0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1280D002A-TR

R1280D002A-TR

  • 厂商:

    RICOH(理光)

  • 封装:

  • 描述:

    R1280D002A-TR - 2CH PWM DC/DC Controller  - RICOH electronics devices division

  • 数据手册
  • 价格&库存
R1280D002A-TR 数据手册
2001.6.16 2CH PWM DC/DC Controller R1280D002X Series s OUTLINE The R1280D002X Series are 2-channel PWM Step-up (as Channel 1)/Inverting (as Channel 2) DC/DC converter controllers with CMOS process. Each of the R1280D002X Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A high efficiency Step-up/Inverting DC/DC converter can be composed of this IC with inductors, diodes, power MOSFETs, resisters, and capacitors. Each Output Voltage can be adjustable with external resistors, while soft-start time can be adjustable with external capacitors.. Maximum Duty Cycle of R1280D002A and C series can be also adjustable with external resistors. Maximum Duty Cycle of R1280D002B is built-in as 90%(TYP.). When CE pin of R1280D002B is set at GND level, this IC turns off external power MOSFETs of Step-up/Inverting as Standby-mode. Standby current is typically 0µA. As for a protection circuit, if Maximum duty cycle of either Step-up DC/DC converter side or Inverting DC/DC converter side is continued for a certain time, the R1280D Series latch both external drivers with their off state by its Latch-type protection circuit. Delay time for protection is internally fixed typically at 100ms. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or as for R1280D002B, once after making the circuit be stand-by with chip enable pin and enable the circuit again. s FEATURES q Input Voltage Range • • • • • • • • • • • • • 2.5V to 5.5V q Built-in Latch-type Protection Function by monitoring duty cycle (Fixed Delay Time TYP. 100ms) q Oscillator Frequency • • • • • • • • • • • • • 700kHz(R1280D002A,B)/200kHz(r1280D002C) q Maximum Duty Cycle • • • • • • • • • • • • • TYP. 90%(Only applied to R1280D002B Series) q High Reference Voltage Accuracy • • • • • • ±1.5% q U.V.L.O. Threshold • • • • • • • • • • • TYP. 2.2V (Hysteresis: TYP. 0.1V) q Small Package • • • • • • • • • • • • • • • • thin SON-10 (package thickness MAX. 0.9mm) s APPLICATIONS q Constant Voltage Power Source for portable equipment. q Constant Voltage Power Source for LCD and CCD. Rev. 1.10 -1- s BLOCK DIAGRAM q R1280D002A/C DTC1 VFB1 O SC EXT1 CH1 AM POUT1 V re f1 V IN V re fo u t V re fo u t U VLO GND VFB2 La tc h EXT2 D ela y C irc u it CH2 DTC2 q R1280D002B DTC1 VFB1 OSC CE CH1 EXT1 CHIP ENABLE Vref1 VIN Vrefout Vrefout UVLO GND VFB2 Latch EXT2 Delay Circuit CH2 DTC2 Rev.1.10 -2- s SELECTION GUIDE The mask option for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; ←Part Number R1280D002X-TR ↑↑ ab Code a Contents Designation of Mask Option : A version: fosc=700kHz, with External Phase Compensation for Channel 1. B version: fosc=700kHz, with Internal Phase Compensation and standby mode. C version: fosc=200kHz, with External Phase Compensation for Channel 1 Designation of Taping Type : (Refer to Taping Specifications.) b s PIN CONFIGURATION q SON10 10 6 (mark side) 1 5 s PIN DESCRIPTION q R1280D002A/C Pin No. 1 2 3 4 5 6 7 8 9 10 Symbol EXT1 GND AMPOUT1 DTC1 VFB1 VFB2 DTC2 Vrefout VIN EXT2 Ground Pin Amplifier Output Pin of Channel 1 Maximum Duty Cycle of Channel 1 Setting Pin Feedback pin of Channel 1 Feedback pin of Channel 2 Maximum Duty Cycle of Channel 2 Setting Pin Reference Output Pin Voltage Supply Pin of the IC External Transistor of Channel 2 Drive Pin (CMOS Output) Description External Transistor of Channel 1 Drive Pin (CMOS Output) Rev. 1.10 -3- q R1280D002B Pin No. 1 2 3 4 5 6 7 8 9 10 Symbol EXT1 GND CE DTC1 VFB1 VFB2 DTC2 Vrefout VIN EXT2 Ground Pin Chip Enable Pin Description External Transistor of Channel 1 Drive Pin (CMOS Output) Maximum Duty Cycle of Channel 1 Setting Pin Feedback pin of Channel 1 Feedback pin of Channel 2 Maximum Duty Cycle of Channel 2 Setting Pin Reference Output Pin Voltage Supply Pin of the IC External Transistor of Channel 2 Drive Pin (CMOS Output) s ABSOLUTE MAXIMUM RATINGS q R1280D002A/C Symbol VIN VEXT1,2 VAMPOUT1 VDTC1,2 Vrefout VFB1,2 IEXT1,2 PD Topt Tstg R1280D002B Symbol VIN VEXT1,2 VCE VDTC1,2 Vrefout VFB1,2 IEXT1,2 PD Topt Tstg Item VIN Pin Voltage VEXT1,2 Pin Output Voltage AMPOUT1 Pin Voltage DTC1,2 Pin Voltage VREFOUT Pin Voltage VFB1,VFB2 Pin Voltage EXT1,2 Pin Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 6.5 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 ±50 250 -40 to +85 -55 to +125 Unit V V V V V V mA mW °C °C q Item VIN Pin Voltage VEXT1,2 Pin Output Voltage CE Pin Voltage DTC1,2 Pin Voltage VREFOUT Pin Voltage VFB1,VFB2 Pin Voltage EXT1,2 Pin Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 6.5 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 ±50 250 -40 to +85 -55 to +125 Unit V V V V V V mA mW °C °C Rev.1.10 -4- s ELECTRICAL CHARACTERISTICS q R1280D002A Conditions VIN=3.3V, IOUT=1mA VIN=3.3V 2.5V≤ VIN ≤ 5.5V 1mA≤ IROUT ≤ 10mA VIN=3.3V VIN=3.3V, VREFOUT=0V -40°C≤ Topt ≤ 85°C VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=5.5V,VFB1 or VFB2=0V or 5.5V EXT1,2 Pins at no load, VIN=3.3V VIN=5.5V, EXT1,2 pins at no load VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VFB1=1.1V→0V 60 2.10 0.985 MIN. 2.5 1.478 20 TYP. 1.500 2 6 25 ±150 1.000 ±150 1.015 (Topt=25°C) MAX. Unit 5.5 V 1.522 V mA 6 mV 12 mV mA ppm/°C V ppm/°C µA kHz mA Ω Ω Ω Ω ms V V V Symbol Item VIN Operating Input Voltage VREFOUT VREFOUT Voltage Tolerance IROUT VREFOUT Output Current ∆VREFOUT VREFOUT Line Regulation /∆VIN ∆VREFOUT VREFOUT Load Regulation /∆IOUT ILIM VREFOUT Short Current Limit ∆VREFOUT VREFOUT Voltage /∆ T Temperature Coefficient VFB1 VFB1 Voltage ∆VFB1/∆T VFB1 Voltage Temperature Coefficient IFB1,2 IFB1,2 Input Current fOSC Oscillator Frequency IDD1 Supply Current REXTH1 EXT1 “H” ON Resistance REXTL1 EXT1 “L” ON Resistance REXTH2 EXT2 “H” ON Resistance REXTL2 EXT2 “L” ON Resistance TDLY Delay Time for Protection -0.1 595 700 1.4 4.0 2.7 4.0 3.7 100 2.20 VUVLOD +0.10 0.2 1.2 0.2 1.2 110 1.9 0.7 to VIN 115 -1.4 60 3 -0.2 to VIN-1.3 0.1 805 3.0 8.0 5.0 8.0 8.0 140 2.35 2.45 0.3 1.3 0.3 1.3 VUVLOD UVLO Detector Threshold VUVLO UVLO Released Voltage VDTC10 VDTC1100 VDTC20 VDTC2100 AV1 FT1 VICR1 IAMPL IAMPH AV2 FT1 VICR1 VFB2 CH1 Duty=0% VIN=3.3V CH1 Duty=100% VIN=3.3V CH2 Duty=0% VIN=3.3V CH2 Duty=100% VIN=3.3V CH1 Open Loop Gain VIN=3.3V CH1 Single Gai n Frequency VIN=3.3V, AV1=0dB Band CH1 Input Voltage Range VIN=3.3V CH1 Sink Current VIN=3.3V, VAMPOUT1=1.0V, VFB1=VFB1+ 0.1V CH1 Source Current VIN=3.3V, VAMPOUT1=1.0V, VFB1=VFB1- 0.1V CH2 Open Loop Gain VIN=3.3V CH2 Single Gain Frequency VIN=3.3V, AV2=0dB Band CH2 Input Voltage Range VIN=3.3V, CH2 Input Offset Voltage VIN=3.3V, 0.1 1.1 0.1 1.1 V V V dB MHz V µA 70 -0.7 mA dB MHz V -12 12 mV Rev. 1.10 -5- q R1280D002B Conditions VIN=3.3V, IOUT=1mA VIN=3.3V 2.5V≤ VIN ≤ 5.5V 1mA≤ IROUT ≤ 10mA VIN=3.3V VIN=3.3V, VREFOUT=0V -40°C≤ Topt ≤ 85°C VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=5.5V,VFB1 or VFB2=0V or 5.5V EXT1,2 Pins at no load, VIN=3.3V VIN=5.5V, EXT1,2 pins at no load VIN=3.3V, CDTC1,2=1000pF VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VFB1=1.1V→0V VIN=3.3V, CDTC1=0.33µF VIN=3.3V, CDTC2=0.33µF VIN=5.5V VIN=2.5V 2.10 2.20 VUVLOD +0.10 1.5 60 0.985 MIN. 2.5 1.478 20 TYP. 1.500 2 6 25 ±150 1.000 ±150 Symbol Item VIN Operating Input Voltage VREFOUT VREFOUT Voltage Tolerance IROUT VREFOUT Output Current ∆VREFOUT VREFOUT Line Regulation /∆VIN ∆VREFOUT VREFOUT Load Regulation /∆IOUT ILIM VREFOUT Short Current Limit ∆VREFOUT VREFOUT Voltage /∆ T Temperature Coefficient VFB1 VFB1 Voltage ∆VFB1/∆T VFB1 Voltage Temperature Coefficient IFB1,2 IFB1,2 Input Current fOSC Oscillator Frequency IDD1 Supply Current Maxdty Maximum Duty Cycle REXTH1 EXT1 “H” ON Resistance REXTL1 EXT1 “L” ON Resistance REXTH2 EXT2 “H” ON Resistance REXTL2 EXT2 “L” ON Resistance TDLY Tss1 Tss2 VCEH VCEL Delay Time for Protection Soft Start Time1 for Ch1 Soft Start Time2 for Ch2 CE “H” Input Voltage CE “L” Input Voltage (Topt=25°C) MAX. Unit 5.5 V 1.522 V mA 6 mV 12 mV mA ppm/°C 1.015 V ppm/°C µA kHz mA % Ω Ω Ω Ω ms ms ms V 0.3 2.35 2.45 0.1 0.1 2 12 V V V µA µA µA mV -0.1 595 84 700 1.4 90 4.0 2.7 4.0 3.7 100 10 15 0.1 805 3.0 95 8.0 5.0 8.0 8.0 140 VUVLOD UVLO Detector Threshold VUVLO UVLO Released Voltage ICEH ICEL ISTB VOFF2 CE “H” Input Current CE “L” Input Current Standby Current Input Offset Voltage of Ch2. VIN= VCE =5.5V VIN=5.5V, VCE=0.0V VIN=5.5V, VCE=0.0V VIN=3.3V -0.1 -0.1 0 -12 Rev.1.10 -6- q R1280D002C Conditions VIN=3.3V, IOUT=1mA VIN=3.3V 2.5V≤ VIN ≤ 5.5V 1mA≤ IROUT ≤ 10mA VIN=3.3V VIN=3.3V, VREFOUT=0V -40°C≤ Topt ≤ 85°C VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=5.5V,VFB1 or VFB2=0V or 5.5V EXT1,2 Pins at no load, VIN=3.3V VIN=5.5V, EXT1,2 pins at no load VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VFB1=1.1V→0V 50 2.10 0.985 MIN. 2.5 1.478 20 TYP. 1.500 2 6 25 ±150 1.000 ±150 Symbol Item VIN Operating Input Voltage VREFOUT VREFOUT Voltage Tolerance IROUT VREFOUT Output Current ∆VREFOUT VREFOUT Line Regulation /∆VIN ∆VREFOUT VREFOUT Load Regulation /∆IOUT ILIM VREFOUT Short Current Limit ∆VREFOUT VREFOUT Voltage /∆ T Temperature Coefficient VFB1 VFB1 Voltage ∆VFB1/∆T VFB1 Voltage Temperature Coefficient IFB1,2 IFB1,2 Input Current fOSC Oscillator Frequency IDD1 Supply Current REXTH1 EXT1 “H” ON Resistance REXTL1 EXT1 “L” ON Resistance REXTH2 EXT2 “H” ON Resistance REXTL2 EXT2 “L” ON Resistance TDLY Delay Time for Protection (Topt=25°C) MAX. Unit 5.5 V 1.522 V mA 6 mV 12 mV mA ppm/°C 1.015 V ppm/°C µA kHz mA Ω Ω Ω Ω ms V V V -0.1 160 200 0.7 4.0 2.7 4.0 3.7 100 2.20 VUVLOD +0.10 0.25 1.2 0.25 1.2 110 1.9 0.7 to VIN 115 -1.4 60 3 -0.2 to VIN-1.3 0.1 240 1.2 8.0 5.0 8.0 8.0 150 2.35 2.45 0.35 1.3 0.35 1.3 VUVLOD UVLO Detector Threshold VUVLO UVLO Released Voltage VDTC10 VDTC1100 VDTC20 VDTC2100 AV1 FT1 VICR1 IAMPL IAMPH AV2 FT1 VICR1 VFB2 CH1 Duty=0% VIN=3.3V CH1 Duty=100% VIN=3.3V CH2 Duty=0% VIN=3.3V CH2 Duty=100% VIN=3.3V CH1 Open Loop Gain VIN=3.3V CH1 Single Gain Frequency VIN=3.3V, AV1=0dB Band CH1 Input Voltage Range VIN=3.3V CH1 Sink Current VIN=3.3V, VAMPOUT1=1.0V, VFB1=VFB1+ 0.1V CH1 Source Current VIN=3.3V, VAMPOUT1=1.0V, VFB1=VFB1- 0.1V CH2 Open Loop Gain VIN=3.3V CH2 Single Gain Frequency VIN=3.3V, AV2=0dB Band CH2 Input Voltage Range VIN=3.3V, CH2 Input Offset Voltage VIN=3.3V, 0.15 1.1 0.15 1.1 V V V dB MHz V µA 70 -0.7 mA dB MHz V -12 12 mV Rev. 1.10 -7- s Operation of Step-up DC/DC Converter and Output Current Step-up DC/DC Converter makes higher output voltage than input voltage by releasing the energy accumulated during on time of Lx Transistor on input voltage. i2 Inductor Diode IOUT VOUT VIN i1 Lx Tr CL GND Discontinuous Mode IL ILxmax IL Continuous Mode ILxmax ILxmin ILxmin Tf Iconst t Ton T=1/fosc Toff Ton T=1/fosc Toff t Step 1. Lx Tr. is on, then the current IL=i1 flows, and the energy is charged in L. In proportion to the on time of Lx Tr. (Ton), IL=i1 increases from IL=ILxmin=0 and reaches ILxmax. Step 2. When the Lx Tr. is off, L turns on Schottky Diode (SD), and IL=i2 flows to maintain IL=ILxmax. Step 3. IL=i2 gradually decreases, and after Tf passes, IL=ILxmin=0 is true, then SD turns off. Note that in the case of the continuous mode, before IL=ILxmin=0 is true, Toff passes, and the next cycle starts, then Lx Tr. turns on again. In this case, ILxmin>0, therefore IL=ILxmin>0 is another starting point and ILx max increases. With the PWM controller, switching times during the time unit are fixed. By controlling Ton, output voltage is maintained. s Output Current and Selection of External Components Output Current of Step-up Circuit and External Components There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN ×t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. PON=∫VIN ×t/L dt 0 TON 2 Formula 1 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT-VIN)×t/L, therefore electric power, POFF is described as in next formula. Rev.1.10 -8- POFF=∫VIN×(VOUT-VIN)×t/L dt 0 Tf Formula 2 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula. PAV=1/(Ton+Toff)×{∫VIN ×t/L dt + ∫VIN×(VOUT-VIN)×t/L dt} Formula 3 0 0 TON 2 Tf In PWM control, when Tf=Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. Formula 4 VIN×Ton/L=(VOUT-VIN)×Toff/L Further, the electric power, PAV is equal to output electric power, VOUT×IOUT, thus, 2 2 2 Formula 5 IOUT = fOSC × VIN ×TON /{2×L ×(VOUT-VIN)}=VIN ×TON/(2×L×VOUT) When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then, 2 2 Formula 6 IOUT = fOSC ×VIN ×tON /(2×L×(VOUT-VIN))+VIN×Iconst/VOUT In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: Formula 7 ILxmax = Iconst +VIN×Ton/L With the formula 4,6, and ILxmax is, Formula 8 ILxmax = VOUT/VIN×IOUT+VIN×Ton/(2×L) Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. s Operation of Inverting DC/DC converter and Output Current Inverting DC/DC converter saves energy during on time of Lx transistor, and supplies the energy to output during off time, output voltage opposed to input voltage is obtained. Lx Tr Diode IOUT VOUT VIN i1 Inductor i2 CL GND Rev. 1.10 -9- Discontinuous Mode IL ILxmax ILxmin ILxmin Tf Iconst Continuous Mode ILxmax IL t Ton T=1/fosc Toff Ton T=1/fosc Toff t Step 1. Lx Tr. turns on, current, IL=i1 flows, energy is charged in L. In proportion to the on time, Ton, of Lx Tr. IL=i1 increases from IL=ILxmin=0 and reaches ILxmax. Step 2. When the Lx Tr. turns off, L turns on Shottky diode (SD) and flow IL=i2 to maintain IL = ILxmax. Step 3. IL=i2 decreases gradually, after Tf passes, IL=ILxmin=0 is true, then SD turns off. Note that in the case of continuous mode, before IL=ILxmin=0 is true, Toff passes and next cycle starts, then Lx Tr. turns on. In this case, ILxmin>0, therefore IL increases from IL=ILxmin>0. With the PWM controller, switching time (fosc) in the time unit is fixed, and by controlling Ton, output voltage is maintained. s Output Current and Selection of External Components There are also two modes, or discontinuous mode and continuous mode for the PWM inverting switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN ×t/L. Therefore, the electric power, P, which is supplied with input side, can be described as in next formula. P=∫VIN ×t/L dt 0 TON 2 Formula 9 Thus average electric power in one cycle, PAV is described as in the next formula. PAV=1/(Ton +Toff)×∫VIN ×t/L dt =VIN2×Ton /(2×L×(Ton + Toff)) 0 TON 2 2 Formula 10 This electric power PAV equals to output electric power VOUT×IOUT, thus, 2 2 Formula 11 IOUT = fOSC × VIN ×TON /(2×L ×VOUT) When IOUT becomes more than formula 11, the current flows through the inductor continuously, then the mode becomes continuous. In the continuous mode, the deviation of the current equals between Ton and Toff, therefore, Formula 12 VIN×Ton/L=VOUT×Toff/L In this moment, the current flowing continuously through L, is assumed as Iconst, IOUT is described as in the next formula: 2 2 Formula 13 IOUT = fOSC ×VIN ×TON /(2×L×VOUT)+Ton/(Ton + Toff)×VIN× Iconst /VOUT In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: Formula 14 ILxmax = Iconst +VIN×Ton/L With the formula 12,13, ILxmax is, Formula 15 ILxmax = (Ton+Toff)/Toff×IOUT+VIN×Ton/(2×L) Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 14, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. Rev.1.10 - 10 - s TEST CIRCUITS q Test Circuit 1 q Test Circuit 2 EXT1 EXT 2 OSCILLOSCOPE C1 GND VIN AMPOUT Vrefout DTC1 DTC2 VFB1 VFB2 C2 C1 EXT1 EXT 2 V IN GND AMPOUT Vrefout DTC1 DTC2 VFB1 VFB2 OSCILLOSC OPE C2 q Test Circuit 3 q Test Circuit 4 EXT1 EXT2 OSCILLOSCOPE EXT1 EXT 2 C1 V IN GND C2 AMPOUT Vrefout DTC1 DTC2 VFB1 VFB2 C1 GND V IN AMPOUT Vrefout DTC1 DTC2 V FB1 OSCILLOSCOPE C2 V FB2 q Test Circuit 5 EXT1 EXT 2 GND V IN q Test Circuit 6 EXT1 EXT 2 C1 AMPOUT Vrefout DTC1 DTC2 VFB1 VFB2 C2 C1 GND VIN AMPOUT Vrefout C2 A V q Test Circuit 8 DTC1 DTC2 VFB1 VFB2 V q Test Circuit 7 OSCILLOSC OPE EXT1 EXT 2 OSCILLOSCOPE 2 EXT1 EXT C1 GND VIN AMPOUT Vrefout DTC1 DTC2 VFB1 VFB2 C1 C2 V IN GND AMPOUT Vrefout DTC1 DTC2 V FB1 V FB2 Rev. 1.10 - 11 - q Test Circuit 9 q Test Circuit 10 EXT1 EXT 2 C1 A GND V IN EXT1 EXT 2 OSCILLOSCOPE C1 GND VIN AMPOUT Vrefout DTC1 DTC2 VFB1 VFB2 C2 CE Vrefout C2 C3 DTC1 DTC2 VFB1 VFB2 q Test Circuit 11 q Test Circuit 12 EXT1 EXT 2 C1 OSCILLOSCOPE EXT1 EXT 2 OSCILLOSCOPE GND VIN C2 C1 GND VIN CE Vrefout DTC1 DTC2 CE Vrefout DTC1 DTC2 V FB1 VFB2 C2 C4 VFB1 VFB2 q Test Circuit 13 q Test Circuit 14 EXT1 EXT1 EXT 2 EXT 2 V IN OSCILLOSCOPE GND VIN C1 GND CE C1 C2 Vrefout CE Vrefout DTC1 DTC2 VFB1 VFB2 C2 DTC1 DTC2 V FB1 V V FB2 q Test Circuit 15 q Test Circuit 16 EXT1 EXT 2 EXT1 EXT 2 C1 GND VIN C1 C2 OSCILLOSCOPE GND V IN CE Vrefout DTC1 DTC2 V FB1 VFB2 A V CE Vrefout DTC1 DTC2 VFB1 VFB2 C2 Rev.1.10 - 12 - q Test Circuit 17 q Test Circuit 18 C1 EXT1 EXT 2 GND OSCILLOSCOPE C1 EXT1 EXT2 GND VIN CE Vrefout VIN C2 CE Vrefout DTC1 DTC2 V FB1 C2 C3 DTC1 DTC2 VFB1 VFB2 OSCILLOSCOPE C4 VFB2 OSCILLOSCOPE Typical Characteristics shown in the following pages are obtained with test circuits shown above. q R1280D002A/C Test Circuit 1,2: Typical Characteristic 4) Test Circuit 3: Typical Characteristic 6) Test Circuit 4: Typical Characteristic 7) Test Circuit 5: Typical Characteristic 8) Test Circuit 6: Typical Characteristics 9) 10) Test Circuit 7: Typical Characteristic 11) Test Circuit 8: Typical Characteristic 12) Test Circuit 9: Typical Characteristics 13) 14) q R1280D002B Test Circuit 10,11: Typical Characteristics 4) 5) Test Circuit 12: Typical Characteristic 6) Test Circuit 13: Typical Characteristic 7) Test Circuit 14: Typical Characteristic 8) Test Circuit 15: Typical Characteristics 9) 10) Test Circuit 16: Typical Characteristic 11) Test Circuit 17: Typical Characteristics 15) 16) Test Circuit 18: Typical Characteristics 17) 18) Standard Circuit Example: Typical Characteristics 1) 2) 3) 19) 20) Note) Capacitors' values of test circuits Capacitors: Ceramic Type: C1=4.7µF, C2=1.0µF, C3=C4=1000pF Efficiency η(%) can be calculated with the next formula: η=(VOUT1×IOUT1+VOUT2×IOUT2)/(VIN×IIN)×100 Rev. 1.10 - 13 - s TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current L1=6.8uH,C1=10uF, VOUT2=-10V,IOUT2=0mA R1280D002A VIN=2.5V VIN=3.3V VIN=5.5V Output Voltage VOUT2(V) Topt=25°C L2=6.8uH,C2=10uF, VOUT1=10V,IOUT1=0mA R1280D002A 10.10 -9.90 Output Voltage VOUT1(V) 10.05 -9.95 10.00 -10.00 VIN=2.5V VIN=3.3V VIN=5.5V 9.95 -10.05 9.90 0 50 100 150 200 Output Current IOUT1(mA) L1=6.8uH,C1=10uF, VOUT2=-10V,IOUT2=0mA R1280D002B -10.10 0 -50 -100 -150 Output Current IOUT2(mA) -200 L2=6.8uH,C2=10uF, VOUT1=10V,IOUT1=0mA R1280D002B -9.90 10.10 Output Voltage VOUT1(V) 10.05 Output Voltage VOUT2(V) -9.95 10.00 VIN=2.5V -10.00 9.95 VIN=3.3V VIN=5.5V -10.05 VIN=2.5V VIN=3.3V VIN=5.5V 9.90 0 50 100 150 Output Current IOUT1(mA) 200 -10.10 0 -50 Output Current IOUT2(mA) -100 -150 -200 L1=22uH,C1=10uF, VOUT2=-10V,IOUT2=0mA R1280D002C L2=22uH,C2=10uF, VOUT1=10V,IOUT1=0mA R1280D002C -9.90 VIN=2.5V VIN=3.3V -9.95 VIN=5.5V 10.10 Output Voltage VOUT1(V) 10.05 10.00 VIN=2.5V 9.95 VIN=3.3V VIN=5.5V 9.90 0 50 100 150 200 Output Voltage VOUT2(V) -10.00 -10.05 -10.10 Output Current IOUT1(mA) 0 -50 -100 -150 Output Current IOUT2(mA) Rev.1.10 - 14 - 2) Efficiency vs. Output Current L1=6.8uH,C1=10uF, VOUT2=-VOUT1,IOUT2=0mA R1280D002A VIN=3.3V, Topt=25°C L2=6.8uH,C2=10uF, VOUT1=-VOUT2,IOUT1=0mA R1280D002A 90 80 70 Efficiency (%) 90 80 70 Efficiency (%) 60 50 40 30 20 10 0 0 50 100 150 Output Current IOUT1(mA) 200 Vout1=5V Vout1=10V Vout1=15V 60 50 40 30 20 10 0 0 -50 -100 -150 Output Current IOUT2(mA) -200 Vout2=-5V Vout2=-10V Vout2=-15V L1=6.8uH,C1=10uF, VOUT2=-VOUT1,IOUT2=0mA R1280D002B L2=6.8uH,C2=10uF, VOUT1=-VOUT2,IOUT1=0mA R1280D002B 90 80 70 Efficiency (%) 60 50 40 30 20 10 0 0 -50 -100 -150 Output Current IOUT2 (mA) -200 Vout2=-5V Vout2=-10V Vout2=-15V 90 80 70 Efficiency (%) 60 50 40 30 20 10 0 0 Vout1=5V Vout1=10V Vout1=15V 50 100 150 Output Current IOUT1 (mA) 200 L1=22uH,C1=10uF, VOUT2=-VOUT1,IOUT2=0mA R1280D002C L2=22uH,C2=10uF, VOUT1=-VOUT2,IOUT1=0mA R1280D002C 90 80 70 Efficiency (%) 60 50 40 30 20 10 0 Vout2=-5V Vout2=-10V Vout2=-15V 90 80 70 Efficiency (%) 60 50 40 30 20 10 0 0 50 100 150 Output Current IOUT1 (mA) 200 Vout1=5V Vout1=10V Vout1=15V 0 -25 -50 -75 -100 Output Current IOUT2 (mA) -125 -150 Rev. 1.10 - 15 - 3) Output Voltage vs. Temperature L1=6.8uH,C1=10uF R1280D002A VIN=3.3V L2=6.8uH,C2=10uF R1280D002A 11.0 IOUT=10mA -9.0 Output Voltage VOUT2 (V) Output Voltage VOUT1 (V) 10.5 IOUT=100mA -9.5 10.0 -10.0 IOUT=-10mA 9.5 -10.5 9.0 -60 -40 -20 0 20 40 60 Temperature Topt(°C) 80 100 -11.0 -60 -40 -20 0 20 40 60 Temperature Topt(°C) 80 100 L1=6.8uH,C1=10uF R1280D002B R1280D002B -9.0 Output Voltage VOUT2 (V) L2=6.8uH,C2=10uF 11.0 Output Voltage VOUT1 (V) 10.5 -9.5 10.0 IOUT=10mA IOUT=100mA -10.0 IOUT=-10mA -10.5 9.5 9.0 -60 -40 -20 0 20 40 60 ( Temperature Topt°C) 80 100 -11.0 -60 -40 -20 0 20 40 60 Temperature Topt (°C) 80 100 L1=22uH,C1=10uF R1280D002C R1280D002C L2=22uH,C2=10uF 11.0 Output Voltage VOUT2 (V) Output Voltage VOUT1(V) IOUT=10mA -9.0 10.5 IOUT=100mA -9.5 10.0 -10.0 9.5 -10.5 IOUT=-10mA 9.0 -60 -40 -20 0 20 40 60 Temperature Topt (°C) 80 100 -11.0 -60 -40 -20 0 20 40 60 Temperature Topt(°C) 80 100 Rev.1.10 - 16 - 4) Frequency vs. Temperature R1280D002A R1280D002B 800 750 700 650 600 550 -60 -40 -20 0 20 40 60 Temperature Topt (°C) R1280D002C VIN=2.5V VIN=3.3V VIN=5.5V 800 Frequency fosc (kHz) 750 700 650 600 550 80 100 VIN=2.5V VIN=3.3V VIN=5.5V Frequency fosc (kHz) -60 -40 -20 0 20 40 60 Temperature Topt (°C) 80 100 230 Frequency fosc (kHz) 210 190 VIN=2.5V 170 150 -60 -40 -20 VIN=3.3V VIN=5.5V 0 20 40 60 Temperature Topt (°C) 80 100 VIN=3.3V R1280D002B 5) Maximum Duty Cycle vs. Temperature R1280D002B 94 Maximum Duty Cycle maxduty2 (%) 94 Maximum Duty Cycle maxduty1(%) 92 92 90 90 88 88 86 -60 -40 -20 0 20 40 60 ( Temperature Topt °C) 80 100 86 -60 -40 -20 0 20 40 60 Temperature Topt (°C) 80 100 Rev. 1.10 - 17 - 6) Feedback Voltage vs. Temperature VIN=3.3V R1280D002A/B/C 7) Input Offset Voltage vs. Temperature R1280D002A/B/C 1.02 Feedback Voltage VFB1(V) 1.01 1.00 0.99 0.98 0.97 -60 -40 -20 0 20 40 60 Temperature Topt (°C) 80 100 10.0 Input Offset Voltage VFB2 (mV) VIN=3.3V R1280D002A/B/C R1280D002A/B/C 5.0 0.0 -5.0 -10.0 -60 -40 -20 0 20 40 60 80 100 Temperature Topt (°C) 8) Vrefout Output Voltage vs. Temperature 9) Vrefout Output Voltage vs. Output Current 1.55 Vrefout Voltage(V) Vrefout Voltage(V) 1.8 1.5 1.2 0.9 0.6 0.3 0 1.53 1.51 1.49 1.47 1.45 -60 -40 -20 0 20 40 60 Temperature Topt (°C) 80 100 0 10 20 30 40 IROUT (mA) 50 60 10) Vrefout Output Voltage vs. Output Current R1280D002A/B/C 11) Protection Circuit Delay Time vs. Temperature VIN=3.3V R1280D002A/B/C 1.508 1.506 1.504 1.502 1.500 1.498 0 5 10 IROUT(mA) 15 20 140 Protection Circuit Delay Time TDLY (ms) Vrefout Voltage(V) 120 100 80 60 -60 -40 -20 0 20 40 60 Temperature Topt(°C) 80 100 Rev.1.10 - 18 - 12) Duty Cycle vs. DTC Voltage VIN=3.3V, EXT=1000pF R1280D002A R1280D002C VIN=3.3V, EXT=1000pF 100 80 60 40 20 0 0 0.2 0.4 0.6 0.8 VDTC(V) 1 1.2 1.4 100 Duty Cycle Duty(%) 80 60 40 20 0 0 0.2 0.4 0.6 0.8 VDTC(V) 1 1.2 1.4 13) Output Sink Current vs. Temperature VIN=3.3V R1280D002A/C Duty Cycle Duty(%) 14) Output Source Current vs. Temperature VIN=3.3V R1280D002A/C 130 Output Sink Current IAMPH(mA) 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 Output Sink Current IAMPL(uA) 120 110 100 90 -60 -40 -20 0 20 40 60 80 Temperature Topt (°C) 100 -60 -40 -20 0 20 40 60 Temperature Topt(°C) 80 100 15) CE "H" Input Voltage vs. Temperature VIN=5.5V R1280D002B 16) CE "L" Input Voltage vs. Temperature VIN=2.5V R1280D002B 1.25 CE"H" Input Voltage VCEH(V) 1.25 CE"L" Input Voltage VCEL(V) -50 0 50 Temperature Topt (°C) 100 1.00 1 0.75 0.75 0.50 0.5 0.25 0.25 -50 0 50 ( Temperature Topt°C) 100 Rev. 1.10 - 19 - 17) Soft Starting Time vs. Capacitance value 40 R1280D002B 50 R1280D002B VIN=3.3V Soft Starting Time TSS1(ms) 30 Soft Starting Time TSS2(ms) 0 0.2 0.4 0.6 0.8 1 Capacitance value for Soft Start(uF) 1.2 40 30 20 20 10 10 0 0 0 0.2 0.4 0.6 0.8 1 Capacitance value for Soft Start(uF) 1.2 18) Soft Starting Time vs. Temperature R1280D002B CDTC1=0.33µF R1280D002B VIN=3.3V CDTC2=0.33µF 20 Soft Starting Time TSS1(ms) Soft Starting Time TSS2(ms) 30 25 20 15 10 5 0 -50 0 50 Temperature Topt(°C) 100 VIN=3.3V L1=6.8µH R1280D002A 15 10 5 0 -50 0 50 Temperature Topt(°C) 100 19) Load Transient Response(Step-up Side) R1280D002A L1=6.8µH 10.5 Output Current IOUT(mA) 10 Output Voltage VOUT1(V) 9.5 9 8.5 8 7.5 0 0.0005 0.001 0.0015 Time (sec) 0.1 100 11.5 11 Output Voltage VOUT1(V) 10.5 10 9.5 9 8.5 0 0.01 0.02 0.03 Time (sec) 0.04 0.1 100 0.002 0.05 Rev.1.10 - 20 - Output Current IOUT(mA) L1=6.8µH R1280D002B R1280D002B L1=6.8µH 10.5 10 9.5 9 8.5 8 7.5 0 0.0005 0.001 Time (sec) 0.0015 0.1 100 11.5 Output Current IOUT(mA) Output Current IOUT(mA) Output Current IOUT(mA) 11 10.5 10 9.5 9 8.5 0 0.01 0.02 0.03 Time (sec) 0.04 0.1 100 Output Voltage VOUT1(V) Output Current IOUT(mA) 0.002 L1=22µH Output Voltage VOUT1(V) 0.05 L1=22µH R1280D002C 10.5 10 9.5 9 8.5 8 7.5 0 0.0005 0.001 Time (s) 0.0015 0.1 0.002 100 R1280D002C 11.5 11 10.5 10 9.5 9 8.5 0 0.01 0.02 0.03 Time (sec) 0.04 0.1 100 Output Voltage VOUT1(V) Output Voltage VOUT1(V) Output Curren IOUT(mA) 0.05 VIN=3.3V L2=6.8µH 20) Load Transient Response (Inverting Side) R1280D002A L2=6.8µH R1280D002A -9 Output Voltage VOUT2(V) -9.5 -10 -10.5 -11 -50 -0.1 -9.5 Output Current IOUT(mA) -10 -10.5 -11 -11.5 -12 0.000 -50 Output Voltage VOUT2(V) -0.1 -11.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 1 2 Time (sec) 4 3 5 6 0.005 0.010 Time (sec) 0.015 0.020 Rev. 1.10 - 21 - L2=6.8µH R1280D002B L2=6.8µH R1280D002B -9.5 Output Current IOUT(mA) -9 Output Voltage VOUT2(V) Output Voltage VOUT2(V) -10 -10 -50 -0.1 -10.5 -11 -50 -0.1 -10.5 -11 -11.5 -12 0.000 -11.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 1 2 Time (sec) 4 3 5 6 L2=22µH R1280D002C -9 0.005 0.010 0.015 Time (sec) 0.020 L2=22µH R1280D002C -9.5 Output Voltage VOUT2(V) Output Current IOUT(mA) -10 -10.5 -11 -11.5 -12 0.000 -50 -0.1 -9.5 -10 -50 -0.1 -10.5 -11 -11.5 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 Time(s) 0.005 0.010 Time(s) 0.015 0.020 Rev.1.10 - 22 - Output Current IOUT(mA) Output Voltage VOUT2 (V) Output Current IOUT(mA) -9.5 s TYPICAL APPLICATION AND TECHNICAL NOTES q R1280D002A/C VOUT1 C1 L1 C3 EXT1 EXT2 PMOS C8 R9 R3 L2 R1 C6 NMOS GND VIN AMPOUT1 R2 C9 R5 R11 C4 R7 R8 Vrefout C5 DTC1 DTC2 R10 VFB1 V FB2 C7 R6 R4 C2 Diode VOUT2 External Components Inductor L1,2: 6.8µH, LDR655312T(TDK) for A type, 22µH for C type Diode: FS1J3 (Origin Electronics) NMOS: IR7601 (International Rectifier) PMOS: Si3443 (Siliconix) Resistors: R1, R2, R3, R4 for Setting Output Voltage. Recommendation values are R1+R2≤100kΩ or R3+R4≤100kΩ R5=43kΩ, R6=10kΩ, R7=R9=22kΩ, R8=R10=43kΩ, R11=220kΩ Capacitors: Ceramic Capacitor (Example) R1280D002A: C1=C2=10µF, C3=4.7µF, C4=0.22µF, C5=0.47µF, C6=120pF, C7=50pF, C8=1µF, C9=1000pF R1280D002C: C1=C2=10µF, C3=4.7µF, C4=0.22µF, C5=0.47µF, C6=220pF, C7=330pF, C8=1µF, C9=1000pF Note: Maximum voltage tolerance of each component should be considered. With the transistor shown above is appropriate to set up to ±15V as output voltage. q R1280D002B VOUT1 C1 L1 C3 EXT2 EXT1 PMOS C8 C5 R3 L2 R1 C6 NMOS GND VIN CE R2 R5 DTC1DTC2 C4 VFB1 VFB2 C7 R6 R4 Diode Rev. 1.10 - 23 - External Components Inductor L1,2: 6.8µH, LDR655312T(TDK) Diode: FS1J3 (Origin Electronics) NMOS: IR7601 (International Rectifier) PMOS: Si3443 (Siliconix) Resistors: R1, R2, R3, R4 for Setting Output Voltage. Recommendation values are R1+R2≤100kΩ or R3+R4≤100kΩ R5=43kΩ, R6=10kΩ Capacitors: Ceramic Capacitor (Example) C1=C2=10µF, C3=4.7µF, C4=0.33µF, C5=0.33µF, C6=120pF, C7=50pF, C8=1µF Note: Maximum voltage tolerance of each component should be considered. With the transistor shown above is appropriate to set up to ±15V as output voltage. s APPLICATION EXAMPLE q R1280D002A/C VOUT3 C10 VOUT1 C1 NMOS C11 L1 C3 R1 C6 EXT1EXT2 GND VIN R7 C4 R8 VFB1 VFB2 C7 R6 R4 AMPOUT1 Vrefout DTC1 DTC2 PMOS C8 R9 R10 R3 L2 R2 C9 R5 R11 C5 Diode VOUT2 C2 External Components Inductor L1,2: 6.8µH, LDR655312T(TDK) for A version, 22µH for R1280D002C Diode: FS1J3 (Origin Electronics) NMOS: IR7601 (International Rectifier) PMOS: Si3443 (Siliconix) Resistors: R1, R2, R3, R4 for Setting Output Voltage. Recommendation values are R1+R2≤100kΩ or R3+R4≤100kΩ R5=43kΩ, R6=10kΩ, R7=R9=22kΩ, R8=R10=43kΩ, R11=220kΩ Capacitors: Ceramic Capacitor (Example) R1280D002A: C1=C2=10µF, C3=4.7µF, C4=0.22µF, 5=0.47µF,C6=120pF,C7=50pF,C8=C10=C11=1µF,C9=1000pF R1280D002C:C1=C2=10µF,C3=4.7µF, C4=0.22µF,C5=0.47µF,C6=220pF,C7=330pF,C8=C10=C11=1µF,C9=1000pF This IC can be used 3 Output TFT Bias Circuit as shown above. VOUT3=2×VOUT1-Vf Note: Maximum voltage tolerance of each component should be considered. With the transistor shown above is appropriate to set up to +15V as VOUT1, -15V as VOUT2, 30V as VOUT3. Rev.1.10 - 24 - q R1280D002B VOUT3 C10 VOUT1 C1 NMOS C11 L1 C3 R1 C6 EXT1 EXT2 PMOS C8 R3 L2 GND CE VIN Vrefout C5 R2 R5 C4 DTC1DTC2 VFB1 VFB2 C7 R4 Diode VOUT2 R6 External Components Inductor L1,2: 6.8µH, LDR655312T(TDK) Diode: FS1J3 (Origin Electronics) NMOS: IR7601 (International Rectifier) PMOS: Si3443 (Siliconix) Resistors: R1, R2, R3, R4 for Setting Output Voltage. Recommendation values are R1+R2≤100kΩ or R3+R4≤100kΩ R5=43kΩ, R6=10kΩ Capacitors: Ceramic Capacitor (Example) R1280D002B: C1=C2=10µF, C3=4.7µF, C4=0.33µF, 5=0.33µF, C6=120pF,C7=50pF,C8=C10=C11=1µF This IC can be used 3 Output TFT Bias Circuit as shown above. VOUT3=2×VOUT1-Vf Note: Maximum voltage tolerance of each component should be considered. With the transistor shown above is appropriate to set up to +15V as VOUT1, -15V as VOUT2, 30V as VOUT3 s EXTERNAL COMPONENTS 1. How to set the output voltages As for step-up side, feedback (VFB1) pin voltage is controlled to maintain 1V, therefore, VOUT1: R1+R2=VFB1: R2 Thus, VOUT1=VFB1×(R1+R2)/R2 Output Voltage is adjustable with R1 and R2. As for inverting side, Feedback (VFB2) pin voltage is controlled to maintain 0V, therefore, Vrefout : R3=|-VOUT2|:R4 Thus, |-VOUT2|=Vrefout×R4/R3 Output Voltage is adjustable with R3 and R4. 2. How to set Soft Starting Time As for R1280D002B, soft start time is adjustable with connecting a capacitor to DTC pin. Soft starting time, TSS1 and TSS2 are adjustable. Soft starting time can be set with the time constant of RC. Soft starting time can be described as in next formula. (Topt=25°C) TSS1≅RS1×C4, TSS2≅RS2×C5 In the above formulas, RS1 value is TYP. 32kΩ, while RS2 value is TYP. 45kΩ. Tolerance of these values is ±25% caused by dispersion of wafer process parameters. On the other hand, as for R1280D002A/C, each soft start time is set with the time constant of each external resistor Rev. 1.10 - 25 - and capacitor. s TECHNICAL NOTES on EXTERNAL COMPONENTS q q q q External components should be set as close to this IC as possible. Especially, wiring of the capacitor connected to VIN pin should be shortest. Enforce the ground wire. Large current caused by switching operation flows through GND pin. If the impedance of ground wire is high, internal voltage level of this IC might fluctuate and operation could be unstable. Recommended capacitance value of C3 is equal or more than 4.7µF. Recommended maximum voltage tolerance of C3 is three times as large as set output voltage or more, because the external transistor might generate hi voltage with a shape of spike because of an effect from inductor. If the spike noise of VOUT is too large, the noise is feedback from VFB1 pin and operation might be unstable. In that case, use the resistor ranging from 10kΩ to 50kΩ as R5 and try to reduce the noise level. In the case of VOUT2, use the resistor as much as 10kΩ as R6. Select an inductor with low D.C. current, large permissible current, and uneasy to cause magnetic saturation. If the inductance value is too small, ILX might be beyond the absolute maximum rating at the maximum load. Select a Schottky diode with fast switching speed and large enough permissible current. Recommended capacitance value of C1 and C2 is as much as Ceramic 10µF. In case that the operation with the system of DC/DC converter would be unstable, use tantalum capacitors with higher ESR than ceramic capacitor. Use a capacitor with three times as large as voltage tolerance of the capacitor. In this IC, for the test efficiency, Latch release function is included. By forcing (VIN-0.3) V or more voltage to DTC1 pin or DTC2 pin, Latch release function works. Consider the threshold voltage of Power MOSFET transistor. Select an appropriate MOSFET transistor, depending on the input voltage in order to make the MOSFET turn on completely. Performance of the power controller with using this IC depends on external components. Each component, layout should not be beyond each absolute maximum rating such as voltage, current, and power dissipation. q q q q q q Rev.1.10 - 26 -
R1280D002A-TR 价格&库存

很抱歉,暂时无法提供与“R1280D002A-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货