0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RT5797BLGQW

RT5797BLGQW

  • 厂商:

    RICHTEK(台湾立锜)

  • 封装:

    WFDFN8_EP

  • 描述:

    ICREGBUCKADJ3ASYNC8WDFN

  • 数据手册
  • 价格&库存
RT5797BLGQW 数据手册
RT5797B 3A, 1MHz, 6V CMCOT Synchronous Step-Down Converter General Description Features The RT5797B is a high efficiency synchronous step- ⚫ Efficiency Up to 95% down DC-DC converter. Its input voltage range is from ⚫ RDSON 100m HS / 70m LS 2.7V to 6V and provides an adjustable regulated output ⚫ VIN Range 2.7V to 6V voltage from 0.6V to 3.4V while delivering up to 3A of ⚫ VREF 0.6V with 1% Accuracy at 25C output current. ⚫ CMCOT™ compensation allows the transient response to be optimized over a wide range of loads and output capacitors. The RT5797B is available in the WDFN-8L 2x2 package. Design for Best Low-ESR (MLCC) COUT switches increase efficiency and eliminate the need for Constant-On-time (CMCOT) operation with internal Loop Transient Response, Robust Loop Stability with The internal synchronous low on-resistance power an external Schottky diode. The Current Mode Control ⚫ Soft-Start 1.2ms Applications ⚫ STB, Cable Modem, & xDSL Platforms ⚫ LCD TV Power Supply & Metering Platforms ⚫ General Purpose Point of Load (POL) Ordering Information Marking Information RT5797B Package Type QW : WDFN-8L 2x2 (W-Type) RT5797BLGQW 2S : Product Code W : Date Code Lead Plating System G : Green (Halogen Free and Pb Free) 2SW UVP Option H : Hiccup L : Latched-Off RT5797BHGQW 2T : Product Code W : Date Code Note : 2TW Richtek products are :  RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.  Suitable for use in SnPb or Pb-free soldering processes. Simplified Application Circuit RT5797B LX VIN VIN CIN April 2022 VOUT EN R1 FB PG SGND PGND R2 Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 L COUT is a registered trademark of Richtek Technology Corporation. www.richtek.com 1 RT5797B Pin Configuration FB PG VIN PGND 1 2 3 4 PGND (TOP VIEW) 9 8 7 6 5 SGND EN LX NC WDFN-8L 2x2 Functional Pin Description Pin No. Pin Name Pin Function 1 FB Feedback voltage input. An external resistor divider from the output to GND, tapped to the FB pin, sets the output voltage. 2 PG Power good indicator. The output of this pin is an open-drain with external pull-up resistor. PG is pulled up when the FB voltage is within 90%, otherwise it is LOW. 3 VIN Supply voltage input. The RT5797B operates from a 2.7V to 6V input. 4, 9 PGND (Exposed Pad) Power ground. The exposed pad must be soldered to a large PCB and connected to PGND for maximum power dissipation. 5 NC No internal connection. 6 LX Switch node. 7 EN Enable control input. 8 SGND Signal GND. Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 2 is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Functional Block Diagram EN VIN UVLO Shut Down Control OTP - FB VREF Error Amplifier Ton Comparator + + RC CCOMP - Logic Control LX VIN Driver Current Limit Detector LX GND + Current Sense - LX PG Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 is a registered trademark of Richtek Technology Corporation. www.richtek.com 3 RT5797B Operation The RT5797B is a synchronous low voltage step-down Over Current Protection (OCP) converter that can support the input voltage range from The RT5797B provides over current protection by 2.7V to 6V and the output current can be up to 3A. The detecting low side MOSFET valley inductor current. If RT5797B uses a constant on-time, current mode the sensed valley inductor current is over the current architecture. In normal operation, the high side P- limit threshold (3.7A typ.), the OCP will be triggered. MOSFET is turned on when the switch controller is set When OCP is tripped, the RT5797B will keep the over by the comparator and is turned off when the Ton current threshold level then cause the UV protection. comparator resets the switch controller. Low side MOSFET peak current is measured by internal Thermal Shutdown (OTP) RSENSE. The error amplifier EA adjusts COMP voltage The device implements an internal thermal shutdown by comparing the feedback signal (VFB) from the output function when the junction temperature exceeds 150C. voltage with the internal 0.6V reference. When the load The thermal shutdown forces the device to stop current increases, it causes a drop in the feedback switching when the junction temperature exceeds the voltage relative to the reference, then the COMP thermal shutdown threshold. Once the die temperature voltage rises to allow higher inductor current to match decreases below the hysteresis of 20C, the device the load current. reinstates the power up sequence. UV Comparator Maximum Duty Cycle If the feedback voltage (VFB) is lower than threshold voltage 0.2V, the UV comparator's output will go high The maximum duty cycle (70%, min.) can be calculated and the switch controller will turn off the high side max.) and switching frequency (1.2MHz, max.). MOSFET. The output under voltage protection is DMAX = 1 - ( tOFF_MIN + tD ) x fSW designed to operate in Hiccup mode for RT5797BH, Where tOFF_MIN is minimum off time, tD is dead time and Latch mode for RT5797BL. fSW is switching frequency. PGOOD Comparator If input voltage and output voltage are closed, RT5797B When the feedback voltage (VFB) is higher than threshold voltage 0.54V, the PGOOD open drain output will be high impedance. The internal PG MOSFET is typical 100. The PGOOD signal delay time from EN is about 2ms. by minimum off time (180ns, max.), dead time (60ns, operates at high duty cycle. Once the operational duty cycle is larger than the maximum duty cycle (70%, min.), RT5797B keeps minimum off time (180ns, max.) and deadtime (60ns, max.), then the output voltage starts to drop. The input voltage at which the devices enter dropout changes depending on the input voltage, output Enable Comparator voltage, switching frequency, load current, and the A logic-high enables the converter; a logic-low forces efficiency of the design. the IC into shutdown mode. tOFF_MIN 180ns Soft-Start (SS) An internal current source charges an internal capacitor High-Side MOSFET to build the soft-start ramp voltage. The VFB voltage will Deadtime 30ns track the internal ramp voltage during soft-start interval. Deadtime 30ns The typical soft-start time is 1.2ms. Low-Side MOSFET Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 4 is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Absolute Maximum Ratings (Note 1) ⚫ Supply Input Voltage --------------------------------------------------------------------------------------------- −0.3V to 6.5V ⚫ VIN to SW ----------------------------------------------------------------------------------------------------------- −0.3V to 6.5V ⚫ VIN to SW (t  10ns) --------------------------------------------------------------------------------------------- −4.5V to 9V ⚫ Switch Voltage, SW ---------------------------------------------------------------------------------------------- −0.3V to 6.5V SW (t  10ns) ------------------------------------------------------------------------------------------------------ −4.5V to 9V ⚫ Others Pins -------------------------------------------------------------------------------------------------------- −0.3V to 6.5V ⚫ Power Dissipation, PD @ TA = 25C WDFN-8L 2x2 ------------------------------------------------------------------------------------------------------ 2.19W ⚫ Package Thermal Resistance (Note 2) WDFN-8L 2x2, JA ------------------------------------------------------------------------------------------------ 45.5C/W ⚫ Lead Temperature (Soldering, 10 sec.) ---------------------------------------------------------------------- 260C ⚫ Junction Temperature -------------------------------------------------------------------------------------------- −40C to 150C ⚫ Storage Temperature Range ----------------------------------------------------------------------------------- −65C to 150C ⚫ ESD Susceptibility (Note 3) HBM (Human Body Model) ------------------------------------------------------------------------------------- 2kV Recommended Operating Conditions (Note 4) ⚫ Supply Input Voltage --------------------------------------------------------------------------------------------- 2.7V to 6V ⚫ Ambient Temperature Range ---------------------------------------------------------------------------------- −40C to 85C ⚫ Junction Temperature Range ---------------------------------------------------------------------------------- −40C to 125C Electrical Characteristics (VIN = 3.6V, TA = 25C, unless otherwise specified) Parameter Symbol Min Typ Max Unit 2.7 -- 6 V 0.594 0.6 0.606 V VFB = 0.6V -- -- 0.1 A Active ,VFB = 0.63V, Not Switching -- 300 -- Shutdown -- -- 1 Switching Leakage Current -- -- 1 A Switching Frequency -- 1 -- MHz Input Voltage VIN Feedback Reference Voltage VREF Feedback Leakage Current IFB DC Bias Current Test Conditions A Switch On Resistance, Low RNMOS ISW = 0.3A -- 70 85 m Switch On Resistance, High RPMOS ISW = 0.3A -- 100 125 m Valley Current Limit ILIM 3.03 3.7 4.6 A Under-Voltage Lockout Threshold VUVLO VDD Rising -- 2.25 2.5 V VDD Falling -- 2 -- V -- 150 -- °C Over-Temperature Threshold Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 is a registered trademark of Richtek Technology Corporation. www.richtek.com 5 RT5797B Parameter Enable Input Voltage Symbol Test Conditions Min Typ Max Unit Logic-High VIH 1.5 -- -- Logic-Low VIL -- -- 0.4 Rising -- 90 -- Falling -- 85 -- -- -- 100  -- 1.2 -- ms -- 120 -- ns 70 -- -- % -- 1.8 -- k PG Pin Threshold (relative to VOUT) PG Open-Drain Impedance (PG = low) Soft-Start Time TSS Minimum Off Time Maximum Duty Cycle DMAX (Note 5) Output Discharge Switch On Resistance V % Note 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. JA is measured at TA = 25C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. Note 3. Devices are ESD sensitive. Handling precautions are recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Guaranteed by design. Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 6 is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Typical Application Circuit VIN 3 CIN 22μF R3 100k 7 2 CFF* RT5797B 6 LX VIN L CFF* EN R1 VOUT COUT 22μF x 2 1 FB PG SGND PGND 8 4, 9 (Exposed Pad) R2 : Optional for performance fine-tune Table 1. Suggested Component Values VOUT (V) R1 (k) R2 (k) CIN (F) L (H) COUT (F) 3.3 90 20 22 1.5 22 x2 1.8 100 50 22 1.5 22 x2 1.5 100 66.6 22 1.5 22 x2 1.2 100 100 22 1.5 22 x2 1.05 100 133 22 1.5 22 x2 1 100 148 22 1.5 22 x2 Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 is a registered trademark of Richtek Technology Corporation. www.richtek.com 7 RT5797B Typical Operating Characteristics Efficiency vs. Output Current 100 90 90 80 80 70 Efficiency (%) Efficiency (%) Efficiency vs. Output Current 100 VIN = 5V, VOUT = 3.3V 60 VIN = 3.3V, VOUT = 1.2V 50 40 30 70 40 30 20 10 10 0 0.001 0 0.5 1 1.5 2 2.5 VIN = 3.3V, VOUT = 1.2V 50 20 0 VIN = 5V, VOUT = 3.3V 60 3 0.01 Output Current (A) 1 Output Voltage vs. Output Current 1.28 3.40 1.26 3.38 Output Voltage (V) 1.24 1.22 1.20 1.18 1.16 3.36 3.34 3.32 3.30 3.28 1.14 VIN = 3.3V, VOUT = 1.2V VIN = 5V, VOUT = 3.3V 1.12 3.26 0 0.5 1 1.5 2 2.5 3 0 0.5 Output Current (A) 1 1.5 2 2.5 3 Output Current (A) Output Voltage vs. Input Voltage Output Voltage vs. Input Voltage 1.26 3.40 3.38 Output Voltage (V) 1.24 Output Voltage (V) 10 Output Current (A) Output Voltage vs. Output Current Output Voltage (V) 0.1 IOUT = 0A 1.22 1.20 1.18 IOUT = 2A 1.16 IOUT = 0A 3.36 3.34 3.32 IOUT = 2A 3.30 3.28 3.26 1.14 3.24 VIN = 2.5V to 5.5V, V OUT = 1.2V 1.12 2.5 3 3.5 4 4.5 5 Input Voltage (V) Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 8 5.5 VIN = 4.5V to 5.5V, V OUT = 3.3V 3.22 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 Input Voltage (V) is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Switching Frequency vs. Input Voltage 1.5 0.64 1.4 Switcing Frequency (MHz)1 Reference Voltage (V) Reference Voltage vs. Input Voltage 0.65 0.63 0.62 0.61 0.60 0.59 0.58 0.57 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.56 0.6 0.55 0.5 2.5 3 3.5 4 4.5 5 IOUT = 0.6A 2.5 5.5 3 3.5 4.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 5 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 VEN = 0V VEN = 0V 0.0 0.0 2.5 3 3.5 4 4.5 5 -50 5.5 -25 0 50 75 100 125 Quiescent Current vs. Temperature Quiescent Current vs. Input Voltage 400 380 380 360 360 Quiescent Current (µA) 400 340 320 300 280 260 240 220 25 Temperature (°C) Input Voltage (V) Quiescent Current (µA) 4.5 Shutdown Currrent vs. Temperature 5.0 Shutdown Current (μA)1 Shutdown Current (µA)1 Shutdown Current vs. Input Voltage 5.0 0.5 4 Input Voltage (V) Input Voltage (V) VFB = 0.63V, LX no switch 200 340 320 300 280 260 240 220 VIN = 5V 200 2.5 3 3.5 4 4.5 5 Input Voltage(V) Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 5.5 -50 -25 0 25 50 75 100 125 Temperature (°C) is a registered trademark of Richtek Technology Corporation. www.richtek.com 9 RT5797B Current Limit vs. Temperature 5 4 4 Inductor Current (A) Inductor Current (A) Current Limit vs. Input Voltage 5 3 2 1 3 2 1 VOUT = 1.2V VOUT = 1.2V 0 0 2.5 3 3.5 4 4.5 5 5.5 -50 -25 0 Input Voltage(V) UVLO vs. Temperature 50 75 100 125 Enable Voltage vs. Temperature 2.5 1.4 2.4 1.2 Enable Voltage (V) 2.3 Input Voltage (V) 25 Temperature (°C) Turn On 2.2 2.1 2.0 1.9 Turn Off 1.8 1.0 Enable On 0.8 Enable Off 0.6 0.4 1.7 0.2 1.6 VIN = 3.3V VEN = 3.3V 0.0 1.5 -50 -25 0 25 50 75 100 -50 125 25 50 75 100 125 VOUT (100mV/Div) VOUT (100mV/Div) IOUT (2A/Div) VIN = 3.3V, VOUT = 1.2V, IOUT = 0A to 3A Time (100μs/Div) Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 10 0 Load Transient Response Load Transient Response IOUT (2A/Div) -25 Temperature (°C) Temperature (°C) VIN = 3.3V, VOUT = 1.2V, IOUT = 1A to 3A Time (100μs/Div) is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Voltage Ripple Voltage Ripple VIN = 3.3V, VOUT = 1.2V, IOUT = 1A VIN = 5V, VOUT = 3.3V, IOUT = 1A VOUT VOUT (10mV/Div) (10mV/Div) VLX (2V/Div) VLX (2V/Div) Time (1μs/Div) Time (1μs/Div) Power On from EN Power Off from EN VEN (2V/Div) VEN (2V/Div) VPGOOD (2V/Div) VPGOOD (2V/Div) VOUT VOUT (1V/Div) (1V/Div) IOUT IOUT (1A/Div) (1A/Div) VIN = 3.3V, VOUT = 1.2V, IOUT = 0A VIN = 3.3V, VOUT = 1.2V, IOUT = 0A Time (500μs/Div) Time (10ms/Div) Power On from VIN Power Off from VIN VIN (3V/Div) VIN (3V/Div) VOUT (700mV/Div) VOUT (700mV/Div) VLX VLX (5V/Div) (5V/Div) IOUT IOUT (3A/Div) (3A/Div) VIN = 5V, VOUT = 1.2V, IOUT = 3A Time (2ms/Div) Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 VIN = 5V, VOUT = 1.2V, IOUT = 3A Time (2ms/Div) is a registered trademark of Richtek Technology Corporation. www.richtek.com 11 RT5797B Output Voltage vs. Temperature 1.280 Output Voltage (V) 1.260 1.240 1.220 1.200 VIN = 5V 1.180 VIN = 3.3V 1.160 1.140 1.120 -50 -25 0 25 50 75 100 125 Temperature (°C) Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 12 is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Application Information The RT5797B is a single-phase step-down converter. It During soft-start, the internal soft-start capacitor provides single feedback loop constant on-time, current becomes charged and generates a linear ramping up mode control with fast transient response. An internal voltage across the capacitor. This voltage clamps the 0.6V reference allows the output voltage to be precisely voltage at the FB pin, causing PWM pulse width to regulated for low output voltage applications. A fixed increase slowly and in turn reduce the input surge switching frequency (1MHz) oscillator and internal current. The internal 0.6V reference takes over the loop compensation are integrated to minimize external control once the internal ramping-up voltage becomes component count. Protection features include over higher than 0.6V. current protection, under voltage protection and over temperature protection. Over Voltage Protection (OVP) The RT5797BL provide over voltage protection function Output Voltage Setting when output voltage over 120%. The IC will be into Connect a resistive voltage divider at the FB between Latch-off mode. VOUT and GND to adjust the output voltage. The output voltage is set according to the following equation : ( VOUT = VREF  1 + R1 R2 UVLO Protection The RT5797B has input Under Voltage Lockout ) protection (UVLO). If the input voltage exceeds the UVLO rising threshold voltage (2.25V typ.), the where VREF is the feedback reference voltage 0.6V converter resets and prepares the PWM for operation. (typ.). If the input voltage falls below the UVLO falling threshold voltage during normal operation, the device VOUT R1 will stop switching. The UVLO rising and falling threshold voltage has a hysteresis to prevent noisecaused reset. FB R2 GND Figure 1. Setting VOUT with a Voltage Divider Chip Enable and Disable The EN pin allows for power sequencing between the controller bias voltage and another voltage rail. The RT5797B remains in shutdown if the EN pin is lower Input Capacitor Selection High quality ceramic input decoupling capacitor, such as X5R or X7R, with values greater than 22F are recommended for the input capacitor. The X5R and X7R ceramic capacitors are usually selected for power regulator capacitors because the dielectric material has less capacitance variation and more temperature stability. than 400mV. When the EN pin rises above the VEN trip Voltage rating and current rating are the key parameters point, the RT5797B begins a new initialization and soft- when selecting an input capacitor. Generally, selecting start cycle. an input capacitor with voltage rating 1.5 times greater than the maximum input voltage is a conservatively safe Internal Soft-Start design. The RT5797B provides an internal soft-start function to The input capacitor is used to supply the input RMS prevent large inrush current and output voltage overshoot when the converter starts up. The soft-start (SS) automatically begins once the chip is enabled. current, which can be approximately calculated using the following equation : IIN_RMS = ILOAD  Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 VOUT  V  1− OUT  VIN VIN   is a registered trademark of Richtek Technology Corporation. www.richtek.com 13 RT5797B The next step is selecting a proper capacitor for RMS where LIR is the ratio of the peak-to-peak ripple current current rating. One good design uses more than one to the average inductor current. capacitor with low equivalent series resistance (ESR) in Find a low loss inductor having the lowest possible DC parallel to form a capacitor bank. resistance that fits in the allotted dimensions. The core The input capacitance value determines the input ripple must be large enough not to saturate at the peak voltage of the regulator. The input voltage ripple can be inductor current (IPEAK) : approximately calculated using the following equation : IPEAK = ILOAD(MAX) +  LIR  ILOAD(MAX)   2  VIN = IOUT(MAX) VOUT  VOUT    1− CIN  fSW VIN  VIN  Output Capacitor Selection The output capacitor and the inductor form a low pass filter in the Buck topology. In steady state condition, the ripple current flowing into/out of the capacitor results in ripple voltage. The output voltage ripple (VP-P) can be calculated by the following equation : 1  VP_P = LIR  ILOAD(MAX)   ESR +  8  C  f OUT SW   When load transient occurs, the output capacitor supplies the load current before the controller can respond. Therefore, the ESR will dominate the output voltage sag during load transient. The output voltage undershoot (VSAG) can be calculated by the following equation : VSAG = ILOAD  ESR For a given output voltage sag specification, the ESR value can be determined. Another parameter that has influence on the output voltage sag is the equivalent series inductance (ESL). The rapid change in load current results in di/dt during transient. Therefore, the ESL contributes to part of the voltage sag. Using a capacitor with low ESL can obtain better transient performance. Generally, using several capacitors connected in parallel can have better transient performance than using a single capacitor for the same total ESR. The calculation above serves as a general reference. To further improve transient response, the output inductor can be further reduced. This relation should be considered along with the selection of the output capacitor. Inductor saturation current should be chosen over IC’s current limit. Thermal Considerations For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : PD(MAX) = (TJ(MAX) − TA) / JA where TJ(MAX) is the maximum junction temperature, T A is the ambient temperature, and JA is the junction to ambient thermal resistance. For recommended operating condition specifications, the maximum junction temperature is 125C. The junction to ambient thermal resistance, JA, is layout dependent. For WDFN-8L 2x2 package, the thermal resistance, JA, is 45.5C/W on a standard four-layer thermal test board. The maximum power dissipation at TA = 25C can be calculated by the following formula : PD(MAX) = (125C − 25C) / (45.5C/W) = 2.19W for WDFN-8L 2x2 package Inductor Selection The maximum power dissipation depends on the The switching frequency (on-time) and operating point (% ripple or LIR) determine the inductor value as shown operating ambient temperature for fixed TJ(MAX) and thermal resistance, JA. The derating curve in Figure 2 below : allows the designer to see the effect of rising ambient L= VOUT  ( VIN − VOUT ) fSW  LIR  ILOAD(MAX)  VIN Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 14 temperature on the maximum power dissipation. is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022 RT5797B Maximum Power Dissipation (W)1 2.5 Four-Layer PCB 2.0 1.5 1.0 0.5 0.0 0 25 50 75 100 125 Ambient Temperature (°C) Figure 2. Derating Curve of Maximum Power Dissipation Copyright © 2022 Richtek Technology Corporation. All rights reserved. DS5797B-06 April 2022 is a registered trademark of Richtek Technology Corporation. www.richtek.com 15 RT5797B Outline Dimension Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.200 0.300 0.008 0.012 D 1.950 2.050 0.077 0.081 D2 1.000 1.250 0.039 0.049 E 1.950 2.050 0.077 0.081 E2 0.400 0.650 0.016 0.026 e L 0.500 0.300 0.020 0.400 0.012 0.016 W-Type 8L DFN 2x2 Package Richtek Technology Corporation 14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries. Copyright © 2022 Richtek Technology Corporation. All rights reserved. www.richtek.com 16 is a registered trademark of Richtek Technology Corporation. DS5797B-06 April 2022
RT5797BLGQW 价格&库存

很抱歉,暂时无法提供与“RT5797BLGQW”相匹配的价格&库存,您可以联系我们找货

免费人工找货