R1524x-Y Series
200 mA 36 V Input Ultra Low Supply Current VR for Industrial Applications
No. EA-354-200310
OUTLINE
The R1524x is a CMOS-based ultra low supply current voltage regulator featuring 200 mA output current and
36 V input voltage. This device consists of an Output Short-circuit Protection Circuit, an Over-current Protection
Circuit, and a Thermal Shutdown Circuit in addition to the basic regulator circuits. The operating temperature
range is between −50°C to 125°C, and the maximum input voltage is 36 V. All these features allow this device
to become an ideal power source for equipments used under high-temperature conditions.
The output voltages are internally fixed (refer to SELECTION GUIDE). The output voltage accuracy is ±0.6%.
The packages for this device range from high-density mounting to ultra high wattage. The R1524x is offered
in five packages; a 5-pin SOT-23-5, a 5-pin SOT-89-5, a 6-pin HSOP-6J, a 6-pin DFN(PLP)1820-6, and an 8pin HSOP-8E package.
This is a high-reliability semiconductor device for industrial applications (-Y) that has passed both the screening
at high temperature and the reliability test with extended hours. This line of products operate in a wide
temperature range from low temperature to high temperature to support harsh environment applications.
FEATURES
●
●
●
●
●
●
Input Voltage Range (Maximum Rating) ············· 3.5 V to 36 V (50 V)
Operating Temperature Range ························· −50°C to 125°C
Supply Current ·············································· Typ. 2.2 µA
Standby Current ············································ Typ. 0.1 µA
Dropout Voltage ············································ Typ. 0.6 V (IOUT = 200 mA, VOUT = 5.0 V)
Output Voltage Range ···································· 1.8 V / 2.5 V / 2.8 V / 3.0 V / 3.3 V / 3.4V / 5.0 V /
5.5 V / 6.0 V / 6.4 V / 7.0 V / 8.0 V / 8.5 V / 9.0 V /
10.0 V / 10.5 V / 11.0 V / 12.0 V
*Contact Ricoh sales representatives for other voltages.
●
●
●
●
●
●
●
Output Voltage Accuracy ································· ±0.6% (Ta = 25°C)
Output Voltage Temperature-Drift Coefficient ······· Typ. ±60 ppm/°C
Line Regulation ············································· Typ. 0.01%/V (VSET + 1 V ≤ VIN ≤ 36 V)
Built-in Output Short-circuit Protection Circuit ······ Typ. 80 mA
Built-in Over-current Protection Circuit ··············· Typ. 350 mA
Built-in Thermal Shutdown Circuit ····················· Thermal Shutdown Temperature: Typ. 160°C
Ceramic capacitors are recommended
to be used with this device ····························· COUT = 0.1 μF or more
● Packages ···················································· SOT-23-5, SOT-89-5, HSOP-6J,
DFN(PLP)1820-6, HSOP-8E
APPLICATIONS
● Industrial equipments such as FAs and smart meters
● Equipments used under high-temperature conditions such as surveillance camera and vending machine
● Equipments accompanied by self-heating such as motor and lighting
1
R1524x-Y
No. EA-354-200310
SELECTION GUIDE
The set output voltage and the package type are user-selectable.
Selection Guide
Product Name
Package
Quantity per Reel
Pb Free
Halogen Free
R1524NxxxB-TR-YE
SOT-23-5
3,000 pcs
Yes
Yes
R1524HxxxB-T1-YE
SOT-89-5
1,000 pcs
Yes
Yes
R1524SxxxB-E2-YE
HSOP-6J
1,000 pcs
Yes
Yes
R1524KxxxB-TR-Y
DFN(PLP)1820-6
5,000 pcs
Yes
Yes
HSOP-8E
1,000 pcs
Yes
Yes
R1524SxxxH-E2-YE
xxx: Specify the set output voltage (VSET)
1.8 V (018) / 2.5 V (025) / 2.8 V (028) / 3.0 V (030) / 3.3 V (033) / 3.4 V (034) / 5.0 V (050) /
5.5 V (055) / 6.0 V (060) / 6.4 V (064) / 7.0 V (070) / 8.0 V (080) / 8.5 V (085) / 9.0 V (090) /
10.0 V (100) / 10.5 V (105) / 11.0 V (110) / 12.0 V (120)
*Contact Ricoh sales representatives for other voltages.
BLOCK DIAGRAM
Thermal Shutdown
Circuit
VDD
VOUT
Vref
Short
Current Limit
Protection
CE
GND
R1524x Block Diagram
2
R1524x-Y
No. EA-354-200310
PIN DESCRIPTIONS
5
4
5
3
1
4
6
5
4
3
1
2
3
(mark side)
1
2
SOT-23-5 Pin Configuration
Top View
6
5
2
SOT-89-5 Pin Configuration
Top View
Bottom View
4
4
5
HSOP-6J Pin Configuration
8
6
7
6
Bottom View
5
5
2
3
3
7
8
2
1
(1)
(1)
1
6
2
1
1
DFN(PLP)1820-6 Pin Configuration
1
2
3
4
4
3
HSOP-8E Pin Configuration
SOT-23-5 Pin Descriptions
Pin No.
Symbol
1
GND(2)
Description
Ground Pin
2
GND(2)
Ground Pin
3
CE
4
VOUT
Output Pin
5
VDD
Input Pin
Chip Enable Pin (Active-high)
SOT-89-5 Pin Descriptions
Pin No.
Symbol
Description
1
VOUT
Output Pin
2
GND(3)
Ground Pin
3
CE
4
GND(3)
5
VDD
Chip Enable Pin (Active-high)
Ground Pin
Input Pin
(1)
The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate
level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left open.
(2) The GND pin must be wired together when it is mounted on board.
(3) The GND pin must be wired together when it is mounted on board.
3
R1524x-Y
No. EA-354-200310
HSOP-6J Pin Descriptions
Pin No.
Symbol
Description
1
VOUT
Output Pin
2
GND(1)
Ground Pin
3
CE
4
GND(1)
Ground Pin
5
GND(1)
Ground Pin
6
VDD
Chip Enable Pin (Active-high)
Input Pin
DFN(PLP)1820-6 Pin Descriptions
Pin No.
Symbol
Description
1
CE
Chip Enable Pin (Active-high)
2
NC
No Connection
3
GND
4
VDD
Input Pin
5
NC
No Connection
6
VOUT
Ground Pin
Output Pin
HSOP-8E Pin Descriptions
Pin No.
Symbol
Description
1
VOUT
2
NC
No Connection
3
NC
No Connection
4
CE
Chip Enable Pin (Active-high)
5
GND
6
NC
No Connection
7
NC
No Connection
8
VDD
Input Pin
Output Pin
Ground Pin
PIN EQUIVALENT CIRCUIT DIAGRAMS
Driver
CE
VOUT
VOUT Pin
(1)
4
The GND pin must be wired together when it is mounted on board.
CE Pin
R1524x-Y
No. EA-354-200310
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum Ratings
Symbol
Item
Rating
Unit
−0.3 to 50
V
VIN
Input Voltage
VIN
Peak Input Voltage( 1)
60
V
VCE
Input Voltage (CE Pin)
−0.3 to 50
V
VOUT
Output Voltage
−0.3 to VIN + 0.3 ≤ 50
V
IOUT
Output Current
300
mA
Power Dissipation(2)
(JEDEC STD.51-7 Test Land Pattern)
PD
Tj
Tstg
SOT-23-5
830
SOT-89-5
3200
HSOP-6J
3400
DFN(PLP)1820-6
2700
HSOP-8E
3600
mW
Junction Temperature
−50 to 150
°C
Storage Temperature Range
−55 to 150
°C
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage
and may degrade the lifetime and safety for both device and system using the device in the field. The functional
operation at or over these absolute maximum ratings are not assured.
RECOMMENDED OPERATING CONDITIONS
Recommended Operating Conditions
Symbol
Item
VIN
Input Voltage
Ta
Operating Temperature Range
Rating
Unit
3.5 to 36
V
−50 to 125
°C
RECOMMENDED OPERATING CONDITIONS
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended
operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the
semiconductor devices may receive serious damage when they continue to operate over the recommended operating
conditions.
(1)
(2)
Duration time: 200 ms
Refer to POWER DISSIPATION for detailed information.
5
R1524x-Y
No. EA-354-200310
ELECTRICAL CHARACTERISTICS
CIN = COUT = 0.1 μF, unless otherwise noted.
The specifications surrounded by
are guaranteed by design engineering at -50°C ≤ Ta ≤ 125°C.
R1524x (-Y/-YE)
Symbol
ISS
(Ta = 25°C)
Item
Supply Current
Istandby Standby Current
Conditions
VIN = 14 V
IOUT = 0 mA
Min.
Typ.
Max.
VSET ≤ 5.0 V
2.2
6.5
5.0 V < VSET
2.5
6.8
0.1
1.0
VIN = 36 V, VCE = 0 V
μA
×0.994
VSET + 1 V( 1) ≤ VIN ≤ Ta = 25°C
36 V, IOUT = 1 mA
−50°C ≤ Ta ≤ 125°C ×0.984
∆VOUT
/∆IOUT
Load Regulation
VIN = VSET + 3.0 V
1 mA ≤ IOUT ≤ 200 mA
∆VOUT
/∆VIN
Line Regulation
VSET + 1 V(1) ≤ VIN ≤ VSET < 3.3 V
36 V, IOUT = 1 mA
3.3 V ≤ VSET
VDIF
Dropout Voltage
IOUT = 200 mA
ILIM
Output Current Limit
VIN = VSET + 3.0 V
220
350
420
mA
ISC
Short Current Limit
VIN = 3.5 V, VOUT = 0 V
60
80
110
mA
2.0
36
V
0
1.0
V
0.6
μA
×1.016
V
Refer to the Product-specific
Electrical Characteristics
-20
5
20
mV
-0.02
0.01
0.02
%/V
Refer to the Product-specific
Electrical Characteristics
V(1)
VCEH
CE Pin Input Voltage, high
VIN = VSET + 1
VCEL
CE Pin Input Voltage, low
VIN = 36 V
CE Pull-down Current
VIN = 36 V, VCE = 2 V
0.2
Junction Temperature
160
°C
Junction Temperature
135
°C
IPD
TTSD
TTSR
Thermal Shutdown
Detection
Temperature
Thermal Shutdown
Released
Temperature
All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C).
(1) V
SET
6
μA
Output Voltage
VOUT
×1.006
Unit
≤ 2.5 V, VIN = 3.5 V
R1524x-Y
No. EA-354-200310
The specifications surrounded by
are guaranteed by design engineering at -50°C ≤ Ta ≤ 125°C.
R1524x (-Y/-YE) Product-specific Electrical Characteristics
VOUT (V)
VOUT (V)
Product
(Ta = 25°C)
(−50°C ≤ Ta ≤ 125°C)
Name
MIN.
TYP.
MAX.
MIN.
TYP. MAX.
R1524x018x
1.7892
1.80
1.8108
1.7712
1.80
1.8288
R1524x025x
2.4850
2.50
2.5150
2.4600
2.50
2.5400
R1524x028x
2.7832
2.80
2.8168
2.7552
2.80
2.8448
R1524x030x
2.9820
3.00
3.0180
2.9520
3.00
3.0480
R1524x033x
3.2802
3.30
3.3198
3.2472
3.30
3.3528
R1524x034x
3.3796
3.40
3.4204
3.3456
3.40
3.4544
R1524x050x
4.9700
5.00
5.0300
4.9200
5.00
5.0800
R1524x055x
5.4670
5.50
5.5330
5.4120
5.50
5.5880
R1524x060x
5.9640
6.00
6.0360
5.9040
6.00
6.0960
R1524x064x
6.3616
6.40
6.4384
6.2976
6.40
6.5024
R1524x070x
6.9580
7.00
7.0420
6.8880
7.00
7.1120
R1524x080x
7.9520
8.00
8.0480
7.8720
8.00
8.1280
R1524x085x
8.4490
8.50
8.5510
8.3640
8.50
8.6360
R1524x090x
8.9460
9.00
9.0540
8.8560
9.00
9.1440
R1524x100x
9.9400
10.0
10.0600 9.8400
10.0
10.1600
R1524x105x 10.4370
10.5
10.5630 10.3320
10.5
10.6680
R1524x110x 10.9340
11.0
11.0660 10.8240
11.0
11.1760
R1524x120x 11.9280
12.0
12.0720 11.8080
12.0
12.1920
(Ta = 25°C)
∆VOUT/∆IOUT (mV)
MIN.
-10
TYP.
10
MAX.
VDIF (V)
TYP.
MAX.
1.6
2.5
1.2
2.2
0.8
2.0
40
0.6
1.2
-18
18
72
0.5
7
R1524x-Y
No. EA-354-200310
THEORY OF OPERATION
Thermal Shutdown
R1524x has a built-in thermal shutdown circuit, which stops the regulator operation if the junction temperature
of this device increases to 160°C (Typ.) or higher. If the temperature drops to 135°C (Typ.) or lower, the
regulator restarts the operation. Unless eliminating the overheating problem, the regulator turns on and off
repeatedly and as a result, a pulse shaped output voltage is generated.
APPLICATION INFORMATION
TYPICAL APPLICATIONS
VDD
R1524x
C1
CE
VOUT
VOUT
C2
GND
CE Control
C1 = Ceramic 0.1 µF
C2 = Ceramic 0.1 µF
R1524x Typical Applications
TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION
VDD
C1
R1524x
CE
VOUT
VOUT
C2
D1
GND
CE Control
C1 = Ceramic 0.1 µF
C2 = Ceramic 0.1 µF
R1524x Typical Application for IC Chip Breakdown Prevention
When a sudden surge of electrical current travels along the VOUT pin and GND due to a short-circuit, electrical
resonance of a circuit involving an output capacitor (C2) and a short circuit inductor generates a negative
voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the VOUT
pin and GND has the effect of preventing damage to them.
8
R1524x-Y
No. EA-354-200310
TECHNICAL NOTES
Phase Compensation
In the R1524x, phase compensation is provided to secure stable operation even when the load current is
varied. For this purpose, make sure to use 0.1 μF or more of a capacitor (C2).
In case of using a tantalum type capacitor and the ESR (Equivalent Series Resistance) value of the capacitor
is large, the output might be unstable. Evaluate the circuit including consideration of frequency characteristics.
Connect 0.1 μF or more of a capacitor (C1) between VDD and GND, and as close as possible to the pins.
PCB Layout
For SOT-23-5 package type, wire the following GND pins together: No. 1 and No. 2
For SOT-89-5 package type, wire the following GND pins together: No. 2 and No. 4.
For HSOP-6J package type, wire the following GND pins together: No. 2, No. 4, and No. 5.
9
R1524x-Y
No. EA-354-200310
TYPICAL CHARACTERISTICS
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.
1) Output Voltage vs. Output Current (Ta = 25°C)
R1524x018B
R1524x033B
2
Output Voltage VOUT (V)
1.8
1.6
Output Voltage VOUT (V)
1.4
1.2
1
0.8
0.6
VIN=3.8V
0.4
VIN=4.8V
0.2
0
0
100
200
300
Output Current IOUT (mA)
3.6
3.3
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0
VIN=5.3V
6.3V
0
400
10.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
9.0
VIN=7V
8V
Output Voltage VOUT (V)
7.0
6.0
VIN=11V
5.0
12V
4.0
3.0
2.0
0.0
100
200
300
Output Current IOUT (mA)
400
R1524x120B
13
12
11
10
9
8
7
6
5
4
3
2
1
0
VIN=14V
VIN=15V
100
200
300
OutputCurrent IOUT (mA)
10
8.0
1.0
0
0
400
R1524x090B
Output Voltage VOUT (V)
Output Voltage VOUT (V)
R1524x050B
100
200
300
Output Current IOUT (mA)
400
0
100
200
300
Output Current IOUT (mA)
400
R1524x-Y
No. EA-354-200310
2) Output Voltage vs. Input Voltage (Ta = 25°C)
R1524x018B
R1524x033B
2
1.6
Output Voltage VOUT (V)
1.4
1.2
1
0.8
0.6
IOUT=1mA
50mA
100mA
0.4
0.2
Output Voltage VOUT (V)
1.8
0
0
1
2
3
4
5
3.6
3.3
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0
IOUT=1mA
50mA
100mA
1.5
6
2.0
Input Voltage VIN (V)
3.5
4.0
4.5
5.0
R1524x090B
10.0
9.0
IOUT=1mA
50mA
100mA
Output Voltage VOUT (V)
Output Voltage VOUT (V)
3.0
Input Voltage VIN (V)
R1524x050B
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
2.5
8.0
7.0
6.0
5.0
4.0
IOUT=1mA
50mA
100mA
3.0
2.0
1.0
0.0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Input Voltage VIN (V)
1
2
3
4
5
6
7
8
9 10 11 12
Input Voltage VIN (V)
OutputVoltage VOUT[V]
R1524x120B
13
12
11
10
9
8
7
6
5
4
3
2
1
0
IOUT=1mA
50mA
100mA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
InputVoltage VIN[V]
11
R1524x-Y
No. EA-354-200310
3) Supply Current vs. Temperature
R1524x018B
R1524x033B
5.0
5.0
VIN = 14V
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-40-25
0
25
50
75
2.0
1.5
1.0
-40-25
0
25
50
R1524x050B
R1524x090B
75
100 125
5.0
VIN = 14V
4.0
3.5
3.0
2.5
2.0
1.5
1.0
VIN = 14V
4.5
Supply Current Iss (μA)
Supply Current Iss (μA)
2.5
Ta (°C)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
-40-25
0
25
50
75
100 125
Ta (°C)
5.0
VIN = 14V
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
-40 -25
0
25
50
Ta (℃)
0.0
-40-25
0
25
50
Ta (°C)
R1524x120B
Supply Current Iss (μA)
3.0
0.0
100 125
0.5
12
3.5
Ta (°C)
4.5
0.0
4.0
0.5
5.0
0.0
VIN = 14V
4.5
Supply Current Iss (μA)
Supply Current Iss (μA)
4.5
75
100 125
75
100 125
R1524x-Y
No. EA-354-200310
4) Supply Current vs. Input Voltage
R1524x033B
4.0
8
3.5
7
Supply Current Iss (μA)
Supply Current ISS (μA)
R1524x018B
3.0
2.5
2.0
1.5
Ta=-40°C
1.0
25°C
0.5
Ta=-40°C
25°C
6
125°C
5
4
3
2
1
125°C
0
0.0
0
6
12
18
24
30
Input Voltage VIN (V)
0
36
6
12
18
24
30
Input Voltage VIN (V)
36
R1524x120B
8
Supply Current ISS (uA)
7
Ta=-40℃
Ta=25℃
Ta=125℃
6
5
4
3
2
1
0
0
6
12
18
24
30
36
Input Voltage VIN (V)
5) Output Voltage vs. Temperature (IOUT = 1mA)
R1524x018B
R1524x033B
1.836
3.366
1.818
1.800
1.782
1.764
VIN = 14V
Output Voltage VOUT (V)
Output Voltage VOUT (V)
VIN = 14V
-40-25
0
25
50
Ta (°C)
75
100 125
3.333
3.300
3.267
3.234
-40-25
0
25
50
75
100 125
Ta (°C)
13
R1524x-Y
No. EA-354-200310
R1524x050B
R1524x090B
5.100
9.180
VIN = 14V
Output Voltage VOUT (V)
Output Voltage VOUT (V)
VIN = 14V
5.050
5.000
4.950
4.900
-40-25
0
25
50
75
9.090
9.000
8.910
8.820
100 125
-40-25
0
Ta (°C)
25
50
75
100 125
Ta (°C)
R1524x120B
12.24
Output Voltage VOUT (V)
VIN = 14V
12.12
12.00
11.88
11.76
-40 -25
0
25
50
75
100 125
Ta (℃)
6) Dropout Voltage vs. Output Current
R1524x018B
R1524x033B
2.0
2.5
Dropout Voltage VDIF (V)
Dropout Voltage VDIF (V)
Ta=-40°C
2.0
1.5
1.0
Ta=-40°C
25°C
0.5
125°C
125°C
1.0
0.5
0.0
0.0
0
50
100
150
Output Current IOUT (mA)
14
25°C
1.5
200
0
50
100
150
Output Current IOUT (mA)
200
R1524x-Y
No. EA-354-200310
R1524x050B
R1524x090B
1.0
1.5
Ta=-40°C
25°C
Dropout Voltage VDIF (V)
Dropout Voltage VDIF (V)
Ta=-40°C
125°C
1.0
0.5
0.0
0.8
25°C
125°C
0.6
0.4
0.2
0.0
0
50
100
150
0
200
Output Current IOUT (mA)
50
100
150
200
Output Current IOUT (mA)
R1524x120B
1.0
Dropout Voltage VDIF (V)
Ta=-40℃
Ta=25℃
0.8
Ta=125℃
0.6
0.4
0.2
0.0
0
50
100
150
200
Output Current IOUT (mA)
7) Dropout Voltage vs. Output Voltage (Ta = 25°C)
1.8
Iout=1mA
Dropout Voltage VDIF (V)
1.6
50mA
1.4
100mA
1.2
200mA
1.0
0.8
0.6
0.4
0.2
0.0
0
1
2
3
4
5
6
7
8
9 10 11 12
Output Voltage VOUT (V)
15
R1524x-Y
No. EA-354-200310
8) Ripple Rejection vs. Input Voltage (Ta = 25°C, Ripple = 0.2 Vpp)
R1524x018B
R1524x033B
70
70
IOUT=50mA
Ripple Rejection RR (dB)
60
Ripple Rejection Ratio RR (dB)
f=100Hz
50
1kHz
40
30
10kHz
20
100kHz
10
0
IOUT=50mA
60
f=100Hz
50
40
1kHz
30
10kHz
20
10
100kHz
0
1
3
5
7
9
11
13
15
2.0
4.0
6.0
8.0 10.0 12.0
Input Voltage VIN (V)
Input Voltage VIN (V)
R1524x050B
R1524x090B
70
IOUT=50mA
Ripple Rejection Ratio RR (dB)
Ripple Rejection Ratio RR (dB)
70
60
f=100Hz
50
40
1kHz
30
10kHz
20
10
100kHz
0
5.0
6.5 8.0 9.5 11.0 12.5 14.0
Input Voltage VIN (V)
50
f=100Hz
40
1kHz
30
20
10kHz
10
100kHz
9.0
R1524x120B
70
Ripple Rejection Ratio RR (dB)
IOUT=50mA
60
0
3.5
60
IOUT=50mA
50
f=100Hz
40
1kHz
30
20
10kHz
10
0
11.0
100kHz
12.0
13.0
14.0
Input Voltage VIN (V)
16
14.0
15.0
10.0
11.0
12.0
13.0
Input Voltage VIN (V)
14.0
R1524x-Y
No. EA-354-200310
9) Ripple Rejection vs. Frequency (Ta = 25°C, Ripple = 0.2 Vpp)
R1524x018B
R1524x033B
80
80
IOUT=1mA
50mA
100mA
60
Ripple Rejection (dB)
Ripple Rejection Ratio RR (dB)
VIN = 3.8V
70
50
40
30
20
10
0
0.01
VIN = 5.3V
70
IOUT=1mA
50mA
100mA
60
50
40
30
20
10
0
0.1
1
10
100
Frequency (kHz)
0.01
1000
R1524x050B
1
10
100
Frequency (kHz)
1000
R1524x090B
80
80
VIN = 7.0V
70
Ripple Rejection Ratio RR (dB)
Ripple Rejection Ratio RR (dB)
0.1
IOUT=1mA
50mA
100mA
60
50
40
30
20
10
0
VIN = 11.0V
70
IOUT=1mA
50mA
100mA
60
50
40
30
20
10
0
0.01
0.1
1
10
100
Frequency (kHz)
1000
0.01
0.1
1
10
100
Frequency (kHz)
1000
R1524x120B
Ripple Rejection Ratio RR (dB)
80
VIN=14.0V
70
60
Iout=1mA
50mA
100mA
50
40
30
20
10
0
0.01
0.1
1
10
100
1000
Frequency (kHz)
17
R1524x-Y
No. EA-354-200310
10) Input Transient Response (Ta = 25°C)
R1524x033B
6.8
10.8
8.8
Output Voltage VOUT (V)
4.8
2.4
2.8
2.2
0.8
2.0
Output Voltage
1.8
1.6
C2 = 0.1 μF
1.4
10 μF
Input Voltage VIN (V)
6.8
Input Voltage
5.8
5.3
6
4
4.3
2
3.8
0
Output Voltage
3.3
2.8
10μF
C2=0.1μF
1.8
-1
0
1
2
3
4
Time (ms)
5
0
14
12.5
12
12.0
10
8
6.5
6
6.0
4
5.5
2
Output Voltage
0
10μF
C2=0.1μF
4
5
6
16
14
Input Voltage
tr=tf=1μs
11.0
4.0
18
IOUT=1mA
11.5
Input Voltage VIN (V)
Input Voltage
tr=tf=1μs
4.5
Output Voltage VOUT (V)
IOUT=1mA
8.0
5.0
3
R1524x090B
8.5
7.0
2
Time (ms)
R1524x050B
7.5
1
6
12
10.5
10
10.0
8
9.5
6
Output Voltage
9.0
8.5
4
10μF
C2=0.1μF
2
0
8.0
3.5
7.5
-1
0
1
2
3
4
5
6
-1
Time (ms)
Input Voltage
tr=tf=1μs
14
12
10
8
13.5
Output Voltage
11.5
10μF
C2=0.1μF
11.0
10.5
-1
0
1
2
6
4
3
Time (ms)
4
2
0
5
6
Input Voltage VIN (V)
20
18
16
IOUT=1mA
13.0
12.5
12.0
1
2
3
Time (ms)
R1524x120B
14.0
0
4
5
6
Input Voltage VIN (V)
-1
Output Voltage VOUT (V)
8
4.8
1.0
Output Voltage VOUT (V)
10
Input Voltage
tr=tf=1μs
2.3
1.2
18
12
IOUT=1mA
6.3
Output Voltage VOUT (V)
IOUT=1mA
Input Voltage VIN (V)
R1524x018B
R1524x-Y
No. EA-354-200310
11) Load Transient Response (Ta = 25°C)
R1524x033B
4.8
10
0
2.4
2.1
Output Voltage
1.8
1.5
10μF
1.2
2
3
4
5
6
7
8
3.6
3.3
2.7
9
10μF
R1524x050B
R1524x090B
14.4
20
13.5
1mA
Output Current
tr=tf=0.5μs
0
6.5
6.0
Output Voltage
5.0
4.5
C2=0.1μF
10μF
3.5
Output Voltage VOUT (V)
40
4.0
C2=0.1μF
Time (µs)
7.5
5.5
Output Voltage
3.0
8.0
7.0
0
3.9
Time (ms)
12.6
Output Current IOUT (mA)
Output Voltage VOUT (V)
1
20
2.1
-100 0 100 200 300 400 500 600 700 800
0.9
0
1mA
4.2
2.4
C2=0.1μF
-1
Output Current
tr=tf=0.5μs
40
Output Current
tr=tf=0.5μs
1mA
11.7
10.8
9.9
Output Voltage
9.0
8.1
7.2
6.3
C2=0.1μF
10μF
20
0
Output Current IOUT (mA)
1mA
4.5
40
Output Current IOUT (mA)
5.1
20
Output Voltage VOUT (V)
Output Current
tr=tf=0.5μs
30
Output Current (mA)
Output Voltage VOUT (V)
R1524x018B
5.4
3.0
-100 0 100 200 300 400 500 600 700 800
-100 0 100 200 300 400 500 600 700 800
Time (µs)
Time (µs)
R1524x120B
18.0
16.8
Output Voltage VOUT (V)
15.6
Output Current
tr=tf=0.5μs
1mA
14.4
13.2
Output Voltage
12.0
10.8
9.6
C2=0.1μF
10μF
20
0
Output Current IOUT (mA)
40
19.2
8.4
7.2
-100 0 100 200 300 400 500 600 700 800
Time (μs)
19
R1524x-Y
No. EA-354-200310
12) CE Transient Response (Ta = 25°C)
Output Voltage VOUT (V)
900
CE Input Voltage 800
3
700
Output Voltage 600
2
500
1
0
0V
400
300
C2=0.1μF
200
C2=10μF
100
Inrush Current
0
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (ms)
4
3
2
1
0
3.8V
CE Input Voltage
0V
C2=10μF, IOUT=1mA
1.8
1.5
1.2
0.9
0.6
0.3
0.0
-0.3
Output Voltage VOUT (V)
3.8V
4
Inrush Current (mA)
5
C2=0.1μF, IOUT=100mA
C2=0.1μF, IOUT=1mA
C2=10μF, IOUT=100mA
Output Voltage
-2
-1
0
1
2 3 4
Time (ms)
5
6
7
8
R1524x033B
Output Voltage VOUT (V)
3.3
CE Input Voltage
Output Voltage
0V
900
800
700
600
2.2
C2=0.1μF
1.1
500
1μF
0.0
10μF
400
300
200
100
Inrush Current
Output Voltage VOUT (V)
5V
4.4
Inrush Current (mA)
5.5
0
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
5V
0V
C2=10μF
IOUT=1mA
C2=10μF,IOUT=100mA
& C2=0.1μF,IOUT=1mA
C2=0.1μF
IOUT=100mA
Output Voltage
-2
-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
CE Input Voltage
0
2
4
Time (ms)
6
8
10
12
14
Time (ms)
R1524x050B
Output Voltage VOUT (V)
8.0
6.0
0V
CE Input Voltage
Output Voltage
0.0
C2=0.1μF
800
7.0
700
500
1μF
10μF
400
300
200
100
Inrush Current
-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (ms)
20
8.0
600
4.0
2.0
900
0
Output Voltage VOUT (V)
5V
Inrush Current (mA)
10.0
5V
CE Input Voltage
0V
6.0
C2=10μF
IOUT=1mA
5.0
4.0
C2=10μF,IOUT=100mA
& C2=0.1μF,IOUT=1mA
3.0
2.0
C2=0.1μF
IOUT=100mA
1.0
0.0
Output Voltage
-2
0
2
4
6
8
Time (ms)
10
12
14
Input Voltage CE (V)
R1524x018B
R1524x-Y
No. EA-354-200310
R1524x090B
Output Voltage VOUT (V)
9.0
CE Input Voltage
Output Voltage
0V
900
14.0
800
12.0
700
600
6.0
C2=0.1μF
3.0
500
1μF
0.0
10μF
400
300
200
100
Inrush Current
Output Voltage VOUT (V)
5V
12.0
Inrush Current (mA)
15.0
5V
0V
CE Input Voltage
C2=10μF
IOUT=1mA
10.0
8.0
6.0
C2=10μF,IOUT=100mA
& C2=0.1μF,IOUT=1mA
4.0
C2=0.1μF
IOUT=100mA
2.0
0.0
0
Output Voltage
-2
-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
2
4
Time (ms)
6
8
10
12
14
Time (ms)
CE Input Voltage 900
9.0
0V
Output Voltage
6.0
700
600
C2=0.1μF
3.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
800
500
0.0
400
10μF
300
200
100
Inrush Current
5V
Output Voltage VOUT (V)
12.0
5V
Inrush Current (mA)
Output Voltage VOUT (V)
R1524x120B
15.0
0
C2=10μF, Iout=1mA
C2=10μF, Iout=100mA
C2=0.1μF, Iout=1mA
C2=0.1μF, Iout=100mA
Output Voltage
-2
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
CE Input Voltage
0V
0
2
4
6
8
10
12
14
Time (ms)
Time (ms)
13) Power-on Transient Response (Ta = 25°C, VCE = 5 V)
R1524x033B
R1524x018B
8.0
2
1
0
0V
Output
Voltage
300
C2=0.1μF
200
C2=10μF
100
0
Inrush Current
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (ms)
Input Voltage
6.4
-100
5.3V
800
700
4.8
Output Voltage
3.2
1.6
0.0
900
0V
C2=0.1μF
1μF
10μF
600
500
400
300
200
100
Inrush Current
Inrush Current (mA)
3
Input
Voltage
Output Voltage VOUT (V)
3.8V
Inrush Current (mA)
Output Voltage VOUT (V)
4
0
-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (ms)
21
R1524x-Y
No. EA-354-200310
R1524x050B
R1524x090B
12.0
6.0
Output Voltage
700
4.0
600
2.0
500
0.0
C2=0.1μF
0V
400
1μF
300
10μF
200
100
Inrush Current
900
Input Voltage
11V
800
Output
9.0
700
600
6.0
3.0
0.0
500
C2=0.1μF
0V
400
1μF
300
10μF
200
100
0
0
Inrush Current
-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Inrush Current (mA)
15.0
800
7V
Output Voltage VOUT (V)
Output Voltage VOUT (V)
8.0
Inrush Current (mA)
900
Input Voltage
10.0
-0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (ms)
Time (ms)
OutputVoltage VOUT (V)
15.0
12.0
9.0
6.0
3.0
0.0
Input Voltage
14V
Output Voltage
C2=0.1uF
0V
10uF
Inrush Current
900
800
700
600
500
400
300
200
100
0
Inrush Current (mA)
R1524x120B
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (ms)
14) Load Dump (Ta = 25°C)
Output Voltage VOUT (V)
Input Voltage
1.84
1.83
1.82
1.81
1.80
1.79
Output Voltage
C2=0.1μF
-10
0
10
20
30
Time (ms)
22
40
50
60
6.8
60
6.3
50
5.8
40
5.3
30
Input Voltage
4.8
20
10
4.3
3.8
0
Output Voltage
3.3
C2=0.1μF
2.8
10μF
2.3
1.8
-10
0
10
20
30
Time (ms)
40
50
60
Input Voltage VIN (V)
60
50
40
30
20
10
0
Output Voltage VOUT (V)
R1524x033B
Input Voltage VIN (V)
R1524x018B
R1524x-Y
No. EA-354-200310
60
12.5
60
8.0
50
12.0
50
7.5
40
11.5
40
7.0
30
Input Voltage
6.5
20
10
6.0
0
5.5
Output Voltage
5.0
10μF
C2=0.1μF
4.5
Output Voltage VOUT (V)
8.5
4.0
30
11.0
Input Voltage
10.5
20
10
10.0
0
9.5
Output Voltage
9.0
C2=0.1μF
8.5
10μF
Input Voltage VIN (V)
R1524x090B
Input Voltage VIN (V)
Output Voltage VOUT (V)
R1524x050B
8.0
3.5
7.5
-10
0
10
20
30
40
50
60
-10
Time (ms)
0
10
20
30
40
50
60
Time (ms)
60
Output Voltage VOUT (V)
50
40
30
Input Voltage
20
10
13.0
0
Output Voltage
12.5
Input Voltage VIN (V)
R1524x120B
12.0
C2=0.1uF
11.5
10uF
11.0
-10
0
10
20
30
40
50
60
Time (ms)
23
R1524x-Y
No. EA-354-200310
15) Cranking (Ta = 25°C)
R1524x090B
20
16.5
20
7.5
15
15.0
15
10
7.0
Input Voltage
6.5
5
0
6.0
C2=0.1μF
10μF
5.5
5.0
4.5
4.0
3.5
0
1
2
3
4
5
6
7
8
Output Voltage VOUT (V)
Input Voltage
15
13.5
10
12.0
5
C2=0.1uF
10uF
7.5
6.0
4.5
Output Voltage
1.5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (ms)
0
Input Voltage VIN (V)
20
16.5
24
10μF
7.5
6.0
4.5
Output Voltage
0
1
2
3
4
Time (ms)
R1524x120B
3.0
0
C2=0.1μF
9.0
-1
Time (ms)
9.0
10.5
5
1.5
-1
10.5
Input Voltage
12.0
3.0
Output Voltage
3.0
15.0
10
13.5
5
6
7
8
Input Voltage VIN (V)
Output Voltage VOUT (V)
8.0
Input Voltage VIN (V)
Output Voltage VOUT (V)
R1524x050B
R1524x-Y
No. EA-354-200310
Input Transient/Load Transient vs. Output Capacity (C2)
R1524 performs a stable operation by using 0.1 µF of ceramic capacitor as the output capacitor. However,
the variation of output voltage may not meet the demand of the system when input voltage and load current
vary. In such cases, the variation of output voltage can be minimized significantly by using 10 µF or higher
ceramic capacitor. When using an electrolytic capacitor for the output line, place the electrolytic capacitor
outer side of the ceramic capacitor arranged close to the IC.
Input Transient Response
Load Transient Response
R1524x033B
R1524x033B
4.8
8
Input Voltage
tr=tf=1μs
5.3
5.1
10
6
4.8
4
4.3
2
0
3.8
Output Voltage
3.3
2.8
10μF
C2=0.1μF
Input Voltage VIN (V)
Output Voltage VOUT (V)
5.8
12
2.3
40
20
4.5
4.2
3.9
3.6
Output Voltage
3.3
3.0
C2=0.1μF
2.7
10μF
2.4
1.8
-1
0
1
2
3
4
5
1mA
Output Current
tr=tf=0.5μs
0
Output Current IOUT (mA)
IOUT=1mA
6.3
Output Voltage VOUT (V)
6.8
2.1
-100 0 100 200 300 400 500 600 700 800
6
Time (µs)
Time (ms)
ESR vs. Output Current
It is recommended that a ceramic type capacitor be used for this device. However, other types of capacitors
having lower ESR can also be used. The relation between the output current (IOUT) and the ESR of output
capacitor is shown below.
VDD
VOUT
R1524xxxxB
C1
CE
C2
IOUT
GND
ESR
C1 = Ceramic 0.1 μF, C2 = Ceramic 0.1 μF
25
R1524x-Y
No. EA-354-200310
R1524x018B
100
VIN=3.5V to 36V
1000
Equivalent Series Resistance ESR
(Ω)
1000
Equivalent Series Resistance ESR
(Ω)
R1524x033B
VIN=3.5V to 36V
100
10
10
1
0.1
1
0.1
0.01
0.01
0
50
100
150
200
0
Output Current IOUT (mA)
150
200
R1524x090B
VIN=5V to 36V
VIN=9V to 36V
1000
Equivalent Series Resistance ESR
(Ω)
Equivalent Series Resistance ESR
(Ω)
100
Output Current IOUT (mA)
R1524x050B
1000
50
100
100
10
10
1
0.1
1
0.1
0.01
0.01
0
50
100
150
200
Output Current IOUT (mA)
0
50
100
150
200
Output Current IOUT (mA)
R1524x120B
VIN=12V to 36V
Equivalent Series Resistance ESR
(Ω)
1000
Frequency Band: 10 Hz to 2 MHz
100
Measurement Temperature: −40°C to 125°C
10
Hatched area: Noise level is 40 μV (average)
or below
Ceramic Capacitors:
CIN = 0.1 μF, Murata, GRM188R71H104JA93D
COUT = 0.1 μF, TDK, CGA3E2X7R1E104K
1
0.1
0.01
0
50
100
150
Output Current IOUT (mA)
26
Measurement Conditions
200
POWER DISSIPATION
SOT-23-5
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.
Measurement Conditions
Item
Measurement Conditions
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions
76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio
Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes
0.3 mm × 7 pcs
Measurement Result
(Ta = 25°C, Tjmax = 150°C)
Item
Measurement Result
Power Dissipation
830 mW
Thermal Resistance (ja)
ja = 150°C/W
Thermal Characterization Parameter (ψjt)
ψjt = 51°C/W
ja: Junction-to-Ambient Thermal Resistance
ψjt: Junction-to-Top Thermal Characterization Parameter
900
830
800
Power Dissipation PD (mW)
700
600
500
400
300
200
100
0
0
25
50
75
100
125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
SOT-23-5
PACKAGE DIMENSIONS
Ver. A
2.9±0.2
1.1±0.1
1.9±0.2
0.8±0.1
(0.95)
4
1
2
0~0.1
0.2min.
+0.2
1.6-0.1
5
2.8±0.3
(0.95)
3
0.4±0.1
+0.1
0.15-0.05
SOT-23-5 Package Dimensions
i
POWER DISSIPATION
SOT-89-5
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.
Measurement Conditions
Item
Measurement Conditions
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions
76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio
Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes
0.3 mm × 13 pcs
Measurement Result
(Ta = 25°C, Tjmax = 150°C)
Item
Measurement Result
Power Dissipation
3200 mW
Thermal Resistance (ja)
ja = 38°C/W
Thermal Characterization Parameter (ψjt)
ψjt = 13°C/W
ja: Junction-to-Ambient Thermal Resistance
ψjt: Junction-to-Top Thermal Characterization Parameter
3500
3200
Power Dissipation PD (mW)
3000
2500
2000
1500
1000
500
0
0
25
50
75
100
125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
SOT-89-5
PACKAGE DIMENSIONS
Ver. A
4.5±0.1
1.5±0.1
0.4±0.3
2
5
4.35±0.1
φ1.0
1
4
4
2.5±0.1
1.00±0.2
5
0.4±0.1
0.3±0.2
0.42±0.1
0.1 S
3
0.4±0.1
3
2
1
0.3±0.2
1.6±0.2
S
0.42±0.1
0.42±0.1
0.47±0.1
1.5±0.1
1.5±0.1
SOT-89-5 Package Dimensions
i
POWER DISSIPATION
HSOP-6J
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.
Measurement Conditions
Item
Measurement Conditions
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions
76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio
Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes
0.3 mm × 28 pcs
Measurement Result
(Ta = 25°C, Tjmax = 150°C)
Item
Measurement Result
Power Dissipation
3400 mW
Thermal Resistance (ja)
ja = 37°C/W
Thermal Characterization Parameter (ψjt)
ψjt = 7°C/W
ja: Junction-to-Ambient Thermal Resistance
ψjt: Junction-to-Top Thermal Characterization Parameter
4000
3400
Power Dissipation PD (mW)
3500
3000
2500
2000
1500
1000
500
0
0
25
50
75
100
125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
HSOP-6J
PACKAGE DIMENSIONS
Ver. A
HSOP-6J Package Dimensions
i
POWER DISSIPATION
DFN(PLP)1820-6
Ver. B
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.
Measurement Conditions
Item
Measurement Conditions
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions
76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio
Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes
φ 0.2 mm × 34 pcs
Measurement Result
(Ta = 25°C, Tjmax = 150°C)
Item
Measurement Result
Power Dissipation
2700 mW
Thermal Resistance (θja)
θja = 45°C/W
Thermal Characterization Parameter (ψjt)
ψjt = 18°C/W
θja: Junction-to-Ambient Thermal Resistance
ψjt: Junction-to-Top Thermal Characterization Parameter
3000
2700
Power Dissipation PD (mW)
2500
2000
1500
1000
500
0
0
25
50
75
100
125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
PACKAGE DIMENSIONS
DFN(PLP)1820-6
Ver. A
1.6±0.1
A
1.80
B
5
4
0.20±0.1
6
2.00
1.0±0.1
※
INDEX
0.6MAX.
3
0.05 S
0.05min
S
0.25±0.1 0.25±0.1
X4
0.05
0.05 M AB
0.5
2
1
0.1NOM.
0.3±0.1
Bottom View
DFN(PLP)1820-6 Package Dimensions (Unit: mm)
*
∗ The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the
ground plane on the board, or otherwise be left floating.
i
POWER DISSIPATION
HSOP-8E
Ver. B
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.
Measurement Conditions
Item
Measurement Conditions
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions
76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio
Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes
φ 0.3 mm × 21 pcs
Measurement Result
(Ta = 25°C, Tjmax = 150°C)
Item
Measurement Result
Power Dissipation
3600 mW
Thermal Resistance (θja)
θja = 34.5°C/W
Thermal Characterization Parameter (ψjt)
ψjt = 10°C/W
θja: Junction-to-Ambient Thermal Resistance
ψjt: Junction-to-Top Thermal Characterization Parameter
4000
3600
Power Dissipation (mW)
3500
3000
2500
2000
1500
1000
500
0
0
25
50
75
100
125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
PACKAGE DIMENSIONS
HSOP-8E
∗
HSOP-8E Package Dimensions
∗ The tab on the bottom of the package shown by blue circle is substrate potential (GND). It is recommended that this
tab be connected to the ground plane on the board but it is possible to leave the tab floating.
i
1. The products and the product specifications described in this document are subject to change or discontinuation of
production without notice for reasons such as improvement. Therefore, before deciding to use the products, please
refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written
consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise
taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits
for the products. The release of such information is not to be construed as a warranty of or a grant of license under
Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard
applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products,
amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality
and reliability, for example, in a highly specific application where the failure or misoperation of the product could result
in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and
transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products
are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from
such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy
feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or
damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and
characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and
characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the
case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or
the technical information.
Halogen Free
Ricoh is committed to reducing the environmental loading materials in electrical devices
with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since
April 1, 2012.
Official website
https://www.n-redc.co.jp/en/
Contact us
https://www.n-redc.co.jp/en/buy/