0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1212D100B-TR-FE

R1212D100B-TR-FE

  • 厂商:

    RICOH(理光)

  • 封装:

    SMD8

  • 描述:

    SWITCHING CONTROLLER, CURRENT-MO

  • 数据手册
  • 价格&库存
R1212D100B-TR-FE 数据手册
R1212D Series PWM Step-up DC/DC Controller NO.EA-109-180705 OUTLINE The R1212D is a CMOS-based PWM step-up DC/DC controller with low supply current. Internally, the R1212D consists of an oscillator, a PWM comparator circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency stepup DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resistors, and capacitors. The maximum duty cycle and the soft start time are easily adjustable with external resistors and capacitors. In terms of maximum duty cycle, with or without internal limit can be set by mask options. As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1212D latches the external driver with its off state, or the latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level). FEATURES  Input Voltage Range .......................................................... 2.2 V to 5.5 V  Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor)  Two Options of Basic Oscillator Frequency....................... 700 kHz, 1.4 MHz, 300 kHz  Maximum Duty Cycle/Soft-start time ............................... Adjustable with external capacitors (If internal limit is set by version, Typ. 90% or Typ. 91.5%)  High Reference Voltage Accuracy ..................................... ±1.5%  UVLO Threshold level ....................................................... Typ.1.9 V/ 2.1 V/ 2.8 V by mask option  Small Temperature Coefficient of Reference Voltage ...... Typ. ±150ppm/°C  Package ............................................................................. SON-8 APPLICATIONS  Constant Voltage Power Source for portable equipment  Constant Voltage Power Source for LCD and CCD 1 R1212D NO.EA-109-180705 BLOCK DIAGRAM VIN Internal VR VREFOUT VREFOUT UVLO Oscillator EXT DTC PWM Comp. Latch VREF VFB Er. Amp. AMPOUT GND DELAY R1212D Block Diagram 2 R1212D NO.EA-109-180705 SELECTION GUIDE The oscillator frequency, UVLO detector threshold, and oscillator maximum duty cycle internal limit for the ICs can be selected at the user’s request. Selection Guide Product Name R1212D10xx-TR-FE Package Quantity per Reel Pb Free Halogen Free SON-8 3,000 pcs Yes Yes xx : The combination of the oscillator frequency, oscillator maximum duty cycle internal limit, and UVLO detect voltage can be designated. Typ. 700 kHz UVLO Detector Threshold Typ. 1.9 V Internal Maximum Duty Limit No 0B Typ. 1.4 MHz Typ. 1.9 V No 1A Typ. 700 kHz Typ. 2.1 V Typ. 90% 1C Typ. 300 kHz Typ. 2.1 V Typ. 91.5% 2A Typ. 700 kHz Typ. 2.8 V Typ. 90% 2C Typ. 300 kHz Typ. 2.8 V Typ. 91.5% Code Oscillator Frequency 0A 3 R1212D NO.EA-109-180705 PIN CONFIGURATION Top View 8 7 Bottom View 6 5 5 6  1 2 7 8  3 4  4 3 2 1 SON-8 Pin Configuration PIN DESCRIPTION Pin Description Pin No Symbol 1 EXT External FET Drive Pin (CMOS Output) 2 GND Ground Pin 3 DTC Pin for Setting Maximum Duty Cycle and Soft start time 4 DELAY 5 VFB 6 VREFOUT Reference Voltage Output Pin 7 AMPOUT Amplifier Output Pin 8 VIN Description Pin for External Capacitor (for Setting Output Delay of Protection) Feedback Pin for monitoring Output Voltage Power Supply Pin for the IC  Tab suspension leads are GND level. (They are connected to the reverse side of this IC.) The tab suspension leads should be open and do not connect to other wires or land patterns. 4 R1212D NO.EA-109-180705 ABSOLUTE MAXIMUM RATINGS Absolute Maximum Ratings Symbol VIN Item Rating VIN Pin Voltage (GND = 0 V) Unit 6.5 V VEXT EXT Pin Output Voltage −0.3 ~ VIN + 0.3 V VDLY DELAY Pin Voltage −0.3 ~ VIN + 0.3 V VREFOUT VREFOUT Pin Voltage −0.3 ~ VIN + 0.3 V VAMP AMPOUT Pin Voltage −0.3 ~ VIN + 0.3 V VFB DTC Pin Voltage −0.3 ~ VIN + 0.3 V VDTC VFB Pin Voltage −0.3 ~ VIN + 0.3 V IAMP AMPOUT Pin Current V IROUT VREFOUT Pin Current 10 30 mA IEXT EXT Pin Inductor Drive Output Current 80 mA PD Power Dissipation (SON-8) (Standard Test Land Pattern) 480 mW Topt Operating Temperature Range −40 ~ 85 C Tstg Storage Temperature Range −55 ~ 125 C  For Power Dissipation, please refer to PACKAGE INFORMATION. ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured. RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS) All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. 5 R1212D NO.EA-109-180705 ELECTRICAL CHARACTERISTICS R1212D100A Electrical Characteristics Symbol Item Conditions Min. Typ. (Topt = 25C) Max. Unit 5.5 V 1.000 1.015 V VIN Operating Input Voltage VFB VFB Voltage Tolerance VIN = 3.3 V VFB/ VIN VFB Voltage Line Regulation VIN = 2.2 V to 5.5 V VFB/ Topt VFB Voltage Temperature Coefficient −40C ≤ Topt ≤ 85C IFB VFB Input Current VIN = 5.5 V, VFB =0 V or 5.5 V AV Open Loop Voltage Gain VIN = 3.3 V 100 dB fT Unity Gain Frequency Band VIN = 3.3 V, AV = 0 1.0 MHz fosc 2.2 Oscillator Frequency VIN = 3.3 V, VDLY = VFB = 0 V fosc/ VIN Oscillator Frequency Line Regulation VIN = 2.2 V to 5.5 V fosc/ Topt Oscillator Frequency Temperature Coefficient IDD1 VREFOUT IOUT 0.985 3 mV 150 ppm/ °C −0.1 595 0.1 700 805 A kHz 50 kHz −40C ≤ Topt ≤ 85C 1.0 kHz/ C Supply Current 1 VIN = 5.5 V, VDLY = VFB = 0 V, EXT at no load 600 1000 A VREFOUT Voltage VIN = 3.3 V, IROUT = 1 mA 1.500 1.522 V VREFOUT Maximum Output Current VIN = 3.3 V 1.478 10 mA VREFOUT/ VREFOUT Line Regulation VIN VIN = 2.2 V to 5.5 V 5 10 mV VREFOUT/ VREFOUT Load Regulation IROUT VIN = 3.3 V, IROUT = 0.1 mA to 5 mA 6 15 mV Ilim VREFOUT Short Current Limit VIN = 3.3 V, VREFOUT = 0 V VREFOUT/ VREFOUT Voltage Temperature Coefficient Topt mA 150 ppm/ C REXTH EXT "H" ON Resistance VIN = 3.3 V, IEXT = −50 mA 2.5 6.0  REXTL EXT "L" ON Resistance VIN = 3.3 V, IEXT = 50 mA 1.5 4.0  tr EXT Rising Time VIN = 3.3 V, CL = 1000 pF 12 ns tf EXT Falling Time VIN = 3.3 V, CL = 1000 pF 8 ns IDLY1 DELAY Pin Charge Current VIN = 3.3 V, VDLY = 0 V, VFB = 0 V 3.0 5.5 8.0 A IDLY2 DELAY Pin Discharge Current VIN = VFB = 2.2 V, VDLY = 0.1 V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN = 3.3 V, VFB = 0 V, VDLY = 0 V→2 V 0.95 1.00 1.05 V UVLO Detector Threshold VIN = 3.3 V→0 V, VDLY = VFB = 0 V 1.8 VUVLO1 6 −40C ≤ Topt ≤ 85C 20 1.9 2.0 V VUVLO1 +0.2 2.2 V 0.18 0.25 V VUVLO2 UVLO Released Voltage VIN = 0 V→3.3 V, VDLY = VFB = 0 V VDTC0 Duty = 0% DTC Pin Voltage VIN = 3.3 V VDTC20 Duty = 20% DTC Pin Voltage VIN = 3.3 V 0.3 V VDTC80 Duty = 80% DTC Pin Voltage VIN = 3.3 V 0.75 V VDTC100 Duty = 100% DTC Pin Voltage VIN = 3.3 V 0.80 IAMPH AMP "H" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 0.9 V 0.5 IAMPL AMP "L" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB =1.1 V 60 0.05 0.87 1.00 V 1.0 1.8 mA 100 160 A R1212D NO.EA-109-180705 R1212D100B Electrical Characteristics Symbol Item VIN Operating Input Voltage VFB Conditions Typ. 2.2 VFB Voltage Tolerance VIN = 3.3 V VFB/ VIN VFB Voltage Line Regulation VIN = 2.2 V to 5.5 V VFB/ Topt VFB Voltage Temperature Coefficient −40C ≤ Topt ≤ 85C IFB VFB Input Current VIN = 5.5 V, VFB = 0 V or 5.5 V AV Open Loop Voltage Gain VIN = 3.3 V fT Min. 0.985 1.000 (Topt = 25C) Max. Unit 5.5 V 1.015 V 3 mV 150 ppm/° C −0.1 0.1 100 A dB Unity Gain Frequency Band VIN = 3.3 V, AV = 0 Oscillator Frequency VIN = 3.3 V, VDLY = VFB = 0 V fosc/ VIN Oscillator Frequency Line Regulation VIN = 2.2 V to 5.5 V 100 kHz fosc/ Topt Oscillator Frequency Temperature Coefficient −40C ≤ Topt ≤ 85C 2.0 kHz /C Supply Current 1 VIN = 5.5 V, VDLY = VFB = 0 V EXT at no load 900 1800 A VREFOUT Voltage VIN = 3.3 V, IROUT = 1 mA 1.500 1.522 V VREFOUT Maximum Output Current VIN = 3.3 V fosc IDD1 VREFOUT IOUT 1.0 1.19 1.478 1.40 MHz 1.61 10 MHz mA VREFOUT/ VREFOUT Line Regulation VIN VIN = 2.2 V to 5.5 V 5 10 mV VREFOUT/ VREFOUT Load Regulation IROUT VIN = 3.3 V, IROUT = 0.1 mA to 5 mA 6 15 mV VIN = 3.3 V, VREFOUT = 0 V 20 mA 150 ppm/° C Ilim VREFOUT Short Current Limit VREFOUT/ VREFOUT Voltage Temperature Coefficient Topt REXTH REXTL EXT "H" ON Resistance −40C ≤ Topt ≤ 85C VIN = 3.3 V, IEXT = −50 mA 2.5 6.0 4.0 EXT "L" ON Resistance VIN = 3.3 V, IEXT = 50 mA 1.5 tr EXT Rising Time VIN = 3.3 V, CL = 1000 pF 12 tf EXT Falling Time VIN = 3.3 V, CL = 1000 pF IDLY1 DELAY Pin Charge Current VIN = 3.3 V, VDLY = VFB = 0 V IDLY2 DELAY Pin Discharge Current VIN = VFB = 2.2 V, VDLY = 0.1 V 0.08 VDLY DELAY Pin Detector Threshold VIN = 3.3 V, VFB = 0 V, VDLY = 0 V→2 V 0.95 UVLO Detector Threshold VIN = 3.3 V→0 V, VDLY = VFB = 0 V 1.8 VUVLO1 VUVLO2 UVLO Released Voltage VIN = 0 V→3.3 V, VDLY = VFB = 0 V VDTC0 Duty = 0% DTC Pin Voltage VIN = 3.3 V VDTC20 Duty = 20% DTC Pin Voltage VIN = 3.3 V 0.05 VDTC80 Duty = 80% DTC Pin Voltage VIN = 3.3 V VDTC100 Duty = 100% DTC Pin Voltage VIN = 3.3 V 0.80 IAMPH AMP "H" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 0.9 V 0.5 IAMPL AMP "L" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 1.1 V 60  ns 8 3.0  ns 8.0 A 0.20 0.36 mA 1.00 1.05 V 5.5 1.9 2.0 V VUVLO1 +0.2 2.2 V 0.18 0.25 V 0.3 V 0.75 0.87 V 1.00 V 1.0 1.8 mA 100 160 A 7 R1212D NO.EA-109-180705 R1212D101A Electrical Characteristics Symbol (Topt = 25C) Item VIN Operating Input Voltage VFB Conditions VFB Voltage Tolerance VIN = 3.3 V VFB Voltage Line Regulation VIN = 2.5 V to 5.5 V VFB/ Topt VFB Voltage Temperature Coefficient −40C ≤ Topt ≤ 85C IFB VFB Input Current VIN = 5.5 V, VFB = 0 V or 5.5 V AV Open Loop Voltage Gain VIN = 3.3 V fT Unity Gain Frequency Band VIN = 3.3 V, AV = 0 Oscillator Frequency VIN = 3.3 V, VDLY = VFB = 0 V fosc/ VIN Oscillator Frequency Line Regulation VIN = 2.5 V to 5.5 V fosc/ Topt Oscillator Frequency Temperature Coefficient IDD1 VREFOUT IOUT Typ. 2.5 VFB/ VIN fosc Min. 0.985 1.000 Max. Unit 5.5 V 1.015 V 3 mV 150 ppm/ °C 0.1 0.1 100 dB 1.0 595 700 A MHz 805 kHz 50 kHz −40C ≤ Topt ≤ 85C 1.0 kHz/ C Supply Current 1 VIN = 5.5 V, VDLY = VFB = 0 V, EXT at no load 600 1000 A VREFOUT Voltage VIN = 3.3 V, IROUT = 1 mA 1.500 1.522 V VREFOUT Maximum Output Current VIN = 3.3 V 1.478 10 mA VREFOUT/ VREFOUT Line Regulation VIN VIN = 2.5 V to 5.5 V 5 10 mV VREFOUT/ VREFOUT Load Regulation IROUT VIN = 3.3 V, IROUT = 0.1 mA ~ 5 mA 6 15 mV VIN = 3.3 V, VREFOUT = 0 V 20 mA 150 ppm/ C Ilim VREFOUT Short Current Limit VREFOUT/ VREFOUT Voltage Temperature Coefficient Topt REXTH REXTL VIN = 3.3 V, IEXT = −50 mA 2.5 6.0 4.0 EXT "L" ON Resistance VIN = 3.3 V, IEXT = 50 mA 1.5 tr EXT Rising Time VIN = 3.3 V, CL = 1000 pF 12 tf EXT Falling Time VIN = 3.3 V, CL = 1000 pF IDLY1 DELAY Pin Charge Current VIN = 3.3 V, VDLY = 0 V, VFB = 0 V IDLY2 DELAY Pin Discharge Current VIN = VFB = 2.5 V, VDLY = 0.1 V VDLY DELAY Pin Detector Threshold VIN = 3.3 V, VFB = 0 V, VDLY = 0 V→2 V VUVLO1 UVLO Detector Threshold VIN = 3.3 V→0 V, VDLY = VFB = 0 V 2.0 VUVLO2 UVLO Released Voltage VIN = 0 V→3.3 V, VDLY = VFB = 0 V   ns 8 ns 5.5 8.0 A 0.08 0.20 0.36 mA 0.95 1.00 1.05 V 2.1 2.2 V VUVLO1 +0.2 2.45 V 0.18 0.25 V 3.0 VDTC0 Duty 0% DTC Pin Voltage VIN = 3.3 V VDTC20 Duty 20% DTC Pin Voltage VIN = 3.3 V VDTC80 Duty 80% DTC Pin Voltage VIN = 3.3 V Maximum Duty Cycle VIN = 3.3 V 84 IAMPH AMP "H" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 0.9 V 0.5 IAMPL AMP "L" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 1.1 V 60 Maxduty 8 EXT "H" ON Resistance −40C ≤ Topt ≤ 85C 0.05 0.3 V 0.75 90 V 96 % 1.0 1.8 mA 100 160 A R1212D NO.EA-109-180705 R1212D101C Electrical Characteristics Symbol Item VIN Operating Input Voltage VFB Conditions VFB Voltage Tolerance VIN = 3.3 V VFB Voltage Line Regulation VIN = 2.5 V to 5.5 V VFB/ Topt VFB Voltage Temperature Coefficient −40C ≤ Topt ≤ 85C IFB VFB Input Current VIN = 5.5 V, VFB = 0 V or 5.5 V AV Open Loop Voltage Gain VIN = 3.3 V fT Unity Gain Frequency Band VIN = 3.3 V, AV = 0 Oscillator Frequency VIN = 3.3 V, VDLY = VFB = 0 V fosc/ VIN Oscillator Frequency Line Regulation VIN = 2.5 V to 5.5 V fosc/ Topt Oscillator Frequency Temperature Coefficient IDD1 VREFOUT IOUT Typ. 2.5 VFB/ VIN fosc Min. 0.985 1.000 (Topt = 25C) Max. Unit 5.5 V 1.015 V 3 mV 150 ppm/ °C −0.1 0.1 100 dB 1.0 240 300 A MHz 360 kHz 25 kHz −40C ≤ Topt ≤ 85C 0.5 kHz/ C Supply Current 1 VIN = 5.5 V, VDLY = VFB = 0 V, EXT at no load 400 800 A VREFOUT Voltage VIN = 3.3 V, IROUT = 1 mA 1.500 1.522 V VREFOUT Maximum Output Current VIN = 3.3 V 1.478 10 mA VREFOUT/ VREFOUT Line Regulation VIN VIN = 2.5 V to 5.5 V 5 10 mV VREFOUT/ VREFOUT Load Regulation IROUT VIN = 3.3 V, IROUT = 0.1 mA to 5 mA 6 15 mV VIN = 3.3 V, VREFOUT = 0 V 20 mA 150 ppm/ C Ilim VREFOUT Short Current Limit VREFOUT/ VREFOUT Voltage Temperature Coefficient Topt REXTH REXTL EXT "H" ON Resistance −40C ≤ Topt ≤ 85C VIN = 3.3 V, IEXT = −50 mA 2.5 6.0 4.0   EXT "L" ON Resistance VIN = 3.3 V, IEXT = 50 mA 1.5 tr EXT Rising Time VIN = 3.3 V, CL = 1000 pF 12 tf EXT Falling Time VIN = 3.3 V, CL = 1000 pF DELAY Pin Charge Current VIN = 3.3 V, VDLY = 0 V, VFB = 0 V 2.0 4.5 7.0 A IDLY1 ns 8 ns IDLY2 DELAY Pin Discharge Current VIN = VFB = 2.5 V, VDLY = 0.1 V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN = 3.3 V, VFB = 0 V, VDLY = 0 V→2 V 0.95 1.00 1.05 V UVLO Detector Threshold VIN = 3.3 V→0 V, VDLY = VFB = 0 V 2.0 VUVLO1 VUVLO2 UVLO Released Voltage VIN = 0 V→3.3 V, VDLY = VFB = 0 V 2.2 V 2.45 V 0.18 0.25 V VDTC0 Duty = 0% DTC Pin Voltage VIN = 3.3 V VDTC20 Duty = 20% DTC Pin Voltage VIN = 3.3 V VDTC80 Duty = 80% DTC Pin Voltage VIN = 3.3 V Maximum Duty Cycle VIN = 3.3 V 85.5 91.5 IAMPH AMP "H" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 0.9 V 0.5 IAMPL AMP "L" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 1.1 V 50 Maxduty 0.05 2.1 VUVLO1 +0.2 0.3 V 0.75 V 97.5 % 1.0 1.8 mA 90 150 A 9 R1212D NO.EA-109-180705 R1212D102A Electrical Characteristics Symbol Item VIN Operating Input Voltage VFB Conditions VFB Voltage Tolerance VIN = 3.3 V VFB Voltage Line Regulation VIN = 3.3 V to 5.5 V VFB/ Topt VFB Voltage Temperature Coefficient −40C ≤ Topt ≤ 85C IFB VFB Input Current VIN = 5.5V , VFB = 0 V or 5.5 V AV Open Loop Voltage Gain VIN = 3.3 V fT Unity Gain Frequency Band VIN = 3.3 V, AV = 0 Oscillator Frequency VIN = 3.3 V, VDLY = VFB = 0 V fosc/ VIN Oscillator Frequency Line Regulation VIN = 3.3 V to 5.5 V fosc/ Topt Oscillator Frequency Temperature Coefficient IDD1 VREFOUT IOUT Typ. 3.3 VFB/ VIN fosc Min. 0.985 1.000 (Topt = 25C) Max. Unit 5.5 V 1.015 V 3 mV 150 ppm/ °C 0.1 0.1 100 dB 1.0 595 700 A MHz 805 kHz 50 kHz −40C ≤ Topt ≤ 85C 1.0 kHz/ C Supply Current 1 VIN = 5.5 V, VDLY = VFB = 0 V, EXT at no load 600 1000 A VREFOUT Voltage VIN = 3.3 V, IROUT = 1 mA 1.500 1.522 V VREFOUT Maximum Output Current VIN = 3.3 V 1.478 10 mA VREFOUT/ VREFOUT Line Regulation VIN VIN = 3.3 V to 5.5 V 5 10 mV VREFOUT/ VREFOUT Load Regulation IROUT VIN = 3.3 V, IROUT = 0.1 mA ~ 5 mA 6 15 mV VIN = 3.3 V, VREFOUT = 0 V 20 mA 150 ppm/ C Ilim VREFOUT Short Current Limit VREFOUT/ VREFOUT Voltage Temperature Coefficient Topt REXTH REXTL VIN = 3.3 V, IEXT = −50 mA 2.5 6.0 4.0 EXT "L" ON Resistance VIN = 3.3 V, IEXT = 50 mA 1.5 tr EXT Rising Time VIN = 3.3 V, CL = 1000 pF 12 tf EXT Falling Time VIN = 3.3 V, CL = 1000 pF DELAY Pin Charge Current VIN = 3.3 V, VDLY = 0 V, VFB = 0 V IDLY1 5.5  ns 8 3.0  ns 8.0 A IDLY2 DELAY Pin Discharge Current VIN = VFB = 3.3 V, VDLY = 0.1 V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN = 3.3 V, VFB = 0 V, VDLY = 0 V→2 V 0.95 1.00 1.05 V UVLO Detector Threshold VIN = 3.3 V→0 V, V DLY = VFB = 0 V 2.6 VUVLO1 VUVLO2 UVLO Released Voltage VIN = 0 V→3.3 V, V DLY = VFB = 0 V VDTC0 Duty = 0% DTC Pin Voltage VIN = 3.3 V VDTC20 Duty = 20% DTC Pin Voltage VIN = 3.3 V VDTC80 Duty = 80% DTC Pin Voltage VIN = 3.3 V Maximum Duty Cycle VIN = 3.3 V 84 IAMPH AMP "H" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 0.9 V 0.5 IAMPL AMP "L" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 1.1 V 60 Maxduty 10 EXT "H" ON Resistance −40C ≤ Topt ≤ 85C 0.05 2.8 3.0 V VUVLO1 +0.25 3.3 V 0.18 0.25 V 0.3 V 0.75 90 V 96 % 1.0 1.8 mA 100 160 A R1212D NO.EA-109-180705 R1212D102C Electrical Characteristics Symbol Item VIN Operating Input Voltage VFB Conditions VFB Voltage Tolerance VIN = 3.3 V VFB Voltage Line Regulation VIN = 3.3 V to 5.5 V VFB/ Topt VFB Voltage Temperature Coefficient −40C ≤ Topt ≤ 85C IFB VFB Input Current VIN = 5.5 V, VFB = 0 V or 5.5 V AV Open Loop Voltage Gain VIN = 3.3 V fT Unity Gain Frequency Band VIN = 3.3 V, AV = 0 Oscillator Frequency VIN = 3.3 V, VDLY = VFB = 0 V fosc/ VIN Oscillator Frequency Line Regulation VIN = 3.3 V to 5.5 V fosc/ Topt Oscillator Frequency Temperature Coefficient IDD1 VREFOUT IOUT Typ. 3.3 VFB/ VIN fosc Min. 0.985 1.000 (Topt = 25C) Max. Unit 5.5 V 1.015 V 3 mV 150 ppm/ °C −0.1 0.1 100 dB 1.0 240 300 A MHz 360 kHz 25 kHz −40C ≤ Topt ≤ 85C 0.5 kHz/ C Supply Current 1 VIN = 5.5 V, VDLY = VFB = 0 V, EXT at noload 400 800 A VREFOUT Voltage VIN = 3.3 V, IROUT = 1 mA 1.500 1.522 V VREFOUT Maximum Output Current VIN = 3.3 V 1.478 10 mA VREFOUT/ VREFOUT Line Regulation VIN VIN = 3.3 V to 5.5 V 5 10 mV VREFOUT/ VREFOUT Load Regulation IROUT VIN = 3.3 V, IROUT = 0.1 mA ~ 5 mA 6 15 mV VIN = 3.3 V, VREFOUT = 0 V 20 mA 150 ppm/ C Ilim VREFOUT Short Current Limit VREFOUT/ VREFOUT Voltage Temperature Coefficient Topt REXTH REXTL EXT "H" ON Resistance −40C ≤ Topt ≤ 85C VIN = 3.3 V, IEXT = −50 mA 2.5 6.0 4.0 EXT "L" ON Resistance VIN = 3.3 V, IEXT = 50 mA 1.5 tr EXT Rising Time VIN = 3.3 V, CL = 1000 pF 12 tf EXT Falling Time VIN = 3.3 V, CL = 1000 pF DELAY Pin Charge Current VIN = 3.3 V, VDLY = 0 V, VFB = 0 V IDLY1  ns 8 2.0  ns 4.5 7.0 A IDLY2 DELAY Pin Discharge Current VIN = VFB = 3.3 V, VDLY = 0.1 V 0.08 0.20 0.36 mA VDLY DELAY Pin Detector Threshold VIN = 3.3 V, VFB = 0 V, VDLY = 0 V→2 V 0.95 1.00 1.05 V UVLO Detector Threshold VIN = 3.3 V→0 V, VDLY = VFB = 0 V 2.6 VUVLO1 VUVLO2 UVLO Released Voltage VIN = 0 V→3.3 V, VDLY = VFB = 0 V 3.0 V 3.30 V 0.18 0.25 V VDTC0 Duty = 0% DTC Pin Voltage VIN = 3.3 V VDTC20 Duty = 20% DTC Pin Voltage VIN = 3.3 V VDTC80 Duty = 80% DTC Pin Voltage VIN = 3.3 V Maximum Duty Cycle VIN = 3.3 V 85.5 91.5 IAMPH AMP "H" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 0.9 V 0.5 IAMPL AMP "L" Output Current VIN = 3.3 V, VAMP = 1.0 V, VFB = 1.1 V 50 Maxduty 0.05 2.8 VUVLO1 +0.25 0.3 V 0.75 V 97.5 % 1.0 1.8 mA 90 150 A 11 R1212D NO.EA-109-180705 TYPICAL APPLICATIONS AND TECHNICAL NOTES Inductor Diode VOUT R3 VIN C1 NMOS EXT DELAY C4 R1 VFB C3 C2 R2 GND AMPOUT C5 C6 VREFOUT R5 R4 DTC R6 C7 R1212D Typical Application Inductor VLF504012MT-100M (TDK: 10 µH) [R1212DxxxA] VLF504012MT-4R7M (TDK: 4.7 µH) [R1212DxxxB] VLF504012MT-220M (TDK: 22 µH) [R1212DxxxC] NMOS CPH6415 (Sanyo) Diode CRS10I30A (Toshiba) C1 2.2 µF Set VOUT 5V 10 V 15 V C2 1 µF R1 120 kΩ 180 kΩ 140 kΩ C3 1.5 µF R2 30 kΩ 20 kΩ 10 kΩ 1000 pF [R1212DxxxA] R3 1 kΩ 680 pF [R1212DxxxB] R4 4.7 kΩ 1500 pF [R1212DxxxC] R5 240 kΩ 1000 pF [R1212DxxxA] R6 300 kΩ C4 C5 680 pF [R1212DxxxB] 1500 pF [R1212DxxxC] 12 C6 0.1 µF C7 0.1 µF R1212D NO.EA-109-180705  Use a 1 µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical application above. Connect the capacitor as short as possible to the IC.  In terms of the capacitor for setting delay time of the latch protection, C2 is shown in typical application above. Latch delay time depends on this C2 value. Refer to the Latch Protection Operation Timing Chart.  Connect a 1 µF or more value of capacitor between VOUT and GND, C3 as shown in typical application above. (Recommended value is from 10 µF to 22 µF.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type  Connect a capacitor between VREFOUT and GND, C6 as shown in typical application of the previous page. The capacitance value of C6 is between 0.1 µF and 1.0 µF.  Output Voltage Setting Method and Phase Compensation Making Method The feedback voltage is controlled into 1.0 V. The output voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical application of the previous page. Refer to the next formula. Output Voltage = VFB x (R1 + R2) / R2 Output Voltage is adjustable with setting various resistor values combination. R1 + R2 should be equal or less than 500 k As for the DC/DC converter, depending on the load current and external components such as L and C, phase may loss around 180°. In such case, phase margin becomes less and may be unstable. To avoid this situation, make the phase margin more. The pole is made with external components L and C. Fpole  1 / {2 x  x L  C3  } C4, C5, R3, and R4 shown in the diagram are for making phase compensation. The gain of the system can be set with using these resistors and capacitors. Each value in the diagram is just an example. R4 and C5 make zero (the backward phase). Fzero  1 / (2 x  x R4 x C5) Choose the R4 and C5 value so as to make the cutoff frequency of this zero point close to the cutoff frequency of the pole by external components, L and C. For example, supposed that L = 10 H and COUT (C3) = 10 F, the cutoff frequency of the pole is approximately 16 kHz. Therefore make the cutoff frequency of the zero point close to 16 kHz. Then R4 = 4.7 k and C5 = 1000 pF are appropriate values. 13 R1212D NO.EA-109-180705 As for setting the gain, the ratio of the composite resistor (RT: RT = R1 x R2 / (R1 + R2)) to R4 is the key. If the R4 against the composite resistor, RT, is large, the gain becomes also large. If the gain is large, the response characteristic is improved, however, too large gain makes the system be unstable. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin, and the unstable operation may result. In this case, a resistor R3, shown in typical application of the previous page. The recommended resistance value of R3 is in the range from 1 k to 5 k. Then, noise level will be decreased. Further, R1 and C4 makes another zero point (the backward phase). Fzero  1 / (2 x  x R1 x C4) Make the cutoff frequency of this zero point be lower than the cutoff frequency of the pole by external components, or, L and C. Herein, R1 = 180 k and C4 = 1000 pF are appropriate values.  Select the Power MOSFET, the diode, capacitors and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on the input voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is twice as much as the setting voltage or more.  The soft-start time and the maximum duty cycle setting method The soft-start time and the maximum duty cycle can be set with R5, R6, and C7 values connected to the VREFOUT pin and the DTC pin. (Refer to the timing chart: Soft-start operation.) 14 R1212D NO.EA-109-180705 OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS Diode Inductor IOUT VIN VOUT CL Lx Tr R1212D Typical Application Current Flowing through L IL ILxmax IL ILxmax ILxmin ILxmin Tf t Ton Iconst Toff T=1/fosc 1/ton Discontinuous Mode Ton t Toff T=1/fosc 1/ton Continuous Mode There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN  t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula.  Ton PON  V 0 IN 2  t / L dt ...................................................................................................................... Formula 1 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT  VIN) t/L, therefore electric power, POFF is described as in next formula. 15 R1212D NO.EA-109-180705  Tf POFF  VIN  ( VOUT  VIN)  t / L dt ................................................................................................. Formula 2 0 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, or PAV is described as in the next formula.  Ton  Tf PAV  1/(TON  TOFF)  { V IN2  t / L dt  VIN  ( VOUT  VIN)  t / L dt } ................................................ Formula 3 0 0 In PWM control, when Tf  Toff is true, the inductor current becomes continuous, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. VIN  TON / L  ( VOUT  VIN)  Toff / L ................................................................................................ Formula 4 Further, the electric power, PAV is equal to output electric power, VOUT  IOUT, thus, IOUT  fOSC  VIN 2  TON 2 /2  L  ( VOUT  VIN)  VIN 2  TON /(2  L  VOUT ) ....................................... Formula 5 When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then, IOUT  fOSC  VIN 2  TON 2 /2  L  ( VOUT  VIN)  VIN  Iconst / VOUT .................................................. Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILx max  Iconst  VIN  T ON / L ....................................................................................................... Formula 7 With the formula 4,6, and ILxmax is, ILx max  VOUT / VIN  IOUT  VIN  TON /(2  L) .................................................................................. Formula 8 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by LX switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILX is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. 16 R1212D NO.EA-109-180705 TIMING CHART Soft-start Operation The timing chart below describes the state of each pin from the power-on until the IC entering the stable operation. By raising the voltage of the DTC pin slowly, the switching duty cycle is limited, and prevent the drastic voltage rising (over-shoot) and inrush current. When the VIN voltage becomes equal or more than the UVLO released voltage (VUVLOVHYS), VREFOUT operation starts. Following with the increase of the voltage level of VREFOUT, the internal oscillator begins to operate, then the DTC voltage is also rising, then, soft-start operation starts. When the DTC voltage crosses the chopping wave level inside the IC, EXT pin starts switching, then, step-up operation begins. During this term, the output voltage does not reach the set output voltage. Therefore the output of the amplifier is "H". Besides, the protection circuit may work and the IC charges the DELAY pin. Because of this, the soft-start time should be set shorter than the latch protection delay time. After the initial stage, when the output voltage reaches the set output voltage, the level of AMPOUT becomes the normal state. In other words, the level is determined with the input voltage, the output voltage, and the output current. When the level of AMPOUT becomes falling, charging the DELAY pin stops and discharges to the GND. The soft-start time (the time for the DTC pin voltage becoming to VDTC level) can be estimated with the next formula. T1/ln(VDTC/1), herein, 1/C7(1/R51/R6), and VREFOUT/(C7R5). VIN (VUVLO+VHYS) VREFOUT OSC DTC AMPOUT DELAY Soft-start Time EXT VREFOUT R5 DTC R6 C7 17 R1212D NO.EA-109-180705 Latch Protection Operation The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. The maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. Once after becoming the maximum duty cycle, if the duty cycle decreases before latch operation works, the charging the capacitor stops immediately, and the DELAY pin voltage is fixed at GND level with IDLY2. The delay time of latch protection can be calculated with C2, VDLY, and the delay pin charge current, IDLY1, as in the next formula. t = C2 x VDLY / IDLY1 DELAY Output Short AMPOUT VDLY DTC Normal Maxduty Operation Latched EXT IDLY1 DELAY VDLY 18 C2 R1212D NO.EA-109-180705 TEST CIRCUITS VIN VIN EXT A VREFOUT VREFOUT AMPOUT AMPOUT DTC DTC VFB VFB DELAY GND GND Fig. 1 Consumption Current Test Circuit VIN VIN EXT AMPOUT DELAY Fig. 2 Oscillator Frequency, VFB Voltage, Duty Cycle, EXT Rising Time/ Falling Time Test Circuit VREFOUT EXT VREFOUT A AMPOUT DTC DTC VFB DELAY GND EXT Fig. 3 AMP "L" Output Current/ "H" Output Current Test Circuit VFB GND DELAY A Fig. 4 DELAY Pin Charge Current/ Discharge Current Test Circuit V VIN GND EXT VIN EXT VREFOUT VREFOUT AMPOUT AMPOUT DTC DTC VFB VFB DELAY Fig. 5 EXT "H" ON Resistance Test Circuit GND V DELAY Fig. 6 EXT "L" ON Resistance Test Circuit 19 R1212D NO.EA-109-180705 VIN GND EXT VIN VREFOUT VREFOUT AMPOUT AMPOUT DTC DTC VFB VFB DELAY GND Fig. 7 DELAY Pin Detector Threshold Test Circuit VIN Fig. 8 UVLO Detector Threshold/ Released Voltage Test Circuit VIN EXT AMPOUT AMPOUT DTC 100k VFB DELAY 10k Fig. 9 Error AMP Gain/ Phase Test Circuit EXT VREFOUT AMPOUT DTC VFB GND DELAY A Fig. 11 VFB Leakage Current Test Circuit 20 EXT VREFOUT VFB VIN DELAY VREFOUT DTC GND EXT GND A V DELAY Fig. 10 VREFOUT Voltage Test Current R1212D NO.EA-109-180705 Inductor Diode VOUT R3 VIN C1 NMOS EXT DELAY C4 R1 C3 VFB C2 R2 AMPOUT GND C5 C6 VREFOUT R4 DTC R5 R6 C7 Fig. 12 Output Current vs. Output Voltage/ Efficiency, Response Characteristics Test Circuit Inductor VLF504012MT-100M (TDK: 10 µH) [R1212DxxxA] VLF504012MT-4R7M (TDK: 4.7 µH) [R1212DxxxB] VLF504012MT-220M (TDK: 22 µH) [R1212DxxxC] NMOS CPH6415 (Sanyo) Diode CRS10I30A (Toshiba) C1 2.2 F C6 0.1 F C2 1 F C7 0.1 F C3 15 F 1000 pF [R1212DxxxA] 680 pF [R1212DxxxB] 1500 pF [R1212DxxxC] 1000 pF [R1212DxxxA] 680 pF [R1212DxxxB] 1500 pF [R1212DxxxC] SetV 5V 10 V 15 V R1 R2 R3 R4 R5 R6 120 k 30 k 180 k 20 k 1 k 4.7 k 240 k 300 k 140 k 10 k C4 C5 21 R1212D NO.EA-109-180705 TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (Topt = 25°C) R1212D100A 5.10 2.2V 3.3V 5.05 5.00 4.95 VOUT=10V 10.2 Output Voltage VOUT(V) Output Voltage VOUT(V) R1212D100A VOUT=5V 4.90 2.2V 3.3V 5.5V 10.1 10.0 9.9 9.8 0 100 200 300 400 Output Current IOUT(mA) 500 0 R1212D100A 15.2 15.1 15.0 14.9 2.2V 3.3V 5.5V 14.8 VOUT=5V 5.10 Output Voltage VOUT(V) Output Voltage VOUT(V) R1212D100B VOUT=15V 15.3 14.7 2.2V 3.3V 5.05 5.00 4.95 4.90 0 50 100 150 200 Output Current IOUT(mA) 0 250 R1212D100B 500 10.0 9.9 9.8 VOUT=15V 15.3 Output Voltage VOUT(V) Output Voltage VOUT(V) 2.2V 3.3V 5.5V 10.1 100 200 300 400 Output Current IOUT(mA) R1212D100B VOUT=10V 10.2 15.2 15.1 15.0 14.9 2.2V 3.3V 5.5V 14.8 14.7 0 22 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 50 100 150 200 250 300 350 400 Output Current IOUT(mA) 0 50 100 150 200 Output Current IOUT(mA) 250 R1212D NO.EA-109-180705 R1212D101C R1212D101C VOUT=5V 2.2V 3.3V 5.05 5.00 4.95 VOUT=10V 10.2 Output Voltage VOUT(V) Output Voltage VOUT(V) 5.10 10.1 10.0 2.2V 3.3V 5.5V 9.9 4.90 9.8 0 100 200 300 400 Output Current IOUT(mA) 500 0 50 100 150 200 250 300 350 400 Output Current IOUT(mA) R1212D101C VOUT=15V Output Voltage VOUT(V) 15.3 2.2V 3.3V 5.5V 15.2 15.1 15.0 14.9 14.8 14.7 0 50 100 150 200 Output Current IOUT(mA) 250 2) Efficiency vs. Output Current (Topt = 25°C) R1212D100A R1212D100A VOUT VOUT 100 90 80 70 60 50 40 30 20 10 0 =10V η (%) =5V η (%) 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 0 100 200 300 400 IOUT(mA) R1212D100A 500 2.2V 3.3V 5.5V 0 50 100 150 200 250 300 350 400 IOUT(mA) R1212D100B 23 R1212D NO.EA-109-180705 VOUT VOUT 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 50 100 150 200 IOUT(mA) 250 2.2V 3.3V 0 100 R1212D100B 200 300 400 IOUT(mA) 500 R1212D100B VOUT VOUT 100 90 80 70 60 50 40 30 20 10 0 =15V η (%) =10V η (%) 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 50 100 150 200 250 300 350 400 IOUT(mA) 2.2V 3.3V 5.5V 0 R1212D101C 50 100 150 200 IOUT(mA) 250 R1212D101C VOUT VOUT 100 90 80 70 60 50 40 30 20 10 0 =10V η (%) =5V η (%) 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 0 24 =5V η (%) =15V η (%) 100 90 80 70 60 50 40 30 20 10 0 100 200 300 400 IOUT(mA) 500 2.2V 3.3V 5.5V 0 50 100 150 200 250 300 350 400 IOUT(mA) R1212D NO.EA-109-180705 R1212D101C VOUT=15V Efficiency η (%) 100 90 80 70 60 50 40 30 20 10 0 2.2V 3.3V 5.5V 0 50 100 150 200 Output Current IOUT(mA) 250 3) VFB Voltage vs. Input Voltage (Topt = 25°C) R1212D100x 4) VFB Voltage vs. Temperature R1212D100x VIN=3.3V 1010 Feedback Voltage VFB(mV) Feedback Voltage VFB(mV) 1010 1005 1000 995 990 985 980 2 3 4 5 Input Voltage VIN(V) 1005 1000 995 990 985 980 -50 6 -25 0 25 50 75 Temperature Topt(°C) 100 5) Oscillator Frequency vs. Input Voltage (Topt = 25°C) R1212D100B 800 Oscillator Frequency fosc(kHz) Oscillator Frequency fosc(kHz) R1212D100A 775 750 725 700 675 650 625 600 2 3 4 5 Input Voltage VIN(V) 6 1600 1500 1400 1300 1200 2 3 4 5 Input Voltage VIN(V) 6 25 R1212D NO.EA-109-180705 Oscillator Frequency fosc(kHz) R1212D101C 350 330 310 290 270 250 2 3 4 5 Input Voltage VIN(V) 6 6) Oscillator Frequency vs. Temperature R1212D10xB VIN=3.3V 800 Oscillator Frequency fosc(kHz) Oscillator Frequency fosc(kHz) R1212D10xA 775 750 725 700 675 650 625 600 -50 -25 0 25 50 75 Temperature Topt(°C) 100 Oscillator Frequency fosc(kHz) R1212D10xC 26 VIN=3.3V 350 330 310 290 270 250 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V 1600 1550 1500 1450 1400 1350 1300 1250 1200 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D NO.EA-109-180705 7) Supply Current vs. Input Voltage (Topt = 25°C at no load) R1212D100A EXT at no load 500 450 400 350 300 250 EXT at no load 800 Supply Current IDD(uA) Supply Current IDD(uA) R1212D100B 200 700 600 500 400 300 2 3 4 5 Input Voltage VIN(V) 2 6 3 4 5 Input Voltage VIN(V) 6 R1212D101C EXT at no load Supply Current IDD(uA) 400 350 300 250 200 150 100 2 3 4 5 Input Voltage VIN(V) 6 8) Supply Current vs. Temperature R1212D10xA VIN=5.5V, EXT at no load 500 450 400 350 300 250 200 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=5.5V, EXT at no load 900 Supply Current IDD(uA) Supply Current IDD(uA) R1212D10xB 800 700 600 500 -50 -25 0 25 50 75 Temperature Topt(°C) 100 27 R1212D NO.EA-109-180705 R1212D10xC VIN=5.5V, EXT at no load Supply Current IDD(uA) 400 350 300 250 200 150 100 -50 -25 0 25 50 75 Temperature Topt(°C) 100 9) EXT "L" On Resistance vs. Temperature 10) EXT "H" On Resistance vs. Temperature R1212D10xx VIN=3.3V, IEXT=50mA 3 2 1 0 -50 -25 0 25 50 75 Temperature Topt(°C) 3 2 1 0 -50 100 11) EXT Rising Time vs. Temperature VIN=3.3V, IEXT=50mA 4 EXT "H" ON Resistance(Ω) 4 EXT "L" ON Resistance(Ω) R1212D10xx -25 VIN=3.3V, CEXT=1000pF 6 4 2 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V, CEXT=1000pF 10 EXT Falling Time tf(ns) EXT Rising Time tr(ns) 28 R1212D10xx 8 0 -50 100 12) EXT Falling Time vs. Temperature R1212D10xx 10 0 25 50 75 Temperature Topt(°C) 8 6 4 2 0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D NO.EA-109-180705 13) Duty Cycle vs. DTC Voltage (0% to 100%) (Topt = 25°C) R1212D100B CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) Duty Cycle Duty(%) Duty Cycle Duty(%) R1212D100A CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) R1212D101C CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) Duty Cycle Duty(%) Duty Cycle Duty(%) R1212D101A CEXT=1000pF 100 90 80 70 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTC Voltage VDTC(V) 14) Duty Cycle vs. Temperature R1212D100A VDTC=0.75V, CEXT=1000pF 83 80 77 74 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VDTC=0.75V, CEXT=1000pF 86 Duty Cycle Duty(%) 86 Duty Cycle Duty(%) R1212D100B 83 80 77 74 -50 -25 0 25 50 75 Temperature Topt(°C) 100 29 R1212D NO.EA-109-180705 15) Maxduty vs. Temperature R1212D101A R1212D101C CEXT=1000pF 96 95 Maxduty(%) Maxduty(%) 93 90 87 84 -50 CEXT=1000pF 98 92 89 -25 0 25 50 75 Temperature Topt(°C) 86 -50 100 -25 0 25 50 75 Temperature Topt(°C) 100 16) AMP "L" Output Current vs. Temperature R1212D10xC VIN=3.3V, AMPOUT=1V 140 AMP "L" Output Current IAMPL(uA) AMP "L" Output Current IAMPL(uA) R1212D10xA/B 130 120 110 100 90 80 -50 -25 0 25 50 75 Temperature Topt(°C) 100 17) AMP "H" Output Current vs. Temperature AMP "H" Output Current IAMPL(mA) R1212D10xx 30 VIN=3.3V, AMPOUT=1V 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 VIN=3.3V, AMPOUT=1V 130 120 110 100 90 80 70 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D NO.EA-109-180705 18) UVLO Detector Threshold UVLO Released Voltage vs. Temperature R1212D100x R1212D101x 2.35 2.05 Released Voltage 2.00 1.95 Detector Threshold 1.90 1.85 -50 -25 0 25 50 75 Temperature Topt(°C) 100 UVLO Detector Threshold/ Released Voltage (V) UVLO Detector Threshold/ Released Voltage (V) 2.10 2.30 Released Voltage 2.25 2.20 2.15 Detector Threshold 2.10 2.05 -50 -25 0 25 50 75 Temperature Topt(°C) 100 R1212D102x UVLO Detector Threshold/ Released Voltage (V) 3.2 3.1 Released Voltage 3.0 2.9 Detector Threshold 2.8 2.7 -50 -25 0 25 50 75 Temperature Topt(°C) 100 19) DELAY Pin Detector Threshold vs. Temperature DELAY Pin Detector Voltage VDLY(V) R1212D10xx VIN=3.3V 1050 1025 1000 975 950 -50 -25 0 25 50 75 Temperature Topt(°C) 100 31 R1212D NO.EA-109-180705 20) DELAY Pin Charge Current vs. Temperature R1212D10xC VIN=3.3V 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 DELAY Pin Charge Current IDLY1(uA) DELAY Pin Charge Current IDLY1(uA) R1212D10xA/B VIN=3.3V 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 -50 -25 0 25 50 75 Temperature Topt(°C) 100 21) DELAY Pin Discharge Current vs. Temperature 22) VREFOUT Voltage vs. Temperature R1212D10xx VIN=2.2V, VDLY=0.1V 300 250 200 150 100 50 0 -50 -25 0 25 50 75 Temperature Topt(°C) 1.52 1.51 1.50 1.49 1.48 -50 100 23) VREFOUT Voltage vs. Input Voltage (Topt = 25°C) VIN=3.3V 1.53 VREFOUT Voltage(V) DELAY Pin Discharge Current IDLY2(uA) R1212D10xx 100 R1212D100x 1.53 1515 1.52 1510 VREFOUT Voltage(mV) VREFOUT Voltage (V) 0 25 50 75 Temperature Topt(°C) 24) VREFOUT Voltage vs. Output Current (1) (Topt = 25°C) R1212D10xx 1.51 1.50 1.49 1.48 1505 1500 1495 VIN=2.2V VIN=3.3V VIN=5.5V 1490 1485 2 32 -25 3 4 5 Input Voltage VIN(V) 6 0 2 4 6 8 Output Current IROUT(mA) 10 R1212D NO.EA-109-180705 25) VREFOUT Voltage vs. Output Current (2) (Topt = 25°C) 26) Error Amplifier Gain/Phase vs. Frequency (Topt = 25°C) R1212D100x R1212D100xx 1600 Gain(dB) / Phase(deg) VREFOUT Voltage(mV) 1400 1200 1000 800 600 VIN=2.2V VIN=3.3V VIN=5.5V 400 200 0 0 20 40 60 Output Current IROUT(mA) 80 VIN=3.3V 180 160 140 120 100 80 60 40 20 0 -20 Phase Gain 0 10 100 1000 Frequency freq.(kHz) 10000 27) Power-on Response (VIN = 3.3 V, Topt = 25°C) 4.0 5.0 5.0 4.0 VIN 3.0 3.0 2.0 2.0 DTC 1.0 1.0 0.0 10 20 30 Time (ms) 40 5.0 4.0 3.0 3.0 2.0 2.0 DTC 0.0 0 10 6.0 2.0 4.0 DTC 2.0 0.0 0.0 10 20 30 Time (ms) 50 40 50 VOUT 5.0 Voltage (V) 8.0 3.0 0 40 Set VOUT=10V, IOUT=100mA 6.0 Output Voltage VOUT(V) Voltage (V) 12.0 10.0 VIN 1.0 20 30 Time (ms) R1212D100A VOUT 4.0 1.0 0.0 50 Set VOUT=10V, IOUT=10mA 5.0 4.0 VIN R1212D100A 6.0 6.0 VOUT 1.0 0.0 0 Set VOUT=5V, IOUT=100mA 4.0 12.0 10.0 8.0 VIN 3.0 6.0 2.0 4.0 DTC 1.0 2.0 0.0 Output Voltage VOUT(V) 5.0 6.0 Voltage (V) VOUT 6.0 Output Voltage VOUT(V) Set VOUT=5V, IOUT=10mA 6.0 Voltage (V) R1212D100A Output Voltage VOUT(V) R1212D100A 0.0 0 10 20 30 Time (ms) 40 50 33 R1212D NO.EA-109-180705 5.0 12.0 VIN 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 10 20 30 Time (ms) 40 4.0 3.0 9.0 2.0 6.0 DTC 0.0 0 10 5.0 5.0 3.0 3.0 2.0 2.0 DTC 1.0 0.0 Voltage (V) 6.0 Output Voltage VOUT(V) Voltage (V) 6.0 4.0 VIN 1.0 10 20 30 Time (ms) 40 5.0 3.0 3.0 2.0 2.0 DTC 0.0 0 12.0 10 20 30 Time (ms) 40 50 10.0 8.0 VIN 3.0 6.0 2.0 4.0 DTC 2.0 0.0 0.0 40 50 Set VOUT=10V, IOUT=100mA 6.0 VOUT 5.0 Voltage (V) Voltage (V) 4.0 1.0 34 1.0 0.0 Output Voltage VOUT(V) VOUT 20 30 Time (ms) 4.0 VIN R1212D100B 5.0 10 6.0 VOUT 4.0 50 Set VOUT=10V, IOUT=10mA 0 50 Set VOUT=5V, IOUT=100mA R1212D100B 6.0 40 1.0 0.0 0 20 30 Time (ms) R1212D100B VOUT 4.0 3.0 0.0 50 Set VOUT=5V, IOUT=10mA 5.0 12.0 VIN R1212D100B 6.0 18.0 15.0 1.0 0.0 0 VOUT Output Voltage VOUT(V) 4.0 15.0 Set VOUT=15V, IOUT=100mA 4.0 12.0 10.0 8.0 VIN 3.0 6.0 2.0 4.0 DTC 1.0 2.0 0.0 0.0 0 10 20 30 Time (ms) 40 50 Output Voltage VOUT(V) 5.0 6.0 Voltage (V) VOUT 18.0 Output Voltage VOUT(V) Set VOUT=15V, IOUT=10mA 6.0 Voltage (V) R1212D100A Output Voltage VOUT(V) R1212D100A R1212D NO.EA-109-180705 R1212D100B 15.0 5.0 12.0 VIN 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 20 30 Time (ms) 40 15.0 4.0 3.0 9.0 2.0 6.0 DTC 0.0 0 10 15.0 5.0 3.0 9.0 2.0 6.0 DTC 3.0 0.0 Voltage (V) 6.0 Output Voltage VOUT(V) Voltage (V) 18.0 12.0 VIN 1.0 10 20 30 Time (ms) 40 3.0 3.0 2.0 2.0 DTC 0.0 0 6.0 10.0 5.0 8.0 3.0 6.0 2.0 4.0 DTC 2.0 0.0 0.0 20 30 Time (ms) 40 50 Voltage (V) 12.0 VIN 10 1.0 0.0 Output Voltage VOUT(V) Voltage (V) 5.0 0 4.0 VIN 10 20 30 Time (ms) 40 50 R1212D101C VOUT 1.0 6.0 5.0 4.0 50 Set VOUT=10V, IOUT=10mA 4.0 50 VOUT R1212D101C 6.0 40 Set VOUT=5V, IOUT=100mA 1.0 0.0 0 20 30 Time (ms) R1212D101C VOUT 4.0 3.0 0.0 50 Set VOUT=15V, IOUT=10mA 5.0 12.0 VIN R1212D101C 6.0 18.0 Output Voltage VOUT(V) 10 VOUT 1.0 0.0 0 Set VOUT=15V, IOUT=100mA Set VOUT=10V, IOUT=100mA 12.0 10.0 VOUT 4.0 3.0 8.0 6.0 VIN 2.0 4.0 DTC 1.0 2.0 0.0 Output Voltage VOUT(V) Voltage (V) 4.0 6.0 Voltage (V) VOUT 5.0 18.0 Output Voltage VOUT(V) Set VOUT=15V, IOUT=10mA 6.0 Output Voltage VOUT(V) R1212D100B 0.0 0 10 20 30 Time (ms) 40 50 35 R1212D NO.EA-109-180705 R1212D101C Voltage (V) 5.0 4.0 VIN 6.0 15.0 5.0 12.0 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 0.0 0 36 10 20 30 Time (ms) 40 50 Voltage (V) VOUT 18.0 Output Voltage VOUT(V) Set VOUT=15V, IOUT=10mA 6.0 Set VOUT=15V, IOUT=10mA VOUT 18.0 15.0 4.0 VIN 12.0 3.0 9.0 2.0 6.0 DTC 1.0 3.0 0.0 0.0 0 10 20 30 Time (ms) 40 50 Output Voltage VOUT(V) R1212D101C R1212D NO.EA-109-180705 28) Load Transient Response (VIN = 3.3 V, Topt = 25°C) R1212D100A IOUT=1mA-30mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 5 10 Time (ms) 15 20 R1212D100A IOUT=10mA-100mA 5.1 5.0 250 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D100A Output Current IOUT(mA) 10.2 10.0 250 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 9.0 5 10 Time (ms) 15 20 37 R1212D NO.EA-109-180705 R1212D100A Output Current IOUT(mA) 250 10.2 10.0 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 Output Voltage VOUT(V) IOUT=10mA-100mA 300 9.0 0 5 10 Time (ms) 15 20 R1212D100A Output Current IOUT(mA) 15.6 15.3 250 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 13.8 5 10 Time (ms) 15 20 R1212D100A Output Current IOUT(mA) 250 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 13.8 0 5 10 Time (ms) R1212D100A 38 15.6 15 20 Output Voltage VOUT(V) IOUT=10mA-100mA 300 R1212D NO.EA-109-180705 R1212D100B IOUT=1mA-30mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 5 10 Time (ms) 15 20 R1212D100B IOUT=10mA-100mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D100B Output Current IOUT(mA) 250 10.2 10.0 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 9.0 5 10 Time (ms) 15 20 39 R1212D NO.EA-109-180705 R1212D100B Output Current IOUT(mA) 250 10.2 10.0 VOUT 200 9.8 150 9.6 100 9.4 50 9.2 IOUT 0 Output Voltage VOUT(V) IOUT=10mA-100mA 300 9.0 0 5 10 Time (ms) 15 20 R1212D100B Output Current IOUT(mA) 15.6 15.3 250 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 13.8 0 5 10 Time (ms) 15 20 R1212D100B Output Current IOUT(mA) 250 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 13.8 0 40 15.6 5 10 Time (ms) 15 20 Output Voltage VOUT(V) IOUT=10mA-100mA 300 R1212D NO.EA-109-180705 R1212D101C IOUT=1mA-30mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D101C IOUT=10mA-100mA 5.1 250 5.0 VOUT 200 4.9 150 4.8 100 4.7 50 4.6 IOUT 0 Output Voltage VOUT(V) Output Current IOUT(mA) 300 4.5 0 5 10 Time (ms) 15 20 R1212D101C Output Current IOUT(mA) 250 10.4 10.2 VOUT 200 10.0 150 9.8 100 9.6 50 9.4 IOUT Output Voltage VOUT(V) IOUT=1mA-30mA 300 9.2 0 0 5 10 Time (ms) 15 20 41 R1212D NO.EA-109-180705 R1212D101C Output Current IOUT(mA) 250 10.4 10.2 VOUT 200 10.0 150 9.8 100 9.6 50 9.4 IOUT 0 Output Voltage VOUT(V) IOUT=10mA-100mA 300 9.2 0 5 10 Time (ms) 15 20 R1212D101C Output Current IOUT(mA) 250 15.6 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 Output Voltage VOUT(V) IOUT=1mA-30mA 300 13.8 0 5 10 Time (ms) 15 20 R1212D101C Output Current IOUT(mA) 250 15.3 VOUT 200 15.0 150 14.7 100 14.4 50 14.1 IOUT 0 13.8 0 42 15.6 5 10 Time (ms) 15 20 Output Voltage VOUT(V) IOUT=10mA-100mA 300 PACKAGE DIMENSIONS SON-8 Ver. A 2.9±0.2 0.2±0.1 ※ 0.2±0.1 ※ 4 0.9MAX 0.13±0.05 1 ※ 0.23±0.1 3.0±0.2 5 2.8±0.2 8 +0.10 0.15-0.15 +0.10 0.15-0.15 0.13±0.05 0.475TYP 0.1 0.65 0.3±0.1 0.1 M SON-8 Package Dimensions (Unit: mm) * * The tab suspension leads on the bottom of the package is substrate level (GND/ VDD). It is recommended that the tab suspension leads be connected to the ground plane / the VDD pin on the board, or otherwise be left floating. Also, the tab suspension leads should not connect to other wires or land patterns. i POWER DISSIPATION SON-8 Ver. A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement. Measurement Conditions Standard Test Land Pattern Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Double-Sided Board) Board Dimensions 40 mm × 40 mm × 1.6 mm Top Side: Approx. 50% Copper Ratio Bottom Side: Approx. 50% f 0.5 mm × 44 pcs Through-holes Measurement Result (Ta = 25°C, Tjmax = 125°C) Standard Test Land Pattern Free Air Power Dissipation 480 mW 300 mW Thermal Resistance qja = (125 − 25°C) / 0.48 W = 208°C/W 333℃/W Power Dissipation PD (mW) 600 Standard Test Land Pattern 480 500 400 Free Air 300 200 100 0 0 25 50 75 85 100 125 Ambient Temperature (°C) Power Dissipation vs. Ambient Temperature 150 IC Mount Area (mm) Measurement Board Pattern i 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. 7. Anti-radiation design is not implemented in the products described in this document. 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI. 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Halogen Free Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. https://www.e-devices.ricoh.co.jp/en/ Sales & Support Offices Ricoh Electronic Devices Co., Ltd. Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074 Ricoh Americas Holdings, Inc. 675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A. Phone: +1-408-610-3105 Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309 Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0 Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713 Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225 Ricoh Electronic Devices Co., Ltd. Taipei office Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623
R1212D100B-TR-FE 价格&库存

很抱歉,暂时无法提供与“R1212D100B-TR-FE”相匹配的价格&库存,您可以联系我们找货

免费人工找货
R1212D100B-TR-FE
    •  国内价格
    • 5+3.37086
    • 10+3.22124
    • 50+3.12443
    • 100+3.01881

    库存:100