VFM STEP-UP DC/DC CONVERTER CONTROLLER
RN5RY××1 SERIES
APPLICATION MANUAL
NO.EA-030-0006
VFM STEP-UP DC/DC CONVERTER CONTROLLER
RN5RY ×× 1 SERIES
OUTLINE
The RN5RY ×× 1 Series are VFM Control ICs for step-up DC/DC converter with an external driver transistor featuring high output voltage accuracy and low supply current by CMOS process. Each of the RN5RY ×× 1 Series ICs consists of a voltage reference unit, an error amplifier, an oscillator, a VFM control circuit and feed back resistors. A low ripple, high efficiency step-up DC/DC converter can be composed of the RN5RY ×× 1 Series with only an inductor, a diode, a capacitor, and a drive transistor. Since the package for these ICs are SOT-23-5( Mini-mold)package, high density mounting of the ICs on boards is possible.
FEATURES
• Low Supply Current ..................................................................................TYP. 3µA • Low Standby Current ..................................................................................TYP. 0.6µA • Low Temperature-Drift Coefficient of Output Voltage ...........................TYP. ±50ppm / ˚C • High Accuracy Output Voltage ...................................................................±2.5% • Low Oscillation Start-up Voltage ...............................................................MAX. 0.8V • Small Package ............................................................................................. SOT-23-5(Mini-Mold)
APPLICATIONS
• Power source for battery-powered instruments. • Power source for cameras, VCRs, camcorders, pagers, and other hand-held communication instruments.
BLOCK DIAGRAM
CE 5
OSC
VOUT 2
EXT 3 Output Buffer
– +
Vref 1
GND
1
RN5RY × × 1
SELECTION GUIDE
In the RN5RY ×× 1 Series, the output voltage, the version and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below : RN5RY×××× – × × ← Part Number
}
}
↑ d
↑ ↑↑ a bc
Code
Contents
a
Designation of Output Voltage (VOUT) VOUT can be designated within the range of 2.0 to 6.0V
1
b
Designation of Packing Type: c A: Taping C: Antistatic bag for samples Designation of Taping Type: Ex. SOT-23-5: TR, TL (refer to Taping Specification) “TR” is prescribed as a standard
d
For example, the product with Output Voltage 2.0V, Taping Type TR, is designated by Part Number RN5RY201A–TR.
2
RN5RY × × 1
PIN CONFIGURATION
• SOT-23-5
5
4
(mark side)
1
2
3
PIN DESCRIPTION
Pin No. 1 2 3 4 5 Symbol Description
GND VOUT EXT NC CE
Ground Pin Output Pin External Transistor Drive Pin (CMOS Output) No Connection Chip Enable Pin
3
RN5RY × × 1
ABSOLUTE MAXIMUM RATINGS
Symbol Item Ratings Unit
VIN VCE VEXT IEXT PD Topt Tstg Tsolder
Input Voltage CE Pin Input Voltage EXT Pin Output Voltage EXT Pin Output Current Power Dissipation Operating Temperature Storage temperature Lead Temperature (Soldering)
+12 –0.3 to VOUT+0.3 –0.3 to VOUT+0.3 ±50 150 – 30 to +85 – 55 to +125 260˚C, 10s
V V V mA mW ˚C ˚C
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.
4
RN5RY × × 1
ELECTRICAL CHARACTERISTICS
• RN5RY301
Topt=25˚C
Symbol
Item
Conditions
MIN.
TYP.
MAX.
Unit
VOUT VIN IDD1 IDD2 Istandby fosc Duty Vstart ∆VOUT ∆Topt IEXTH IEXTL VCEH VCEL ICEH ICEL
Output Voltage Input Voltage Supply Current 1 Supply Current 2 Standby Current Maximum Oscillator Frequency Oscillator Duty Cycle Oscillator Start -Up Voltage Output Voltage Temperature Coefficient EXT “H” Output Current EXT “L” Output Current CE “H” Input Voltage CE “L” Input Voltage CE “H” Input Current CE “L” Input Current
VIN=1.5V,IOUT=10mA
2.925
3.000
3.075 10
V V µA µA µA kHZ %
EXT No load, VOUT=3.15V, Test circuits1 EXT No load, VOUT=2.85V, Test circuits1 VOUT=1.5V, Test circuits2 VOUT=2.85V, Test circuits3 VOUT=2.85V, EXT High side, Test circuits3 EXT No load, Test circuits4 IOUT=10mA – 30˚C≤Topt≤85˚C VOUT=2.85V, VEXT=GND, Test circuits5 VOUT=2.85V, VEXT=2.85V, Test circuits6 VOUT=2.85V, Test circuits4 VOUT=2.85V, Test circuits4 CE=3.0V, Test circuits7 CE=GND, Test circuits8 – 0.1 1.5 1.5 60
3 25 0.6 180 75 0.7
5 50 1.5
0.8
V
±50
ppm/˚C
–1.5
mA mA V
0.25 0 0 0.1
V µA µA
5
RN5RY × × 1
• RN5RY401
Topt=25˚C
Symbol
Item
Conditions
MIN.
TYP.
MAX.
Unit
VOUT VIN IDD1 IDD2 Istandby fosc Duty Vstart ∆VOUT ∆Topt IEXTH IEXTL VCEH VCEL ICEH ICEL
Output Voltage Input Voltage Supply Current 1 Supply Current 2 Standby Current Maximum Oscillator Frequency Oscillator Duty Cycle Oscillator Start -Up Voltage Output Voltage Temperature Coefficient EXT “H” Output Current EXT “L” Output Current CE “H” Input Voltage CE “L” Input Voltage CE “H” Input Current CE “L” Input Current
VIN=2.0V, IOUT=10mA
3.900
4.000
4.100 10
V V µA µA µA kHZ %
EXT No load, VOUT=4.2V, Test circuits1 EXT No load, VOUT=3.8V, Test circuits1 VOUT=2.0V, Test circuits2 VOUT=3.8V, Test circuits3 VOUT=3.8V, EXT High side, Test circuits3 EXT No load, Test circuits4 IOUT=10mA –30˚C≤Topt≤85˚C VOUT=3.8V, VEXT=GND, Test circuits5 VOUT=3.8V, VEXT=3.8V, Test circuits6 VOUT=3.8V, Test circuits4 VOUT=3.8V, Test circuits4 CE=4.0V, Test circuits7 CE=GND, Test circuits8 –0.1 1.5 1.5 60
3 50 0.6 180 75 0.7
5 90 1.5
0.8
V
±50
ppm/˚C
–1.5
mA mA V
0.25 0 0 0.1
V µA µA
6
RN5RY × × 1
• RN5RY501
Topt=25˚C
Symbol
Item
Conditions
MIN.
TYP.
MAX.
Unit
VOUT VIN IDD1 IDD2 Istandby fosc Duty Vstart ∆VOUT ∆Topt IEXTH IEXTL VCEH VCEL ICEH ICEL
Output Voltage Input Voltage Supply Current 1 Supply Current 2 Standby Current Maximum Oscillator Frequency Oscillator Duty Cycle Oscillator Start-Up Voltage Output Voltage Temperature Coefficient EXT “H” Output Current EXT “L” Output Current CE “H” Input Voltage CE “L” Input Voltage CE “H” Input Current CE “L” Input Current
VIN=2.5V, IOUT=10mA
4.875
5.000
5.125 10
V V µA µA µA kHZ %
EXT No load, VOUT=5.25V, Test circuits1 EXT No load, VOUT=4.75V, Test circuits1 VOUT=2.5V, Test circuits2 VOUT =4.75V, Test circuits3 VOUT=4.75V, EXT High side, Test circuits3 EXT No load, Test circuits4 IOUT=10mA –30˚C≤Topt≤85˚C VOUT=4.75V, VEXT=GND, Test circuits5 VOUT=4.75V, VEXT=4.75V, Test circuits6 VOUT=4.75V, Test circuits4 VOUT=4.75V, Test circuits4 CE=5.0V, Test circuits7 CE=GND, Test circuits8 –0.1 1.5 1.5 60
3 90 0.6 180 75 0.7
5 150 1.5
0.8
V
±50
ppm/˚C
–1.5
mA mA V
0.25 0 0 0.1
V µA µA
7
R N5RY ×× 1
TEST CIRCUIT
A GND VOUT EXT NC CE A GND VOUT EXT NC CE
Test Circuit 1
Test Circuit 2
GND VOUT EXT Oscilloscope
CE
GND VOUT EXT Oscilloscope
CE
NC
NC
Test Circuit 3
Test Circuit 4
GND VOUT EXT Oscilloscope
CE
GND VOUT
CE
NC Oscilloscope
EXT
NC
Test Circuit 5
Test Circuit 6
GND VOUT EXT
CE
A
GND VOUT
CE
A
NC
EXT
NC
Test Circuit 7
Test Circuit 8
8
R N5RY × × 1
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
4.00 Output Voltage VOUT(V)
RN5RY301
L=27µH 4.00 Output Voltage VOUT(V)
RN5RY301
L=68µH
VIN=2.0V 3.00 0.8V 0.9V 1.0V 1.5V
3.00 0.8V 1.0V 0.9V 1.5V
VIN=2.0V
2.00 0
100
200 300 400 Output Current IOUT(mA)
500
2.00 0
100
200 300 400 Output Current IOUT(mA)
500
5.00 Output Voltage VOUT(V)
RN5RY401
L=27µH
5.00 Output Voltage VOUT(V)
RN5RY401
L=68µH
VIN=3.0V 4.00 1.0V 0.8V 0.9V 2.0V
VIN=3.0V 4.00 0.8V 1.0V 0.9V 2.0V
3.00 0
100
200 300 400 500 Output Current IOUT(mA)
600
3.00
0
100
200 300 400 500 Output Current IOUT(mA)
600
6.00 Output Voltage VOUT(V)
RN5RY501
L=27µH 6.00 Output Voltage VOUT(V)
RN5RY501
L=68µH
VIN=4.0V 5.00 1.0V 0.9V 0.8V 4.00 0 2.0V 3.0V
VIN=4.0V 5.00 1.0V 0.9V 0.8V 4.00 2.0V 3.0V
100
200 300 400 500 Output Current IOUT(mA)
600
700
0
100
200 300 400 500 Output Current IOUT(mA)
600
700
9
R N5RY × × 1
2) Efficiency vs. Output Current
100 90 80 Effciency η(%) 70 60 50 40 30 20 10 0 0 100 200 300 400 Output Current IOUT(mA) 500 0.8V 0.9V 1.0V
1.5V
RN5RY301
L=27µH 100 90 VIN=2.0V Effciency η(%) 80 70 60 50 40 30 20 10 0 0 100 0.8V 0.9V
RN5RY301
L=68µH
VIN=2.0V 1.0V 1.5V
200 300 400 Output Current IOUT(mA)
500
100 90 80 Effciency η(%) 70 60 50 40 30 20 10 0 0 100 0.8V 0.9V
RN5RY401
L=27µH VIN=3.0V
100 90 80 Effciency η(%) 70 60 50 40 30 20 10 0 0.8V 1.0V 0.9V
RN5RY401
L=68µH
1.0V
2.0V
VIN=3.0V 2.0V
200 300 400 500 Output Current IOUT(mA)
600
0
100
200 300 400 500 Output Current IOUT(mA)
600
100 90 80 Effciency η(%) 60 50 40 30 20 10 0 0 100 1.0V 0.9V 0.8V 70
RN5RY501
L=27µH VIN=4.0V 3.0V
100 90 80 Effciency η(%) 70 60 50 40 30 20 10 0 0 0.8V 1.0V 0.9V
RN5RY501
L=68µH VIN=4.0V
2.0V
3.0V 2.0V
200 300 400 500 Output Current IOUT(mA)
600
700
100
200 300 400 500 600 Output Current IOUT(mA)
700
10
R N5RY × × 1
3) Ripple Voltage vs. Output Current RN5RY301
350 Ripple Voltage Vr(mVp-p) 300 1.0V 250 200 150 100 50 0 0 100 200 300 400 Output Current IOUT(mA) 500 0 0 100 200 400 500 300 Output Current IOUT(mA) 600 0.8V 0.9V VIN=2.0V Ripple Voltage Vr(mVp-p) 1.5V L=27µH
RN5RY401
400 2.0V 300
L=27µH
VIN=3.0V
200 1.0V 100 0.9V 0.8V
RN5RY501
500 Ripple Voltage Vr(mVp-p) 400 2.0V 300 200 100 0 0 0.8V 100 200 300 500 400 Output Current IOUT(mA) 1.0V 0.9V 3.0V
L=27µH
VIN=4.0V
600
700
11
RN5RY × × 1
TYPICAL APPLICATIONS
L1 VIN D1 RN5RY××1 VOUT Cb EXT + GND C1 Q1 Rb CE + C2 + C3 VOUT
Components : Inductor (L1) Diode (D1) Capacitor (C1) Capacitor (C2) Capacitor (C3) Transistor (Q1) Base Resistor (Rb) Base Capacitor (Cb)
: CD105 : D1FS4A (Schottky Type) : 33µF (Tantalum Type) : 47µF (Tantalum Type) : 47µF (Tantalum Type) : 2SD1628G : 220Ω : 2200pF
APPLICATION HINTS • A spike-shaped voltage higher than output voltage may be applied to the driver transistor. Therefore, care should be paid regarding its absolute maximum ratings (VDS, VCF). We recommend to use a transistor having absolute maximum ratings of at least twice the set output voltage. • We also recommend the use of an output capacitor with an allowable voltage which is at least 1.5 times the set output voltage. This is because there may be the case where a spike-shaped voltage higher than the set output voltage is generated. Use capacitor with good high frequency characteristics such as tantalum capacitor. • Choose such an inductor that a sufficiently small d.c. resistance and large allowable current, and hardly reaches magnetic saturation. • Use a diode of a Schottky type with high switching speed, and also take care of the rated current. • Set external components as close as possible to the IC and minimize the current between the components and the IC. In particular, make minimum connection with the output capacitor. • Make sufficient grounding. A large current flows through GND Pin by switching. When the impedance of the GND connection is high, the potential within the IC is varied by the switching current. This may result in unstable operation of the IC.
12