0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R5117S001A-E2-KE

R5117S001A-E2-KE

  • 厂商:

    RICOH(理光)

  • 封装:

    HSOP8_5.2X4.4MM_EP

  • 描述:

    IC SUPERVISOR 1 CHANNEL 8HSOP

  • 数据手册
  • 价格&库存
R5117S001A-E2-KE 数据手册
R5117x Series AEC-Q100 Compliant 42 V Input Power Management IC with Battery Voltage Detector for Automotive Applications No.EC-501-210219 OVERVIEW The R5117x is a Power Management IC designed for automotive applications, featuring input voltage range from 3.5V to 42V. This IC includes Battery Voltage Detector, SENSE Voltage Detector and 500 mA Voltage Regulator in a single chip. KEY BENEFITS    Reducing components and improving functional safety The Battery Voltage Detector suitable for Early Warning System against battery voltage reduction Preventing the false detection of transient characteristic fluctuations by high-speed response Voltage Regulator KEY SPECIFICATIONS TYPICAL APPLICATIONS Input Voltage Range (Max. rating): 3.5 V to 42.0 V (50.0 V)  Supply Current: Typ. 35 µA Voltage Regulator (VR)  Output Voltage Range: 3.3 V to 5.0 V  Output Voltage Accuracy: -1.25% to 0.75%(−40°C ≤Ta≤ 125°C)  Output Current: 500 mA  Protection: Thermal shutdown (Detection Temp. Typ.175 °C) Output current (Typ.750 mA) Output short-circuit (Typ.105 mA) SENSE Voltage Detector (SVD)  Detector Threshold : 2.5 V to 5.0 V (in 0.01V step)  Detector Threshold Accuracy : -1.25% to 0.75%(−40°C ≤Ta≤ 125°C)  Release hysteresis: max 0.7% Battery Voltage Detector (BVD)  Detector Threshold : 3.5 V to 12.0 V (in 0.1V step)  Detector Threshold Accuracy : -2.0% to 1.0% (−40°C ≤Ta≤ 125°C)  Release hysteresis: max 5.0%  PACKAGES VIN Microprocessor VDD VOUT VCC R5117x CIN R1 R2 CD SENSE CE BVD I/O GND SVD RESET CD COUT • • CIN: 1.0µF, COUT: 10µF, Ceramic capacitors CD: Ceramic capacitors for setting detection delay time SELECTION GUIDE Product Name Package Quantity per Reel R5117SxxxA-E2-#E HSOP-8E 1,000 pcs R5117LxxxA-TR-#E HQFN0808-28 2,000 pcs xxx: Specify the set output voltage for VR (VVRSET), the set Battery voltage detector threshold (VBVSET) and the set SENSE voltage detector threshold (VSVSET) by using serial numbers starting from 001 Refer to ELECTRICAL CHARACTERISTICS for detail information. HSOP-8E 5.2 x 6.2 x 1.45 (mm) HQFN0808-28 8.8 x 8.8 x 0.95 (mm) APPLICATIONS • • Power supply system with microprocessor devices for In-Vehicle electrical equipment Power supply system for electronic control units such as EV inverter and battery charge control unit 1 R5117x No.EC-501-210219 SELECTION GUIDE The set output voltages and the quality class are user-selectable options. Product Name Package Quantity per Reel Pb Free Halogen Free R5117SxxxA-E2-#E HSOP-8E 1,000 pcs Yes Yes R5117LxxxA-TR-#E HQFN0808-28 2,000 pcs Yes Yes xxx: Specify the set output voltage for Voltage Regulator (VVRSET), the set Battery voltage detector threshold (VBVSET) and the set SENSE voltage detector threshold (VSVSET) by using serial numbers starting from 001(1) Refer to ELECTRICAL CHARACTERISTICS for detail information #: Select the quality class Operating Temperature Range Test Temperature A −40°C to 125°C 25°C, High K −40°C to 125°C Low, 25°C, High (1) The combinations of VVRSET, VBVSET, VSVSET are following conditions; ・VVRSET = 3.3 V to 5.0 V ・VBVSET = 3.5 V to 12.0 V ・VSVSET = 2.5 V to 5.0 V 2 R5117x No.EC-501-210219 BLOCK DIAGRAM VDD Thermal shutdown VOUT ON/OFF Circuit CD CE Current Limit SENSE Logic BVD SVD Delay Circuit GND R5117xxx Block Diagram 3 R5117x No.EC-501-210219 PIN DESCRIPTION 8 Top View 7 6 5 Bottom View 5 6 7 8 2 1 (1) 1 2 3 4 4 3 1 R5117S (HSOP-8E) Pin Configuration R5117S (HSOP-8E) Pin No. Symbol Description 1 VDD 2 CD Pin for setting VD Release Output Delay Time (power-on reset time) 3 CE Chip Enable Pin (Active-high) 4 GND Ground Pin 5 SVD SENSE Voltage Reduction Detection Output Pin (“Low” at detection) 6 BVD Battery Voltage Reduction Detection Output Pin (“Low” at detection) 7 SENSE 8 VOUT Supply Voltage Pin SENSE Input Voltage Pin Regulator Output Pin (1) The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board. 4 R5117x No.EC-501-210219 Top View Bottom View (1) 1 R5117L(HQFN0808-28) Pin Configuration R5117L(HQFN0808-28) Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Symbol Tab (GND) NC VDD VDD NC CD Tab (GND) Tab (GND) CE NC GND GND NC Tab (GND) Tab (GND) SVD BVD NC SENSE VOUT Tab (GND) Tab (GND) NC NC NC NC NC Tab (GND) Description Tab ※Internally shorted to the GND No Connection Power Supply Pin ※Internally shorted to the 4Pin Power Supply Pin ※Internally shorted to the 3Pin No Connection Voltage Detector Reset Delay Time (Power-on Reset Time) Setting Pin Tab ※Internally shorted to the GND Tab ※Internally shorted to the GND Chip Enable Pin, Active-high No Connection Ground Pin ※Internally shorted to the 12Pin Ground Pin ※Internally shorted to the 11Pin No Connection Tab ※Internally shorted to the GND Tab ※Internally shorted to the GND SENSE Voltage Reduction Detection Output Pin (“Low” at detection) Battery Voltage Reduction Detection Output Pin (“Low” at detection) No Connection SENSE Pin Voltage Regulator Output Pin Tab ※Internally shorted to the GND Tab ※Internally shorted to the GND No Connection No Connection No Connection No Connection No Connection Tab ※Internally shorted to the GND (1) The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board. 5 R5117x No.EC-501-210219 PIN EQUIVALENT CIRCUIT DIAGRAMS < VOUT Pin > < CE Pin > Driver CE VOUT < CD Pin > < BVD Pin > OV Driver CD Driver < SVD Pin > < SENSE Pin > SENSE UV Driver 6 R5117x No.EC-501-210219 ABSOLUTE MAXIMUM RATINGS Symbol Parameter Rating Unit −0.3 to 50 V Peak Input Voltage (1) 60 V VCE CE Pin Input Voltage −0.3 to 50 V VOUT Output Voltage −0.3 to VIN + 0.3 ≤ 50 V SENSE Pin Voltage −0.3 to 50 V VCD CD Pin Output Voltage −0.3 to 50 V VBVD BVD Pin Output Voltage −0.3 to 7.0 V VSVD SVD Pin Output Voltage −0.3 to 7.0 V Input Voltage VIN VSENSE PD Power Dissipation Refer to Appendix “Power Dissipation” Tj Junction Temperature −40 to 150 °C Tstg Storage Temperature −55 to 150 °C ABSOLUTE MAXIMUM RATINGS Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured. RECOMMENDED OPERATING CONDITIONS Symbol Parameter Rating Unit 3.5 to 42 V VIN Input Voltage VCE CE Pin Input Voltage 0 to 42 V VSENSE SENSE Pin Input Voltage 0 to 6.0 V VBVD BVD Pin Output Voltage 0 to 6.0 V VSVD SVD Pin Output Voltage 0 to 6.0 V Ta Operating Temperature −40 to 125 °C RECOMMENDED OPERATING CONDITIONS All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. (1) Duration time: 200 ms 7 R5117x No.EC-501-210219 ELECTRICAL CHARACTERISTICS CIN = 1.0 µF, COUT = 10 µF, VIN = 14 V, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 125°C. R5117xxxx-AE For All (Ta = 25°C) Symbol ISS Parameter Supply Current Istandby Standby Current Condition Min. 3.5V ≤ VBVSET < 8.0V IOUT = 0 mA (1) Typ. 35 8.0V ≤ VBVSET ≤ 12.0V VIN = 14 V, VCE = 0 V (1) Max. 65 Unit µA 60 10 25 µA 0.2 0.6 µA IPD CE Pull-down Current VCEH CE Input Voltage, high 2.0 42 V VCEL CE Input Voltage, low 0 1.0 V All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C). VR Section Symbol VOUT (Ta = 25°C) Parameter Output Voltage ∆VOUT/ Load Regulation ∆IOUT VDIF Dropout Voltage ∆VOUT/ Line Regulation ∆VIN Condition VIN = 14 V, IOUT = 1 mA VIN = VSET + 3.0 V IOUT = 500 mA IOUT = 1 mA Min. Typ. Max. Ta = 25°C ×0.995 ×1.005 −40°C ≤ Ta ≤ 125°C ×0.9875 ×1.0075 1 mA ≤ IOUT ≤ 300 mA −10 1 mA ≤ IOUT ≤ 500 mA −15 0 10 15 VSET = 3.3 V 1.1 1.7 VSET = 5.0 V 0.9 1.5 8.0 V ≤ VIN ≤ 16 V −10 6.0 V ≤ VIN ≤ 32 V -25 0 10 25 Unit V mV V mV ILIM Output Current Limit VIN = 8.0 V 500 750 ISC Short Current Limit VOUT = 0 V 70 105 Junction Temperature 165 175 °C Junction Temperature 125 145 °C TTSD TTSR Thermal Shutdown Temperature Thermal Shutdown Release Temperature mA 150 mA All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C). (1) Supply current, Standby current are depending on VDD Voltage and battery voltage detector setting when the detector power is turned on all the time. Refer to the Supply Current data in TYPICAL CHARACTERISTICS for detail information. 8 R5117x No.EC-501-210219 ELECTRICAL CHARACTERISTICS CIN = 1.0 µF, COUT = 10 µF, VIN = 14 V, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 125°C. SVD / BVD Sections Symbol Parameter (Ta = 25°C) Condition Ta = 25°C Min. Typ. Max. ×0.992 ×1.008 −40°C ≤ Ta ≤ 125°C ×0.98 ×1.01 Ta = 25°C ×0.995 ×1.005 −40°C ≤ Ta ≤ 125°C ×0.9875 ×1.0075 Unit VBVDET Battery Voltage Detector Threshold VSVDET SENSE Voltage Detector Threshold VBVHYS Battery Voltage Threshold Hysteresis VBVDET ×0.01 VBVDET ×0.05 V SENSE Voltage Detector Threshold Hysteresis Release Output Delay Time (Power-on Reset) UVLO Detector Threshold UVLO Detector Threshold Hysteresis VSVDET VSVDET VSVDET ×0.003 ×0.005 ×0.007 V VSVHYS tDELAY VUVLO VUVLOHYS CD = 10 nF (1) 2 VBVDET ×0.03 V V 4 8 ms 1.8 2.8 V 0.1 0.2 V VBVD BVD Pull-up Voltage 6.0 V VSVD SVD Pull-up Voltage 6.0 V IOUTBVD IOUTSVD ILEAKBVD ILEAKSVD RLCD Nch Output Current (BVD Output Pin) Nch Output Current (SVD Output Pin) Nch Leakage Current (BVD Output Pin) Nch Leakage Current (SVD Output Pin) CD Pin Discharge Nch Tr.ON Resistance VIN = VBVDET – 0.1V, VDS = 0.1 V 0.8 2.0 mA VIN = 3.0 V, VDS = 0.1 V 0.8 2.0 mA VBVD = 5.5 V 0.3 µA VSVD = 5.5 V 0.3 µA 3.0 kΩ VCE = 0 V, VCD = 0.1 V 1.2 All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C). (1) t DELAY is adjustable by only CD of SENSE Voltage Detector. tDELAY of Battery Voltage Detector is fixed internally. Refer to Release delay time data in TYPICAL CHARACTERISTICS for detail information. 9 R5117x No.EC-501-210219 ELECTRICAL CHARACTERISTICS CIN = 1.0 µF, COUT = 10 µF, VIN = 14 V, unless otherwise noted. R5117xxxx-KE For All (−40°C ≤ Ta ≤ 125°C) Symbol ISS Parameter Condition Supply Current IOUT = 0 mA (1) Istandby Standby Current Min. 3.5V ≤ VBVDET < 8.0V Typ. 35 8.0V ≤ VBVDET ≤ 12.0V VIN = 14 V, VCE = 0 V (1) Max. 65 60 Unit µA 10 25 µA 0.2 0.6 µA IPD CE Pull-down Current VCEH CE Input Voltage, high 2.0 42 V VCEL CE Input Voltage, low 0 1.0 V VR Section Symbol VOUT (−40°C ≤ Ta ≤ 125°C) Parameter Output Voltage ∆VOUT/ Load Regulation ∆IOUT VDIF Dropout Voltage ∆VOUT/ Line Regulation ∆VIN Condition VIN =14 V, IOUT = 1 mA VIN = VSET + 3.0 V IOUT = 500 mA IOUT = 1 mA Min. Typ. Max. Ta = 25°C ×0.995 ×1.005 −40°C ≤ Ta ≤ 125°C ×0.9875 ×1.0075 1 mA ≤ IOUT ≤ 300 mA −10 1 mA ≤ IOUT ≤ 500 mA −15 0 10 15 VSET = 3.3 V 1.1 1.7 VSET = 5.0 V 0.9 1.5 8.0 V ≤ VIN ≤ 16 V −10 6.0 V ≤ VIN ≤ 32 V -25 0 10 25 Unit V mV V mV ILIM Output Current Limit VIN = 8.0 V 500 750 mA ISC Short Current Limit VOUT = 0 V 70 105 TTSD Thermal Shutdown Temperature Junction Temperature 165 175 °C TTSR Thermal Shutdown Junction Temperature Release Temperature 125 145 °C 150 mA (1) Supply current, Standby current are depending on VDD Voltage and battery voltage detector setting when the detector power is turned on all the time. Refer to the Supply Current data in TYPICAL CHARACTERISTICS for detail information. 10 R5117x No.EC-501-210219 ELECTRICAL CHARACTERISTICS CIN = 1.0 µF, COUT = 10 µF, VIN = 14 V, unless otherwise noted. SVD / BVD Sections Symbol Parameter (−40°C ≤ Ta ≤ 125°C) Min. Typ. Max. Condition Ta = 25°C ×0.992 ×1.008 −40°C ≤ Ta ≤ 125°C ×0.98 ×1.01 Ta = 25°C ×0.995 ×1.005 −40°C ≤ Ta ≤ 125°C ×0.9875 ×1.0075 Unit VBVDET Battery Voltage Detector Threshold VSVDET SENSE Voltage Detector Threshold VBVHYS Battery Voltage Detector Threshold Hysteresis VBVDET ×0.01 VBVDET ×0.05 V SENSE Voltage Detector Threshold Hysteresis Release Output Delay Time (Power-on Reset) VSVDET VSVDET VSVDET ×0.003 ×0.005 ×0.007 V VSVHYS tDELAY CD = 10 nF ( 1) 2 VBVDET ×0.03 V V 4 8 ms VUVLO UVLO Detector Threshold 1.8 2.8 V VUVLOHYS UVLO Detector Threshold Hysteresis 0.1 0.2 V VBVD BVD Pull-up Current 6.0 V VSVD SVD Pull-up Current 6.0 V IOUTBVD IOUTSVD ILEAKBVD ILEAKSVD RLCD Nch Output Current (BVD Output Pin) Nch Output Current (SVD Output Pin) Nch Leakage Current (BVD Output Pin) Nch Leakage Current (SVD Output Pin) CD Pin Discharge Nch Tr.ON Resistance VIN = VBVDET – 0.1V, VDS = 0.1 V 0.8 2.0 mA VIN = 3.0 V, VDS = 0.1 V 0.8 2.0 mA VBVD = 5.5 V 0.3 µA VSVD = 5.5 V 0.3 µA 3.0 kΩ VCE = 0 V, VCD = 0.1 V 1.2 (1) t DELAY is adjustable by only CD of SENSE Voltage Detector. tDELAY of Battery Voltage Detector is fixed internally. Refer to Release delay time data in TYPICAL CHARACTERISTICS for detail information. 11 R5117x No.EC-501-210219 R5117x (-AE) Product-specific Electrical Characteristics The specifications surrounded by are guaranteed by design engineering at −40°C ≤ Ta ≤ 125°C VOUT Ta=25°C Min. Typ. Max. VOUT -40°C ≤ Ta ≤ 125°C Min. Typ. Max. R5117x001A 4.975 5.000 5.025 4.938 5.000 5.037 R5117x002A 3.284 3.300 3.316 3.259 3.300 3.324 VBVDET Ta=25°C Min. Typ. Max. VBVDET -40°C ≤ Ta ≤ 125°C Min. Typ. Max. R5117x001A 6.647 6.700 6.753 6.566 6.700 R5117x002A 5.159 5.200 5.241 5.096 5.200 Min. VSVDET Ta=25°C Typ. Max. VSVDET -40°C ≤ Ta ≤ 125°C Min. Typ. Max. R5117x001A 4.796 4.820 4.844 4.760 4.820 R5117x002A 3.165 3.180 3.195 3.141 3.180 Product Name Product Name Product Name Min. VBVHYS Ta=25°C Typ. Max. 6.767 0.06700 0.20100 0.33500 5.252 0.05200 0.15600 0.26000 Min. VSVHYS Ta=25°C Typ. Max. 4.856 0.01446 0.02410 0.03374 3.203 0.00954 0.01590 0.02226 Min. VBVHYS Ta=25°C Typ. Max. R5117x (-KE) Product-specific Electrical Characteristics VOUT Ta=25°C Min. Typ. Max. VOUT -40°C ≤ Ta ≤ 125°C Min. Typ. Max. R5117x001A 4.975 5.000 5.025 4.938 5.000 5.037 R5117x002A 3.284 3.300 3.316 3.259 3.300 3.324 VBVDET Ta=25°C Min. Typ. Max. VBVDET -40°C ≤ Ta ≤ 125°C Min. Typ. Max. R5117x001A 6.647 6.700 6.753 6.566 6.700 6.767 0.06700 0.20100 0.33500 R5117x002A 5.159 5.200 5.241 5.096 5.200 5.252 0.05200 0.15600 0.26000 Min. VSVDET Ta=25°C Typ. Max. VSVDET -40°C ≤ Ta ≤ 125°C Min. Typ. Max. Min. VSVHYS Ta=25°C Typ. Max. R5117x001A 4.796 4.820 4.844 4.760 4.820 4.856 0.01446 0.02410 0.03374 R5117x002A 3.165 3.180 3.195 3.141 3.180 3.203 0.00954 0.01590 0.02226 Product Name Product Name Product Name 12 R5117x No.EC-501-210219 THEORY OF OPERATION Thermal Shutdown When the junction temperature of this device exceeds 175°C (Typ.), the built-in thermal shutdown circuit stops the regulator operation. After that, when the temperature drops to 145°C (Typ.) or lower, the regulator restarts the operation. Unless eliminating the overheating problem, the regulator turns on and off repeatedly and a pulse shaped output voltage occurs as result. R5117xxx Voltage Detector VIN VBVDET VBVREL VUVLO VUVLO+VUVLOHYS VSENSE VSVREL VSVREL VSVDET BVD (4) (1) tDELAY tDELAY SVD (2) (3) (5) UVLO Release Voltage: VUVLO+VUVLOHYS UVLO Detector Threshold: VUVLO Battery Voltage Release Voltage: VBVREL Battery Voltage Detector Threshold: VBVDET SENSE Voltage Release Voltage: VSVREL SENSE Voltage Detecor Threshold: VSVDET R5117xxx Voltage Detector Timing Chart (1) When the Input pin voltage (VIN) exceed the Battery voltage release voltage (VBVREL), the BVD pin output becomes “High” after the release delay time (Typ. 20µs). (2) When SENSE pin voltage (VSENSE) exceed the SENSE voltage release voltage (VSVREL), the SVD pin output becomes “High” after the release delay time (tDELAY). (3) When VSENSE decreases less than the SENSE voltage detector threshold (VSVDET), the SVD pin output becomes “Low” after the detection delay time (Typ.100 µs) and enters the SENSE voltage detecting state. (4) When the Input pin voltage (VIN) decreases less than the Battery voltage detector threshold (VBVDET), the BVD pin output becomes “Low” after the detection delay time (Typ.6.0µs) and enters the Battery voltage detecting state. (5) When the Input pin voltage (VIN) decreases less than the UVLO detector threshold (VUVLO), the SVD pin output becomes “Low”. 13 R5117x No.EC-501-210219 SENSE Voltage Monitoring VD Delay Operation and Release Delay Time (tDELAY) At SENSE Voltage Detection When supplying a voltage higher than the SENSE voltage release voltage (VSVREL) to the SENSE pin, a charging to an external capacitor starts and the CD pin voltage (VCD) increases. The SVD pin voltage (VSVD) maintains “Low” until VCD reaches the CD pin threshold voltage (VTCD). When VCD exceeds VTCD, VSVD is inverted from “Low” to “High”. The release delay time (tDELAY) is the period from the time the SENSE pin voltage (VSENSE) exceeds VSVREL to a rising edge of VSVD. When the output voltage turns from “Low” to “High”, a charge carrier of the external capacitor starts discharging. When supplying a voltage lower than the SENSE voltage detector threshold (VSVDET) to the SENSE pin, the detection delay time (tPHL) remains constant independently of the external capacitor. tPHL is the period that VSVD is inverted from “High” to “Low”. VSVREL VSVDET SENSE Pin VTCD CD Pin Voltage GND UV Pin GND Release Delay Time (tDELAY) Detection Delay Time (tPHL) SENSE Voltage Release Delay Timing Diagram Calculation of SENSE Voltage Release Delay Time The following equation can calculate a typical value of the release delay time (tDELAY) with using the external capacitor (CD). tDELAY (s) = 0.72 × CD (F) / (1.8×10-6) tDELAY is the period from supplying a pulse voltage of “1.0 V to (VSVDET) + 1.0 V” to the SENSE pin by pulling-up SVD pin to 5 V with 100 kΩ resistor to the SVD pins reached 2.5 V. VUVDET + 1.0 V SENSE Pin 1.0 V GND 5.0 V SVD Pin 2.5 V GND tPHL tDELAY 14 R5117x No.EC-501-210219 Voltage Setting of Voltage Regulator The SENSE Voltage Detector (SVD) detects the drop and rise of the Voltage Regulator (VR). When the SENSE release voltage is set to a voltage above the VR output voltage, the reset signal of SVD is not released even if SVD monitors the VR output voltage returns to the normal value after detecting the drop of VR. To prevent this issue, the following conditions are required between VOUT and VSVREL. (VR Set Output Voltage) x 0.9875 − 15 mV* > (SENSE Set Detector Threshold) x 1.0075 x 1.007 * 15mV is the worst value of load regulation When using a device without the above conditions of VOUT and VSVDET, careful consideration must be given to the system operation before use. 15 R5117x No.EC-501-210219 APPLICATION INFORMATION TYPICAL APPLICATIONS VIN Microprocessor VDD VOUT VCC R5117x CIN R1 R2 CD SENSE CE BVD I/O GND SVD RESET CD COUT R5117xxx TYPICAL APPLICATIONS Recommended Components Symbol Description CIN Ceramic Capacitor, 1.0 μF or more, 50V Rated Voltage, CGA4J2X7R1H104K, TDK COUT Ceramic Capacitor, 10 μF or more, 50V Rated Voltage, CGA4J1X7R0J106K, TDK CD R1/R2 A capacitor corresponding to setting of Release Output Delay Time A resistor covering the output current at Nch. driver ON and the leakage current at Nch. driver OFF. Refer to “Electrical Characteristic” providing the evaluation result with using a resistor of 100kΩ. 16 R5117x No.EC-501-210219 TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION VIN Microprocessor VDD VOUT VCC R5117x CIN CD SENSE CE BVD GND SVD I/O D1 CD RESET COUT R5117xxx Typical Application for IC Chip Breakdown Prevention When a sudden surge of electrical current travels along the VOUT pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (COUT) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the VOUT pin and GND has the effect of preventing damage to them. 17 R5117x No.EC-501-210219 TECHNICAL NOTES The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points. Phase Compensation Phase compensation is provided to secure stable operation even when the load current is varied by utilizing capacity of the output ceramic capacitor and Equivalent Series Resistance (ESR). For this purpose, be sure to use a capacitor with 10 μF or more (COUT) and wire it to the pin as short as possible. Evaluate the circuit with consideration of temperature and frequency characteristics, in case ESR value of the capacitor is large and the output is unstable. The capacitor with 1.0 μF or more (CIN) connected in between VDD pin and GND pin must be wired the shortest. 18 R5117x No.EC-501-210219 TYPICAL CHARACTERISTICS 49 42 42 35 Supply Current [μA] Supply Current [μA] Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed. 1) Supply Current vs. Temperature (VIN = 14V) VVRSET = 3.3V, VSVSET = 3.0V, VBVSET = 3.5V VVRSET = 5.0V, VSVSET = 4.6V, VBVSET = 6.0V 35 28 21 14 21 14 7 7 0 28 0 -50 -25 0 25 50 75 100 125 -50 -25 0 84 72 72 60 48 36 24 -40[degC] 25[degC] 105[degC] 125[degC] 12 0 0 6 12 18 24 30 36 24 -40[degC] 25[degC] 105[degC] 125[degC] 0 6 18 12 24 30 36 42 Input Voltage [V] Ta=-40[degC] Ta=25[degC] Ta=105[degC] Ta=125[degC] VVRSET = 5.0V, VSVSET = 4.6V, VBVSET = 6.0V 44 42 Supply Current [μA] Supply Current [μA] 125 36 0 42 46 44 42 40 38 36 100 48 12 3) Supply Current vs. SENSE Voltage VVRSET = 3.3V, VSVSET = 3.0V, VBVSET = 3.5V 48 75 60 Input Voltage [V] 50 50 VVRSET = 5.0V, VSVSET = 4.6V, VBVSET = 6.0V 84 Supply Current [μA] Supply Current [μA] 2) Supply Current vs. Input Voltage VVRSET = 3.3V, VSVSET = 3.0V, VBVSET = 3.5V 25 Temperature [degC] Temperature [degC] Ta=-40[degC] Ta=25[degC] Ta=105[degC] Ta=125[degC] 40 38 36 34 32 0 1 2 3 4 SENSE Input Voltage [V] 5 6 30 0 1 2 3 4 5 6 SENSE Input Voltage [V] 19 R5117x No.EC-501-210219 3.5 6.0 3.0 5.0 2.5 Output Voltage [V] Output Voltage [V] 4) Output Voltage vs. Output Current (VIN = VVRSET + 3.0 V, Ta =25 °C) VVRSET = 3.3V VVRSET = 5.0V 2.0 1.5 1.0 3.0 2.0 1.0 0.5 0.0 4.0 0 200 400 600 0.0 800 0 Output Current [mA] 3.0 4.8 2.5 4.0 Output Voltage [V] Output Voltage [V] 5.6 2.0 1.5 0.0 1[mA] 50[mA] 2 4 6 8 10 12 3.2 2.4 1[mA] 1.6 50[mA] 0.8 100[mA] 0 800 600 VVRSET = 5.0V 3.5 0.5 400 Output Current [mA] 5) Output Voltage vs. Input Voltage (Ta =25 °C) VVRSET = 3.3V 1.0 200 0.0 14 100[mA] 0 2 6 4 8 10 12 14 75 100 125 Input Voltage [V] Input Voltage [V] 3.40 5.10 3.38 5.08 3.36 5.06 Output Voltage [V] Output Voltage [V] 6) Output Voltage vs. Temperature (VIN = 14V, IOUT = 1 mA) VVRSET = 3.3V VVRSET = 5.0V 3.34 3.32 3.30 3.28 3.26 3.24 3.22 5.04 5.02 5.00 4.98 4.96 4.94 -50 -25 0 25 50 75 Temperature [degC] 100 125 4.92 -50 -25 0 25 50 Temperature [degC] 20 R5117x No.EC-501-210219 7) Output Voltage vs. Output Current VVRSET = 3.3V 1750 1750 -40[degC] 25[degC] 105[degC] 125[degC] 1250 1000 750 500 250 0 -40[degC] 25[degC] 105[degC] 125[degC] 1500 Dropout Voltage [mV] 1500 Dropout Voltage [mV] VVRSET = 5.0V 1250 1000 750 500 250 0 100 200 300 400 0 500 0 100 Output Current [mA] 200 300 500 400 Output Current [mA] 8) Ripple Rejection vs. Input Voltage (Ta=25 °C , Vripple = ± 0.2V) VVRSET = 3.3V VVRSET = 5.0V 140 140 100 1k[Hz] 10k[Hz] 100k[Hz] 120 Ripple Rejection [dB] Ripple Rejection [dB] 120 100[Hz] 80 60 40 20 0 100[Hz] 1k[Hz] 10k[Hz] 100k[Hz] 100 80 60 40 20 0 6 12 18 24 30 36 0 42 0 6 12 Input Voltage [V] 18 24 30 36 42 Input Voltage [V] 120 120 100 100 Ripple Rejection [dB] Ripple Rejection [dB] 9) Ripple Rejection vs. Frequency (Ta=25 °C , VIN = 14V ± 0.2Vripple) VVRSET = 3.3V VVRSET = 5.0V 80 60 40 1[mA] 50[mA] 100[mA] 20 0 0.1 1 10 Frequency [kHz] 100 1000 80 60 40 1[mA] 50[mA] 100[mA] 20 0 0.1 1 10 100 1000 Frequency [kHz] 21 R5117x No.EC-501-210219 15 10 10 0 Input Voltage tr = tf = 1.0[μs] 3.35 3.30 Output Voltage Input Voltage tr = tf = 1.0[μs] 5 Input Voltage [V] Input Voltage [V] 5 Output Voltage [V] 15 0 5.08 3.25 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5.00 Output Voltage 3.20 4.92 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time [ms] Output Voltage [V] 10) Input Transient Response (Ta=25 °C , VIN = VVRSET + 3.0 V ⇔ VVRSET + 8.0 V, IOUT = 1 mA) VVRSET = 3.3V VVRSET = 5.0V 4.84 Time [ms] 20 20 0 3.40 3.35 3.30 3.25 3.20 Output Voltage Output Current tr=tf=1.0[μs] 5.2 5.1 5.0 Output Voltage 4.9 4.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 Output Current [mA] 40 Output Voltage [V] Output Current tr=tf=1.0[μs] 40 Output Current [mA] Output Voltage [V] 11) Load Transient Response (Ta=25 °C , IOUT = 1⇔20mA , VIN = 14V) VVRSET = 3.3V VVRSET = 5.0V 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time [ms] Time [ms] 12) CE Transient Response (Ta=25 °C , VIN = 14V, IOUT = 1 mA) VVRSET = 3.3V VVRSET = 3.3V Output Voltage 800 600 400 Inrush Current 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 time [ms] 200 0 CE Input Voltage 4 3 IOUT=1[mA] 2 IOUT=100[mA] 1 5 0 Input Voltage (V) 0 CE Input Voltage Output Voltage [V] Output Voltage [V] 5 Inrush Current [mA] 10 0 0 50 100 150 200 250 300 350 400 450 time [ms] 22 R5117x No.EC-501-210219 VVRSET = 5.0V 800 600 400 Inrush Current 200 0 6 IOUT=1[mA] IOUT=100[mA] 2 0 0 time [ms] VVRSET = 5.0V 60 50 50 40 40 30 Input Voltage 20 10 0 3.4 Output Voltage 3.3 Input Voltage [V] 60 Output Voltage [V] Input Voltage [V] 50 100 150 200 250 300 350 400 450 time [ms] 13) Load Dump (Ta=25 °C , IOUT = 1 mA) VVRSET = 3.3V 30 20 Input Voltage 10 0 5.15 Output Voltage 3.2 3.1 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 15 Input Voltage 10 5 0 4 Output Voltage 8 10 12 14 16 18 Time [μs] 3 Input Voltage [V] 15 Output Voltage [V] Input Voltage [V] 20 6 4.55 VVRSET = 5.0V 20 4 4.85 Time [ms] 14) Cranking (Ta=25 °C , IOUT = 1 mA) VVRSET = 3.3V 2 5.00 4.70 3.0 Time [ms] 0 0 4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 5 CE Input Voltage Output Voltage [V] 0 Output Voltage [V] Output Voltage [V] Output Voltage Inrush Current [mA] CE Input Voltage 5 Input Voltage 10 5 6 0 Output Voltage 4 3 2 1 5 Output Voltage [V] 10 Input Voltage (V) VVRSET = 5.0V 2 0 2 4 6 8 10 12 14 16 18 1 Time [μs] 23 R5117x No.EC-501-210219 VSVSET = 4.6V, VBVSET = 6.0V 3.6 7.0 3.5 6.5 3.4 6.0 3.3 SVD 3.2 BVD Detect Voltage [V] Detect Voltage [V] 15) SVD/BVD Detection Voltage vs. Temperature VSVSET = 3.0V, VBVSET = 3.5V 3.1 5.5 5.0 4.5 3.0 4.0 2.9 3.5 -50 -25 0 25 50 75 100 125 SVD BVD -50 -25 Temperature [degC] 3.8 6.5 Release Voltage [V] Release Voltage [V] 7.0 3.6 3.4 3.2 3.0 SVD -25 0 25 50 75 100 5.0 4.5 SVD BVD -50 -25 -40[degC] 25[degC] 25 50 75 100 125 105[degC] 125[degC] VSVSET = 4.6V 4.68 -40[degC] 105[degC] 4.66 3.02 3.00 2.98 2.96 4.64 25[degC] 125[degC] 4.62 4.60 4.58 4.56 4.54 2.94 2.92 0 Temperature [degC] SVD Detect Voltage [V] SVD Detect Voltage [V] 3.04 125 5.5 3.5 125 17) SVD Detection Voltage vs. Input Voltage VSVSET = 3.0V 3.06 100 6.0 Temperature [degC] 3.08 75 4.0 BVD -50 50 VSVSET = 4.6V, VBVSET = 6.0V 4.0 2.6 25 Temperature [degC] 16) SVD/BVD Release Voltage vs. Temperature VSVSET = 3.0V, VBVSET = 3.5V 2.8 0 0 6 12 18 24 Input Voltage [V] 30 36 42 4.52 0 6 12 18 24 30 36 42 Input Voltage [V] 24 R5117x No.EC-501-210219 18) SVD Release Voltage vs. Input Voltage VSVSET = 3.0V 3.06 3.04 -40[degC] 25[degC] 105[degC] 125[degC] 4.68 SVD Release Voltage [V] SVD Release Voltage [V] 3.08 VSVSET = 4.6V 3.02 3.00 2.98 2.96 2.94 2.92 0 6 12 18 24 30 36 4.66 4.64 25[degC] 105[degC] 125[degC] 4.62 4.60 4.58 4.56 4.54 4.52 42 -40[degC] 0 6 12 Input Voltage [V] 6 6 5 5 4 3 2 SVD 1 6 12 18 24 30 36 2 SVD BVD 0 6 18 12 24 30 36 42 Input Voltage [V] VSVSET = 4.6V, Pull-up Voltage = 5.0V 6 6 5 5 SVD Voltage [V] SVD Voltage [V] 42 3 0 42 20) SVD Voltage vs. SENSE Voltage (Ta =25 °C) VSVSET = 3.0V, Pull-up Voltage = 5.0V 4 3 SVD 1 0 36 4 Input Voltage [V] 2 30 1 BVD 0 24 VSVSET = 4.6V, VBVSET = 6.0V, Pull-up Voltage = 5.0V SVD/BVD Voltage [V] SVD/BVD Voltage [V] 19) SVD/BVD Voltage vs. Input Voltage (Ta =25 °C) VSVSET = 3.0V, VBVSET = 3.5V, Pull-up Voltage = 5.0V 0 18 Input Voltage [V] 4 3 2 SVD 1 0 1 2 3 4 SENSE Input Voltage [V] 5 6 0 0 1 2 3 4 5 6 SENSE Input Voltage [V] 25 R5117x No.EC-501-210219 21) SVD/BVD Driver Output Current vs. Input Voltage VSVSET = 3.0V VBVSET = 3.5V 5 -40[degC] 25[degC] 105[degC] 125[degC] 6 BVD Driver Output Current [mA] SVD Driver Output Current [mA] 6 4 3 2 1 0 0 6 18 12 24 30 36 5 25[degC] 105[degC] 125[degC] 4 3 2 1 0 42 -40[degC] 0 6 12 Input Voltage [V] VSVSET = 4.6V 30 36 42 6 -40[degC] 5 25[degC] BVD Driver Output Current [mA] SVD Driver Output Current [mA] 24 VBVSET = 6.0V 6 125[degC] 105[degC] 4 3 2 1 0 18 Input Voltage [V] 0 6 12 18 24 30 36 5 25[degC] 105[degC] 125[degC] 4 3 2 1 0 42 -40[degC] 0 6 18 12 Input Voltage [V] 24 30 36 42 Input Voltage [V] 22) SVD/BVD Driver Output Current vs. VDS (Ta =25 °C) VSVSET = 4.6V VBVSET = 6.0V 21 BVD Driver Output Current [mA] SVD Driver Output Current [mA] 21 18 15 12 9 VIN=3[V] 6 VIN=14[V] 3 0 VIN=42[V] 0 1 2 3 VDS [V] 4 5 6 18 15 12 9 6 3 0 BVDDET-0.1V 0 1 2 3 4 5 6 VDS [V] 26 R5117x No.EC-501-210219 23) Release Delay Time vs. Temperature VSVSET = 4.6V, VBVSET = 6.0V Release Delay time [ms] 10 1 SVD BVD 0.1 0.01 -50 -25 0 25 50 75 100 125 Temperature [degC] 24) Detection Delay Time vs. Temperature VSVSET = 4.6V, VBVSET = 6.0V 140 Detect Delay time [μs] 120 100 80 60 SVD 40 BVD 20 0 -50 -25 0 25 50 75 100 125 Temperature [degC] 25) Release Delay Time vs. Input Voltage VSVSET = 4.6V SVD Release Delay time [ms] 10 9 8 -40[degC] 25[degC] 105[degC] 125[degC] 7 6 5 4 3 2 0 6 12 18 24 30 36 42 Input Voltage [V] 27 R5117x No.EC-501-210219 26) Detection/Release Delay Time vs. External Capacitance for CD Pin (Ta =25 °C) VSVSET = 4.6V, VBVSET = 6.0V Release Delay time [ms] 1000 SVD解除 SVD Release BVD解除 BVD Release SVD Detection SVD検出 BVD Detection BVD検出 100 10 1 0.1 0.01 0.001 0.001 0.01 0.1 1 10 100 1000 External Capacitance [nF] 27) SENSE Pulse Width vs. SENSE Overdrive Voltage (Ta =25 °C) Limit Pulse of Release State VSVSET = 4.6V 140 SVD Pulth Width [μs] 120 100 80 60 40 20 0 Release State 10 100 1000 Over Drive Voltage [mV] 28) VIN Pulse Width vs. VIN Overdrive Voltage (Ta =25 °C) Limit Pulse of Release State VBVSET = 6.0V 140 BVD Pulth Width [μs] 120 100 80 60 40 Release State 20 0 10 100 1000 Over Drive Voltage [mV] 28 POWER DISSIPATION HSOP-8E PD-HSOP-8E-(125150)-JE-B The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Measurement Conditions Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Four-Layer Board) Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm Copper Ratio Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square Through-holes  0.3 mm × 21 pcs Measurement Result (Ta = 25°C, Tjmax = 150°C) Item Measurement Result Power Dissipation 3600 mW Thermal Resistance (ja) ja = 34.5°C/W Thermal Characterization Parameter (ψjt) ψjt = 10°C/W ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter 4000 3600 Power Dissipation (mW) 3500 3000 2500 2000 1500 1000 500 0 0 25 50 75 100 Ambient Temperature (°C) 125 150 Power Dissipation vs. Ambient Temperature Measurement Board Pattern i PACKAGE DIMENSIONS HSOP-8E ∗ HSOP-8E Package Dimensions ∗ The tab on the bottom of the package shown by blue circle is substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating. i POWER DISSIPATION HQFN0808-28 PD-HQFN0808-28-(125150)-JE-A The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. Measurement Conditions Item Measurement Conditions Environment Mounting on Board (Wind Velocity = 0 m/s) Board Material Glass Cloth Epoxy Plastic (Four-Layer Board) Board Dimensions 76.2 mm × 114.3 mm × 0.8 mm Copper Ratio Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square Through-holes  0.3 mm × 72 pcs Measurement Result (Ta = 25°C, Tjmax = 150°C) Item Measurement Result Power Dissipation 5800 mW Thermal Resistance (ja) ja = 21.5°C/W Thermal Characterization Parameter (ψjt) ψjt = 5°C/W ja: Junction-to–ambient thermal resistance. ψjt: Junction–to-top of package thermal characterization parameter 5800 6000 Power Dissipation PD (mW) 5000 4000 3000 2000 1000 0 0 25 50 75 100 125 150 Ambient Temperature (°C) Power Dissipation vs. Ambient Temperature Measurement Board Pattern i PACKAGE DIMENSIONS HQFN0808-28 DM-HQFN0808-28-JE-A HQFN0808-28 Package Dimensions i 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. 5. The products in this document are designed for automotive applications. However, when using the products for automotive applications, please make sure to contact Ricoh sales representative in advance due to confirming the quality level. 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. 7. Anti-radiation design is not implemented in the products described in this document. 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI. 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Halogen Free Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. Official website https://www.n-redc.co.jp/en/ Contact us https://www.n-redc.co.jp/en/buy/
R5117S001A-E2-KE 价格&库存

很抱歉,暂时无法提供与“R5117S001A-E2-KE”相匹配的价格&库存,您可以联系我们找货

免费人工找货