Preliminary
RT9275
Tiny Package, High Efficiency, Step-Up DC/DC Converter
General Description
The RT9275 is a compact, high efficiency, and low voltage step-up DC/DC converter with an Adaptive Current Mode PWM control loop, includes an error amplifier, ramp generator, comparator, switch pass element and driver in which providing a stable and high efficient operation over a wide range of load currents. The low start-up input voltage below 1V makes RT9275 suitable for 1 to 4 battery cells applications. Both internal 2.5A switch and driver for driving external power devices (NMOS or NPN) are provided. It is incorporating with softstart function, Under Voltage protection function. RT9275 is available in SOT-23-6 package.
Features
1V Low Start-up Input Voltage at 1mA Load Zero Shutdown Mode Supply Current 90% Efficiency 400kHz Switching Frequency Providing Flexibility for Using Internal and External Power Switches Build Soft-Start function internally Under-Voltage Protection Small SOT-23-6 Package RoHS Compliant and 100% Lead (Pb)-Free
Applications
PDA DSC LCD Panel RF-Tags MP3 Portable Instrument Wireless Equipment
Ordering Information
RT9275 Package Type E : SOT-23-6 Operating Temperature Range P : Pb Free with Commercial Standard G : Green (Halogen Free with Commercial Standard)
Pin Configurations
(TOP VIEW)
FB 6 1 EN VDD 5 2 LX 4 3
Note : RichTek Pb-free and Green products are : RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. 100% matte tin (Sn) plating.
Marking Information
For marking information, contact our sales representative directly or through a RichTek distributor located in your area, otherwise visit our website for detail.
EXT GND
SOT-23-6 Note : There is no pin1 indicator on top mark for SOT-23-6 type, and pin 1 will be lower left pin when reading top mark from left to right.
DS9275-06 March 2007
www.richtek.com 1
RT9275
Typical Application Circuit
L1 4.7 uH VIN C3 10uF
Preliminary
D1 FS1J2E VOUT C2 1uF 3.3V/5V C4 R1 2M/3M
+
VDD EN EXT RT9275 GND LX FB
6.8pF/ 3.3pF
C1 10uF/20uF
R2 980k/1M
Functional Pin Description
Pin No. 1 2 3 4 5 6 Pin Name EN EXT GND LX VDD FB Pin Function Chip Enable (Active High) Output pin for driving external NMOS Ground Pin for switching Input positive power pin of RT9275 Feedback input pin. Internal reference voltage for the error amplifier is 1.25V.
Function Block Diagram
VDD FB
Bandgap/ Soft Start V REF Under Voltage Protection
EXT LX
+
Loop Control Circuit
VDD
Over Voltage Protection Function Suspend
EN
Over Temp. Detector
GND
www.richtek.com 2
DS9275-06 March 2007
Preliminary Absolute Maximum Ratings
(Note 1)
RT9275
Supply Voltage --------------------------------------------------------------------------------------------------------- 7V LX Pin Switch Voltage ------------------------------------------------------------------------------------------------ −0.3V to 7V Other I/O Pin Voltages ----------------------------------------------------------------------------------------------- −0.3V to 7V LX Pin Switch Current ------------------------------------------------------------------------------------------------ 2.5A EXT Pin Driver Current ------------------------------------------------------------------------------------------------ 200mA Power Dissipation, PD @ TA = 25°C SOT-23-6 --------------------------------------------------------------------------------------------------------------- 0.4W Package Thermal Resistance (Note 3) SOT-23-6, θJA ---------------------------------------------------------------------------------------------------------- 250°C/W Junction Temperature ------------------------------------------------------------------------------------------------- 150°C Lead Temperature (Soldering, 10 sec.) --------------------------------------------------------------------------- 260°C Storage Temperature Range ---------------------------------------------------------------------------------------- −65°C to +150°C ESD Susceptibility (Note 2) HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V
Electrical Characteristics
(VIN = 1.5V, VOUT = VDD = 3.3V, TA = 25°C, unless otherwise specified)
Parameter Start-UP Voltage Operating VDD Range No Load Current I (VIN) (Note 4) Continuous Switching Current Switch-off Current I (VDD) Shutdown Current I (VIN) Feedback Reference Voltage Output Voltage Temperature Coefficient (refer to VFB) Switching Frequency
Symbol VST VDD INO LOAD ISWITCH
Test Conditions IL = 1mA VDD pin voltage VIN = 1.5V, VOUT = 3.3V VIN = EN = 3.3V, VFB = GND
Min -2 -0.2 --1.225 -300
Typ 0.9 -160 0.3 50 0.01 1.25 50 400 0.3
Max 1.0 6 200 0.5 75 1 1.275 -500
Units V V μA mA μA μA V ppm/°C kHz %/°C
ISWITCH OFF VIN = 6V IOFF VREF Ts FS EN = 0V, VIN = 4.5V Close Loop, VDD = 3.3V TA = −40°C to 85°C VDD = 3.3V TA = −40°C to 85°C VDD = 3.3V VDD = 3.3V ILIM VDD = 3.3V VDD = 3.3V VDD = 3.3V ΔVLINE ΔVLOAD VDD = 3.5 ~ 6V, IL = 1mA VIN = 2.5V, IL = 1 ~ 100mA
Frequency Temperature Coefficient Δf Maximum Duty LX ON Resistance Current Limit Setting (Note 5) EXT ON Resistance to VDD EXT ON Resistance to GND Line Regulation (refer to VFB) Load Regulation (Note 6) VDD Over Voltage Protection EN Pin Trip Level DMAX
85 -1.5 ----6.3
90 0.3 2.0 5 5 1.5 0.25 6.8 0.8
-1.1 2.5 8.5 8.5 10 -7.3 1.2
% Ω A Ω Ω mV/V mV/mA V V
VDD = 3.3V
0.4
To be continued
DS9275-06 March 2007 www.richtek.com 3
RT9275
Parameter Soft Start time Under Voltage Protection – Threshold Voltage Thermal Shutdown Thermal Shutdown Hysterises TSS
Preliminary
Symbol Test Conditions Min 3.0 0.75 --Typ 6.0 0.85 165 10 Max 12 0.95 --Units ms V °C °C
VTH-UVP TSD ΔTSD
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. Devices are ESD sensitive. Handling precaution recommended. Note 3. θJA i s measured in the natural convection at T A = 2 5 °C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Note 4. No Load Current is highly dependent on practical system design and component selection that cannot be covered by production testing. Typical No Load Current is verified by typical application circuit with recommended components. No Load Current performance is guaranteed by Switch Off Current and Continuous Switching Current. Note 5. Current Limit is guaranteed by design at TA = 25°C. Note 6. Load Regulation is not tested at production due to practical instrument limitation. Load Regulation performance is dominantly dependent on DC loop gain and LX ON Resistance that are guaranteed by “ Line Regulation” and “ LX ON Resistance” tests in production.
www.richtek.com 4
DS9275-06 March 2007
Preliminary Typical Operating Characteristics
Frequency vs. Temperature
500 450 400
RT9275
Feedback vs. Temperature
1.252
Frequency (kHz)
1.25
300 250 200 150 100 50 0 -20 -10 0 10 20 30 40 50 60 70 80 90
Feedback (V)
350
1.248
1.246
VIN = 2V, VOUT = 3.3V, ILOAD = 60mA
1.244
VIN = 2V, VOUT = 3.3V, ILOAD = 60mA
-20 0 20 40 60 80
Temperature (°C)
Temperature (°C)
Current Limit vs. Temperature
2.6 2.4 2.2 2
Efficiency vs. Output Current
95 90 85
Current Limit (A)
1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -20 -10 0 10 20 30 40 50 60 70 80 90
Efficiency (%)
1.8
80 75 70 65 60 55
VIN VIN VIN VIN VIN
= = = = =
3.0V 2.5V 2.0V 1.5V 1.0V
VIN = 2V, VOUT = VDD = 3.3V
VOUT = 3.3V, TA = 25°C
1 10 100 1000
50
Temperature (°C)
Output Current (mA)
Efficiency vs. Output Current
100 95 90
Output Voltage vs. Output Current
3.32 3.31
Output Voltage (V)
Efficiency (%)
85 80 75 70 65 60 55 50 1 10 100 1000
3.3 3.29 3.28 3.27 3.26
VIN VIN VIN VIN VIN VIN VIN VOUT = 5V, TA = 25°C
= = = = = = =
4.5V 4.0V 3.5V 3.0V 2.5V 2.0V 1.5V
VIN VIN VIN VIN VIN
= = = = =
3.0V 2.5V 2.0V 1.5V 1.0V
VOUT = 3.3V
3.25 1 10 100 1000
Output Current (mA)
Output Current (mA)
DS9275-06 March 2007
www.richtek.com 5
RT9275
Preliminary
Output Voltage vs. Output Current
4.98 4.97
LX & Output Ripple
VIN = 1V, VOUT = 3.3V @ 10mA 4
Output Voltage (V)
4.95 4.94 4.93 4.92 4.91
LX (V)
VOUT = 5.0V VIN VIN VIN VIN VIN VIN VIN
10
4.96
2 0
= = = = = = =
4.5V 4.0V 3.5V 3.0V 2.5V 2.0V 1.5V
100 1000
Output Ripple (mV)
10 0 -10
4.9 1
Time (1μs/Div)
Output Current (mA)
LX & Output Ripple
VIN = 1V, VOUT = 3.3V @ 100mA 4 4
LX & Output Ripple
VIN = 1.5V, VOUT = 3.3V @ 10mA
LX (V)
LX (V) Output Ripple (mV)
2 0
2 0
Output Ripple (mV)
10 0 -10
10 0 -10
Time (1μs/Div)
Time (1μs/Div)
LX & Output Ripple
VIN = 1.5V, VOUT = 3.3V @ 100mA 4 4
LX & Output Ripple
VIN = 2V, VOUT = 3.3V @ 10mA
LX (V)
LX (V) Output Ripple (mV)
2 0
2 0
Output Ripple (mV)
10 0 -10
10 0 -10
Time (1μs/Div)
Time (1μs/Div)
www.richtek.com 6
DS9275-06 March 2007
Preliminary
RT9275
LX & Output Ripple
VIN = 2.5V, VOUT = 3.3V @ 10mA 4
LX & Output Ripple
VIN = 2V, VOUT = 3.3V @ 100mA 4
LX (V)
0
LX (V) Output Ripple (mV)
2
2 0
Output Ripple (mV)
10 0 -10
10 0 -10
Time (1μs/Div)
Time (1μs/Div)
LX & Output Ripple
6 VIN = 2.5V, VOUT = 3.3V @ 100mA 4 4
LX & Output Ripple
VIN = 3V, VOUT = 3.3V @ 10mA
LX (V)
0
LX (V) Output Ripple (mV)
2
2 0
Output Ripple (mV)
10 0 -10
10 0 -10
Time (1μs/Div)
Time (5μs/Div)
LX & Output Ripple
6 VIN = 3V, VOUT = 3.3V @ 100mA 4 4 6
LX & Output Ripple
LX (V)
0
LX (V) Output Ripple (mV)
2
2 0
Output Ripple (mV)
10 0 -10
10 0 -10 VIN = 1.5V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (1μs/Div)
DS9275-06 March 2007
www.richtek.com 7
RT9275
LX & Output Ripple
Preliminary
LX & Output Ripple
6 4
6 4
LX (V)
0
LX (V) Output Ripple (mV)
VIN = 1.5V, VOUT = 5V @ 100mA
2
2 0
Output Ripple (mV)
10 0 -10
10 0 -10 VIN = 2V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (1μs/Div)
LX & Output Ripple
6 4 6 4
LX & Output Ripple
LX (V)
LX (V) Output Ripple (mV)
2 0
2 0
Output Ripple (mV)
10 0 -10 VIN = 2V, VOUT = 5V @ 150mA
10 0 -10 VIN = 2.5V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (1μs/Div)
LX & Output Ripple
6 4 6 4
LX & Output Ripple
LX (V)
0 VIN = 2.5V, VOUT = 5V @ 200mA 10 0 -10
LX (V) Output Ripple (mV)
2
2 0
Output Ripple (mV)
10 0 -10 VIN = 3V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (5μs/Div)
www.richtek.com 8
DS9275-06 March 2007
Preliminary
RT9275
LX & Output Ripple
6 4
LX & Output Ripple
6 4
LX (V)
LX (V) Output Ripple (mV)
VIN = 3V, VOUT = 5V @ 250mA
2 0
2 0
Output Ripple (mV)
10 0 -10
10 0 -10 VIN = 3.5V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (5μs/Div)
LX & Output Ripple
6 4
LX & Output Ripple
6 4
LX (V)
LX (V) Output Ripple (mV)
VIN = 3.5V, VOUT = 5V @ 250mA
2 0
2 0
Output Ripple (mV)
10 0 -10
10 0 -10 VIN = 4V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (5μs/Div)
LX & Output Ripple
6 4 6 4
LX & Output Ripple
LX (V)
0 VIN = 4V, VOUT = 5V @ 250mA 10 0 -10
LX (V) Output Ripple (mV)
2
2 0
Output Ripple (mV)
10 0 -10 VIN = 4.5V, VOUT = 5V @ 10mA
Time (1μs/Div)
Time (10μs/Div)
DS9275-06 March 2007
www.richtek.com 9
RT9275
LX & Output Ripple
6 4
Preliminary
Load Transient Respones
Output Voltage (mV) Output Current (mA)
20 0 -20
LX (V) Output Ripple (mV)
2 0
10 0 -10 VIN = 4.5V, VOUT = 5V @ 250mA
40 20 0 VIN = 1V, VOUT = 3.3V, IOUT = 10mA to 50mA
Time (1μs/Div)
Time (100μs/Div)
Load Transient Respones
Output Voltage (mV)
50 0 -50
Load Transient Respones
Output Voltage (mV)
VIN = 2V, VOUT = 3.3V, IOUT = 10mA to 100mA 50 0 -50
Output Current (mA)
100 50 0 VIN = 1.5V, VOUT = 3.3V, IOUT = 10mA to 100mA
Output Current (mA)
100 50 0
Time (100μs/Div)
Time (100μs/Div)
Load Transient Respones
Output Voltage (mV)
50 0 -50
Load Transient Respones
Output Voltage (mV)
VIN = 3V, VOUT = 3.3V, IOUT = 10mA to 100mA 50 0 -50
VIN = 2.5V, VOUT = 3.3V, IOUT = 10mA to 100mA
Output Current (mA)
100 50 0
Output Current (mA)
100 50 0
Time (100μs/Div)
Time (100μs/Div)
www.richtek.com 10
DS9275-06 March 2007
Preliminary
RT9275
Load Transient Respones
Load Transient Respones
Output Voltage (mV)
50 0 -50
Output Voltage (mV)
VIN = 1.5V, VOUT = 5V, IOUT = 10mA to 50mA
VIN = 2V, VOUT = 5V, IOUT = 10mA to 100mA 50 0 -50
Output Current (mA)
40 20 0
Output Current (mA)
100 50 0
Time (100μs/Div)
Time (100μs/Div)
Load Transient Respones
Output Voltage (mV) Output Voltage (mV)
VIN = 2.5V, VOUT = 5V, IOUT = 10mA to 100mA 50 0 -50 50 0 -50
Load Transient Respones
VIN = 3V, VOUT = 5V, IOUT = 10mA to 100mA
Output Current (mA)
Output Current (mA)
100 50 0
100 50 0
Time (100μs/Div)
Time (100μs/Div)
Load Transient Respones
Output Voltage (mV) Output Voltage (mV)
VIN = 3.5V, VOUT = 5V, IOUT = 10mA to 100mA 50 0 -50 50 0 -50
Load Transient Respones
VIN = 4V, VOUT = 5V, IOUT = 10mA to 100mA
Output Current (mA)
Output Current (mA)
100 50 0
100 50 0
Time (100μs/Div)
Time (100μs/Div)
DS9275-06 March 2007
www.richtek.com 11
RT9275
Load Transient Respones
Output Voltage (mV)
Preliminary
VIN = 4.5V, VOUT = 5V, IOUT = 10mA to 100mA 50 0 -50
Output Current (mA)
100 50 0
Time (100μs/Div)
www.richtek.com 12
DS9275-06 March 2007
Preliminary Application Information
Output Voltage Setting Referring to Typical Application Circuits, the output voltage of the switching regulator (VOUT) can be set with Equation (1).
VOUT = ( 1+ R1 R2 ) × 1.25V
RT9275
Layout Guide A full GND plane without gap break. VDD to GND noise bypass − Short and wide connection for the 1μF MLCC capacitor between Pin5 and Pin3. VIN to GND noise bypass − Add a capacitor close to L1 inductor, when VIN is not an idea voltage source. Minimized FB node copper area and keep far away from noise sources. Minimized parasitic capacitance connecting to LX and EXT nodes, which may cause additional switching loss. Board Layout Example (2-Layer Board) (Refer to Typical Application Circuit for the board)
(1)
Feedback Loop Design Referring to Typical Application Circuits. The selection of R1 and R2 based on the trade-off between quiescent current consumption and interference immunity is stated below: Follow Equation (1) Higher R reduces the quiescent current (Path current = 1.25V/R2), however resistors beyond 5MΩ are not recommended. Lower R gives better noise immunity, and is less sensitive to interference, layout parasitics, FB node leakage, and improper probing to FB pins.
VOUT R1 FB Pin _ Q + R2
Prober Parasitics
A proper value of feed forward capacitor parallel with R1 can improve the noise immunity of the feedback loops, especially in an improper layout. An empirical suggestion is 1 = 10 to 20kHz 2πR1C4 For applications without standby or suspend modes, lower values of R1 and R2 are preferred. For applications concerning the current consumption in standby or suspend modes, the higher values of R1 and R2 are needed. Such “ high impedance feedback loops” are sensitive to any interference, which require careful layout and avoid any interference, e.g. probing to FB pin.
- Top Layer -
- Bottom Layer DS9275-06 March 2007 www.richtek.com 13
RT9275
Outline Dimension
Preliminary
H D L C B
b A A1 e
Symbol A A1 B b C D e H L
Dimensions In Millimeters Min 0.889 0.000 1.397 0.250 2.591 2.692 0.838 0.080 0.300 Max 1.295 0.152 1.803 0.560 2.997 3.009 1.041 0.254 0.610
Dimensions In Inches Min 0.031 0.000 0.055 0.010 0.102 0.106 0.033 0.003 0.012 Max 0.051 0.006 0.071 0.022 0.118 0.122 0.041 0.010 0.024
SOT-23-6 Surface Mount Package
Richtek Technology Corporation
Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611
Richtek Technology Corporation
Taipei Office (Marketing) 8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)89191466 Fax: (8862)89191465 Email: marketing@richtek.com
www.richtek.com 14
DS9275-06 March 2007