®
RT9193
300mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator
General Description
Features
The RT9193 is designed for portable RF and wireless
applications with demanding performance and space
requirements. The RT9193 performance is optimized for
battery-powered systems to deliver ultra low noise and
low quiescent current. A noise bypass pin is available for
further reduction of output noise. Regulator ground current
increases only slightly in dropout, further prolonging the
battery life. The RT9193 also works with low-ESR ceramic
capacitors, reducing the amount of board space necessary
for power applications, critical in hand-held wireless
devices. The RT9193 consumes less than 0.01μA in
z
Ultra Low Noise for RF Application
z
shutdown mode and has fast turn-on time less than 50μs.
The other features include ultra low dropout voltage, high
output accuracy, current limiting protection, and high ripple
rejection ratio. Available in the SC-70-5, SOT-23-5,
TSOT-23-5, WDFN-6L 2x2 and MSOP-8 packages.
z
Ultra Fast Response in Line/Load Transient
μs)
Quick Start-Up (Typically 50μ
2.8V
IOUT = 300mA, VOUT > 2.8V
mV
Line Regulation
ΔVLINE
VIN = (VOUT + 1V) to 5.5V,
Load Regulation
ΔVLOAD
1mA < IOUT < 300mA
--
--
0.6
%
Standby Current
ISTBY
VEN = GND, Shutdown
--
0.01
1
μA
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
DS9193-16 January 2013
IOUT = 1mA
is a registered trademark of Richtek Technology Corporation.
www.richtek.com
3
RT9193
Parameter
Symbol
EN Input Bias Current
f = 10kHz
Unit
nA
0
100
VIL
VIN = 3V to 5.5V, Shutdown
--
--
0.4
1.2
--
--
--
100
--
--
−70
--
--
−50
--
Logic-High VIH
Rejection Rate
Max
--
Voltage
f = 100Hz
Typ
VEN = GND or VIN
Logic-Low
Power Supply
Min
IIBSD
EN Threshold
Output Noise Voltage
Test Conditions
VIN = 3V to 5.5V, Start-Up
eNO
10Hz to 100kHz, IOUT = 200mA
COUT = 1μF
PSRR
COUT = 1μF, IOUT = 10mA
V
μVRMS
dB
Thermal Shutdown Temperature
TSD
--
165
--
°C
Thermal Shutdown Temperature
ΔTSD
--
30
--
°C
Note 1. Stresses beyond those listed “Absolute Maximum Ratings” may cause permanent damage to the device. These are
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may
affect device reliability.
Note 2. θJA is measured at TA = 25°C on a low effective thermal conductivity single-layer test board per JEDEC 51-3.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. The dropout voltage is defined as VIN − VOUT, which is measured when VOUT is VOUT(NORMAL) − 100mV.
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
www.richtek.com
4
is a registered trademark of Richtek Technology Corporation.
DS9193-16 January 2013
RT9193
Typical Operating Characteristics
Quiescent Current vs. Temperature
Output Voltage vs. Temperature
1.8
1.6
1.5
1.4
RT9193-15xU5
VIN = 3.3V
CIN = COUT = 1μF X7R
90
Quiescent Current (µA)
RT9193-15xU5
VIN = 3.3V
CIN = COUT = 1μF X7R
1.7
Output Voltage (V)
95
85
80
75
70
1.3
65
60
1.2
-50
-25
0
25
50
75
100
-50
125
-25
0
25
20
TJ = 125°C
0
200
PSRR (dB)
Dropout Voltage (mV)
125
VIN = 4V to 5V
CIN = COUT = 1μF, X7R
RT9193-33xB
CIN = COUT = 1μF
TJ = 25°C
150
TJ = -40°C
100
-20
-40
ILoad = 100mA
-60
50
ILoad = 10mA
-80
0
0
0.05
0.1
0.15
0.2
0.25
10
0.01
0.3
100
0.1
1K
1
10K
10
100K
100
Load Current (A)
Frequency (kHz)
(Hz)
EN Pin Shutdown Threshold vs. Temperature
EN Pin Shutdown Response
1.50
RT9193-15xU5
VIN = 3.3V
CIN = COUT = 1μF X7R
EN Pin Voltage
(V)
1.75
1.25
Output Voltage
(V)
EN Pin Shutdown Threshold (V)1
100
PSRR
Dropout Voltage vs. Load Current
250
75
Temperature (°C)
Temperature (°C)
300
50
1.00
0.75
10
VIN = 5V
CIN = COUT = 1μF
1M
1000
RT9193-28xU5
No Load
5
0
2
1
0
0.50
-50
-25
0
25
50
75
100
125
Time (500μs/Div)
Temperature (°C)
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
DS9193-16 January 2013
is a registered trademark of Richtek Technology Corporation.
www.richtek.com
5
RT9193
Load Transient Response
ILOAD = 1mA to 60mA
50
Output Voltage
Deviation (mV)
0
20
0
-20
200
0
50
0
-50
Line Transient Response
Line Transient Response
VIN = 4V to 5V
COUT = 1μF
RT9193-25xB
ILOAD = 1mA
5
4
10
0
-10
6
VIN = 4V to 5V
COUT = 1μF
RT9193-25xB
ILOAD = 100mA
5
4
10
0
-10
Time (50μs/Div)
Time (100μs/Div)
Noise
Noise
RT9193-30xB
ILOAD = 50mA
VIN = 4.5V
CIN = COUT = 1μF, X7R
200
100
100
Noise (μV)
200
0
-100
-200
RT9193-15xU5
ILOAD = 50mA
0
-100
-200
f = 10Hz to 100kHz
Time (10ms/Div)
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
www.richtek.com
6
ILOAD = 1mA to 250mA
Time (500μs/Div)
VIN = 4.5V
CIN = COUT = 1μF, X7R
Noise (μV)
VIN = 5V, VOUT = 2.8V
400 CIN = COUT = 1μF
Time (500μs/Div)
Input Voltage
Deviation (V)
6
Load Current
(mA)
VIN = 5V, VOUT = 2.8V
100 CIN = COUT = 1μF
Output Voltage
Deviation (mV)
Output Voltage
Deviation (mV)
Input Voltage
Deviation (V)
Output Voltage
Deviation (mV)
Load Current
(mA)
Load Transient Response
f = 10Hz to 100kHz
Time (10ms/Div)
is a registered trademark of Richtek Technology Corporation.
DS9193-16 January 2013
RT9193
Output Voltage
(V)
EN Pin Voltage
(V)
Start Up
10
VIN = 5V
CIN = COUT = 1μF
RT9193-28xU5
No Load
5
0
2
1
0
Time (10μs/Div)
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
DS9193-16 January 2013
is a registered trademark of Richtek Technology Corporation.
www.richtek.com
7
RT9193
Applications Information
Like any low dropout regulator, the external capacitors
used with the RT9193 must be carefully selected for
regulator stability and performance. Using a capacitor
whose value is >1μF on the RT9193 input and the amount
of capacitance can be increased without limit. The input
capacitor must be located a distance of not more than 0.5
inch from the input pin of the IC and returned to a clean
analog ground. Any good quality ceramic or tantalum can
be used for this capacitor. The capacitor with larger value
and lower ESR (equivalent series resistance) provides
better PSRR and line-transient response. The output
capacitor must meet both requirements for minimum
amount of capacitance and ESR in all LDOs application.
The RT9193 is designed specifically to work with low ESR
ceramic output capacitor in space-saving and performance
consideration. Using a ceramic capacitor whose value is
at least 1μF with ESR is >1mΩ on the RT9193 output
ensures stability. The RT9193 still works well with output
capacitor of other types due to the wide stable ESR range.
Figure 1 shows the curves of allowable ESR range as a
function of load current for various output capacitor values.
Output capacitor of larger capacitance can reduce noise
and improve load transient response, stability, and PSRR.
The output capacitor should be located not more than 0.5
inch from the VOUT pin of the RT9193 and returned to a
clean analog ground.
Region of Stable COUT ESR vs. Load Current
100
Connecting a 22nF between the BP pin and GND pin
significantly reduces noise on the regulator output, it is
critical that the capacitor connection between the BP pin
and GND pin be direct and PCB traces should be as short
as possible. There is a relationship between the bypass
capacitor value and the LDO regulator turn on time. DC
leakage on this pin can affect the LDO regulator output
noise and voltage regulation performance.
Enable Function
The RT9193 features an LDO regulator enable/disable
function. To assure the LDO regulator will switch on, the
EN turn on control level must be greater than 1.2 volts.
The LDO regulator will go into the shutdown mode when
the voltage on the EN pin falls below 0.4 volts. For to
protecting the system, the RT9193 have a quick-discharge
function. If the enable function is not needed in a specific
application, it may be tied to VIN to keep the LDO regulator
in a continuously on state.
Thermal Considerations
Thermal protection limits power dissipation in RT9193.
When the operation junction temperature exceeds 165°C,
the OTP circuit starts the thermal shutdown function turn
the pass element off. The pass element turn on again
after the junction temperature cools by 30°C.
For continue operation, do not exceed absolute maximum
operation junction temperature 125°C. The power
dissipation definition in device is :
Instable
10
COUT ESR (Ω)
Bypass Capacitor and Low Noise
PD = (VIN − VOUT) x IOUT + VIN x IQ
1
The maximum power dissipation depends on the thermal
resistance of IC package, PCB layout, the rate of
surroundings airflow and temperature difference between
junction to ambient. The maximum power dissipation can
be calculated by following formula :
Stable
0.1
0.01
RT9193-15xU5
CIN = COUT = 1μF, X7R
PD(MAX) = ( TJ(MAX) − TA ) /θJA
0.001
0
50
100
150
200
250
Load Current (mA)
Figure 1
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
www.richtek.com
8
300
Where T J(MAX) is the maximum operation junction
temperature 125°C, TA is the ambient temperature and
the θJA is the junction to ambient thermal resistance.
is a registered trademark of Richtek Technology Corporation.
DS9193-16 January 2013
RT9193
For recommended operating conditions specification of
RT9193, where T J(MAX) is the maximum junction
temperature of the die (125°C) and TA is the maximum
ambient temperature. The junction to ambient thermal
resistance (θJA is layout dependent) for TSOT-23-5/
SOT-23-5 package is 250°C/W, SC-70-5 package is
333°C/W, WDFN-6L 2x2 package is 165°C/W and MSOP8 package is 160°C/W on standard JEDEC 51-3 thermal
test board. The maximum power dissipation at TA = 25°C
can be calculated by following formula :
PD(MAX) = (125°C − 25°C) / 333 = 300mW for
SC-70-5
PD(MAX) = (125°C − 25°C) / 250 = 400mW for
TSOT-23-5/SOT-23-5
PD(MAX) = (125°C − 25°C) / 165 = 606mW for
WDFN-6L 2x2
PD(MAX) = (125°C −25°C) / 160 = 625mW for
MSOP-8
The maximum power dissipation depends on operating
ambient temperature for fixed T J(MAX) and thermal
resistance θJA. For RT9193 packages, the Figure 2 of
derating curves allows the designer to see the effect of
rising ambient temperature on the maximum power
allowed.
700
MSOP-8
WDFN-6L 2x2
Power Dissipation (mW)
600
500
TSOT-23-5/
SOT-23-5
400
SC 70-5
300
200
100
0
0
25
50
75
100
125
Ambient Temperature (°C)
Figure 2. Derating Curve for Packages
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
DS9193-16 January 2013
is a registered trademark of Richtek Technology Corporation.
www.richtek.com
9
RT9193
Outline Dimension
H
D
L
B
C
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.800
1.100
0.031
0.044
A1
0.000
0.100
0.000
0.004
B
1.150
1.350
0.045
0.054
b
0.150
0.400
0.006
0.016
C
1.800
2.450
0.071
0.096
D
1.800
2.250
0.071
0.089
e
0.650
0.026
H
0.080
0.260
0.003
0.010
L
0.210
0.460
0.008
0.018
SC-70-5 Surface Mount Package
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
www.richtek.com
10
is a registered trademark of Richtek Technology Corporation.
DS9193-16 January 2013
RT9193
H
D
L
B
C
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.700
1.000
0.028
0.039
A1
0.000
0.100
0.000
0.004
B
1.397
1.803
0.055
0.071
b
0.300
0.559
0.012
0.022
C
2.591
3.000
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
TSOT-23-5 Surface Mount Package
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
DS9193-16 January 2013
is a registered trademark of Richtek Technology Corporation.
www.richtek.com
11
RT9193
H
D
L
B
C
b
A
A1
e
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.889
1.295
0.035
0.051
A1
0.000
0.152
0.000
0.006
B
1.397
1.803
0.055
0.071
b
0.356
0.559
0.014
0.022
C
2.591
2.997
0.102
0.118
D
2.692
3.099
0.106
0.122
e
0.838
1.041
0.033
0.041
H
0.080
0.254
0.003
0.010
L
0.300
0.610
0.012
0.024
SOT-23-5 Surface Mount Package
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
www.richtek.com
12
is a registered trademark of Richtek Technology Corporation.
DS9193-16 January 2013
RT9193
D2
D
L
E
E2
1
e
b
A
A1
SEE DETAIL A
2
1
2
1
A3
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.700
0.800
0.028
0.031
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.200
0.350
0.008
0.014
D
1.950
2.050
0.077
0.081
D2
1.000
1.450
0.039
0.057
E
1.950
2.050
0.077
0.081
E2
0.500
0.850
0.020
0.033
e
L
0.650
0.300
0.026
0.400
0.012
0.016
W-Type 6L DFN 2x2 Package
Copyright © 2013 Richtek Technology Corporation. All rights reserved.
DS9193-16 January 2013
is a registered trademark of Richtek Technology Corporation.
www.richtek.com
13
RT9193
D
L
E1
E
e
A2
A
A1
b
Dimensions In Millimeters
Dimensions In Inches
Symbol
Min
Max
Min
Max
A
0.810
1.100
0.032
0.043
A1
0.000
0.150
0.000
0.006
A2
0.750
0.950
0.030
0.037
b
0.220
0.380
0.009
0.015
D
2.900
3.100
0.114
0.122
e
0.650
0.026
E
4.800
5.000
0.189
0.197
E1
2.900
3.100
0.114
0.122
L
0.400
0.800
0.016
0.031
8-Lead MSOP Plastic Package
Richtek Technology Corporation
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.
www.richtek.com
14
DS9193-16 January 2013