0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BA10393KN

BA10393KN

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BA10393KN - Comparators : Ground Sense - Rohm

  • 数据手册
  • 价格&库存
BA10393KN 数据手册
ROHM’s Selection Operational Amplifiers / Comparators Comparators: Ground Sense BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901S F/FV/KN,BA2901F/FV/KN ●Description General purpose BA10393/BA10339 family and high reliability BA2903S/BA2903/BA2901S/BA2901 family and automotive BA2903HFVM-C integrate two or fourindependent high gain voltage comparator. Somefeatures are the wide operating voltage that is 2 to 36[V](for BA10393, BA2903S, BA2903, BA2901S,BA2901 family, BA2903HFVM-C), 3 to 36[V](for BA10339 family) and low supply current. Therefore, this series is suitable for any application. No.10049EBT15 General-purpose Dual Quad BA10393F BA10339 F/FV BA2903S F/FV/FVM Operation guaranteed up to + 105 ℃ BA2903F/FV/FVM Operation guaranteed up to +125 ℃ BA2901S F/FV/KN Operation guaranteed up to + 105 ℃ BA2901 F/FV/KN Operation guaranteed up to + 125 ℃ High-reliabillity Dual Quad Automotive Dual BA2903 HFVM-C ●Characteristics 1) Operable with a single power supply 2) Wide operating supply voltage +2.0[V]~+36.0[V] (single supply) BA10393 family ±1.0[V]~±18.0[V] (dual supply) +3.0[V]~+36.0[V] (single supply) BA10339 family ±1.5[V]~±18.0[V] (dual supply) BA2903S/BA2901S family +2.0[V]~+36.0[V] (single supply) BA2903 /BA2901 family BA2903H ±1.0[V]~±18.0[V] (dual supply) 3) Standard comparator pin-assignments 4) Input and output are operable GND sense ●Pin Assignment 5) Internal ESD protection Human body model (HBM)±5000[V](Typ.) (BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C) 6) Gold PAD (BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C) 7) Wide temperature range -40[℃]~+125[℃](BA2903/BA2901 family,BA2903HFVM-C) -40[℃]~+105[℃](BA2903S/BA2901S family) -40[℃]~+85[℃](BA10393/BA10339 family) OUT1 OUT2 OUT3 OUT4 OUT2 1 2 3 4 5 6 7 CH1 -+ CH4 +‐+ 14 13 12 11 10 9 8 OUT3 OUT4 VEE +IN4 -IN4 +IN3 -IN3 VCC 1 1 NC 2 2 16 16 15 15 14 14 13 13 12 12 11 11 10 10 OUT1 11 -IN1 22 +IN1 33 VEE 44 -+ -+ CH2 +- 8 VCC CH1 CH1 OUT1 VCC VEE NC +IN4 7 OUT2 CH2 CH1 -+ CH1 -IN1 -IN2 - + CH2 -+ CH2 -+ CH3 -+ CH3 -+ CH4 -+ CH4 -+ 3 -IN1 3 +- 6 -IN2 5 +IN2 +IN1 +IN2 -IN2 -IN1 +IN2 +IN1 +IN1 4 4 5 5 6 6 7 7 8 8 9 -IN4 9 CH2 -+ CH3 -+ -IN2 +IN2 -IN3 +IN3 SOP8 SSOP-B8 MSOP8 SOP14 SSOP-B14 VQFN16 BA10393F BA10393F BA2903SF BA2903F BA2903F BA2903SFV BA2903FV BA2903FV BA2903SFVM BA2903FVM BA2903FVM BA2903HFVM-C BA10339F BA10339F BA2901SF BA2901F BA2901F BA10339FV BA10339FV BA2901SFV BA2901FV BA2901FV BA2901SKN BA2901KN BA2901KN www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1/16 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ●Absolute Maximum Ratings (Ta=25[℃]) Rating Parameter Symbol BA10393 family BA10339 family Technical Note BA2903S family BA2903 family BA2903H BA2901S family BA2901 family family Unit V V V ℃ ℃ ℃ Supply Voltage VCC-VEE Differential Input Voltage (*1) Vid Input Common-mode Voltage Range Vicm Operating Temperature Range Topr Storage Temperature Range Tstg Maximum junction Temperature Tjmax +36 VCC-VEE VEE~VCC -40~+85 -55~+125 +125 36 (VEE-0.3)~VEE+36 -40~+105 -40~+125 -55~+150 +150 Note Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA10393 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Guaranteed limit Temperature Parameter Symbol Unit range Min. Typ. Max. Input Offset Voltage Input Offset Current Input Bias Current (*2) Input Common-mode Voltage Range Large Signal Voltage Gain Supply Current Output Sink Current Output Saturation Voltage Output Leakage Current 1 Output Leakage Current 2 Response Time Vio Iio Ib Vicm AV ICC IOL VOL Ileak1 Ileak2 Tre 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 0 93 6 ±1 ±5 50 106 0.4 16 250 0.1 0.1 1.3 ±5 ±50 250 VCC-1.5 1 400 1 mV VOUT=1.4[V] nA VOUT=1.4[V] nA VOUT=1.4[V] V Condition - dB RL=15[kΩ],VCC=15[V] mA RL=∞All Comparators mA VIN-=1[V],VIN+=0[V],VOUT=1.5[V] mV VIN-=1[V],VIN+=0[V],IOL=4[mA] μA VIN-=0[V],VIN+=1[V],VOUT=5[V] μA VIN-=0[V],VIN+=1[V],VOUT=36[V] μs RL=5.1[kΩ],VRL=5[V] (*2)Current Direction : Since first input stage is composed with PNP transistor, input bias current flows out of IC. ○BA10339 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Guaranteed limit Temperature Parameter Symbol Unit range Min. Typ. Max. Input Offset Voltage Input Offset Current Input Bias Current (*2) Input Common-mode Voltage Range Large Signal Voltage Gain Supply Current Output Sink Current Output Saturation Voltage Output Leakage Current 1 Output Leakage Current 2 Response Time Vio Iio Ib Vicm AV ICC IOL VOL Ileak1 Ileak2 Tre 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 0 6 ±1 ±5 50 106 0.8 16 250 0.1 1.3 ±5 ±50 250 VCC-1.5 2 400 mV VOUT=1.4[V] nA VOUT=1.4[V] nA VOUT=1.4[V] V Condition - dB RL=15[kΩ],VCC=15[V] mA RL=∞All Comparators mA VIN-=1[V],VIN+=0[V],VOUT=1.5[V] mV VIN-=1[V],VIN+=0[V],IOL=4[mA] μA VIN-=0[V],VIN+=1[V],VOUT=5[V] μA VIN-=0[V],VIN+=1[V],VOUT=36[V] μs RL=5.1[kΩ],VRL=5[V] (*2)Current Direction : Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 2/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA2903S/BA2903 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol range Min. Typ. Max. 25℃ 2 7 (*3) Input Offset Voltage Vio Full range(*4) 15 25℃ 5 50 Input Offset Current(*3) Iio v 200 25℃ 50 250 Input Bias Current(*3) Ib Full range(*4) 500 25℃ 0 VCC-1.5 Input Common-mode Vicm Voltage Range Full range(*4) 25℃ 88 100 Large Signal Voltage Gain AV Full range(*4) 25℃ 0.6 1 Supply Current ICC Full range(*4) 2.5 Output Sink Current(*4) IOL 25℃ 6 16 Output Saturation Voltage 25℃ 150 400 VOL (Low Level Output Voltage) Full range(*4) 700 25℃ 0.1 Output Leakage Current Ileak (High Level Output Current) Full range(*4) 1 Response Time Tre 25℃ Operable Frequency (*3) (*4) (*4) Technical Note Unit mV nA nA V dB mA mA mV nA μA μs Condition VOUT=1.4[V] VCC=5~36[V],VOUT=1.4[V] VOUT=1.4[V] VOUT=1.4[V] VCC=15[V],VOUT=1.4~11.4[V] RL=15[kΩ],VRL=15[V] VOUT=open VOUT=open,VCC=36[V] VIN+=0[V],VIN=1[V],VOL=1.5[V] VIN+=0[V],VIN-=1[V],IOL=4[mA] VIN+=1[V],VIN-=0[V],VOH=5[V] VIN+=1[V],VIN-=0[V],VOH=36[V] RL=5.1[kΩ],VRL=5[V] VIN=100[mVp-p],overdrive=5[mV] RL=5.1[kΩ],VRL=5[V],VIN=TTL Logic Swing,VREF=1.4[V] VCC=5[V],RL=2[kΩ], VIN+=1.5[V] VIN-=5[Vp-p] (Duty 50% Rectangular Pulse) 1.3 0.4 - kHz Fopr 25℃ - Absolute value BA2903S family:Full range -40[℃]~+105[℃] BA2903 family :Full range -40[℃]~+125[℃] ○BBA2901S/BA2901 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol range Min. Typ. Max. 25℃ 2 7 (*3) Input Offset Voltage Vio Full range(*4) 15 25℃ 5 50 Input Offset Current(*3) Iio v 200 25℃ 50 250 Input Bias Current(*3) Ib Full range(*4) 500 25℃ 0 VCC-1.5 Input Common-mode Vicm Voltage Range Full range(*4) 25℃ 88 100 Large Signal Voltage Gain AV Full range(*4) 25℃ 0.8 2 Supply Current ICC Full range(*4) 2.5 Output Sink Current(*4) IOL 25℃ 6 16 Output Saturation Voltage 25℃ 150 400 VOL (Low Level Output Voltage) Full range(*4) 700 25℃ 0.1 Output Leakage Current Ileak (High Level Output Current) Full range(*4) 1 Response Time Tre 25℃ Operable Frequency (*3) (*4) (*4) Unit mV nA nA V dB mA mA mV nA μA μs Condition VOUT=1.4[V] VCC=5~36[V],VOUT=1.4[V] VOUT=1.4[V] VOUT=1.4[V] VCC=15[V],VOUT=1.4~11.4[V] RL=15[kΩ],VRL=15[V] VOUT=open VOUT=open,VCC=36[V] VIN+=0[V],VIN=1[V],VOL=1.5[V] VIN+=0[V],VIN-=1[V],IOL=4[mA] VIN+=1[V],VIN-=0[V],VOH=5[V] VIN+=1[V],VIN-=0[V],VOH=36[V] RL=5.1[kΩ],VRL=5[V] VIN=100[mVp-p],overdrive=5[mV] RL=5.1[kΩ],VRL=5[V],VIN=TTL Logic Swing,VREF=1.4[V] VCC=5[V],RL=2[kΩ], VIN+=1.5[V] VIN-=5[Vp-p] (Duty 50% Rectangular Pulse) 1.3 0.4 - kHz Fopr 25℃ - Absolute value BA2901S family:Full range -40[℃]~+105[℃] BA2901 family :Full range -40[℃]~+125[℃] www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA2903HFVM-C (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol range Min. Typ. Max. 25℃ 2 5 (*3) Input Offset Voltage Vio Full range(*4) 15 25℃ 5 50 Input Offset Current(*3) Iio v 200 25℃ 50 250 Input Bias Current(*3) Ib Full range(*4) 500 25℃ 0 VCC-1.5 Input Common-mode Vicm Voltage Range Full range(*4) 0 VCC-2.0 25℃ 88 100 Large Signal Voltage Gain AV Full range(*4) 74 25℃ 0.6 1 Supply Current ICC Full range(*4) 2.5 Output Sink Current(*4) IOL 25℃ 6 16 Output Saturation Voltage 25℃ 150 400 VOL (Low Level Output Voltage) Full range(*4) 700 25℃ 0.1 Output Leakage Current Ileak (High Level Output Current) Full range(*4) 1 Response Time Tre 25℃ Operable Frequency (*3) (*4) Technical Note Unit mV nA nA V dB mA mA mV nA μA μs Condition VOUT=1.4[V] VCC=5~36[V],VOUT=1.4[V] VOUT=1.4[V] VOUT=1.4[V] VCC=15[V],VOUT=1.4~11.4[V] RL=15[kΩ],VRL=15[V] VOUT=open VOUT=open,VCC=36[V] VIN+=0[V],VIN=1[V],VOL=1.5[V] VIN+=0[V],VIN-=1[V],IOL=4[mA] VIN+=1[V],VIN-=0[V],VOH=5[V] VIN+=1[V],VIN-=0[V],VOH=36[V] RL=5.1[kΩ],VRL=5[V] VIN=100[mVp-p],overdrive=5[mV] RL=5.1[kΩ],VRL=5[V],VIN=TTL Logic Swing,VREF=1.4[V] VCC=5[V],RL=2[kΩ], VIN+=1.5[V] VIN-=5[Vp-p] (Duty 50% Rectangular Pulse) - kHz Fopr 25℃ 100 Absolute value BA2903HFVM-C:Full range -40[℃]~+125[℃] www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 4/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ●Example of electrical characteristics(Refarance Data) ○BA10393 family BA10393 family 1000 Technical Note 1  . -40℃ BA10393 family 1 BA10393 family POWER DISSIPATION [mW] . 800 BA10393F SUPPLY CURRENT [mA] SUPPLY CURRENT [mA] 0.8 25℃ 0.8 5V 36V 600 0.6 0.6 400 0.4 85℃ 0.4 2V 200 0.2 0.2 0 0 25 50 75 100 125 AMBIENT TEMPERATURE [ ℃] . 0 0 10 20 30 SUPPLY VOLTAGE [V] 40 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 1 Derating Curve 500 BA10393 family Fig. 2 Supply Current - Supply Voltage 500 OUTPUT SATURATION VOLTAGE [mV] BA10393 family Fig. 3 Supply Current - Ambient Temperature 2.0 LOW LEVEL OUTPUT VOLTAGE [V] 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40℃ 85℃ 25℃ BA10393 family OUTPUT SATURATION VOLTAGE [mV] 400 85℃ 400 2V 300 25℃ 300 5V 36V 200 -40℃ 200 100 100 0 0 10 20 30 SUPPLY VOLTAGE [V] 40 0 -50 -25 0 25 50 75 100 0 2 4 6 8 10 12 14 16 18 20 AMBIENT TEMPERATURE [℃] OUTPUT SINK CURRENT [mA] Fig. 4 Output Saturation Voltage – Supply Voltage (IOL=4[mA]) BA10393 family Fig. 5 Output Saturation Voltage – Ambient Temperature (IOL=4[mA]) 8 BA10393 family Fig. 6 Low Level Output Voltage – Output Sink Current (VCC=5[V]) 8 BA10393 family 40 OUTPUT SINK CURRENT [mA] 30 36V 5V INPUT OFFSET VOLTAGE [mV] 4 2 0 -2 85℃ -40℃ 25℃ INPUT OFFSET VOLTAGE [mV] 6 6 4 2 0 -2 36V 2V 5V 20 2V 10 -4 -6 -8 -4 -6 -8 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] 0 10 20 30 40 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 7 Output Sink Current - Ambient Temperature (VOUT=1.5[V]) . 160 140 BA10393 family Fig. 8 Input Offset Voltage - Supply Voltage 160 140 INPUT BIAS CURRENT [nA] 120 36V BA10393 family Fig. 9 Input Offset Voltage – Ambient Temperature 50 40 INPUT OFFSET CURRENT [nA] 30 20 10 0 25℃ -40℃ BA10393 family INPUT BIAS CURRENT [nA] 120 100 80 60 40 20 0 0 10 20 30 40 SUPPLY VOLTAGE [V] 85℃ -40℃ 25℃ 100 80 5V 60 40 2V -10 -20 -30 -40 -50 85℃ 20 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 0 10 20 30 SUPPLY VOLTAGE [V] 40 Fig. 10 Input Bias Current – Supply Voltage Fig. 11 Input Bias Current – Ambient Temperature Fig. 12 Input Offset Current – Supply Voltage (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA10393 family 50 40 BA10393 family Technical Note LARGE SIGNAL VOLTAGE GAIN [dB] LARGE SIGNAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] 130 120 110 100 85℃ -40℃ 25℃ . 140 BA10393 family 140 130 36V BA10393 family 30 20 10 0 -10 -20 -30 -40 -50 -50 36V . 120 110 100 5V 5V 2V 90 80 70 60 90 80 70 60 2V -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 0 10 20 30 SUPPLY VOLTAGE [V] 40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 13 Input Offset Current – Ambient Temperature Fig. 14 Large Signal Voltage Gain – Supply Voltage . Fig. 15 Large Signal Voltage Gain – Ambient Temperature 140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 BA10393 family POWER SUPPLY REJECTION RATIO [dB] COMMON MODE REJECTION RATIO[dB] . 160 140 120 -40℃ BA10393 family 140 130 120 36V BA10393 family 25℃ 110 100 90 80 2V 5V 100 80 60 40 0 10 20 30 SUPPLY VOLTAGE [V] 40 85℃ 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 16 Common Mode Rejection Ratio – Supply Voltage .. Fig. 17 Common Mode Rejection Ratio – Ambient Temperature . 5 RESPONSE TIME (HIGH to LOW) [μs] BA10393 family POWER SUPPLY REJECTION RATIO [dB] Fig. 18 Power Supply Rejection Ratio – Ambient Temperature 5 BA10393 family RESPONSE TIME (LOW to HIGH) [μs] 4 4 3 5mV overdrive 3 5mV overdrive 2 20mV overdrive 2 20mV overdrive 100mV overdrive 1 100mV overdrive 1 0 -50 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 19 Response Time (Low to High) - Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) Fig. 20 Response Time (High to Low) - Ambient Temperature (VCC=5[V],VRL=5[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 6/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA10339 family 1000 POWER DISSIPATION [mW] . BA10339 family Technical Note 1 -40℃ BA10339 family 1 BA10339 family SUPPLY CURRENT [mA]   . SUPPLY CURRENT [mA] 800 BA10339FV 0.8 25℃ 0.8 36V 600 0.6 0.6 5V 400 BA10339F 0.4 85℃ 0.4 2V 200 0.2 0.2 0 0 25 50 75 100 AMBIENT TEMPERATURE [℃] . 125 0 0 10 20 30 SUPPLY VOLTAGE [V] 40 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 21 Derating Curve 500 OUTPUT SATURATION VOLTAGE [mV] BA10339 family Fig. 22 Supply Current - Supply Voltage 500 OUTPUT SATURATION VOLTAGE [mV] BA10339 family Fig. 23 Supply Current - Ambient Temperature 2.0 LOW LEVEL OUTPUT VOLTAGE [V] 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40℃ 25℃ 85℃ BA10339 family 400 85℃ 400 2V 300 25℃ 300 200 200 5V 36V 100 -40℃ 100 0 0 10 20 30 SUPPLY VOLTAGE [V] 40 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 0 2 4 6 8 10 12 14 16 18 20 OUTPUT SINK CURRENT [mA] Fig. 24 Output Saturation Voltage – Supply Voltage (IOL=4[mA]) 40 BA10339 family Fig. 25 Output Saturation Voltage – Ambient Temperature (IOL=4[mA]) 8 INPUT OFFSET V OLTA GE [mV] 6 BA10339 family Fig. 26 Low Level Output Voltage – Output Sink Current(VCC=5[V]) 8 6 BA10339 family INPUT OFFSET VOLTAGE [mV] OUTPUT SINK CURRENT [mA] 30 4 2 0 -2 -4 -6 -8 85℃ -40℃ 4 2 0 36V 36V 20 5V 25℃ -2 -4 -6 -8 3V 5V 10 3V 0 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] 0 10 20 30 40 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 27 Output Sink Current - Ambient Temperature (VOUT=1.5[V]) 50 BA10339 family Fig. 28 Input Offset Voltage - Supply Voltage 50 . BA10339 family Fig. 29 Input Offset Voltage – Ambient Temperature 50 40 INPUT OFFSET CURRENT [nA] BA10339 family INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] 40 40 36V 30 20 10 0 -10 -20 -30 -40 -50 -40℃ 25℃ 85℃ 30 -40℃ 25℃ 30 20 20 5V 10 85℃ 10 3V 0 0 10 20 30 40 SUPPLY VOLTAGE [V] 0 -50 -25 0 25 50 75 AMBIENT TEMPERAUTRE [℃] 100 0 10 20 30 SUPPLY VOLTAGE [V] 40 Fig. 30 Input Bias Current – Supply Voltage Fig. 31 Input Bias Current – Ambient Temperature Fig. 32 Input Offset Current – Supply Voltage (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 7/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA10339 family 50 40 INPUT OFFSET CURRENT [nA] 30 20 10 0 -10 -20 -30 -40 -50 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 3V 36V 5V BA10339 family Technical Note 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60 0 -40℃ 85℃ BA10339 family 140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 36V BA10339 family 25℃ 110 100 90 80 70 60 5V 3V 10 20 30 SUPPLY VOLTAGE [V] 40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 33 Input Offset Current – Ambient Temperature Fig. 34 Large Signal Voltage Gain – Supply Voltage 150 LARGE SIGNAL VOLTAGE GAIN [dB] 125 100 75 3V BA10339 family Fig. 35 Large Signal Voltage Gain – Ambient Temperature 140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 BA10339 family 140 120 -40℃ 25℃ 36V 5V 100 80 60 40 0 10 20 30 SUPPLY VOLTAGE [V] 40 85℃ 50 25 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 36 Common Mode Rejection Ratio – Supply Voltage 5 RESPONSE TIME (LOW to HIGH) [μs] BA10339 family Fig. 37 Large Signal Voltage Gain – Ambient Temperature 5 RESPONSE TIME (HIGH to LOW) [μs] BA10339 family POWER SUPPLY REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] 160 BA10339 family . Fig. 38 Power Supply Rejection Ratio – Ambient Temperature 4 4 3 5mV overdrive 3 5mV overdrive 2 20mV overdrive 2 20mV overdrive 100mV overdrive 1 100mV overdrive 1 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 39 Response Time (Low to High) - Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) Fig. 40 Response Time (High to Low) - Ambient Temperature (VCC=5[V],VRL=5[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 8/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA2903S/BA2903 family,BA2903HFVM-C 1000 BA2903S/BA2903 family,BA2903H Technical Note 1.6 1.4 BA2903S/BA2903 family,BA2903H 1.6 1.4 BA2903S/BA2903 family,BA2903H POWER DISSIPATION [mW] POWER DISSIPATION [mW] POWER DISSIPATION [mV] BA2903F SUPPLY CURRENT [mA] 800 BA2903FV SUPPLY CURRENT [mA] 1.2 1.0 0.8 0.6 0.4 0.2 105℃ 125℃ -40℃ 25℃ 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2V 36V 5V 600 400 BA2903FVM BA2903HFVM BA2903SF 200 BA2903SFV BA2903SFVM 0 0 0.0 105 AMBIENT TEMPERATURE [℃] 25 50 75 100 125 AMBIENT TEMPERTURE [℃] . 150 0 10 20 30 40 -50 -25 0 25 50 75 100 125 150 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 41 Derating Curve Fig. 42 Supply Current - Supply Voltage Fig. 43 Supply Current - Ambient Temperature MAXIMUM OUTPUT VOLTAGE [mV] MAXIMUM OUTPUT VOLTAGE [mV] MAXIMUM OUTPUT VOLTAGE [mV] MAXIMUM OUTPUT VOLTAGE [mV] 200 BA2903S/BA2903 family,BA2903H 200 BA2903S/BA2903 family,BA2903H 2 1.8 BA2903S/BA2903 family,BA2903H 150 125℃ 105℃ 150 2V OUTPUT VOLTAGE [V] 1.6 1.4 1.2 125℃ 25℃ 100 100 1 0.8 0.6 0.4 0.2 -40℃ 105℃ 5V 50 25℃ -40℃ 50 36V 0 0 10 20 30 40 0 0 -50 -25 0 25 50 75 100 125 150 0 2 4 6 8 10 12 14 16 18 20 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE [V] OUTPUT SINK CURRENT [mA] Fig. 44 Maximum Output Voltage – Supply Voltage(IOL=4[mA]) BA2903S/BA2903 family,BA2903H Fig. 45 Maximum Output Voltage – Ambient Temperature(IOL=4[mA]) 8 BA2903S/BA2903 family,BA2903H Fig. 46 Output Voltage – Output Sink Current(VCC=5[V]) 8 INPUT OFFSET VOLTAGE [mV] INPUT OFFSET VOLTAGE [mV] 6 4 2V BA2903S/BA2903 family,BA2903H 40 INPUT OFFSET VOLTAGE [mV] OUTPUT SINK CURRENT [mA] 6 4 2 0 -2 -4 -6 -8 25℃ 105℃ 125℃ -40℃ 30 5V 36V 2 0 -2 -4 -6 -8 5V 36V 20 2V 10 0 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 47 Output Sink Current - Ambient Temperature (VOUT=1.5[V]) BA2903S/BA2903 family,BA2903H Fig. 48 Input Offset Voltage - Supply Voltage Fig. 49 Input Offset Voltage – Ambient Temperature 160 160 160 BA2903S/BA2903 family,BA2903H 50 BA2903S/BA2903 family,BA2903H INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] 140 140 120 120 100 100 80 80 60 60 40 40 20 20 00 00 5 10 10 15 20 20 25 30 30 35 40 105℃ 125℃ 125℃ 105℃ -40℃ -40℃ 25℃ 25℃ 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 5V 2V 36V INPUT OFFSET CURRENT [nA] INPUT OFFSET CURRENT[nA] 40 30 20 10 0 -10 -20 -30 -40 -50 0 10 20 30 40 105℃ -40℃ 25℃ 125℃ SUPPLY VOLTAGE [V] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Fig. 50 nput Bias Current – Supply Voltage Fig. 51 Input Bias Current – Ambient Temperature Fig. 52 Input Offset Current – Supply Voltage (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 9/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA2903S/BA2903 family,BA2903HFVM-C 50 BA2903S/BA2903 family,BA2903H Technical Note 140 BA2903S/BA2903 family,BA2903H 140 BA2903S/BA2903 family,BA2903H LARGE SINGAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -25 0 25 50 75 100 125 150 5V 36V 2V LARGE SINGAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60 0 125℃ 105℃ 130 36V 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 15V 5V 25℃ -40℃ 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 53 Input Offset Current – Ambient Temperature Fig. 54 Large Signal Voltage Gain – Supply Voltage COMMON MODE REJECTION RATIO [dB] 150 125 100 75 5V 2V BA2903S/BA2903 family,BA2903H Fig. 55 Large Signal Voltage Gain – Ambient Temperature 6 BA2903S/BA2903 family,BA2903H 25℃ COMMON MODE REJECTION RATIO [dB] 160 140 120 105℃ BA2903S/BA2903 family,BA2903H 105℃ INPUT OFFSET VOLTAGE [mV] 36V 4 -40℃ 2 125℃ 125℃ 100 80 60 40 0 10 20 30 40 0 -2 -4 -6 25℃ -40℃ 50 25 0 -50 -25 0 25 50 75 100 125 150 -1 0 1 2 3 4 5 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] INPUT VOLTAGE [V] Fig. 56 Common Mode Rejection Ratio – Supply Voltage BA2903S/BA2903 family,BA2903H Fig. 57 Common Mode Rejection Ratio – Ambient Temperature BA2903S/BA2903 family,BA2903H Fig. 58 Input Offset Voltage – Input Voltage (VCC=5V) BA2903S/BA2903 family,BA2903H POWER SUPPLY REJECTION RATIO [dB] 180 160 140 120 100 80 60 -50 -25 0 25 50 75 100 125 150 RRESPONSE TIME (LOW TO HIGH)[μ RESPONSE TIME (LOW TO HIGH)[μs]s] RESPONSE TIME (LOW TO HIGH)[μs] 200 5 5 100mV overdrive 4 4 20mV overdrive 3 3 5mV overdrive 2 125℃ 2 105℃ 25℃ -40℃ 1 1 0 -100 -80 -60 -40 -20 0 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] OVER DRIVE VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 59 Power Supply Rejection Ratio – Ambient Temperature BA2903S/BA2903 family,BA2903H Fig. 60 Response Time (Low to High) – Over Drive Voltage (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) BA2903S/BA2903 family,BA2903H Fig. 61 Response Time (Low to High) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) RESPONSE TIME (HIGH TO LOW)[μs] RESPONSE TIME (HIGH TO LOW)[μs] 5 5 4 4 100mV overdrive 20mV overdrive 3 3 5mV overdrive 125℃ 105℃ 2 25℃ -40℃ 2 1 1 0 0 20 40 60 80 100 0 -50 -25 0 25 50 75 100 125 150 OOVER DRIVEVOLTAGE [V] VER DRIVE VOLTAGE [mV] AMBIENT TEMPERATURE [℃] Fig. 62 Response Time (High to Low)– Over Drive Voltage (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) Fig. 63 Response Time (High to Low) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 10/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA2901S/BA2901 family 1000 BA2901S/BA2901 family BA2901FV Technical Note 2.0 1.8 BA2901S/BA2901 family 1.6 1.4 BA2901S/BA2901 family POWER DISSIPATION [mW] SUPPLY CURRENT [mA] BA2901KN BA2901F SUPPLY CURRENT [mA] 800 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 105℃ -40℃ 25℃ 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2V 36V 5V 600 400 BA2901SFV 200 BA2901SKN BA2901SF 125℃ 0 0 25 50 75 100 105 0.0 125 150 0 10 20 30 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 64 Derating Curve Fig. 65 Supply Current - Supply Voltage Fig. 66 Supply Current - Ambient Temperature 200 BA2901S/BA2901 family 200 BA2901S/BA2901 family 2 1.8 BA2901S/BA2901 family MAXIMUM OUTPUT VOLTAGE [mV] MAXIMUM OUTPUT VOLTAGE [mV] 150 125℃ 105℃ 150 2V OUTPUT VOLTAGE [V] 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 -40℃ 125℃ 25℃ 100 100 5V 105℃ 50 25℃ -40℃ 50 36V 0 0 10 20 30 40 0 -50 -25 0 25 50 75 100 125 150 0 0 2 4 6 8 10 12 14 16 18 20 SUPPLY VOLTAGE [V] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE[℃] OUTPUT SINK CURRENT [mA] Fig. 67 Maximum Output Voltage – Supply Voltage (IOL=4[mA]) 40 BA2901S/BA2901 family Fig. 68 Maximum Output Voltage – Ambient Temperature (IOL=4[mA]) 8 BA2901S/BA2901 family Fig. 69 Output Voltage – Output Sink Current (VCC=5[V]) 8 BA2901S/BA2901 family INPUT OFFSET VOLTAGE [mV] INPUT OFFSET VOLTAGE [mV] OUTPUT SINK CURRENT [mA] 6 4 2 0 -2 -4 -6 -8 25℃ 105℃ 125℃ -40℃ 6 4 2V 30 5V 36V 2 0 -2 -4 -6 -8 5V 36V 20 2V 10 0 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 70 Output Sink Current - Ambient Temperature (VOUT=1.5[V]) Fig. 71 Input Offset Voltage - Supply Voltage Fig. 72 Input Offset Voltage – Ambient Temperature 160 160 BA2901S/BA2901 family 160 BA2901S/BA2901 family 50 BA2901S/BA2901 family INPUT OFFSET CURRENT[nA] INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] 140 140 120 120 100 100 -40℃ -40℃ -40℃ 25℃ 25℃ 25℃ 140 120 100 80 60 40 5V 40 30 20 10 0 -10 -20 -30 -40 -50 105℃ 125℃ -40℃ 25℃ 36V 80 80 60 60 40 40 20 20 0 0 0 0 105℃ 105℃ 105℃ 1 125℃ 125℃25℃ 20 0 2V 5 10 10 15 2020 2530 30 40 35 -50 -25 0 25 50 75 100 125 150 0 10 20 30 40 Fig. 73 Input Bias Current – Supply Voltage SUPPLY VOLTAGE [V] SUPPLY VOLTAGE [V] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 74 Input Bias Current – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. Fig. 75 Input Offset Current – Supply Voltage SUPPLY VOLTAGE [V] www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 11/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ○BA2901S/BA2901 family 50 BA2901S/BA2901 family Technical Note 140 BA2901S/BA2901 family 140 BA2901S/BA2901 family LARGE SINGAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -25 0 25 50 75 100 125 150 5V 36V 2V LARGE SINGAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60 0 125℃ 105℃ 130 36V 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 15V 5V 25℃ -40℃ 10 20 30 40 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 76 Input Offset Current – Ambient Temperature Fig. 77 Large Signal Voltage Gain – Supply Voltage COMMON MODE REJECTION RATIO [dB] 150 125 100 75 5V 2V BA2901S/BA2901 family Fig. 78 Large Signal Voltage Gain – Ambient Temperature 6 BA2901S/BA2901 family 25℃ COMMON MODE REJECTION RATIO [dB] 160 140 120 105℃ 125℃ BA2901S/BA2901 family 105℃ INPUT OFFSET VOLTAGE [mV] 36V 4 2 0 -2 -4 -6 -40℃ 125℃ 100 80 60 40 0 10 20 30 40 -40℃ 25℃ 50 25 0 -50 -25 0 25 50 75 100 125 150 -1 0 1 2 3 4 5 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] INPUT VOLTAGE [V] Fig. 79 Common Mode Rejection Ratio – Supply Voltage POWER SUPPLY REJECTION RATIO [dB] 200 180 160 140 120 100 80 60 -50 -25 0 25 50 75 100 125 150 BA2901S/BA2901 family Fig. 80 Common Mode Rejection Ratio – Ambient Temperature 5 BA2901S/BA2901 family Fig. 81 Input Offset Voltage - Input Voltage (VCC=5V) BA2901S/BA2901 family RRESPONSE TIME (LOW TO HIGH)[ RESPONSE TIME (LOW TO HIGH)[μs] RESPONSE TIME (LOW TO HIGH)[μs] 5 4 4 100mV overdrive 3 3 20mV overdrive 2 125℃ 2 5mV overdrive 105℃ 25℃ -40℃ 1 1 0 -100 -80 -60 -40 -20 0 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] OVER DRIVE VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 82 Power Supply Rejection Ratio – Ambient Temperature BA2901S/BA2901 family Fig. 83 Response Time (Low to High) – Over Drive Voltage (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) BA2901S/BA2901 family Fig. 84 Response Time (Low to High) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) RESPONSE TIME (HIGH TO LOW)[μs] RESPONSE TIME (HIGH TO LOW)[μs] 5 5 4 4 100mV overdrive 3 125℃ 3 20mV overdrive 5mV overdrive 2 105℃ 25℃ -40℃ 2 1 1 0 0 20 40 60 80 100 0 -50 -25 0 25 50 75 100 125 150 (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (*)The data above is ability value of sample, it is not guaranteed. Fig. 85 Response Time (High to Low) – Over Drive Voltage OOVER DRIVEVOLTAGE [V] VER DRIVE VOLTAGE [mV] AMBIENT TEMPERATURE [℃] Fig. 86 Response Time (High to Low) – Ambient Temperature www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ●Circuit Diagram VCC Technical Note VOUT +IN -IN VEE Fig.87 Circuit Diagram (one channel only ) ●Test Circuit1 Null Method VCC,VEE,EK,Vicm Unit : [V], VRL=VCC Parameter Input Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain VF VF1 VF2 VF3 VF4 VF5 VF6 -Calculation1. Input Offset Voltage (Vio) Vio  VF1 1+ R f /Rs [ V] Rf 50[kΩ] EK VCC +15[V] RK 500[kΩ] C1 0.01[μF] S1 ON OFF OFF ON ON S2 ON OFF ON OFF ON S3 ON ON ON ON BA10393/BA10339 family VCC GND 5 5 5 5 15 15 0 0 0 0 0 0 EK -1.4 -1.4 -1.4 -1.4 -1.4 -11.4 BA2903S/BA2901S family BA2903/BA2901 family Calculation BA2903HFVM-C Vicm VCC GND EK Vicm 0 0 0 0 0 0 5~36 5 5 5 15 15 0 0 0 0 0 0 -1.4 -1.4 -1.4 -1.4 -1.4 -11.4 0 0 0 0 0 0 1 2 3 4 2. Input Offset Current (Iio) S1 Iio  VF2 - VF1 Ri (1+ R f / Rs) [A] Rs 50[Ω] 50[Ω] 0.1[μF] Ri 10[kΩ] Ri 10[kΩ] 0.1[μF] DUT S3 VEE RL VRL RK 500[kΩ] 3. Input Bias Current (Ib) Ib  VF4 - VF3 2× R i (1+ R f / Rs) Vicm NULL V VF Rs S2 50k [A] -15[V] 4. Large Signal Voltage Gain (AV) Av = 20×Log ΔEK×(1+Rf /Rs) |VF5-VF6| [dB] Fig.88 Measurement circuit1 (one channel only) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 13/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ●Measurement Circuit 2: Switch Condition SW No. Supply Current Output Sink Current Saturation Voltage Output Leakage Current Response Time VOL=1.5[V] IOL=4[mA] VOH=36[V] RL=5.1[kΩ],VRL=5[V] SW 1 OFF OFF OFF OFF ON SW 2 OFF ON ON ON OFF SW 3 OFF ON ON ON ON SW 4 OFF OFF OFF OFF ON SW 5 OFF OFF ON OFF OFF Technical Note SW 6 OFF OFF ON OFF OFF SW 7 OFF ON OFF ON OFF VCC A - + SW1 SW2 SW3 SW4 SW5 RL V VRL A VOL/VOH SW6 SW7 VEE VIN- VIN+ Fig.89 Measurement Circuit 2 (one channel only) VIN +100mV Input wave 入力電圧波形 VIN Input wave 入力電圧波形 0V overdrive voltage overdrive voltage 0V -100mV VOUT VCC 出力電圧波形 Output wave VOUT VCC 出力電圧波形 Output wave VCC/2 0V Tre (LOW to HIGH) 0V VCC/2 Tre (HIGH to LOW) Fig.90 Response Time www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 14/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Description of electrical characteristics Described below are descriptions of the relevant electrical terms. Please note that item names, symbols, and their meanings may differ from those on another manufacturer’s documents. 1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC/VEE) Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). For packaged products, Pd is determined by maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V. 2.2 Input offset current (Iio) Indicates the difference of the input bias current between the non-inverting and inverting terminals. 2.3 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.4 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally. 2.5 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AVD = (output voltage fluctuation) / (input offset fluctuation) 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specific conditions and during no-load steady state. 2.7 Output sink current (IOL) Denotes the maximum current that can be output under specific output conditions. 2.8 Output saturation voltage low level output voltage (VOL) Signifies the voltage range that can be output under specific output conditions. 2.9 Output leakage current (ILeak) Indicates the current that flows into the IC under specific input and output conditions. 2.10 Response time (tre) The interval between the application of input and output conditions. 2.11 Common-mode rejection ratio (CMRR) Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change of input common-mode voltage) / (input offset fluctuation) 2.12 Power supply rejection ratio (PSRR) Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). PSRR = (change in power supply voltage) / (input offset fluctuation) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 15/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature).IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature.The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.91(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: θja = (Tj-Ta) / Pd [℃/W] ・・・・・ (Ⅰ) Derating curve in Fig.91(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.92(a)~(d) show a derating curve for an example of BA10393, BA10339, BA2903S, BA2903, LSI の 消 of LSI Power dissipation 費 電 力 [ W] BA2903HFVM-C,BA2901S, BA2901. Pd (max) θja = ( Tj ー Ta ) / Pd [℃/W] 周囲温度 Ambient temperature Ta [℃] P2 θja2 < θja1 P1 θ' ja2 θ ja2 Tj ' (max) Tj (max) θ' ja1 θ ja1 75 100 125 150 チップ 表面温度 Chip surface temperature Tj [℃] 0 25 50 Power dissipation P [W] 消費電力 周囲温度 Ambient temperature Ta [ ℃ ] (b) Derating curve (a) Thermal resistance Fig.91 Thermal resistance and derating curve 1000 1000 POWER DISSIPATION Pd [mW] 許容損失 Pd  [mW] 800 620mW(★5) POWER DISSIPATION Pd [mW] 800 700mW(★6) BA10339FV BA10393F 600 600 490mW(★7) BA10339F 400 400 200 200 0 0 25 50 75 100 125 0 0 25 50 75 100 125 Ambient temperature°C] [℃] 周囲温度 Ta  [ :Ta Ambient temperature :Ta [℃] (a)BA10393 family 1000 (b)BA10339 family 1000 POWER DISSIPATION Pd [mW] 許容損失 Pd  [mW] POWER DISSIPATION Pd [mW] 許容損失  Pd   [mW] 870mW(★11) BA2901FV 800 780mW(★8) 690mW(★9) 800 660mW(★12) BA2903FV BA2903FVM 600 590mW(★10) BA2903HFVM-C BA2903SF 600 610mW(★13) BA2901F BA2901SFV 400 400 200 200 BA2903SFV BA2903SFVM BA2901SKN BA2901SF 0 0 25 50 75 105 0 125 150 105 100 0 25 50 75 100 125 150 Ambient temperature°C] [℃] 周囲温度 Ta  [ :Ta Ambient temperature :Ta [℃] 周囲温度 Ta  [°C] (c)BA2903 family (*5) 6.2 (*6) 7.0 (*7) 4.9 (*8) 6.2 (*9) 5.5 (*10) 4.7 (d)BA2901 family (*11) 7.0 (*12) 5.3 (*13) 4.9 Unit [mW/℃] When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value when glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted. Fig.92 Derating curve www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 16/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ●Precautions 1) Unused circuits When there are unused circuits it is recommended that they beconnected as in Fig.93, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR). 2) Input terminal voltage (BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C)Applying VEE + 36Vto the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However,this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. Please keep this 同相入力電圧 potencial in Vicm Technical Note VCC + - VEE OPEN 範囲内の電位 Fig.93 Disable circuit example 図1 未使用回路の処理例 3) Power supply (single / dual) The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply op-amp can be used as a dual supply op-amp as well. 4) Power dissipation Pd Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Terminal short-circuits When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction. 7) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 8) Radiation This IC is not designed to withstand radiation. 9) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned off before inspection and removal . Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 17/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN ●Ordering part number Technical Note B A 2 Part No. 9 0 3 F V - E 2 Part No. Package F: SOP8 SOP14 FV: SSOP-B8 SSOP-B14 FVM: MSOP8 KN:VQFN16 Packaging and forming specification E2: Embossed tape and reel (SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16) 10393,1033 2903S,2903 2901S,2901 2903H TR: Embossed tape and reel (MSOP8) SOP8 5.0±0.2 (MAX 5.35 include BURR) 8 7 6 5 +6° 4° −4° Tape Quantity 0.9±0.15 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.2±0.3 4.4±0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 12 3 4 0.595 1.5±0.1 +0.1 0.17 -0.05 S 0.11 1.27 0.42±0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. SOP14 8.7 ± 0.2 (MAX 9.05 include BURR) 14 8 Tape Quantity Direction of feed 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.2 ± 0.3 4.4 ± 0.2 ( reel on the left hand and you pull out the tape on the right hand ) 1 7 0.15 ± 0.1 1.5 ± 0.1 0.11 1.27 0.4 ± 0.1 0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. SSOP-B8 3.0 ± 0.2 (MAX 3.35 include BURR) 876 5 Tape Quantity 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.4 ± 0.3 4.4 ± 0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 1234 1.15 ± 0.1 0.15 ± 0.1 S 0.1 +0.06 0.22 -0.04 0.08 M 0.1 (0.52) 0.65 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 18/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note SSOP-B14 5.0 ± 0.2 14 8 Tape Quantity 0.3Min. Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.4 ± 0.3 4.4 ± 0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 1 7 0.15 ± 0.1 1.15 ± 0.1 0.10 0.65 0.1 0.22 ± 0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. MSOP8 2.9±0.1 (MAX 3.25 include BURR) 8765 Tape 0.29±0.15 0.6±0.2 +6° 4° −4° Embossed carrier tape 3000pcs TR The direction is the 1pin of product is at the upper right when you hold Quantity Direction of feed 4.0±0.2 2.8±0.1 ( reel on the left hand and you pull out the tape on the right hand 1pin ) 1 234 1PIN MARK 0.475 S +0.05 0.22 –0.04 0.08 S 0.65 +0.05 0.145 –0.03 0.9MAX 0.75±0.05 0.08±0.05 Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. VQFN16 4.2±0.1 (1.35) 4.0±0.1 12 9 8 5 1 4 Tape Quantity Direction of feed 0.05 M Embossed carrier tape (with dry pack) 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 4.2±0.1 4.0±0.1 13 16 0.22±0.05 ( reel on the left hand and you pull out the tape on the right hand ) 0.22±0.05 +0.03 0.02 −0.02 0.5 0.05 (0 .2 2 ) 0.95MAX ) .5 Notice : Do not use the dotted line area for soldering +0.1 0.6 −0.3 (0 1pin Reel Direction of feed 3(0 5 .3 ) (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 19/19 2010.05 - Rev.B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. R1010A
BA10393KN 价格&库存

很抱歉,暂时无法提供与“BA10393KN”相匹配的价格&库存,您可以联系我们找货

免费人工找货