0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1205N823B-TR-FE

R1205N823B-TR-FE

  • 厂商:

    RICOH(理光)

  • 封装:

    SOT23-6

  • 描述:

    PWM STEP-UP DCDC CONVERTER FOR W

  • 数据手册
  • 价格&库存
R1205N823B-TR-FE 数据手册
R1205x Series Step-up DC / DC Converter with Overcurrent Protection NO.EA-272-201211 OUTLINE The R1205x is a PWM control type step-up DC/DC converter IC with low supply current. Each of these ICs consists of an NMOS FET, a diode, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over-voltage protection circuit (OVP), a softstart circuit, a Maxduty limit circuit, and a thermal shutdown protection circuit. This step-up DC/DC converter can be easily built with a few external components such as a coil, a resistor, and a capacitor. As the protection functions, the R1205x has an Lx peak current limit function, an over voltage protection (OVP) function, an under voltage lock out (UVLO) function and a thermal shutdown function. The R1205x presents the R1205x8xxA version that is optimized for the constant voltage power source, and the R1205x8xxB/C version that is optimized for driving the white LED with the constant current. The R1205x8xxB/C is an adjustable version that can change the LED brightness dynamically by using a 200Hz to 300kHz PWM signal toward the CE pin. The R1205x is available in DFN1616-6B and TSOT-23-6 packages. FEATURES  Input Voltage Range ............................................. 2.3V to 5.5V (R1205x8xxA) 1.8V to 5.5V (R1205x8xxB/C)  Supply Current ...................................................... Typ. 800A  Standby Current .................................................... Max. 5A  Feedback Voltage ................................................. 1.0V15mV (R1205x8xxA) 0.2V10mV (R1205x8xxB) 0.4V10mV (R1205x8xxC)  Oscillator Frequency ............................................. Typ. 1.2MHz  Maximum Duty Cycle ............................................ Typ. 91%  UVLO Function ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ Typ.2.0V (Hys.Typ.0.2V) (R1205x8xxA) Typ.1.6V (Hys.Typ.0.1V) (R1205x8xxB/C)  Selectable Lx Current Limit Function .................... Typ. 350mA / 700mA  Over Voltage Protection ........................................ Typ. 25V  LED dimming control (R1205x8xxB/C) ............... by external PWM signal (Frequency 200Hz to 300kHz)  Thermal Protection Function ................................. Typ.150ºC(Hys.Typ.50ºC)  Switch ON Resistance .......................................... Typ. 1.35Ω  Packages .............................................................. DFN1616-6B, TSOT-23-6  Ceramic capacitors are recommended APPLICATION  Constant Voltage Power Source for portable equipment  OLED power supply for portable equipment  White LED Backlight for portable equipment 1 R1205x NO.EA-272-201211 SELECTION GUIDE The OVP threshold voltage, current limit, package and VFB/Auto discharge are user-selectable options. Product Name R1205L8x1-TR R1205N8x3-TR-FE 2 Package Quantity per Reel Pb Free Halogen Free DFN1616-6B 5,000 pcs Yes Yes TSOT-23-6 3,000 pcs Yes Yes x : Designation of current limit. (1) 350mA (2) 700mA  : Designation of VFB. (A) 1.0V (B) 0.2V (C) 0.4V R1205x NO.EA-272-201211 BLOCK DIAGRAMS VIN VFB Err. Amp. + – VOUT UVLO PWM Comp. + – vref LX R S Q Driver Control OVP Oscillator Soft-start Slope Compensation Current Limit Current sense Thermal Shutdown ∑ CE CE R1205x8xxA VIN VFB Err. Amp. + – LX UVLO R S Q Driver Control OVP Oscillator PWM Cntrl VOUT PWM Comp. + – vref GND EN Slope Compensation Shutdown delay ∑ Current Limit Current sense Thermal Shutdown CE CE GND R1205x8xxB/C 3 R1205x NO.EA-272-201211 PIN DESCRIPTIONS DFN1616-6B Top View 6 5 TSOT-23-6 Bottom View 4 4 5 6 2 3 3 2 4 6  1 5 (mark side) 1 1 2 3 DFN1616-6B Pin No Symbol Pin Description 1 CE Chip Enable Pin ("H" Active) 2 VFB Feedback Pin 3 LX 4 GND Ground Pin 5 VIN Input Pin 6 VOUT Switching Pin (Open Drain Output) Output Pin   The tab is substrate level (GND). The tab is better to be connected to the GND, but leaving it open is also acceptable. TSOT-23-6 4 Pin No Symbol Pin Description 1 CE 2 VOUT 3 VIN Input Pin 4 LX Switching Pin (Open Drain Output) 5 GND Ground Pin 6 VFB Feedback Pin Chip Enable Pin ("H" Active) Output Pin R1205x NO.EA-272-201211 ABSOLUTE MAXIMUM RATINGS Symbol Item GND0V Rating Unit VIN VIN Pin Voltage 0.3 to 6.5 V VCE CE Pin Voltage 0.3 to 6.5 V VFB VFB Pin Voltage 0.3 to 6.5 V VOUT VOUT Pin Voltage 0.3 to 28 V VLX LX Pin Voltage 0.3 to 28 V ILX LX Pin Current 1000 mA PD Power Dissipation (1) DFN1616-6B (JEDEC STD. 51-7 Test Land Pattern) TSOT-23-6 (Standard Test Land Pattern) 2400 mW 460 Tj Junction Temperature Range 40 to 125 C Tstg Storage Temperature Range 55 to 125 C ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured. RECOMMENDED OPERATING CONDITIONS Symbol VIN Ta Item Rating Input Voltage (R1205x8xxA) 2.3 to 5.5 Input Voltage (R1205x8xxB/C) 1.8 to 5.5 Operating Temperature Range −40 to 85 Unit V °C RECOMMENDED OPERATING CONDITIONS All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. (1) Refer to POWER DISSIPATION for detailed information. 5 R1205x NO.EA-272-201211 ELECTRICAL CHARACTERISTICS R1205x Symbol IDD (Ta25C) Item Supply Current Istandby Standby Current Conditions Typ. Max. Unit VIN=5.5V, VFB=0V , LX at no load 0.8 1.2 mA VIN=5.5V, VCE=0V 1.0 5.0 A 2.0 1.6 VUVLO1 +0.2 VUVLO1 +0.1 2.1 1.7 V VUVLO1 UVLO Detector Threshold VIN falling R1205x8xxA R1205x8xxB/C Min. 1.9 1.5 R1205x8xxA VUVLO2 UVLO Released Voltage VIN rising R1205x8xxB/C VCEH CE Input Voltage "H" VCEL CE Input Voltage "L" RCE CE Pull Down Resistance VFB VFB/ Ta IFB VFB Voltage Accuracy VIN=5.5V V 1200 VIN=3.6V R1205x8xxA R1205x8xxB R1205x8xxC VIN=5.5V, VFB=0V or 5.5V Soft-start Time RON FET ON Resistance ILX=100mA IOFF FET Leakage Current VLX=24V ILIM FET Current Limit VF Diode Forward Voltage fosc 0.985 0.19 0.39 1.000 0.2 0.4 -0.1 R1205x8xxA 2.0 1.015 0.21 0.41 0.1 A 3.0 ms Ω 3.0 R1205x81xx 250 350 450 R1205x82xx 500 700 900 0.8 VOUT=24V, VLX=0V VIN=3.6V, VFB=0V 1000 1200 Maxduty Maximum Duty Cycle VIN=3.6V, VFB=0V 86 91 24.2 25 V ppm /°C 1.35 ISW=100mA V kΩ 150 Oscillator Frequency A mA V 10 A 1400 kHz % 25.8 VOVP1 OVP Detect Voltage VIN=3.6V, VOUT rising VOVP2 OVP Release Voltage VIN=3.6V, VOUT falling VOVP1 -1.8 V VIN=3.6V 150 °C VIN=3.6V 100 °C TTSD TTSR 6 1.8 0.5 tstart IDIODEleak Diode Leakage Current V 1.5 VFB Voltage Temperature VIN=3.6V, 40C  Ta  85C Coefficient VFB Input Current 2.3 Thermal Shutdown Detect Temperature Thermal Shutdown Release Temperature V R1205x NO.EA-272-201211 THEORY OF OPERATION Operation of Step-Up DC/DC Converter and Output Current i2 IOUT VOUT Diode L VIN i1 Lx Tr CL GND Discontinuous mode Continuous mode ILm ax IL IL ILm ax ILm in ILm in tope n t toff ton T =1/fosc t ton toff T =1/fosc There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor. When the transistor turns ON, the voltage of inductor L becomes equal to VIN voltage. The increase value of inductor current (i1) will be i1 = VIN  ton / L ........................................................................................................... Formula 1 As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be 7 R1205x NO.EA-272-201211 ∆i2 = (VOUT − VIN)  topen / L .......................................................................................... Formula 2 At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode. In the continuous mode, the variation of current of i1 and i2 is same at regular condition. VIN  ton / L = (VOUT - VIN)  toff / L .................................................................................. Formula 3 The duty at continuous mode will be duty (%)= ton / (ton + toff) = (VOUT - VIN) / VOUT ................................................................ Formula 4 The average of inductor current at tf = toff will be IL(Ave.) = VIN  ton / (2  L) ........................................................................................... Formula 5 If the input voltage = output voltage, the IOUT will be IOUT = VIN2  ton / (2  L  VOUT) ...................................................................................... Formula 6 If the IOUT value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current (ILmax) of inductor will be ILmax = IOUT  VOUT / VIN + VIN  ton / (2  L) ................................................................... Formula 7 ILmax = IOUT  VOUT / VIN + VIN  T  (VOUT - VIN) / (2  L  VOUT) ..................................... Formula 8 The peak current value is larger than the IOUT value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value. The explanation above is based on the ideal calculation, and the loss caused by LX switch and the external components are not included. The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or VIN is low, the loss of VIN is generated with on resistance of the switch. Moreover, it is necessary to consider Vf of the diode (approximately 0.8V) about VOUT. 8 R1205x NO.EA-272-201211 Soft-Start (R1205x8xxA) The output and referrence of the error amplifier start from 0V and the referrence gradually rises up to 1.0V. After the softstart time (TSS), output voltage rise up to the setting voltage. The output of the error amplifier starts from 0V and the inrush current is suppressed when starting by the CE pin "H" input. Moreover, the inrush current can be suppressed by gradually enlarging Duty of the PWM signal to the CE pin. Current Limit Function Current limit function monitors the over current and if it reaches the peak current, it will turn off the driver. When the over current decreases, it will restart oscillation and will restart the monitoring. 9 R1205x NO.EA-272-201211 APPLICATION INFORMATION Typical Applications R1205x8xxA R1205x8xxB/C L1 10H L1 10H C1 1F C1 1F VIN LX CE VOUT R2 GND VFB C3 R3 C2 1F VIN LX CE VOUT VFB GND R1 C2 0.22F R1 Inductor Selection The peak current of the inductor at normal mode can be estimated as the next formula when the efficiency is 80%. ILmax = 1.25 × IOUT × VOUT / VIN + 0.5 × VIN × (VOUT − VIN) / (L × VOUT × fosc) In the case of start-up or dimming control by CE pin, inductor transient current flows, and the peak current of it must be equal or less than the current limit of the IC. The peak current should not beyond the rated current of the inductor. The recommended inductance value is 10H - 22H. Table 1 Peak current value in each condition VIN (V) 3 3 3 3 Condition VOUT (V) IOUT (mA) 14 20 14 20 21 20 21 20 L (H) 10 22 10 22 ILmax (mA) 215 160 280 225 Table 2 Recommended inductors L (H) 10 10 10 10 22 22 22 10 Part No. LQH32CN100K53 LQH2MC100K02 VLF3010A-100 VLS252010-100 LQH32CN220K53 LQH2MC220K02 VLF3010A-220 Rated Current (mA) 450 225 490 520 250 185 330 Size (mm) 3.2x2.5x1.55 2.0x1.6x0.9 2.8x2.6x0.9 2.5x2.0x1.0 3.2x2.5x1.55 2.0x1.6x0.9 2.8x2.6x0.9 R1205x NO.EA-272-201211 Capacitor Selection Set 1F or more value bypass capacitor C1 between VIN pin and GND pin as close as possible. R1205xxxxA Set 1F – 4.7F or more capacitor C2 between VOUT and GND pin. Table 3-A Recommended components for R1205xxxxA C1 C2 C3 R1 R2 R3 Rated voltage(V) Part No. 6.3 25 25 CM105B105K06 GRM21BR11E105K 22pF For VOUT Setting For VOUT Setting 2kΩ If the transient drop of output voltage by the load fluctuation is large and exceeds the allowable range in above setting, refer to Table 3-B to change the capacitors of C2 and C3 for the response improvement and the transient voltage drop reduction. Table 3-B Recommended components for R1205xxxxA C1 C2 C3 R1 R2 R3 Rated voltage(V) Part No. 6.3 50 25 CM105B105K06 GRM31CR71H475M 220pF For VOUT Setting For VOUT Setting 2kΩ R1205xxxxB/C Set 0.22F or more capacitor C2 between VOUT and GND pin. (R1205x8xxB) Set 0.47F or more capacitor C2 between VOUT and GND pin. (R1205x8xxC) Note the VOUT that depends on LED used, and select the rating of VOUT or more. Table 4 Recommended components for R1205xxxxB/C Rated voltage(V) Part No. C1 6.3 25 CM105B105K06 GRM21BR11E224 C2 25 C2012X7R1E474K 50 GRM21BR71H224 11 R1205x NO.EA-272-201211 External Components Setting If the VOUT spike noise is high, it may influence on the VFB pin to cause the operation of R1205x8xxA unstable. To reduce the noise coming into VFB pin, please place a 1kΩ to 5kΩ resistor in R3 in Fig. 1. Application of Using 5.5V or more Power Supply Other than the IC power supply, if there is a power supply greater than 5.5V, the high power output can be achieved by using the power supply as an inductor power supply. In this case, please place a capacitor between an inductor power supply and GND (shown in Fig. 2) aside from a bypass capacitor between the VIN pin and GND of the IC. V2=12V V2=12V L1 L1 C4 V1=3.3V C4 V1=3.3V VIN LX CE VOUT C1 C1 R2 GND C3 R3 VIN LX CE VOUT C2 C2 VFB GND VFB R1 Fig. 1 R1205x8xxA R1 Fig .2 R1205x8xxB/C The Method of Output Voltage Setting (R1205x8xxA) The output voltage (VOUT) can be calculated with divider resistors (R1 and R2) values as the following formula: Output Voltage (VOUT)= VFB × (R1  R2) / R1 The total value of R1 and R2 should be equal or less than 300k. Make the VIN and GND line sufficient. The large current flows through the VIN and GND line due to the switching. If this impedance (VIN and GND line) is high, the internal voltage of the IC may shift by the switching current, and the operating may become unstable. Moreover, when the built-in LX switch is turn OFF, the spike noise caused by the inductor may be generated. LED Current setting (R1205x8xxB/C) When CE pin input is "H" (Duty=100%), LED current can be set with feedback resistor (R1) ILED = VFB / R1 12 R1205x NO.EA-272-201211 LED Dimming Control (R1205x8xxB/C) The LED brightness can be controlled by inputting the PWM signal to the CE pin. If the CE pin input is "L" in the fixed time (Typ.0.5ms), the IC becomes the standby mode and turns OFF LEDs. The current of LEDs can be controlled by Duty of the PWM signal of the input CE pin. The current of LEDs when High-Duty of the CE input is ”Hduty” reaches the value as calculatable following formula. ILED = Hduty × VFB / R1 The frequency of the PWM signal is using the range between 200Hz to 300kHz. When controlling the LED brightness by the PWM signal of 5kHz or less, R1205x8xxB/C are recomended to avoide discharge function during dimming control. When controlling the LED brightness by the PWM signal of 20kHz or less, the increasing or decreasing of the inductor current might be make a sounds in the hearable sound wave area. In that case, please use the PWM signal in the high frequency area. CE Hduty VFB R1 Dimming Control by CE Pin Input ILED accuracy (R1205x8xxB / R1205x8xxC) LED current (ILED) is affected by the offset voltage of the error amplifier in the DC/DC converter. LED might turn off due to the offset voltage variation, when brightness is controlled by low PWM duty cycle. In case of R1205x8xxB, it is recommended to input PWM signal that has 18.5% or more duty. In case of lower duty cycle than 18.5%, it is recommended to use R1205x8xxC. The table below shows the ILED accuracy of R1205x8xxC at low PWM duty cycle input (low brightness). ILED accuracy when low PWM Duty is applied (R1 = 20 Ω) PWM Duty applied to CE Pin ILED Min. R1205x8xxC (1) 3.5% (Frequency = 20kHz to 300kHz) (1) 0.01mA ILED Max. 2.1mA(1) Design guaranteed value (Ta = 25 ºC) 13 R1205x NO.EA-272-201211 TECHNICAL NOTES  Current Path on PCB The current paths in an application circuit are shown in Fig. 3 and 4. A current flows through the paths shown in Fig. 3 at the time of MOSFET-ON, and shown in Fig. 4 at the time of MOSFET-OFF. In the paths pointed with red arrows in Fig. 4, current flows just in MOSFET-ON period or just in MOSFET-OFF period. Parasitic impedance / inductance and the capacitance of these paths influence stability of the system and cause noise outbreak. So please minimize this side effect. In addition, please shorten the wiring of other current paths shown in Fig. 3 and 4 except for the paths of LED load.  Layout Guide for PCB  Please shorten the wiring of the input capacitor (C1) between VIN pin and GND pin of IC. The GND pin should be connected to the strong GND plane.  The area of LX land pattern should be smaller.  Please put output capacitor (C2) close to the VOUT pin.  Please make the GND side of output capacitor (C2) close to the GND pin of IC.  14 MOSFET-ON Load Load Fig. 3 Fig. 4 MOSFET-OFF R1205x NO.EA-272-201211  PCB Layout PKG: DFN1616-6B pin R1205LxxxA/xxxB/xxxC Typical Board Layout Top Layer Back Layer ・PKG:TSOT-23-6pin R1205NxxxA/xxxB/xxxCTypical Board Layout Top Layer Back Layer  U1-● indicates the position of No.1 pin. 15 R1205x NO.EA-272-201211 TYIPICAL CHARACTERISTICS 1)Efficiency vs. Output Current Characteristics (R1205N823A) VOUT=10V, L=22H (LQH32CN220K53) 90 90 85 85 80 80 Efficiency (%) Efficiency (%) VOUT=10V, L=10H (LQH32CN100K53) 75 70 65 Vin=3V 60 Vin=5V 5 10 15 65 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 55 50 50 0 70 60 Vin=3.6V Vin=4.2V 55 75 0 20 5 Output Current (mA) VOUT=15V, L=10H (LQH32CN100K53) 85 80 80 Efficiency (%) 85 Efficiency (%) 90 70 65 Vin=3V 60 Vin=3.6V Vin=4.2V 55 Vin=5V 70 65 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 55 50 0 5 10 15 0 20 5 10 15 20 Output Current (mA) Output Current (mA) VOUT=20V, L=10H (LQH32CN100K53) VOUT=20V, L=22H (LQH32CN220K53) 90 90 85 85 80 80 Efficiency (%) Efficiency (%) 20 75 60 50 75 70 65 Vin=3V Vin=3.6V 60 75 70 65 Vin=3V 60 Vin=4.2V Vin=5V 55 Vin=3.6V Vin=4.2V 55 Vin=5V 50 50 0 5 10 Output Current (mA) 16 15 VOUT=15V, L=22H (LQH32CN220K53) 90 75 10 Output Current (mA) 15 20 0 5 10 Output Current (mA) 15 20 R1205x NO.EA-272-201211 VOUT=20V, VIN=3.6V 85 80 Efficiency (%) 75 70 65 60 LQH32CN100k53L (3.2×2.5×1.55) VLF3010AT-100MR33 (2.8×2.6×0.9) 55 LQH2MCN100K02 (2.0×1.6×0.9) 50 0 5 10 15 20 Output Current (mA) Typical Applications with Using 5.5V or Greater VOUT=20V, L=10H (LQH32CN100K53) 95 95 90 90 85 85 80 80 Efficiency (%) Efficiency (%) VOUT=15V, L=10H (LQH32CN100K53) 75 70 65 Vin(L)=7.2V 60 70 65 Vin(L)=7.2V 60 Vin(L)=9V 55 75 Vin(L)=9V 55 Vin(L)=12V Vin(L)=12V 50 50 0 5 10 15 0 20 5 10 15 20 Output Current (mA) Output Current (mA) 2)Efficiency vs. Output Current Characteristics (R1205N823B/C) 4LED, L=10H (LQH32CN100K53) 4LED, L=22H (LQH32CN220K53) 90 85 85 80 80 Efficiency (%) Efficiency (%) 90 75 75 70 70 65 65 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 60 55 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 60 55 50 50 0 5 10 15 Output Current ILED (mA) 20 0 5 10 15 20 Output Current ILED (mA) 17 R1205x NO.EA-272-201211 5LED, L=22H (LQH32CN220K53) 90 90 85 85 80 80 Efficiency (%) Efficiency (%) 5LED, L=10H (LQH32CN100K53) 75 75 70 70 65 65 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 60 55 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 60 55 50 50 0 5 10 15 0 20 Output Current ILED (mA) 10 15 20 Output Current ILED (mA) 6LED, L=10H (LQH32CN100K53) 6LED, L=22H (LQH32CN220K53) 90 85 85 80 80 Efficiency (%) Efficiency (%) 90 75 75 70 70 65 65 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 60 55 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 60 55 50 50 0 5 10 15 20 Output Current ILED (mA) 85 80 Efficiency (%) 75 70 65 60 LQH32CN100k53L (3.2×2.5×1.55) VLF3010AT-100MR33 (2.8×2.6×0.9) LQH2MCN100K02 (2.0×1.6×0.9) 55 50 0 5 10 0 5 10 15 Output Current ILED (mA) 6LED, VIN=3.6V 15 Output Current ILED (mA) 18 5 20 20 R1205x NO.EA-272-201211 Typical Applications with Using 5.5V or Greater 6LED, VIN(IC)=3.6V 95 95 90 90 85 85 80 80 Efficiency (%) Efficiency (%) 5LED, VIN(IC)=3.6V 75 70 65 Vin(L)=7.2V Vin(L)=9V 60 55 75 70 65 Vin(L)=7.2V Vin(L)=9V 60 55 Vin(L)=12V Vin(L)=12V 50 50 0 5 10 15 0 20 5 10 15 20 Output Current ILED (mA) Output Current ILED (mA) 3)Output Voltage vs. Output Current (R1205N823A) VOUT=10V, L=10H (LQH32CN100K53) VOUT=10V, L=22H (LQH32CN220K53) 10.4 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 10.3 Output Voltage (V) 10.3 Output Voltage (V) 10.4 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 10.2 10.1 10 10.2 10.1 10 9.9 9.9 9.8 9.8 0 50 100 150 0 200 50 VOUT=15V, L=10H (LQH32CN100K53) 150 200 VOUT=15V, L=22H (LQH32CN220K53) 16 16 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 15.4 Vin=3V Vin=3.6V Vin=4.2V Vin=5V 15.7 Output Voltage (V) 15.7 Output Voltage (V) 100 Output Current (mA) Output Current (mA) 15.1 14.8 14.5 15.4 15.1 14.8 14.5 14.2 14.2 0 35 70 Output Current (mA) 105 140 0 30 60 90 120 Output Current (mA) 19 R1205x NO.EA-272-201211 VOUT=20V, L=10H (LQH32CN100K53) VOUT=20V, L=22H (LQH32CN220K53) 21.4 21 Vin=3V Vin=3.6V 20.6 Vin=4.2V Vin=5V Vin=3V Vin=3.6V Vin=4.2V 21 Output Voltage (V) Output Voltage (V) 21.4 20.2 19.8 19.4 Vin=5V 20.6 20.2 19.8 19.4 19 19 0 20 40 60 80 100 0 20 40 Output Current (mA) 60 80 100 Output Current (mA) VOUT=20V, VIN=3.6V 21 20.8 Output Voltage (V) 20.6 20.4 20.2 20 19.8 19.6 LQH32CN100k53L (3.2×2.5×1.55) 19.4 VLF3010AT-100MR33 (2.8×2.6×0.9) 19.2 LQH2MCN100K02 (2.0×1.6×0.9) 19 0 10 20 30 40 50 Output Current (mA) Typical Applications with Using 5.5V or Greater 16 21 15.8 20.8 15.6 20.6 15.4 15.2 15 14.8 Vin(L)=7.2V 14.6 Vin(L)=9V 14.4 Vin(L)=12V 0 50 100 150 200 Output Current (mA) 250 20.4 20.2 20 19.8 Vin(L)=7.2V 19.6 Vin(L)=9V 19.4 Vin(L)=12V 19.2 14.2 20 VOUT=20V, L=10H (LQH32CN100K53) Output Voltage (V) Output Voltage (V) VOUT=15V, L=10H (LQH32CN100K53) 300 0 50 100 Output Current (mA) 150 200 R1205x NO.EA-272-201211 4)Duty vs. ILED 5)OVP Output Waveform R1205N823B/C R1205N823B/C 25 27 26 Output Voltage (V) ILED (mA) 20 15 10 200Hz 10kHz 5 300kHz 20 40 60 80 24 23 22 0 0 25 100 21 -50 Duty (%) -30 -10 10 Time (ms) 30 50 6)Waveform (6LED) R1205N823B/C (CE Freq=200Hz) 55 CE 40 10 10 5 -5 0 -20 ILED (mA) 25 -5 -35 -5 0 Time (ms) 5 10 R1205N823B/C(CE Freq=300KHz) 25 Output Voltage (V) CE Voltage (V) 10 10 5 -5 0 -20 -5 -500 25 10 10 5 -5 0 -20 -5 -35 0 Time [us] 0.5 1 ILED (mA) 15 -0.5 0 Time (us) 250 500 0.95 40 -1 -35 -250 7)Diode Forward Voltage vs. Temperature ILED 20 40 25 Diode Forward Voltage (V) CE ILED 15 55 VOUT CE 20 15 -10 55 VOUT 20 Output Voltage (V) CE Voltage (V) 25 ILED Output Voltage (V) CE Voltage (V) VOUT ILED (mA) 25 R1205N823B/C (CE Freq=10KHz) 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 -40 -15 10 35 60 85 Temparature Ta (°C) 21 R1205x NO.EA-272-201211 8)Standby Current vs. Temperature 9)Supply Current vs. Temperature 1000 Supplay Current Iin[uA] Standby Current(uA) 1.0 0.8 0.6 0.4 0.2 900 800 700 600 500 400 300 200 100 0 0.0 -40 -15 10 35 60 Temperature Ta(°C) 85 -40 -15 10 35 60 85 Temparature Ta (°C) 10)UVLO Output Voltage vs. Temperature R1205x8xxA R1205x8xxB/C 1.75 2.25 1.70 2.15 UVLO Voltage(V) UVLO Voltage (V) 2.20 2.10 2.05 2.00 1.95 1.60 1.55 1.50 1.90 1.85 1.45 -40 -15 10 35 Temparature Ta (°C) 22 1.65 60 85 -40 -15 10 35 Temparature Ta (°C) 60 85 R1205x NO.EA-272-201211 11)VFB Voltage vs. Temperature R1205x8xxA R1205x8xxB 1.050 0.210 0.208 0.206 VFB Voltage (V) VFB Voltage (V) 1.030 1.010 0.990 0.204 0.202 0.200 0.198 0.196 0.194 0.970 0.192 0.190 0.950 -40 -15 10 35 60 Temparature Ta (°C) -40 85 -15 10 35 60 85 Temparature Ta (°C) R1205x8xxC 0.410 0.408 VFB Voltage (V) 0.406 0.404 0.402 0.400 0.398 0.396 0.394 0.392 0.390 -40 -15 10 35 60 Temperature Ta (°C) 85 13)OVP Voltage vs. Temperature 1.9 28 1.7 27 1.5 OVP Voltage (V) Switch ON Resistance RON (Ω) 12)Switch ON Resistance RON vs. Temperature 1.3 1.1 0.9 26 OVP Detect 25 24 OVP Release 23 0.7 0.5 -40 -15 10 35 Temparature Ta (°C) 60 85 22 -40 -15 10 35 60 85 Temparature Ta (°C) 23 R1205x NO.EA-272-201211 14)LX Current Limit vs. Temperature R1205x81xx R1205x82xx 500 900 Vin=2.8V Vin=5.5V 400 Vin=2.8V 850 Vin=3.6V Lx Limit Current (mA) Lx Limit Current (mA) 450 350 300 250 Vin=3.6V 800 Vin=5.5V 750 700 650 600 550 200 500 -40 -15 10 35 60 85 -40 -15 Temparature Ta (°C) 15)Oscillator Frequency vs. Temperature Vin=1.8V 98 1300 Vin=3.6V 96 Vin=5.5V 1250 1200 1150 1100 MXDUTY (%) Frequency fosc (kHz) 1350 85 90 88 86 84 35 60 85 Vin=5.5V 92 1000 10 Vin=3.6V 94 1050 -15 Vin=1.8V -40 Temparature Ta (°C) 200 180 160 Thermal Shutdown Detect 140 120 100 Thermal Shutdown Release 80 60 2 2.5 3 3.5 4 Vin (V) 4.5 -15 10 35 Temparature Ta (°C) 17)Thermal Shutdown Detect / Release Temperature vs. Input Voltage Temparature ( ℃) 60 100 -40 24 35 16)Maxduty vs. Temperature 1400 1.5 10 Temparature Ta (°C) 5 5.5 6 60 85 R1205x NO.EA-272-201211 18) Load Transient Response VIN = 3.6 V, VOUT = 15 V IOUT = 0 mA ⇔ 30 mA L = 10 µH Setting:Table 3-A L = 22 µH Setting:Table 3-A L =10 µH Setting:Table 3-B 25 R1205x NO.EA-272-201211 L = 22 µH 26 Setting:Table 3-B POWER DISSIPATION DFN1616-6B Ver. A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement. Measurement Conditions Item Measurement Conditions (JEDEC STD. 51-7) Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Four-Layer Board) Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm Copper Ratio 1st Layer: Less than 95% of 50 mm Square 2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square Through-holes φ 0.2 mm × 15 pcs Measurement Result (Ta = 25°C, Tjmax = 125°C) Item Measurement Result Power Dissipation 2400 mW Thermal Resistance (θja) θja = 41°C/W Thermal Characterization Parameter (ψjt) ψjt = 11°C/W θja: Junction-to–ambient thermal resistance. ψjt: Junction–to-top of package thermal characterization parameter. 2500 2400 Power Dissipation PD (mW) 2000 1500 1000 500 0 0 25 50 75 85 100 125 Ambient Temperature (°C) Power Dissipation vs. Ambient Temperature Measurement Board Pattern i PACKAGE DIMENSIONS DFN1616-6B Ver. A 1.30±0.05 (3X0.15) B 0.70±0.05 X4 1.60 0.05 4 6 ∗ 0.25±0.05 1.60 A INDEX 0.4max. 0.1±0.05 3 0.5 0.20±0.05 1 0.05 M AB Bottom View S 0.05 S DFN1616-6B Package Dimensions (Unit: mm) * ∗ The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane pin on the board but it is possible to leave the tab floating. i POWER DISSIPATION TSOT-23-6 Ver. A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement. Measurement Conditions Standard Test Land Pattern Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Double-Sided Board) Board Dimensions 40 mm × 40 mm × 1.6 mm Top Side: Approx. 50% Copper Ratio Bottom Side: Approx. 50% φ 0.5 mm × 44 pcs Through-holes Measurement Result (Ta = 25°C, Tjmax = 125°C) Standard Test Land Pattern Power Dissipation 460 mW θja = (125 − 25°C) / 0.46 W = 217°C/W Thermal Resistance θjc = 40°C/W Power Dissipation PD (mW) 600 500 460 Standard Test Land Pattern 400 300 200 100 0 0 25 50 75 85 100 125 Ambient Temperature (°C) Power Dissipation vs. Ambient Temperature 150 IC Mount Area (mm) Measurement Board Pattern i PACKAGE DIMENSIONS TSOT-23-6 +0.100 0.125-0.025 2.9±0.2 5 4 2 3 +0.10 0.4-0.05 0.85±0.10 0.95 S 0.12 M 0 ∼ 0.1 1 2.8±0.2 +0.2 1.6-0.1 6 0.4±0.2 Ver. A 0.10 S TSOT-23-6 Package Dimensions (Unit: mm) 0∼15° 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. 7. Anti-radiation design is not implemented in the products described in this document. 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI. 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Halogen Free Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. Official website https://www.n-redc.co.jp/en/ Contact us https://www.n-redc.co.jp/en/buy/
R1205N823B-TR-FE 价格&库存

很抱歉,暂时无法提供与“R1205N823B-TR-FE”相匹配的价格&库存,您可以联系我们找货

免费人工找货