RT9013
500mA, Low Dropout, Low Noise Ultra-Fast Without
Bypass Capacitor CMOS LDO Regulator
General Description
The RT9013 is a high-performance, 500mA LDO regulator,
offering extremely high PSRR and ultra-low dropout. Ideal
for portable RF and wireless applications with demanding
performance and space requirements.
The RT9013 quiescent current as low as 25μA, further
prolonging the battery life. The RT9013 also works with
low-ESR ceramic capacitors, reducing the amount of board
space necessary for power applications, critical in handheld wireless devices.
The RT9013 consumes typical 0.7μA in shutdown mode
and has fast turn-on time less than 40μs. The other features
include ultra-low dropout voltage, high output accuracy,
current limiting protection, and high ripple rejection ratio.
Available in the SC-82, SOT-23-5, SC-70-5 and WDFN-6L
2x2 package.
Ordering Information
RT9013 -
Note :
Package Type
Y : SC-82
B : SOT-23-5
U5 : SC-70-5
QW : WDFN-6L 2x2 (W-Type)
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Fixed Output Voltage
12 : 1.2V
13 : 1.3V
15 : 1.5V
16 : 1.6V
:
32 : 3.2V
33 : 3.3V
1B : 1.25V
1H : 1.85V
2H : 2.85V
Richtek products are :
`
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
Suitable for use in SnPb or Pb-free soldering processes.
Wide Operating Voltage Ranges : 2.2V to 5.5V
Low Dropout : 250mV at 500mA
Ultra-Low-Noise for RF Application
Ultra-Fast Response in Line/Load Transient
Current Limiting Protection
Thermal Shutdown Protection
High Power Supply Rejection Ratio
Output Only 1μ
μF Capacitor Required for Stability
TTL-Logic-Controlled Shutdown Input
RoHS Compliant and 100% Lead (Pb)-Free
Applications
CDMA/GSM Cellular Handsets
Portable Information Appliances
Laptop, Palmtops, Notebook Computers
Hand-Held Instruments
Mini PCI & PCI-Express Cards
PCMCIA & New Cards
Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area.
Pin Configurations
(TOP VIEW)
VIN
VOUT
4
3
2
EN
GND
SC-82
VOUT
NC
5
4
2
3
VIN GND EN
SOT-23-5 / SC-70-5
EN
GND
VIN
1
2
3
GND
`
Features
7
6
5
4
NC
NC
VOUT
WDFN-6L 2x2
DS9013-10 April 2011
www.richtek.com
1
RT9013
Typical Application Circuit
VIN
VIN
CIN
1µF/X7R
VOUT
VOUT
COUT
1µF/X7R
RT9013
Chip Enable
NC
EN
Rpull_down
GND
100k
Functional Pin Description
Pin Number
Pin Name
SC-82
SOT-23-5 /
SC-70-5
WDFN-6L 2x2
3
5
4
--
4
5, 6
2
2
2,
7 (Exposed
Pad)
1
3
4
1
Pin Function
VOUT
Regulator Output.
NC
No Internal Connection.
GND
Common Ground. The exposed pad must be soldered to a
large PCB and connected to GND for maximum power
dissipation.
1
EN
Enable Input Logic, Active High. When the EN goes to a
logic low, the device will be shutdown mode.
3
VIN
Supply Input.
Function Block Diagram
EN
Current
Limit
POR
OTP
VIN
VREF
+
MOS
Driver
VOUT
GND
www.richtek.com
2
DS9013-10 April 2011
RT9013
Absolute Maximum Ratings
(Note 1)
Supply Input Voltage -----------------------------------------------------------------------------------------------------EN Input Voltage ----------------------------------------------------------------------------------------------------------Power Dissipation, PD @ TA = 25°C
SOT-23-5 -------------------------------------------------------------------------------------------------------------------SC-70-5/ SC-82 -----------------------------------------------------------------------------------------------------------WDFN-6L 2x2 -------------------------------------------------------------------------------------------------------------Package Thermal Resistance (Note 2)
SOT-23-5, θJA --------------------------------------------------------------------------------------------------------------SOT-23-5, θJC -------------------------------------------------------------------------------------------------------------SC-70-5/ SC-82, θJA -----------------------------------------------------------------------------------------------------WDFN-6L 2x2, θJA --------------------------------------------------------------------------------------------------------WDFN-6L 2x2, θJC --------------------------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------Junction Temperature ----------------------------------------------------------------------------------------------------Storage Temperature Range -------------------------------------------------------------------------------------------ESD Susceptibility (Note 3)
HBM -------------------------------------------------------------------------------------------------------------------------MM ----------------------------------------------------------------------------------------------------------------------------
Recommended Operating Conditions
6V
6V
0.4W
0.3W
0.606W
250°C/W
25°C/W
333°C/W
165°C/W
20°C/W
260°C
150°C
−65°C to 150°C
2kV
200V
(Note 4)
Supply Input Voltage ------------------------------------------------------------------------------------------------------ 2.2V to 5.5V
Junction Temperature Range -------------------------------------------------------------------------------------------- −40°C to 125°C
Ambient Temperature Range -------------------------------------------------------------------------------------------- −40°C to 85°C
Electrical Characteristics
(VIN = VOUT + 0.5V, VEN = VIN, CIN = COUT = 1μF (Ceramic, X7R), TA = 25°C unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
2.2
--
5.5
V
Input Voltage Range
VIN
Output Noise Voltage
VON
VOUT = 1.5V, COUT = 1μF, IOUT =
0mA
--
30
--
μVRMS
Output Voltage Accuracy
(Fixed Output Voltage)
ΔVOUT
IOUT = 10mA
−2
0
+2
%
Quiescent Current
IQ
VEN = 5V, IOUT = 0mA
--
25
50
μA
Shutdown Current
ISHDN
VEN = 0V
--
0.7
1.5
μA
Current Limit
ILIM
RLOAD = 0Ω, 2.2V ≤ VIN < 2.6V
0.4
0.5
0.85
A
RLOAD = 0Ω, 2.7V ≤ VIN ≤ 5.5V
0.5
0.6
0.85
A
IOUT = 400mA, 2.2V ≤ VIN < 2.7V
--
160
320
IOUT = 500mA, 2.7V ≤ VIN ≤ 5.5V
--
250
400
--
--
0.6
Dropout Voltage
(Note 5)
(Note 6)
Load Regulation
(Note 7)
(Fixed Output Voltage)
VDROP
ΔVLOAD
1mA < IOUT < 400mA
2.2V ≤ VIN < 2.7V
1mA < IOUT < 500mA
2.7V ≤ VIN ≤ 5.5V
mV
%
--
--
1
To be continued
DS9013-10 April 2011
www.richtek.com
3
RT9013
Parameter
EN Threshold Voltage
Symbol
Test Conditions
Min
Typ
Max
Logic-Low VIL
0
--
0.6
Logic-High VIH
1.6
--
5.5
--
0.1
1
μA
--
−50
--
dB
--
0.01
0.2
%/V
Enable Pin Current
IEN
Power Supply Rejection Rate
PSRR
Line Regulation
ΔVLINE
Thermal Shutdown Temperature
TSD
--
170
--
Thermal Shutdown Hysteresis
ΔT SD
--
30
--
IOUT = 100mA, f = 10kHz
VIN = (VOUT+0.5) to 5.5V,
IOUT = 1mA
Unit
V
°C
Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational
sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may
remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of JEDEC 51-3
thermal measurement standard. The case position of θJC is on the exposed pad for the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under no
load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground pin
current.
Note 6. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) - 100mV.
Note 7. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load
regulation in the load range from 10mA to 500mA.
www.richtek.com
4
DS9013-10 April 2011
RT9013
Typical Operating Characteristics
(CIN = COUT = 1μ/X7R, unless otherwise specified)
Output Voltage vs. Temperature
1.60
Quiescent Current vs. Temperature
30
VIN = 2.5V
1.58
Quiescent Current (uA)
1.56
Output Voltage (V)
VIN = 2.5V
28
1.54
1.52
1.50
1.48
1.46
1.44
26
24
22
20
18
16
14
12
1.42
10
1.40
-50
-25
0
25
50
75
100
-50
125
-25
Temperature (°C)
RT9013-33PQW
TJ = 125°C
TJ = 25°C
200
150
TJ = -40°C
100
50
Dropout Voltage (mV)
Dropout Voltage (mV)
250
100
125
RT9013-25PQW
TJ = 125°C
250
TJ = 25°C
200
150
TJ = -40°C
100
50
0
50
100 150 200 250 300 350 400 450 500
0
50
100 150 200 250 300 350 400 450 500
Load Current (mA)
Load Current (mA)
EN Pin Shutdown Response
Start Up
VIN = 2.5V, ILOAD = 50mA
4 RT9013-15PQW
2
Output Voltage
(V)
0
2
1
0
Time (100μs/Div)
DS9013-10 April 2011
EN Pin Voltage
(V)
0
EN Pin Voltage
(V)
75
300
0
Output Voltage
(V)
50
Dropout Voltage vs. Load Current
350
300
25
Temperature (°C)
Dropout Voltage vs. Load Current
350
0
4
VIN = 2.5V, ILOAD = 75mA
RT9013-15PQW
2
0
1.0
0.5
0
Time (5μs/Div)
www.richtek.com
5
RT9013
Line Transient Response
Line Transient Response
Input Voltage
Deviation (V)
3.6
2.6
20
0
-20
VIN = 2.6V to 3.6V, ILOAD = 100mA
Output Voltage
Deviation (mV)
Output Voltage
Deviation (mV)
Input Voltage
Deviation (V)
VIN = 2.6V to 3.6V, ILOAD = 10mA
RT9013-15PQW
3.6
2.6
20
0
-20
Time (100μs/Div)
Time (100μs/Div)
Load Transient Response
Load Transient Response
VIN = 2.5V, ILOAD = 10mA to 300mA
Load Current
(mA)
50
0
Output Voltage
Deviation (mV)
Output Voltage
Deviation (mV)
Load Current
(mA)
VIN = 2.5V, ILOAD = 10mA to 100mA
100
50
0
-50
RT9013-15PQW
400
200
0
50
0
-50
Time (100μs/Div)
Noise
Noise
VIN = 3.0V (By Battery), ILOAD = 10mA
300
300
200
200
Noise (μV/Div)
Noise (μV/Div)
RT9013-15PQW
Time (100μs/Div)
VIN = 3.0V (By Battery), No Load
100
0
-100
100
0
-100
-200
-200
-300
RT9013-15PQW
-300
RT9013-15PQW
Time (10ms/Div)
www.richtek.com
6
RT9013-15PQW
Time (10ms/Div)
DS9013-10 April 2011
RT9013
Noise
20
VIN = 3.0V (By Battery), ILOAD = 300mA
VIN = 2.5V to 2.6V
10
300
0
200
-10
100
PSRR(dB)
Noise (μV/Div)
PSRR
0
-100
-200
-300
-20
-30
-40
ILOAD = 100mA
ILOAD = 300mA
-50
-60
RT9013-15PQW
ILOAD = 10mA
-70
Time (10ms/Div)
10
100
1000
10000
100000
1000000
Frequency (Hz)
DS9013-10 April 2011
www.richtek.com
7
RT9013
Applications Information
Like any low-dropout regulator, the external capacitors used
with the RT9013 must be carefully selected for regulator
stability and performance. Using a capacitor whose value
is > 1μF/X7R on the RT9013 input and the amount of
capacitance can be increased without limit. The input
capacitor must be located a distance of not more than 0.5
inch from the input pin of the IC and returned to a clean
analog ground. Any good quality ceramic can be used for
this capacitor. The capacitor with larger value and lower
ESR (equivalent series resistance) provides better PSRR
and line-transient response.
The output capacitor must meet both requirements for
minimum amount of capacitance and ESR in all LDOs
application. The RT9013 is designed specifically to work
with low ESR ceramic output capacitor in space-saving
and performance consideration. Using a ceramic capacitor
whose value is at least 1μF with ESR is > 5mΩ on the
RT9013 output ensures stability. The RT9013 still works
well with output capacitor of other types due to the wide
stable ESR range. Figure 1. shows the curves of allowable
ESR range as a function of load current for various output
capacitor values. Output capacitor of larger capacitance
can reduce noise and improve load transient response,
stability, and PSRR. The output capacitor should be located
not more than 0.5 inch from the VOUT pin of the RT9013
and returned to a clean analog ground.
Enable
The RT9013 goes into sleep mode when the EN pin is in a
logic low condition. During this condition, the RT9013 has
an EN pin to turn on or turn off regulator, When the EN pin
is logic hight, the regulator will be turned on. The supply
current to 0.7μA typical. The EN pin may be directly tied
to VIN to keep the part on. The Enable input is CMOS
logic and cannot be left floating.
PSRR
The power supply rejection ratio (PSRR) is defined as the
gain from the input to output divided by the gain from the
supply to the output. The PSRR is found to be
⎛
⎞
PSRR = 20 × log⎜ ΔGain Error ⎟
⎝ ΔSupply ⎠
Note that when heavy load measuring, Δsupply will cause
Δtemperature. And Δtemperature will cause Δoutput
voltage. So the heavy load PSRR measuring is include
temperature effect.
Current limit
The RT9013 contains an independent current limiter, which
monitors and controls the pass transistor's gate voltage,
limiting the output current to 0.6A (typ.). The output can
be shorted to ground indefinitely without damaging the part.
Thermal Considerations
Region of Stable COUT ESR vs. Load Current
(Ω)ESR (Ω)
OUT ESR
Region of CStable
COUT
100.000
100
Unstable Range
10.000
0
1
1.000
Stable Range
For continuous operation, do not exceed absolute
maximum operation junction temperature 125°C. The
power dissipation definition in device is :
0.100
0.1
0.01
0.010
COUT = 1μF
0.001
0
50
150
200
Load Current (mA)
Figure 1
www.richtek.com
8
PD = (VIN − VOUT) x IOUT + VIN x IQ
Unstable Range
100
Thermal protection limits power dissipation in RT9013.
When the operation junction temperature exceeds 170°C,
the OTP circuit starts the thermal shutdown function and
turns the pass element off. The pass element turn on again
after the junction temperature cools by 30°C.
250
300
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junction to ambient. The maximum power dissipation can
be calculated by following formula :
DS9013-10 April 2011
RT9013
PD(MAX) = ( TJ(MAX) − TA ) /θJA
Where T J(MAX) is the maximum operation junction
temperature, TA is the ambient temperature and the θJA is
the junction to ambient thermal resistance.
For recommended operating conditions specification of
RT9013 the maximum junction temperature is 125°C and
TA is the operated ambient temperature. The junction to
ambient thermal resistance θJA (θJA is layout dependent)
for WDFN-6L 2x2 package is 165°C/W, SOT-23-5 package
is 250°C/W and SC-70-5/ SC-82 package is 333°C/W on
the standard JEDEC 51-3 single-layer thermal test board.
The maximum power dissipation at TA = 25°C can be
calculated by following formula :
PD(MAX) = (125°C − 25°C) / 165°C/W = 0.606 W for
WDFN-6L 2x2 packages
PD(MAX) = (125°C − 25°C) / 250°C/W = 0.400 W for
SOT-23-5 packages
PD(MAX) = (125°C − 25°C) / 333°C/W = 0.300 W for
SC-70-5/ SC-82 packages
The maximum power dissipation depends on operating
ambient temperature for fixed TJ(MAX) and thermal resistance
θJA. For RT9013 package, the Figure 2 of derating curves
allows the designer to see the effect of rising ambient
temperature on the maximum power dissipation allowed.
0.7
Single Layer PCB
Power Dissipation (W)
0.6
0.5
WDFN-6L 2x2
SOT-23-5
0.4
0.3
SC-70-5/
SC-82
0.2
0.1
0
0
12.5 25 37.5 50
62.5 75
87.5 100 113 125
Ambient Temperature (°C)
Figure 2. Derating Curves for RT9013 Packages
DS9013-10 April 2011
www.richtek.com
9
RT9013
Outline Dimension
D
e
H
L
B
C
b1
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.800
1.100
0.031
0.043
A1
0.000
0.100
0.000
0.004
B
1.150
1.350
0.045
0.053
b
0.150
0.400
0.006
0.016
b1
0.350
0.500
0.014
0.020
C
1.800
2.450
0.071
0.096
D
1.800
2.200
0.071
0.087
e
1.300
0.051
H
0.080
0.260
0.003
0.010
L
0.200
0.460
0.008
0.018
SC-82 Surface Mount Package
www.richtek.com
10
DS9013-10 April 2011
RT9013
H
D
L
B
C
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.889
1.295
0.035
0.051
A1
0.000
0.152
0.000
0.006
B
1.397
1.803
0.055
0.071
b
0.356
0.559
0.014
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
SOT-23-5 Surface Mount Package
DS9013-10 April 2011
www.richtek.com
11
RT9013
H
D
L
B
C
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.800
1.100
0.031
0.044
A1
0.000
0.100
0.000
0.004
B
1.150
1.350
0.045
0.054
b
0.150
0.400
0.006
0.016
C
1.800
2.450
0.071
0.096
D
1.800
2.250
0.071
0.089
e
0.650
0.026
H
0.080
0.260
0.003
0.010
L
0.210
0.460
0.008
0.018
SC-70-5 Surface Mount Package
www.richtek.com
12
DS9013-10 April 2011
RT9013
D2
D
L
E
E2
1
2
e
1
2
1
b
A
A1
SEE DETAIL A
A3
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.700
0.800
0.028
0.031
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.200
0.350
0.008
0.014
D
1.950
2.050
0.077
0.081
D2
1.000
1.450
0.039
0.057
E
1.950
2.050
0.077
0.081
E2
0.500
0.850
0.020
0.033
e
L
0.650
0.300
0.026
0.400
0.012
0.016
W-Type 6L DFN 2x2 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
DS9013-10 April 2011
www.richtek.com
13