0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RT7021BGN

RT7021BGN

  • 厂商:

    RICHTEK(台湾立锜)

  • 封装:

    DIP8

  • 描述:

    IC GATE DRV HI-SIDE/LO-SIDE 8DIP

  • 数据手册
  • 价格&库存
RT7021BGN 数据手册
® RT7021A/B 0.3A/0.6A, High/Low-Side MOSFET Driver General Description Features The RT7021A/B is a high-voltage gate driver IC with dual outputs. The IC, together with an external bootstrap network, drives dual n-channel MOSFETs or IGBTs with input voltage rail up to 600V.  Floating Channels Designed for Bootstrap Operation with Input Voltage up to 600V  The IC is equipped with a “common-mode dV/dt noise canceling technique” to provide high dV/dt immunity which enables stable operation under high dV/dt noise circumstances. Two Under-Voltage Lockout (UVLO) functions continuously monitor the bias voltages on VCC and BOOT-to-LX for preventing malfunction when the bias voltages are lower than the specified threshold voltages. The logic level of the PWM signal input pins are compatible with standard TTL logic level for ease of interfacing with controlling devices.  300mA/600mA Sourcing/Sinking Current High dV/dt Immunity : ±50V/nsec VCC and VBOOT − LX Supply Range from 13V to 20V Under-Voltage Lockout Functions for Both Channels TTL Compatible Logic Input Matched Propagation Delay below 20ns Outputs in Phase with Input (RT7021A) or Out of Phase with Input (RT7021B) RoHS Compliant and Halogen Free       Ordering Information RT7021A/B Package Type S : SOP-8 N : DIP-8 Applications     Lead Plating System G : Green (Halogen Free and Pb Free) PDP Scan Driver Fluorescent Lamp Ballast SMPS Motor Driver With Input A : In Phase B : Out of Phase Note : Richtek products are :  RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.  Suitable for use in SnPb or Pb-free soldering processes. Simplified Application Circuit VCC VCC C1 BOOT VCC RT7021A GND 600V C1 RUGATE BOOT VCC RT7021B GND UGATE UGATE 600V RUGATE To Load PWM Signal HIN LX LIN LGATE RLGATE Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 September 2016 To Load PWM Signal HIN LX LIN RLGATE LGATE is a registered trademark of Richtek Technology Corporation. www.richtek.com 1 RT7021A/B Pin Configuration (TOP VIEW) BOOT UGATE LX VCC HIN 2 LIN GND 8 BOOT 7 UGATE 3 6 LX 4 5 LGATE 8 8 VCC 2 7 UGATE LIN 3 6 LX GND 4 5 LGATE SOP-8 RT7021A RT7021B 7 6 5 2 3 4 BOOT UGATE LX 8 LGATE 7 6 5 2 3 4 BOOT HIN SOP-8 LGATE VCC HIN VCC LIN GND HIN LIN GND DIP-8 DIP-8 RT7021A RT7021B Marking Information RT7021AGS RT7021BGS RT7021AGS : Product Number RT7021A GSYMDNN RT7021BGS : Product Number RT7021B GSYMDNN YMDNN : Date Code RT7021AGN YMDNN : Date Code RT7021BGN RT7021AGN : Product Number RichTek RT7021A GNYMDNN YMDNN : Date Code RichTek RT7021B GNYMDNN RT7021BGN : Product Number YMDNN : Date Code Functional Pin Description Pin No. SOP-8 DIP-8 1 1 2 2 3 3 4 Pin Name Pin Function VCC Supply voltage input. HIN (RT7021A) Logic input for high-side gate driver. HIN (RT7021B) Logic input for high-side gate driver. LIN (RT7021A) Logic input for low-side gate driver. LIN (RT7021B) Logic input for low-side gate driver. 4 GND Logic ground and low-side driver return. 5 5 LGATE Low-side driver output. 6 6 LX Return for high-side gate driver. 7 7 UGATE High-side driver output. 8 8 BOOT Bootstrap supply for high-side gate driver. Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 2 is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Functional Block Diagram For RT7021A BOOT BOOT-to-LX Under-Voltage Lockout UVLO1 Driver Pulse Generator Level Shifter R Noise Filter S UGATE Q LX UGATE High/Low VCC VCC VCC UVLO2 Under-Voltage Lockout HIN IIN+ Driver LGATE High/Low LIN LGATE Delay GND IIN+ For RT7021B BOOT BOOT-to-LX Under-Voltage Lockout UVLO1 Driver Pulse Generator VCC Level Shifter Noise Filter R S Q LX UGATE High/Low VCC IIN+ VCC VCC UVLO2 Under-Voltage Lockout HIN VCC Driver IIN+ LGATE High/Low LIN LGATE Delay GND Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 UGATE September 2016 is a registered trademark of Richtek Technology Corporation. www.richtek.com 3 RT7021A/B Operation The RT7021A/B is a high-voltage gate driver for driving high-side and low-side MOSFETs. The RT7021A/B uses ultra high voltage device and floating well to allowed UGATE to drive external MOSFET operating up to 600V. When the HIN voltage is above the logic-high threshold, the UGATE voltage goes high to turn on the external MOSFET. When the HIN voltage is below the logic-low threshold, the MOSFET is turned off. The operating behavior of the LGATE, controlled by the LIN pin, is like the behavior of the UGATE. Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 4 Under-Voltage Lockout (UVLO) Function When the VCC or BOOT-to-LX voltage is lower the UVLO threshold, the UGATE and LGATE output will be disabled. Pulse Generator The pulse generator is used to transmit the HIN input signal to the UGATE driver. is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Absolute Maximum Ratings             (Note 1) VCC Supply Voltage, VCC ----------------------------------------------------------------------------------LX to GND ------------------------------------------------------------------------------------------------------BOOT to LX, VBOOT − LX --------------------------------------------------------------------------------------UGATE to LX --------------------------------------------------------------------------------------------------LGATE to GND ------------------------------------------------------------------------------------------------HIN, LIN, HIN, LIN to GND ----------------------------------------------------------------------------------Allowable LX Voltage Slew Rate, dVLX/dt ---------------------------------------------------------------Power Dissipation, PD @ TA = 25°C −0.3V to 25V −0.3V to 625V −0.3V to 25V −0.3V to VBOOT − LX + 0.3V −0.3V to VCC + 0.3V −0.3V to VCC + 0.3V −50V/ns to 50V/ns SOP-8 -----------------------------------------------------------------------------------------------------------DIP-8 ------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2) SOP-8, θJA -----------------------------------------------------------------------------------------------------DIP-8, θJA -------------------------------------------------------------------------------------------------------Junction Temperature ----------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------- 0.53W 0.74W Recommended Operating Conditions        188°C/W 134.9°C/W 150°C 260°C −65°C to 150°C (Note 3) VCC Supply Voltage, VCC ----------------------------------------------------------------------------------LX to GND ------------------------------------------------------------------------------------------------------BOOT-to-LX, VBOOT − LX --------------------------------------------------------------------------------------UGATE to LX --------------------------------------------------------------------------------------------------LGATE to GND ------------------------------------------------------------------------------------------------HIN, LIN, HIN, LIN to GND ----------------------------------------------------------------------------------Ambient Temperature Range -------------------------------------------------------------------------------- 13V to 20V −5V to 600V 13V to 20V −5V to VBOOT − LX 0 to VCC 0 to VCC −40°C to 125°C Electrical Characteristics (VCC = VBOOT − LX = 15V, TA = 25°C, unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit VCC Under-Voltage Lockout Threshold (On) VTHON_VCC 9 10.5 12 V VBOOT  LX Under-Voltage Lockout Threshold (On) VTHON_BOOT 9 10.5 12 V VCC Under-Voltage Lockout Threshold (Off) VTHOFF_VCC 8 9.5 11 V VBOOT  LX Under-Voltage Lockout Threshold (Off) V THOFF_BOOT 8 9.5 11 V VCC Under-Voltage Lockout Hysteresis VHYS_VCC -- 1 -- V Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 September 2016 is a registered trademark of Richtek Technology Corporation. www.richtek.com 5 RT7021A/B Parameter Symbol VBOOT  LX Under-Voltage Lockout Hysteresis VHSY_BOOT LX Leakage Current ILK VCC Quiescent Current IQ_VCC Test Conditions Min Typ Max Unit -- 1 -- V -- -- 50 A -- 220 400 A -- 100 200 A -- -- 600 A -- -- 600 A 2.5 -- -- -- -- 0.8 VBOOT = VLX = 600V BOOT-to-LX Quiescent Current IQ_BOOT LX VCC Operating Current IP_VCC BOOT-to-LX Operating Current IP_BOOT LX f = 20kHz, UGATE = LGATE = Open Logic-High VIH HIN, LIN, HIN , LIN Input Voltage Logic-Low VIL UGATE, LGATE Output Voltage High-Level VOH Sourcing Current = 2mA, VBOOT  VLGATE, VCC VLGATE -- 50 200 Low-Level Sourcing Current = 2mA, VUGATE LX, VLGATE -- 20 100 VOL V mV HIN, LIN Input Current Logic-High IIN+ HIN = LIN = VCC (RT7021A) -- 2 10 Logic-Low HIN = LIN = 0V (RT7021A) 1 -- -- HIN , LIN Input Current Logic-High IIN HIN = LIN = VCC (RT7021B) 1 -- -- Logic-Low IIN+ HIN = LIN = 0V (RT7021B) -- 2 10 UGATE and LGATE Sourcing Current IO+ UGATE = LX, LGATE = GND, Current pulse width < 10s, Low duty -- 290 -- mA UGATE and LGATE Sinking Current IO UGATE = BOOT, LGATE = VCC, Current pulse width < 10s, Low duty -- 600 -- mA IIN A A Dynamic Electrical Characteristics (Note 4) (VCC = VBOOT − LX = 15V, LX = GND, CL = 1000pF, TA = 25°C, unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit -- 150 220 ns -- 150 220 ns Turn-on Delay tON Turn-off Delay tOFF Turn-on Rising Time tR -- 70 170 ns Turn-off Falling Time tF -- 35 90 ns Delay Matching Time, HS and LS Turn-on/off tM -- -- 20 ns VLX = 0 or 600V (Note 5) Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Note 2. θJA is measured under natural convection (still air) at TA = 25°C with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. Note 3. The device is not guaranteed to function outside its operating conditions. Note 4. Please refer to the Timing Diagram and Dynamic Waveforms in the Application Information. Note 5. Turn-off Delay for VLX = 600V is guaranteed by design. Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 6 is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Typical Application Circuit VCC DBOOT 1 C1 BOOT 8 VCC RT7021A 4 GND 2 PWM Signal UGATE 7 CBOOT RUGATE 3 LIN LGATE 5 Q1 To Load LX 6 HIN 600V RLGATE Q2 VCC DBOOT 1 C1 BOOT 8 VCC RT7021B 4 GND PWM Signal 2 HIN UGATE 7 LGATE 5 DS7021A/B-03 September 2016 RUGATE 600V Q1 To Load LX 6 3 LIN Copyright © 2016 Richtek Technology Corporation. All rights reserved. CBOOT RLGATE Q2 is a registered trademark of Richtek Technology Corporation. www.richtek.com 7 RT7021A/B Typical Operating Characteristics Turn-On Delay Time vs. Temperature Turn-On Delay Time vs. VCC 200 Turn-On Delay Time (ns)1 Turn-On Delay Time (ns)1 200 150 UGATE 100 LGATE 50 150 UGATE 100 LGATE 50 TA = 25°C 0 0 -50 -25 0 25 50 75 100 10 125 12 14 Ambient Temperature (°C) 18 20 Turn-Off Delay Time vs. VCC Turn-Off Delay Time vs. Temperature 200 Turn-Off Delay Time (ns) 200 Turn-Off Delay Time (ns) 1 16 VCC (V) 150 UGATE 100 LGATE 50 150 UGATE 100 LGATE 50 TA = 25°C 0 0 -50 -25 0 25 50 75 100 10 125 12 14 Turn-On Rising Time vs. Temperature 18 20 Turn-On Rising Time vs. VCC 160 160 Turn-On Rising Time (ns)1 Turn-On Rising Time (ns)1 16 VCC (V) Ambient Temperature (°C) 120 UGATE 80 LGATE 40 120 UGATE 80 LGATE 40 TA = 25°C 0 0 -50 -25 0 25 50 75 100 Ambient Temperature (°C) Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 8 125 10 12 14 16 18 20 VCC (V) is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Turn-Off Falling Time vs. VCC Turn-Off Falling Time vs. Temperature 50 Turn-Off Falling Time (ns) Turn-Off Falling Time (ns) 50 40 LGATE 30 UGATE 20 10 40 LGATE 30 UGATE 20 10 TA = 25°C 0 0 -50 -25 0 25 50 75 100 10 125 12 14 Ambient Temperature (°C) VCC Operating Current vs. Temperature 18 20 VCC Operating Current vs. VCC 600 600 VCC Operating Current (µA) VCC Operating Current (µA) 16 VCC (V) 500 400 300 200 100 500 400 300 200 100 TA = 25°C 0 0 -50 -25 0 25 50 75 100 125 10 12 14 VBOOT - LX Operating Current vs. Temperature 18 20 VBOOT - LX Operating Current vs. VBOOT - LX 300 300 VBOOT - LX Operating Current (µA) VBOOT - LX Operating Current (µA) 1 16 VCC (V) Ambient Temperature (°C) 240 180 120 60 240 180 120 60 TA = 25°C 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 September 2016 125 10 12 14 16 18 20 VBOOT - LX (V) is a registered trademark of Richtek Technology Corporation. www.richtek.com 9 RT7021A/B Logic-High Threshold Voltage vs. Temperature LX Leakage Current vs. Temperature Logic-High Threshold Voltage (V) LX Leakage Current (µA)1 15 12 9 6 3 3.0 2.5 HIN 2.0 LIN 1.5 1.0 0 -50 -25 0 25 50 75 100 -50 125 -25 Ambient Temperature (°C) 50 75 100 125 Logic-Low Threshold Voltage vs. Temperature 3.0 2.5 HIN 2.0 LIN 1.5 TA = 25°C Logic-Low Threshold Voltage (V) Logic-High Threshold Voltage (V)1 25 Ambient Temperature (°C) Logic-High Threshold Voltage vs. VCC 2.0 1.8 1.6 LIN 1.4 HIN 1.2 1.0 1.0 10 12 14 16 18 -50 20 -25 VCC (V) 0 25 50 75 100 125 Ambient Temperature (°C) Logic-Low Threshold Voltage vs. VCC High-Level Output Voltage vs. Temperature 2.0 100 1.8 1.6 1.4 LIN HIN 1.2 TA = 25°C 1.0 High-Level Output Voltage (mV)1 Logic-Low Threshold Voltage (V) 0 80 VCC − VLGATE 60 VBOOT − VUGATE 40 20 0 10 12 14 16 18 VCC (V) Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 10 20 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Low-Level Output Voltage vs. Temperature High-Level Output Voltage vs. VCC or VBOOT - LX 25 Low-Level Output Voltage (mV) High-Level Output Voltage (mV)1 100 80 VCC − VLGATE 60 VBOOT − VUGATE 40 20 TA = 25°C 20 VLGATE 15 VUGATE-LX 10 5 0 0 10 12 14 16 18 -50 20 -25 VCC or VBOOT - LX (V) 50 75 100 125 Output Sourcing Current vs. Temperature 600 Output Sourcing Current (mA)1 25 Low-Level Output Voltage (mV)1 25 Ambient Temperature (°C) Low-Level Output Voltage vs. VCC or VBOOT - LX 20 VLGATE 15 10 VUGATE-LX 5 TA = 25°C 500 400 LGATE 300 UGATE 200 100 0 0 10 12 14 16 18 -50 20 -25 VCC or VBOOT - LX (V) 0 25 50 75 100 125 Junction Temperature (°C) Output Sourcing Current vs. VCC or VBOOT - LX Output Sinking Current vs. Temperature 600 1000 Output Sinking Current (mA)1 Output Sourcing Current (mA)1 0 500 400 LGATE 300 UGATE 200 100 800 UGATE 600 LGATE 400 200 TA = 25°C 0 0 10 12 14 16 18 VCC or VBOOT - LX (V) Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 September 2016 20 -50 -25 0 25 50 75 100 125 Junction Temperature (°C) is a registered trademark of Richtek Technology Corporation. www.richtek.com 11 RT7021A/B VTHON_VCC / VTHOFF_VCC vs. Temperature Output Sinking Current vs. VCC or VBOOT - LX 15 800 VTHON_VCC / VTHOFF_VCC (V) Output Sinking Current (mA)1 1000 UGATE 600 LGATE 400 200 12 V THON_VCC 9 VTHOFF_VCC 6 3 0 0 10 12 14 16 18 -50 20 -25 VCC or VBOOT - LX (V) 25 50 75 100 125 Ambient Temperature (°C) VTHON_BOOT / VTHOFF_BOOT vs. Temperature VHYS_VCC vs. Temperature 2.0 15 12 VTHON_BOOT 1.5 VHYS_VCC (V) VTHON_BOOT / VTHOFF_BOOT (V) 0 9 VTHOFF_BOOT 6 1.0 0.5 3 0.0 0 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) VHYS_BOOT vs. Temperature 2.0 VHYS_BOOT (V) 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 Ambient Temperature (°C) Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 12 is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Application Information Timing Diagram and Dynamic Waveforms Figure 1 is RT7021A/B input / output timing diagram, and Figure 2, Figure 3 are the definition of dynamic characteristics. You can know those definitions and the relationship between input and output from these figures. For example : tON, tOFF, tR, tF, tM... VHIN VLIN Matched Propagation Delays between Both Channels Because the IC internal level shifter circuit causes the propagation delay of the high-side output signal, shown in Figure 4. The RT7021A/B adds a propagation delay matching circuit in the low-side logic circuit, so that highside and low-side output signals approximately synchronization. BOOT VHIN VLIN BOOT-to-LX Under-Voltage Lockout UVLO1 Driver Pulse Generator VUGATE VLGATE Level Shifter UGATE High/Low Figure 1. Input/Output Timing Diagram HIN IIN+ Noise Filter R S LX VCC VCC VCC UVLO2 Under-Voltage Lockout Driver VHIN, VLIN VUGATE VLGATE VLIN 50% tON tR tF 10% 10% The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed tM 90% Figure 2. Dynamic Electrical Characteristics Definition for RT7021A VHIN, VLIN 50% 50% tOFF PD(MAX) = (TJ(MAX) − TA) / θJA 10% 10% 50% tM tM 90% VUGATE VLGATE 10% Figure 3. Dynamic Electrical Characteristics Definition for RT7021B Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 September 2016 under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula : tF 90% 50% Figure 4. Propagation Delay Matching Circuit Thermal Considerations 50% 50% 10% VLIN GND IIN+ VUGATE VLGATE VUGATE VLGATE Delay LIN tOFF 90% tON tR LGATE LGATE High/Low 50% tM UGATE Q where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θJA is the junction-to-ambient thermal resistance. For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θJA, is highly package dependent. For a SOP8 package, the thermal resistance, θJA, is 188°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity is a registered trademark of Richtek Technology Corporation. www.richtek.com 13 RT7021A/B four-layer test board. For a DIP-8 package, the thermal resistance, θJA, is 134.9°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below :  In order to reduce the noise coupling, it is recommended that the ground layout should not be placed under or near the high voltage floating side.  The layout between high-side and low-side power switches should be thick and straight, avoiding the formation of long loops. Too long distance will increase the loop area, and electromagnetic interference suppression capabilities would be affected. However, too short distance may cause overheating situation. It is necessary to consider the most appropriate way.  Refer to typical application circuit, the VCC capacitor (C1), BOOT to LX capacitor (CBOOT), and bootstrap diode (DBOOT) need to be placed as close to the IC as possible to minimize parasitic inductance and resistance. The CBOOT selected range is from 0.1μF to 0.47μF, and the VCC capacitor (C1) is greater than ten times CBOOT. It is recommended to use fast or ultra fast reverse recovery time bootstrap diode DBOOT.  In Figure 6, the LX pin voltage drop can be improved by adding RLX (RLX = 1 to 10Ω), because the dv/dt is affected by (RLX + RUGATE). PD(MAX) = (125°C − 25°C) / (188°C/W) = 0.53W for a SOP-8 package. PD(MAX) = (125°C − 25°C) / (134.9°C/W) = 0.74W for a DIP-8 package. The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal resistance, θJA. The derating curves in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. Maximum Power Dissipation (W)1 1.0 Four-Layer PCB 0.9 DIP-8 0.8 0.7 0.6 SOP-8 0.5 0.4 0.3 0.2 VCC +VDC 0.1 DBOOT 0.0 0 25 50 75 100 BOOT 125 CBOOT Ambient Temperature (°C) RUGATE LX Layout Consideration A proper PCB layout for power supply can reduce unnecessary waveform noise and electromagnetic interference problems to ensure proper system operation, please refer to the following PCB layout considerations :  For the high voltage and high current loop layout of power supply should be as thick and short. Avoid excessive layout generated parasitic inductance and resistors to cause significant noise.  In order to shorten the length of IC layout, you need to consider the relative placement for IC and the power switches. It is recommended that the power switches placed in a symmetrical manner, and the IC close to high-side and low-side elements. Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 14 Q1 UGATE Figure 5. Derating Curve of Maximum Power Dissipation RLX Figure 6. LX Pin Resister  If the gate current loop opens circuit for some factors, at this time the current flows through the gate loop via the power MOSFET drain-to-gate parasitic capacitor. The current will charge the gate-to-source parasitic capacitor to result in power MOSFET wrong action. The power switches can be damaged or burned out, the resisters (about least 10kΩ) are connected between the gate and source pin can prevent malfunction of the power switches. is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B  The selection of larger parasitic capacitor power switch or gate resister may result in too long turn-off time making the high-side and low-side power switches shoot through. In order to prevent the situation, reverse parallel with diodes (DUGATE & DLGATE) in the RUGATE and RLGATE (shown in Figure 7), providing a fast discharge path for the power switches in a short time to complete the closing operation. VCC +VDC DBOOT BOOT CBOOT DUGATE RUGATE Q1 UGATE LX To Load DLGATE RLGATE LGATE Q2 Figure 7. Reverse Parallel with Diodes Copyright © 2016 Richtek Technology Corporation. All rights reserved. DS7021A/B-03 September 2016 is a registered trademark of Richtek Technology Corporation. www.richtek.com 15 RT7021A/B Outline Dimension H A M J B F C I D Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 4.801 5.004 0.189 0.197 B 3.810 3.988 0.150 0.157 C 1.346 1.753 0.053 0.069 D 0.330 0.508 0.013 0.020 F 1.194 1.346 0.047 0.053 H 0.170 0.254 0.007 0.010 I 0.050 0.254 0.002 0.010 J 5.791 6.200 0.228 0.244 M 0.400 1.270 0.016 0.050 8-Lead SOP Plastic Package Copyright © 2016 Richtek Technology Corporation. All rights reserved. www.richtek.com 16 is a registered trademark of Richtek Technology Corporation. DS7021A/B-03 September 2016 RT7021A/B Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 3.700 4.320 0.146 0.170 A1 0.381 0.710 0.015 0.028 A2 3.200 3.600 0.126 0.142 b 0.360 0.560 0.014 0.022 b1 1.143 1.778 0.045 0.070 D 9.050 9.550 0.356 0.376 E 6.200 6.600 0.244 0.260 E1 7.620 8.255 0.300 0.325 e L 2.540 3.000 0.100 3.600 0.118 0.142 8-Lead DIP Plastic Package Richtek Technology Corporation 14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries. DS7021A/B-03 September 2016 www.richtek.com 17
RT7021BGN 价格&库存

很抱歉,暂时无法提供与“RT7021BGN”相匹配的价格&库存,您可以联系我们找货

免费人工找货