportional to the current limit, the converter keeps the low-side turn on until the sensing voltage falls below the voltage proportional to the current limit and start a new switching cycle. Buck Output Under-Voltage Protection When the over current limit is active, the output voltage falls. If the output voltage falls under 60% of the reference voltage, the UVP comparator signal goes high and an internal UVP counter start to count. If the counted timing is over the UVP delay time, the high-side and low-side MOSFET will turn off and latched. The way to cannel the latched behavior is to re-enable RT5041AB or re-give VCC power of RT5041AB. The buck converters have a full set of protection. Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 is a registered trademark of Richtek Technology Corporation. www.richtek.com 23 RT5041AB Buck Output Over-Voltage Protection When the output voltage exceeds 120% of the reference, the OVP comparator signal goes high and an internal OVP counter start to count. If the counted timing is over the OVP delay time, the low-side MOSFET will continue to turn on and latched. Buck Over-Temperature Protection RT5041AB monitors the temperature of buck converters. If the temperature of the buck converter is over 150°C the OTP circuit acts and makes all power rails of RT5041AB shutdown. They recover back with power-up sequence when the temperature of buck converters is low to 125°C. Linear Dropout Regulator The RT5041AB includes three high performance linear dropout regulators. The peak current rating is designed for short period current, not for thermal design current. LDOs of RT5041AB also have soft-start function. An internal current source charges an internal capacitor to make the soft-start ramp voltage. When LDOs power up, the output voltage will track the internal ramp voltage during soft-start interval to prevent inrush current. When enable signals go low to let LDOs shutdown mode occur, or the output under-voltage fault latch is set, the output discharge mode will be triggered. During discharge mode, an internal switch creates a path for discharging the output capacitors' residual charge to GND. RT5041AB has two enable signals SLP_S3_B and SLP_S0iX_B to control LDO_V1P5S and LDO_V1P15A respectively to meet the S3/S4 and S0iX power saving mode status of Braswell platform. If SLP_S3_B signal goes high, LDO_V1P5S powers on; otherwise, the LDO_V1P5S keeps off. When RT5041AB powers up from internal power up sequence, LDO_V1P15A will raise up to 1.15V with ignoring SLP_S0iX_B signal until device detecting the first rising edge of the signal. After detecting the first rising edge of the SLP_S0iX_B if the SLP_S0iX_B signal goes high, LDO_V1P15A keeps 1.15V. And if it goes low, LDO_V1P15A changes to 0.75V. Copyright © 2015 Richtek Technology Corporation. All rights reserved. www.richtek.com 24 The LDO contains an independent current limit and under voltage protection circuit to prevent unexpected applications. The current limit circuit monitors the current of the path from input to output by a current sensing circuit and controls the pass transistor's gate voltage. When the path current is over the current limit, the current limit circuit fixes the gate voltage to limit the output current. And if the output voltage is less than 60% of VOUT, the UVP circuit will shutdown the LDO and latched. Re-enable RT5041AB device to disable the latched status. Power Switch There are also two power switches within RT5041AB. SW_V3P3A is a P-Channel power switch MOSFET, and SW_V1P8A is a N-Channel power switch MOSFET. Power switches of RT5041AB have soft-start function, too. An internal current source charges an internal capacitor to make the soft-start ramp voltage. When power switches turn on, the output voltage will track the internal ramp voltage during soft-start interval to prevent inrush current. When EN_1P05A goes low to let power switches shutdown mode occur, the output discharge mode will be triggered. During discharge mode, an internal switch creates a path for discharging the output capacitors' residual charge to GND. SW_V3P3A and SW_1P8A also apply current limit protection and under voltage protection function. The current limit circuitry prevents damage to the power switch MOSFET and the backend device but can deliver load current up to the current limit threshold. And if the output voltage is less than 2.7V for SW_V3P3A or 1.2V for SW_V1P8A, the RT5041AB will shutdown and latched. RSMRST RSMRST is an open-drain output and requires a pull-up resistor. RSMRST is actually a power good output signal for monitoring SW_V3P3A. RSMRST pulls up if SW_V3P3A is above 90% of its nominal voltage; otherwise the RSMRST goes low. is a registered trademark of Richtek Technology Corporation. DS5041AB-00 September 2015 RT5041AB SUSPWRDNACK MOIC VR STATUS SUSPWRDNACK is an active high dedicated input signal that tells the RT5041AB to turn off the power rails. If pull up SUSPWRDNACK signal high to turn off power rails and pull low again, the all power rails will raise up with the power up sequence. This signal will work when EN_1P05A goes high. RT5041AB MOIC has three controlled enable pins EN_1P05A, SLP_S0iX_B and SLP_S3_B for changing the voltage rails (VR) status to match the different power saving mode In the Braswell platform. The VR power status is shown directly as the Table 2. Table2. MOIC Voltage Rails Power Status Voltage Rails S0 S0iX S3 S4/S5 V1P05A ON ON ON ON V1P8 ON ON ON ON V1P5S ON ON OFF OFF V1P24A ON ON ON ON V1P15A ON @ 1.15V ON @ 0.75V ON @ 0.75V ON @ 0.75V V3P3A ON ON ON ON V1P8A ON ON ON ON   According to Table 2, set three control signals to high for satisfying S0 mode; for case S0iX mode, give a low level voltage to SLP_S0iX_B to change LDO_V1P15A voltage from 1.15V to 0.75V. If the system need move into S3 or S4/S5 status, set SLP_S0iX_B and SLP_S3_B to low to make the action. The relations of the control signals and the VR power status are shown in the Table 3. Table3. Control Pin Truth Table for VR Power Status Status EN_1P05A SLP_S0iX_B SLP_S3_B S0 High High High S0iX High Low High S3 High Low Low S4/S5 High Low Low OFF Low X X   Copyright © 2015 Richtek Technology Corporation. All rights reserved. DS5041AB-00 September 2015 is a registered trademark of Richtek Technology Corporation. www.richtek.com 25 RT5041AB MOIC SEQUENCING Power-Off Sequence Power-Up Sequence There are two signals, EN_1P05A and SUSPWRDNACK, can make all power rails of RT5041AB go to off mode. When use EN_1P05A to disable RT5041AB, all the output signals and power rails will be off at the same time. If use SUSPWRDNACK signal to power off all VRs, the RSMRST will fall down after SW_V3P3A being under 85% of its output voltage. When EN_1P05A comes to high RT5041AB starts an internal power-up-sequence to enable most voltage rails. After RSMRST signal going to high, the power-upsequence completes. Note that LDO_V1P5S is not included in the internal power up sequence. SLP_S0iX_B signal should come after V1P8, if use V1P8 power rail as the input of LDO_V1P5S. MOIC will monitor LDO_V1P5S internal power good signal when SLP_S3_B goes high. If MOIC detects fault of any internal power good during the power up sequence, RT5041AB will be latched. S0iX Mode and S3(S4/S5) Mode Power Status RT5041AB is able to meet power saving requirement of the sleep mode on the Braswell platform. From S0 mode to S0iX mode, SLP_S0iX_B goes low; from S0 mode to S3 (S4/S5) mode, SLP_S0iX_B and SLP_S3_B both go to low. SUSPWRDNACK EN_1P05A 90%
RT5041ABGQW 价格&库存

很抱歉,暂时无法提供与“RT5041ABGQW”相匹配的价格&库存,您可以联系我们找货

免费人工找货