RT9173B
2A Bus Termination Regulator
General Description
The RT9173B regulator is designed to convert voltage
supplies ranging from 1.7V to 6V into a desired output
voltage of which adjusted by two external voltage divider
resistors. The regulator is capable of sourcing or sinking
up to 2A of current while regulating an output voltage to
within 40mV.
The RT9173B, used in conjunction with series termination
resistors, provides an excellent voltage source for active
termination schemes of high speed transmission lines as
those seen in high speed memory buses and distributed
backplane designs. The voltage output of the regulator can
be used as a termination voltage for DDR SDRAM.
Current limits in both sourcing and sinking mode, plus onchip thermal shutdown make the circuit tolerant of the
output fault conditions.
The RT9173B are available in the popular 5-lead TO-252
and fused SOP-8 (the multiple VCNTL pins on the SOP-8
package are internally connected but lowest thermal
resistance) surface mount packages.
Ordering Information
RT9173B
Package Type
S : SOP-8
L5 : TO-252-5
Note :
Lead Plating System
P : Pb Free
G : Green (Halogen Free and Pb Free)
Richtek products are :
`
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
`
Suitable for use in SnPb or Pb-free soldering processes.
Features
z
z
z
z
z
z
z
z
z
z
z
z
Support Both DDR I (1.25VTT) and DDR II (0.9VTT)
Requirements
SOP-8 and TO-252-5 Packages
Capable of Sourcing and Sinking Current
Current-limiting Protection
Thermal Protection
Integrated Power MOSFETs
Generates Termination Voltages for SSTL-2
High Accuracy Output Voltage at Full-Load
Adjustable VOUT by External Resistors
Minimum External Components
Shutdown for Standby or Suspend Mode Operation
with High-impedance Output
RoHS Compliant and 100% Lead (Pb)-Free
Applications
z
z
z
z
z
DDR Memory Termination Supply
Active Termination Buses
Desktop PC/AGP Graphics
Set Top Box/IPC
Supply Splitter
Pin Configurations
(TOP VIEW)
VIN
8
VCNTL
GND
2
7
VCNTL
REFEN
3
6
VCNTL
VOUT
4
5
VCNTL
SOP-8
5
VOUT
4
REFEN
3
VCNTL (TAB)
2
GND
1
VIN
TO-252-5
DS9173B-10 April 2011
www.richtek.com
1
RT9173B
Typical Application Circuit
VCNTL = 3.3V
VIN = 2.5V
RTT
CCNTL
R1 VCNTL
CIN
VIN
RT9173B
REFEN
VOUT
2N7002
EN
GND
R2
COUT
RDUMMY
R1 = R2 = 100kΩ, RTT = 50Ω / 33Ω / 25Ω
COUT(MIN) = 10μF (Ceramic) + 1000μF under the worst case testing condition
RDUMMY = 1kΩ as for VOUT discharge when VIN is not present but VCNTL is present
CIN = 470μF (Low ESR), CCNTL = 47μF
Test Circuit
3.3V
2.5V
VCNTL
VIN
RT9173B
REFEN
VOUT
1.25V
VOUT
GND
COUT
V
IL
Figure 1. Output Voltage Tolerance, ΔVOUT
3.3V
1.25V
A
2.5V
VCNTL
VIN
RT9173B
REFEN
VOUT
VOUT
1.25V
0V
0.2V
GND
RL
COUT
V
RL and COUT
Time deleay
Figure 2. Current in Shutdown Mode, ΙSHDN
www.richtek.com
2
DS9173B-10 April 2011
RT9173B
1.25V
3.3V
2.5V
VCNTL
VIN
RT9173B
REFEN
VOUT
VOUT
A
GND
COUT
V
IL
Figure 3. Current Limit for High Side, ΙCLHIGH
Power Supply
with Current Limit
2.5V
3.3V
VCNTL
1.25V
A
VIN
RT9173B
REFEN
VOUT
IL
GND
VOUT
COUT
V
Figure 4. Current Limit for Low Side, ΙCLLOW
2.5V
VCNTL
VIN
RT9173B
REFEN
VOUT
1.25V
VREFEN
3.3V
GND
0.2V
VOUT
RL
COUT
V
1.25V
VOUT
0V
VOUT would be low if VREFEN < 0.2V
VOUT would be high if VREFEN > 0.6V
RL and COUT
Time deleay
Figure 5. REFEN Pin Shutdown Threshold, VTRIGGER
DS9173B-10 April 2011
www.richtek.com
3
RT9173B
Functional Pin Description
Pin Name
Pin Function
VIN
Power Input
GND
Ground
VCNTL
Gate Drive Voltage
REFEN
Reference Voltage Input and Chip Enable
VOUT
Output Voltage
Function Block Diagram
VCNTL
VIN
Current
Limiting Sensor
REFEN
CNTL
VOUT
Thermal
GND
www.richtek.com
4
DS9173B-10 April 2011
RT9173B
Absolute Maximum Ratings
z
z
z
z
z
z
z
(Note 1)
Input Voltage ---------------------------------------------------------------------------------------------------------- 7V
Power Dissipation, PD @ TA = 25°C
SOP-8 ------------------------------------------------------------------------------------------------------------------ 0.625W
TO-252 ----------------------------------------------------------------------------------------------------------------- 1.471W
Package Thermal Resistance (Note 2)
SOP-8, θJA ------------------------------------------------------------------------------------------------------------ 160°C/W
SOP-8, θJC ------------------------------------------------------------------------------------------------------------ 23°C/W
TO-252, θJA ------------------------------------------------------------------------------------------------------------ 68°C/W
TO-252, θJC ----------------------------------------------------------------------------------------------------------- 8°C/W
Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------- 260°C
Junction Temperature ----------------------------------------------------------------------------------------------- 150°C
Storage Temperature Range --------------------------------------------------------------------------------------- –65°C to 150°C
ESD Susceptibility (Note 3)
HBM (Human Body Mode) ----------------------------------------------------------------------------------------- 2kV
MM (Machine Mode) ------------------------------------------------------------------------------------------------ 200V
Recommended Operating Conditions
z
(Note 4)
Junction Temperature Range -------------------------------------------------------------------------------------- –40°C to 125°C
Electrical Characteristics
(VIN = 2.5V, VCNTL = 3.3V, VREFEN = 1.25V, COUT = 10μF (Ceramic), TA = 25°C unless otherwise specified)
Parameter
Symbol
Output Offset Voltage
VOS
Load Regulation
ΔV LOAD
Test Conditions
Min
Typ
Max
Unit
IOUT = 0A, Figure 1 (Note 5)
−20
0
20
mV
−20
0
20
mV
1.7
2.5/1.8
--
IL : 0A → 2A, Figure 1
IL : 0A → -2A
VIN
Keep VCNTL ≥ V IN on operation power
VCNTL
on and power off sequences
3
3.3/5
6
Operating Current of VCNTL
ICNTL
No Load
--
1
2.5
mA
Current In Shutdown Mode
ISHDN
V REFEN < 0.2V, RL = 180Ω, Figure 2
--
50
90
μA
ILIM
Figure 3,4
2.2
2.6
--
A
Thermal Shutdown Temperature
TSD
3.3V ≤ VCNTL ≤ 5V
125
170
--
°C
Thermal Shutdown Hysteresis
ΔT SD
3.3V ≤ VCNTL ≤ 5V
--
35
--
°C
Output = High, Figure 5
0.6
--
--
Output = Low, Figure 5
--
--
0.2
Input Voltage Range (DDR I/II)
V
Short Circuit Protection
Current limit
Over Temperature Protection
Shutdown Function
Shutdown Threshold Trigger
DS9173B-10 April 2011
V
www.richtek.com
5
RT9173B
Note 1. Stresses beyond those listed under
“ Absolute Maximum Ratings” may cause permanent damage to the device.
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
Note 2. θ JA is measured in the natural convection at T A = 25°C on a low effective thermal conductivity test board of
JEDEC 51-3 thermal measurement standard. The case point of θJC is on the center of VCTRL pins (Lead 6 & 7) for
SOP-8 packages.
Note 3. Devices are ESD sensitive. Handling precaution recommended. The human body model is a 100pF capacitor discharged
through a 1.5kΩ resistor into each pin.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. VOS offset is the voltage measurement defined as VOUT subtracted from VREFEN.
www.richtek.com
6
DS9173B-10 April 2011
RT9173B
Typical Operating Characteristics
Source Current Limit vs. Temperature
Source Current Limit vs. Temperature
3.8
3.8
3.4
VIN = 1.8V, VCNTL = 5V
3
2.6
VIN = 2.5V, VCNTL = 5V
Source current (A)
Source current (A)
3.4
VIN = 1.8V, VCNTL = 3.3V
3
2.6
VIN = 2.5V, VCNTL = 3.3V
2.2
2.2
1.8
1.8
-40 -25 -10
5
20
35
50
65
80
-40 -25 -10
95 110 125
5
20
35
50
65
80
95 110 125
Temperature (°C)
Temperature (°C)
Sink Current Limit vs. Temperature
Sink Current Limit vs. Temperature
3.8
3.8
VIN = 1.8V, VCNTL = 5V
3.4
3
VIN = 2.5V, VCNTL = 5V
2.6
Sink current (A)
Sink current (A)
3.4
3
VIN = 1.8V, VCNTL = 3.3V
2.6
VIN = 2.5V, VCNTL = 3.3V
2.2
2.2
1.8
1.8
-40 -25 -10
5
20
35
50
65
80
-40 -25 -10
95 110 125
5
Turn-On Threshold vs. Temperature
35
50
65
80
95 110 125
Turn-Off Threshold vs. Temperature
0.5
0.5
0.45
VIN = 2.5V, VCNTL = 5V
0.4
VIN = 2.5V, VCNTL = 3.3V
0.35
0.3
Threshold Voltage (V)
Threshold Voltage (V)
20
Temperature (°C)
Temperature (°C)
0.45
0.4
0.35
VIN = 2.5V, VCNTL = 5V
VIN = 2.5V, VCNTL = 3.3V
0.3
-40 -25 -10
5
20
35
50
65
80
Temperature (°C)
DS9173B-10 April 2011
95 110 125
-40 -25 -10
5
20
35
50
65
80
95 110 125
Temperature (°C)
www.richtek.com
7
RT9173B
Output Voltage vs. Temperature
Output Voltage vs. Temperature
1.26
VIN = 1.8V
VCNTL = 3.3V
0.905
Output Voltage (V)
Output Voltage (V)
0.91
0.9
0.895
VIN = 2.5V
VCNTL = 3.3V
1.255
1.25
1.245
1.24
0.89
-40 -25 -10
5
20
35
50
65
80
-40 -25 -10
95 110 125
5
Output Current (A)
-100
Output Transient
Voltage (mV)
0
2
0
-2
65
80
95 110 125
VREFEN = 0.9V
100 Swing Frequency : 1kHz
VIN = 1.8V
VCNTL = 5V
0
-100
2
0
-2
Time (250us/Div)
1.25VTT @ 2A Transient Response
1.25VTT @ 2A Transient Response
VREFEN = 1.25V
100 Swing Frequency : 1kHz
0
-100
2
0
-2
Time (250us/Div)
www.richtek.com
8
VIN = 2.5V
VCNTL = 3.3V
Output Transient
Voltage (mV)
Time (250us/Div)
Output Current (A)
Output Transient
Voltage (mV)
Output Current (A)
Output Transient
Voltage (mV)
Output Current (A)
VIN = 1.8V
VCNTL = 3.3V
50
0.9VTT @ 2A Transient Response
0.9VTT @ 2A Transient Response
VREFEN = 0.9V
35
Temperature (°C)
Temperature (°C)
100 Swing Frequency : 1kHz
20
VREFEN= 1.25V
100 Swing Frequency : 1kHz
VIN = 2.5V
VCNTL = 5V
0
-100
2
0
-2
Time (250us/Div)
DS9173B-10 April 2011
RT9173B
Output Short-Circuit Protection
Source
4
3
2
1
VIN = 2.5V
VCNTL = 3.3V
12
Output Short Circuit (A)
Output Short Circuit (A)
5
10
8
6
4
2
0
Force the output shorted to ground
Time (1ms/DIV)
DS9173B-10 April 2011
Sink
VIN = 2.5V
VCNTL = 3.3V
6
0
Output Short-Circuit Protection
Force the output shorted to VDDQ
Time (1ms/DIV)
www.richtek.com
9
RT9173B
Application Information
Internal parasitic diode
VREFEN
Avoid forward-bias internal parasitic diode, VOUT to VCNTL,
and VOUT to VIN, the VOUT should not be forced some
voltage respect to ground on this pin while the VCNTL or
VIN is disappeared.
In addition, the capacitor and voltage divider form the lowpass filter. There are two reasons doing this design; one is
for output voltage soft-start while another is for noise
immunity.
How to reduce power dissipation on Notebook PC or
the dual channel DDR SDRAM application?
Make sure that VCNTL >= VIN in all conditions including
power on and off. As other linear regulator, dropout voltage
and thermal issue should be specially considered. Figure
6 and 7 show the RDS(ON) over temperature of RT9173B in
SOP-8 and TO-252 packages respectively. The minimum
dropout voltage could be obtained by the product of RDS(ON)
and output current. For thermal consideration, please refer
to the relative sections.
RDS(ON) vs. Temperature
0.45
R0
BUS(0)
R1
BUS(1)
RT9173B
VOUT
R2
R3
R4
REFEN
R5
0.43
SOP-8
VCNTL = 3.3V
0.41
0.39
R DS(ON) (Ω)
Terminator Resistor
GND
Figure 6
In notebook application, using RichTek’ s Patent
“ Distributed Bus Terminator Topology” with choosing
RichTek’ s product is encouraged.
Distributed Bus Terminating Topology
0.37
0.35
0.33
0.31
0.29
BUS(2)
0.27
BUS(3)
0.25
BUS(4)
0.23
-50
BUS(5)
-25
0
BUS(6)
VOUT
R7
R8
R9
25
50
75
100
125
Temperature (°C)
R6
RT9173B
VIN
RT9173B
REFEN
VOUT
R2
Consideration while designs the resistance of voltage
divider
Make sure the sinking current capability of pull-down NMOS
if the lower resistance was chosen so that the voltage on
VREFEN is below 0.2V.
VCNTL
R1
RDS(ON) vs. Temperature
BUS(7)
0.48
BUS(8)
0.45
BUS(9)
TO-252
VCNTL = 3.3V
RN
R(N+1)
BUS(N)
BUS(N+1)
General Regulator
The RT9173B could also serves as a general linear
regulator. The RT9173B accepts an external reference
voltage at REFEN pin and provides output voltage regulated
to this reference voltage as shown in Figure 6, where
VOUT = VREF x R1/(R1+R2)
www.richtek.com
10
R DS(ON) (Ω)
0.42
0.39
0.36
0.33
0.30
0.27
0.24
-50
-25
0
25
50
75
100
125
Temperature (°C)
DS9173B-10 April 2011
RT9173B
Place the input bypass capacitor as close as possible to
the RT9173B. A low ESR capacitor larger than 470uF is
recommended for the input capacitor. Use short and wide
traces to minimize parasitic resistance and inductance.
Inappropriate layout may result in large parasitic inductance
and cause undesired oscillation between RT9173B and
the preceding power converter.
Thermal Consideration
An internal thermal limiting circuitry shuts down the
RT9173B when junction temperature is over 170°C. This
protects the device during overload conditions. It is noted
that the thermal limiting circuitry is not intended for normal
operation. For maximum reliability, the junction temperature
should not exceed absolute maximum operation
temperature 125°C during normal operation. The power
dissipation should be well considered to keep the junction
temperature within the specification.
The power dissipation in RT9173B is calculated as:
Since the multiple VCTRL pins of the SOP-8 package are
internally shorted and connected to lead frame, it is efficient
to dissipate the heat by adding cooper area on VCTRL
footprint. Figure 7 shows the relation about thermal
resistance θJA vs. copper area on a standard JEDEC 51-7
(4 layer, 2S2P) thermal test board at TA = 25°C. The
corresponding maximum power dissipation is shown in
Figure 8. For example, with 10mm x 10mm cooper area,
we can obtain the lower thermal resistance about 45°C/W.
The power maximum dissipation can be calculated as:
PD(MAX) = (125 − 25°C) / 45 = 2.22W (SOP-8)
θJA vs. Copper Area
100
90
80
θ JA (°C/W)
Input Capacitor and Layout Consideration
70
60
50
PD = (VIN − VOUT) x IOUT + VIN x IQ
40
The maximum power dissipation can be calculated by
following formula:
SOP-8
30
0
PD(MAX) = ( TJ(MAX) -TA ) /θJA
PD(MAX) = (125 − 25°C) / 68 = 1.471W (TO-252)
30
40
50
60
70
80
90
100
Copper Area (mm )
Figure 7
Power Dissipation vs. Copper Area
100
TJ = 125°C
90
80
2
Copper Area (mm 2 ))
PD(MAX) = (125 − 25°C) / 160 = 0.625W (SOP-8)
20
2
Where T J(MAX) is the maximum operation junction
temperature 125°C, TA is the ambient temperature and the
θJA is the junction to ambient thermal resistance.
The junction to ambient thermal resistance θJA highly
depends on IC package, PCB layout , the rate of
surroundings airflow. θJA for SOP-8 package is 160°C/W
and TO-252 package is 68°C/W on standard JEDEC 51-3
(single layer, 1S) thermal test board. The maximum power
dissipation at TA = 25°C can be calculated by following
formula:
10
70
TA = 65°C
60
TA = 55°C
50
TA = 25°C
40
30
20
10
SOP-8
0
0
0.5
1
1.5
2
2.5
3
Power Dissipation (W)
Figure 8
DS9173B-10 April 2011
www.richtek.com
11
RT9173B
Outline Information
E
C2
R
b3
L3
T
V
S
D
H
L
b
P
L2
A
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
2.184
2.388
0.086
0.094
b
0.381
0.889
0.015
0.035
b3
4.953
5.461
0.195
0.215
C2
0.457
0.889
0.018
0.035
D
5.334
6.223
0.210
0.245
E
6.350
6.731
0.250
0.265
H
9.000
10.414
0.354
0.410
L
0.508
1.780
0.020
0.070
L2
L3
0.508 Ref.
0.889
2.032
0.020 Ref.
0.035
0.080
P
1.270 Ref.
0.050 Ref.
V
5.200 Ref.
0.205 Ref.
R
0.200
1.500
0.008
0.059
S
2.500
3.400
0.098
0.134
T
0.500
0.850
0.020
0.033
5-Lead TO-252 Surface Mount Package
www.richtek.com
12
DS9173B-10 April 2011
RT9173B
H
A
M
J
B
F
C
I
D
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
4.801
5.004
0.189
0.197
B
3.810
3.988
0.150
0.157
C
1.346
1.753
0.053
0.069
D
0.330
0.508
0.013
0.020
F
1.194
1.346
0.047
0.053
H
0.170
0.254
0.007
0.010
I
0.050
0.254
0.002
0.010
J
5.791
6.200
0.228
0.244
M
0.400
1.270
0.016
0.050
8-Lead SOP Plastic Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
5F, No. 95, Minchiuan Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
DS9173B-10 April 2011
www.richtek.com
13