RP504x Series
600 mA PWM/VFM Step-Down DC/DC Converter with Synchronous Rectifier
NO.EA-259-170620
OUTLINE
The RP504x is a low supply current CMOS-based PWM/VFM step-down DC/DC converter with synchronous
rectifier featuring 600 mA*1 output current. Internally, a single converter consists of an oscillator, a reference
voltage unit, an error amplifier, a switching control circuit, a mode control circuit (RP504xxx1A/D), a soft-start
circuit, a Latch-type protection circuit, an under voltage lockout (UVLO) circuit a.nd switching transistors.
The RP504x is employing synchronous rectification for improving the efficiency of rectification by replacing
diodes with built-in switching transistors. Using synchronous rectification not only increases circuit performance
but also allows a design to reduce parts count.
Power controlling method can be selected from forced PWM control type or PWM/VFM auto switching control
type by inputting a signal to the MODE pin. In low output current, forced PWM control switches at fixed frequency
rate in order to reduce noise. Likewise, in low output current, PWM/VFM auto switching control automatically
switches from PWM mode to VFM mode in order to achieve high efficiency.
Output voltage is internally fixed type which allows output voltages that range from 0.8 V to 3.3 V in 0.1 V step.
The output voltage accuracy is as high as ±1.5% or ±18 mV.
Protection circuits included in the RP504x are overcurrent protection circuit and latch type protection circuit.
Overcurrent protection circuit supervises the inductor peak current in each switching cycle, and if the current
exceeds the LX current limit (ILXLIM), it turns off P-channel Tr. Latch type protection circuit latches the built-in driver
to the OFF state and stops the operation of the step-down DC/DC converter if the overcurrent status continues or
VOUT continues being the half of the setting voltage for equal or longer than protection delay time (tprot). To cancel
the latch type protection circuit, select the standby mode or the active mode with the CE pin, or drop the power
supply voltage below the UVLO detector threshold.
The RP504x is offered in 6-pin DFN(PLP)1216-6F, 6-pin DFN1616-6B and 5-pin SOT-23-5 packages which
achieve the smallest possible footprint solution on boards where area is limited.
*1
This is an approximate value. The output current is dependent on conditions and external components.
1
RP504x
NO.EA-259-170620
FEATURES
• Supply Current ...................................................... Typ. 25 µA in VFM mode without any load
• Standby Current .................................................... Max. 5 µA
• Input Voltage Range ............................................. 2.3 V to 5.5 V (VOUT ≥ 1.0 V)
• Output Voltage Range........................................... 0.8 V to 3.3 V in 0.1 V step
• Output Voltage Accuracy....................................... ±1.5% (VOUT ≥ 1.2 V), ±18 mV (VOUT < 1.2 V)
• Temperature-Drift Coefficient of Output Voltage ... Typ. ±40 ppm/°C
• Oscillator Frequency ............................................. Typ. 2.25 MHz
• Oscillator Maximum Duty Cycle ............................ Min. 100%
• Built-in Driver ON Resistance ............................... Typ. Pch. 0.34 Ω, Nch. 0.43 Ω (VIN = 3.6 V)
• UVLO Detector Threshold..................................... Typ. 2.0 V
• Soft Start Time ...................................................... Typ. 0.15 ms
• LX Current Limit ..................................................... Typ. 900 mA
• Latch-type Protection Circuit ................................. Typ. 1.5 ms
• Auto-discharge Function ....................................... Only for RP504xxxxD
• Power Controlling Method ..................................... forced PWM control or PWM/VFM auto switching control
• MODE Pin*1 ........................................................... “H”: forced PWM control,
“L”: PWM/VFM auto switching control
• Package .............................................................. DFN1616-6B, DFN(PLP)1216-6F, SOT-23-5
*1
*1
DFN(PLP)1216-6F, DFN1616-6B: forced PWM control by pulling MODE pin “H” or PWM/VFM auto switching control by
pulling MODE pin “L”
SOT-23-5: forced PWM control for RP504xxxxC and PWM/VFM auto switching control for RP504xxxxB
APPLICATIONS
• Power source for battery-powered equipment.
• Power source for hand-held communication equipment, cameras, VCRs, camcorders.
• Power source for HDD, portable equipment.
2
RP504x
NO.EA-259-170620
SELECTION GUIDE
The set output voltage, the package type, the MODE control pin function and the auto-discharge*1 function
are user-selectable options.
Product Name
Package
Quantity per Reel
Pb Free
Halogen Free
RP504Kxx1$-E2
DFN(PLP)1216-6F
5,000 pcs
Yes
Yes
RP504Lxx1$-TR
DFN1616-6B
5,000 pcs
Yes
Yes
RP504Nxx1$-TR-FE
SOT-23-5
3,000 pcs
Yes
Yes
xx: Specify the set output voltage (VSET) within the range of 0.8 V(08) to 3.3 V(33) in 0.1 V steps.
Refer to the section of PACKAGE INFORMATION for detailed information.
$: Specify the package type, the MODE control pin function and the auto-discharge function.
$
A
DFN1616-6B
DFN(PLP)1216-6F
MODE Control Pin Function
Auto-discharge
Function
MODE Pin
Power Controlling Method
Yes
“H”: forced PWM
“L”: PWM/VFM auto switching control
No
B
SOT-23-5
No
PWM/VFM auto switching control
No
C
SOT-23-5
No
forced PWM control
No
Yes
“H”: forced PWM control
“L”: PWM/VFM auto switching control
Yes
D
*1
Package
DFN1616-6B
DFN(PLP)1216-6F
Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the
active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.
*2
0.05 V step is also available as a custom code.
3
RP504x
NO.EA-259-170620
BLOCK DIAGRAMS
VIN
CE
CHIP
ENABLE
CURRENT
RAMP
COMPENSATION
FEEDBACK
OSCILLATOR
VREF
PWM
SOFT
START
CURRENT
PROTECTION
Lx
SWITCHING
CONTROL
UVLO
VOUT
MODE
GND
RP504xxxxA Block Diagram
VIN
CE
CHIP
ENABLE
CURRENT
FEEDBACK
RAMP
COMPENSATION
OSCILLATOR
VREF
SOFT
START
PWM
CURRENT
PROTECTION
SWITCHING
CONTROL
UVLO
MODE
GND
RP504xxxxB Block Diagram
4
Lx
VOUT
RP504x
NO.EA-259-170620
VIN
CE
CHIP
ENABLE
CURRENT
FEEDBACK
RAMP
COMPENSATION
OSCILLATOR
VREF
PWM
SOFT
START
CURRENT
PROTECTION
Lx
SWITCHING
CONTROL
UVLO
VOUT
MODE
GND
RP504xxxxC Block Diagram
VIN
CE
CHIP
ENABLE
RAMP
COMPENSATION
CURRENT
FEEDBACK
OSCILLATOR
VREF
SOFT
START
PWM
CURRENT
PROTECTION
LX
SWITCHING
CONTROL
UVLO
VOUT
MODE
GND
RP504xxxxD Block Diagram
5
RP504x
NO.EA-259-170620
PIN DESCRIPTION
6
5
4
6
5
4
5
4
∗
1
2
3
DFN(PLP)1216-6F Pin Configurations
1
2
3
DFN1616-6B Pin Configurations
1
2
3
SOT-23-5 Pin Configurations
RP504Kxx1A, RP504Kxx1D: DFN(PLP)1216-6F Pin Description
Pin No.
Symbol
Description
1
VIN
Input Pin
Mode Control Pin
2
MODE
(“H”: forced PWM control, “L”: PWM/VFM auto switching
control)
3
CE
Chip Enable Pin (Active-high)
4
VOUT
Output Pin
5
GND
Ground Pin
6
LX
LX Switching Pin
RP504Lxx1A, RP504Lxx1D: DFN1616-6B Pin Description
Pin No.
Symbol
Description
1
CE
Chip Enable Pin (Active-high)
Mode Control Pin
2
MODE
(“H”: forced PWM control, “L”: PWM/VFM auto switching
control)
3
VIN
Input Pin
4
LX
LX Switching Pin
5
GND
Ground Pin
6
VOUT
Output Pin
∗ The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate
level). It is recommended that the tab be connected to the ground plane on the board. If not, the tab can be left open.
RP504Nxx1B, RP504Nxx1C: SOT-23-5 Pin Description
Pin No.
Symbol
Description
1
VOUT
Output Pin
2
GND
Ground Pin
3
LX
LX Switching Pin
4
VIN
Input Pin
5
CE
Chip Enable Pin (Active-high)
6
RP504x
NO.EA-259-170620
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum Ratings
Symbol
Item
*1
(GND = 0 V)
Rating
Unit
−0.3 to 6.5
V
−0.3 to VIN +0.3
V
VIN
VIN Input Voltage
VLX
LX Pin Voltage
VCE
CE Pin Input Voltage
−0.3 to 6.5
V
VMODE
Mode Control Pin Voltage
−0.3 to 6.5
V
VOUT
VOUT Pin Voltage
−0.3 to 6.5
V
900
mA
ILX
LX Pin Output Current
PD
Power Dissipation
(Standard Land Pattern)*1
DFN(PLP)1216-6F
385
DFN1616-6B
640
SOT-23-5
420
mW
Tj
Junction Temperature Range
−40 to 125
°C
Tstg
Storage Temperature Range
−55 to 125
°C
Refer to POWER DISSIPATION for detailed information.
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent
damages and may degrade the life time and safety for both device and system using the device in the field. The
functional operation at or over these absolute maximum ratings is not assured.
RECOMMENDED OPERATING CONDITIONS
Recommended Operating Conditions
Symbol
Item
Rating
VIN
Operating Input Voltage
Ta
Operating Temperature Range
Unit
2.3 to 5.5 (VOUT ≥ 1.0)
V
2.3 to 4.5 (VOUT < 1.0)
V
−40 to 85
°C
RECOMMENDED OPERATING CONDITIONS
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended
operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And
the semiconductor devices may receive serious damage when they continue to operate over the recommended
operating conditions.
7
RP504x
NO.EA-259-170620
ELECTRICAL CHARACTERISTICS
RP504xxx1A, RP504xxx1D Electrical Characteristics
Symbol
Item
Conditions
Max.
x0.985
x1.015
VOUT < 1.2 V
−0.018
+0.018
VIN = VCE = 3.6 V
or VSET +1 V
Output Voltage Temperature
Coefficient
−40°C ≤ Ta ≤ 85°C
fosc
Oscillator Frequency
VIN = VCE = 3.6 V or VSET +1 V
IDD1
Supply Current 1
IDD2
Supply Current 2
VIN = VCE = VOUT
= 5.5 V
Istandby
Standby Current
VIN = 5.5 V, VCE = 0 V
ICEH
CE "H" Input Voltage
VIN = VCE = 5.5 V
ICEL
CE "L" Input Voltage
IMODEH
IMODEL
∆VOUT/∆Ta
Typ.
VOUT ≥ 1.2 V
Output Voltage
VOUT
(Ta = 25°C)
Min.
±40
1.95
Unit
V
ppm/°C
2.25
2.55
MHz
VIN = VCE = 5.5 V, VOUT = VSET ×
0.8
400
800
µA
VMODE = 0 V
25
40
VMODE = 5.5 V
400
800
0
5
µA
−1
0
1
µA
VIN = 5.5 V, VCE = 0 V
−1
0
1
µA
Mode "H" Input Current
VIN = VMODE = 5.5 V
−1
0
1
µA
Mode "L" Input Current
VIN = 5.5 V, VMODE = 0 V
−1
0
1
µA
µA
IVOUTH
VOUT "H" Input Current
VIN = VOUT = 5.5 V, VCE = 0 V
−1
0
1
µA
IVOUTL
VOUT "L" Input Current
VIN = 5.5 V, VCE = VOUT = 0 V
−1
0
1
µA
ILXLEAKH
LX Leakage Current "H"
VIN = VLX = 5.5 V, VCE = 0 V
−1
0
5
µA
ILXLEAKL
LX Leakage Current "L"
VIN = 5.5 V, VCE = VLX = 0 V
−5
0
1
µA
VCEH
CE "H" Input Voltage
VIN = 5.5 V
1.0
VCEL
CE "L" Input Voltage
VIN = 2.3 V
VMODEH
Mode ”H” Input Voltage
VIN = 5.5 V
VMODEL
Mode ”L” Input Voltage
VIN = 2.3 V
RLOW
Nch On Resistance*2
VIN = 3.6 V, VCE = 0 V
RONP
On Resistance of Pch Tr.
RONN
On Resistance of Nch Tr.
Maxduty
*1
V
0.4
1.0
V
V
0.4
V
30
Ω
VIN = 3.6 V, ILX = −100 mA
0.34
Ω
VIN = 3.6 V, ILX = −100 mA
0.43
Ω
Oscillator Maximum Duty
Cycle
100
%
150
310
µs
tstart
Soft-start Time
VIN = VCE = 3.6 V or VSET +1 V
ILXLIM
Lx Current Limit
VIN = VCE = 3.6 V or VSET +1 V
700
900
tprot
Protection Delay Time
VIN = VCE = 3.6 V or VSET +1 V
0.5
1.5
5
ms
VUVLO1
UVLO Detector Threshold
VIN = VCE
1.9
2.0
2.1
V
VUVLO2
UVLO Released Voltage
VIN = VCE
2.0
2.1
2.2
V
mA
All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj ≈ Ta = 25°C) except
Output Voltage Temperature Coefficient.
Test circuit is "OPEN LOOP" and AGND = PGND = 0 V unless otherwise specified.
*1
Only for RP504xxx1A/B/C with no auto-discharge
*2
Only for RP504xxx1D with auto-discharge
8
RP504x
NO.EA-259-170620
RP504xxxxB, RP504xxxxC Electrical Characteristics
Symbol
Item
Conditions
Typ.
Max.
x0.985
x1.015
VOUT < 1.2 V
−0.018
+0.018
VIN = VCE = 3.6 V
or VSET +1 V
Output Voltage Temperature
Coefficient
−40°C ≤ Ta ≤ 85°C
fosc
Oscillator Frequency
VIN = VCE = 3.6 V or VSET +1 V
IDD1
Supply Current 1
VIN = VCE = 5.5 V,
VOUT = VSET × 0.8
IDD2
Supply Current 2
VIN = VCE = VOUT
= 5.5 V
Istandby
Standby Current
VIN = 5.5 V, VCE = 0 V
ICEH
CE "H" Input Voltage
VIN = VCE = 5.5 V
ICEL
CE "L" Input Voltage
IVOUTH
IVOUTL
∆VOUT/∆Ta
Min.
VOUT ≥ 1.2 V
Output Voltage
VOUT
(Ta = 25°C)
±40
1.95
Unit
V
ppm/°C
2.25
2.55
MHz
400
800
µA
RP504xxx1B
25
40
RP504xxx1C
400
800
0
5
µA
−1
0
1
µA
VIN = 5.5 V, VCE = 0 V
−1
0
1
µA
VOUT "H" Input Current
VIN = VOUT = 5.5 V, VCE = 0 V
−1
0
1
µA
VOUT "L" Input Current
VIN = 5.5 V, VCE = VOUT = 0 V
−1
0
1
µA
ILXLEAKH
LX Leakage Current "H"
VIN = VLX = 5.5 V, VCE = 0 V
−1
0
5
µA
ILXLEAKL
LX Leakage Current "L"
VIN = 5.5 V, VCE = VLX = 0 V
−5
0
1
µA
VCEH
CE "H" Input Voltage
VIN = 5.5 V
1.0
VCEL
CE "L" Input Voltage
VIN =2.3 V
RONP
On Resistance of Pch Tr.
VIN =3.6 V, ILX = −100 mA
0.34
Ω
RONN
On Resistance of Nch Tr.
VIN =3.6 V, ILX = −100 mA
0.43
Ω
Maxduty
Oscillator Maximum Duty
Cycle
µA
V
0.4
100
V
%
150
310
µs
tstart
Soft-start Time
VIN = VCE = 3.6 V or VSET +1 V
ILXLIM
LX Current Limit
VIN = VCE = 3.6 V or VSET +1 V
700
900
tprot
Protection Delay Time
VIN = VCE = 3.6 V or VSET +1 V
0.5
1.5
5
ms
VUVLO1
UVLO Detector Threshold
VIN = VCE
1.9
2.0
2.1
V
VUVLO2
UVLO Released Voltage
VIN = VCE
2.0
2.1
2.2
V
mA
All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj ≈ Ta = 25°C) except
Output Voltage Temperature Coefficient.
Test circuit is "OPEN LOOP" and AGND = PGND = 0 V unless otherwise specified.
9
RP504x
NO.EA-259-170620
OPERATING DESCRIPTIONS
OPERATION OF STEP-DOWN CONVERTER AND OUTPUT CURENT
The step-down DC/DC converter charges energy in the inductor when LX Tr. turns “ON”, and discharges the
energy from the inductor when LX Tr. turns “OFF” and operates with less energy loss, so that a lower output
voltage (VOUT) than the input voltage (VIN) can be obtained. The operation of the step-down DC/DC converter is
explained in the following figures.
IL
ILmax
i1
VIN
Pch Tr
Nch Tr
VOUT
L
ILmin
topen
i1
i2
i2
CL
GND
ton
toff
T=1/fosc
Figure 1. Basic Circuit
Figure 2. Inductor Current (IL) flowing through Inductor
Step1.
P-channel Tr. turns “ON” and IL (i1) flows, L is charged with energy. At this moment, i1 increases from
the minimum inductor current (ILmin), which is 0 A, and reaches the maximum inductor current (ILmax)
in proportion to the on-time period (ton) of P-channel Tr.
Step2. When P-channel Tr. turns “OFF”, L tries to maintain IL at ILmax, so L turns N-channel Tr. “ON” and IL
(i2) flows into L.
Step3. i2 decreases gradually and reaches ILmin after the open-time period (topen) of N-channel Tr., and then
N-channel Tr. turns “OFF”. This is called discontinuous current mode.
As the output current (IOUT) increases, the off-time period (toff) of P-channel Tr. runs out before IL reaches
ILmin. The next cycle starts, and P-channel Tr. turns “ON” and N-channel Tr. turns “OFF”, which means
IL starts increasing from ILmin. This is called continuous current mode.
In the case of PWM mode, VOUT is maintained by controlling ton. During the PWM mode, the oscillator frequency
(fosc) is constantly maintained.
As shown in Figure 2, when the step-down DC/DC operation is constant, ILmin and ILmax during ton of P-channel
Tr. would be the same as ILmin and ILmax during toff of the P-channel Tr.
The current differential between ILmax and ILmin is described as ∆I.
∆I = ILmax − ILMIN = VOUT × topen / L = (VIN − VOUT) × ton / L ....................................... Equation 1
However,
T = 1 / fosc = ton + toff
Duty (%) = ton / T × 100 = ton × fosc × 100
topen ≤ toff
In Equation 1, “VOUT × topen / L” shows the amount of current change in “OFF” state. Also, “(VIN − VOUT) × ton /
L” shows the amount of current change at “ON” state.
10
RP504x
NO.EA-259-170620
DISCONTINUOUS MODE AND CONTINUOUS MODE
As illustrated in Figure 3, when IOUT is relatively small, topen < toff. In this case, the energy charged into L during
ton will be completely discharged during toff, as a result, ILMIN = 0. This is called discontinuous mode.
When IOUT is gradually increased, eventually topen = toff and when IOUT is increased further, eventually ILMIN > 0.
This is called continuous mode.
IL
ILMAX
IL
ILMAX
ILMIN
ILMIN
topen
t
ton
ICONST
t
toff
ton
T = 1 / fosc
Figure 3. Discontinuous Mode
toff
T = 1 / fosc
Figure 4. Continuous Mode
In the continuous mode, the solution of Equation 1 is described as tonc.
tonc = T × VOUT / VIN ............................................................................................................... Equation 2
When ton < tonc, it indicates discontinuous mode, and when ton = tonc, it indicates continuous mode.
11
RP504x
NO.EA-259-170620
TIMING CHART
1. Soft-start Time
Starting-up with CE Pin
The IC starts to operate when the CE pin voltage (VCE) exceeds the threshold voltage. The threshold voltage
is preset between CE “H” input voltage (VCEH) and CE “L” input voltage (VCEL).
After the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time, the
reference voltage (VREF) in the IC gradually increases up to the specified value.
CE Pin Input Voltage
(VCE)
IC Internal Reference Voltage
(VREF)
Lx Voltage
(VLX)
VCEH
Threshold Level
VCEL
Soft-start Time
Soft-start Circuit
operation starts.
IC operates with PWM mode
during Soft-start time.
Output Voltage
(VOUT)
Depending on Power Supply,
Load Current, External Components
Soft-start time starts when soft-start circuit is activated, and ends when the reference voltage reaches the
specified voltage.
Soft start time is not always equal to the turn-on speed of the step-down DC/DC converter. Please note that the
turn-on speed could be affected by the power supply capacity, the output current, the inductance value and the
COUT value.
Starting-up with Power Supply
After the power-on, when VIN exceeds the UVLO released voltage (VUVLO2), the IC starts to operate. Then, softstart circuit starts to operate and after a certain period of time, VREF gradually increases up to the specified
value. Soft-start time starts when soft-start circuit is activated, and ends when VREF reaches the specified voltage.
VSET
VUVLO2
Input Voltage
(VIN)
VUVLO1
Soft-start Time
IC Internal Reference Voltage
(VREF)
Lx Voltage
(VLX)
IC operates with PWM mode during Soft-start time.
VSET
Output Voltage
(VOUT)
Depending on Power Supply, Load Current,
External Components
Please note that the turn-on speed of VOUT could be affected by the power supply capacity, the output current,
the inductance value, the COUT value and the turn-on speed of VIN determined by CIN.
12
RP504x
NO.EA-259-170620
2. Under Voltage Lockout (UVLO) Circuit
If VIN becomes lower than VSET, the step-down DC/DC converter stops the switching operation and ON duty
becomes 100%, and then VOUT gradually drops according to VIN.
If the VIN becomes lower than the UVLO detector threshold (VUVLO1), the UVLO circuit starts to operate, VREF
stops, and P-channel and N-channel built-in switch transistors turn “OFF”. As a result, VOUT drops according to
the COUT capacitance value and the load.
To restart the operation, VIN needs to be higher than VUVLO2. The timing chart below shows the voltage shifts of
VREF, VLX and VOUT when VIN value is varied.
Input Voltage
(VIN)
VSET
VUVLO2
VUVLO1
Soft-start Time
IC Internal Reference Voltage
(VREF)
Lx Voltage
(VLX)
Output Voltage
(VOUT)
VSET
Depending on Power Supply, Load Current,
External Components
Falling edge (operating) and rising edge (releasing) waveforms of VOUT could be affected by the initial voltage
of COUT and the output current of VOUT.
13
RP504x
NO.EA-259-170620
3. Overcurrent Protection Circuit, Latch Type Protection Circuit
Overcurrent protection circuit supervises the inductor peak current (the peak current flowing through Pch Tr.) in
each switching cycle, and if the current exceeds the LX current limit (ILXLIM), it turns off Pch Tr. ILXLIM of the
RP504x is set to Typ.900 mA.
Latch type protection circuit latches the built-in driver to the OFF state and stops the operation of the step-down
DC/DC converter if the overcurrent status continues or VOUT continues being the half of the setting voltage for
equal or longer than protection delay time (tprot).
Please note that ILXLIM and tprot could be easily affected by self-heating or ambient environment. If the VIN drops
dramatically or becomes unstable due to short-circuit, protection operation and tprot could be affected.
Protection Delay Time (tprot)
Lx Current
Lx Current Limit (ILXlim)
Pch Tr. Current
Lx Voltage
(VLX)
To release the latch type protection circuit, restart the IC by inputting "L" signal to the CE pin, or restart the IC
with power-on or make the supply voltage lower than VUVLO1.
The timing chart below shows the voltage shift of VCE, VLX and VOUT when the IC status is changed by the
following orders: VIN rising → stable operation → high load → CE reset → stable operation → VIN falling → VIN
recovering (UVLO reset) → stable operation.
(1)(2) If the large current flows through the circuit or if the IC goes into low VOUT condition due to short-circuit or
other reasons, the latch type protection circuit latches the built-in driver to “OFF” state after tprot. Then,
VLX becomes "L" and VOUT turns “OFF”.
(3) The latch type protection circuit is released by CE reset, which puts the IC into "L" once with the CE pin and
back into "H".
(4) The latch type protection circuit is released by UVLO reset, which makes VIN lower than VUVLO1.
(1)
(3)
(2)
(4)
SET
Input Voltage UVLO Released VoltageV(V
UVLO2)
(VIN)
UVLO Detector Threshold (VUVLO1)
CE Pin
Input Voltage
(VCE)
Lx Voltage
(VLX)
Output Voltage
(VOUT)
UVLO Reset
VSET
CE Reset
Threshold Level
Protection Delay Time
VSET
VSET
Latch-type Protection
Stable
Operation
Soft-start Time
14
Protection Delay Time
Stable
Operation
Soft-start Time
Latch-type Protection
Stable
Operation
Soft-start Time
RP504x
NO.EA-259-170620
APPLICATION INFORMATION
TYPICAL APPLICATION CIRCUIT
Control
VOUT
CE
RP504N
GND
Load
VIN
VIN
LX
COUT 4.7µF
L 2.2µH
CIN 2.2µF
RP504N Typical Application Circuit: MODE Pin not included
Control
VOUT
CE
RP504L/K
Control
MODE
*1
GND
Load
VIN
VIN
LX
L 2.2µH
CIN 2.2µF
COUT 4.7µF
RP504K/L Typical Application Circuit: MODE Pin included
*1
MODE = “H”: forced PWM control, MODE = “L”: PWM/VFM auto switching control
Recommended Components
Symbol
Capacitance
Type
2.2 µF
CIN
2.2 µF x 2
Manufacturer
C1608JB0J225K(TDK)
Ceramic Capacitor
4.7 µF
COUT
4.7 µF
Ceramic Capacitor
L
2.2 µH
Inductor
C1005JB0J225K (TDK)
JMK105BJ225MV (Taiyo Yuden)
C1005X5R0J475M (TDK)
JMK105BJ475MV (Taiyo Yuden)
C1608JB0J475K (TDK)
GRM188B30J475KE18 (Murata)
MIPSZ2520D2R2 (FDK)
MIPS2520D2R2 (FDK)
MLP2520S2R2M (TDK)
VLS252010T-2R2M (TDK)
15
RP504x
NO.EA-259-170620
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
The following equations explain the relationship between output current and peripheral components used in the
diagrams in TYPICAL APPLICATIONS.
Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. is described as RONP, ON
resistance of N-channel Tr. is described as RONN, and DC resistor of the inductor is described as RL.
VIN = VOUT + (RONP + RL) × IOUT + L × IRP / ton .............................................................. Equation 3
Second, when P-channel Tr. is “OFF” (N-channel Tr. Is “ON”), the following equation is satisfied.
L × IRP / toff = RONN × IOUT + VOUT + RL × IOUT ............................................................... Equation 4
Put Equation 4 into Equation 3 to solve ON duty of P-channel Tr. (DON = ton / (toff + ton)):
DON = (VOUT + RONN × IOUT + RL × IOUT) / (VIN + RONN × IOUT − RONP × IOUT) ................... Equation 5
Ripple Current is described as follows:
IRP = (VIN − VOUT − RONP × IOUT − RL × IOUT) × DON / fosc / L ......................................... Equation 6
Peak current that flows through L, and LX Tr. is described as follows:
ILXMAX = IOUT + IRP / 2 .................................................................................................... Equation 7
Consider ILXMAX when setting conditions of input and output, as well as selecting the external components.
The above calculation formulas are based on the ideal operation of the ICS in continuous mode.
16
RP504x
NO.EA-259-170620
TECHNICAL NOTES
The performance of power supply circuits using this IC largely depends on the peripheral circuits. Please be very
careful when setting the peripheral parts. When designing the peripheral circuits of each part, PCB patterns, and
this IC, please do not exceed the rated values (Voltage, Current, Power).
•
Ensure the VIN and GND lines are sufficiently robust. A large switching current flows through the GND lines,
the VDD line, the VOUT line, an inductor, and LX. If their impedance is too high, noise pickup or unstable
operation may result. Set the external components as close as possible to the IC and minimize the wiring
between the components and the IC, especially between a capacitor (CIN) and the VIN pin. The wiring between
•
•
VOUT and load and between L and VOUT should be separated.
Choose a low ESR ceramic capacitor. The capacitance of CIN should be more than or equal to 2.2 µF. The
capacitance of a capacitor (COUT) should be between 4.7 µF to 10 µF.
The Inductance value should be set within the range of 2.2 µH to 4.7 µH. However, the inductance value is
limited by output voltage. Refer to the table below. The phase compensation of this IC is designed according
to the COUT and L values. Choose an inductor that has small DC resistance, has enough allowable current
and is hard to cause magnetic saturation. If the inductance value of an inductor is extremely small, the peak
current of LX may increase. The increased LX peak current reaches “LX limit current” to trigger overcurrent
•
protection circuit even if the load current is less than 600 mA.
Overcurrent protection circuit, Latch-type protection circuit may be affected by self-heating and heat radiation
environment.
PCB LAYOUT
RP504Nxx1B/C (PKG: SOT-23-5) typical board layout
Topside
Backside
17
RP504x
NO.EA-259-170620
RP504Lxx1A/D (PKG: DFN1616-6B) typical board layout
Topside
Backside
RP505Kxx1A/D (PKG: DFN(PLP)1216-6F) typical board layout
Topside
18
Backside
RP504x
NO.EA-259-170620
TYPICAL CHARACTERISTICS
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.
1) Output Voltage vs. Output Current
RP504x
VOUT = 0.8 V
RP504x
MODE = “L”PWM/VFM Auto Switching Control
MODE = “H” Forced PWM Control
0.820
0.815
VIN=3.6V
0.810
VIN=4.5V
0.805
0.800
0.795
0.790
0.785
Output Voltage V OUT (V)
Output Voltage V OUT (V)
0.820
0.780
0.01
0.815
VIN=3.6V
0.810
VIN=4.5V
0.805
0.800
0.795
0.790
0.785
0.780
0.1
1
10
100
0
100
Output Current IOUT (mA)
RP504x
VOUT = 1.2 V
1.210
VIN=5.0V
1.205
1.200
1.195
1.190
1.185
Output Voltage V OUT (V)
Output Voltage V OUT (V)
1.215
1.180
1.215
VIN=3.6V
1.210
VIN=5.0V
1.205
1.200
1.195
1.190
1.185
1.180
0.1
1
10
Output Current IOUT (mA)
RP504x
100
0
VOUT = 1.8 V
100 200 300 400 500
Output Current IOUT (mA)
RP504x
MODE = “L”PWM/VFM Auto Switching Control
600
VOUT = 1.8 V
MODE = “H” Forced PWM Control
1.830
VIN=3.6V
VIN=5.0V
1.810
1.800
1.790
Output Voltage V OUT (V)
1.830
Output Voltage V OUT (V)
VOUT = 1.2 V
1.220
VIN=3.6V
VIN=3.6V
1.820
VIN=5.0V
1.810
1.800
1.790
1.780
1.780
0.01
600
MODE = “H” Forced PWM Control
1.220
1.820
200 300 400 500
Output Current IOUT (mA)
RP504x
MODE = “L”PWM/VFM Auto Switching Control
0.01
VOUT = 0.8 V
0.1
1
10
Output Current IOUT (mA)
100
0
100
200
300
400
500
600
Output Current IOUT (mA)
19
RP504x
NO.EA-259-170620
RP504x VOUT = 3.3 V
MODE = “L”PWM/VFM Auto Switching Control
RP504x VOUT = 3.3 V
MODE = “H” Forced PWM Control
3.320
VIN=4.3V
3.310
VIN=5.0V
3.300
3.290
3.280
VIN=4.3V
Output Voltage V OUT (V)
Output Voltage V OUT (V)
3.320
3.310
VIN=5.0V
3.300
3.290
3.280
3.270
3.270
0.01
0.1
1
10
Output Current IOUT (mA)
0
100
100
200
300
400
500
600
Output Current IOUT (mA)
2) Output Voltage vs. Input Voltage
RP504x VOUT = 1.2 V
MODE = “H” Forced PWM Control
0.820
1.220
0.815
1.215
Output Voltage V OUT (V)
Output Voltage V OUT (V)
RP504x VOUT = 0.8 V
MODE = “H” Forced PWM Control
0.810
0.805
0.800
IOUT=1mA
0.795
IOUT=50mA
0.790
IOUT=250mA
0.785
0.780
1.210
1.205
1.200
1.195
1.190
2.5
3
3.5
4
Input Voltage VIN(V)
4.5
2
RP504x VOUT = 1.8 V
MODE = “H” Forced PWM Control
Output Voltage V OUT (V)
Output Voltage V OUT (V)
1.82
1.81
1.8
IOUT=1mA
1.79
IOUT=50mA
IOUT=250mA
1.78
1.77
2.5
3
3.5
4
4.5
Input Voltage VIN(V)
5
5.5
2.5
3
3.5
4
4.5
Input Voltage VIN(V)
5
5.5
RP504x VOUT = 3.3 V
MODE = “H” Forced PWM Control
1.83
20
IOUT=250mA
1.185
1.180
2
2
IOUT=1mA
IOUT=50mA
3.35
3.34
3.33
3.32
3.31
3.3
3.29
3.28
3.27
3.26
3.25
IOUT=1mA
IOUT=50mA
IOUT=250mA
3.5
4
4.5
Input Voltage VIN(V)
5
5.5
RP504x
NO.EA-259-170620
3) Output Voltage vs. Temperature
Output Voltage V OUT (V)
1.830
1.820
VIN=3.6V
1.810
1.800
1.790
1.780
1.770
-50
-25
0
25
50
75
Temperature Ta(°C)
100
4) Efficiency vs. Output Current
RP504x
VOUT = 0.8 V
100
Efficiency (%)
80
100
VIN=4.5V, VMODE=0V
90
VIN=3.6V, VMODE=0V
70
60
50
VIN=VMODE=4.5V
40
30
VIN=VMODE=3.6V
20
VIN=3.6V, VMODE=0V
70
60
50
40
VIN=VMODE=5.0V
30
VIN=VMODE=3.6V
10
0.1
1
10
100
Output Current IOUT (mA)
0
0.01
1000
VOUT = 1.8 V
VIN=5.0V, VMODE=0V
100
VIN=3.6V, VMODE=0V
90
80
70
60
50
40
VIN=VMODE=5.0V
30
20
VIN=VMODE=3.6V
10
0
0.01
0.1
1
10
100
1000
Output Current IOUT (mA)
0.1
1
10
100
Output Current IOUT (mA)
RP504x
Efficiency (%)
RP504x
Efficiency (%)
VIN=5.0V, VMODE=0V
20
10
0
0.01
VOUT = 1.2 V
80
Efficiency (%)
90
RP504x
1000
VOUT = 3.3 V
VIN=5.0V, VMODE=0V
100 VIN=4.3V, VMODE=0V
90
80
70
60
50
VIN=VMODE=4.3V
40
30
20
VIN=VMODE=3.6V
10
0
0.01
0.1
1
10
100
1000
Output Current IOUT (mA)
21
RP504x
NO.EA-259-170620
5) Supply Current vs. Temperature
6) Supply Current vs. Input Voltage
RP504x VOUT = 1.8 V (VIN = 5.5 V)
MODE = “L”PWM/VFM Auto Switching Control
RP504x VOUT = 1.8 V
MODE = “L”PWM/VFM Auto Switching Control
40
Closed Loop
35
Supply Current (µA)
Supply Current (µA)
40
Open Loop
30
25
20
15
10
35
Closed Loop
30
Open Loop
25
20
15
10
-50
-25
0
25
50
Temperature Ta(°C)
75
100
2
2.5
3
3.5
4
4.5
Input Voltage VIN (V)
5
5.5
7) Output Voltage Waveform
RP504x VOUT = 0.8 V (VIN = 3.6 V)
MODE = “L”PWM/VFM Auto Switching Control
RP504x VOUT = 0.8 V (VIN = 3.6 V)
MODE = “H” Forced PWM Control
0
5
10
Time t (µs)
15
20
Output Voltage
IL
100
50
0
-50
-100
0
RP504x VOUT = 1.2V (VIN = 3.6 V)
MODE = “L”PWM/VFM Auto Switching Control
0
22
5
10
Time t (µs)
15
20
0.04
0.03
0.02
0.01
0.00
-0.01
Output Ripple Voltage (AC)
Vripple (V)
300
200
100
0
-100
2
3
4 5 6 7
Time t (µs)
8
9 10
IOUT=10mA
Inductor Current IL (mA)
Output Ripple Voltage (AC)
Vripple (V)
Output Voltage
IL
1
RP504x VOUT = 1.2 V (VIN = 3.6 V)
MODE = “H” Forced PWM Control
IOUT=10mA
0.04
0.03
0.02
0.01
0.00
-0.01
Inductor Current IL (mA)
300
200
100
0
-100
0.04
0.03
0.02
0.01
0.00
-0.01
Output Voltage
Inductor Current IL (mA)
IL
Output Ripple Voltage (AC)
Vripple (V)
Output Voltage
IOUT=10mA
Inductor Current IL (mA)
Output Ripple Voltage (AC)
Vripple (V)
IOUT=10mA
0.04
0.03
0.02
0.01
0.00
-0.01
IL
100
50
0
-50
-100
0
1
2
3
4 5 6 7
Time t (µs)
8
9 10
RP504x
NO.EA-259-170620
VOUT = 1.8 V (VIN = 3.6 V)
RP504x
MODE = “L”PWM/VFM Auto Switching Control
MODE = “H” Forced PWM Control
IL
300
200
100
0
-100
0
5
RP504x
10
Time t (µs)
15
IOUT=10mA
0.04
0.03
0.02
0.01
0.00
-0.01
Output Voltage
IL
100
50
0
-50
-100
0
20
VOUT = 3.3 V (VIN = 5.0 V)
1
2
3
4 5 6 7
Time t (µs)
RP504x
MODE = “L”PWM/VFM Auto Switching Control
8
9 10
VOUT = 3.3 V (VIN = 5.0 V)
MODE = “H” Forced PWM Control
IL
300
200
100
0
-100
0
5
10
Time t (µs)
15
IOUT=10mA
Output Ripple Voltage (AC)
Vripple (V)
Output Ripple Voltage (AC)
Vripple (V)
Output Voltage
Inductor Current IL (mA)
IOUT=10mA
0.04
0.03
0.02
0.01
0.00
-0.01
0.04
0.03
0.02
0.01
0.00
-0.01
Output Voltage
IL
200
150
100
50
0
-50
-100
0
20
8) Frequency vs. Temperature
Inductor Current IL (mA)
Inductor Current IL (mA)
Output Ripple Voltage (AC)
Vripple (V)
Output Voltage
Output Ripple Voltage (AC)
Vripple (V)
IOUT=10mA
0.04
0.03
0.02
0.01
0.00
-0.01
VOUT = 1.8 V (VIN = 3.6 V)
1
2
3
4 5 6 7
Time t (µs)
8
Inductor Current IL (mA)
RP504x
9 10
9) Frequency vs. Input Voltage
2.5
2.5
Frequency fosc (MHz)
Frequency fosc (MHz)
-40°C
VIN=3.6V
2.4
2.3
2.2
2.1
2
2.4
25°C
85°C
2.3
2.2
2.1
2
-50
-25
0
25
50
Temperature Ta (°C)
75
100
2
2.5
3
3.5
4
4.5
5
5.5
Input Voltage VIN (V)
23
RP504x
NO.EA-259-170620
10) Soft Start Time vs. Temperature
Soft Start Time tstart (µs)
220
210
200
190
180
170
-50
-25
0
25
50
75
Temperature Ta(°C)
100
11) UVLO Detector Threshold / Released Voltage vs. Temperature
UVLO Detector Threshold Voltage
UVLO Released Voltage
2.3
UVLO Voltage V UVLO2 (V)
UVLO Voltage V UVLO1 (V)
2.3
2.2
2.1
2.0
2.2
2.1
2.0
1.9
1.9
-50
-25
0
25
50
Temperature Ta(°C)
75
-50
100
-25
0
25
50
75
Temperature Ta(°C)
100
12) CE Input Voltage vs. Temperature
CE “H” Input Voltage (VIN = 5.5 V)
CE “H” Input Voltage (VIN = 2.3 V)
(V)
1
CE
0.9
CE Input Voltage V
CE Input Voltage V
CE
(V)
1
0.8
0.7
0.6
0.5
0.8
0.7
0.6
0.5
0.4
0.4
-50
24
0.9
-25
0
25
50
Temperature Ta(°C)
75
100
-50
-25
0
25
50
Temperature Ta(°C)
75
100
RP504x
NO.EA-259-170620
13) LX Current Limit vs. Temperature
LX Current Limit llim (mA)
1000
950
900
850
800
-50
-25
0
25
50
75
Temperature Ta(°C)
100
0.60
ON(Ω)
0.60
15) Pch Tr. ON Resistance vs. Temperature
0.50
0.50
Pch Tr.ONResistance R
Nch Tr.ONResistance R
ON(Ω)
14) Nch Tr. ON Resistance vs. Temperature
0.40
0.30
0.20
0.10
0
-50
-25
0
25
50
75
Temperature Ta(°C)
0.40
0.30
0.20
0.10
0
100
-50
-25
0
25
50
75
Temperature Ta(°C)
100
16) Load Transient Response
RP504x081x (VIN = 3.6 V)
RP504x081x (VIN = 3.6 V)
0.90
0.80
0.70
Output Voltage
0.60
200
200
0
0
Output Current
300mA-->1mA
1.00
0.90
0.80
Output Voltage
0.70
Output Current IOUT (mA)
1.00
400
Output Voltage VOUT (V)
Output Current
1mA-->300mA
MODE = “L”PWM/VFM Auto Switching Control
400
Output Current IOUT (mA)
Output Voltage VOUT (V)
MODE = “L”PWM/VFM Auto Switching Control
0.60
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
-100
0
100 200 300 400 500 600 700 800 900
Time t (µs)
25
RP504x
NO.EA-259-170620
RP504x081x (VIN = 3.6 V)
RP504x081x (VIN = 3.6 V)
400
200
200
0
1.00
0.90
0.80
1.00
0.90
0.80
Output Voltage
0.70
0.60
0.60
-10 0 10 20 30 40 50 60 70 80 90
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
Time t (µs)
600
400
400
200
0
1.00
0.90
0.80
Output Voltage
0.70
Output Voltage VOUT (V)
Output Current
200mA-->500mA
600
200
Output Current
500mA-->200mA
1.00
0.90
0.80
Output Voltage
0.70
0.60
0.60
-10 0
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
RP504x121x (VIN = 3.6 V)
1.20
1.15
Output Voltage
1.10
200
200
0
0
Output Current
300mA-->1mA
1.30
1.25
1.20
Output Voltage
1.15
1.10
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
26
400
Output Voltage VOUT (V)
1.25
MODE = “L”PWM/VFM Auto Switching Control
400
Output Current IOUT (mA)
Output Voltage VOUT (V)
1.30
10 20 30 40 50 60 70 80 90
Time t (µs)
RP504x121x (VIN = 3.6 V)
MODE = “L”PWM/VFM Auto Switching Control
Output Current
1mA-->300mA
0
Output Current IOUT (mA)
RP504x081x (VIN = 3.6 V)
Output Current IOUT (mA)
Output Voltage VOUT (V)
RP504x081x (VIN = 3.6 V)
-100
0
100 200 300 400 500 600 700 800 900
Time t (µs)
Output Current IOUT (mA)
0.70
Output Voltage
0
Output Current
300mA-->1mA
Output Current IOUT (mA)
400
Output Voltage VOUT (V)
Output Current
1mA-->300mA
MODE = “H” Forced PWM Control
Output Current IOUT (mA)
Output Voltage VOUT (V)
MODE = “H” Forced PWM Control
RP504x
NO.EA-259-170620
RP504x121x (VIN = 3.6 V)
RP504x121x (VIN = 3.6 V)
400
200
200
0
1.30
1.25
1.20
Output Voltage
1.15
Output Current
300mA-->1mA
1.30
1.25
1.20
Output Voltage
1.15
1.10
1.10
-10 0 10 20 30 40 50 60 70 80 90
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
Time t (µs)
600
400
400
200
0
1.30
1.25
1.20
200
Output Current
500mA-->200mA
1.30
1.25
1.20
Output Voltage
1.15
1.10
1.10
-10 0 10 20 30 40 50 60 70 80 90
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
Time t (µs)
RP504x181x (VIN = 3.6 V)
RP504x181x (VIN = 3.6 V)
MODE = “L”PWM/VFM Auto Switching Control
1.90
1.85
1.80
Output Voltage
1.70
400
200
200
0
Output Voltage VOUT (V)
Output Current
1mA-->300mA
MODE = “L”PWM/VFM Auto Switching Control
400
Output Current IOUT (mA)
Output Voltage VOUT (V)
0
0
Output Current
300mA-->1mA
1.90
1.85
1.80
1.75
Output Current IOUT (mA)
1.15
Output Voltage
Output Voltage VOUT (V)
Output Current
200mA-->500mA
600
Output Current IOUT (mA)
RP504x121x (VIN = 3.6 V)
Output Current IOUT (mA)
Output Voltage VOUT (V)
RP504x121x (VIN = 3.6 V)
1.75
0
Output Current IOUT (mA)
400
Output Voltage VOUT (V)
Output Current
1mA-->300mA
MODE = “H” Forced PWM Control
Output Current IOUT (mA)
Output Voltage VOUT (V)
MODE = “H” Forced PWM Control
Output Voltage
1.70
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
-100
0
100 200 300 400 500 600 700 800 900
Time t (µs)
27
RP504x
NO.EA-259-170620
RP504x181x (VIN = 3.6 V)
RP504x181x (VIN = 3.6 V)
400
200
200
0
1.90
1.85
1.80
Output Voltage
1.75
1.70
0
Output Current
300mA-->1mA
1.90
1.85
1.80
Output Voltage
1.75
1.70
1.65
1.65
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
RP504x181x (VIN = 3.6 V)
RP504x181x (VIN = 3.6 V)
600
1.85
1.80
1.75
Output Voltage
1.70
200
1.90
1.80
Output Voltage
1.75
1.70
-10 0 10 20 30 40 50 60 70 80 90
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
Time t (µs)
RP504x331x (VIN = 5.0 V)
MODE = “L”PWM/VFM Auto Switching Control
3.50
3.40
3.30
Output Voltage
3.10
400
200
200
0
Output Voltage VOUT (V)
Output Current
1mA-->300mA
RP504x331x (VIN = 5.0 V)
MODE = “L”PWM/VFM Auto Switching Control
400
Output Current IOUT (mA)
Output Voltage VOUT (V)
0
1.85
1.65
1.65
0
Output Current
300mA-->1mA
3.50
3.40
3.30
Output Voltage
3.20
3.10
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
28
400
-100
0
100 200 300 400 500 600 700 800 900
Time t (µs)
Output Current IOUT (mA)
0
1.90
Output Current
500mA-->200mA
Output Current IOUT (mA)
200
Output Voltage VOUT (V)
400
Output Current
200mA-->500mA
Output Current IOUT (mA)
Output Voltage VOUT (V)
600
3.20
Output Current IOUT (mA)
400
Output Voltage VOUT (V)
Output Current
1mA-->300mA
MODE = “H” Forced PWM Control
Output Current IOUT (mA)
Output Voltage VOUT (V)
MODE = “H” Forced PWM Control
RP504x
NO.EA-259-170620
RP504x331x (VIN = 5.0 V)
RP504x331x (VIN = 5.0 V)
400
200
200
0
3.50
3.40
3.30
Output Voltage
3.20
3.10
3.50
3.40
3.30
Output Voltage
3.20
3.10
-10 0 10 20 30 40 50 60 70 80 90
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
Time t (µs)
RP504x331x (VIN = 5.0 V)
400
400
200
0
3.50
3.40
3.30
Output Voltage
3.20
3.10
Output Voltage VOUT (V)
600
Output Current IOUT (mA)
Output Current
200mA-->500mA
600
200
Output Current
500mA-->200mA
0
3.50
3.40
3.30
Output Voltage
3.20
Output Current IOUT (mA)
RP504x331x (VIN = 5.0 V)
Output Voltage VOUT (V)
0
Output Current
300mA-->1mA
Output Current IOUT (mA)
400
Output Voltage VOUT (V)
Output Current
1mA-->300mA
MODE = “H” Forced PWM Control
Output Current IOUT (mA)
Output Voltage VOUT (V)
MODE = “H” Forced PWM Control
3.10
-10 0 10 20 30 40 50 60 70 80 90
-10 0 10 20 30 40 50 60 70 80 90
Time t (µs)
Time t (µs)
17) Mode Switching Waveform
RP504x (VOUT = 1.2 V, IOUT = 1 mA)
RP504x (VOUT = 1.2 V, IOUT = 1 mA)
MODE = “L” --> MODE = “H”
MODE = “H" --> MODE = “L”
1.30
1.25
1.20
1.15
-100
Output Voltage
0
100
200
Time t (µs)
300
400
0
Mode Input Voltage
1.30
1.25
1.20
Output Voltage
1.15
-200
0
200
400
600
Mode Input Voltage
VMODE (V)
0
Output Voltage VOUT (V)
Mode Input Voltage
5
Mode Input Voltage
VMODE (V)
Output Voltage VOUT (V)
5
800
Time t (µs)
29
RP504x
NO.EA-259-170620
RP504x (VOUT = 1.8 V, IOUT = 1 mA)
RP504x (VOUT = 1.8 V, IOUT = 1 mA)
MODE = "L" --> MODE = "H"
MODE = "H" --> MODE = "L"
1.85
1.80
Output Voltage
0
100
200
Time t (µs)
300
400
0
Mode Input Voltage
1.90
1.85
1.80
Output Voltage
1.75
-200
0
200
400
Time t (µs)
600
800
Mode Input Voltage
VMODE (V)
1.90
1.75
-100
30
0
Output Voltage VOUT (V)
Mode Input Voltage
5
Mode Input Voltage
VMODE (V)
Output Voltage VOUT (V)
5
POWER DISSIPATION
DFN(PLP)1216-6F
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following conditions are used in this measurement.
Measurement Conditions
Standard Test Land Pattern
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions
40 mm × 40 mm × 1.6 mm
Top Side: Approx. 50%
Copper Ratio
Bottom Side: Approx. 50%
φ 0.3 mm × 26 pcs
Through-holes
Measurement Result
(Ta = 25°C, Tjmax = 125°C)
Standard Test Land Pattern
Power Dissipation
385 mW
θja = (125 − 25°C) / 0.385 W = 260°C/W
Thermal Resistance
θjc = 30°C/W
40
600
500
Standard Test Land Pattern
385
400
300
40
Power Dissipation PD (mW)
700
200
100
0
0
25
50
75 85 100
125
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
IC Mount Area (mm)
Measurement Board Pattern
i
PACKAGE DIMENSIONS
DFN(PLP)1216-6F
Ver. A
DFN(PLP)1216-6F Package Dimensions (Unit: mm)
i
POWER DISSIPATION
DFN1616-6B
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following conditions are used in this measurement.
Measurement Conditions
Standard Test Land Pattern
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions
40 mm × 40 mm × 1.6 mm
Top Side: Approx. 50%
Copper Ratio
Bottom Side: Approx. 50%
φ 0.5 mm × 32 pcs
Through-holes
Measurement Result
(Ta = 25°C, Tjmax = 125°C)
Standard Test Land Pattern
Power Dissipation
640 mW
θja = (125 − 25°C) / 0.64 W = 156°C/W
θjc = 23 °C/W
40
700
640
600
Standard Test Land Pattern
500
400
40
Power Dissipation PD (mW)
Thermal Resistance
300
200
100
Measurement Board Pattern
0
0
25
50
75 85 100
125
150
Ambient Temperature (°C)
IC Mount Area (mm)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
PACKAGE DIMENSIONS
DFN1616-6B
Ver. A
1.30±0.05
(3X0.15)
B
0.70±0.05
X4
1.60
0.05
4
6
∗
0.25±0.05
1.60
A
INDEX
0.4max.
0.1±0.05
3
0.5
0.20±0.05
1
0.05 M AB
Bottom View
S
0.05 S
DFN1616-6B Package Dimensions (Unit: mm)
*
∗ The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this
tab be connected to the ground plane pin on the board but it is possible to leave the tab floating.
i
POWER DISSIPATION
SOT-23-5
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following conditions are used in this measurement.
Measurement Conditions
Standard Test Land Pattern
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions
40 mm x 40 mm x 1.6 mm
Copper Ratio
Top Side: Approx.50%
Bottom Side: Approx. 50%
Through-holes
φ 0.5 mm x 44 pcs
Measurement Result
(Ta = 25°C, Tjmax = 125°C)
Standard Test Land Pattern
Free Air
Power Dissipation
420 mW
250 mW
Thermal Resistance
θja = (125 − 25°C) / 0.42 W = 238°C/W
400°C/W
40
500
Standard Test Land Pattern
420
400
300
Free Air
250
40
Power Dissipation (mW)
600
200
100
0
0
25
50
75 85 100
125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
IC Mount Area (mm)
Measurement Board Pattern
i
SOT-23-5
PACKAGE DIMENSIONS
Ver. A
2.9±0.2
1.1±0.1
1.9±0.2
0.8±0.1
(0.95)
4
1
2
0~0.1
0.2min.
+0.2
1.6-0.1
5
2.8±0.3
(0.95)
3
0.4±0.1
+0.1
0.15-0.05
SOT-23-5 Package Dimensions
i
1. The products and the product specifications described in this document are subject to change or discontinuation of
production without notice for reasons such as improvement. Therefore, before deciding to use the products, please
refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written
consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise
taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits
for the products. The release of such information is not to be construed as a warranty of or a grant of license under
Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard
applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products,
amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality
and reliability, for example, in a highly specific application where the failure or misoperation of the product could result
in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and
transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products
are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from
such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy
feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or
damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and
characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and
characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the
case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or
the technical information.
Halogen Free
Ricoh is committed to reducing the environmental loading materials in electrical devices
with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since
April 1, 2012.
https://www.e-devices.ricoh.co.jp/en/
Sales & Support Offices
Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1-408-610-3105
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd.
3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea
Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd.
Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299
Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,
Shenzhen, China
Phone: +86-755-8348-7600 Ext 225
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623