0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RV5VH201-E1

RV5VH201-E1

  • 厂商:

    RICOH(理光)

  • 封装:

  • 描述:

    RV5VH201-E1 - DC/DC CONVERTER CONTROLLER - RICOH electronics devices division

  • 数据手册
  • 价格&库存
RV5VH201-E1 数据手册
DC/DC CONVERTER CONTROLLER RV5VH SERIES APPLICATION MANUAL NO. EA-049-0006 DC/DC CONVERTER CONTROLLER RV5VH SERIES OUTLINE Each of the RV5VH series is dual output CMOS DC/DC converter ICs integrating Step-up and inverting DC/DC converters. The RV5VH3×× series ICs consists of an oscillator, two VFM control circuits, control transistors(EXT switches), a phase shift circuit, a voltage reference unit, an error amplifier, and voltage sensing resistors. The package for the RV5VH series is 8pin SSOP(0.65mm pitch), and it is suitable for power supply systems with positive and negative output, such as pager, PDA, which need power supplies for LCD. RV5VH1×× and RV5VH2×× series are able to provide two DC/DC converters, one is a step-up DC/DC converter with internally fixed output and the other is an inverting DC/DC converter with adjustable output by external resistors. A voltage detector with sensing pin is also included. RV5VH3×× series are able to provide two DC/DC converters, both of them require external drivers, DC/DC1, and inverting one, DC/DC2, can be adjustable by resistors. FEATURES • Dual DC/DC converter system .................................DC/DC1 : step-up DC/DC2 : inverting(negative voltage) ..........................................................Nch. Open Drain Output • Voltage Detector • Low voltage operation available RV5VH1××,RV5VH2×× ..........................................oscillator start-up from 0.8V RV5VH3××.................................................................oscillator start-up from 1.8V • High Efficiency .............................................................TYP. 80% • Low Supply Current • High accuracy feedback sensing ...............................TYP. ±2.5% • Sleep Mode RV5VH1××, RV5VH2××..........................................DC/DC 2 RV5VH3××.................................................................DC/DC1, 2 • Available to adjust temperature drift .........................DC/DC2 : with external resistor (RV5VH2××, RV5VH3××) coefficient of output voltage • Small Package ..............................................................8pin SSOP(0.65mm pitch) APPLICATIONS • Power source for telecommunication systems • Power source for portable data processing systems, e.g. PDA, Electronic Data Banks • Power source for Audio-Visual systems, e.g. CD players, Video cameras • Power source for Notebook PCs, Word processing systems • Gadgets which need two power supplies, e.g. CPU and LCD 1 DC/DC CONVERTER CONTROLLER (BOOST / INVERTING) RV5VH1×× / RV5VH2×× BLOCK DIAGRAM • RV5VH1×× CSW 1 – + 8 DOUT VSEN 2 Vref Error Amp.2 Error Amp.1 – + VLX lim. – + 7 FB VOUT1 3 VFM2 6 EXT2 LX1 4 VFM1 p_shift 5 GND OSC • RV5VH2×× CSW 1 – + 8 DOUT VSEN 2 Vref Error Amp.2 Error Amp.1 – + – + 7 FB VOUT1 3 VFM2 6 EXT2 EXT1 4 VFM1 p_shift 5 GND OSC 2 RV5VH1××/RV5VH2×× PIN CONFIGURATION • 8 pin SSOP (0.65mm pitch) 1 2 3 4 8 7 6 5 PIN DESCRIPTION • RV5VH1×× Pin No. Symbol Description 1 2 3 4 5 6 7 8 CSW VSEN VOUT1 LX1 GND EXT2 FB DOUT Control switch for DC/DC2 Sensing Pin for Voltage Detector Output for DC/DC1, Power supply for the device Output for DC/DC1, switching (Nch Open-Drain) Ground External Transistor drive pin for DC/DC2 (CMOS output) Input for DC/DC2 Error Amplifier Output for Voltage detector • RV5VH2×× Pin No. Symbol Description 1 2 3 4 5 6 7 8 CSW VSEN VOUT1 EXT1 GND EXT2 FB DOUT Contol switch for DC/DC2 Sensing Pin for Voltage Detector Output for DC/DC1, Power supply for the device External Transistor drive pin for DC/DC1 (CMOS output) Ground External Transistor drive pin for DC/DC2 (CMOS output) Input for DC/DC2 Error Amplifier Output for Voltage Detector 3 RV5VH1××/RV5VH2×× ABSOLUTE MAXIMUM RATINGS • RV5VH1×× Symbol Item Ratings Unit VOUT1 VLX1 VSEN DOUT VCSW VEXT2 VFB ILX1 IEXT2 PD Topt Tstg Tsolder VOUT1 Pin Voltage LX1 Pin Voltage VSEN Pin Voltage DOUT Pin Voltage CSW Pin Voltage EXT2 Pin Voltage FB Pin Voltage LX1 Output Current EXT2 Output Current Power Dissipation Operating Temperature Storage Temperature Lead Temperature (Soldering) 12 12 12 12 –0.3 to VOUT1 +0.3 –0.3 to VOUT1 +0.3 –0.3 to VOUT1 +0.3 400 ±50 300 –40 to +85 –55 to +125 260˚C 10sec V V V V V V V mA mA mW ˚C ˚C 4 RV5VH1××/RV5VH2×× • RV5VH2×× Symbol Item Ratings Unit VOUT1 VSEN DOUT VCSW VEXT1, 2 VFB IEXT1, 2 PD Topt Tstg Tsolder VOUT1 Pin Voltage VSEN Pin Voltage DOUT Pin Voltage CSW Pin Voltage EXT1, 2 Pin Voltage FB Pin Voltage EXT1, 2 Output Current Power Dissipation Operating Temperature Storage Temperature Lead Temperature (Soldering) 12 12 12 –0.3 to VOUT1 +0.3 –0.3 to VOUT1 +0.3 –0.3 to VOUT1 +0.3 ±50 300 –40 to +85 –55 to +125 260˚C 10sec V V V V V V mA mW ˚C ˚C ABSOLUTE MAXIMUM RATINGS Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits. 5 RV5VH1××/RV5VH2×× ELECTRICAL CHARACTERISTICS • RV5VH101 DC/DC Converter 1 Symbol Item Conditions MIN. TYP. VOUT1=3.0V, Topt=25˚C MAX. Unit VOUT1 VINmax Vstart Vhold ISS1 ILX ILXleak fosc Maxdty η VLXlim ∆VOUT1 ∆Topt Step-up Output Voltage Maximum Input Voltage Oscillator Start-up Voltage Hold-on Input Voltage Supply Current1 *1 LX Switching Current LX Leakage Current Maximum Oscillator Frequency Oscillator Duty Cycle Efficiency Voltage Limit for LX Switch Output Voltage Temp. Coefficient for LX pin –40˚C≤Topt≤85˚C ON (VLX=“L”) No Load IOUT=1mA, VIN : 2→0V No Load, CSW=“L” VLX=0.4V VLX=6.0V, VIN=3.5V 2.925 3.000 3.075 10 V V V V 0.7 0.7 10 100 0.03 110 50 130 65 80 0.4 ±100 0.8 µA mA 1 150 80 µA kHz % % 0.8 V ppm/˚C * ) VIN=1.2V, IOUT=10mA, Topt=25˚C, unless otherwise specified. (See Typical Application) *1 ) This value only shows the supply current of DC/DC1, not include the supply current of Voltage Detector and external resistors. 6 RV5VH1××/RV5VH2×× DC/DC Converter 2 Symbol Item Conditions MIN. TYP. VOUT1=3.0V, Topt=25˚C MAX. Unit VSET VFB VIN VOPTmin ISS2 Istandby IEXT2H IEXT2L fosc Maxdty VCSWH VCSWL ICSWleak ∆VFB ∆Topt Set Output Voltage Feed Back Voltage Maximum Input Voltage Minimum Operating Voltage Supply Current2 Standby Current EXT2 “H” Output Current EXT2 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle CSW “H” Input Voltage CSW “L” Input Voltage CSW Input Leakage Current Feed Back Voltage Temp.Coefficient VEXT2=“H” VOUT1=3.0V VOUT1=3.0V VOUT1=3.0V –40˚C≤Topt≤85˚C IOUT=1mA CSW= “H” at No Load *1 –20 0 0 20 10 1.8 10 0.3 V mV V V µA µA mA mA CSW=“L” VEXT2=VOUT1–0.4V VEXT2=0.4V 2 4 110 40 1.6 0 –0.5 4 8 130 50 150 60 VOUT1 0.4 0.5 ±30 kHz % V V µA µV/˚C * ) VOUT1=3.0V, IOUT=1mA, Topt=25˚C, unless otherwise specified. (See Typical Application) *1 ) Adjustable by external resistors to -30V. 7 RV5VH1××/RV5VH2×× Voltage Detector VOUT1=3.0V, Topt=25˚C Symbol Item Conditions MIN. TYP. MAX. Unit VDET VHYS ISS3 VINmax VOPTmin IOUT ISEN VSEN Detector Threshold Detector Threshold Hysteresis Supply Current3 Maximum Input Voltage Minimum Operating Voltage VDS=0.5V, VOUT1=1.5V Output Current VDS=0.5V, VOUT1=3.0V Sensing pin Input Current Sensing pin Input Voltage Output Delay Detector Threshold Temp.Coefficient DOUT Leakage Current –40˚C≤Topt≤85˚C VSEN=3.0V 2.633 0.081 2.700 0.135 1.2 2.767 0.189 V V µA 10 1.8 1.0 4.0 2.0 5.0 0.3 0.7 1.2 10 100 ±100 0.03 0.5 V V mA mA µA V µs ppm/˚C µA tPLH ∆VOUT1 ∆Topt IDOUTleak * ) VOUT1=3.0V, Topt=25˚C, unless otherwise specified. (See Typical Application) 8 RV5VH1××/RV5VH2×× • RV5VH102 DC/DC Converter 1 Symbol Item Conditions MIN. TYP. VOUT1=5.0V, Topt=25˚C MAX. Unit VOUT1 VINmax Vstart Vhold ISS1 ILX ILXleak fosc Maxdty η VLXlim ∆VOUT1 ∆Topt Step-up Output Voltage Maximum Input Voltage Oscillator Start-up Voltage Hold-on Input Voltage Supply Current1 *1 LX Switching Current LX Leakage Current Maximum Oscillator Frequency Oscillator Duty Cycle Efficiency Voltage Limit for LX Switch Output Voltage Temp. Coefficient –40˚C≤Topt≤85˚C ON (VLX=“L”) No Load IOUT=1mA, VIN : 2→0V No Load, CSW=“L” VLX=0.4V VLX=6.0V, VIN=5.5V 4.875 5.000 5.125 10 V V V V 0.7 1.2 15 100 0.03 110 55 130 70 80 0.4 ±100 0.8 µA mA 1 150 85 µA kHz % % 0.8 V ppm/˚C * ) VIN=1.2V, IOUT=10mA, Topt=25˚C, unless otherwise specified. (See Typical Application) *1 ) This value only shows the supply current of DC/DC1, not include the supply current of Voltage Detector and external resistors. 9 RV5VH1××/RV5VH2×× DC/DC Converter 2 Symbol Item Conditions MIN. TYP. VOUT1=5.0V, Topt=25˚C MAX. Unit VSET VFB VIN VOPTmin ISS2 Istandby IEXT2H IEXT2L fosc Maxdty VCSWH VCSWL ICSWleak ∆VFB ∆Topt Set Output Voltage Feed Back Voltage Maximum Input Voltage Minimum Operating Voltage Supply Current2 Standby Current EXT2 “H” Output Current EXT2 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle CSW “H” Input Voltage CSW “L” Input Voltage CSW Input Leakage Current Feed Back Voltage Temp.Coefficient VEXT2=“H” VOUT1=5.0V VOUT1=5.0V VOUT1=5.0V –40˚C≤Topt≤85˚C IOUT=1mA CSW= “H” at No Load *1 –3.000 0 0 V mV 10 1.8 25 0.3 3 7 110 40 1.6 0 –0.5 ±30 6 14 130 50 150 60 VOUT1 0.4 0.5 V V µA µA mA mA kHz % V V µA µV/˚C CSW=“L” VEXT2=VOUT1–0.4V VEXT2=0.4V * ) VOUT1=3.0V, IOUT=1mA, Topt=25˚C, unless otherwise specified. (See Typical Application) *1 ) Adjustable by external resistors to -30V. 10 RV5VH1××/RV5VH2×× Voltage Detector Symbol Item Conditions MIN. TYP. VOUT1=5.0V, Topt=25˚C MAX. Unit VDET VHYS ISS3 VINmax VOPTmin IOUT ISEN Detector Threshold Detector Threshold Hysteresis Supply Current3*1 Maximum Input Voltage Minimum Operating Voltage*2 VDS=0.5V, VOUT1=1.5V Output Current VDS=0.5V, VOUT1=5.0V Sensing Pin Input Current Output Delay DetectorThreshold Temp.Coefficient DOUT Leakage Current –40˚C≤Topt≤85˚C VSEN=5.0V 4.388 0.135 4.500 0.225 1.8 4.612 0.315 V V µA 10 1.8 1.0 7.0 2.0 10.0 0.7 2.0 100 ±100 0.03 0.5 V V mA mA µA µs ppm/˚C µA tPLH ∆VOUT1 ∆Topt IDOUTleak * ) VOUT1=3.0V, Topt=25˚C, unless otherwise specified. (See Typical Application) 11 RV5VH1××/RV5VH2×× • RV5VH201 DC/DC Converter 1 Symbol Item Conditions MIN. TYP. VOUT1=3.0V, Topt=25˚C MAX. Unit VOUT1 VINmax Vstart Vhold ISS1 IEXT1H IEXT1L fosc Maxdty ∆VOUT1 ∆Topt Step-up Output Voltage Maximum Input Voltage Oscillator Start-up Voltage Hold-on Input Voltage Supply Current1 *1 EXT1 “H” Output Current EXT1 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle Output Voltage Temp. Coefficient IOUT=0mA 2.925 3.000 3.075 10 V V V V No Load IOUT=1mA IOUT=0mA, CSW=“L” VEXT2=VOUT1–0.4V VEXT2=0.4V 1.5 4 110 ON (VLX=“L”) –40˚C≤Topt≤85˚C 50 0.7 0.7 0.8 80 3 8 130 65 ±100 150 80 µA mA mA kHz % ppm/˚C * ) VIN=1.2V, IOUT=10mA, unless otherwise specified. (See Typical Application) *1 ) This value shows only the supply current of DC/DC1, not include the supply current of Voltage Detector and external resistors. 12 RV5VH1××/RV5VH2×× DC/DC Converter 2 Symbol Item Conditions MIN. TYP. VOUT1=3.0V, Topt=25˚C MAX. Unit VSET VFB VIN VOPTmin ISS2 Istandby IEXT2H IEXT2L fosc Maxdty VCSWH VCSWL ICSWleak ∆VFB ∆Topt Output Voltage Setting Range Feed Back Voltage Maximum Input Voltage Minimum Operating Voltage*2 Supply Current2*3 Standby Current EXT2 “H” Output Current EXT2 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle CSW “H” Input Voltage CSW “L” Input Voltage CSW Input Leakage Current Feed Back Voltage Temp. Coefficient VEXT2=“H” VOUT1=3.0V VOUT1=3.0V CSW=3.0V –40˚C≤Topt≤85˚C IOUT=1mA CSW= “H” IOUT=0mA *1 –20 0 0 20 10 1.8 10 0.3 V mV V V µA µA mA mA CSW=“L” VEXT2=VOUT1–0.4V VEXT2=0.4V 2 4 110 40 1.6 0 –0.5 4 8 130 50 150 60 VOUT1 0.4 0.5 ±30 kHz % V V µA µV/˚C * ) VOUT1=3.0V, VOUT2=-0.3V, IOUT2=1mA, unless otherwise specified. (See Typical Application) *1 ) Adjustable by external resistors to -30V. *2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin. *3 ) This value shows only the supply current of DC/DC2, not include the supply current of external resistors. 13 RV5VH1××/RV5VH2×× Voltage Detector Symbol Item Conditions MIN. TYP. VOUT1=3.0V, Topt=25˚C MAX. Unit VDET VHYS ISS3 VINmax VOPTmin IOUT ISEN Detector Threshold Detector Threshold Hysteresis Supply Current3*1 Maximum Input Voltage Minimum Operating Voltage*2 VDS=0.5V, VOUT1=1.5V Output Current VDS=0.5V, VOUT1=3.0V Sensing Pin Input Current Output Delay DetectorThresholdTemp.Coefficient DOUT Leakage Current –40˚C≤Topt≤85˚C VSEN=3.0V 2.633 0.081 2.700 0.135 1.2 2.767 0.189 V V µA 10 1.8 1.0 4.0 2.0 5.0 0.3 1.2 100 ±100 0.03 0.5 V V mA mA µA µs ppm/˚C µA tPLH ∆VOUT1 ∆Topt IDOUTleak * ) VOUT1=3.0V : unless otherwise specified. (See Typical Application) *1 ) This value only shows the supply current of voltage detector. *2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin. 14 RV5VH1××/RV5VH2×× • RV5VH202 DC/DC Converter 1 Symbol Item Conditions MIN. TYP. VOUT1=5.0V, Topt=25˚C MAX. Unit VOUT1 VINmax Vstart Vhold ISS1 IEXT1H IEXT1L fosc Maxdty η ∆VOUT1 ∆Topt Step-up Output Voltage Maximum Input Voltage Oscillator Start-up Voltage Hold-on Input Voltage Supply Current1 *1 EXT1 “H” Output Current EXT1 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle Efficiency Output Voltage Temp. Coefficient IOUT=0mA 4.875 5.000 5.125 10 V V V V No Load IOUT=1mA IOUT=0mA, CSW=“L” VEXT2=VOUT1–0.4V VEXT2=0.4V 2 7 110 ON (VLX=“L”) 55 0.7 0.7 0.8 40 4 14 130 70 80 150 85 µA mA mA kHz % % ppm/˚C –40˚C≤Topt≤85˚C ±100 * ) VIN=3.0V, IOUT=10mA : unless otherwise specified. (See Typical Application) *1 ) This value only shows the supply current of DC/DC1, does not include the supply current of Voltage Detector and external resistors. 15 RV5VH1××/RV5VH2×× DC/DC Converter 2 Symbol Item Conditions MIN. TYP. VOUT1=5.0V, Topt=25˚C MAX. Unit VSET VFB VIN VOPTmin ISS2 Istandby IEXT2H IEXT2L fosc Maxdty VCSWH VCSWL ICSWleak ∆VFB ∆Topt Output Voltage Setting Range Feed Back Voltage Maximum Input Voltage Minimum Operating Voltage*2 Supply Current2*3 Standby Current EXT2 “H” Output Current EXT2 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle CSW “H” Input Voltage CSW “L” Input Voltage CSW Input Leakage Current Feed Back Voltage Temp.Coefficient VEXT2=“H” VOUT1=5.0V VOUT1=5.0V CSW=5.0V –40˚C≤Topt≤85˚C IOUT=1mA CSW= “H”, No Load CSW=“L” VEXT2=VOUT1–0.4V VEXT2=0.4V *1 0 0 V mV 10 1.8 25 0.3 3 7 110 40 1.6 0 –0.5 ±30 6 14 130 50 150 60 VOUT1 0.4 0.5 V V µA µA mA mA kHz % V V µA µV/˚C * ) VOUT1=5.0V, VOUT2=–3.0V, IOUT2=1mA : unless otherwise specified. (See Typical Application) *1 ) Adjustable by external resistors to -30V. *2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin. *3 ) This value shows only the supply current of DC/DC2, not include the supply current of external resistors. 16 RV5VH1××/RV5VH2×× Voltage Detector Symbol Item Conditions MIN. TYP. VOUT1=5.0V, Topt=25˚C MAX. Unit VDET VHYS ISS3 VINmax VOPTmin IOUT ISEN Detector Threshold Detector Threshold Hysteresis Supply Current3*1 Maximum Input Voltage Minimum Operating Voltage*2 VDS=0.5V, VOUT1=1.5V Output Current VDS=0.5V, VOUT1=5.0V Sensing Pin Input Current Output Delay Detector Threshold Temp.Coefficient DOUT Leakage Current –40˚C≤Topt≤85˚C VSEN=5.0V 4.388 0.135 4.500 0.225 1.8 4.612 0.315 V V µA 10 1.8 1.0 7.0 2.0 10.0 0.7 2.0 100 ±100 0.03 0.5 V V mA mA µA µs ppm/˚C µA tPLH ∆VOUT1 ∆Topt IDOUTleak * ) VOUT1=5.0V : unless otherwise specified. (See Typical Application) *1 ) This value only shows the supply current of voltage detector. *2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin. 17 RV5VH1××/RV5VH2×× OPERATION • DC/DC Converter 1 RV5VH1×× Vref + – Error Amp.1 VLX lim. VFM1 3 R SBD 4 LX1 L C VOUT1 VOUT1 OSC p_shift VIN RV5VH2×× Vref VOUT1 OSC + – Error Amp.1 3 R SBD EXT1 Rb NPN Tr. Cb VIN L1 C VOUT1 p_shift VFM1 4 The DC/DC1 uses input voltage as an initial power supply, once boost operation is started, the boost output will be used for the power supply of device itself. A change in the VOUT1 will feed back to the internal error amplifier through external voltage setting resistors and internal feed back resistors. When the feed back voltage is lower than the reference voltage the error amplifier enables oscllation or otherwise will stop oscillation. The internal feed back resistor “R” which is fixed and adjusted by laser trim can make the feed back input voltage to “Error Amp.1” stable. Pulses from the “OSC” circuit have a duty cycle of 50% and it becomes 65 to 75%(at high side) through the “P_shift” circuit. The duty cycle may be smaller with light load spontaneously. These clook pulses control VFM circuit and make it possible to operate as a boost converter. The output of LX1 is Nch open drain, while the output of “EXT1” is driven by CMOS buffer and an external NMOS driver is also available instead of an NPN transistor, in such cases the Rb and the Cb are not necessary. A recommended Rb is 300Ω. When you use a MOSFET for the EXT1, the input voltage should be high enough and you can get high effiiciency applications. A current limit is available only for the RV5VH1 series, to prevent an excess current from flowing through Nch driver transistor. The DC/DC1 can be shut down by CSW pin. When the CSW pin is High, VDD level, the DC/DC1 is enabled and when the CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT1 pin outputs “L” while the DC/DC1 is disabled. 18 RV5VH1××/RV5VH2×× • DC/DC Converter 2 RV5VH1××/RV5VH2×× 1 FB – OSC + Error Amp.2 7 C2 PMOS EXT2 VFM2 6 L + C1 SBD VOUT2 R2 R1 CSW VOUT1 The DC/DC2 can operate by a voltage of “VOUT1”. A change in the VOUT2 will feed back to the internal error amplifier through external voltage setting resistors. The reference voltage should be provided from externally fixed power supply such as VOUT1. When the feed back voltage to the cmp2 is higher than the ground voltage the error amplifier enables oscillation or otherwise will stop oscillation. Pulses from the “OSC” circuit have a duty cycle of 50% and it makes VFM operation allowable. There might be certain cases that the duty cycles becomes smaller temporarily at light load current. The output of “EXT2” is driven by CMOS buffer operated VOUT1 and GND. A PMOS driver will be connected to the “EXT2” pin and its switching operation generates negative output voltage through energy accumulated in an inductor. The DC/DC1 can be shut down by CSW pin. When the CSW pin is “H”, VDD level, the DC/DC1 is enabled and when the CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT2 pin outputs High while the DC/DC2 is disabled. • Set output voltage DC/DC Converter2 VOUT2 is described as follows: VOUT1:R1=|–VOUT2| : R2 |–VOUT2|=VOUT1 × R2/R1 thus, any output voltage of DC/DC2 can be set by changing R1 or/and R2. Certain temperature coefficient of VOUT2 can be set by using R1,R2 having such temperature characteristics. / The FB voltage is controlled to 0V and VOUT1 is provided externally 19 RV5VH1××/RV5VH2×× • Voltage Detector RV5VH1××/RV5VH2×× Ra Output Tr. Rb Vref Tr.1 Rc + – 8 DOUT VSEN 2 Pull-up The VD can operate by the voltage of “VOUT1”. The detector threshold and the reset voltage are internally adjusted by trimmed resistors and the VD monitors VSEN pin voltage. The DOUT is Nch open-drain output and a pull up resistor is necessary. Oepration Diagram VSEN pin is pulled up to VOUT1 voltage Step 1 2 3 4 5 Step 1 Step 2 Step 3 Step 4 Step 5 Reset Voltage +VDET Detector Threshold –VDET B Hysteresis Range A Comparator(+) Pin Input Voltage Comparator Output Tr. 1 A H OFF OFF B L ON ON B L ON Indefinite B L ON ON A H OFF OFF GND Output Tr Output Voltage A: GND Rb+Rc Ra+Rb+Rc Rb Ra+Rb+Rc × VSEN × VSEN B: Step 1. Output Voltage is equal to Pull-up Voltage. Step 2. When Input voltage (VSEN) reaches the state of Vref≥VSEN×(Rb×Rc)/(Ra+Rb+Rc) at point A, the output of the comparator is reversed. so that the output voltage becomes to GND. Step 3. Output VoItage becomes indefinite when Power source Voltage (VSEN) is smaller than Minimum Operating VoItage. When the output is pulIed up, Output becomes pull-up voltage and GND. Step 4. Output VoItage becomes to GND. Step 5. When input voltage(VSEN) reaches the state of Vref≤VSEN×Rb/(Ra+Rb) at point B, the output of the comparator is reversed, so that the output voltage becomes to pull-up voltage. 20 RV5VH1××/RV5VH2×× OPERATION OF STEP-UP DC/DC CONVERTER Step-up DC/DC Converter charges energy in the inductor when Lx Transistor (LxTr) is on, and discharges the energy with the addition of the energy from Input Power Source thereto, so that a higher output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams : < Basic Circuits > < Current through L > IL i2 L VIN i1 Lx Tr CL SD IOUT VOUT ton T=1/fosc toff ILmin ILmax topen t Step 1 : LxTr is turned ON and current IL (=i1 ) flows, so that energy is charged in L. At this moment, IL(=i1 ) is increased from ILmin (=0) to reach ILmax in protection to the on-time period (ton) of LxTr. Step 2 : When LxTr is turned OFF, Schottky diode (SD) is turned on in order that L maintains IL at ILmax, so that current IL (=i2) is released. Step 3 : IL (=i2) is gradually decreased, and IL reaches ILmin (=0) after a time period of topen, so that SD is turned OFF. In the case of VFM control system, the output voltage is maintained constant by controlling the oscillator frequency (fosc) with the on-time period (ton) being maintained constant. In the above two diagrams, the maximum value (ILmax) and the minimum value (ILmin) of the current which flows through the inductor are the same as those when LxTr is ON and also when LxTr is OFF. The difference between ILmax and ILmin, which is represented by ∆I, is: ∆I=ILmax–ILmin=VIN · ton/L=(VOUT–VIN) · topen/L ..........................................Equation 1 wherein T=1/fosc=ton+toff duty (%)=ton/T · 100=ton · fosc · 100 topen≤toff In Equation 1,VIN · ton/L and (VOUT –VIN) · topen/L are respectively the change in the current at ON, and the change in the current at OFF. In the VFM system, topen < toff as illustrated in the above diagram. In this case, the energy charged in the inductor during the time period of ton is discharged in its entirely during the time period of toff, so that ILmin becomes zero (ILmin=0). 21 RV5VH1××/RV5VH2×× SELECTION OF PERIPHERAL COMPONENTS When LxTr is on, the energy PON charged in the inductor is provided by Equation 2 as follows : ton ton PON=∫ 0 (VIN · IL (t)) dt=∫ 0 (VIN2 · t/L) dt =VIN2 · ton2/(2 · L).................................................................................................... Equation 2 In the case of the step-up DC/DC converter, the energy is also supplied from the input power source at the time of OFF. topen topen (VIN · (VOUT–VIN) · t/L)dt Thus, POFF = ∫ 0 (VIN · IL (t)) dt=∫ 0 =VIN · (VOUT –VIN) · topen2/(2 · L) Here, topen=VIN · ton/(VOUT–VIN) from Equation 1, and when this is substituted into the above equation. =VIN3 · ton2/(2 · L · (VOUT–VIN)) ............................................................................Equation 3 Input power PIN is (PON+POFF)/T. When this is converted in its entirely to the output. PIN=(PON+POFF)/T=VOUT · IOUT=POUT .........................................................................Equation 4 Equation 5 can be obtained as follows by solving Equation 4 for IOUT by substituting Equation 2 and 3 into Equation 4 : IOUT=VIN2 · ton2/(2 · L · T · (VOUT–VIN) =VIN2 · maxdty2/(20000 · fosc · L · (VOUT –VIN)) ...................................................Equation 5 The peak current which flows through L · LxTr · SD is ILmax=VIN · ton/L .......................................................................................................... Equation 6 Therefore, it is necessary that the setting of the input/output conditions and the selection of peripheral components be made with ILmax taken into consideration. HINTS The above explanation is directed to the calculation in an ideal case where it is supposed that there is no energy loss in the external components and LxSW. In an actual case, the maximum output current will be 50 to 80% of the above calculated maximum output current. In particular, care must be taken because VIN is decreased in an amount corresponding to the voltage reduction caused by LxSW when IL is large or VIN is small. Furthermore, It is required that with respect to VOUT, Vf of the diode (about 0.3V in the case of a Schottky type diode) be taken into consideration. When ILX and VLX exceed their respective ratings, use the RV5VH with the attachment of an external transistor with a low saturation voltage thereto. 22 RV5VH1××/RV5VH2×× TYPICAL APPLICATION • RV5VH1×× R3 CSW VSEN Output DC/DC1 VOUT1 D1 LX1 L1 C1 L2 GND EXT2 D2 Output DC/DC2 C2 DOUT FB PMOS R2 C3 R1 CoiIs Diodes Capacitors Tr Resistors L1 : 100µH, L2 : 220µH Schottky type C1, C2 : 22µF(tantalum type), C3 : 0.01µF(ceramic type) PMOS : 2SJ238 R1, R2 : several hundreds kΩ, R3 : 100kΩ • RV5VH2×× R3 CSW VSEN Output DC/DC1 VOUT1 L1 SBD C4 C1 NPN Tr. R4 EXT1 GND L2 EXT2 SBD Output DC/DC2 C2 DOUT FB PMOS R2 C3 R1 Coils Diodes Capacitors PMOS NPN Tr. Resistors L1 : 27µH, L2 : 220µH Schottky type C1 : 47µF(tantalum type), C2 : 22µF(tantalum type) C3 : 0.01µF(ceramic type) C4 : 0.01µF(ceramic type) 2SJ238(TOSHIBA), etc. 2SD1628G(SANYO), etc. R1 : 100KΩ R2 : 0-500KΩ R3 : 100KΩ R4 : 300Ω 23 RV5VH1××/RV5VH2×× TEST CIRCUITS CSW VSEN VOUT1 LX1 22µF V A L1 DOUT FB EXT2 GND L1=100µH,220µH Fig.1 Test Circuit 1 100kΩ CSW VSEN 5Ω (150Ω) * V VOUT1 LX1(EXT1) DOUT FB EXT2 GND V 150Ω A Oscilloscope Fig.2 Test Circuit 2 * EXT1 CSW VSEN VOUT1 LX1 DOUT FB EXT2 GND A 0.5V Fig.3 Test Circuit 3 24 RV5VH1××/RV5VH2×× 100kΩ CSW VSEN VOUT1 LX1 DOUT FB EXT2 GND Oscilloscope Pulse Input Fig.4 Test Circuit 4 CSW VSEN 2200pF 96µF V A 27µH 300Ω VOUT1 EXT1 DOUT FB EXT2 GND Fig.5 Test Circuit 5 Test Circuit 1: Test Circuit 2: Test Circuit 3: Test Circuit 4: Test Circuit 5: Typical Characteristics 1), 3), 5), 10), 11) Typical Characteristics 6), 7), 8), 9), 13), 14), 15), 16), 17), 18), 19), 21) Typical Characteristics 20) Typical Characteristics 22) Typical Characteristics 2), 4) Typical Application : Typical Characteristics 12) 25 RV5VH1××/RV5VH2×× TYPICAL CHARACTERISTICS • DC/DC Converter 1 1) Output Voltage vs. Output Current (RV5VH1××) RV5VH101 3.6 Topt=25˚C L1=100µH C1=22µF Output Voltage VOUT1(V) RV5VH101 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 0 20 40 60 80 VIN=1.2V Topt=25˚C L1=220µH C1=22µF Output Voltage VOUT1(V) 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 0 20 40 60 80 100 120 140 VIN=0.9V VIN=1.2V VIN=1.5V VIN=2.0V VIN=2.0V VIN=0.9V VIN=1.5V 100 120 140 Output Current IOUT(mA) Output Current IOUT(mA) RV5VH102 6.0 Topt=25˚C L1=100µH C1=22µF Output Voltage VOUT1(V) RV5VH102 6.0 5.5 5.0 VIN=1.5V 4.5 4.0 3.5 3.0 VIN=0.9V VIN=2.0V VIN=3.0V Topt=25˚C L1=220µH C1=22µF Output Voltage VOUT1(V) 5.5 5.0 4.5 4.0 3.5 3.0 0 50 100 150 200 250 300 VIN=1.5V VIN=2.0V VIN=0.9V VIN=3.0V VIN=4.0V VIN=4.0V 0 50 100 150 200 250 300 Output Current IOUT(mA) Output Current IOUT(mA) 2) Output Voltage vs. Output Current (RV5VH2××) RV5VH201 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 0 100 200 300 400 500 VIN=0.9V VIN=1.2V VIN=1.5V VIN=2.0V Topt=25˚C L1=27µH C1=96µF Output Voltage VOUT(V) RV5VH202 6.0 5.5 5.0 VIN=1.5V 4.5 4.0 3.5 3.0 0 100 200 300 VIN=0.9V Topt=25˚C L1=27µH C1=96µF Output Voltage VOUT(V) VIN=4.0V VIN=2.0V VIN=3.0V 400 500 Output Current IOUT(mA) Output Current IOUT(mA) 26 RV5VH1××/RV5VH2×× 3) Efficiency vs. Output Current (RV5VH1××) RV5VH101 100 95 90 Topt=25˚C L1=100µH C1=22µF RV5VH101 100 95 90 VIN=1.5V VIN=2.0V Topt=25˚C L1=220µH C1=22µF Efficiency η(%) 80 75 70 65 60 55 VIN=1.2V VIN=2.0V Efficiency η(%) 85 85 80 75 70 65 60 55 VIN=0.9V VIN=1.2V 0.1 1 10 100 VIN=0.9V VIN=1.5V 0.1 1 10 100 50 0.01 50 0.01 Output Current IOUT(mA) Topt=25˚C L1=100µH C1=22µF Output Current IOUT(mA) Topt=25˚C L1=220µH C1=22µF RV5VH102 100 95 90 RV5VH102 100 95 90 Efficiency η(%) Efficiency η(%) 85 80 75 70 65 60 55 50 0.1 1 10 VIN=1.5V VIN=0.9V VIN=4.0V 85 80 75 70 65 60 55 50 0.1 VIN=1.5V VIN=0.9V VIN=4.0V VIN=3.0V VIN=3.0V VIN=2.0V VIN=2.0V 1 10 100 1000 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) 4) Efficiency vs. Output Current (RV5VH2××) RV5VH201 90 85 80 VIN=1.5V VIN=1.2V Topt=25˚C L1=27µH C1=96µF RV5VH202 90 85 VIN=4.0V VIN=3.0V VIN=2.0V VIN=1.5V 80 Topt=25˚C L1=27µH C1=96µF VIN=2.0V Efficiency η(%) Efficiency η(%) 75 70 65 60 55 50 45 40 0.01 0.1 1 10 100 1000 VIN=0.9V 75 70 65 60 55 50 45 40 0.1 VIN=0.9V 1 10 100 1000 Output Current IOUT(mA) Output Current IOUT(mA) 27 RV5VH1××/RV5VH2×× 5) DC/DC1 Output Voltage vs. Temperature RV5VH1××/2×× 3.3 3.2 3.1 3.0 2.9 2.8 2.7 –60 –40 –20 IOUT=10mA IOUT=5mA IOUT=0A VIN=1.2V L1=100µH C1=22µF Output Voltage VOUT(V) RV5VH1××/2×× 5.3 5.2 5.1 5.0 4.9 4.8 IOUT=0A IOUT=1mA IOUT=10mA VIN=3V L1=100µH C1=22µF Output Voltage VOUT(V) 0 20 40 60 80 100 4.7 –60 –40 –20 0 20 40 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 6) Oscillator Frequency vs. Temperature RV5VH1××/2×× 150 VOUT1=3V Oscillator Frequency fosc(kHZ) RV5VH1××/2×× 150 145 140 135 130 125 120 115 110 105 100 –60 –40 –20 0 20 40 VOUT1=5V Oscillator Frequency fosc(kHZ) 145 140 135 130 125 120 115 110 105 100 –60 –40 –20 0 20 40 60 80 100 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 7) Oscillator Duty Cycle vs. Temperature RV5VH1××/2×× Oscillator Duty Cycle Maxdty(%) 80 75 70 65 60 55 50 –60 –40 –20 VOUT1=3V Oscillator Duty Cycle Maxdty(%) RV5VH1××/2×× 80 75 70 65 60 55 50 –60 –40 –20 VOUT1=5V 0 20 40 60 80 100 0 20 40 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 28 RV5VH1××/RV5VH2×× 8) On Resistance of LX vs. Supply Voltage RV5VH1×× 5.0 4.5 85˚C 25˚C –40˚C On Resistance Ron (Ω) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Supply Voltage VOUT1(V) 9) EXT1 Output Current vs. Temperature RV5VH201 18 16 14 12 10 8 6 4 2 0 –60 –40 –20 0 20 40 60 80 100 “H” Output Current “L” Output Current VOUT1=3V Output Current IOUT(mA) RV5VH202 18 16 14 12 10 8 6 4 2 0 –60 –40 –20 0 20 40 “H” Output Current “L” Output Current VOUT1=5V Output Current IOUT(mA) 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 10) Start-up/Hold-on Voltage vs. Output Current RV5VH1××/2×× 2 1.8 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 Vhold 1.6 11) Input Current vs. Intput Voltage Topt=25˚C CSW=GND L1=100µH C1=22µF Start-up/Hold-on Voltage Vstart/Vhold(V) Topt=25˚C VOUT1=3V L1=100µH C1=22µF RV5VH101 10–0 10–1 IOUT=30mA IOUT=5mA IOUT=1mA Input Current IIN(A) Vstart 10–2 10–3 10–4 10–5 10–6 0.0 IOUT=0A 0.5 1.0 1.5 2.0 2.5 3.0 Output Current IOUT(mA) Input Voltage VIN(V) 29 RV5VH1××/RV5VH2×× • DC/DC Converter 2 12) Output Voltage vs. Output Current RV5VH101 0 –2 –4 –6 –8 –10 VSET –12V –12 –14 0 2 4 6 8 10 12 14 VSET –6V Topt=25˚C VIN=1.2V VOUT1=3V VSET –3V Output Voltage VOUT(V) VSET –9V Output Current IOUT(mA) 13) DC/DC2 Feed Back Voltage vs. Temperature RV5VH1××/2×× 0.010 Feed Back Voltage VFB(V) 0.008 0.006 0.004 0.002 0.000 –0.002 –0.004 –0.006 –0.008 –0.010 –60 –40 –20 0 20 40 60 80 100 Temperature Topt(˚C) 14) EXT2 Output Current vs. Temperature RV5VH1××/2×× 20 18 VOUT1=3V Output Current IOUT(mA) RV5VH1××/2×× 20 18 16 14 12 10 8 6 4 2 0 –60 –40 –20 “H” Output Current “L” Output Current VOUT1=5V Output Current IOUT(mA) 16 14 12 10 8 6 4 2 0 –60 –40 –20 0 20 40 60 80 100 “H” Output Current “L” Output Current 0 20 40 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 30 RV5VH1××/RV5VH2×× 15) EXT2 Oscillator Frequency vs. Temperature RV5VH1××/2×× 150 VOUT1=3V Oscillator Frequency fosc(kHZ) RV5VH1××/2×× 150 145 140 135 130 125 120 115 110 105 100 –60 –40 –20 0 20 40 VOUT1=5V Oscillator Frequency fosc(kHZ) 145 140 135 130 125 120 115 110 105 100 –60 –40 –20 0 20 40 60 80 100 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 16) EXT2 Oscillator Duty Cycle vs. Temperature RV5VH1××/2×× Oscillator Duty Cycle Maxdty(%) 60 58 56 54 52 50 48 46 44 42 40 –60 –40 –20 0 20 40 60 80 100 VOUT1=3V Oscillator Duty Cycle Maxdty(%) RV5VH1××/2×× 60 58 56 54 52 50 48 46 44 42 40 –60 –40 –20 0 20 40 VOUT1=5V 60 80 100 Temperature Topt(˚C) Temperature Topt(˚C) 17) CSW ON/OFF Voltage vs. Temperature RV5VH1××/2×× 2.0 VOUT1=3V CSW ON/OFF Voltage (V) 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 –60 –40 –20 0 20 40 60 80 100 Temperature Topt(˚C) 31 RV5VH1××/RV5VH2×× • Voltage Detector 18) Detector Threshold Voltage vs. Temperature RV5VH1××/2×× Detector Threshold Voltage VDET(V) 3.0 19) VOUT1 Output Voltage vs. Output Current RV5VH1××/2×× 5.0 4.5 Output Current VOUT(V) 2.9 2.8 2.7 2.6 +VDET 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 85˚C –40˚C 25˚C –VDET 2.5 –60 –40 –20 0 20 40 60 80 100 0 1 2 3 4 5 Temperature Topt(˚C) VOUT1 Output Voltage VOUT1(V) 20) DOUT Output Current vs. VOUT1 Output Voltage RV5VH1××/2×× DOUT Output Current IDOUT(mA) 20 18 16 14 12 10 8 6 4 2 0 0 1 2 3 4 5 6 7 85˚C 25˚C –40˚C 21) VSEN Output Current vs. VSEN Output Voltage RV5VH1××/2×× 0.7 VSEN Output Current IVSEN(µA) 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 85˚C 25˚C –40˚C VOUT1 Output Voltage VOUT1(V) VSEN Output Voltage VSEN(V) 22) Output Delay Time vs. Load Capacitance RV5VH1××/2×× 10 VOUT1=3V Output Delay Time tp(ms) 1 tPLH 0.1 tPHL 0.01 0.0001 0.001 0.01 0.1 Load Capacitance COUT(µF) 32 DC/DC CONVERTER CONTROLLER (BOOST / INVERTING OUTPUT FOR LCD) RV5VH3×× BLOCK DIAGRAM CSW 1 – + 8 DOUT FB1 2 Vref Error Amp.2 – + 7 FB2 VDD 3 – + Error Amp.1 VFM2 6 EXT2 EXT1 4 VFM1 p_shift 5 GND OSC PIN CONFIGURATION • 8 pin SSOP (0.65mm pitch) 1 2 3 4 8 7 6 5 33 RV5VH3×× PIN DESCRIPTION Pin No. Symbol Description 1 2 3 4 5 6 7 8 CSW FB1 VDD EXT1 GND EXT2 FB2 DOUT Control Switch for DC/DC1, 2 Input for DC/DC1 Error Amplifier Power Supply for Device Itself. Sensing Pin for Reset. External Transistor Drive Pin for DC/DC1 (CMOS Output) Ground Pin External Transistor Drive Pin for DC/DC2 (CMOS Output) Input for DC/DC2 Error Amplifier Output for Voltage Detector ABSOLUTE MAXIMUM RATINGS Symbol Item Ratings GND=0V Unit VDD DOUT VCSW VEXT1, 2 VFB IEXT1, 2 PD Topt Tstg Tsolder VDD Pin Voltage DOUT Pin Voltage CSW Pin Voltage EXT1, 2 Pin Voltage FB1,2 Pin Voltage EXT1, 2 Output Current Power Dissipation Operating Temperature Storage Temperature Lead Temperature (Soldering) 12 12 –0.3 to VDD+0.3 –0.3 to VDD+0.3 –0.3 to VDD+0.3 ±50 300 –40 to +85 –55 to +125 260˚C 10sec V V V V V mA mΩ ˚C ˚C ABSOLUTE MAXIMUM RATINGS Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits. 34 RV5VH3×× ELECTRICAL CHARACTERISTICS • RV5VH301 DC/DC Converter 1 Symbol Item Conditions MIN. TYP. VDD=3.0V, Topt=25˚C MAX. Unit VSET1 VFB1 VINmax VOPTmin ISS11 ISS12 Istandby IEXT1H IEXT1L fosc Maxdty ∆VFB1 ∆Topt VCSWH VCSWL ICSWleak Output Voltage Setting 1 Feed Back Volatage 1 Maximum Input Voltage Minimum Operating Voltage Supply Current11*2 Supply Current12*2 Standby Current*3 EXT1 “H” Output Current EXT1 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle Feed Back Voltage Temp.Coefficient CSW “H” Input Voltage CSW “L” Input Voltage CSW Input Leakage Current CSW=3.0V or CSW=0V ON (VEXT1=“L”) –40˚C≤Topt≤85˚C Specified as a VDD Voltage for Device Operation CSW=“H”, FB1=1.9V CSW=“H”, FB1=2.1V CSW=“L” VEXT1=VDD–0.4V VEXT1=0.4V 2.05 1.950 2.000 *1 2.050 10 1.8 15 4 4 11 60 V V V V µA µA µA mA mA 1.5 4 110 50 3 8 130 65 ±100 150 80 kHz % ppm/˚C 1.6 0 –0.5 VDD 0.4 0.5 V V µA * ) VDD=3.0V, IOUT=10mA : unless otherwise specified. (See Typical Application) *1 ) Adjustable by external resistors (to 30V). *2 ) Supply current for DC/DC1. Supply current for VD or external resistors are excluded. *3 ) Standby current includes supply current for DC/DC1, 2 and VD. 35 RV5VH3×× DC/DC Converter 2 Symbol Item Conditions MIN. TYP. VDD=3.0V, Topt=25˚C MAX. Unit VSET2 VFB2 VINmax VOPTmin ISS21 ISS22 IEXT2H IEXT2L fosc Maxdty ∆VFB2 ∆Topt Output Voltage Setting 1 Feed Back Volatage 1 Maximum Input Voltage Minimum Operating Voltage Supply Current21*2 Supply Current22*2 EXT2 “H” Output Current EXT2 “L” Output Current Maximum Oscillator Frequency Oscillator Duty Cycle Feed Back Voltage Temp.Coefficient ON (VEXT2=“L”) –40˚C≤Topt≤85˚C Specified as the VDD Voltage for Device Operation CSW=“H”, FB2=0.1V CSW=“H”, FB2=–0.1V VEXT2=VDD–0.4V VEXT2=0.4V *1 –20 0 0 20 10 1.8 15 4 60 V mV V V µA µA mA mA 2 4 110 40 4 8 130 50 ±30 150 60 kHz % µV/˚C * ) VDD=3.0V : unless otherwise specified. (See Typical Application) *1 ) Adjustable by external resistors (to -30V). *2 ) This value shows only the supply current of DC/DC2, not include the supply current of external resistors. 36 RV5VH3×× Voltage Detector Symbol Item Conditions MIN. TYP. VDD=3.0V, Topt=25˚C MAX. Unit VDET VHYS ISS3 VINmax VOPTmin Detector Threshold Detector Threshold Hysteresis Supply Current3*1 Maximum Input Voltage Minimum Operating Voltage Specified as the VDD Voltage for Device Operation VDS=0.5V, VDD=1.5V 2.633 0.081 2.700 0.135 1.2 2.767 0.189 V V µA 10 1.8 1.0 4.0 2.0 5.0 100 –40˚C≤Topt≤85˚C ±100 0.03 0.5 V V mA mA µs ppm/˚C µA IOUT Output Current VDS=0.5V, VDD=3.0V Output Delay Detector Threshold Temp.Coefficient DOUT Leakage Current tPLH ∆VOUT1 ∆Topt IDOUTleak * ) VDD=3.0V : unless otherwise specified. *1 ) This value only shows the supply current of voltage detector. 37 RV5VH3×× OPERATION • DC/DC Converter 1 RV5VH3×× VDD 3 CSW 1 Vref + OSC – Error Amp.1 p_shift 4 VFM1 Cb VIN EXT1 Rb NPN Tr. 2 R2 FB1 R1 SBD L1 C VOUT1 The DC/DC1 can operate by an input voltage to the VDD pin. A change in the VOUT1 will feed back to the internal error amplifier through external voltage setting resistors and internal feed back resistors. When the feed back voltage is lower than the reference voltage, the error amplifier enables oscillation or otherwise, it will stop oscillation. The internal feed back resistor “R” which is fixed and adjusted by laser trim can make the feed back input voltage to “Error Amp.1” stable. Pulses from the “OSC” circuit have a duty cycle of 50% and it becomes 65 to 75%(at high side) through the “P_shift” circuit. These clock pulses control VFM circuit and make it possible to operate as a boost converter. The output of “EXT1” is driven by CMOS buffer and an external NMOS driver is also available instead of an NPN transistor, in such cases the Rb and the Cb are not necessary. The DC/DC1 can be shut down by CSW pin. When the CSW pin is “H”, VDD level, the DC/DC1 is enabled and when the CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT1 pin outputs “L” while the DC/DC1 is disabled. • Set Output Voltage DC/DC1 VOUT1 is described as follows : VOUT1 : R1+R2=VFB1 : R2 VOUT1=VFB1 × (R1+R2) / R2 thus, any output voltage of DC/DC1 can be set by changing R1 or/and R2. Certain temperature coefficient of VOUT1 can be set by using R1, R2 having such temperature characteristics. DC/DC1 controls VFB1 to be a constant voltage, 38 RV5VH3×× • DC/DC Converter 2 RV5VH3×× 1 FB2 OSC – + Error Amp.2 7 C2 PMOS EXT2 VFM2 6 L + C1 SBD VOUT2 R2 R1 CSW VDD VREF The DC/DC2 can operate by an input voltage to the VDD pin. A change in the VOUT2 will feed back to the internal error amplifier through external voltage setting resistors. The VREF voltage should be provided from externally fixed power supply such as VOUT1. When the feed back voltage to the Error Amp.2 is higher than the ground voltage, the error amplifier enables oscillation otherwise, it will stop oscillation. Pulses from the “OSC” circuit have a duty cycle of 50% and it makes VFM operation allowable. There might be certain cases that the duty cycles become smaller temporarily at light load current. The output of “EXT2” is driven by CMOS buffer operated VDD and GND. A PMOS driver will be connected to the “EXT2” pin and its switching operation generates negative output voltage through energy accumulated in an inductor. The DC/DC1 can be shut down by CSW pin. When the CSW pin is High, VDD level, the DC/DC1 is enabled and when the CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT2 pin outputs “H” while the DC/DC2 is disabled. • Set Output Voltage DC/DC 2 VOUT2 is described as follows: VREF : R1=|–VOUT2| : R2 |–VOUT2|=VREF×R2/R1, thus, any output voltage of DC/DC2 can be set by R1 and R2. Certain temperature coefficient of VOUT2 can be set by using R1, R2 having such temperature characteristics. The FB2 voltage is controlled to 0V and VREF is provided externally 39 RV5VH3×× • Voltage Detector RV5VH3×× R1 Output Tr. R2 Vref Tr.1 R3 + – 8 DOUT 3 VDD Pull-up The Voltage Detector can operate by an input voltage to the VDD pin. The detector threshold and the reset voltage are internally adjusted by trimmed resistors and the VD monitors VDD pin voltage. The DOUT is Nch open-drain output and a pull up resistor is necessary. Oepration Diagram The output is pulled up to VDD voltage Step 1 2 3 4 5 Step 1 Step 2 Step 3 Step 4 Step 5 Reset Voltage +VDET Detector Threshold –VDET B Hysteresis Range A Comparator(+) Pin Input Voltage Comparator Output Tr. 1 A H OFF OFF B L ON ON B L ON Indefinite B L ON ON A H OFF OFF GND Output Tr. Output Voltage A: GND R2+R3 R1+R2+R3 R2 R1+R2+R3 × VDD × VDD B: Step 1. Output Voltage is equal to Pull-up Voltage Step 2. When Input voltage(VDD) reaches to the state of VREF≥VDD×(R2+R3)/(R1+R2+R3) at point A, the output of the comparator is reversed, so that the output voltage becomes to GND. Step 3. Output Voltage becomes indefinite when Power Source Voltage (VDD) is smaller than Minimum Operating Voltage. When the output is pulIed up, Output becomes pull-up voltage and GND. Step 4. Output Voltage becomes to GND. Step 5. When Input voltage(VDD) reaches to the state of VREF≤VDD×R2/(R1+R2) at point B, the output of the comparator is reversed, so that the output voltage becomes to pull-up voltage. 40 RV5VH3×× TYPICAL APPLICATION 1 Output DC/DC 1 R5 C5 CSW DOUT FB2 R3 R1 R6 SBD L1 VDD R4 NPN Tr. C1 C4 EXT1 GND Output DC/DC 2 L2 C2 EXT2 SBD FB1 PMOS R2 C3 CoiI Diode capacitor PMOS NMOS Resistor L1 : 100µH, L2 : 100µH Schottky type C1 : 22µF(Ta), C2 : 22µF(Ta) C3 : 0.01µF (ceramic) C4 : 0.01µF (ceramic) C5 : 0.01µF (ceramic) 2SJ238 (TOSHIBA) 2SK1470 (SANYO) R1 : 100kΩ , R2 : 0 to 500kΩ R3 : 100kΩ R4 : 300Ω R5 : 0 to 500kΩ, R6 : 50kΩ 41 RV5VH3×× TYPICAL APPLICATION 2 VIN Output DC/DC 1 R5 C5 CSW R6 SBD L1 VDD R4 NPN Tr. C1 C4 EXT1 GND Output DC/DC 2 L2 C2 EXT2 SBD FB1 FB2 PMOS R2 C3 DOUT R3 R1 CoiI Diode capacitor PMOS NPN Tr. Resistor L1 : 100µH, L2 : 100µH Schottky type C1 : 22µF(Ta), C2 : 22µF(Ta) C3 : 0.01µF (ceramic) C4 : 0.01µF (ceramic) C5 : 0.01µF (ceramic) 2SJ238 (TOSHIBA) 2SD1628G (SANYO) R1 : 100kΩ , R2 : 0 to 500kΩ R3 : 100kΩ R4 : 300Ω R5 : 0 to 500kΩ, R6 : 50kΩ Description • Step up DC/DC converter : DC/DC1 The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT1 outputs GND. The output voltage can be adjusted by R5 and R6 with FB1 of two volt. • Invering DC/DC converter : DC/DC2 The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT2 outputs VDD. The output voltage can be adjusted by R1 and R2 with FB2 of zero volt. • VoItage Detector VDD pin can be monitored. This could be always operated with VDD. The DOUT pin outputs “L” when low voltage is detected with Nch open-drain output. 42 RV5VH3×× TYPICAL APPLICATION 3 VIN Output DC/DC 1 R3 R5 C5 PMOS CSW FB1 R6 L1 SBD1 VDD EXT1 NMOS C1 L2 EXT2 GND C4 Output DC/DC 2 C2 DOUT FB2 PNP Tr. R4 SBD3 R2 SBD2 C3 R1 R1 : 820kΩ, R2 : 820kΩ, R3 : 100kΩ, R4 : 1kΩ, R5 : 750kΩ (AdjustabIe) R6 : 100kΩ L1 : 68µH, L2 : 27µH C1 : 22µF, C2 : 22µF, C3 : 1000pF, C4 : 2200pF, C5 : 1000pF PMOS : 2SJ238, NMOS : 2SK1470, PNPTr. : 2SB1120F Operation The VDD voltage can be supplied from another source than battery output and a reference voltage for DC/DC2 is supplied by the output of DC/DC1. The PMOS transistor can operate as a switch when the CSW is “L”. • Step up DC/DC converter : DC/DC1 The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT1 outputs GND. The output voltage can be adjusted by R5 and R6 with FB1 of two volt. • Invering DC/DC converter : DC/DC2 The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT2 outputs VDD. The output voltage can be adjusted by R1 and R2 with FB2 of zero volt. • VoItage Detector VDD pin can be monitored. This could be operated all the time by VDD. The DOUT pin outputs “L” when low voltage is detected with Nch open-drain output. 43 RV5VH3×× TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current 25 20 VIN=3.6V 2) Efficiency vs. Output Current 100 90 VOUT±5.0V ±15V VIN=3.6V ±10V Output Voltage VOUT(V) 15 10 5 0 –5 –10 –15 –20 –25 0 10 20 Efficiency η(%) 80 70 60 50 40 30 20 0.0001 ±20V 0.001 0.01 0.1 Output Current IOUT(mA) Output Current IOUT(A) 3) CSW Load Transient Responce 1 20 VIN=3.6V, IOUT=1mA VOUT1 4) CSW Load Transient Responce 2 20 VIN=3.6V, IOUT=1mA VOUT1 Output Voltage VOUT(V) 10 5 0 –5 –10 –15 –20 –50 VOUT2 0 50 100 150 200 CSW Output Voltage VOUT(V) 15 15 10 5 0 –5 –10 –15 –20 0 CSW VOUT2 500 1000 1500 Time t(ms) Time t(ms) * ) Please refer to Typical Application. 44 RV5VH3×× SELECTION GUIDE The output voltage, the type of DC/DC1 and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below: RV5VH × ×× –×× ← Part Number ↑↑ ab } } ↑ c Code Contents DC/DC1 type a 1 : Internal LX Driver Transister Type 2 : External EXT Driver Transister Type 3 : Variable Output Voltage Type b c Serial (01, 02, 03) Number of Setting DC/DC1 Output Voltage and Setting VD Detect Voltage. Designation of Taping type Ex. E1, E2 (refer to Taping Specifications, E2 type is prescribed as a standard.) 45 RV5VH3×× APPLICATION HINTS When using these ICs, be sure to take care of the following points. • Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, when an external component is connected to VOUT Pin, make minimum connection with the capacitor. • Make sufficient grounding. A large current flows through GND Pin byswitching. When the impedance of the GND connection is high, the potential within the IC is varied by switching current. This may result in unstableoperation of the IC. • Use capacitor with good high frequency characteristics such as tantalum capacitor, aluminium electrolytic capacitor and ceramic capacitor. We recommend the use of a capacitor with an allowable voltage which is at least three times the output set voltage. This is because there may be the case where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned OFF. • Take the utmost care when choosing an inductor. Namely, choose such an inductor that has sufficiently small d.c. resistance and large allowable current, and hardly reaches magnetic saturation. When the inductance value of the inductor is small, there may be the case where ILX exceeds the absolute maximum ratings at the maximum load. Use an inductor with an appropriate inductance. (See OUTPUT CURRENT and SELECTION OF PERIPHERAL COMPONENTS sections.) • Use a diode of a Schottky type with high switching speed, and also take care of the rated current. (See OUTPUT CURRENT and SELECTION OF PERIPHERAL COMPONENTS sections.) The performance of power source circuits using these ICs largely depends upon the peripheral components. Take the utmost care in the selection of the peripheral components. In particular, design the peripheral circuits in such a manner that the values such as voltage, current and power of each component, PCB patterns and the IC do not exceed their respective rated values. 46
RV5VH201-E1 价格&库存

很抱歉,暂时无法提供与“RV5VH201-E1”相匹配的价格&库存,您可以联系我们找货

免费人工找货