0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1211N002C

R1211N002C

  • 厂商:

    RICOH(理光)

  • 封装:

  • 描述:

    R1211N002C - STEP-UP DC/DC CONTROLLER - RICOH electronics devices division

  • 数据手册
  • 价格&库存
R1211N002C 数据手册
R1211x SERIES STEP-UP DC/DC CONTROLLER NO.EA-088-0604 OUTLINE The R1211x Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1211x Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Phase compensation has been made internally in the R1211x002B/D Series, while phase compensation can be made externally as for R1211x002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211x Series latch the external driver with its off state, or Latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again. FEATURES • • • • • • • • Standby Current ................................................Typ. 0µA (for B/D version) Input Voltage Range .........................................2.5V to 6.0V Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) Two Options of Basic Oscillator Frequency ......300kHz, 700kHz Max Duty Cycle.................................................Typ. 90% High Reference Voltage Accuracy .................... ±1.5% U.V.L.O. Threshold level ...................................Typ. 2.2V (Hysteresis Typ. 0.13V) Small Packages ................................................SOT-23-6W or thin (package height Max. 0.85mm) SON-6 APPLICATIONS • Constant Voltage Power Source for portable equipment. • Constant Voltage Power Source for LCD and CCD. 1 R1211x BLOCK DIAGRAMS Version A/C VFB AMPOUT Vref OSC DTC Version B/D EXT VIN OSC VFB DTC EXT + - + + - VIN GND Vref + GND UVLO UVLO CE Chip Enable SELECTION GUIDE In the R1211x Series, the oscillator frequency, the optional function, and the package type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R1211x002x-TR ↑ a ↑ b ←Part Number Code a Contents Designation of Package Type: D: SON-6 N: SOT23-6W Designation of Optional Function A : 700kHz, with AMPOUT pin (External Phase Compensation Type) B : 700kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) C : 300kHz, with AMPOUT pin (External Phase Compensation Type) D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) b 2 - Latch Latch + - DELAY + - + + - DELAY R1211x PIN CONFIGURATIONS SON-6 Top View 6 5 4 SOT-23-6W 6 5 4 4 5 6 Bottom View EXT GND (MARK SIDE) VIN DELAY AMPOUT/CE VFB 1 2 3 3 2 1 1 2 3 PIN DESCRIPTIONS Pin No SON6 1 2 3 4 5 6 SOT23-6W 1 5 6 4 3 2 DELAY GND EXT VIN VFB AMPOUT or CE Pin for External Capacitor (for Setting Output Delay of Protection) Ground Pin External FET Drive Pin (CMOS Output) Power Supply Pin Feedback Pin for monitoring Output Voltage Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D Version, Active at "H") Symbol Pin Description * Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol VIN VEXT VDLY VAMP VCE VFB IAMP IEXT PD Topt Tstg VIN Pin Voltage EXT Pin Output Voltage DELAY Pin Voltage AMPOUT Pin Voltage CE Pin Input Voltage VFB Pin Voltage AMPOUT Pin Current EXT Pin Inductor Drive Output Current Power Dissipation (SOT-23-6W)* Power Dissipation (SON-6)* Operating Temperature Range Storage Temperature Range Item Rating 6.5 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 −0.3 ~ VIN+0.3 ±10 ±50 430 500 −40 ~ +85 −55 ~ +125 mW °C °C Unit V V V V V V mA mA * ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 3 R1211x ELECTRICAL CHARACTERISTICS • R1211x002A Topt=25°C Symbol VIN VFB ∆VFB/∆T IFB fOSc ∆fOSc/∆T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current Conditions VIN=3.3V −40°C < = Min. 2.5 0.985 Typ. Max. 6.0 Unit V V ppm/°C 1.000 ±150 1.015 Topt < = 85 ° C −0.1 595 VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V −40°C < = 0.1 700 ±1.4 600 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1.50 90 805 µA kHz kHz/°C µA % Ω Ω µA mA V ms V V mA µA Topt < = 85 ° C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=−20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V,VDLY=0V→2V VIN=3.3V at 90% of rising edge VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V 2.5 2.5 0.95 4.5 2.1 0.08 0.45 30 82 90 5 3 5.0 5.5 1.00 9.0 2.2 0.13 0.90 60 4 R1211x • R1211x002B Topt=25°C Symbol VIN VFB ∆VFB/∆T IFB fOSC ∆fOSC/ ∆T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Conditions VIN=3.3V −40°C < = Min. 2.5 0.985 Typ. Max. 6.0 Unit V V ppm/°C 1.000 ±150 1.015 Topt < = 85 ° C −0.1 595 VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V −40°C < = 0.1 700 ±1.4 600 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1 0.5 0.5 805 µA kHz kHz/°C µA % Ω Ω µA mA V ms V V µA µA µA V V Topt < = 85 ° C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=−20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V→2V VIN=3.3V VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V→6V VIN=2.5V, VCE=2V→0V −0.5 −0.5 1.5 2.5 2.5 0.95 4.5 2.1 0.08 82 90 5 3 5.0 5.5 1.00 9.0 2.2 0.13 0 0.3 5 R1211x • R1211x002C Topt=25°C Symbol VIN VFB ∆VFB/∆T IFB fOSC ∆fOSC/∆T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current Conditions VIN=3.3V −40°C < = Min. 2.5 0.985 Typ. Max. 6.0 Unit V V ppm/°C 1.000 ±150 1.015 Topt < = 85 ° C −0.1 240 VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V −40°C < = 0.1 300 ±0.6 300 500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1.50 75 360 µA kHz kHz/°C µA % Ω Ω µA mA V ms V V mA µA Topt < = 85 ° C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=−20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V→2V VIN=3.3V VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V 2.0 2.5 0.95 5.0 2.1 0.08 0.45 25 82 90 5 3 4.5 5.5 1.00 10.5 2.2 0.13 0.90 50 6 R1211x • R1211x002D Topt=25°C Symbol VIN VFB ∆VFB/∆T IFB fOSC ∆fOSC/∆T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Conditions VIN=3.3V −40°C < = Min. 2.5 0.985 Typ. Max. 6.0 Unit V V ppm/°C 1.000 ±150 1.015 Topt < = 85 ° C −0.1 240 VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V −40°C < = 0.1 300 ±0.6 300 500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1 0.5 0.5 360 µA kHz kHz/°C µA % Ω Ω µA mA V ms V V µA µA µA V V Topt < = 85 ° C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=−20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V→2V VIN=3.3V VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V→6V VIN=2.5V, VCE=2V→0V −0.5 −0.5 1.5 2.0 2.5 0.95 5.0 2.1 0.08 82 90 5 3 4.5 5.5 1.00 10.5 2.2 0.13 0 0.3 7 R1211x TYPICAL APPLICATIONS AND TECHNICAL NOTES Inductor Diode VOUT VIN C1 C2 DELAY EXT NMOS C4 R1 C3 VFB R3 GND AMPOUT C5 R4 R2 NMOS : IRF7601 (International Rectifier) Inductor : LDR655312T-100 10µH (TDK) for R1211x002A : LDR655312T-220 22µH (TDK) for R1211x002C Diode : CRS02 (Toshiba) C1 : 4.7µF (Ceramic) C2 : 0.22µF (Ceramic) C3 : 10µF (Ceramic) C4 : 680pF (Ceramic) C5 : 2200pF (Ceramic) R1 : Output Voltage Setting Resistor 1 R2 : Output Voltage Setting Resistor 2 R3 : 30kΩ R4 : 30kΩ Inductor Diode VOUT VIN C1 C2 GND EXT NMOS C4 R1 C3 DELAY VFB R3 CE CE Control R2 NMOS : IRF7601 (International Rectifier) Inductor : LDR655312T-100 10µH (TDK) for R1211x002B : LDR655312T-220 22µH (TDK) for R1211x002D Diode : CRS02 (Toshiba) C1 : 4.7µF (Ceramic) C2 : 0.22µF (Ceramic) C3 : 10µF (Ceramic) C4 : 680pF (Ceramic) R1 : Setting Output Voltage Resistor 1 R2 : Setting Output Voltage Resistor 2 R3 : 30kΩ [Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other external components. 8 R1211x Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical applications above. • In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance. • Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type. • Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF and 1000pF. • Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of the previous page. Refer to the next formula. Output Voltage = VFB × (R1+R2)/R2 R1+R2=100kΩ is recommended range of resistances. • The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of B/D version. Otherwise, restart with power on. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2×VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". • As for R1211x002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the range from 10kΩ to 50kΩ. Then, noise level will be decreased. • As for R1211x002B/D version, EXT pin outputs GND level at standby mode. • Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more. ∗ The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application. 9 R1211x Output Current and Selection of External Components i2 Inductor VIN i1 LX Tr CL Diode VOUT IOUT GND Discontinuous Mode IL ILxmax ILxmin ILxmin Tf Iconst t Ton T=1/fosc Toff Ton T=1/fosc Toff t IL Continuous Mode ILxmax There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN×t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. PON = V IN 2 × t/L dt .............................................................................................................................. Formula 1 0 ∫ Ton With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT − VIN) ×t/L, therefore electric power, POFF is described as in next formula. POFF = ∫ Tf 0 VIN × (VOUT − VIN) × t/L dt ........................................................................................................ Formula 2 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula. PAV = 1/(TON + TOFF) × { ∫ Ton 0 VIN 2 × t/L dt + ∫ Tf 0 VIN × (VOUT − VIN) × t/L dt} ................................................... Formula 3 In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. VIN × TON/L = (VOUT − VIN) × Toff/L ................................................................................................... Formula 4 Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × (VOUT − VIN)} = VIN 2 × TON/(2 × L × VOUT) .................................................... Formula 5 10 R1211x When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then, IOUT = fOSC × VIN 2 × TON 2 /{2 × L × (VOUT − VIN)} + VIN × Iconst/V OUT ...............................................................Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILxmax = Iconst + VIN × TON/L .................................................................................................................Formula 7 With the formula 4,6, and ILxmax is, ILxmax = VOUT/VIN × IOUT + VIN × TON/(2 × L) ..............................................................................................Formula 8 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. 11 R1211x TIMING CHART • R1211x002A/R1211x002C DTC SS VREF VOUT VFB AMPOUT EXT R1 PWM Comparator R2 OP AMP • R1211x002B/R1211x002D DTC SS VREF VOUT VFB AMPOUT EXT R1 PWM Comparator R2 OP AMP Soft-start operation is starting from power-on as follows: (Step1) The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at "L", and switching does not start. (Step2) When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator. 12 + + - EXT + + - EXT R1211x (Step3) When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching operation becomes normal mode. SS,VREF VFB SS VFB,VREF DTC AMPOUT AMPOUT Step1 Step2 Step3 VOUT VIN The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of R1211x002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is fixed at GND level. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2 × VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". Output Short AMPOUT AMPOUT VDLY DTC DELAY Normal Maxduty Operation Latched EXT 13 R1211x TEST CIRCUITS • R1211x002A/R1211x002C ∗Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test ∗Consumption Current Test 6V 3.3V A VIN EXT OSCILLOSCOPE VIN VFB VFB GND DELAY GND DELAY ∗EXT "H" ON Resistance 3.3V VIN EXT OSCILLOSCOPE 150Ω VFB GND DELAY ∗EXT "L" ON Resistance 3.3V VIN EXT 150Ω VFB GND DELAY V ∗DELAY Pin Charge Current 3.3V ∗DELAY Pin Discharge Current 2.5V VIN VIN VFB VFB GND DELAY GND DELAY A A 0.1V 14 R1211x ∗DELAY Pin Detector Threshold Voltage Test 3.3V VIN EXT OSCILLOSCOPE VFB GND DELAY ∗AMP "H" Output Current/"L" Output Current Test 3.3V VIN AMPOUT VFB GND DELAY A 1V 0.9V/1.1V ∗UVLO Detector Threshold/Hysteresis Range Test VIN EXT OSCILLOSCOPE VFB GND DELAY ∗Soft-start Time Test Coil C5 VIN EXT AMPOUT C3 VFB GND DELAY C4 R4 C1 R3 R2 R1 Diode NMOS VOUT C2 OSCILLOSCOPE Rout Inductor (L) Diode (SD) Capacitors NMOS Transistor Resistors : 22µH (TDK LDR655312T-220) : CRS02 (Toshiba) C1:680pF(Ceramic), C2:22µF (Tantalum)+2.2µF (Ceramic), C3:68µF (Tantalum)+2.2µF (Ceramic), C4:2200pF(Ceramic), C5:22µF(Tantalum) : IRF7601 (International Rectifier) : R1: 90kΩ, R2:10kΩ, R3:30kΩ, R4:30kΩ, Rout:1kΩ/330Ω 15 R1211x • R1211x002B/R1211x002D ∗Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 6V 3.3V ∗Consumption Current Test VIN EXT CE VFB OSCILLOSCOPE A VIN CE VFB GND DELAY GND DELAY ∗EXT "H" ON Resistance 3.3V ∗EXT "L" ON Resistance 3.3V VIN EXT CE VFB OSCILLOSCOPE 150Ω VIN EXT 150Ω CE V VFB GND DELAY GND DELAY ∗DELAY Pin Charge Current 3.3V ∗DELAY Pin Discharge Current 2.5V VIN CE VFB GND DELAY VIN CE VFB A GND DELAY A 0.1V ∗DELAY Pin Detector Threshold Voltage Test 3.3V ∗Standby Current Test 6V VIN EXT CE VFB OSCILLOSCOPE A VIN CE VFB GND DELAY GND DELAY 16 R1211x ∗UVLO Detector Threshold/ Hysteresis Range Test 6V VIN EXT CE VFB GND DELAY OSCILLOSCOPE ∗ CE "L" Input Current/"H" Input Current Test VIN CE VFB GND DELAY A 0V/6V ∗CE "L" Input Voltage/"H" Input Voltage Test 2.5V/6V VIN EXT CE VFB GND DELAY OSCILLOSCOPE ∗Soft-start Time Test Coil C5 VIN EXT CE C3 VFB GND DELAY 0V/3.3V R3 R2 C1 R1 Diode VOUT C2 OSCILLOSCOPE Rout NMOS Inductor (L) Diode (SD) Capacitors : 22µH (TDK LDR655312T-220) : CRS02 (Toshiba) C1 : 680pF (Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic), C3 : 68µF (Tantalum)+2.2µF (Ceramic), C5: 22µF (Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90kΩ, R2: 10kΩ, R3: 30kΩ 17 R1211x TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current R1211x002A 5.1 L=10µH VOUT=5V R1211x002A 10.2 L=10µH VOUT=10V Output Voltage VOUT(V) 5.0 Output Voltage VOUT(V) 10.0 VIN=2.5V VIN=3.3V 4.9 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002A 15.3 L=10µH VOUT=15V 5.1 R1211x002B L=10µH VOUT=5V Output Voltage VOUT(V) Output Voltage VOUT(V) 15.0 5.0 VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000 VIN=2.5V VIN=3.3V 4.9 1 10 100 1000 14.7 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002B 10.2 L=10µH VOUT=10V 15.3 R1211x002B L=10µH VOUT=15V Output Voltage VOUT(V) 10.0 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000 Output Voltage VOUT(V) 15.0 VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000 14.7 Output Current IOUT(mA) Output Current IOUT(mA) 18 R1211x R1211x002C 5.1 L=22µH VOUT=5V 10.2 R1211x002C L=22µH VOUT=10V Output Voltage VOUT(V) 5.0 Output Voltage VOUT(V) 10.0 VIN=2.5V VIN=3.3V 4.9 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002C 15.3 L=22µH VOUT=15V 5.1 R1211x002D L=22µH VOUT=5V Output Voltage VOUT(V) 15.0 Output Voltage VOUT(V) 5.0 VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000 VIN=2.5V VIN=3.3V 4.9 1 10 100 1000 14.7 Output Current IOUT(mA) Output Current IOUT(mA) R1211x002D 10.2 L=22µH VOUT=10V 15.3 R1211x002D L=22µH VOUT=15V Output Voltage VOUT(V) 10.0 Output Voltage VOUT(V) 15.0 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000 14.7 Output Current IOUT(mA) Output Current IOUT(mA) 19 R1211x 2) Efficiency vs. Output Current R1211x002A 100 80 L=10µH VOUT=5V 100 80 R1211x002A L=10µH VOUT=10V Efficiency η(%) 60 40 20 0 1 10 100 1000 Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V VIN=2.5V VIN=3.3V Output Current IOUT(mA) Output Current IOUT(mA) R1211x002A 100 80 L=10µH VOUT=15V 100 80 R1211x002B L=10µH VOUT=5V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V Output Current IOUT(mA) Output Current IOUT(mA) R1211x002B 100 80 L=10µH VOUT=10V 100 80 R1211x002B L=10µH VOUT=15V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V Output Current IOUT(mA) Output Current IOUT(mA) 20 R1211x R1211x002C 100 80 L=22µH VOUT=5V 100 80 R1211x002C L=22∝H VOUT=10V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V Output Current IOUT(mA) Output Current IOUT(mA) R1211x002C 100 80 L=22µH VOUT=15V 100 80 R1211x002D L=22µH VOUT=5V Efficiency η(%) Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V Output Current IOUT(mA) Output Current IOUT(mA) R1211x002D 100 80 L=22µH VOUT=10V 100 80 R1211x002D L=22µH VOUT=15V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V Efficiency η(%) 60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V Output Current IOUT(mA) Output Current IOUT(mA) 21 R1211x 3) VFB Voltage vs. Input Voltage (Topt=25°C) R1211x002x 1015 1010 Topt=25°C VFB Voltage(mV) 1005 1000 995 990 985 2 3 4 5 6 Input Voltage VIN(V) 4) Oscillator Frequency vs. Input Voltage (Topt=25°C) R1211x002A/B 900 Topt=25°C R1211x002C/D 400 Topt=25°C Oscillator Frequency(kHz) 800 Oscillator Frequency(kHz) 2 3 4 5 6 350 700 300 600 250 500 200 2 3 4 5 6 Input Voltage VIN(V) Input Voltage VIN(V) 5) Supply Current vs. Input Voltage (Topt=25°C) R1211x002A 600 500 400 300 200 100 0 2 3 4 5 6 Topt=25°C 600 500 400 300 200 100 0 2 3 4 5 6 R1211x002B Topt=25°C Supply Current(µA) Input Voltage VIN(V) Supply Current(µA) Input Voltage VIN(V) 22 R1211x R1211x002C 400 Topt=25°C R1211x002D 400 Topt=25°C Supply Current(µA) Supply Current(µA) 300 300 200 200 100 100 0 2 3 4 5 6 0 2 3 4 5 6 Input Voltage VIN(V) Input Voltage VIN(V) 6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C) R1211x002A/B 96 Topt=25°C 96 94 92 90 88 86 84 82 80 2 3 4 5 6 94 92 90 88 86 84 82 80 2 3 4 5 6 R1211x002C/D Topt=25°C Maximum Duty Cycle(%) Maximum Duty Cycle(%) Input Voltage VIN(V) Input Voltage VIN(V) 7) VFB Voltage vs. Temperature R1211x002x 1015 1010 VIN=3.3V VFB Voltage(mV) 1005 1000 995 990 985 -50 -25 0 25 50 75 100 Temperature Topt(°C) 23 R1211x 8) Oscillator Frequency vs. Temperature R1211x002A/B 900 VIN=3.3V 400 R1211x002C/D VIN=3.3V Oscillator Frequency(kHz) 800 Oscillator Frequency(kHz) -25 0 25 50 75 100 350 700 300 600 250 500 -50 200 -50 -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) 9) Supply Current vs. Temperature R1211x002A 600 VIN=3.3V 600 500 400 300 200 100 -25 0 25 50 75 100 0 -50 R1211x002B VIN=3.3V Supply Current( A) 400 300 200 100 0 -50 Supply Current(µA) 500 -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) R1211x002C 400 VIN=3.3V 400 R1211x002D VIN=3.3V Supply Current(µA) 300 Supply Current(µA) -25 0 25 50 75 100 300 200 200 100 100 0 -50 0 -50 -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) 24 R1211x 10) Maximum Duty Cycle vs. Temperature R1211x002A/B 96 VIN=3.3V 96 94 92 90 88 86 84 82 80 -50 -25 0 25 50 75 100 94 92 90 88 86 84 82 80 -50 -25 0 25 50 75 100 R1211x002C/D VIN=3.3V Maximum Duty Cycle(%) Maximum Duty Cycle(%) Temperature Topt(°C) Temperature Topt(°C) 11) EXT "H" On Resistance vs. Temperature R1211x002x 8 VIN=3.3V EXT "H" ON Resistance(Ω) 7 6 5 4 3 2 -50 -25 0 25 50 75 100 Temperature Topt(°C) 12) EXT "L" On Resistance vs. Temperature R1211x002x 5 VIN=3.3V EXT "L" ON Resistance(Ω) 4 3 2 1 -50 -25 0 25 50 75 100 Temperature Topt(°C) 25 R1211x 13) Soft-start Time vs. Temperature R1211x002A/B 16 14 12 10 8 6 -50 VIN=3.3V 16 14 12 10 8 6 -50 R1211x002C/D VIN=3.3V Soft-start Time(ms) -25 0 25 50 75 100 Soft-start Time(ms) -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) 14) UVLO Detector Threshold vs. Temperature R1211x002x UVLO Detector Threshold(mV) 2300 VIN=3.3V 2250 2200 2150 2100 -50 -25 0 25 50 75 100 Temperature Topt(°C) 15) AMP "H" Output Current vs. Temperature R1211x002A/C 1600 VIN=3.3V AMP "H" Output Current(µA) 1400 1200 1000 800 600 400 -50 -25 0 25 50 75 100 Temperature Topt(°C) 26 R1211x 16) AMP "L" Output Current vs. Temperature R1211x002A 80 VIN=3.3V 80 R1211x002C VIN=3.3V AMP "L" Output Current(µA) 70 60 50 40 30 20 -50 AMP "L" Output Current(µA) -25 0 25 50 75 100 70 60 50 40 30 20 -50 -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) 17) DELAY Pin Charge Current vs. Temperature R1211x002A/B DELAY Pin Charge Current(µA) DELAY Pin Charge Current(µA) 7 6 5 4 3 2 -50 VIN=3.3V 7 6 5 4 3 2 -50 R1211x002C/D VIN=3.3V -25 0 25 50 75 100 -25 0 25 50 75 100 Temperature Topt(°C) Temperature Topt(°C) 18) DELAY Pin Detector Threshold vs. Temperature R1211x002x DELAY Pin Detector Threshold(mV) 1040 VIN=3.3V 1020 1000 980 960 -50 -25 0 25 50 75 100 Temperature Topt(°C) 27 R1211x 19) DELAY Pin Discharge Current vs. Temperature R1211x002x DELAY Pin Discharge Current(µA) 10 8 6 4 2 0 -50 VIN=2.5V -25 0 25 50 75 100 Temperature Topt(°C) 20) CE "L" Input Voltage vs. Temperature R1211x002B/D 1200 VIN=2.5V CE "L" Input Voltage(mV) 1100 1000 900 800 700 600 -50 -25 0 25 50 75 100 Temperature Topt(°C) 21) CE "H" Input Voltage vs. Temperature R1211x002B/D 1200 VIN=6.0V CE "H" Input Voltage(mV) 1100 1000 900 800 700 600 -50 -25 0 25 50 75 100 Temperature Topt(°C) 28 R1211x 22) Standby Current vs. Temperature R1211x002B/D 1.0 VIN=6.0V Standby Current(µA) 0.8 0.6 0.4 0.2 0.0 -0.2 -50 -25 0 25 50 75 100 Temperature Topt(°C) 23) Load Transient Response R1211x002A L=10µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA 5.6 VOUT 5.0 200 100 IOUT 4.4 0 Time (5ms/div) R1211x002A Output Current IOUT(mA) Output Voltage VOUT(V) 29 R1211x R1211x002A L=10µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA 16.8 300 200 VOUT 15.0 100 IOUT 13.2 0 Time (5ms/div) R1211x002B L=10µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA 5.6 300 200 VOUT 5.0 100 IOUT 4.4 0 Time (5ms/div) R1211x002B L=10µH VIN=3.3V, C3=22µF VOUT=10V, IOUT=1-100mA 11.2 300 200 VOUT 10.0 100 IOUT 8.8 0 Time (5ms/div) 30 Output Current IOUT(mA) Output Voltage VOUT(V) Output Current IOUT(mA) Output Voltage VOUT(V) Output Current IOUT(mA) Output Voltage VOUT(V) R1211x R1211x002B L=10µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA 16.8 300 200 VOUT 15.0 100 IOUT 13.2 0 Time (5ms/div) R1211x002C L=22µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA 5.6 VOUT 5.0 200 100 IOUT 4.4 0 Time (5ms/div) R1211x002C L=22µH VIN=3.3V, C3=22µF VOUT=10V, IOUT=1-100mA 11.2 VOUT 10.0 200 100 IOUT 8.8 0 Time (5ms/div) Output Current IOUT(mA) Output Voltage VOUT(V) Output Current IOUT(mA) Output Voltage VOUT(V) Output Current IOUT(mA) Output Voltage VOUT(V) 31 R1211x R1211x002C L=22µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA 16.8 300 200 VOUT 15.0 100 IOUT 13.2 0 Time (5ms/div) R1211x002D L=22µH VIN=3.3V, C3=22µF VOUT=5V, IOUT=1-100mA 5.6 VOUT 5.0 200 100 IOUT 4.4 0 Time (5ms/div) R1211x002D L=22µH VIN=3.3V, C3=22µF VOUT=10V, IOUT=1-100mA 11.2 VOUT 10.0 200 100 IOUT 8.8 0 Time (5ms/div) 32 Output Current IOUT(mA) Output Voltage VOUT(V) Output Current IOUT(mA) Output Voltage VOUT(V) Output Current IOUT(mA) Output Voltage VOUT(V) R1211x R1211x002D L=22µH VIN=3.3V, C3=22µF VOUT=15V, IOUT=1-50mA 16.8 300 200 VOUT 15.0 100 IOUT 13.2 0 Time (5ms/div) 24) Power-on Response R1211x002A 16 14 L=10µH VIN=3.3V, IOUT=10mA (c)VOUT=15V 16 14 R1211x002B L=10µH VIN=3.3V, IOUT=10mA (c)VOUT=15V Output Voltage(V) 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V Output Voltage(V) 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V Time (5ms/div) Time (5ms/div) R1211x002C 16 14 L=22µH VIN=3.3V, IOUT=10mA (c)VOUT=15V 14 16 R1211x002D L=22µH VIN=3.3V, IOUT=10mA (c)VOUT=15V Output Voltage(V) 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (a)VOUT=5V (b)VOUT=10V Output Voltage(V) 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V Time (5ms/div) Time (5ms/div) Output Current IOUT(mA) Output Voltage VOUT(V) 33 R1211x 25) Turn-on speed with CE pin R1211x002B 16 14 L=10µH VIN=3.3V, IOUT=10mA (c)VOUT=15V 16 14 R1211x002D L=22µH VIN=3.3V, IOUT=10mA Output Voltage(V) Output Voltage(V) 12 10 8 6 4 2 0 0 5 10 15 20 25 CE (b)VOUT=10V (a)VOUT=5V 12 10 8 6 4 2 0 0 5 10 15 (c)VOUT=15V (b)VOUT=10V (a)VOUT=5V CE 20 25 Time (5ms/div) Time (5ms/div) 34 PACKAGE INFORMATION PE-SOT-23-6W-0512 • SOT-23-6W 2.9±0.2 1.9±0.2 (0.95) (0.95) 1.1 Unit: mm PACKAGE DIMENSIONS +0.2 −0.1 0.8±0.1 4 6 5 1.8±0.2 2.8±0.3 0 to 0.1 1 2 0.15 TAPING SPECIFICATION 0.3±0.1 ∅1.5 0 +0.1 4.0±0.1 2.0±0.05 1 2.0MAX. 2 3 4.0±0.1 3.3 ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 11.4±1.0 9.0±0.3 13±0.2 21±0.8 0 180 −1.5 2±0.5 +1 60 0 3.2 8.0±0.3 6 5 4 3.5±0.05 1.75±0.1 0.2 MIN. +0.1 0.4 −0.2 +0.1 −0.075 PACKAGE INFORMATION PE-SOT-23-6W-0512 POWER DISSIPATION (SOT-23-6W) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result (Topt=25°C,Tjmax=125°C) Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm × 40mm × 1.6mm Top side : Approx. 50% , Back side : Approx. 50% φ0.5mm × 44pcs Standard Land Pattern Power Dissipation Thermal Resistance 600 430mW θja=(125−25°C)/0.43W=233°C/W Power Dissipation PD(mW) 500 430 400 300 On Board 40 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation 40 200 Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN (SOT-23-6W) 0.7 MAX. 1.0 0.95 0.95 1.9 2.4 (Unit: mm) PACKAGE INFORMATION PE-SON-6-0510 • SON-6 Unit: mm PACKAGE DIMENSIONS 6 4 2.6±0.2 3.0±0.15 0.85MAX. 1 0.13±0.05 Bottom View 0.1 0.5 0.2±0.1 Attention: Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. TAPING SPECIFICATION 0.2±0.1 ∅ 1.5+0.1 0 4.0±0.1 2.0±0.05 (0.3) 3 1.34 (0.3) 1.6±0.2 3.5±0.05 1.75±0.1 8.0±0.3 1.9 1.7MAX. 4.0±0.1 ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 11.4±1.0 9.0±0.3 21±0.8 0 180 −1.5 2±0.5 13±0.2 +1 60 0 3.2 PACKAGE INFORMATION PE-SON-6-0510 POWER DISSIPATION (SON-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result (Topt=25°C,Tjmax=125°C) Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm × 40mm × 1.6mm Top side : Approx. 50% , Back side : Approx. 50% φ0.5mm × 44pcs Standard Land Pattern Power Dissipation Thermal Resistance 600 Free Air 250mW - 500mW θja=(125−25°C)/0.5W=200°C/W Power Dissipation PD(mW) 500 400 300 200 100 0 0 25 250 On Board 40 Free Air 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation 40 Measurement Board Pattern IC Mount Area (Unit : mm) RECOMMENDED LAND PATTERN 0.25 0.5 1.05 0.75 (Unit: mm) MARK INFORMATION ME-R1211N-0310 R1211N SERIES MARK SPECIFICATION • SOT-23-6W 1 3 1 2 3 4 , , 2 4 : Product Code (refer to Part Number vs. Product Code) : Lot Number • Part Number vs. Product Code Product Code 1 2 Part Number R1211N002A R1211N002B R1211N002C R1211N002D L L L L 0 1 2 3 MARK INFORMATION ME-R1211D-0310 R1211D SERIES MARK SPECIFICATION • SON-6 1 , , 2 4 : Product Code (refer to Part Number vs. Product Code) : Lot Number 1 2 3 3 4 • Part Number vs. Product Code Product Code 1 2 Part Number R1211D002A R1211D002B R1211D002C R1211D002D R1211D100A R1211D101A Part Number R1211D102A R1211D101C R1211D102C R1211D103A R1211D103C R1211D104A Product Code 1 2 L L L L L L 0 1 2 3 4 5 L L L L L L 6 7 8 9 A B
R1211N002C 价格&库存

很抱歉,暂时无法提供与“R1211N002C”相匹配的价格&库存,您可以联系我们找货

免费人工找货