RT9008
Low Dropout Linear Regulator Controller with Soft-Start
General Description
Features
The RT9008 is a wide input range, low dropout voltage
regulator controller with soft-start function. The part drives
an external N-MOSFET and can operate with VCC power
range from 4.5V to 13.5V. With this flexible topology and
wide input voltage range, the RT9008 is suitable for various
applications. The soft-start function can reduce the input
inrush current by adjusting the external capacitor. The
RT9008 uses the small footprint package of the SOT-23-6.
z
Programmable Output Voltage
z
High Current Driver for High Current FET
Adjustable Soft Start Time
High Accuracy ±2% Reference Voltage
Quick Line and Load Transient Response
Enable Control
Small Footprint Package SOT-23-6
RoHS Compliant and 100% Lead (Pb)-Free
Ordering Information
Applications
RT9008
z
z
z
z
z
z
z
Package Type
E : SOT-23-6
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
z
Desktop/Notebook PC
DSC
z
Processor Power Sequencing
Pin Configurations
(TOP VIEW)
Note :
VCC DRI SS
Richtek products are :
`
RoHS compliant and compatible with the current require-
6
ments of IPC/JEDEC J-STD-020.
`
Suitable for use in SnPb or Pb-free soldering processes.
5
4
2
3
EN GND FB
SOT-23-6
Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area.
Typical Application Circuit
VIN
VCC
RT9008 SS 4
6 VCC
CCC
Chip Enable
DRI 5
CIN
Q1
VOUT
1 EN
2 GND
CSS
R1
FB 3
COUT
R2
VOUT = VREF x (
DS9008-01 April 2011
R1 + R2
)
R2
www.richtek.com
1
RT9008
Test Circuit
V IN
V CC
RT9008
SS 4
6 VCC
C CC
1µF/X7R
Chip Enable
DRI 5
1 EN
2 GND
C SS
100pF/
Ceramic
C IN
100µF/EC
Q1
PHD3055
V OUT
R1
1k
FB 3
R2
2k
C OUT
100µF/EC
Figure 1. Typical Test Circuit
V CC
12V
C CC
1µF
Chip Enable
5V
RT9008
6 VCC
SS 4
DRI 5
1 EN
A
V DRI
FB 3
V FB
2 GND
C FB
Figure 2. DRI Source/Sink Current Test Circuit
Functional Pin Description
Pin No.
Pin Name
Pin Function
1
EN
Enable Input Pin. (Active High)
2
GND
Ground.
3
FB
Output Voltage Feedback Reference Input.
4
SS
Soft Start Control.
5
DRI
Driver Output.
6
VCC
Power Supply Input.
Function Block Diagram
EN
Shutdown
Logic
VCC
0.8V
Reference
+
DRI
-
SS
FB
GND
www.richtek.com
2
DS9008-01 April 2011
RT9008
Absolute Maximum Ratings
z
z
z
z
z
z
z
z
(Note 1)
Supply Input Voltage, VCC ----------------------------------------------------------------------------------------------Enable Voltage ------------------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C
SOT-23-6 -------------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2)
SOT-23-6, θJA --------------------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Junction Temperature Range -------------------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 3)
HBM (Human Body Mode) ---------------------------------------------------------------------------------------------MM (Machine Mode) ------------------------------------------------------------------------------------------------------
Recommended Operating Conditions
z
z
z
z
15V
7V
0.4W
250°C/W
260°C
150°C
−65°C to 150°C
2kV
200V
(Note 4)
Supply Input Voltage, VCC ---------------------------------------------------------------------------------------------Enable Voltage -----------------------------------------------------------------------------------------------------------Junction Temperature Range ------------------------------------------------------------------------------------------Ambient Temperature Range -------------------------------------------------------------------------------------------
4.5V to 13.5V
0V to 5.5V
−40°C to 125°C
−40°C to 85°C
Electrical Characteristics
(VCC = 12V, TA = 25°C, unless otherwise specified).
Parameter
Symbol
Test Condition
Typ
Max
Unit
4.0
4.2
4.5
V
--
0.2
--
V
POR Threshold Voltage
VCC_POR
POR Hysteresis
VCC_PORHY
VCC Quiescent Current
IQ
V CC = 12V
--
0.3
0.8
mA
Driver Source Current
IDRI_SR
V CC = 12V, V DRI = 6V
5
--
--
mA
Driver Sink Current
IDRI_SK
V CC = 12V, V DRI = 6V
5
--
--
mA
Feedback Reference Voltage
VREF
V CC = 12V, V DRI = 5V
0.784
0.8
0.816
V
Reference Line Regulation
VREF_Line
V CC = 4.5V to 15V
--
3
6
mV
V CC = 12V, No Load
--
70
dB
V CC = 12V, No Load
50
--
dB
Amplifier Voltage Gain
PSRR at 100Hz, No Load
PSRR
V CC Rising
Min
Chip Enable
EN
Threshold
Logic-High Voltage
VIH
1.4
--
5.5
Logic-Low Voltage
VIL
0
--
0.4
Shutdown Current
V
ISHDN
V CC= 12V, VEN = 0V
--
--
5
μA
ISS
V SS = 0V
V OUT = 1.2V, COUT = 1000μF,
CSS = 4.7nF
2
5
10
μA
--
1
--
ms
Soft-Start
SS pin Source Current
Output Turn-On Rise Time
DS9008-01 April 2011
www.richtek.com
3
RT9008
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity single layer test board of
JEDEC 51-3 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
www.richtek.com
4
DS9008-01 April 2011
RT9008
Typical Operating Characteristics
Quiescent Current vs. Temperature
Feedback Voltage vs. Temperature
1.00
0.95
0.50
Feedback Voltage (V)
Quiescent Current (mA)
0.60
0.40
0.30
0.20
0.10
0.90
0.85
0.80
0.75
0.70
0.65
VIN = 1.5V, VCC = 12V
VIN = 1.5V, VCC = 12V
0.00
0.60
-50
-25
0
25
50
75
100
125
-50
-25
0
25
100
125
30
55
DRI Sink Current (mA)
DRI Source Current (mA)
75
DRI Sink Current vs. Temperature
DRI Source Current vs. Temperature
60
50
45
40
27
24
21
18
15
VFB = 1V, VCC = 12V, VDRI = 6V
VFB = 0.6V, VCC = 12V, VDRI = 6V
35
12
-50
-25
0
25
50
75
100
125
-50
-25
Temperature (°C)
0
25
50
75
100
125
Temperature (°C)
Sink Current vs. DRI Voltage
Source Current vs. DRI Voltage
25
15
10
5
Source Current (mA)
Refer to Test Circuit Figure 2
50
20
Sink Current (mA)
50
Temperature (°C)
Temperature (°C)
40
30
20
10
VFB = 1V, VCC = 12V
VFB = 0.6V, VCC = 12V
0
0
0
0.5
1
1.5
2
DRI Voltage (V)
DS9008-01 April 2011
2.5
3
0
2
4
6
8
10
12
DRI Voltage (V)
www.richtek.com
5
RT9008
Soft Start Time vs. CSS
EN Threshold Voltage vs. Temperature
1.00
5000
EN Threshold Voltage (V)
0.95
Soft Start Time (us)
4000
3000
2000
1000
0.90
Rising
0.85
0.80
Falling
0.75
0.70
0.65
0.60
0
0
4
8
12
16
20
-50
24
-25
0
25
50
75
100
125
Temperature (°C)
CSS (nF)
Power On from EN
Power Off from EN
VIN = 5V, VOUT = 1.2V, ILOAD = 80mA
VEN
(5V/Div)
VEN
(5V/Div)
VOUT
(500mV/Div)
VOUT
(500mV/Div)
VIN = 5V, VOUT = 1.2V, ILOAD = 80mA
Time (500μs/Div)
Time (1ms/Div)
Load Transient Response
Line Transient Response
VIN = 2.5V, VOUT = 1.2V, CIN = COUT = 100μF
VIN = 1.5V to 2.5V, ILOAD = 100mA
CIN = 2.2μF, COUT = 100μF
20
10
VOUT
(mV/Div) 0
VOUT
(mV/Div) 0
-20
-10
5
2.5
I LOAD
(A/Div) 0
VIN
(V/Div) 1.5
Time (250μs/Div)
www.richtek.com
6
Time (100μs/Div)
DS9008-01 April 2011
RT9008
Application Information
Output Voltage Setting
MOSFET Selection and Thermal Consideration
As shown in application circuit, the output voltage can be
easy set by the external resistor divider of R1 and R2.
The RT9008 is designed to drive an external N-MOSFET
pass element. MOSFET selection criteria include
threshold voltage VGS (VTH), maximum continuous drain
VOUT = VREF (1 + R1 )
R2
Where VREF is the feedback reference voltage (0.8V
typical).
Chip Enable Operation
Pull the EN pin low (< 0.4V) to shutdown the device. During
shutdown mode, the standby current is lower than 5μA.
The external capacitor and load current determine the
output voltage decay rate. Drive the EN pin high (>1.4V)
to turn on the device again.
Soft-Start
Soft-Start provides for the monotonic, glitch-free turn-on
of the regulator. Soft-start limits the input inrush current
which may cause a glitch, especially if the source
impedance is high. The soft-start is achieved by the
controller ramping up to the error amplifier reference input.
The RT9008 soft-start time is 190us when the soft-start
capacitor is 1nF, 920μs for 4.7nF and 1.9ms for 10nF.
current ID, on-resistance RDS(ON), maximum drain-to-source
voltage VDS and package thermal resistance θJA.
The most critical specification is the MOSFET RDS(ON).
The maximum allowed RDS(ON) can be calculated by the
following formula :
RDS(ON) =
VIN − VOUT
ILOAD
For example, if the maximum load current is 2A, the input
voltage is 1.5V and the output voltage is 1.2V, then RDS(ON)
= (1.5V − 1.2V)/2A = 150mΩ.
The MOSFET's RDS(ON) have to be selected to be lower
than 150mΩ. A Philips PHD3055E MOSFET with an
RDS(ON) of 120mΩ (typ.) is a good choice.
After that, consider the thermal resistance from junction
to ambient θJA of the MOSFET's package. The power
dissipation is calculated by :
PD = (VIN − VOUT) x ILOAD
Capacitors Selection
The thermal resistance from junction to ambient θJA can
be calculated by :
Careful selection of the external capacitors is highly
recommended for the best performance of the RT9008.
θ (JA) =
Regarding the supply voltage capacitor (CCC) connecting
a ceramic capacitor 1μF between the VCC and GND is a
must.
(TJ − TA )
PD
The capacitor CCC improves the supply voltage stability to
provide chip normal operation.
In this example, PD = (1.5V − 1.2V) x 2A = 0.6W. The
PHD3055E's θJA is 75°C/W for its D-PAK package, which
translates to a 45°C temperature rise above ambient. The
package provides exposed backsides that directly transfer
heat to the PCB board.
As to the input capacitor ,CIN, connecting a 100μF between
the VIN, and GND is recommended to increase stability.
With large capacitor value could result in better
performance for both PSRR and line transient response.
The RT9008 maximum power dissipation depends on the
thermal resitance of the IC package, PCB layout, the rate
of surroundings airflow and temperature difference between
junction to ambient.
When driving external pass element, a 100μF electrolytic
capacitor on the output capacitor (COUT) is recommended
for stability. With larger capacitor, the RT9008 can reduce
noise the improve load transient response and PSRR.
The maximum power dissipation can be calculated by
following formula :
DS9008-01 April 2011
PD(MAX) = (TJ(MAX) − TA) / θJA
www.richtek.com
7
RT9008
Where T J(MAX) is the maximum operation junction
temperature, TA is the ambient temperature and the θJA is
the junction to ambient resistance.
For recommended operating conditions specification of
the RT9008, the maximum junction temperature is 125°C.
The junction to ambient thermal resistance θJA for SOT23-6 package is 250°C/W on the standard JEDEC 51-3
single-layer thermal test board.
The maximum allowed power dissipation at TA = 25°C can
be calculated by following formula :
For SOT-23-6 package,
PD(MAX) = (125°C − 25°C)/(250°C/W) = 0.400 W
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT9008 package, the Figure 3 of
derating curve allows the designer to see the effect of
rising ambient temperature on the maximum power
dissipation allowed.
0.50
Layout Considerations
There are three critical layout considerations. One is the
divider resistors should be located as close to the RT9008
FB pin as possible to minimize noise
The second is the placement of capacitors. The CIN and
COUT have to be placed near the N-MOSFET for improving
performance.
The third is the copper area for pass element, it should be
as large as possible when the pass element operating
under high power situation that could rise the junction
temperature. Considering the package thermal resistance
limitation, the copper area should be large enough to
handle the power dissipation shown as Figure 4.
VIN
CIN
Single Layer PCB
DRI
COUT
Power Dissipation (W)
0.45
0.40
0.35
VCC
SOT-23-6
0.30
VCC DRI SS
6
5
4
0.20
2
3
0.15
EN GND FB
0.25
CCC
R1
0.10
R2
0.05
0.00
GND
0
25
50
75
100
Ambient Temperature (°C)
VOUT
GND
125
Figure 4. PCB Layout Guide
Figure 3. Derating Curves for RT9008 Package
www.richtek.com
8
DS9008-01 April 2011
RT9008
Outline Dimension
H
D
L
C
B
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.889
1.295
0.031
0.051
A1
0.000
0.152
0.000
0.006
B
1.397
1.803
0.055
0.071
b
0.250
0.560
0.010
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
SOT-23-6 Surface Mount Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
DS9008-01 April 2011
www.richtek.com
9