0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RT9245

RT9245

  • 厂商:

    RICHTEK(台湾立锜)

  • 封装:

  • 描述:

    RT9245 - Multi-Phase PWM Controller for CPU Core Power Supply - Richtek Technology Corporation

  • 数据手册
  • 价格&库存
RT9245 数据手册
RT9245 Multi-Phase PWM Controller for CPU Core Power Supply General Description RT9245 is a multi-phase buck DC/DC controller integrated with all control functions for Intel® GHz CPU which is VRD10.X-compliant. The RT9245 could be operated with 2, 3 or 4 buck switching stages operating in interleaved phase set automatically. The multiphase architecture provides high output current while maintaining low power dissipation on power devices and low stress on input and output capacitors. The high equivalent operating frequency also reduces the component dimension and the output voltage ripple in load transient. RT9245 implements both voltage and current loops to achieve good regulation, response and power stage thermal balance. RT9245 applies the DCR sensing technology newly. The RT9245 extracts the ESR of output inductor as sense component to deliver a precise load line regulation and good thermal balance for next generation processor application. Current sense setting, droop tuning, VCORE initial offset and over current protection are independent o n compensation circuit of voltage loop. The feature greatly facilitates the flexibility of CPU power supply design and tuning. The DAC output of RT9245 supports VRD10.x with 6-bit VID input, precise offset value & smooth VCORE transient at VID jump. The IC monitors the VCORE voltage for PGOOD and over-voltage protection. Soft-start, overcurrent protection and programmable under-voltage lockout are also provided to assure the safety of microprocessor and power system. The RT9245 comes to a small footprint package TSSOP-28. Features Multi-Phase Power Conversion with Automatic Phase Selection 6-bits VRD10.x DAC Output with Active Droop Compensation for Fast Load Transient Smooth VCORE Transition at VID Jump Power Stage Thermal Balance by DCR Current Sense Hiccup Mode Over-Current Protection Programmable Switching Frequency (50kHz to 400kHz per Phase), Under-Voltage Lockout and SoftStart High Ripple Frequency Times Channel Number 28-TSSOP Package RoHS Compliant and 100% Lead (Pb)-Free Applications Intel® Processors Voltage Regulator : VRD10.x Low Output Voltage, High Current DC-DC Converters Voltage Regulator Modules Pin Configurations (TOP VIEW) VID4 VID3 VID2 VID1 VID0 VID125 SGND FB COMP PGOOD DVD SS RT VOSS 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VCC PWM1 PWM2 PWM3 PWM4 CSP4 CSP2 CSP3 CSP1 GND ADJ NC CSN IMAX Ordering Information RT9245 Package Type C : TSSOP-28 Operating Temperature Range P : Pb Free with Commercial Standard G : Green (Halogen Free with Commercial Standard) TSSOP-28 Note : RichTek Pb-free and Green products are : RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. 100% matte tin (Sn) plating. DS9245-06 March 2007 www.richtek.com 1 VIN ATX 12V + 1uH C11 1000uF C12 1uF C14 1000uF + + ATX 12V C10 0.1uF C13 R22 10 D1 1N4148 1 BST VCC SW 5 IN NC PGND 6 IPD06N03LA C16 3.3nF DRVL R24 0 Q2 R25 2.2 7 IPD09N03LA L1 1uH 4 RT9603 8 DRVH R23 0 Q1 1uF C15 1000uF www.richtek.com 2 VCC 5V 2 3 R9 10 C9 0.1uF RT9245 RT9245 VID4 VID3 VID2 VID1 VID0 VID125 SGND FB COMP CSP1 GND PGOOD ADJ NC CSN 16 IMAX R21 6.8k 15 NC R20 330 C23 0.1uF 2 3 IN NC 17 18 R19 82 1 4 C8 0.1uF R30 10 D3 1N4148 19 R18 0 R17 10k 20 C7 0.1uF C4 0.1uF + ATX 12V C18 0.1uF C19 R27 0 IPD09N03LA Q4 Q3 1uF VIN C21 C20 1000uF 1000uF + Typical Application Circuit VID4 1 VCC PWM1 PWM2 PWM3 SW 5 DRVL PGND 6 R28 0 25 R13 0 R14 C5 0.1uF R15 10k R16 10k C6 0.1uF 10k 2 IN 3 NC C17 0.1uF R12 7 0 4 VCC 26 R11 0 1 RT9603 8 BST DRVH 27 R10 0 R26 10 D2 1N4148 28 VID3 2 VOUT L2 1uH C35 to C46 1000uF x 12 + R29 2.2 VID2 3 VID1 4 VID0 5 PWM4 24 CSP4 CSP2 CSP3 ATX 12V C24 0.1uF 21 22 23 6 + IPD06N03LA C22 3.3nF C47 to C50 10uF x 4 VID125 R1 0 7 N.C 8 C1 33pF 9 VIN R2 3k C27 C26 1000uF 1000uF + + R3 15k C2 10nF C25 R31 0 BST VCC RT9603 8 DRVH SW 7 Q5 IPD09N03LA Q6 5 DRVL PGND 6 IPD06N03LA R32 0 R33 2.2 C28 3.3nF 1uF VCC 5V 10 ATX 12V R5 9.1k R4 10k 11 DVD SS RT VOSS C3 0.1uF 12 L3 1uH R6 2k 13 R7 30k 14 R8 100k ATX 12V C30 0.1uF VIN C33 C32 1000uF 1000uF + + C31 R34 10 D4 1N4148 R35 0 1 4 C29 0.1uF 2 3 IN NC BST VCC RT9603 8 DRVH SW 7 Q7 IPD09N03LA Q8 5 DRVL PGND 6 R36 0 R37 2.2 IPD06N03LA C34 3.3nF 1uF L4 1uH DS9245-06 March 2007 RT9245 Functional Pin Description VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4), VID0 (Pin 5) & VID125 (Pin 6) DAC voltage identification inputs for VRD10.x. These pins are internally pulled to 1.2V if left open. SGND (Pin 7) VCORE differential sense negative input. FB (Pin 8) Inverting input of the internal error amplifier. COMP (Pin 9) Output of the error amplifier and input of the PWM comparator. PGOOD (Pin 10) Power good open-drain output. DVD (Pin 11) Programmable power UVLO detection input. Trip threshold = 1.2V at VDVD rising. SS (Pin 12) Connect this SS pin to GND with a capacitor to set the soft-start time interval. Pulling this pin below 1V (ramp valley of sawtooth wave in pulse width modulator) would make all PWMs low, turn on low side MOSFETs, and turn off high side MOSFETs. RT (Pin 13) Switching frequency setting. Connect this pin to GND with a resistor to set the frequency. VOSS (Pin 14) VCORE initial value offset. Connect this pin to GND with a resistor to set the negative offset value. Connect this pin to VCC to set positive offset value. CSP1 (Pin 20), CSP2 (Pin 22), CSP3 (Pin 21) & CSP4 (Pin 23) Current sense positive inputs for individual converter channel current sense. PWM1 (Pin 27), PWM2 (Pin 26), PWM3 (Pin 25) & PWM4 (Pin 24) PWM outputs for each driven channel. Connect these pins to the PWM input of the MOSFET driver. For systems which use 3 channels, connect PWM4 high. Two channel systems connect PWM3 high. VCC (Pin 28) IC power supply. Connect this pin to a 5V supply. ADJ (Pin 18) Current sense output for active droop adjust. Connect a resistor from this pin to GND to set the load droop. GND (Pin 19) Ground for the IC. NC (Pin 17) No Connection. IMAX (Pin 15) Programmable over currert setting. CSN (Pin 16) Current sense negative input of all channels. DS9245-06 March 2007 www.richtek.com 3 OCP Setting Power On Reset ++ PWMCP INH Function Block Diagram DAC ++ PWMCP INH Oscillator & Sawtooth + INH VID4 VID3 VID2 VID1 VID0 VID125 - OVP Trip Point ++ + + PG Trip Point + ++ Current Correction MUX + GAP Amplifier SS Control - SUM/M DS9245-06 March 2007 FB COMP SS VOSS ADJ GND - + - - + Offset Currrent Source/Sink + - Error Amplifier MUX - + DAC + Droop + + + - - + www.richtek.com 4 IMAX PGOOD VCC DVD RT INH RT9245 PWM Logic & Driver PWM1 PWM Logic & Driver PWM2 PWM Logic & Driver PWMCP INH PWM3 PWM Logic & Driver PWMCP Phase Control PWM4 CSP1 CSP2 CSP3 CSP4 CSN RT9245 Table 1. Output Voltage Program Pin Name VID4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 VID3 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 VID2 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 VID1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 VID0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 VID125 X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 No CPU 0.8375V 0.850V 0.8625V 0.875V 0.8875V 0.900V 0.9125V 0.925V 0.9375V 0.950V 0.9625V 0.975V 0.9875V 1.000V 1.0125V 1.025V 1.0375V 1.050V 1.0625V 1.075V 1.0875V 1.100V 1.1125V 1.125V 1.1375V 1.150V 1.1625V 1.175V 1.1875V 1.200V 1.2125V Nominal Output Voltage DACOUT To be continued DS9245-06 March 2007 www.richtek.com 5 RT9245 Table 1. Output Voltage Program Pin Name VID4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 VID3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 VID2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 VID1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 VID0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 VID125 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1.225V 1.2375V 1.250V 1.2625V 1.275V 1.2875V 1.300V 1.3125V 1.325V 1.3375V 1.350V 1.3625V 1.375V 1.3875V 1.400V 1.4125V 1.425V 1.4375V 1.450V 1.4625V 1.475V 1.4875V 1.500V 1.5125V 1.525V 1.5375V 1.550V 1.5625V 1.575V 1.5875V 1.600V Nominal Output Voltage DACOUT Note: (1) 0 : Connected to GND (2) 1 : Open (3) X : Don't Care www.richtek.com 6 DS9245-06 March 2007 RT9245 Absolute Maximum Ratings (Note 1) 7V GND − 0.3V to VCC + 0.3V 100°C/W 150°C 260°C −65°C to 150°C 2kV 200V Supply Voltage, VCC ------------------------------------------------------------------------------------------Input, Output or I/O Voltage ---------------------------------------------------------------------------------Package Thermal Resistance TSSOP-28, θJA -------------------------------------------------------------------------------------------------Junction Temperature -----------------------------------------------------------------------------------------Lead Temperature (Soldering, 10 sec.) -------------------------------------------------------------------Storage Temperature Range --------------------------------------------------------------------------------ESD Susceptibility (Note 2) HBM (Human Body Mode) ----------------------------------------------------------------------------------MM (Machine Mode) ------------------------------------------------------------------------------------------- Recommended Operating Conditions (Note 3) Supply Voltage, VCC ------------------------------------------------------------------------------------------- 5V ± 10% Ambient Temperature Range --------------------------------------------------------------------------------- 0°C to 70°C Junction Temperature Range --------------------------------------------------------------------------------- 0°C to 125°C Electrical Characteristics Parameter VCC Supply Current Nominal Supply Current Power-On Reset POR Threshold Hysteresis (VCC = 5V, TA = 25°C, unless otherwise specified) Symbol Test Conditions Min Typ Max Units ICC PWM 1,2,3,4 Open -- 12 16 mA VCCRTH VCCHYS Trip (Low to High) VDVDTP VDVDHYS VCC Rising Enable 4.0 0.2 1.1 -- 4.2 0.5 1.2 50 4.5 -1.3 -- V V V mV VDVD Threshold Oscillator Hysteresis Free Running Frequency Frequency Adjustable Range Ramp Amplitude Ramp Valley Maximum On-Time of Each Channel RT Pin Voltage Reference and DAC DACOUT Voltage Accuracy DAC (VID0-VID125) Input Low DAC (VID0-VID125) Input High DAC (VID0-VID125) Bias Current VOSS Pin Voltage fOSC fOSC_ADJ ΔVOSC VRV RRT = 32kΩ RRT = 32kΩ 170 50 -0.7 62 200 -1.9 1.0 66 1.60 230 400 --75 1.8 kHz kHz V V % V VRT RRT = 32kΩ VDAC ≥ 1V VDAC < 1V 1.4 −1 −10 -0.8 25 ΔVDAC VILDAC VIHDAC IBIAS_DAC VVOSS ----50 1.65 +1 +10 0.4 -75 1.8 % mV V V μA V RVOSS = 100kΩ 1.5 To be continued DS9245-06 March 2007 www.richtek.com 7 RT9245 Parameter Error Amplifier DC Gain Gain-Bandwidth Product Slew Rate Current Sense GM Amplifier CSN Full Scale Source Current CSN Current for OCP Protection SS Current Over-Voltage Trip (VSEN/DACOUT) IMAX Voltage Power Good Output Low Voltage VPGOODL IPG = 4mA --0.2 V ISS ΔOVT VIMAX RIMAX = 32k VSS = 1V 8 130 1.4 13 140 1.60 18 150 1.8 μA % V IISPFSS 100 150 ----μA μA GBW SR COMP = 10pF ---85 10 3 ---dB MHz V/μs Symbol Test Conditions Min Typ Max Units Note 1. Stresses listed as the above “ Absolute Maximum Ratings” may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. Devices are ESD sensitive. Handling precaution recommended. Note 3. The device is not guaranteed to function outside its operating conditions. www.richtek.com 8 DS9245-06 March 2007 RT9245 Typical Operating Characteristics GM1 300 GM2 300 VADJ 250 VADJ 250 Voltage (mV) 150 100 50 0 0 25 50 75 100 VP Voltage (mV) 200 200 150 100 50 0 VP VN VN 125 150 0 25 50 75 100 125 150 Vx (mV) Vx (mV) GM3 300 GM4 300 VADJ 250 VADJ 250 150 100 50 0 0 25 50 75 100 125 VP Voltage (mV) Voltage (mV) 200 200 150 100 50 0 VP VN VN 150 0 25 50 75 100 125 150 Vx (mV) Vx (mV) Adjustable Frequency 450 400 350 Linearity of each PWM 3 2.8 2.6 2.4 FOSC (kHz) 300 V COMP (V) 250 200 150 100 50 0 0 25 50 75 100 125 150 175 2.2 2 1.8 1.6 1.4 1.2 1 0 500 1000 1500 2000 2500 PWM2 PWM3 PWM1 PWM4 fOSC = 200k 3000 3500 RRT (k⎠ )) (k Ω Pulse Width (ns) DS9245-06 March 2007 www.richtek.com 9 RT9245 Load Transient Response V CORE V CORE Load Transient Response Phase1 Phase Phase2 IOUT VADJ CH1: CH2: CH3: CH4: (500mV/Div) (10V/Div) (50A/Div) (100mV/Div) Phase3 CH1: (500mV/Div), CH2: (10V/Div) CH3: (10V/Div), CH4: (10V/Div) Time (5μs/Div) Time (5μs/Div) Relationship Between Inductor Current and VADJ CH1:(5V/Div) CH2:(5V/Div) Power-Off @ IOUT = 60A PWM PWM CH1:(5V/Div) CH2:(20V/Div) VSS VADJ UGATE CH3:(10V/Div) CH4:(1V/Div) LGATE IL CH3:(50mV/Div) CH4:(20A/Div) VCOMP Time (10μs/Div) Time (25ms/Div) Power-On @ IOUT = 60A CH1:(5V/Div) CH2:(5V/Div) VSS PWM UGATE CH3:(20V/Div) CH4:(10V/Div) LGATE Time (10ms/Div) www.richtek.com 10 DS9245-06 March 2007 RT9245 Application Information RT9245 is a multi-phase DC/DC controller that precisely regulates CPU core voltage and balances the current of different power channels. The converter consisting of RT9245 and its companion MOSFET driver RT9603/ RT9603A provides high quality CPUpower and all protection functions to meet the requirement of modern VRM. Voltage Control RT9245 senses the CPU VCORE by SGND pin to sense the return of CPU to minimize the voltage drop on PCB trace at heavy load. OVP is sensed at FB pin. The internal high accuracy VID DAC provides the reference voltage for VRD10.X compliance. Control loop consists of error amplifier, multi-phase pulse width modulator, driver and power components. As conventional voltage mode PWM controller, the output voltage is locked at the VREF of error amplifier and the error signal is used as the control signal of pulse width modulator. The PWM signals of different channels are generated by comparison of EA output and split-phase sawtooth wave. Power stage transforms VIN to output by PWM signal on-time ratio. Current Balance RT9245 senses the inductor current via inductor's DCR for channel current balance and droop tuning. The differential sensing GM amplifier converts the voltage on the sense component (can be a sense resistor or the DCR of the inductor) to current signal into internal balance circuit. The current balance circuit sums and averages the current signals and then produces the balancing signals injected to pulse width modulator. If the current of some power channel is larger than average, the balancing signal reduces that channels pulse width to keep current balance. The use of single GM amplifier via time sharing technique to sense all inductor currents can reduce the offset errors and linearity variation between GMs. Thus it can greatly improve signal processing especially when dealing with such small signal as voltage drop across DCR. Load Droop The sensed power channel current signals regulate the reference of DAC to form an output voltage droop proportional to the load current. The droop or so call “active voltage positioning” can reduce the output voltage ripple at load transient and the LC filter size. Fault Detection The chip detects FB for over voltage and power good detection. The “ hiccup mode” operation of over current protection is adopted to reduce the short circuit current. The in-rush current at the start up is suppressed by the soft start circuit through clamping the pulse width and output voltage. Phase Setting and Converter Start Up RT9245 interfaces with companion MOSFET drivers (like RT9603, RT9602 series) for correct converter initialization. The tri-state PWM output (high, low and high impedance) senses its interface voltage when IC POR acts (both VCC and DVD trip). The channel is enabled if the pin voltage is 1.2V less than VCC. Tie the PWM to VCC and the corresponding current sense pins to GND or left float if the channel is unused. For example, for 3-Channel application, connect PWM4 high. Current Sensing Setting RT9245 senses the current flowing through inductor via its DCR for channel current balance and droop tuning. The differential sensing GM amplifier converts the voltage on the sense component (can be a sense resistor or the DCR of the inductor) to current signal into internal circuit (see Figure 1). L VC = R × C VC = DCR × IL I X = DCR R CSN L DCR R + - C GMx Ix RCSN Figure 1. Current Sense Circuit DS9245-06 March 2007 www.richtek.com 11 RT9245 Figure 2 is the test circuit for GM. We apply test signal at GM inputs and observe its signal process output at ADJ pin. Figure 3 shows the variation of signal processing of all channels. We observe zero offsets and good linearity between phases. L DCR Time Sharing of GM CH1:(2V/Div) CH2:(50mV/Div) CH3:(50mV/Div) PWM3 VCSP4 VCSP + VCSN GMx Ix ESR VX VCSP4 and V CSN V CSN RCSN 1k Time (1μs/Div) Figure 4 Over Current Protection RT9245 uses an external resistor R IMAX t o set a programmable over current trip point. OCP comparator compares each inductor current with this reference current. RT9245 uses hiccup mode to eliminate fault detection of OCP or reduce output current when output is shorted to ground. 1 VIMAX 1 IL × DCR × ⇔ × 2 RIMAX 3 R COMMON OCP Comparator Figure 2. The Test Circuit of GM GM 300 250 200 VADJ (mV) 150 100 50 0 0 25 50 75 100 125 150 + - 1/3 IX 1/2 IIMAX Figure 5. Over Current Comparator Vx (mV) Over Current Protection Figure 3. The Linearity of GMx Figure 4 shows the time sharing technique of GM amplifier. We apply test signal at phase 4 and observe the waveforms at both pins of GM amplifier. The waveforms show time sharing mechanism and the perfomance of GM to hold both input pins equal when the shared time is on. CH1:(5V/Div) CH2:(5V/Div) PWM VSS Time (25ms/Div) Figure 6. The Over Current Protection in the soft start interval www.richtek.com 12 DS9245-06 March 2007 RT9245 Over Current Protection CH1:(5V/Div) CH2:(5V/Div) Thus if L = (R1//R2) × C DCR Then VC = R2 × DCR × IL R1+ R2 PWM VSS With internal current balance function, this phase would share (R 1+R 2)/R 2 t imes current than other phases. Figure 9 &10 show different settings for the power stages. Figure 11 shows the performance of current ratio compared with conventional current balance function in Figure 12. Time (25ms/Div) Figure 7. Over Current Protection at steady state Current Ratio Setting Figure 9. GM4 Setting for current ratio function Figure 8. Application circuit for current ratio setting Figure 10. GM1~3 Setting for current ratio function For some case with preferable current ratio instead of current balance, the corresponding technique is provided. Due to different physical environment of each channel, it is necessary to slightly adjust current loading between channels. Figure 8 shows the application circuit of GM for current ratio requirement. Applying KVL along L+DCR branch and R1+C//R2 branch : dV dI V L L + DCR × IL = R1( C + C C ) + VC dt R2 dt dVC R1 + R 2 VC = R1C + dt R2 R2 For VC = DCR × IL R1 + R 2 I L (A) Current Ratio Function 35 30 25 20 15 10 5 0 0 15 30 45 60 75 90 IL4 IL3 IL2 IL1 Look for its corresponding conditions : dIL dI + DCR × IL = (R1//R2)× C × DCR × L + DCR × IL dt dt L Let = (R1//R2)× C DCR L DS9245-06 March 2007 I OUT (A) Figure 11 www.richtek.com 13 RT9245 Current Balance Function 30 IL3 25 20 Assume the negative inductor valley current is −5A at no load, then for RCSN1 = 330Ω, RADJ = 160Ω, VOUT = 1.300 IL1 IL4 1.3V RCSN2 ≥ −5A × 1mΩ 330Ω I L (A) 15 10 5 0 0 20 40 60 IL2 RCSN2 ≤ 85.8kΩ Choose RCSN2 = 82kΩ Load Line without dead zone at light loads 80 100 1.31 1.3 1.29 I OUT (A) Figure 12 L V CORE (V) 1.28 1.27 1.26 1.25 DCR RCSN2 open ESR V + CSP VCSN GMx Ix RCSN2 = 82k C 1.24 1.23 0 5 10 15 20 25 RCSN1 I OUT (A) RCSN2 Figure 14 VID on the Fly With external pull up resistors tied to VID pins, RT9245 converters different VID codes from CPU into output voltage. Figure 12 and Figure 13 show the waveforms of VID on the fly function. Figure13. Application circuit of GM For load line design, with application circuit in Figure 13, it can eliminate the dead zone of load line at light loads. VCSP = VOUT +IL x DCR if GM holds input voltages equal, then VCSP = VCSN V I × DCR IX = CSN + L RCSN2 RCSN1 = = VOUT + IL × DCR RCSN2 VOUT RCSN2 + R CSN2 + IL × DCR RCSN1 + IL × DCR RCSN1 VID on the Fly (Falling) PWM V CORE VFB CH3:(500mV/Div) CH4:(1V/Div) IL × DCR CH1:(5V/Div) CH2:(500mV/Div) For the lack of sinking capability of GM, RCSN2 should be small enough to compensate the negative inductor valley current especially at light loads. VID125 VDAC = 1.500, IOUT = 5A VCSN I × DCR ≥L RCSN2 RCSN1 www.richtek.com 14 Time (25μs/Div) Figure 15 DS9245-06 March 2007 RT9245 VID on the Fly (Rising) Voltage Offset Function 1.284 1.282 PWM V CORE VFB CH3:(500mV/Div) CH4:(1V/Div) CH1:(5V/Div) CH2:(500mV/Div) 1.28 V CORE (V) 1.278 1.276 1.274 1.272 VID125 VDAC = 1.500, IOUT = 5A 1.27 1.268 50 60 70 80 90 100 110 Time (25μs/Div) ROSS (kΩ) (k ) Figure 16 Figure 18 1/4 IVOSS RB1 EA + VDAC-VADJ PGOOD Waveform CH1:(500mV/Div) CH2:(5V/Div) CH3:(5V/Div) Figure 17 Output Voltage Offset Function To meet Intel's requirement of initial offset of load line, RT9245 provides programmable initial offset function. With an external resistor RVOSS and voltage source at VOSS pin to set offset current IVOSS. One quart of IVOSS flows through RB1. Error amplifier would hold the inverting pin equal to VDAC-V ADJ. Thus output voltage is subtracted from VDAL − VADJ for a constant offset voltage. PGOOD Function To indicate the condition of multiphase converter, RT9245 provides PGOOD signal through an open drain connection. The waveforms of PGOOD function are shown in Figure 15. V CORE PGOOD VSS Time (10ms/Div) Figure 19 VDD RPGOOD VPGOOD Figure 20. PGOOD Test Circuit DS9245-06 March 2007 www.richtek.com 15 RT9245 Error Amplifier Characteristic For fast response of converter to meet stringent output current transient response, RT9245 provides large slew rate capability and high gain-bandwidth performance. VFB EA Rising Slew Rate EA Falling Slew Rate VFB VCOMP CH1:(500mV/Div) CH2:(2V/Div) Time (250ns/Div) VCOMP CH1:(500mV/Div) CH2:(2V/Div) Figure 22. EA Falling Transient with 10pF Loading; Slew Rate=8V/us 4.7k Time (250ns/Div) B 4.7k Figure 21. EA Rising Transient with 10pF Loading; Slew Rate=10V/us EA + A VREF Figure 23. Gain-Bandwidth Measurement by signal A divided by signal B 0dB 180 ° Figure 24. EA Frequency Response with closed loop gain set at 0db to observe gain-bandwidth product; -3dB at 10.86MHz www.richtek.com 16 DS9245-06 March 2007 RT9245 Design Procedure Suggestion a.Output filter pole and zero (Inductor, output capacitor value & ESR). b.Error amplifier compensation & sawtooth wave amplitude (compensation network). c.Kelvin sense for VCORE. Current Loop Setting a.GM amplifier S/H current (current sense component DCR, CSN pin external resistor value). b.Over-current protection trip point (RIMAX resistor). VRM Load Line Setting a.Droop amplitude (ADJ pin resistor). b.No load offset (RCSN2) c.DAC offset voltage setting (VOSS pin & compen- sation network resistor RB1). Power Sequence & SS DVD pin external resistor and SS pin capacitor. PCB Layout a.Kelvin sense for current sense GM amplifier input. b.Refer to layout guide for other items. Voltage Loop Setting Design Example Given: Apply for four phase converter VIN = 12V VCORE = 1.5V ILOAD (MAX) = 100A VDROOP = 100mV at full load (1mΩ Load Line) OCP trip point set at 40A for each channel (S/H) DCR = 1mΩ of inductor at 25°C L = 1.5μH COUT = 8000μF with 5mΩ equivalent ESR. The bode plot of EA compensation is shown as Figure 26. The bode plot of power stage is shown as Figure 27. The total loop gain is in Figure 28. 3. Over-Current Protection Setting Consider the temperature coefficient of copper 3900ppm/°C, RB1 4.7k 1. Compensation Setting a. Modulator Gain, Pole and Zero: From the following formula: Modulator Gain =VIN/VRAMP =12/2.4=5 (i.e 14dB) where VRAMP : ramp amplitude of saw-tooth wave LC Filter Pole = = 1.45kHz and ESR Zero =3.98kHz b. EA Compensation Network: Select R1 = 4.7k, R2 = 15k, C1 = 12nF, C2 = 68pF and use the Type 2 compensation scheme shown in Figure 25. By calculation, the FZ = 0.88kHz, FP = 322kHz and Middle Band Gain is 3.19 (i.e 10.07dB). C2 68pF RB2 C1 15k 12nF EA + Figure 25. Type 2 compensation network of EA 1 VIMAX × 2 RIMAX 1 1.690V × 2 RIMAX ⇔ ⇔ 1 IL × DCR × 3 R COMMON 1 40A × 1.39m Ω × 3 330Ω Let RIMAX = 14kΩ 4. Soft-Start Capacitor Selection For most application cases, 0.1μF is a good engineering value. DS9245-06 March 2007 www.richtek.com 17 RT9245 0dB -180 ° Figure 26. The Frequency Response of the Compensator Network 0dB -180 ° Figure 27. The Frequency Response of Power Stage www.richtek.com 18 DS9245-06 March 2007 RT9245 0dB -180 ° Figure 28. The Loop Gain of Converter Layout Guide Place the high-power switching components first, and separate them from sensitive nodes. 1. Most critical path: the current sense circuit is the most sensitive part of the converter. The current sense resistors tied to CSP1,2,3,4 and CSN should be located not more than 0.5 inch from the IC and away from the noise switching nodes. The PCB trace of sense nodes should be parallel and as short as possible. Kelvin connection of the sense component (additional sense resistor or Inductor DCR) ensures the accurate stable current sensing. Keep well Kelvin sense to ensure the stable operation! 2. Switching ripple current path: a. Input capacitor to high side MOSFET. b. Low side MOSFET to output capacitor. c. The return path of input and output capacitor. d. Separate the power and signal GND. e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points. Keep them away from sensitive small-signal node. f. Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via. 3. MOSFET driver should be closed to MOSFET. 4. The compensation, bypass and other function setting components should be near the IC and away from the noisy power path. DS9245-06 March 2007 www.richtek.com 19 RT9245 SW1 L1 VIN RIN VOUT COUT CIN RL V L2 SW2 Figure 29. Power Stage Ripple Current Path +12V 0.1uF VCC PVCC IN BST DRVH SW Next to IC +12V or +5V PWM RT VOSS SGND VCC CBP +5VIN CBOOT LO1 CIN Kelvin Sense Next to IC COMP CC VCORE COUT RCSN RT9603 DRVL GND RT9245 CSN FB RC Locate next to FB Pin RFB Locate near MOSFETs CSPx ADJ GND For Thermal Couple Figure 30. Layout Consideration www.richtek.com 20 DS9245-06 March 2007 RT9245 Figure 31. Layout of power stage Test Conditions : VIN : 12V VOUT : 1.300V FSW : 200kHz IOUT : 80A Phase Number : 4 Phases U-MOSFET : IR3707 x 1 (9.5mΩ x 9.6nC) L-MOSFET : IR8113 x 2 (6.0mΩ x 22nC) L : 1.5uH DCR : 1m CIN : 1000uF x 8 COUT : 1000uF x 8 Snubber : 2R2+3.3nF Air Speed : Using MAGIC MGA8012HS FAN with 5VDC drive. P1 Driver 55°C P3 Driver 55°C P1 M1 58°C P3 M7 64°C P1 M2 58°C P3 M8 64°C P1 M3 56°C P3 M9 65°C P2 Driver 56°C P4 Driver 59°C P2 M4 60°C P4 M10 69°C P2 M5 60°C P4 M11 66°C P2 M6 60°C P4 M12 61°C Note: VIN= 10.835V; IIN = 10.6A; VOUT = 1.2127V; IOUT = 80A; η =84.47% DS9245-06 March 2007 www.richtek.com 21 RT9245 Outline Dimension D L E E1 e A A1 b A2 Symbol A A1 A2 b D e E E1 L Dimensions In Millimeters Min 0.850 0.050 0.800 0.178 9.601 0.650 6.300 4.293 0.450 6.500 4.496 0.762 Max 1.200 0.152 1.050 0.305 9.804 Dimensions In Inches Min 0.033 0.002 0.031 0.007 0.378 0.026 0.248 0.169 0.018 0.256 0.177 0.030 Max 0.047 0.006 0.041 0.012 0.386 28-Lead TSSOP Plastic Package Richtek Technology Corporation Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Richtek Technology Corporation Taipei Office (Marketing) 8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)89191466 Fax: (8862)89191465 Email: marketing@richtek.com www.richtek.com 22 DS9245-06 March 2007
RT9245 价格&库存

很抱歉,暂时无法提供与“RT9245”相匹配的价格&库存,您可以联系我们找货

免费人工找货