R5325x SERIES
150mA 2ch LDO REGULATOR
NO.EA-127-0606
OUTLINE
The R5325x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current (Typ. 3.0µA), low dropout, and fast transient response. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and a chip enable circuit. These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable function prolongs the battery life of each system. The line transient response and load transient response of the R5325x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment. The supply current at no load of R5325x Series is remarkably reduced compared with R5325x Series. The mode change signal to reduce the supply current is not necessary. The output voltage of these ICs is internally fixed with high accuracy (±1.0%) Since the packages for these ICs are SOT-23-6 and PLP1820-6 package, 2ch LDO regulators are included in each, high density mounting of the ICs on boards is possible.
FEATURES
• • • • • • • • • • • • • • Input Voltage ................................................................. 1.5V to 6.0V Output Voltage ..............................................................1.2V to 4.0V High Output Voltage Accuracy ...................................... ±1.0% (VOUT > 1.5V) = Low Supply Current ...................................................... Typ. 3.0µA (VR1, VR2) Standby Current ............................................................ Typ. 0.1µA (VR1,VR2) Low Dropout Voltage..................................................... Typ. 0.2V (IOUT=150mA ,VOUT=3.0V) High Ripple Rejection ................................................... Typ. 55dB (f=1kHz) Built-in fold-back protection circuit ................................ Typ. 50mA (Current at short mode) Low Temperature-Drift Coefficient of Output Voltage.... Typ. ±100ppm/°C Excellent Line Regulation ............................................. Typ.0.02%/V Built-in chip enable circuit (active “H”) Fast Transient Response Time from large load current to small load current (50% less than R5323x) Small Packages .......................................................... SOT-23-6, PLP1820-6 Ceramic Capacitor is recommended. (0.1µF or more)
APPLICATIONS
• Power source for handheld communication equipment. • Power source for electrical appliances such as cameras, VCRs and camcorders. • Power source for battery-powered equipment.
1
R5325x
BLOCK DIAGRAMS
R5325xxxxA
CE1
VOUT1
Error Amp. Vref Current Limit
R1_1
R2_1
VDD
R1_2 Error Amp. Vref Current Limit R2_2
GND
CE2
VOUT2
R5325xxxxB
CE1 VOUT1
Error Amp. Vref Current Limit
R1_1
R2_1
VDD
R1_2 Error Amp. Vref Current Limit R2_2
GND
CE2
VOUT2
2
R5325x
SELECTION GUIDE
The output voltage, mask option, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;
R5325xxxxx-xx-x ←Part Number
↑↑↑↑↑ a bc d e Code Contents
a
b
c d e
Designation of Package Type: N: SOT-23-6 K: PLP1820-6 Setting combination of 2ch Output Voltage (VOUT) : Serial Number for Voltage Setting, Stepwise setting with a step of 0.1V in the range of 1.2V to 4.0V is possible for each channel. Designation of Mask Option: A version: without auto discharge function at OFF state. B version: with auto discharge function at OFF state. Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.) Designation of composition of plating: −F : Lead free plating (SOT-23-6) None : Au plating (PLP1820-6)
3
R5325x
PIN CONFIGURATION
SOT-23-6
6 5 4
PLP1820-6 Top View
6 5 4
Bottom View
4 5 6
(mark side)
1
2
3
1
2
3
3
2
1
PIN DESCRIPTIONS
•
SOT-23-6
Pin No. Symbol Description
•
VOUT1 VDD VOUT2 CE2 GND CE1 Output Pin 1 Input Pin Output Pin 2 Chip Enable Pin 2 Ground Pin Chip Enable Pin 1
PLP1820-6
Pin No. Symbol Description
1 2 3 4 5 6
1 2 3 4 5 6
VOUT2 VDD VOUT1 CE1 GND CE2
Output Pin 2 Input Pin Output Pin 1 Chip Enable Pin 1 Ground Pin Chip Enable Pin 2
∗ Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating Unit
VIN VCE VOUT IOUT1, IOUT2 PD Topt Tstg
Input Voltage Input Voltage (CE Pin) Output Voltage Output Current Power Dissipation (SOT-23-6) * Operating Temperature Range Storage Temperature Range
Note1 Note1
6.5 6.5
−0.3 to VIN + 0.3
V V V mA mW
°C °C
200 420 880
−40 to 85 −55 to 125
Power Dissipation (PLP1820-6) *
Note1: For Power Dissipation please refer to PACKAGE INFORMATION to be described.
4
R5325x
ELECTRICAL CHARACTERISTICS
•
R5325xxxxA/B
Topt=25°C
Symbol
Item
Conditions
> =
Min.
Typ.
Max. ×1.01 +15mV
Unit
VOUT IOUT
∆VOUT/∆IOUT
Output voltage Output Current Load regulation Dropout Voltage Supply Current Supply Current (Standby) Line regulation
VOUT 1.5V ×0.99 VIN=Set lOUT+1V 1mA < IOUT < 30mA VOUT < 1.5V −15mV = = VIN−VOUT=1.0V VIN=Set VOUT+1V 1mA < IOUT < 150mA = = VIN=Set VOUT+1V VIN=Set VOUT+1V VCE=GND Set VOUT+0.5V IOUT=30mA
< =
V mA
150 30 80
mV
VDIF ISS Istandby
∆VOUT/∆VIN
Refer to the Electrical Characteristics by Output Voltage 3 0.1 VIN
< =
7 1.0 0.3
µA µA
6.0V
0.1
%/V
RR
Ripple Rejection
f=1kHz Ripple 0.5Vp-p VIN−VOUT=1.0V,IOUT=30mA (In case that VOUT < 1.7V, = VIN=Set VOUT+1.2V) 1.5 IOUT=30mA −40°C < Topt = VOUT=0V 0.15 1.0 0.0 BW=10Hz to 100kHz VCE=0V
< =
55
dB
VIN
∆VOUT/ ∆Topt
Input Voltage Output Voltage Temperature Coefficient Short Current Limit CE Pull-down Constant Current CE Input Voltage “H” CE Input Voltage “L” Output Noise Low Output Nch Tr. ON Resistance (of B version) 85°C
6.0
±100
V ppm /°C mA
ILIM IPD VCEH VCEL en RLOW
50 0.30 0.55 6.0 0.4 30 50
µA
V V
µVrms Ω
5
R5325x
•
Electrical Characteristics by Output Voltage
Output Voltage VOUT (V) Dropout Voltage VDIF(V) Condition Typ. Max.
1.2V 1.3V 1.4V 1.5V 2.0V 2.8V
< = < = < = < = < = < =
VOUT < 1.3V VOUT < 1.4V VOUT < 1.5V VOUT < 2.0V VOUT < 2.8V VOUT < 4.0V IOUT = 150mA
0.55 0.48 0.43 0.40 0.27 0.21 0.17
0.85 0.74 0.68 0.59 0.39 0.28 0.23
VOUT=4.0V
TYPICAL APPLIATION
CE2 IN C1 CE1
VDD
VOUT2 R5325x Series GND
OUT2 C3
VOUT1 C2
OUT1
(External Components) Output Capacitor; Ceramic Type C1,C2,C3 0.1µF Kyocera CM05B104K06AB Murata GRM155B31C104KA87B 1.0µF Kyocera CM05X5R105K06AB TDK C1005JB0J105K Murata GRM155B30J105KE18B
6
R5325x
TEST CIRCUIT
CE2 VOUT2 R5325x Series VDD GND C3 VOUT2 V ISS A C1 CE1 VOUT1 C2 VOUT1 V IOUT1 C1 CE1 VOUT1 C2 IOUT2 CE2 VOUT2 R5325x Series VDD GND C3
∗ C1 =
C2= C3=Ceramic 0.1µF
∗ C1 =
C2= C3=Ceramic 0.1µF
Fig.1 Standard test Circuit
Fig.2 Supply Current Test Circuit
CE2 VOUT2 R5325x Series VDD GND
Pulse Generator
C3
IOUT2
CE2 VOUT2 R5325x Series VDD GND
C3 IOUT2a IOUT2b IOUT1b IOUT1a C2
PG
CE1
VOUT1
C2
IOUT1
C1
CE1
VOUT1
∗ C2 =
C3=Ceramic 0.1µF
∗ C1 =
C2= C3=Ceramic 0.1µF
Fig.3 Ripple Rejection, Line Transient Response Test Circuit
Fig.4 Load Transient Response Test Circuit
7
R5325x
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current (Topt=25°C)
1.2V (VR1/VR2)
1.4 3.0 1.2 1.0 0.8 0.6 0.4 0.2 0 VIN=1.5V VIN=1.8V VIN=2.2V VIN=3.2V 0 50 100 150 200 250 300 350 400 450 500 Output Current IOUT(mA) 2.5 2.0 1.5 1.0 0.5 0 VIN=3.1V VIN=3.8V VIN=3.5V VIN=4.8V 0 50 100 150 200 250 300 350 400 450 500 Output Current IOUT(mA)
2.8V (VR1/VR2)
Output Voltage VOUT(V)
4.0V (VR1/VR2)
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 VIN=4.3V VIN=5.0V VIN=6.0V 0 50 100 150 200 250 300 350 400 450 500 Output Current IOUT(mA)
2) Output Voltage vs. Input Voltage (Topt=25°C)
1.2V (VR1/VR2)
1.4 3.0 1.2 1.0 0.8 0.6 0.4 0.2 0 0 1 IOUT=1mA IOUT=30mA IOUT=100mA 2 3 4 Input Voltage VIN(V) 5 6 2.5 2.0 1.5 1.0 0.5 0 0 1 IOUT=1mA IOUT=30mA IOUT=100mA 2 3 4 Input Voltage VIN(V) 5 6
Output Voltage VOUT(V)
Output Voltage VOUT(V)
2.8V (VR1/VR2)
Output Voltage VOUT(V)
8
Output Voltage VOUT(V)
R5325x
4.0V (VR1/VR2)
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Output Voltage VOUT(V)
IOUT=1mA IOUT=30mA IOUT=100mA 0 1 2 3 4 Input Voltage VIN(V) 5 6
3) Dropout Voltage vs. Output Current
1.2V (VR1/VR2)
800
Dropout Voltage VDIF(mV) Dropout Voltage VDIF(mV)
2.8V (VR1/VR2)
300 250 200 150 100 50 0 0 85°C 25°C -40°C 25 50 75 100 125 Output Current IOUT(mA) 150
700 600 500 400 300 200 100 0 0 85°C 25°C -40°C 25 50 75 100 125 Output Current IOUT(mA) 150
4.0V (VR1/VR2)
250
Dropout Voltage VDIF(mV)
200 150 100 50 0 85°C 25°C -40°C 0 25 50 75 100 125 Output Current IOUT(mA) 150
9
R5325x
4) Output Voltage vs. Temperature (IOUT=30mA)
1.2V (VR1/VR2)
1.23 VIN=2.2V 3.00
2.8V (VR1/VR2)
VIN=3.8V
Output Voltage VOUT(V)
Output Voltage VOUT(V)
-25 0 25 50 75 Temperature Topt(°C) 100
1.22 1.21 1.20 1.19 1.18 1.17 1.16 -50
2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 -50 -25 0 25 50 75 Temperature Topt(°C) 100
4.0V (VR1/VR2)
4.20 VIN=5.0V
Output Voltage VOUT(V)
4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 -50 -25 0 25 50 75 Temperature Topt(°C) 100
5) Supply Current vs. Input Voltage (Topt=25°C)
1.2V (VR1/VR2)
10 9 8 7 6 5 4 3 2 1 0 1.2 10 9 8 7 6 5 4 3 2 1 0 2.8
2.8V (VR1/VR2)
Supply Current ISS(µA)
2.0
2.8 3.6 4.4 5.2 Input Voltage VIN(V)
6.0
Supply Current ISS(µA)
3.6 4.4 5.2 Input Voltage VIN(V)
6.0
10
R5325x
4.0V (VR1/VR2)
10 9 8 7 6 5 4 3 2 1 0 4.0
Supply Current ISS(µA)
4.5 5.0 5.5 Input Voltage VIN(V)
6.0
6) Supply Current vs. Temperature
1.2V (VR1/VR2)
10 9 8 7 6 5 4 3 2 1 0 -50 VIN=2.2V 10 9 8 7 6 5 4 3 2 1 0 -50
2.8V (VR1/VR2)
VIN=3.8V
Supply Current ISS(µA)
-25
0 25 50 75 Temperature Topt(°C)
100
Supply Current ISS(µA)
-25
0 25 50 75 Temperature Topt(°C)
100
4.0V (VR1/VR2)
10 9 8 7 6 5 4 3 2 1 0 -50 VIN=5.0V
Supply Current ISS(µA)
-25
0 25 50 75 Temperature Topt(°C)
100
11
R5325x
7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)
VR1/VR2
700
Dropout Voltage VDIF(mV)
600 500 400 300 200 100 0 1.0
150mA 100mA 30mA 10mA 1mA
1.5 2.0 2.5 3.0 3.5 Set Output Voltage VREG(V)
4.0
8) Ripple Rejection vs. Frequency (Topt=25°C, COUT=0.1µF)
1.2V (VR1/VR2)
80
Ripple Rejection RR(dB)
2.8V (VR1/VR2)
80
Ripple Rejection RR(dB)
VIN=2.2VDC+0.2Vp-p,COUT=Ceramic 0.1µF
VIN=3.8VDC+0.2Vp-p,COUT=Ceramic 0.1µF
70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=100mA 1 10 Frequency f(kHz) 100
70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=100mA 1 10 Frequency f(kHz) 100
4.0V (VR1/VR2)
80
Ripple Rejection RR(dB)
VIN=5.0VDC+0.2Vp-p,COUT=Ceramic 0.1µF
70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=100mA 1 10 Frequency f(kHz) 100
12
R5325x
9) Ripple Rejection vs. Input Voltage (DC bias), Topt=25°C, Ripple 0.2Vp-p
2.8V (VR1/VR2)
80
Ripple Rejection RR(dB)
2.8V (VR1/VR2)
IOUT=1mA
Ripple Rejection RR(dB)
70 60 50 40 30 20 10 0 2.90
100Hz 1kHz 10kHz 100kHz
80 70 60 50 40 30 20 10 0 2.90
IOUT=10mA 100Hz 1kHz 10kHz 100kHz
3.00 3.10 3.20 Input Voltage VIN(V)
3.30
3.00 3.10 3.20 Input Voltage VIN(V)
3.30
2.8V (VR1/VR2)
80
Ripple Rejection RR(dB)
IOUT=100mA 100Hz 1kHz 10kHz 100kHz
70 60 50 40 30 20 10 0 2.90
3.00 3.10 3.20 Input Voltage VIN(V)
3.30
10) Input Transient Response(CIN=none, Tr=Tf=5µs, IOUT=30mA)
1.2V (VR1/VR2)
1.7 COUT=Ceramic 0.1µF 4 1.7
1.2V (VR1/VR2)
COUT=Ceramic 1.0µF 4 3 Input Voltage 2 1 Output Voltage 0
Output Voltage VOUT(V)
Input Voltage VIN(V)
1.5 1.4 1.3 1.2 1.1
2 1
1.5 1.4 1.3 1.2 1.1
Output Voltage
0
1.0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
1.0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
Input Voltage VIN(V)
Input Voltage
Output Voltage VOUT(V)
1.6
3
1.6
13
R5325x
2.8V (VR1/VR2)
3.3 COUT=Ceramic 0.1µF 6 3.3
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF 6 5 Input Voltage 4 3 Output Voltage 2 1 0
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3.2 3.1 3.0 2.9 2.8 2.7 2.6 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) Output Voltage Input Voltage
5
3.2 3.1 3.0 2.9 2.8 2.7 2.6 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
Input Voltage VIN(V)
4 3 2 1 0
4.0V (VR1/VR2)
4.5 COUT=Ceramic 0.1µF 7 4.5
4.0V (VR1/VR2)
COUT=Ceramic 1.0µF 7 6 Input Voltage 5 4 Output Voltage 3 2 1
Output Voltage VOUT(V)
Output Voltage VOUT(V)
4.4 4.3 4.2 4.1 4.0 3.9 Output Voltage Input Voltage
6
4.4 4.3 4.2 4.1 4.0 3.9
Input Voltage VIN(V)
5 4 3 2 1
3.8 0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
3.8 0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
11) Load Transient Response (CIN=Ceramic 0.1µF)
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns 150 100 50 0
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns 150 100 50 VR2 Output Current 50mA↔100mA 0
Output Current IOUT(mA)
3.8 3.0 2.8 2.6 3.0 2.8 2.6 2.4 -4
VR1 Output Current 50mA↔100mA
VR1 Output Voltage
VR2 Output Voltage Load Current=1mA 0 4 8 12 16 20 24 28 32 36 Time t(µs)
3.0 2.8 2.6 3.0 2.8 2.6 2.4 -4 0
VR1 Output Voltage Load Current=1mA VR2 Output Voltage 4 8 12 16 20 24 28 32 36 Time t(µs)
14
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
Input Voltage VIN(V)
Input Voltage VIN(V)
R5325x
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns 100 50 1 5.2 4.9 4.6 4.3 3.0 2.8 2.6 3.1 2.8 2.5 2.2 -25
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns 100 50 1
Output Current IOUT(mA)
VR1 Output Current 1mA↔50mA 3.0 2.8 2.6 3.1 2.8 2.5 2.2 -25
VR2 Output Current 1mA↔50mA
VR1 Output Voltage
VR1 Output Voltage Load Current=1mA VR2 Output Voltage 0 25 50 75 100 125 150 175 Time t(µs)
VR2 Output Voltage Load Current=1mA 0 25 50 75 100 125 150 175 Time t(µs)
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns 150 100 50 VR1 Output Current 50mA↔100mA 0
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns 150 100 50 VR2 Output Current 50mA↔100mA 0
Output Current IOUT(mA)
3.0 2.8 2.6 3.0 2.8 2.6 2.4 -4 0
VR1 Output Voltage
VR2 Output Voltage Load Current=1mA 4 8 12 16 20 24 28 32 36 Time t(µs)
3.0 2.8 2.6 3.0 2.8 2.6 2.4 -4 0
VR1 Output Voltage Load Current=1mA VR2 Output Voltage 4 8 12 16 20 24 28 32 36 Time t(µs)
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns 100 50 1
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns 100 50 1
Output Current IOUT(mA)
VR1 Output Current 1mA↔50mA 3.0 2.8 2.6 3.0 2.8 2.6 2.4 -20 0
VR2 Output Current 1mA↔50mA 3.0 2.8 2.6 3.0 2.8 2.6 2.4 -25
VR1 Output Voltage
VR1 Output Voltage Load Current=1mA VR2 Output Voltage 0 25 50 75 100 125 150 175 Time t(µs)
VR2 Output Voltage Load Current=1mA 20 40 60 80 100 120 140 160 180 Time t(µs)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
15
R5325x
2.8V (VR1/VR2)
COUT=Ceramic 2.2µF,VIN=3.8V,Tr=Tf=500ns VR1/VR2 Output Current 50mA↔100mA 150 100 50 Output Voltage 2.8 2.7 2.6 0 10 20 30 40 50 60 70 80 90 100 Time t(µs) 0
12) Turn on Speed by CE signal CIN=Ceramic 0.1µF
1.2V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.3V 4
Output Current IOUT(mA)
Output Voltage VOUT(V)
1.2V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.3V,IOUT=30mA 4
CE Input Voltage VCE(V)
CE Input Voltage
CE Input Voltage
2 1 1.2 0.8 0.4 Output Voltage IOUT=1mA IOUT=30mA 0
2 1 1.2 0.8 0.4 0 -40 0 40 80 120 160 200 240 280 320 360 Time t(µs) Output Voltage 0
0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.3V,IOUT=30mA 4
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.3V,IOUT=30mA 4
CE Input Voltage VCE(V)
CE Input Voltage
2 1
CE Input Voltage
2 1
3 2 1 0 -20 0 Output Voltage
0
3 2 1 0 -20 0 Output Voltage
0
20 40 60 80 100 120 140 160 180 Time t(µs)
20 40 60 80 100 120 140 160 180 Time t(µs)
16
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3
3
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
3
3
R5325x
4.0V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=6.0V,IOUT=30mA 9
4.0V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=6.0V,IOUT=30mA 9 6 CE Input Voltage 3 4 2 0 -20 0 Output Voltage 0
CE Input Voltage VCE(V)
6 CE Input Voltage 3 4 Output Voltage 2 0 -20 0 0
20 40 60 80 100 120 140 160 180 Time t(µs)
20 40 60 80 100 120 140 160 180 Time t(µs)
13) Turn-off Speed with CE Signal CIN=Ceramic 0.1µF(B version)
1.2V (VR1/VR2)
2.8 COUT=Ceramic 0.1µF,VIN=3.3V 4 2.8
1.2V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.3V 4 2 1 0 Output Voltage IOUT=1mA IOUT=30mA 40 80 120 160 200 240 280 320 360 Time t(µs)
CE Input Voltage VCE(V)
2.0 1.6 1.2 0.8 0.4
CE Input Voltage
2 1 0
2.0 1.6 1.2 0.8 0.4 0 -40 0
CE Input Voltage
Output Voltage IOUT=1mA IOUT=30mA
0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs)
2.8V (VR1/VR2)
7 COUT=Ceramic 0.1µF,VIN=3.3V 4 7
2.8V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.3V 4
CE Input Voltage VCE(V)
5 4 3 2 1 0 -20 0
CE Input Voltage
2 1 0
5 4 3 2 1
CE Input Voltage
2 1 0
Output Voltage IOUT=1mA IOUT=30mA 20 40 60 80 100 120 140 160 180 Time t(µs)
Output Voltage IOUT=1mA IOUT=30mA
0 -10 0 100 200 300 400 500 600 700 800 900 Time t(µs)
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
6
3
6
3
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
2.4
3
2.4
3
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
17
R5325x
4.0V (VR1/VR2)
10 COUT=Ceramic 0.1µF,VIN=6.0V 10
4.0V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=6.0V
CE Input Voltage VCE(V)
8 CE Input Voltage 6 4 Output Voltage 2 0 -20 0 IOUT=1mA IOUT=30mA
5
8 CE Input Voltage 6 4 Output Voltage 2 IOUT=1mA IOUT=30mA
5
0
0
20 40 60 80 100 120 140 160 180 Time t(µs)
0 -10 0 100 200 300 400 500 600 700 800 900 Time t(µs)
18
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R5325x
TECHNICAL NOTES
CE2 IN C1
VDD CE1
VOUT2 R5325x Series GND VOUT1
OUT2 C3
OUT1 C2
(External Components) Output Capacitor; Ceramic Type C1,C2,C3 0.1µF Kyocera CM05B104K06AB Murata GRM155B31C104KA87B 1.0µF Kyocera CM05X5R105K06AB TDK C1005JB0J105K Murata GRM155B30J105KE18B
1.Mounting on PCB Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 1.0µF or more as C1 between VDD and GND pin, and as close as possible to the pins. Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible. 2.Phase Compensation In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)
If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics. Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors.
19
PACKAGE INFORMATION
PE-SOT-23-6-0510
•
SOT-23-6 (SC-74)
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2 1.9±0.2 (0.95) (0.95) +0.2 1.1 −0.1 0.8±0.1 4
6
5
+0.2 1.6 −0.1
2.8±0.3
0 to 0.1
1
2
0.2 MIN.
+0.1 0.4−0.2
+0.1 0.15 −0.05
TAPING SPECIFICATION
0.3±0.1 +0.1 φ1.5 0 4.0±0.1 2.0±0.05
1 2.0MAX.
2
3 4.0±0.1
3.3
∅1.1±0.1
TR User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
11.4±1.0 9.0±0.3
21±0.8
0 180 −1.5
2±0.5
13±0.2
+1 60 0
3.2
8.0±0.3
6
5
4
3.5±0.05
1.75±0.1
PACKAGE INFORMATION
PE-SOT-23-6-0510
POWER DISSIPATION (SOT-23-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result
(Topt=25°C,Tjmax=125°C)
Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm × 40mm × 1.6mm Top side : Approx. 50% , Back side : Approx. 50% φ0.5mm × 44pcs
Standard Land Pattern Power Dissipation Thermal Resistance
600
Free Air 250mW 400°C/W
420mW θja=(125−25°C)/0.42W=263°C/W
Power Dissipation PD(mW)
500 420 400 300
On Board
40
100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150
Power Dissipation
40
200
Measurement Board Pattern IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.7 MAX.
1.0
0.95 0.95 1.9
2.4
(Unit: mm)
PACKAGE INFORMATION
PE-PLP1820-6-0611
•
PLP1820-6
1.6±0.1
Unit: mm
PACKAGE DIMENSIONS
1.80
A
B
4
0.20±0.1
0.05 M AB 6
0.05
1.0±0.1
2.00
INDEX
3
0.6Max.
0.5 0.1NOM.
1
0.3±0.1
Bottom View
Attention: Tabs or Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns.
0.05
TAPING SPECIFICATION
0.25±0.1 1.5 +0.1 0 4.0±0.1 2.0±0.05
3.5±0.05
1.75±0.1
2.4
1.1±0.1 2.2
1.1Max.
4.0±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=5000pcs) (R5323K,R5325K : 1reel=3000pcs)
REUSE REEL (EIAJ-RRM-08Bc)
11.4±1.0 9.0±0.3
21±0.8
∅60 +1 0 0 ∅180 −1.5
2±0.5
∅13±0.2
8.0±0.3
0.25±0.1
0.25±0.1
×4
PACKAGE INFORMATION
PE-PLP1820-6-0611
POWER DISSIPATION (PLP1820-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result
(Topt=25°C,Tjmax=125°C)
Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm × 40mm × 1.6mm Top side : Approx. 50% , Back side : Approx. 50% φ0.54mm × 30pcs
Standard Land Pattern Power Dissipation Thermal Resistance
1200
880mW θja=(125−25°C)/0.88W=114°C/W
Power Dissipation PD(mW)
1000 800 600 400 200 0 0
On Board 880
40
25
50 75 85 100 Ambient Temperature (°C)
125
150
Power Dissipation
40
Measurement Board Pattern IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.5 0.5
0.75 0.45
1.00
1.60
0.35
0.25
(Unit: mm)
MARK INFORMATION
ME-R5325N-0612
R5325N SERIES MARK SPECIFICATION • SOT-23-6 (SC-74)
1 3
1 2 3 4
, ,
2 4
: Product Code (refer to Part Number vs. Product Code) : Lot Number
•
Part Number vs. Product Code
Product Code
1 2
Part Number R5325N001B R5325N002B R5325N003B R5325N004B R5325N005B R5325N006B R5325N007B R5325N008B R5325N009B R5325N010B R5325N011B R5325N012B R5325N013B R5325N014B R5325N015B R5325N016B R5325N017B R5325N018B R5325N019B R5325N020B R5325N021B R5325N022B R5325N023B R5325N024B R5325N025B R5325N026B R5325N027B R5325N028B R5325N029B
Part Number R5325N001A R5325N002A R5325N003A R5325N004A R5325N005A R5325N006A R5325N007A R5325N008A R5325N009A R5325N010A R5325N011A R5325N012A R5325N013A R5325N014A R5325N015A R5325N016A R5325N017A R5325N018A R5325N019A R5325N020A R5325N021A R5325N022A R5325N023A R5325N024A R5325N025A R5325N026A R5325N027A R5325N028A R5325N029A
Product Code
1 2
W W W W W W W W W W W W W W W W W W W W W W W W W W W W W
1 2 3 4 5 6 7 8 9 A B C D G H E F J K L M N P Q R S T U V
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
1 2 3 4 5 6 7 8 9 A B C D G H E F J K L M N P Q R S T U V
MARK INFORMATION
ME-R5325K-0612
R5325K SERIES MARK SPECIFICATION • PLP1820-6
1 5
1 2 3
to ,
6
4
: Product Code (refer to Part Number vs. Product Code) : Lot Number
4
5
6
•
Part Number vs. Product Code
Product Code
1 2 3 4
Part Number R5325K001B R5325K002B R5325K003B R5325K004B R5325K005B R5325K006B R5325K007B R5325K008B R5325K009B R5325K010B R5325K011B R5325K012B R5325K013B R5325K014B R5325K015B R5325K016B R5325K017B R5325K018B R5325K019B R5325K020B R5325K021B R5325K022B R5325K023B R5325K024B R5325K025B R5325K026B R5325K027B R5325K028B R5325K029B
Part Number R5325K001A R5325K002A R5325K003A R5325K004A R5325K005A R5325K006A R5325K007A R5325K008A R5325K009A R5325K010A R5325K011A R5325K012A R5325K013A R5325K014A R5325K015A R5325K016A R5325K017A R5325K018A R5325K019A R5325K020A R5325K021A R5325K022A R5325K023A R5325K024A R5325K025A R5325K026A R5325K027A R5325K028A R5325K029A
Product Code
1 2 3 4
D D D D D D D D D D D D D D D D D D D D D D D D D D D D
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
D0