RP506L Series
AEC-Q100 Compliant
2 A PWM/VFM Step-down DC/DC Converter with Synchronous
Rectifier for Automotive Applications
No. EC-296-210909
OUTLINE
The RP506L is a low supply current CMOS-based PWM/VFM step-down DC/DC converter with synchronous
rectifier featuring 2 A( 1) output current. Internally, a single converter consists of an oscillator, a reference voltage
unit, an error amplifier, a switching control circuit, a mode control circuit, a soft start circuit, a latch type
protection circuit, an under-voltage lockout (UVLO) circuit, a thermal shutdown circuit, and switching transistors.
The RP506L is employing synchronous rectification for improving the efficiency of rectification by replacing
diodes with built-in switching transistors. Using synchronous rectification not only increases circuit performance
but also allows a design to reduce parts count.
Power controlling method can be selected from forced PWM control type or PWM/VFM auto switching control
type by inputting a signal to the MODE pin. In low output current, forced PWM control switches at fixed
frequency rate in order to reduce noise. Likewise, in low output current, PWM/VFM auto switching control
automatically switches from PWM mode to VFM mode in order to achieve high efficiency.
Output voltage type can be selected from an internally fixed output voltage type (RP506Lxx1G/H/K/L) or an
externally adjustable output voltage type (RP506L001N/M). The output voltage accuracy of the
RP506Lxx1G/H/K/L is as high as ±1.5% or ±18 mV. The output voltage of the RP506L001N/M can be set by
using the external resistors.
Oscillator frequency can be selected from 2.3 MHz (RP506Lxx1G/H//N) or 1.2 MHz (RP506Lxx1K/L/M). Softstart time is Typ. 150 µs, and by connecting an external capacitor to the TSS pin, soft-start time is adjustable.
Power good (PG) function monitors the VOUT pin voltage or the feedback pin voltage (VFB), and switches the
PG pin to low if any abnormal condition is detected.
Protection circuits included in the RP506L are over current protection circuit, latch type protection circuit and
thermal shutdown circuit. Over current protection circuit supervises the inductor peak current in each switching
cycle, and if the current exceeds the LX current limit (ILXLIM), it turns off Pch Tr. Latch type protection circuit
latches the built-in driver to the OFF state and stops the operation of the step-down DC/DC converter if the
over current status continues or VOUT continues being the half of the setting voltage for equal or longer than
protection delay time (tprot). Thermal shutdown circuit detects overheating of the converter if the output pin is
shorted to the ground pin (GND) etc. and stops the converter operation to protect it from damage if the junction
temperature exceeds the specified temperature.
The RP506L is available in DFN3030-12 which achieves high-density mounting on boards.
(1)
This is an approximate value. The output current is dependent on conditions and external components.
1
RP506L
No. EC-296-210909
FEATURES
Input Voltage Range (Maximum Rating) ······· 2.5 V to 5.5 V (6.5 V)
Operating Temperature Range ··················· −40°C to 105°C (RP506Lxx1x-TR-A)
−40°C to 125°C (RP506Lxx1x-TR-K)
Supply Current········································ Typ. 48 µA (VFM mode, Lx at no load)
Standby Current ······································ Typ. 0 µA
Output Voltage Range(1) ···························
Version
RP506Lxx1G/H
RP506L001N
RP506Lxx1K/L
RP506L001M
Forced PWM Control
1.1 V to 3.3 V
1.1 V to 4.0 V
PWM/VFM Auto Switching Control
0.8 V to 3.3 V
0.8 V to 4.0 V
0.8 V to 3.3 V
0.6 V to 4.0 V
Output Voltage Accuracy ··························· ±1.5% (VSET(2) ≥ 1.2 V),
±18 mV (VSET < 1.2 V) (RP506Lxx1G/H/K/L)
Feedback Voltage Accuracy ······················· ±9 mV (VFB = 0.6 V) (RP506L001N/M)
Output Voltage/Feedback Voltage
Temperature Coefficient ···························· ±100 ppm/°C
Oscillator Frequency ································ Typ. 2.3 MHz (RP506Lxx1G/H//N)
······························· Typ. 1.2 MHz (RP506Lxx1K/L/M)
Oscillator Maximum Duty ·························· Min. 100%
Built-in Driver ON Resistance ····················· Typ. Pch. 0.130 Ω, Nch. 0.125 Ω (VIN = 3.6 V)
UVLO Detector Threshold ························· Typ. 2.2 V
Inductor Current Limit Circuit······················ Current limit Typ. 2.8 A
Latch Type Protection Circuit ····················· Typ. 1.5 ms
Package ················································ DFN3030−12
APPLICATIONS
Power supply for accessories such as car audios, car navigation systems, and ETC
systems
(1)
Power supply for electronic control units such as EV inverter and battery charge control unit.
Refer to Selection Guide for detailed information.
Fixed output voltage type (RP506Lxx1G/H/K/L) can be selected from 0.8 V, 1.0 V, 1.1 V, 1.2 V, 1.3 V, 1.5 V, 1.8 V, 1.85 V,
3.0 V and 3.3 V. Adjustable output voltage type (RP506L001N/M) can be set up to 4.0 V.
(2) V
SET = Set Output Voltage
2
RP506L
No. EC-296-210909
SELECTION GUIDE
The set output voltage, the output voltage type, the auto-discharge function(1), and the oscillator frequency for
the ICs are user-selectable options.
Selection Guide
Product Name
Package
Quantity per Reel
Pb Free
Halogen Free
RP506Lxx1$-TR-#
DFN3030−12
3,000 pcs
Yes
Yes
xx: Designation of the set output voltage (VSET) (2)
For Fixed Output Voltage Type(3): 0.8 V, 1.0 V, 1.1 V, 1.2 V, 1.3 V, 1.5 V, 1.8 V, 1.85 V, 3.0 V, 3.3 V
For Adjustable Output Voltage Type: 00 only
$: Designation of Version
Version
RP506Lxx1G
RP506Lxx1H
RP506L001N
RP506Lxx1K
RP506Lxx1L
RP506L001M
Output Voltage Auto-discharge
Type
Function
Fixed
Adjustable
Fixed
Adjustable
No
Yes
VSET
Oscillator
PWM/VFM
Frequency Forced PWM
Auto Switching
2.3 MHz
No
Yes
No
1.2 MHz
1.1 V to 3.3 V
0.8 V to 3.3 V
1.1 V to 4.0 V
0.8 V to 4.0 V
0.8 V to 3.3 V
0.6 V to 4.0 V
#: Quality Class
#
Operating Temperature Range
Test Temperature
A
−40°C to 105°C
25°C, High
K
−40°C to 125°C
Low, 25°C, High
(1)
Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the
active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.
(2) V
SET can be set only within the specified range of voltage. Refer to Designation of Version for detailed information.
(3) 0.05 V step is also available as a custom code.
3
RP506L
No. EC-296-210909
BLOCK DIAGRAMS
PVIN
Ramp
Compensation
AVIN
Thermal
Protection
UVLO
Current
Detector
(“L” during
Soft Start)
LX
Switching
Control
Vref
Soft Start
TSS
Current
Feedback
Mode
Control
PGND
OSC
VOUT
MODE
Chip
Enable
CE
Over /Under
Voltage
Detection
OVD
PG
UVD
AGND
RP506Lxx1G/K Block Diagram
PVIN
Ramp
Compensation
AVIN
TSS
Thermal
Protection
UVLO
Soft Start
Current
Feedback
Current
Detector
Switching
Control
Vref
(“L” during
Soft Start)
LX
Mode
Control
PGND
OSC
VOUT
MODE
CE
Chip
Enable
Over /Under
Voltage
Detection
AGND
RP506Lxx1H/L Block Diagram
4
OVD
UVD
PG
RP506L
No. EC-296-210909
PVIN
Ramp
Compensation
AVIN
TSS
Thermal
Protection
UVLO
Soft Start
Current
Feedback
Current
Detector
Switching
Control
Vref
(“L” during
Soft Start)
LX
Mode
Control
PGND
OSC
VFB
MODE
CE
Chip
Enable
Over /Under
Voltage
Detection
OVD
PG
UVD
AGND
RP506L001N/M Block Diagram
5
RP506L
No. EC-296-210909
PIN DESCRIPTIONS
Top View
1
2
3
4
5
6
Bottom View 1
12
11
10
9
8
7
12
11
10
9
8
7
(1)
1
2
3
4
5
6
DFN3030-12 Pin Configurations
DFN3030-12 Pin Descriptions
Pin No.
Symbol
Description
1
PVIN
PVIN Input Voltage Pin( 2)
2
PVIN
PVIN Input Voltage Pin(2)
3
AVIN
AVIN Input Voltage Pin(2)
4
PG
Power Good Pin
5
CE
Chip Enable Pin (Active “H”)
6
MODE
7
TSS
8
VOUT/ VFB
9
AGND
10
LX
Switching Pin
11
NC
No Connection
12
PGND
Mode Control Pin
(“H”: forced PWM control, “L”: PWM/VFM auto switching control)
Soft-start Pin
Output/ Feedback Voltage Pin
Analog Ground Pin( 3)
Power Ground Pin(3)
(1) The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate
level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.
(2) No.1 pin, No.2 pin and No.3 pin must be wired to the V plane when mounting on boards.
IN
(3) No.9 pin and No.12 pin must be wired to the GND plane when mounting on boards.
6
RP506L
No. EC-296-210909
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum Ratings
(AGND = PGND = 0 V)
Symbol
Item
Rating
Unit
−0.3 to 6.5
V
VIN
A/PVIN Pin Voltage
VLX
LX Pin Voltage
−0.3 to A/PVIN +0.3
V
VCE
CE Pin Voltage
−0.3 to 6.5
V
VOUT/VFB Pin Voltage
−0.3 to 6.5
V
MODE Pin Voltage
−0.3 to 6.5
V
VPG
PG Pin Voltage
−0.3 to 6.5
V
VTSS
TSS Pin Voltage
−0.3 to AVIN+0.3
V
2.8
A
4300
mW
VOUT/ VFB
VMODE
ILX
LX Pin Output Current
PD
Power Dissipation(1)
Tj
Junction Temperature Range
−40 to 150
°C
Tstg
Storage Temperature Range
−55 to 150
°C
DFN3030−12
JEDEC STD. 51-7
Test Land Pattern
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent
damages and may degrade the lifetime and safety for both device and system using the device in the field. The
functional operation at or over these absolute maximum ratings is not assured.
RECOMMENDED OPERATING CONDITIONS
Recommended Operating Conditions
Symbol
Item
VIN
Input Voltage
Ta
Operating Temperature Range
Rating
Unit
2.5 to 5.5
V
RP506Lxx1x-TR-A
−40 to 105
°C
RP506Lxx1x-TR-K
−40 to 125
°C
RECOMMENDED OPERATING CONDITIONS
All of electronic equipment should be designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended
operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the
semiconductor devices may receive serious damage when they continue to operate over the recommended operating
conditions.
(1)
Refer to POWER DISSIPATION for detailed information.
7
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS
RP506Lxx1x-TR-A
The specifications surrounded by
are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.
RP506Lxx1 Electrical Characteristics
Symbol
Item
Istandby Standby Current
(Ta = 25°C)
Conditions
Min.
A/PVIN = 5.5 V, VCE = 0 V
Typ.
Max.
Unit
0
5
µA
ICEH
CE “H” Input Current
A/PVIN = VCE = 5.5 V
−1
0
1
µA
ICEL
CE “L” Input Current
A/PVIN = 5.5 V, VCE = 0 V
−1
0
1
µA
IMODEH
MODE “H” Input Current
A/PVIN = VMODE = 5.5 V, VCE = 0 V
−1
0
1
µA
IMODEL
MODE “L” Input Current
A/PVIN = 5.5 V, VCE = VMODE = 0 V
−1
0
1
µA
ILXLEAKH
LX Leakage Current “H”
A/PVIN = VLX = 5.5 V, VCE = 0 V
−1
0
6
µA
ILXLEAKL
LX Leakage Current “L”
A/PVIN = 5.5 V, VCE = VLX = 0 V
−15
0
1
µA
VCEH
CE “H” Input Voltage
A/PVIN = 5.5 V
1.0
VCEL
CE “L” Input Voltage
A/PVIN = 2.5 V
VMODEH
MODE “H” Input Voltage
A/PVIN = 5.5 V
VMODEL
MODE “L” Input Voltage
A/PVIN = 2.5 V
RONP
On Resistance of Pch Transistor
A/PVIN = 3.6 V, ILX = −100 mA
0.130
Ω
RONN
On Resistance of Nch Transistor
A/PVIN = 3.6 V, ILX = −100 mA
0.125
Ω
Maxduty Maximum Duty Cycle
V
0.4
V
1.0
0.4
75
150
300
µs
15
30
45
ms
A/PVIN = VCE = 3.6 V or VSET + 1 V
2200
2800
Protection Delay Time
A/PVIN = VCE = 3.6 V or VSET + 1 V
0.5
1.5
5
ms
VUVLO1
UVLO Detector Threshold
A/PVIN = VCE
2.1
2.2
2.3
V
VUVLO2
UVLO Released Voltage
A/PVIN = VCE
2.2
2.3
2.4
V
tstart1
Soft-start Time 1
tstart2
Soft-start Time 2
ILXLIM
LX Current Limit
tprot
A/PVIN = VCE = 3.6 V or VSET + 1 V,
CSS = 0.1 µF
mA
TTSD
Thermal Shutdown Temperature Junction Temperature
165
°C
TTSR
Thermal Shutdown Released
Temperature
Junction Temperature
115
°C
RPG
On Resistance of PG Pin
When Low Output
A/PVIN = 3.6 V,
VOUT = 0 V or VFB = 0 V
45
Ω
All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C).
8
V
%
100
A/PVIN = VCE = 3.6 V or VSET + 1 V,
TSS = OPEN
V
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-A
The specifications surrounded by
are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.
RP506Lxx1G/H, RP506L001N (Oscillator Frequency: 2.3 MHz) Electrical Characteristics
Symbol
Item
Conditions
Min. Typ.
VIN
fosc
(Ta = 25°C)
Max.
When MODE = H
Operating Input Voltage( 1)
1.1 V ≤ VSET < 1.2 V
2.5
4.5
1.2 V ≤ VSET
2.5
5.5
When MODE = L
Operating Input Voltage( 2)
0.8 V ≤ VSET < 1.0 V
2.5
4.5
1.0 V ≤ VSET
2.5
5.5
A/PVIN = VCE = 3.6 V or
VSET + 1 V
2.00
Oscillator Frequency
2.3
Unit
V
2.50 MHz
RP506Lxx1K/L, RP506L001M (Oscillator Frequency: 1.2 MHz) Electrical Characteristics
VIN
fosc
0.6 V ≤ VSET < 0.7 V
2.5
4.5
0.7 V ≤ VSET
2.5
5.5
When MODE = L
Operating Input Voltage
0.6 V ≤ VSET
2.5
5.5
Oscillator Frequency
A/PVIN = VCE = 3.6 V or VSET + 1 V
1.00
When MODE = H
Operating Input Voltage
1.20
1.40
V
MHz
All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C).
(1)
(2)
As for RP506Lxx1G/H//N (MODE = H), VSET can be set from 1.1 V.
As for RP506Lxx1G/H//N (MODE = L), VSET can be set from 0.8 V.
9
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-A
The specifications surrounded by
are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.
RP506Lxx1G/H/K/L (Fixed Output Voltage Type) Electrical Characteristics
Symbol
Item
Conditions
Min.
x0.985
VSET ≥ 1.2 V
x0.975
A/PVIN = VCE = 3.6 V
Output Voltage
VOUT
−0.018
or VSET + 1 V
VSET < 1.2 V
−0.03
Typ.
(Ta = 25°C)
Max.
x1.015
x1.025
0.018
Unit
V
0.03
IDD1
Supply Current 1
A/PVIN = VCE = 5.5 V, VOUT = VSET × 0.8
600
IDD2
Supply Current 2
A/PVIN = VCE
= VOUT = 5.5 V
IVOUTL
VOUT “L” Current
A/PVIN = 5.5 V, VCE = VOUT = 0 V
VOVD
OVD Voltage
A/PVIN = 3.6 V
VSET ×
1.2
V
VUVD
UVD Voltage
A/PVIN = 3.6 V
VSET ×
0.8
V
VMODE = 0 V
48
VMODE = 5.5 V
600
−1
0
µA
72
µA
µA
1
µA
RP506Lxx1G/K (Fixed Output Voltage Type without Auto-discharge Function)
IVOUTH
VOUT “H” Current
A/PVIN = VOUT = 5.5 V, VCE = 0 V
−1
RP506Lxx1H/L (Fixed Output Voltage Type with Auto-discharge Function)
On Resistance of Low
RLOW
A/PVIN = 3.6 V, VCE = 0 V
Output
RP506L001N/M (Adjustable Output Voltage Type) Electrical Characteristics
0
1
45
µA
Ω
0.591 0.600
0.609
0.585 0.600
0.615
V
Feedback Voltage
A/PVIN = VCE = 3.6 V
∆VFB
/∆Ta
Feedback Voltage
Temperature Coefficient
−40°C ≤ Ta ≤ 105°C
±100
ppm
/°C
IDD1
Supply Current 1
A/PVIN = VCE = 5.5 V, VFB = 0.48 V
600
µA
IDD2
Supply Current 2
A/PVIN = VCE
= VFB = 5.5 V
VMODE = 0 V
48
VMODE = 5.5 V
600
IVFBH
VFB “H” Current
A/PVIN = VFB = 5.5 V, VCE = 0 V
−1
0
1
µA
IVFBL
VFB “L” Current
A/PVIN = 5.5 V, VCE = VFB = 0 V
−1
0
1
µA
VOVD
OVD Voltage
A/PVIN = 3.6 V
0.72
V
VUVD
UVD Voltage
A/PVIN = 3.6 V
0.48
V
VFB
72
µA
µA
All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except
Feedback Voltage Temperature Coefficient.
10
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-A
The specifications surrounded by
are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.
RP506L Electrical Characteristics by Different Output Voltage
VOUT [V] (Ta = 25°C)
Product Name
Min.
Typ.
Max.
(Ta = 25°C)
VOUT [V] (Ta = -40 ~ 105°C)
Min.
Typ.
Max.
RP506L081x
0.782
0.800
0.818
0.770
0.800
0.830
RP506L101x
0.982
1.000
1.018
0.970
1.000
1.030
RP506L111x
1.082
1.100
1.118
1.070
1.100
1.130
RP506L121x
1.182
1.200
1.218
1.170
1.200
1.230
RP506L131x
1.281
1.300
1.319
1.268
1.300
1.332
RP506L151x
1.478
1.500
1.522
1.463
1.500
1.537
RP506L181x
1.773
1.800
1.827
1.755
1.800
1.845
RP506L181x5
1.823
1.850
1.877
1.804
1.850
1.896
RP506L301x
2.955
3.000
3.045
2.925
3.000
3.075
RP506L331x
3.251
3.300
3.349
3.218
3.300
3.382
11
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-K
RP506Lxx1 Electrical Characteristics
Symbol
Item
Istandby Standby Current
(–40°C ≤ Ta ≤ 125°C)
Conditions
Min.
A/PVIN = 5.5 V, VCE = 0 V
Typ.
Max.
Unit
0
10
µA
ICEH
CE “H” Input Current
A/PVIN = VCE = 5.5 V
−1
0
1
µA
ICEL
CE “L” Input Current
A/PVIN = 5.5 V, VCE = 0 V
−1
0
1
µA
IMODEH
MODE “H” Input Current
A/PVIN = VMODE = 5.5 V, VCE = 0 V
−1
0
1
µA
IMODEL
MODE “L” Input Current
A/PVIN = 5.5 V, VCE = VMODE = 0 V
−1
0
1
µA
ILXLEAKH
LX Leakage Current “H”
A/PVIN = VLX = 5.5 V, VCE = 0 V
−1
0
6
µA
ILXLEAKL
LX Leakage Current “L”
A/PVIN = 5.5 V, VCE = VLX = 0 V
−40
0
1
µA
VCEH
CE “H” Input Voltage
A/PVIN = 5.5 V
1.0
VCEL
CE “L” Input Voltage
A/PVIN = 2.5 V
VMODEH
MODE “H” Input Voltage
A/PVIN = 5.5 V
VMODEL
MODE “L” Input Voltage
A/PVIN = 2.5 V
RONP
On Resistance of Pch Transistor
A/PVIN = 3.6 V, ILX = −100 mA
0.130
Ω
RONN
On Resistance of Nch Transistor
A/PVIN = 3.6 V, ILX = −100 mA
0.125
Ω
Maxduty Maximum Duty Cycle
tstart1
Soft-start Time 1
tstart2
Soft-start Time 2
ILXLIM
LX Current Limit
tprot
V
0.4
V
1.0
0.4
V
%
100
A/PVIN = VCE = 3.6 V or VSET + 1 V,
TSS = OPEN
V
75
150
300
µs
15
30
45
ms
A/PVIN = VCE = 3.6 V or VSET + 1 V
2000
2800
Protection Delay Time
A/PVIN = VCE = 3.6 V or VSET + 1 V
0.5
1.5
5
ms
VUVLO1
UVLO Detector Threshold
A/PVIN = VCE
2.1
2.2
2.3
V
VUVLO2
UVLO Released Voltage
A/PVIN = VCE
2.2
2.3
2.4
V
12
A/PVIN = VCE = 3.6 V or VSET + 1 V,
CSS = 0.1 µF
mA
TTSD
Thermal Shutdown Temperature Junction Temperature
165
°C
TTSR
Thermal Shutdown Released
Temperature
Junction Temperature
115
°C
RPG
On Resistance of PG Pin
When Low Output
A/PVIN = 3.6 V,
VOUT = 0 V or VFB = 0 V
45
Ω
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-K
RP506Lxx1G/H, RP506L001N (Oscillator Frequency: 2.3 MHz) Electrical Characteristics
Symbol
VIN
fosc
Item
Conditions
Min.
(–40°C ≤ Ta ≤ 125°C)
Typ.
Max.
When MODE = H
Operating Input Voltage( 1)
1.1 V ≤ VSET < 1.2 V
2.5
4.5
1.2 V ≤ VSET
2.5
5.5
When MODE = L
Operating Input Voltage( 2)
0.8 V ≤ VSET < 1.0 V
2.5
4.5
1.0 V ≤ VSET
2.5
5.5
Oscillator Frequency
A/PVIN = VCE = 3.6 V or VSET + 1 V
2.00
2.3
Unit
V
2.50 MHz
RP506Lxx1K/L, RP506L001M (Oscillator Frequency: 1.2 MHz) Electrical Characteristics
VIN
fosc
(1)
(2)
0.6 V ≤ VSET < 0.7 V
2.5
4.5
0.7 V ≤ VSET
2.5
5.5
When MODE = L
Operating Input Voltage
0.6 V ≤ VSET
2.5
5.5
Oscillator Frequency
A/PVIN = VCE = 3.6 V or VSET + 1 V
1.00
When MODE = H
Operating Input Voltage
1.20
1.40
V
MHz
As for RP506Lxx1G/H//N (MODE = H), VSET can be set from 1.1 V.
As for RP506Lxx1G/H//N (MODE = L), VSET can be set from 0.8 V.
13
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-K
RP506Lxx1G/H/K/L (Fixed Output Voltage Type) Electrical Characteristics
Symbol
Item
Conditions
Min.
(–40°C ≤ Ta ≤ 125°C)
Typ.
Max.
Unit
VOUT
Output Voltage
x0.985
Ta = 25°C
A/PVIN = VCE = VSET ≥ 1.2 V
–40°C ≤ Ta ≤ 125°C x0.975
3.6 V
−0.018
or VSET + 1 V VSET < 1.2 V Ta = 25°C
–40°C ≤ Ta ≤ 125°C −0.03
x1.015
IDD1
Supply Current 1
A/PVIN = VCE = 5.5 V, VOUT = VSET × 0.8
600
IDD2
Supply Current 2
VMODE = 0 V
A/PVIN = VCE
= VOUT = 5.5 V VMODE = 5.5 V
48
IVOUTL
VOUT “L” Current
A/PVIN = 5.5 V, VCE = VOUT = 0 V
VOVD
OVD Voltage
A/PVIN = 3.6 V
VSET ×
1.2
V
VUVD
UVD Voltage
A/PVIN = 3.6 V
VSET ×
0.8
V
x1.025
0.018
0.03
µA
72
600
−1
0
V
µA
µA
1
µA
RP506Lxx1G/K (Fixed Output Voltage Type without Auto-discharge Function)
IVOUTH
VOUT “H” Current
A/PVIN = VOUT = 5.5 V, VCE = 0 V
−1
RP506Lxx1H/L (Fixed Output Voltage Type with Auto-discharge Function)
On Resistance of
RLOW
A/PVIN = 3.6 V, VCE = 0 V
Low Output
RP506L001N/M (Adjustable Output Voltage Type) Electrical Characteristics
0
1
45
µA
Ω
Ta = 25°C
0.591 0.600 0.609
–40°C ≤ Ta ≤ 125°C
0.585
VFB
Feedback Voltage A/PVIN = VCE =
3.6 V
IDD1
Supply Current 1
A/PVIN = VCE = 5.5 V, VFB = 0.48 V
IDD2
Supply Current 2
A/PVIN = VCE
= VFB = 5.5 V
IVFBH
VFB “H” Current
A/PVIN = VFB = 5.5 V, VCE = 0 V
−1
0
1
µA
IVFBL
VFB “L” Current
A/PVIN = 5.5 V, VCE = VFB = 0 V
−1
0
1
µA
VOVD
OVD Voltage
A/PVIN = 3.6 V
0.72
V
VUVD
UVD Voltage
A/PVIN = 3.6 V
0.48
V
14
0.615
600
VMODE = 0 V
48
VMODE = 5.5 V
600
V
µA
72
µA
µA
RP506L
No. EC-296-210909
ELECTRICAL CHARACTERISTICS (continued)
RP506Lxx1x-TR-K
RP506L Electrical Characteristics by Different Output Voltage
VOUT [V] (Ta = 25°C)
Product Name
Min.
Typ.
Max.
(–40°C ≤ Ta ≤ 125°C)
VOUT [V] (Ta = -40 ~ 125°C)
Min.
Typ.
Max.
RP506L081x
0.782
0.800
0.818
0.770
0.800
0.830
RP506L101x
0.982
1.000
1.018
0.970
1.000
1.030
RP506L111x
1.082
1.100
1.118
1.070
1.100
1.130
RP506L121x
1.182
1.200
1.218
1.170
1.200
1.230
RP506L131x
1.281
1.300
1.319
1.268
1.300
1.332
RP506L151x
1.478
1.500
1.522
1.463
1.500
1.537
RP506L181x
1.773
1.800
1.827
1.755
1.800
1.845
RP506L181x5
1.823
1.850
1.877
1.804
1.850
1.896
RP506L301x
2.955
3.000
3.045
2.925
3.000
3.075
RP506L331x
3.251
3.300
3.349
3.218
3.300
3.382
15
RP506L
No. EC-296-210909
THEORY OF OPERATION
Soft-start Time Adjustment Function
Soft-start time (tstart) of the RP506L is adjustable by connecting a soft-start time adjustment capacitor (CSS)
between the TSS pin and GND. tstart can be set from Typ. 0.15 ms. As the figure below shows, if 0.1 µF CSS
is connected, tstart will be 30 ms. The TSS pin must be open if the soft-start time function is not used. tstart is
set to 0.15 ms (Typ.) when the TSS pin is open.
tstart
30ms
15ms
3ms
0.15ms
0
470pF
0.01μF
0.047μF
0.1μF
CSS
CSS vs. tstart (Typ.)
Soft-start Time (tstart) vs. Soft-start Time Adjustment Capacitor (CSS)
Power Good Function
The RP506L contains a power good function using Nch open drain. If any abnormal condition is detected, the
power good function turns Nch transistor on and switches the PG pin to low. If the cause of the abnormal
condition is removed, the power good function turns Nch transistor off and switches the PG pin back to high.
After the recovery from abnormal condition, it takes typically 0.05 ms for the IC to turns Nch transistor off. The
followings are the abnormal conditions that the power good function can detect.
•
CE = ”L” (Shut down)
•
UVLO (Shut down)
•
Thermal Shutdown
•
Over Voltage Detection: Typ. VSET x 1.2 V (RP506Lxx1G/H/K/L) or 0.72 V (RP506L001N/M)
•
Under Voltage Detection: Typ. VSET x 0.8 V (RP506Lxx1G/H/K/L) or 0.48 V (RP506L001N/M)
•
Latch Type Protection
Notes: When using the power good function, the resistance of PG pin (RPG) should be between 10 kΩ to 100
kΩ. The PG pin must be open or connected to GND if the power good function is not used.
16
RP506L
No. EC-296-210909
Sequential Start-up Using Soft-start Time Adjustment and Power Good Functions
Sequential startup circuits can be built by using soft-start time adjustment and power good functions of the
RP506L. The figure below is an example of sequential startup circuits using DC/DC1 and DC/DC2.
The DC/DC1 starts up first followed by the DC/DC2: the output of DC/DC1 reaches 1.44 V (VSET x 0.8), the PG
pin of DC/DC1 sends a high signal to the CE pin of DC/DC2, and then the DC/DC2 starts soft-start.
DC/DC1 (RP506L001N/M): VIN = 5.0 V, VOUT = 1.8 V, tstart = 30 ms, CSS = 0.1 µF
DC/DC2 (RP506L001N/M): VIN = 5.0 V, VOUT = 1.2 V, tstart = 30 ms, CSS = 0.1 µF
VIN = 5.0 V
CIN1
10 µF
RPG1
100 kΩ
PVIN
PGND
AVIN
Lx
RP506L001N/M
AGND
PG
VOUT1
1.8 V
L1
2.2 µH
440 kΩ
22 pF
COUT1
30 µF
DCDC1
CE
VFB
MODE
TSS
PVIN
CIN2
10 µF
220 kΩ
CSS1
0.1 µF
PGND
AVIN
Lx
L2
2.2 µH
RP506L001N/M
AGND
PG
220 kΩ
DCDC2
CE
VFB
MODE
TSS
VOUT2
1.2 V
22 pF
COUT2
30 µF
220 kΩ
CSS2
0.1 µF
Circuits Example using Sequential Startup
17
RP506L
No. EC-296-210909
Operation of Step-down DC/DC Converter and Output Current
The step-down DC/DC converter charges energy in the inductor when LX Tr. turns “ON”, and discharges the
energy from the inductor when LX Tr. turns “OFF” and controls with less energy loss, so that a lower output
voltage (VOUT) than the input voltage (VIN) can be obtained. The operation of the step-down DC/DC converter
is explained in the following figures.
IL
i1
VIN
Pch Tr
Nch Tr
VOUT
L
i2
ILmax
ILmin
i1
topen
i2
CL
GND
ton
toff
T=1/fosc
Basic Circuit
Step1.
Step2.
Step3.
Inductor Current (IL) flowing through Inductor (L)
Pch Tr. turns “ON” and IL (i1) flows, L is charged with energy. At this moment, i1 increases from the
minimum inductor current (ILmin), which is 0 A, and reaches the maximum inductor current (ILmax)
in proportion to the on-time period (ton) of Pch Tr.
When Pch Tr. turns “OFF”, L tries to maintain IL at ILmax, so L turns Nch Tr. “ON” and IL (i2) flows
into L.
i2 decreases gradually and reaches ILmin after the open-time period (topen) of Nch Tr., and then Nch
Tr. turns “OFF”. This is called discontinuous current mode.
As the output current (IOUT) increases, the off-time period (toff) of Pch Tr. runs out before IL reaches
ILmin. The next cycle starts, and Pch Tr. turns “ON” and Nch Tr. turns “OFF”, which means IL starts
increasing from ILmin. This is called continuous current mode.
In the case of PWM mode, VOUT is maintained by controlling ton. During PWM mode, the oscillator frequency
(fosc) is being maintained constant.
When the step-down DC/DC operation is constant, ILmin and ILmax during ton of Pch Tr. would be same as
during toff of Pch Tr. The current differential between ILmax and ILmin is described as ∆I.
∆I = ILmax − ILmin = VOUT × topen / L = (VIN − VOUT) × ton / L ············································· Equation 1
However,
T = 1 / fosc = ton + toff
duty (%) = ton / T × 100 = ton × fosc × 100
topen ≤ toff
In Equation 1, “VOUT × topen / L” shows the amount of current change in " OFF " state. Also, “(VIN − VOUT) × ton
/ L” shows the amount of current change at "ON" state.
18
RP506L
No. EC-296-210909
Discontinuous Mode and Continuous Mode
As illustrated in Figure A, when IOUT is relatively small, topen < toff. In this case, the energy charged into L
during ton will be completely discharged during toff, as a result, ILmin = 0. This is called discontinuous mode.
When IOUT is gradually increased, eventually topen = toff and when IOUT is increased further, eventually ILmin
> 0, as illustrated in Figure B. This is called continuous mode.
IL
ILmax
IL
ILmax
ILmin
ILmin
topen
t
ton
Iconst
toff
ton
T=1/fosc
Figure A. Discontinuous Mode
t
toff
T=1/fosc
Figure B. Continuous Mode
In the continuous mode, the solution of Equation 1 is described as tonc.
tonc = T × VOUT / VIN ································································································· Equation 2
When ton < tonc, it is discontinuous mode, and when ton = tonc, it is continuous mode.
19
RP506L
No. EC-296-210909
Forced PWM Mode
By setting the MODE pin to “H”, the IC switches the frequency at the fixed rate to reduce noise even when
the output load is light. Therefore, when IOUT is ∆IL/2 or less, ILmin becomes less than 0. That is, the
accumulated electricity in CL is discharged through the IC side while IL is increasing from ILmin to 0 during
ton, and also while IL is decreasing from 0 to ILmin during toff.
ILmax
IL
ΔIL
IOUT
0
ILmin
t
ton
toff
T=1/fosc
Forced PWM Mode
VFM Mode
By setting the MODE pin to “L”, in low output current, the IC automatically switches into VFM mode in order
to achieve high efficiency. In VFM mode, ton is forced to end when the inductor current reaches the pre-set
ILmax. In the VFM mode, ILmax is typically set to 400 mA for the RP506Lxx1G/H//N, and 550 mA for the
RP506Lxx1K/L/M. When ton reaches 1.5 times of T = 1 / fosc, ton will be forced to end even if the inductor
current is not reached ILmax.
ILmax
IL
0
ILmin
t
ton
toff
VFM Mode
20
RP506L
No. EC-296-210909
Output Current and Selection of External Components
The following equations explain the relationship between output current and peripheral components that are
listed in Table1. Recommended External Components in Typical Application.
Ripple Current P-P value is described as IRP, ON resistance of Pch Tr. is described as RONP, ON resistance of
Nch Tr. is described as RONN, and DC resistor of the inductor is described as RL.
First, when Pch Tr. is “ON”, the following equation is satisfied.
VIN = VOUT + (RONP + RL) × IOUT + L × IRP / ton ································································· Equation 3
Second, when Pch Tr. is "OFF" (Nch Tr. is "ON"), the following equation is satisfied.
L × IRP / toff = RONN × IOUT + VOUT + RL × IOUT ·································································· Equation 4
Put Equation 4 into Equation 3 to solve ON duty of Pch Tr. (DON = ton / (toff + ton)):
DON = (VOUT + RONN × IOUT + RL × IOUT) / (VIN + RONN × IOUT − RONP × IOUT) ······························· Equation 5
Ripple Current is described as follows:
IRP = (VIN − VOUT − RONP × IOUT − RL × IOUT) × DON / fosc / L ················································ Equation 6
Peak current that flows through L, and LX Tr. is described as follows:
ILXmax = IOUT + IRP / 2 ······························································································· Equation 7
Notes: Please consider ILxmax when setting conditions of input and output, as well as selecting the external
components. The above calculation formulas are based on the ideal operation of the ICs in continuous mode.
21
RP506L
No. EC-296-210909
Timing Chart
(1) Soft-start Time
Starting-up with CE Pin
The IC starts to operate when the CE pin voltage (VCE) exceeds the threshold voltage. The threshold voltage
is preset between CE “H” input voltage (VCEH) and CE “L” input voltage (VCEL).
After the start-of the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time,
the reference voltage (VREF) in the IC gradually increases up to the specified value.
CE Pin Input Voltage
(VCE)
IC Internal Reference Voltage
(VREF)
Lx Voltage
(VLX)
Output Voltage
(VOUT)
VCEH
Threshold Level
VCEL
Soft-start Time
Soft-start Circuit
operation starts.
IC operates with PWM mode
during Soft-start time.
Depending on Power Supply,
Load Current, External Components
Timing Chart
Soft-start time starts when soft-start circuit is activated, and ends when the reference voltage reaches the
specified voltage.
Notes: Soft start time is not always equal to the turn-on speed of the step-down DC/DC converter. Please note
that the turn-on speed could be affected by the power supply capacity, the output current, the inductance value
and the COUT value.
22
RP506L
No. EC-296-210909
Starting-up with Power Supply
After the power-on, when VIN exceeds the UVLO released voltage (VUVLO2), the IC starts to operate. Then, softstart circuit starts to operate and after a certain period of time, VREF gradually increases up to the specified
value. Soft-start time starts when soft-start circuit is activated, and ends when VREF reaches the specified
voltage.
VSET
VUVLO2
Input Voltage
(VIN)
VUVLO1
Soft-start Time
IC Internal Reference Voltage
(VREF)
Lx Voltage
(VLX)
IC operates with PWM mode during Soft-start time.
VSET
Output Voltage
(VOUT)
Depending on Power Supply, Load Current,
External Components
Timing Chart
Notes: Please note that the turn-on speed of VOUT could be affected by the power supply capacity, the output
current, the inductance value, the COUT value and the turn-on speed of VIN determined by CIN.
23
RP506L
No. EC-296-210909
(2) Under Voltage Lockout (UVLO) Circuit
If VIN becomes lower than VSET, the step-down DC/DC converter stops the switching operation and ON duty
becomes 100%, and then VOUT gradually drops according to VIN.
If the VIN drops more and becomes lower than the UVLO detector threshold (VUVLO1), the UVLO circuit starts
to operate, VREF stops, and Pch and Nch built-in switch transistors turn “OFF”. As a result, VOUT drops according
to the COUT capacitance value and the load.
To restart the operation, VIN needs to be higher than VUVLO2. The timing chart below shows the voltage shifts
of VREF, VLX and VOUT when VIN value is varied.
Input Voltage
(VIN)
VSET
VUVLO2
VUVLO1
Soft-start Time
IC Internal Reference Voltage
(VREF)
Lx Voltage
(VLX)
Output Voltage
(VOUT)
Depending on Power Supply, Load Current,
External Components
Timing Chart
Notes: Falling edge (operating) and rising edge (releasing) waveforms of VOUT could be affected by the initial
voltage of COUT and the output current of VOUT.
24
RP506L
No. EC-296-210909
(3) Over Current Protection Circuit, Latch Type Protection Circuit
Over current protection circuit supervises the inductor peak current (the peak current flowing through Pch Tr.)
in each switching cycle, and if the current exceeds the LX current limit (ILXLIM), it turns off Pch Tr. ILXLIM of the
RP506L is set to Typ.2800 mA.
Latch type protection circuit latches the built-in driver to the OFF state and stops the operation of the stepdown DC/DC converter if the over current status continues or VOUT continues being the half of the setting
voltage for equal or longer than protection delay time (tprot). To release the latch type protection circuit, restart
the IC by inputting "L" signal to the CE pin, or restart the IC with power-on or make the supply voltage lower
than VUVLO1.
Notes: ILXLIM and tprot could be easily affected by self-heating or ambient environment. If the VIN drops
dramatically or becomes unstable due to short-circuit, protection operation and tprot could be affected.
Protection Delay Time (tprot)
IL flowing through L
Lx Limit Current
(ILXLIM)
Current flowing through Pch Tr.
Lx Voltage
(VLX)
Protection Delay Time
25
RP506L
No. EC-296-210909
The timing chart below shows the voltage shift of VCE, VLX and VOUT when the IC status is changed by the
following orders: VIN rising → stable operation → high load → CE reset → stable operation → VIN falling → VIN
recovering (UVLO reset) → stable operation.
(1)(2) If the large current flows through the circuit or the IC goes into low VOUT condition due to short-circuit or
other reasons, the latch type protection circuit latches the built-in driver to “OFF” state after tprot. Then,
VLX becomes "L" and VOUT turns “OFF”.
(3) The latch type protection circuit is released by CE reset, which puts the IC into "L" once with the CE pin
and back into "H".
(4) The latch type protection circuit is released by UVLO reset, which makes VIN lower than VUVLO1.
(1)
(3)
(2)
(4)
SET
Input Voltage UVLO Released VoltageV(V
UVLO2)
(VIN)
UVLO Detector Threshold (VUVLO1)
CE Pin
Input Voltage
(VCE)
Lx Voltage
(VLX)
Output Voltage
(VOUT)
UVLO Reset
VSET
Threshold Level
CE Reset
Protection Delay Time
VSET
VSET
Latch-type Protection
Stable
Operation
Soft-start Time
Timing Chart
26
Protection Delay Time
Stable
Operation
Soft-start Time
Latch-type Protection
Stable
Operation
Soft-start Time
RP506L
No. EC-296-210909
APPLICATION INFORMATION
Typical Application
PG function is used, 30 ms Soft-start Time
(1)
MODE = “H”: forced PWM control, MODE = “L”: PWM/VFM auto switching control
VIN
RPG
100kΩ
CIN
10uF
PG
PVIN
PGND
AVIN
Lx
RP506L
PG
AGND
CE
VOUT
L
2.2uH
COUT
30uF
TSS
MODE*1
VOUT
CSS
0.1uF
RP506Lxx1G/H/K/L (Fixed Output Voltage Type)
PG function is not used, 150 µs Soft-start Time
(1)
MODE = “H”: forced PWM control, MODE = “L”: PWM/VFM auto switching control
VIN
CIN
10uF
PVIN
PGND
AVIN
Lx
RP506L
PG
AGND
CE
VFB
MODE*1
TSS
L
2.2uH
R1
VOUT
C1
COUT
30uF
R2
RP506L001N/M (Adjustable Output Voltage Type)
(1)
VSET > 3.3 V is only for RP506L001N/M.
27
RP506L
No. EC-296-210909
Table 1. Recommended External Components
Symbol
Size
Part Description
CIN
10 µF
Ceramic Capacitor
22 µF × 2
Ceramic Capacitor
10 µF × 3
Ceramic Capacitor
L
(VSET ≤ 3.3 V)
2.2 µH
Inductor
L
(VSET > 3.3 V)(1)
4.7 µH
Inductor
COUT
Small and Low Profile External Components
Symbol
Size
Part Description
(1)
L
(VSET ≤ 1.5V)
1.0 µH
Inductor
L
(VSET ≤ 2.3V)
1.5 µH
Inductor
L
2.2 µH
Inductor
VSET > 3.3 V is only for RP506L001N/M.
28
Model
C1608JB0J106M (TDK)
JMK107BJ106MA (TAIYO)
CGA4J1X7R0J106K125AC(TDK)
C2012JB0J226M (TDK)
CGA5L1X7R0J226M160AC(TDK)
C1608JB0J106M (TDK)
JMK107BJ106MA (TAIYO)
CGA4J1X7R0J106K125AC(TDK)
SLF6045T-2R2N3R3 (TDK)
CLF7045-2R2N (TDK)
FDSD0415-2R2M (TOKO)
RLF7030T-2R2M5R4 (TDK)
CLF7045-2R2N-D (TDK)
SLF6045T-4R7N2R4 (TDK)
CLF7045-4R7N (TDK)
FDSD0415-4R7M (TOKO)
RLF7030T-4R7M3R4 (TDK)
CLF7045-4R7N-D (TDK)
Model
DFE252010R-H-1R0M (TOKO)
VLS252010HBX-1R0M (TDK)
DFE252010R-H-1R5M (TOKO)
VLS252010HBX-1R5M (TDK)
DFE252010R-H-2R2M (TOKO)
VLS252010HBX-2R2M (TDK)
RP506L
No. EC-296-210909
TECHNICAL NOTES
The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A
peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a
rated power. When designing a peripheral circuit, please be fully aware of the following points.
AGND and PGND must be wired to the GND plane when mounting on boards.
AVIN and PVIN must be wired to the VIN plane when mounting on boards.
Ensure the A/PVIN and A/PGND lines are sufficiently robust. A large switching current flows through the
A/ PGND line, the VDD line, the VOUT line, an inductor, and LX. If their impedance is too high, noise pickup
or unstable operation may result. Set the external components as close as possible to the IC and minimize
the wiring between the components and the IC. Especially, place a capacitor (CIN) as close as possible
to the PVIN pin and PGND. For the RP506Lxx1G/H/K/L, separate the wiring between the VOUT pin and an
inductor (L1) from the wiring between L1 and Load. Likewise, for the RP506L001N/M, separate the wiring
between a resistor for setting output voltage (R1) and an inductor (L2) from the wiring between L2 and
Load.
Choose a low ESR ceramic capacitor. The ceramic capacitance of CIN should be more than or equal to
10 µF. For a ceramic capacitor (COUT), it is recommended that three paralleled 10 µF ceramic capacitors
or two paralleled 22 µF ceramic capacitors be used.
When VSET ≤ 3.3 V, a 2.2 μH inductor is recommended for RP506Lxx1G/H//N/K/L/M. When VSET ≤ 2.3 V,
a 1.5 μH inductor can be used for RP506Lxx1G/H//N. When VSET ≤ 1.5 V, a 1 μH inductor can be used
for RP506Lxx1G/H//N. When VSET > 3.3 V, a 4.7 μH inductor is recommended for RP506L001N/M. The
phase compensation of this IC is designed according to the COUT and L values. Choose an inductor that
has small DC resistance, has enough allowable current and is hard to cause magnetic saturation. If the
inductance value of an inductor is extremely small, the peak current of LX may increase along with the
load current. As a result, over current protection circuit may start to operate when the peak current of LX
reaches to “LX limit current”.
Set Output Voltage (VSET) Range vs. Inductance Range
Version
VSET (V)
up to 1.5
RP506Lxx1G/H
RP506Lxx1K/L
L = 1.0 μH
L = 1.5 μH
L = 2.2 μH
L = 2.2 μH
Acceptable
Acceptable
Recommended
Recommended
1.6 to 2.3
-
2.4 to 3.3
-
Acceptable
-
Version
Recommended
Recommended
Recommended
Recommended
RP506L001N
VSET (V)
L = 1.0 μH
L = 1.5 μH
RP506L001M
L = 2.2 μH
L = 4.7 μH
L = 2.2 μH
L = 4.7 μH
up to 1.5
Acceptable
Acceptable
Recommended
-
Recommended
-
1.6 to 2.3
-
Acceptable
Recommended
-
Recommended
-
2.4 to 3.3
-
-
Recommended
-
Recommended
-
3.4 or more
-
-
Recommended
-
Recommended
-
29
RP506L
No. EC-296-210909
Overcurrent protection circuit and latch type protection circuit may be affected by self-heating or power
dissipation environment.
The output voltage (VOUT) is adjustable by changing the resistance values of resistors (R1, R2) as follows.
VOUT = VFB × (R1 + R2) / R2
Recommended VOUT range for RP506L001M: 0.6 V ≤ VSET ≤ 4.0 V,
Recommended VOUT range for RP506L001N: 0.8 V ≤ VSET ≤ 4.0 V
If R1 and R2 are too large, the impedances of VFB also become large, as a result, the IC could be easily
affected by noise. For this reason, R2 should be 220 kΩ or less. If the operation becomes unstable due
to the high impedances, the impedances should be decreased.
C1 can be calculated by the following equations. Please use the value close to the calculation result.
If the output voltage is lower than or equal to 3.3 V:
C1 = 4.84 × 10-6 / R2 [F]
If the output voltage exceeds 3.3 V:
C1 = 1.50 × 10-6 / R2 [F]
The recommended resistance values for R1 and C1 when R2 = 220 kΩ or 100 kΩ are as follows.
Set Output Voltage (VSET) vs. Resistors (R1, R2) and Capacitor (C1)
VSET [V]
0.6
0.7
0.8
1.2
1.8
2.5
R1 [kΩ]
0
36.7
73.3
220
440
697
R2 [kΩ]
220
220
220
220
220
220
C1 [pF]
22
22
22
22
22
3.3
990
220
22
3.8
533
100
15
4.0
567
100
15
Soft-start Time (tstart) is adjustable by connecting a capacitor (CSS) between the TSS pin and GND. The
capacitance value for CSS that is suitable for tstart can be calculated by the following equation.
CSS (nF) = 3.5 × tstart (ms)
The TSS pin must be open if Soft-start time function is not used. Soft-start time is set to typically 150 µs
when the TSS pin is open.
When using the power good function, the resistance value of a resistor (RPG) should be between 10 kΩ to
100 kΩ. The PG pin must be open or connected to GND if the power good function is not used.
30
RP506L
No. EC-296-210909
PCB Layout
RP506Lxx1G/H/K/L (PKG: DFN3030-12 pin) PCB Layout
Topside
Backside
RP506L001N/M (PKG: DFN3030-12 pin) PCB Layout
Topside
Backside
R11 and R12 are arranged as a substitute for R1 so that two resistors can be connected in series.
31
RP506L
No. EC-296-210909
TYPICAL CHARACTERISTICS
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.
1) Output Voltage vs. Output Current
RP506Lxx1G/H/N
VOUT = 1.2 V
RP506Lxx1G/H/N
MODE = “H” Forced PWM Control
1.220
1.220
1.215
1.215
1.210
1.210
1.205
1.200
1.195
1.190
Vin=3.6V
1.185
Output Voltage V OUT (V)
Output Voltage V OUT (V)
MODE = “L”PWM/VFM Auto Switching Control
1.205
1.200
1.195
1.190
Vin=3.6V
1.185
Vin=5.0V
1.180
Vin=5.0V
1.180
0.01
0.1
1
10
100
Output Current IOUT(mA)
RP506Lxx1G/H/N
1000
10000
0
VOUT = 1.5 V
Vin= 5 V
1.520
1.515
Vin= 3.3 V
1.515
VOUT = 1.5 V
Vin= 5 V
Vin= 3.3 V
1.510
Output Voltage VOUT [V]
Output Voltage VOUT [V]
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
1.525
1.520
1.510
1.505
1.500
1.495
1.490
1.485
1.480
1.505
1.500
1.495
1.490
1.485
1.480
0.01
0.1
1
10
100
Output Current IOUT(mA)
RP506Lxx1G/H/N
1000
1.475
10000
0
VOUT = 1.8 V
1.815
1.810
1.810
1.805
1.800
1.795
Vin=3.6V
Vin=5.0V
1.780
Output Voltage V OUT (V)
1.820
1.815
1.785
400
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
VOUT = 1.8 V
MODE = “H” Forced PWM Control
1.820
1.790
200
RP506Lxx1G/H/N
MODE = “L”PWM/VFM Auto Switching Control
Output Voltage V OUT (V)
400
MODE = “H” Forced PWM Control
1.525
1.805
1.800
1.795
1.790
Vin=3.6V
1.785
Vin=5.0V
1.780
0.01
32
200
RP506Lxx1G/H/N
MODE = “L”PWM/VFM Auto Switching Control
1.475
VOUT = 1.2 V
0.1
1
10
100
Output Current IOUT(mA)
1000
10000
0
200
400
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
RP506L
No. EC-296-210909
RP506Lxx1G/H/N
VOUT = 3.3 V
RP506Lxx1G/H/N
MODE = “H” Forced PWM Control
3.350
3.350
3.340
3.340
3.330
3.330
3.320
3.310
3.300
3.290
3.280
Vin=4.3V
3.270
Vin=5.0V
Output Voltage V OUT (V)
Output Voltage V OUT (V)
MODE = “L”PWM/VFM Auto Switching Control
3.310
3.300
3.290
3.280
Vin=4.3V
Vin=5.0V
3.260
0.01
0.1
1
10
100
Output Current IOUT(mA)
1000
10000
0
200
400
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
RP506Lxx1K/L/M VOUT = 0.6 V
RP506Lxx1K/L/M VOUT = 0.6 V
MODE = “L”PWM/VFM Auto Switching Control
MODE = “H” Forced PWM Control
0.620
0.620
0.615
0.615
0.610
0.610
0.605
0.600
0.595
0.590
Vin=3.6V
0.585
Output Voltage V OUT (V)
Output Voltage V OUT (V)
3.320
3.270
3.260
0.605
0.600
0.595
0.590
Vin=3.6V
0.585
Vin=4.5V
Vin=4.5V
0.580
0.580
0.01
0.1
1
10
100
1000
0
10000
200
400
RP506Lxx1K/L/M
VOUT = 0.8 V
0.815
0.815
0.810
0.810
0.800
0.795
Vin=3.6V
Vin=5.0V
0.780
Output Voltage V OUT (V)
0.820
0.805
VOUT = 0.8 V
MODE = “H” Forced PWM Control
0.820
0.785
800 1000 1200 1400 1600 1800 2000
RP506Lxx1K/L/M
MODE = “L”PWM/VFM Auto Switching Control
0.790
600
Output Current IOUT(mA)
Output Current IOUT(mA)
Output Voltage V OUT (V)
VOUT = 3.3 V
0.805
0.800
0.795
0.790
Vin=3.6V
0.785
Vin=5.0V
0.780
0.01
0.1
1
10
100
Output Current IOUT(mA)
1000
10000
0
200
400
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
33
RP506L
No. EC-296-210909
RP506Lxx1K/L/M
VOUT = 1.2 V
RP506Lxx1K/L/M
MODE = “H” Forced PWM Control
1.220
1.220
1.215
1.215
1.210
1.210
1.205
1.200
1.195
1.190
Vin=3.6V
1.185
Output Voltage V OUT (V)
Output Voltage V OUT (V)
MODE = “L”PWM/VFM Auto Switching Control
1.205
1.200
1.195
1.190
Vin=3.6V
1.185
Vin=5.0V
1.180
Vin=5.0V
1.180
0.01
0.1
1
10
100
Output Current IOUT(mA)
RP506Lxx1K/L/M
1000
10000
0
1.815
1.815
1.810
1.810
1.805
1.800
1.795
Vin=3.6V
Output Voltage V OUT (V)
Output Voltage V OUT (V)
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
RP506Lxx1K/L/M VOUT = 1.8 V
1.820
1.790
400
MODE = “H” Forced PWM Control
1.820
1.785
1.805
1.800
1.795
1.790
Vin=3.6V
1.785
Vin=5.0V
1.780
Vin=5.0V
1.780
0.01
0.1
1
10
100
Output Current IOUT(mA)
RP506Lxx1K/L/M
1000
10000
0
200
VOUT = 3.3 V
400
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
RP506Lxx1K/L/M
MODE = “L”PWM/VFM Auto Switching Control
3.350
3.350
3.340
3.340
3.330
3.330
3.320
3.310
3.300
3.290
3.280
Vin=4.3V
3.270
Vin=5.0V
3.260
VOUT = 3.3 V
MODE = “H” Forced PWM Control
Output Voltage V OUT (V)
Output Voltage V OUT (V)
200
VOUT = 1.8 V
MODE = “L”PWM/VFM Auto Switching Control
3.320
3.310
3.300
3.290
3.280
Vin=4.3V
3.270
Vin=5.0V
3.260
0.01
34
VOUT = 1.2 V
0.1
1
10
100
Output Current IOUT(mA)
1000
10000
0
200
400
600 800 1000 1200 1400 1600 1800 2000
Output Current IOUT(mA)
RP506L
No. EC-296-210909
2) Output Voltage vs. Input Voltage
RP506Lxx1K/L/M VOUT = 0.6 V
RP506Lxx1K/L/M
MODE = “H” Forced PWM Control
0.620
0.820
0.615
0.815
Output Voltage V OUT (V)
Output Voltage V OUT (V)
MODE = “H” Forced PWM Control
0.610
0.605
0.600
0.595
Iout=1mA
0.590
Iout=1000mA
0.585
0.810
0.805
0.800
0.795
Iout=1mA
0.790
Iout=1000mA
0.785
Iout=2000mA
Iout=2000mA
0.780
0.580
2.5
3
3.5
4
4.5
5
5.5
2.5
3
3.5
Input Voltage VIN(V)
RP506L
VOUT = 1.2 V
RP506L
1.215
1.815
Output Voltage V OUT (V)
1.820
1.210
1.205
1.200
Iout=1mA
1.190
Iout=1000mA
1.185
4.5
5
5.5
VOUT = 1.8 V
MODE = “H” Forced PWM Control
1.220
1.195
4
Input Voltage VIN(V)
MODE = “H” Forced PWM Control
Output Voltage V OUT (V)
VOUT = 0.8 V
1.810
1.805
1.800
1.795
Iout=1mA
1.790
Iout=1000mA
1.785
Iout=2000mA
1.180
Iout=2000mA
1.780
2.5
3
3.5
4
4.5
5
5.5
Input Voltage VIN(V)
RP506L
2.5
3
3.5
4
4.5
5
5.5
Input Voltage VIN(V)
VOUT = 3.3 V
MODE = “H” Forced PWM Control
3.350
Iout=1mA
Output Voltage V OUT (V)
3.340
3.330
Iout=1000mA
3.320
Iout=2000mA
3.310
3.300
3.290
3.280
3.270
3.260
3.8
4.3
4.8
5.3
Input Voltage VIN(V)
35
RP506L
No. EC-296-210909
3) Output Voltage vs. Ambient Temperature
RP506L181G/H/K/L
4) Feedback Voltage vs. Ambient Temperature
VOUT = 1.8 V
RP506L001N/M
5) Efficiency vs. Output Current
RP506Lxx1G/H/N
VOUT = 1.2 V
RP506Lxx1G/H/N
VOUT = 1.5 V
VIN=5V,
VMODE=0V
VIN=3.3V,
VMODE=0V
VIN=VMODE=3.3V
VIN=VMODE=5.0V
VOUT = 1.8 V
Efficiency (%)
100
VIN=5.0V, VMODE=0V
90
80
VIN=3.6V,
70
VMODE=0V
60
50
40
VIN=VMODE=5.0V
30
20
VIN=VMODE=3.6V
10
0
0.01
0.1
1
10
100
1000 10000
Output Current IOUT(mA)
36
RP506Lxx1G/H/N
VOUT = 3.3 V
100
90
80
VIN=4.3V,
VMODE=0V
70
Efficiency (%)
RP506Lxx1G/H/N
VIN=5.0V,
VMODE=0V
60
50
VIN=VMODE=5.0V
40
30
20
VIN=VMODE=4.3V
10
0
0.01
0.1
1
10
100
Output Current IOUT(mA)
1000
10000
RP506L
No. EC-296-210909
RP506Lxx1K/L/M
100
RP506Lxx1K/L/M VOUT = 0.8 V
100
VIN=4.5V, VMODE=0V
90
80
VOUT = 0.6 V
VIN=3.6V, VMODE=0V
VIN=3.6V, VMODE=0V
80
70
60
50
40
VIN=VMODE=4.5V
30
20
Efficiency (%)
70
Efficiency (%)
VIN=5.0V, VMODE=0V
90
60
50
40
VIN=VMODE=5.0V
30
20
VIN=VMODE=3.6V
10
VIN=VMODE=3.6V
10
0
0
0.01
0.1
1
10
100
1000
10000
0.1
0.01
Output Current IOUT(mA)
RP506Lxx1K/L/M VOUT = 1.2 V
100
100
VIN=5.0V, VMODE=0V
VIN=3.6V, VMODE=0V
80
80
70
70
60
50
VIN=VMODE=5.0V
30
20
1000
10000
VOUT = 1.8 V
VIN=3.6V,
VMODE=0V
60
50
VIN=VMODE=5.0V
40
30
20
VIN=VMODE=3.6V
10
100
VIN=5.0V, VMODE=0V
90
40
10
RP506Lxx1K/L/M
Efficiency (%)
Efficiency (%)
90
1
Output Current IOUT(mA)
VIN=VMODE=3.6V
10
0
0
0.01
0.1
1
10
100
1000
10000
Output Current IOUT(mA)
0.01
0.1
1
10
100
1000
10000
Output Current IOUT(mA)
RP506Lxx1K/L/M VOUT = 3.3 V
100
90
80
VIN=4.3V,
VMODE=0V
Efficiency (%)
70
VIN=5.0V,
VMODE=0V
60
50
VIN=VMODE=5.0V
40
30
20
VIN=VMODE=4.3V
10
0
0.01
0.1
1
10
100
1000
10000
Output Current IOUT(mA)
37
RP506L
No. EC-296-210909
6) Supply Current vs. Ambient Temperature
RP506L
7) Supply Current vs. Input Voltage
VOUT = 1.8 V (VIN = 5.5 V)
RP506L
MODE = “L”PWM/VFM Auto Switching Control
VOUT = 1.8 V
MODE = “L”PWM/VFM Auto Switching Control
8) Output Voltage Waveform
RP506Lxx1G/H/N
VOUT = 0.8 V (VIN = 3.6 V)
MODE = “L”PWM/VFM Auto Switching Control
IOUT =10mA
500
300
200
100
0.02
0
0.01
-100
0.00
-0.01
Inductor Current IL (mA)
Output Voltage
-0.02
IL
-0.03
-50 -40 -30 -20 -10
0
10
Time t (μs)
RP506Lxx1G/H/N
20
30
40
50
VOUT = 1.2 V (VIN = 3.6 V)
RP506Lxx1G/H/N
MODE = “L”PWM/VFM Auto Switching Control
0.00
Output Voltage
100
0
0.02
-100
0.01
0.00
-0.01
Output Voltage
-0.02
IL
-50 -40 -30 -20 -10
0
10
Time t (μs)
Output Ripple Voltage(AC)
Vripple (V)
200
-100
0.01
-0.03
38
300
300
0
0.02
IL
-0.03
20
30
40
50
400
400
100
-0.02
IOUT =10mA
500
200
-0.01
MODE = “H” Forced PWM Control
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
IOUT =10mA
VOUT = 1.2 V (VIN = 3.6 V)
-5
-4
-3
-2
-1
0
1
Time t (μs)
2
3
4
5
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
400
RP506L
No. EC-296-210909
VOUT = 1.8 V (VIN = 3.6 V)
RP506Lxx1G/H/N
MODE = “H” Forced PWM Control
IOUT =10mA
500
200
100
0.02
0
0.01
-100
0.00
-0.01
Output Ripple Voltage(AC)
Vripple (V)
300
300
200
Output Voltage
-50 -40 -30 -20 -10
0
10
Time t (μs)
RP506Lxx1G/H/N
20
30
40
RP506Lxx1G/H/N
Output Ripple Voltage(AC)
Vripple (V)
0.00
-0.01
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
-1
0
1
Time t (μs)
Output Voltage
40
5
400
0
-100
0.02
0.01
0.00
-0.01
50
Output Voltage
IL
-5
VOUT = 0.6 V (VIN = 3.6 V)
-4
-3
-2
RP506Lxx1K/L/M
-1
0
1
Time t (μs)
2
3
4
5
VOUT = 0.6 V (VIN = 3.6 V)
MODE = “H” Forced PWM Control
IOUT =10mA
800
400
300
200
200
0
0.02
0.00
-0.02
Output Voltage
Output Ripple Voltage(AC)
Vripple (V)
600
400
Inductor Current IL (mA)
IOUT =10mA
4
100
-0.03
30
3
VOUT = 1.8 V (VIN = 5.0 V)
-0.02
IL
20
2
MODE = “H” Forced PWM Control
MODE = “L”PWM/VFM Auto Switching Control
Output Ripple Voltage(AC)
Vripple (V)
-2
200
-100
100
0
0.02
-100
0.01
0.00
-0.01
Output Voltage
-0.02
IL
-50
50
Time t (μs)
-3
300
0.01
-150
-4
300
0
-250
IL
400
100
-0.06
Output Voltage
IOUT =10mA
0.02
-0.04
-0.01
500
200
RP506Lxx1K/L/M
0.00
-5
VOUT = 3.3 V (VIN = 5.0 V)
-50 -40 -30 -20 -10
0
10
Time t (μs)
-100
0.01
50
IOUT =10mA
-0.03
0.02
-0.03
MODE = “L”PWM/VFM Auto Switching Control
-0.02
0
-0.02
IL
-0.03
100
Inductor Current IL (mA)
-0.02
400
400
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
IOUT =10mA
Inductor Current IL (mA)
MODE = “L”PWM/VFM Auto Switching Control
VOUT = 1.8 V (VIN = 3.6 V)
Inductor Current IL (mA)
RP506Lxx1G/H/N
IL
-0.03
150
250
-5
-4
-3
-2
-1
0
1
Time t (μs)
2
3
4
5
39
RP506L
No. EC-296-210909
RP506Lxx1K/L/M VOUT = 0.8 V (VIN = 3.6 V)
MODE = “H” Forced PWM Control
IOUT =10mA
800
400
200
0
0.02
0.00
-0.02
Output Ripple Voltage(AC)
Vripple (V)
300
200
Output Voltage
-0.04
-250 -200 -150 -100 -50
0
50
Time t (μs)
RP506Lxx1K/L/M
100
0
0.02
-100
0.01
0.00
-0.01
Output Voltage
-0.02
IL
-0.06
IL
-0.03
100 150 200 250
-5
VOUT = 1.2 V (VIN = 3.6 V)
Output Ripple Voltage(AC)
Vripple (V)
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
MODE = “H” Forced PWM Control
0
-100
0.02
0.01
0.00
-0.01
100 150 200 250
Output Voltage
IL
-5
-4
-3
-2
-1
0
1
Time t (μs)
2
3
4
5
RP506Lxx1K/L/M VOUT = 1.8 V (VIN = 3.6 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “H” Forced PWM Control
IOUT =10mA
800
400
300
400
200
200
0
0.02
0.00
-0.02
Output Voltage
IL
Output Ripple Voltage(AC)
Vripple (V)
600
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
400
100
-0.03
RP506Lxx1K/L/M VOUT = 1.8 V (VIN = 3.6 V)
40
5
VOUT = 1.2 V (VIN = 3.6 V)
-0.02
IL
-250 -200 -150 -100 -50
0
50
Time t (μs)
4
200
Output Voltage
-0.06
3
IOUT =10mA
-0.02
IOUT =10mA
2
300
0.00
-0.04
-1
0
1
Time t (μs)
400
0.02
-250 -200 -150 -100 -50
0
50
Time t (μs)
-2
600
0
-0.06
-3
800
200
-0.04
-4
RP506Lxx1K/L/M
MODE = “L”PWM/VFM Auto Switching Control
IOUT =10mA
400
600
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
IOUT =10mA
100
0
0.02
-100
0.01
0.00
-0.01
Output Voltage
-0.02
IL
-0.03
100 150 200 250
Inductor Current IL (mA)
MODE = “L”PWM/VFM Auto Switching Control
Inductor Current IL (mA)
VOUT = 0.8 V (VIN = 3.6 V)
-5
-4
-3
-2
-1
0
1
Time t (μs)
2
3
4
5
Inductor Current IL (mA)
RP506Lxx1K/L/M
RP506L
No. EC-296-210909
RP506Lxx1K/L/M VOUT = 3.3 V (VIN = 5.0 V)
RP506Lxx1K/L/M VOUT = 3.3 V (VIN = 5.0 V)
IOUT =10mA
200
0.02
0.01
0.00
-0.01
Output Voltage
IL
-250 -200 -150 -100 -50
0
50
Time t (μs)
Output Ripple Voltage(AC)
Vripple (V)
300
400
0
-0.03
400
600
200
-0.02
MODE = “H” Forced PWM Control
800
Inductor Current IL (mA)
Output Ripple Voltage(AC)
Vripple (V)
IOUT =10mA
100
0
-100
0.02
0.01
0.00
-0.01
Output Voltage
-0.02
IL
-0.03
100 150 200 250
Inductor Current IL (mA)
MODE = “L”PWM/VFM Auto Switching Control
-5
-4
-3
-2
-1
0
1
Time t (μs)
2
3
4
5
9) Oscillator Frequency vs. Ambient Temperature
RP506Lxx1G/H/N
RP506Lxx1K/L/M
10) Oscillator Frequency vs. Input Voltage
RP506Lxx1G/H/N
RP506Lxx1K/L/M
41
RP506L
No. EC-296-210909
11) Soft-start Time vs. Ambient Temperature
12) UVLO Detector Threshold/ Released Voltage vs. Ambient Temperature
UVLO Detector Threshold
UVLO Released Voltage
13) CE Input Voltage vs. Ambient Temperature
CE“H” Input Voltage (VIN = 5.5 V)
42
CE“L” Input Voltage (VIN = 2.5 V)
RP506L
No. EC-296-210909
14) Lx Limit Current vs. Ambient Temperature
15) Nch Tr. On Resistance vs. Ambient Temperature
16) Pch Tr. On Resistance vs. Ambient Temperature
16) PG Detector Threshold vs. Ambient Temperature
Overvoltage Detection VOVD
Undervoltage Detection VUVD
43
RP506L
No. EC-296-210909
18) Soft-start Waveform
RP506L VOUT = 1.8 V, TSS = Open
RP506L VOUT = 1.8 V, TSS = 0.1 μF
6
6
CE Input Voltage
CE Input Voltage
3
2
Output Voltage
1
CE Input Voltage (V)
0
4
Output Voltage (V)
PG Voltage (V)
CE Input Voltage (V)
PG Voltage
2
PG Voltage
2
4
0
3
2
Output Voltage
1
0
-50
0
0
-1
100 150 200 250 300 350 400 450
Time t (us)
50
Output Voltage (V)
PG Voltage (V)
4
4
-1
-5
0
5
10
15 20 25
Time t (ms)
30
35
40
45
19) Load Transient Response
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 0.8 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
Output Voltage
0.75
0
0.90
0.85
0.80
0.75
0.70
Output Voltage
0.70
40
60
80
100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 0.8 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
3000
3000
Output Current
2000mA-->1000mA
0.85
0.80
Output Voltage
0.75
0.70
Output Voltage V OUT (V)
0
0.90
(mA)
1000
OUT
0.95
Output Current I
Output Voltage V OUT (V)
2000
Output Current
1000mA-->2000mA
2000
0.95
1000
0.90
0
0.85
0.80
Output Voltage
0.75
0.70
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
(mA)
20
OUT
0
Output Current I
-20
44
OUT
(mA)
500
Output Current I
0.80
Output Voltage V OUT (V)
0.85
OUT
0
0.90
Output Current I
Output Voltage V OUT (V)
500
Output Current
1000mA-->200mA
(mA)
1000
1000
Output Current
200mA-->1000mA
RP506L
No. EC-296-210909
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
1.20
1.10
0
1.30
1.20
1.10
Output Voltage
1.00
Output Voltage
1.00
40
60
80 100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80 100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
1.30
1.20
(mA)
Output Voltage V OUT (V)
0
OUT
500
1000
Output Current I
Output Voltage
1.10
Output Current
1000mA-->200mA
500
0
1.30
1.20
Output Voltage
1.10
1.00
1.00
20
40
-20
60 80 100 120 140 160 180
Time t (μs)
0
20
40
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V)
3000
3000
Output Current
2000mA-->1000mA
1.20
Output Voltage
1.10
1.00
Output Voltage V OUT (V)
1.30
OUT
0
Output Current I
1000
(mA)
2000
Output Current
1000mA-->2000mA
2000
1000
0
1.30
1.20
Output Voltage
1.10
(mA)
0
OUT
-20
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
(mA)
20
OUT
0
Output Current I
-20
Output Voltage V OUT (V)
(mA)
500
OUT
(mA)
Output Current
1000mA-->200mA
Output Current I
1.30
Output Voltage V OUT (V)
0
OUT
500
1000
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
1.00
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
45
RP506L
No. EC-296-210909
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
1.90
1.80
1.70
1.60
0
2.00
1.90
1.80
Output Voltage
1.60
40
60
80 100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80 100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
1.90
1.80
(mA)
Output Voltage V OUT (V)
0
OUT
500
Output Current I
Output Voltage
1.70
1000
Output Current
1000mA-->200mA
500
0
1.90
1.80
Output Voltage
1.70
1.60
1.60
20
40
-20
60 80 100 120 140 160 180
Time t (μs)
0
20
40
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V)
3000
3000
Output Current
2000mA-->1000mA
1.90
1.80
Output Voltage
1.70
1.60
(mA)
Output Voltage V OUT (V)
0
OUT
1000
Output Current I
Output Voltage V OUT (V)
2000
Output Current
1000mA-->2000mA
2000
1000
0
1.90
1.80
Output Voltage
1.70
1.60
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
(mA)
0
OUT
-20
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
(mA)
20
OUT
0
Output Current I
-20
46
OUT
500
1.70
Output Voltage
(mA)
1000
Output Current
1000mA-->200mA
Output Current I
0
2.00
Output Voltage V OUT (V)
(mA)
OUT
500
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
RP506L
No. EC-296-210909
RP506Lxx1G/H/N (VIN = 5.0 V, VOUT = 3.3 V)
RP506Lxx1G/H/N (VIN = 5.0 V, VOUT = 3.3 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
3.30
3.20
0
3.50
3.40
3.30
3.20
Output Voltage
3.10
Output Voltage
3.10
40
60
80 100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80 100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 5.0 V, VOUT = 3.3 V)
RP506Lxx1G/H/N (VIN = 5.0 V, VOUT = 3.3 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
3.40
3.30
3.20
Output Voltage V OUT (V)
0
(mA)
500
OUT
Output Current
200mA-->1000mA
Output Current I
1000
Output Current
1000mA-->200mA
500
0
3.40
3.30
3.20
Output Voltage
Output Voltage
3.10
3.10
20
40
60
80
-20
100 120 140 160 180
0
20
40
Time t (μs)
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1G/H/N (VIN = 5.0 V, VOUT = 3.3 V)
RP506Lxx1G/H/N (VIN = 5.0 V, VOUT = 3.3 V)
3000
3000
Output Current
2000mA-->1000mA
3.30
Output Voltage
3.20
3.10
Output Voltage V OUT (V)
3.40
OUT
0
Output Current I
1000
(mA)
2000
2000
1000
0
3.40
3.30
Output Voltage
3.20
(mA)
0
OUT
-20
Output Current I
Output Voltage V OUT (V)
1000
(mA)
20
OUT
0
Output Current I
-20
Output Voltage V OUT (V)
(mA)
500
OUT
(mA)
1000
Output Current
1000mA-->200mA
Output Current I
3.40
Output Voltage V OUT (V)
0
3.50
OUT
500
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
3.10
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
47
RP506L
No. EC-296-210909
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.6 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.6 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
0.65
0.60
0.70
0
0.65
0.60
0.55
0.50
Output Voltage
0.50
-20
0
20
40
60 80 100 120 140 160 180
Time t (μs)
-20
0
20
40
60 80 100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.6 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.6 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
0.65
0.60
0.55
500
0.70
0
0.65
0.60
Output Voltage
0.55
Output Voltage
0.50
0.50
40
-20
60 80 100 120 140 160 180
Time t (μs)
0
20
40
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.6 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.6 V)
3000
3000
Output Current
2000mA-->1000mA
0.70
0
0.65
0.60
Output Voltage
0.55
0.50
Output Voltage V OUT (V)
1000
OUT
0.75
Output Current I
Output Current
1000mA-->2000mA
(mA)
2000
2000
0.75
1000
0.70
0
0.65
0.60
Output Voltage
0.55
0.50
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
(mA)
20
OUT
0
Output Current I
-20
Output Voltage V OUT (V)
OUT
0.75
(mA)
1000
Output Current
1000mA-->200mA
Output Current I
0
0.70
Output Voltage V OUT (V)
500
(mA)
0.75
OUT
Output Current
200mA-->1000mA
Output Current I
Output Voltage V OUT (V)
1000
48
(mA)
500
OUT
(mA)
Output Voltage
0.55
1000
Output Current
1000mA-->200mA
Output Current I
0
Output Voltage V OUT (V)
0.70
500
OUT
Output Current
200mA-->1000mA
Output Current I
Output Voltage V OUT (V)
1000
RP506L
No. EC-296-210909
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
0.85
0.80
Output Voltage
0.75
0
0.90
0.85
0.80
0.75
0.70
Output Voltage
0.70
40
60
80
100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
0.85
0.80
Output Voltage
0.75
Output Voltage V OUT (V)
0
0.90
(mA)
500
OUT
0.95
Output Current I
1000
Output Current
1000mA-->200mA
0.95
500
0.90
0
0.85
0.80
Output Voltage
0.75
0.70
0.70
20
40
-20
60 80 100 120 140 160 180
Time t (μs)
0
20
40
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
3000
3000
Output Current
2000mA-->1000mA
0.85
0.80
Output Voltage
0.75
0.70
Output Voltage V OUT (V)
0
0.90
OUT
1000
Output Current I
Output Current
1000mA-->2000mA
0.95
(mA)
2000
2000
0.95
1000
0.90
0
0.85
0.80
(mA)
0
OUT
-20
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
(mA)
20
OUT
0
Output Current I
-20
Output Voltage V OUT (V)
(mA)
500
OUT
0
0.90
1000
Output Current
1000mA-->200mA
Output Current I
OUT
500
Output Voltage V OUT (V)
(mA)
Output Current
200mA-->1000mA
Output Current I
Output Voltage V OUT (V)
1000
Output Voltage
0.75
0.70
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
49
RP506L
No. EC-296-210909
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
1.30
1.20
Output Voltage
1.10
0
1.30
1.20
Output Voltage
1.10
1.00
1.00
40
60
80 100 120 140 160 180
-20
0
20
40
60
Time t (μs)
80 100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
1.30
1.20
Output Voltage V OUT (V)
0
(mA)
500
OUT
Output Current
200mA-->1000mA
1000
Output Current I
Output Voltage
1.10
Output Current
1000mA-->200mA
500
0
1.30
1.20
Output Voltage
1.10
1.00
1.00
20
40
-20
60 80 100 120 140 160 180
Time t (μs)
0
20
40
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V)
3000
3000
Output Current
2000mA-->1000mA
1.30
1.20
Output Voltage
1.10
1.00
(mA)
Output Voltage V OUT (V)
0
OUT
1000
Output Current I
Output Voltage V OUT (V)
2000
Output Current
1000mA-->2000mA
2000
1000
0
1.30
1.20
Output Voltage
1.10
1.00
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
(mA)
0
OUT
-20
Output Current I
Output Voltage V OUT (V)
1000
(mA)
20
OUT
0
Output Current I
-20
50
(mA)
500
OUT
0
1000
Output Current
1000mA-->200mA
Output Current I
OUT
500
Output Voltage V OUT (V)
(mA)
Output Current
200mA-->1000mA
Output Current I
Output Voltage V OUT (V)
1000
RP506L
No. EC-296-210909
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
1.80
1.70
0
2.00
1.90
1.80
1.70
Output Voltage
1.60
Output Voltage
1.60
40
60
80 100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80 100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
1.90
1.80
(mA)
Output Voltage V OUT (V)
0
OUT
500
Output Current I
Output Voltage
1.70
1000
Output Current
1000mA-->200mA
500
0
1.90
1.80
Output Voltage
1.70
1.60
1.60
20
40
60
80
-20
100 120 140 160 180
0
20
40
Time t (μs)
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V)
3000
3000
Output Current
2000mA-->1000mA
1.90
1.80
Output Voltage
1.70
1.60
Output Voltage V OUT (V)
0
OUT
1000
Output Current I
Output Current
1000mA-->2000mA
(mA)
2000
2000
1000
0
1.90
1.80
Output Voltage
1.70
(mA)
0
OUT
-20
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
(mA)
20
OUT
0
Output Current I
-20
Output Voltage V OUT (V)
(mA)
500
OUT
(mA)
1000
Output Current
1000mA-->200mA
Output Current I
1.90
Output Voltage V OUT (V)
0
2.00
OUT
500
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
1.60
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
51
RP506L
No. EC-296-210909
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
MODE = “L”PWM/VFM Auto Switching Control
MODE = “L”PWM/VFM Auto Switching Control
1500
1500
3.30
Output Voltage
3.20
0
3.50
3.40
3.30
Output Voltage
3.20
3.10
3.10
-20
0
20
40
60
80 100 120 140 160 180
-20
0
20
40
Time t (μs)
60
80 100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
MODE = “H” Forced PWM Control
MODE = “H” Forced PWM Control
1500
1500
3.30
Output Voltage
3.20
0
3.40
3.30
Output Voltage
3.20
3.10
3.10
40
60
80
-20
100 120 140 160 180
0
20
40
Time t (μs)
60
80
100 120 140 160 180
Time t (μs)
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
3000
3000
Output Current
2000mA-->1000mA
3.30
Output Voltage
3.20
3.10
Output Voltage V OUT (V)
3.40
OUT
0
Output Current I
1000
(mA)
2000
Output Current
1000mA-->2000mA
2000
1000
0
3.40
3.30
Output Voltage
3.20
3.10
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
-20
0
20
40
60
80
100 120 140 160 180
Time t (us)
(mA)
20
OUT
0
Output Current I
-20
Output Voltage V OUT (V)
OUT
500
(mA)
1000
Output Current
1000mA-->200mA
Output Current I
3.40
Output Voltage V OUT (V)
0
(mA)
500
OUT
Output Current
200mA-->1000mA
Output Current I
Output Voltage V OUT (V)
1000
52
(mA)
500
OUT
(mA)
1000
Output Current
1000mA-->200mA
Output Current I
3.40
Output Voltage V OUT (V)
0
3.50
OUT
500
Output Current I
Output Voltage V OUT (V)
1000
Output Current
200mA-->1000mA
RP506L
No. EC-296-210909
20) Auto Switching Control Waveform
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V, IOUT = 1 mA)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V, IOUT = 1 mA)
4
4
0
1.30
Output Voltage
1.25
1.20
0
1.30
Output Voltage
1.25
1.20
1.15
1.15
100 200 300 400 500 600 700 800 900
-100
0
100 200 300 400 500 600 700 800 900
Time t (us)
Time t (us)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V, IOUT = 1mA)
RP506Lxx1G/H/N (VIN = 3.6 V, VOUT =1.8 V, IOUT = 1 mA)
MODE = “H” MODE = “L”
4
4
2
Mode Input Voltage
0
2.00
1.95
1.90
Output Voltage
1.85
Output Voltage V OUT (V)
6
MODE (V)
6
Mode Input Voltage V
Mode Input Voltage
0
2.00
1.95
1.90
1.85
Output Voltage
1.80
1.80
1.75
1.75
100 200 300 400 500 600 700 800 900
-100
0
100 200 300 400 500 600 700 800 900
Time t (us)
Time t (us)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V, IOUT = 1mA)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V, IOUT = 1 mA)
MODE = “L” MODE = “H”
6
4
4
1.30
Output Voltage
1.25
1.20
Output Voltage V OUT (V)
0
MODE
2
(V)
6
Mode Input Voltage V
Mode Input Voltage
MODE = “H” MODE = “L”
Mode Input Voltage
2
0
1.30
Output Voltage
1.25
MODE
0
V)
-100
Output Voltage V OUT (V)
2
Mode Input Voltage V
Output Voltage V OUT (V)
MODE = “L” MODE = “H”
MODE (V)
0
Mode Input Voltage V
-100
1.20
1.15
-200
2
Mode Input Voltage
Mode Input Voltage V
2
Mode Input Voltage
Output Voltage V OUT (V)
6
MODE (V)
6
MODE (V)
MODE = “H” MODE = “L”
Mode Input Voltage V
Output Voltage V OUT (V)
MODE = “L” MODE = “H”
1.15
0
200
400 600
800 1000 1200 1400 1600 1800
Time t (us)
-200
0
200
400
600
800 1000 1200 1400 1600 1800
Time t (us)
53
RP506L
No. EC-296-210909
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V, IOUT = 1 mA)
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.8 V, IOUT = 1 mA)
0
2.00
1.95
1.90
Output Voltage
1.85
1.80
2
0
2.00
1.95
1.90
Output Voltage
1.85
1.75
0
200
400 600 800 1000 1200 1400 1600 1800
Time t (us)
54
Mode Input Voltage
1.80
1.75
-200
Output Voltage V OUT (V)
2
-200
0
200
400 600
800 1000 1200 1400 1600 1800
Time t (us)
(V)
4
MODE
4
Mode Input Voltage V
6
(V)
6
MODE
Mode Input Voltage
MODE = “H” MODE = “L”
Mode Input Voltage V
Output Voltage V OUT (V)
MODE = “L” MODE = “H”
POWER DISSIPATION
DFN3030-12
Ver. A
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.
Measurement Conditions
Item
Measurement Conditions
Environment
Mounting on Board (Wind Velocity = 0 m/s)
Board Material
Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions
76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio
Outer Layer (First Layer): Less than 95% of 50 mm Square
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes
φ 0.3 mm × 32 pcs
Measurement Result
(Ta = 25°C, Tjmax = 150°C)
Item
Measurement Result
Power Dissipation
4300 mW
Thermal Resistance (θja)
θja = 29°C/W
Thermal Characterization Parameter (ψjt)
ψjt = 3.1°C/W
θja: Junction-to-Ambient Thermal Resistance
ψjt: Junction-to-Top Thermal Characterization Parameter
5000
4500
4300
Power Dissipation (mW)
4000
3500
3000
2500
2000
1500
1000
500
0
0
25
50
75
100105 125
150
Ambient Temperature (°C)
Power Dissipation vs. Ambient Temperature
Measurement Board Pattern
i
PACKAGE DIMENSIONS
DFN3030-12
Ver. A
3.0
A
B
7
12
X4
0.40±0.05
※
0.1
1.7±0.1
3.0
2.5±0.1
C 0.35
0.203 typ
0.8 max.
INDEX
S
6
1
0.5
0.25±0.05
0.05 M AB
Bottom View
0.05 S
DFN3030-12 Package Dimensions (Unit: mm)
*
∗ The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the
ground plane on the board, or otherwise be left floating.
i
1. The products and the product specifications described in this document are subject to change or discontinuation of
production without notice for reasons such as improvement. Therefore, before deciding to use the products, please
refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written
consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise
taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits
for the products. The release of such information is not to be construed as a warranty of or a grant of license under
Ricoh's or any third party's intellectual property rights or any other rights.
5. The products in this document are designed for automotive applications. However, when using the products for
automotive applications, please make sure to contact Ricoh sales representative in advance due to confirming the
quality level.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products
are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from
such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy
feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or
damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and
characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and
characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used.
In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before
attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or
the technical information.
Halogen Free
Ricoh is committed to reducing the environmental loading materials in electrical devices
with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since
April 1, 2012.
Official website
https://www.n-redc.co.jp/en/
Contact us
https://www.n-redc.co.jp/en/buy/