0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BA3472RFVM

BA3472RFVM

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BA3472RFVM - High Speed with High Voltage Operational Amplifiers - Rohm

  • 数据手册
  • 价格&库存
BA3472RFVM 数据手册
Operational Amplifiers / Comparators High Speed with High Voltage Operational Amplifiers BA3472F,BA3472FV,BA3472FVM,BA3472RFVM BA3474F,BA3474FV,BA3474RFV No.11049EBT17 ●Description General-purpose BA3472 / BA3474 family integrate two/four Independent Op-amps and phase compensation capacitors on a single chip and have some features of high-gain, low power consumption, and wide operating voltage range of +3[V] ~ +36[V](single power supply). Especially, characteristics are high slew rate (10V/μs) and high Maximum frequency (4MHz). High Speed Dual BA3472F/FV/FVM (BA3472RFVM:Operation guaranteed up to +105℃) BA3474F/FV (BA3474RFV:Operation guaranteed up to +105℃) Quad ●Features 1) Operable with a single power supply 2) Wide operating supply voltage +3.0 [V] ~ +36.0 [V] (single supply) ±1.5 [V] ~ ±18.0 [V] (split supply) 3) Standard Op-Amp. Pin-assignments 4) Internal phase compensation 5) High slew rate: 10[V/µs] 6) Maximum frequency: 4[MHz] 7) High open loop voltage gain 8) Internal ESD protection Human body model (HBM) ±5000 [V] (Typ.) 9) Operable low input voltage around GND level 10) Wide output voltage range VEE+0.3[V] ~ VCC-1.0[V](Typ.) with VCC-VEE=30[V] ●Pin Assignment OUT1 1 -IN1 2 CH1 -+ CH4 +- 14 OUT4 13 -IN4 12 +IN4 11 VEE -+ CH2 +CH3 OUT1 1 -IN1 +IN1 VEE 8 VCC CH1 -+ CH2 +- +IN1 3 VCC 4 +IN2 5 2 3 4 7 OUT2 6 -IN2 5 +IN2 VQFN16 10 +IN3 9 8 -IN3 OUT3 -IN2 6 OUT2 7 SOP8 SSOP-B8 MSOP8 SOP14 SSOP-B14 BA3472F BA3472FV BA3472FVM BA3472RFVM BA3474F BA3474FV BA3474RFV www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 1/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Absolute Maximum Ratings (Ta=25[℃]) Technical Note Ratings Parameter Supply Voltage Differential Input Voltage (*1) Input Common-mode Voltage Range Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Symbol VCC-VEE Vid Vicm Topr Tstg Tjmax BA3472 family BA3474 family +36 36 (VEE - 0.3) ~ VEE + 36 -40 ~ +85(SOP14:+75) -55 ~ +150 +150 -40 ~ +105 BA3472R family BA3474R family Unit V V V ℃ ℃ ℃ Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA3472 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits BA3472F/FV/FVM Min. Typ. 1 1.5 6 100 4 4 14 0.1 -14.7 100 97 97 30 30 4 10 120 Max. 10 mV 10 75 500 5.5 0.3 -14.3 -13.5 VCC-2.0 dB V dB dB mA mA MHz V/μs dB V V nA nA mA Vicm=0[V],VOUT=0[V] VCC=5[V],VEE=0[V],Vicm=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] RL=∞ VCC=5[V],RL=2[kΩ] RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] RL=10[kΩ] RL=2[kΩ] RL≧2[kΩ],VOUT=±10 [V] VCC=5[V],VEE=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] VIN+=1[V],VIN-=0[V],VOUT=0[V] Only 1ch is short circuit VIN+=0[V],VIN-=1[V],VOUT=5[V], Only 1ch is short circuit Av=1,Vin=-10 to +10[V], RL=2[kΩ] Unit Condition Parameter Symbol Temperature range Input Offset Voltage (*2) Vio 25℃ Input Offset Current (*2) Input Bias Current (*2) Supply Current Iio Ib ICC 25℃ 25℃ 25℃ 3.7 High Level Output Voltage VOH 25℃ 13.7 13.5 - Low Level Output Voltage VOL 25℃ - Large Signal Voltage Gain Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current (*3) Output Sink Current (*3) Maximum Frequency Slew Rate Channel Separation (*2) (*3) AV Vicm CMRR PSRR IOH IOL ft SR CS 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 80 0 60 60 10 20 - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ○BA3472R family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Parameter Symbol Temperature range BA3472RFVM Min. Typ. 1 1.5 6 100 4 4 14 0.1 -14.7 100 97 97 30 30 4 10 120 Max. 10 Unit Condition Input Offset Voltage (*4) Vicm=0[V],VOUT=0[V] mV VCC=5[V],VEE=0[V],Vicm=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] RL=∞ VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] dB V dB dB mA mA MHz RL≧2[kΩ],VOUT=±10 [V] VCC=5[V],VEE=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] VIN+=1[V],VIN-=0[V], VOUT=0[V] Only 1ch is short circuit VIN+=0[V],VIN-=1[V], VOUT=5[V] Only 1ch is short circuit - Vio 25℃ 10 75 500 5.5 0.3 -14.3 -13.5 VCC-2.0 - Input Offset Current (*4) Input Bias Current (*4) Supply Current Iio Ib ICC 25℃ 25℃ 25℃ 3.7 nA nA mA High Level Output Voltage VOH 25℃ 13.7 13.5 - Low Level Output Voltage VOL 25℃ - Large Signal Voltage Gain Input Common-mode Voltage Range Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current (*5) Output Sink Current (*5) Maximum Frequency Slew Rate Channel Separation (*4) (*5) AV Vicm CMRR PSRR IOH IOL ft SR CS 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 80 0 60 60 10 20 - V/μs Av=1,Vin=-10 to +10[V], RL=2[kΩ] dB - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ○BA3474 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Parameter Symbol Temperature range BA3474F/FV Min. Typ. 1 1.5 6 100 8 4 14 0.1 -14.7 100 97 97 30 30 4 10 120 Max. 10 Unit Condition Input Offset Voltage (*6) Vicm=0[V],VOUT=0[V] mV VCC=5[V],VEE=0[V], Vicm=0[V] VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] RL=∞ VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] dB V dB dB mA mA MHz RL≧2[kΩ], VOUT=±10 [V] VCC=5[V],VEE=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] VIN+=1[V],VIN-=0[V], VOUT=0[V] Only 1ch is short circuit VIN+=0[V],VIN-=1[V], VOUT=5[V] Only 1ch is short circuit - Vio 25℃ 10 75 500 11 0.3 -14.3 -13.5 VCC-2.0 - Input Offset Current (*6) Input Bias Current (*6) Supply Current Iio Ib ICC 25℃ 25℃ 25℃ 3.7 nA nA mA High Level Output Voltage VOH 25℃ 13.7 13.5 - Low Level Output Voltage VOL 25℃ - Large Signal Voltage Gain Input Common-mode Range Voltage AV Vicm CMRR PSRR IOH IOL ft SR CS 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 80 0 60 60 10 20 - Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current (*7) Output Sink Current (*7) Maximum Frequency Slew Rate Channel Separation (*6) (*7) V/μs Av=1,Vin=-10 to +10[V], RL=2[kΩ] dB - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ○BA3474R family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Limits Parameter Symbol Temperature range BA3474RFV Min. Typ. 1 1.5 6 100 8 4 14 0.1 -14.7 100 97 97 30 30 4 10 120 Max. 10 Unit Condition Input Offset Voltage (*8) Vicm=0[V],VOUT=0[V] mV VCC=5[V],VEE=0[V],Vicm=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] RL=∞ VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] VCC=5[V],RL=2[kΩ] V RL=10[kΩ] RL=2[kΩ] dB V dB dB mA mA MHz RL≧2[kΩ],VOUT=±10 [V] VCC=5[V],VEE=0[V], VOUT=VCC/2 Vicm=0[V],VOUT=0[V] Vicm=0[V],VOUT=0[V] VIN+=1[V],VIN-=0[V],VOUT=0[V], Only 1ch is short circuit VIN+=0[V],VIN-=1[V],VOUT=5[V], Only 1ch is short circuit - Vio 25℃ 25℃ 25℃ 25℃ 3.7 10 75 500 11 0.3 -14.3 -13.5 VCC-2.0 nA nA mA Input Offset Current (*8) Input Bias Current (*8) Supply Current Iio Ib ICC High Level Output Voltage VOH 25℃ 13.7 13.5 80 0 60 60 10 20 - Low Level Output Voltage VOL 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ 25℃ Large Signal Voltage Gain Input Common-mode Range Voltage AV Vicm CMRR PSRR IOH IOL ft SR CS Common-mode Rejection Ratio Power Supply Rejection Ratio Output Source Current (*9) Output Sink Current (*9) Maximum Frequency Slew Rate Channel Separation (*8) (*9) V/μs Av=1,Vin=-10 to +10[V],RL=2[kΩ] dB - Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3472 family 1000 BA3472 family BA3472 ファミリ Technical Note 6 BA3472 family BA3472 ファミリ 6 5 4 3 2 1 0 3V 5V 30V 36V BA3472 family BA3472 ファミリ SUPPLY CURRENT [mA] POWER DISSIPATION[mW] BA3472F 25℃ -40℃ 4 3 2 1 0 600 BA3472FV 85℃ 400 BA3472FVM 200 0 0 25 50 75 85 100 125 0 5 10 15 20 25 30 35 40 SUPPLY CURRENT [mA] 800 5 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig.1 Fig.1 Derating Curve ディレーティングカーブ 40 35 BA3472 family BA3472 ファミリ Fig.2 Fig.2 Supply Current - Supply Voltage 回路電流 - 電源電圧特性 40 35 30 25 20 15 10 5 0 5V 3V 30V Fig.3 Fig.3 Supply Current - Ambient Temperature 回路電流 - 温度特性 1.0 BA3472 ファミリ BA3472 family BA3472 family BA3472 ファミリ -40℃ 25℃ OUTPUT VOLTAGE[V] 30 25 20 15 10 5 0 0 10 OUTPUT VOLTAGE[V] OUTPUT VOLTAGE[V] 0.8 36V 0.6 85℃ 0.4 85℃ 25℃ -40℃ 0.2 0.0 -50 -25 0 25 50 75 100 0 10 20 30 40 20 30 40 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE[V] Fig.4 Fig.4 High level Output Voltage - Supply Voltage High レベル出力電圧-電源電圧特性 (RL=10[kΩ]) (RL=10[kΩ]) FFig.5 ig.5 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) 100.0 BA3472 family BA3472 ファミリ Fig.6 Fig.6 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - (RL=10[kΩ]) Supply Voltage (RL=10[kΩ]) 100.0 BBA3472family A3472 ファミリ 1.0 BA3472 family BA3472 ファミリ OUTPUT SOURCE CURRENT[mA] OUTPUT VOLTAGE[V] 0.8 OUTPUT SINK CURRENT[mA] -40℃ 25℃ 85℃ 10.0 10.0 0.6 85℃ 0.4 36V 30V 5V 3V 1.0 25℃ 1.0 0.2 -40℃ 0.0 -50 -25 0 25 50 75 100 0.1 0 0.5 1 1.5 2 2.5 3 0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 AMBIENT TEMPERATURE [℃] FFig.7 ig.7 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) 5 BA3472 family BA3472 ファミリ VCC-VOUT電圧差[V] VCC-VOUT [V] VOUT-VEE電圧差[V] VOUT-VEE [V] Fig.8 Fig.8 Output Source Current - (VCC-VOUT) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3472 family BA3472 ファミリ Fig.9 Fig.9 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3472 family BA3472 ファミリ INPUT OFFSET VOLTAGE[mV] INPUT OFFSET VOLTAGE[mV] INPUT OFFSET VOLTAGE[mV] 4 3 2 1 0 -1 -2 -3 -4 -5 -20 -15 -10 -5 0 5 10 15 85℃ -40℃ 25℃ 2 -40℃ 25℃ 2 30V 36V 1 0 -1 -2 -3 0 5 10 15 20 25 30 35 40 1 0 5V 85℃ -1 -2 -3 -50 -25 0 25 50 75 100 COMMON MODE INPUT VOLTAGE[V] Fig.10 Fig.10 入力オフセット電圧-同相入力電圧特性 Input Offset Voltage - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed Fig.11 Fig.11 Input Offset Voltage - Supply voltage 入力オフセット電圧-電源電圧特性 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.12 Fig.12 Input Offset Voltage - Ambient Temperature 入力オフセット電圧-温度特性 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 6/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3472 family 100 BA3472 family BA3472 ファミリ Technical Note 100 BA3472ファミリ BA3472 family 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 5 10 25℃ -40℃ 85℃ BA3472 family BA3472 ファミリ INPUT BIAS CURRENT[nA] 80 -40℃ 25℃ 85℃ INPUT BIAS CURRENT[nA] 80 5V 30V 60 60 40 40 36V 20 20 0 0 5 10 15 20 25 30 35 40 0 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE[V] Fig.13 Fig.13 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 -50 -25 0 25 50 75 100 36V 10V 30V AMBIENT TEMPERATURE[℃] 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.14 Fig.14 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 140 130 120 110 BA3472 family BA3472 ファミリ Fig.15 Fig.15 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 -Supply Voltage 150 140 130 120 110 100 90 80 70 60 50 40 5V 30V 36V BA3472 family BA3472 ファミリ BA3472ファミリ BA3472 family CMRR[dB] 100 90 80 70 60 50 40 0 5 10 15 20 25 30 35 40 -40℃ 25℃ 85℃ CMRR[dB] -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.16 Large SignalFig.16 Gain Voltage 大振幅電圧利得-温度特性 -Ambient Temperature BA3472 family BA3472 ファミリ -40℃ 25℃ 85℃ Fig.17 Common ModeFig.17 Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage BA3472ファミリ BA3472 family Fig.18 Fig.18 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature BA3472 family BA3472 ファミリ 14 12 SLEW RATE(RISE)[V/μs] 14 36V 50 PHASE 30V 0 -30 -60 -90 -120 -150 -180 1 10 100 1000 10000 FREQUENCY[kHz] 12 SLEW RATE(RISE)[V/μs] 40 10 8 6 4 2 0 0 5 10 8 6 5V 15V VOLTAGE GAIN[dB] 30 20 10 0 -10 4 2 0 3V 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE[℃] 100 Fig.19 Fig.19 Slew Rate L-H - Supply Voltage スルーレート(L-H)-電源電圧特性 ( RL=10[kΩ] ) 12 BA3472 family BA3472 ファミリ (RL=10[kΩ]) Fig.20 Fig.20 Slewスルーレート(L-H)-温度特性 Rate L-H - Ambient Temperature ( RL=10[kΩ] ) 100 BA3472 family BA3472 ファミリ (RL=10[kΩ]) (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (VCC=7.5[V]/-7.5[V], Av=40[dB], Fig.21 Fig.21 Voltage Gain - Frequency 電圧利得-周波数特性 INPUT/OUTPUT VOLTAGE[mV] INPUT/OUTPUT VOLTAGE[V] 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 1 2 3 4 5 6 7 8 TIME[μs] INPUT OUTPUT 80 60 40 20 0 -20 -40 -60 -80 0.0 0.5 1.0 1.5 2.0 2.5 INPUT OUTPUT -100 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ], CL=100[pF], Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) guaranteed RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not 大信号応答特性 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) Fig.22 Fig.22 Input / Output Voltage - Time TIME[μs] Fig.23 Fig.23 Input小信号入出力波形 / Output Voltage - Time www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 7/20 2011.08 - Rev.B PHASE[deg] GAIN BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3474 family 1000 BA3474 family BA3474 ファミリ Technical Note 12 BA3474 ファミリ BA3474 family 12 10 30V 36V BA3474 family BA3474 ファミリ SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 800 BA3474F -40℃ 8 6 25℃ SUPPLY CURRENT [mA] 10 8 6 4 2 0 3V 5V 600 400 BA3474FV 85℃ 4 2 0 200 0 0 25 50 75 85 100 125 0 5 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] FFig.24 ig.24 Derating Curve ディレーティングカーブ 40 35 BA3474 family BA3474 ファミリ Fig.25 Fig.25 Supply Current -電源電圧特性 回路電流 - Supply Voltage 40 35 30 25 20 15 10 5 0 5V 3V 30V 36V Fig.26 Fig.26 Supply 回路電流 Ambient Temperature Current - - 温度特性 1.0 BA3474 family BA3474 ファミリ BA3474 family BA3474 ファミリ -40℃ 25℃ OUTPUT VOLTAGE[V] 30 25 20 15 10 5 0 0 10 OUTPUT VOLTAGE[V] OUTPUT VOLTAGE[V] 0.8 0.6 85℃ 0.4 85℃ 25℃ -40℃ 0.2 0.0 -50 -25 0 25 50 75 100 0 10 20 30 40 20 30 40 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE[V] Fig.27 Fig.27 High level Output Voltage High レベル出力電圧-電源電圧特性 - (RL=10[kΩ]) Supply Voltage (RL=10[kΩ]) 1.0 BA3474 ファミリ BA3474 family Fig.28 Fig.28 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) 100.0 BA3474 ファミリ BA3474 family Fig.29 Fig.29 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - Supply Voltage (RL=10[kΩ]) (RL=10[kΩ]) 100.0 BA3474 ファミリ BA3474 family OUTPUT SOURCE CURRENT[mA] OUTPUT VOLTAGE[V] 0.8 OUTPUT SINK CURRENT[mA] -40℃ 25℃ 85℃ 10.0 10.0 0.6 85℃ 0.4 36V 30V 5V 3V 1.0 25℃ 1.0 0.2 -40℃ 0.0 -50 -25 0 25 50 75 100 125 150 0.1 0 0.5 1 1.5 2 2.5 3 0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 AMBIENT TEMPERATURE [℃] VCC-VOUT [V] VCC-VOUT電圧差[V] Fig.30 Fig.30 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) 5 INPUT OFFSET VOLTAGE[mV] 4 3 2 1 0 -1 -2 -3 -4 -5 -20 -15 -10 -5 0 5 10 15 COMMON MODE INPUT VOLTAGE[V] 85℃ 25℃ -40℃ Fig.31 Fig.31 Output Source Current - (VCC-VOUT) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3474 ファミリ BA3474 family VOUT-VEE電圧差[V] VOUT-VEE [V] Fig.32 Fig.32 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3474 family BA3474 ファミリ BA3474 family BA3474 ファミリ INPUT OFFSET VOLTAGE[mV] INPUT OFFSET VOLTAGE[mV] 2 -40℃ 25℃ 2 1 0 -1 -2 -3 30V 36V 1 0 -1 -2 -3 0 5 10 15 20 25 30 35 40 85℃ 5V -50 -25 0 25 50 75 100 Fig.33 Fig.33 Input Offset Voltage 入力オフセット電圧-同相入力電圧特性 - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed Fig.34 Fig.34 入力オフセット電圧-電源電圧特性 Input Offset Voltage - Supply voltage SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.35 Fig.35 Input 入力オフセット電圧-温度特性 Offset Voltage -Ambient Temperature www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3474 family 100 BA3474 family BA3474 ファミリ Technical Note 100 BA3474 ファミリ BA3474 family 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 5 10 -40℃ 25℃ BA3474 family BA3474 ファミリ INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT[nA] 80 -40℃ 25℃ 85℃ 80 5V 30V 60 60 85℃ 40 40 36V 20 20 0 0 5 10 15 20 25 30 35 40 0 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.36 Fig.36 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 -50 -25 0 25 50 75 100 36V 10V 30V Fig.37 Fig.37 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 140 130 120 110 BA3474 family BA3474 ファミリ Fig.38 Fig.38 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 -Supply Voltage 150 140 130 120 110 100 90 80 70 60 50 40 -50 -25 0 25 50 75 100 5V 30V 36V BA3474 ファミリ BA3474 family BA3474 family BA3474 ファミリ CMRR[dB] 100 90 80 70 60 50 40 0 5 10 15 20 25 30 35 40 -40℃ 25℃ 85℃ CMRR[dB] AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.39 Fig.39 Large Signal Voltage Gain 大振幅電圧利得-温度特性 -Ambient Temperature 14 12 SLEW RATE(RISE)[V/μs] 10 8 6 4 2 0 0 5 10 15 20 25 30 35 40 25℃ -40℃ 85℃ BA3474 ファミリ BA3474 family Fig.40 Fig.40 Common Mode Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage 14 12 36V 30V BA3474 ファミリ BA3474 family Fig.41 Fig.41 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature 50 40 BA3474 ファミリ BA3474 family PHASE 0 -30 -60 -90 SLEW RATE(RISE)[V/μs] 10 8 15V VOLTAGE GAIN[dB] 30 20 10 0 -10 6 4 2 0 -50 -25 0 25 50 75 100 5V 3V -120 -150 -180 SUPPLY VOLTAGE[V] 1 10 100 1000 10000 AMBIENT TEMPERATURE[℃] Fig.42 Fig.42 Slew Rate L-H - Supply Voltage スルーレート(L-H)-電源電圧特性 ( RL=10[kΩ] ) 12 10 BA3474 ファミリ BA3474 family (RL=10[kΩ]) Fig.43 Fig.43 Slewスルーレート(L-H)-温度特性 Rate L-H - Ambient Temperature ( RL=10[kΩ] ) 100 BA3474 ファミリ BA3474 family FREQUENCY[kHz] (RL=10[kΩ]) (VCC=7.5[V]/-7.5[V], Av=40[dB], (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) FFig.44 ig.44 Voltage Gain - Frequency 電圧利得-周波数特性 INPUT/OUTPUT VOLTAGE[mV] INPUT/OUTPUT VOLTAGE[V] 80 60 40 20 0 -20 -40 -60 -80 0.0 0.5 1.0 1.5 2.0 2.5 OUTPUT INPUT 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 1 2 3 4 5 6 7 8 INPUT OUTPUT -100 (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed (VCC/VEE=15[V]/-15[V], Av=0[dB], Fig.45 Fig.45 Input / 大信号応答特性 Time Output Voltage - TIME[μs] TIME[μs] 小信号入出力波形 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) Fig.46 Fig.46 Input / Output Voltage - Time www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 9/20 2011.08 - Rev.B PHASE[deg] GAIN BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3472R family 800 BA3472R ファミリy BA3472R famil Technical Note 6 BA3472R ファミリ BA3472R family 6 5 4 3 2 1 0 3V 5V BA3472R ファミリy BA3472R famil SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 600 25℃ -40℃ 4 3 2 1 0 400 BA3472RFVM 105℃ 200 0 0 25 50 75 100 105 125 0 5 10 15 20 25 30 35 40 SUPPLY CURRENT [mA] 5 30V 36V -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig.47 Fig.47 Derating Curve ディレーティングカーブ 40 35 -40℃ Fig.48 Fig.48 Supply Current -電源電圧特性 回路電流 - Supply Voltage 40 35 30 25 30V 36V BA3472R family BA3472Rファミリ Fig.49 Fig.49 Supply Current - Ambient Temperature 回路電流 - 温度特性 1.0 BA3472R family BA3472R ファミリ BA3472Rファミリ BA3472R family OUTPUT VOLTAGE[V] 30 25 20 15 25℃ OUTPUT VOLTAGE[V] OUTPUT VOLTAGE[V] 0.8 0.6 20 15 10 5 0 5V 3V 0.4 105℃ 25℃ -40℃ 105℃ 10 5 0 0 10 20 30 40 0.2 0.0 -50 -25 0 25 50 75 100 125 0 10 20 30 40 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE[V] Fig.50 Fig.50 High level Output Voltage High レベル出力電圧-電源電圧特性 - (RL=10[kΩ]) Supply Voltage (RL=10[kΩ]) BA3472R family BA3472R ファミリ Fig.51 Fig.51 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) 100.0 BA3472R family BA3472R ファミリ FFig.52 ig.52 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - Supply Voltage (RL=10[kΩ]) (RL=10[kΩ]) 100.0 BA3472R ファミリ BA3472R family 1.0 OUTPUT SOURCE CURRENT[mA] OUTPUT VOLTAGE[V] 0.8 OUTPUT SINK CURRENT[mA] -40℃ 25℃ 105℃ 10.0 10.0 0.6 0.4 36V 30V 5V 3V 1.0 105℃ 25℃ 1.0 0.2 -40℃ 0.0 -50 -25 0 25 50 75 100 125 0.1 0 0.5 1 1.5 2 2.5 3 0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 AMBIENT TEMPERATURE [℃] FFig.53 ig.53 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature VCC-VOUT電圧差[V] VCC-VOUT [V] VOUT-VEE電圧差[V] VOUT-VEE [V] (RL=10[kΩ]) (RL=10[kΩ]) Fig.54 Fig.54 Output Source Current - (VCC-VOUT) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3472Rファミリ BA3472R family Fig.55 Fig.55 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3472R ファミリ BA3472R family 5 BA3472R family BA3472R ファミリ INPUT OFFSET VOLTAGE[mV] 3 2 1 0 -1 -2 -3 -4 -5 -20 -15 -10 -5 0 5 10 15 105℃ -40℃ 25℃ 2 -40℃ 25℃ INPUT OFFSET VOLTAGE[mV] INPUT OFFSET VOLTAGE[mV] 4 2 30V 36V 1 0 -1 -2 -3 0 5 10 15 20 25 30 35 40 1 0 5V 105℃ -1 -2 -3 -50 -25 0 25 50 75 100 125 COMMON MODE INPUT VOLTAGE[V] Fig.56 Fig.56 Input Offset Voltage 入力オフセット電圧-同相入力電圧特性 - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed Fig.57 Fig.57 入力オフセット電圧-電源電圧特性 Input Offset Voltage - Supply voltage SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.58 Fig.58 Input Offset Voltage - Ambient Temperature 入力オフセット電圧-温度特性 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 10/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3472R family 100 BA3472Rファミリ BA3472R family Technical Note 100 BA3472R family BA3472R ファミリ 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 5 10 105℃ 25℃ -40℃ BA3472R family BA3472R ファミリ INPUT BIAS CURRENT[nA] 80 -40℃ 25℃ INPUT BIAS CURRENT[nA] 80 5V 30V 60 60 40 105℃ 40 36V 20 20 0 0 5 10 15 20 25 30 35 40 0 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 Fig.59 Fig.59 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 10V 30V Fig.60 Fig.60 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 140 130 120 110 BA3472Rファミリ BA3472R family Fig.61 Fig.61 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 -Supply Voltage 150 140 130 120 110 100 90 80 70 60 50 40 5V 30V 36V BA3472R ファミリ BA3472R family BA3472R family BA3472R ファミリ CMRR[dB] 110 100 90 80 70 60 50 -50 -25 0 25 50 75 100 125 36V 100 90 80 70 60 50 40 0 5 10 15 20 25 30 35 40 -40℃ 25℃ 105℃ CMRR[dB] -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.62 Fig.62 Large Signal Voltage Gain 大振幅電圧利得-温度特性 -Ambient Temperature BA3472Rファミリ BA3472R family -40℃ 25℃ Fig.63 Fig.63 Common Mode Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage BA3472Rファミリ BA3472R family Fig.64 Fig.64 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature BA3472R family BA3472R ファミリ 14 12 14 36V 50 PHASE 30V 0 -30 -60 -90 -120 -150 -180 1 10 100 1000 10000 12 SLEW RATE(RISE)[V/μs] SLEW RATE(RISE)[V/μs] 40 10 8 6 105℃ 10 8 6 5V VOLTAGE GAIN[dB] 15V 20 10 0 -10 4 2 0 0 5 10 15 20 25 30 SUPPLY VOLTAGE[V] 35 40 4 2 0 -50 -25 0 3V 25 50 75 100 125 AMBIENT TEMPERATURE[℃] FREQUENCY[kHz] スルーレート(L-H)-電源電圧特性 (RL=10[kΩ]) ( RL=10[kΩ] ) 12 BA3472R family BA3472R ファミリ Fig.65 Fig.65 Slew Rate L-H - Supply Voltage Fig.66 Slew Rate L-H - Fig.66 Temperature Ambient スルーレート(L-H)-温度特性 (RL=10[kΩ]) ( RL=10[kΩ] ) 100 BA3472R family BA3472R ファミリ 電圧利得-周波数特性 (VCC=7.5[V]/-7.5[V], Av=40[dB], (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) Fig.67 Fig.67 Voltage Gain - Frequency INPUT/OUTPUT VOLTAGE[mV] INPUT/OUTPUT VOLTAGE[V] 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 1 2 3 4 5 6 7 8 INPUT OUTPUT 80 60 40 20 0 -20 -40 -60 -80 0.0 0.5 1.0 1.5 2.0 2.5 INPUT OUTPUT -100 TIME[μs] TIME[μs] (VCC/VEE=+15[V]/-15[V],Av=0[dB] (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed RL=2[kΩ],CL=100[pF],Ta=25[℃]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. (VCC/VEE=15[V]/-15[V], Av=0[dB], Fig.68 Fig.68 Input /大信号応答特性 Time Output Voltage - (VCC/VEE=15[V]/-15[V], Av=0[dB], Fig.69 Fig.69 Input小信号入出力波形Time / Output Voltage - 11/20 2011.08 - Rev.B PHASE[deg] 30 GAIN BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3474R family 1000 BA3474R ファミリ BA3474R family Technical Note 12 BA3474R family BA3474Rファミリ 12 10 30V BA3474R family BA3474Rファミリ SUPPLY CURRENT [mA] POWER DISSIPATION[mW] 800 -40℃ SUPPLY CURRENT [mA] 10 8 6 105℃ 25℃ 8 6 4 2 0 3V 36V 600 BA3474RFV 400 4 2 0 5V 200 0 0 25 50 75 100 105 125 0 5 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig.70 Fig.69 Derating Curve ディレーティングカーブ 40 35 -40℃ Fig.71 Fig.70 Supply Current電源電圧特性 回路電流 - - Supply Voltage 40 35 30 25 20 15 10 5 0 5V 3V 30V 36V Fig.72 Fig.71 Supply Current - Ambient Temperature 回路電流 - 温度特性 1.0 BA3474R family BA3474R ファミリ BA3474R ファミリ BA3474R family BA3474R family BA3474R ファミリ OUTPUT VOLTAGE[V] 30 25℃ 25 20 15 10 5 0 0 10 20 30 40 105℃ OUTPUT VOLTAGE[V] OUTPUT VOLTAGE[V] 0.8 0.6 0.4 105℃ 25℃ -40℃ 0.2 0.0 -50 -25 0 25 50 75 100 125 0 10 20 30 40 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE[V] Fig.73 Fig.72 High level Output Voltage High レベル出力電圧-電源電圧特性 -(RL=10[kΩ]) Supply Voltage (RL=10[kΩ]) 1.0 BA3474R family BA3474R ファミリ Fig.74 Fig.73 High level Output Voltage High レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) BA3474Rファミリ BA3474R family Fig.75 Fig.74 Low level Output Voltage Low レベル出力電圧-電源電圧特性 - Supply Voltage (RL=10[kΩ]) (RL=10[kΩ]) 100.0 BA3474R family BA3474R ファミリ 100.0 OUTPUT SOURCE CURRENT[mA] OUTPUT VOLTAGE[V] 0.8 OUTPUT SINK CURRENT[mA] -40℃ 25℃ 105℃ 25℃ 10.0 10.0 0.6 0.4 36V 30V 5V 3V 1.0 105℃ 25℃ 1.0 0.2 -40℃ 0.0 -50 -25 0 25 50 75 100 125 0.1 0 0.5 1 1.5 2 2.5 3 0.1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 AMBIENT TEMPERATURE [℃] VCC-VOUT [V] VCC-VOUT電圧差[V] VOUT-VEE電圧差[V] VOUT-VEE [V] Fig.76 Fig.75 Low level Output Voltage Low レベル出力電圧-温度特性 - Ambient Temperature (RL=10[kΩ]) (RL=10[kΩ]) 出力ソース電流-VCC-VOUT電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) BA3474R ファミリ BA3474R family Fig.77 Fig.76 Output Source Current - (VCC-VOUT) Fig.77 Output Source Current - (VOUT-VEE) 出力シンク電流-VOUT-VEE電圧差特性 (VCC/VEE=5[V]/0[V]) (VCC/VEE=5[V]/0[V]) 3 BA3474R ファミリ BA3474R family Fig.78 5 BA3474R family BA3474R ファミリ 3 INPUT OFFSET VOLTAGE[mV] INPUT OFFSET VOLTAGE[mV] INPUT OFFSET VOLTAGE[mV] 4 3 2 1 0 -1 -2 -3 -4 -5 -20 -15 -10 -5 0 5 10 15 105℃ 25℃ -40℃ 2 -40℃ 25℃ 2 1 0 -1 -2 -3 30V 36V 1 0 -1 -2 -3 0 5 10 15 20 25 30 35 40 105℃ 5V -50 -25 0 25 50 75 100 125 COMMON MODE INPUT VOLTAGE[V] Fig.78 Fig.79 入力オフセット電圧-同相入力電圧特性 Input Offset Voltage - Common Model Input Voltage (VCC/VEE=15[V]/-15[V]) (*)The data above is ability value of sample, it is not guaranteed Fig.79 Fig.80 Input Offset Voltage - Supply voltage 入力オフセット電圧-電源電圧特性 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.81 Fig.80 Input Offset Voltage -Ambient Temperature 入力オフセット電圧-温度特性 (VCC/VEE=15[V]/-15[V]) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 12/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Reference Data BA3474R family 100 BA3474R family BA3474R ファミリ Technical Note 100 BA3474R family BA3474R ファミリ 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 5 10 15 20 25 105℃ -40℃ 25℃ BA3474Rファミリ BA3474R family INPUT BIAS CURRENT[nA] INPUT BIAS CURRENT[nA] 80 -40℃ 25℃ 80 5V 30V 60 60 40 105℃ 40 36V 20 20 0 0 5 10 15 20 25 30 35 40 0 -50 -25 0 25 50 75 100 125 30 35 40 SUPPLY VOLTAGE[V] Fig.82 Fig.81 Input Bias Current - Supply voltage 入力バイアス電流-電源電圧特性 150 LARGE SIGNAL VOLTAGE GAIN[dB] 140 130 120 110 100 90 80 70 60 50 -50 -25 0 25 50 75 100 125 36V 10V 30V AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE[V] Fig.83 Fig.82 Input Bias Current - Ambient Temperature 入力バイアス電流-温度特性 140 130 120 110 BA3474Rファミリ BA3474R family Fig.84 Fig.83 Large Signal Voltage Gain 大振幅電圧利得-電源電圧特性 -Supply Voltage 150 140 130 120 110 100 90 80 70 60 50 40 5V 30V 36V BA3474R family BA3474R ファミリ BA3474R family BA3474R ファミリ CMRR[dB] 100 90 80 70 60 50 40 0 5 10 15 20 25 30 35 40 -40℃ 25℃ 105℃ CMRR[dB] -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE[℃] Fig.85 Large Signal Fig.84 Gain Voltage 大振幅電圧利得-温度特性 -Ambient Temperature BA3474R family BA3474R ファミリ -40℃ 25℃ Fig.86 Common ModeFig.85 Rejection Ratio 同相信号除去比-電源電圧特性 -Supply Voltage BA3474Rファミリ BA3474R family SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] Fig.87 Fig.86 Common Mode Rejection Ratio 同相信号除去比-温度特性 -Ambient Temperature BA3474R ファミリ BA3474R family PHASE 14 12 14 12 36V 30V 50 40 0 -30 -60 -90 SLEW RATE(RISE)[V/μs] SLEW RATE(RISE)[V/μs] 10 8 6 4 2 0 0 5 10 8 15V VOLTAGE GAIN[dB] 30 20 10 0 -10 6 4 2 0 5V 3V 105℃ -120 -150 -180 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 125 1 10 100 1000 10000 SUPPLY VOLTAGE[V] AMBIENT TEMPERATURE[℃] スルーレート(L-H)-電源電圧特性 (RL=10[kΩ]) ( RL=10[kΩ] ) BA3474Rファミリ BA3474R family Fig.88 Fig.87 Slew Rate L-H - Supply Voltage Fig.89 Fig.88 Slew Rate L-H - Ambient Temperature スルーレート(L-H)-温度特性 (RL=10[kΩ]) ( RL=10[kΩ] ) BA3474R family BA3474R ファミリ (VCC/VEE=+15[V]/-15[V],Av=40[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (VCC=7.5[V]/-7.5[V], Av=40[dB], FFig.89 ig.90 Voltage Gain - Frequency 電圧利得-周波数特性 FREQUENCY[kHz] 12 100 INPUT/OUTPUT VOLTAGE[mV] 10 INPUT/OUTPUT VOLTAGE[V] 80 60 40 20 0 -20 -40 -60 -80 0.0 0.5 1.0 1.5 2.0 2.5 INPUT 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 1 2 3 4 5 6 7 8 INPUT OUTPUT OUTPUT -100 (*)The data above is ability value of sample, it is not guaranteed (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) (VCC/VEE=15[V]/-15[V], Av=0[dB], Fig.91 Fig.90 Input / Output Voltage - Time 大信号応答特性 TIME[μs] 小信号入出力波形 (VCC/VEE=15[V]/-15[V], Av=0[dB], (VCC/VEE=+15[V]/-15[V],Av=0[dB] RL=2[kΩ],CL=100[pF],Ta=25[℃]) RL=2[kΩ],CL=100[pF],Ta=25[℃]) Fig.92 Fig.91 Input / Output Voltage - Time TIME[μs] www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 13/20 2011.08 - Rev.B PHASE[deg] GAIN BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Schematic diagram VCC Technical Note VIN- VOUT VIN+ VEE Fig.93 Schematic diagram (one channel only) ●Test circuit 1 NULL method VCC, VEE, EK, Vicm Unit : [V] Parameter Input Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain Common-mode Rejection Ratio (Input Common-mode Voltage Range) Power Supply Rejection Ratio -Calculation- 1. Input Offset Voltage (Vio) Vio = | VF1 | 1 + Rf / Rs [V] C2 0.1[µF] VF VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9 VF10 S1 ON OFF OFF ON ON ON ON S2 ON OFF ON OFF ON ON ON S3 OFF OFF OFF ON OFF OFF VCC 15 15 15 15 15 15 15 2 18 VEE -15 -15 -15 -15 -15 -15 -15 -2 -18 EK 0 0 0 +10 -10 0 0 0 0 Vicm Calculation 0 0 0 0 0 -15 13 0 0 1 2 3 4 5 6 2. Input Offset Current (Iio) Iio = | VF2-VF1 | Ri ×(1 + Rf / Rs) S1 Rs Ri DUT S3 VEE C3 1000[pF] RK 500[kΩ] NULL -15[V] VCC [A] Rf 50[kΩ] EK RK 500[kΩ] C1 0.1[µF] +15[V] 3. Input Bias Current (Ib) Ib = | VF4-VF3 | 2×Ri× (1 + Rf / Rs) [A] 50[Ω] 10[kΩ] 50[Ω] 10[kΩ] Rs Ri S2 4. Large Signal Voltage Gain (Av) Av = 20×Log ΔEK×(1+Rf /Rs) |VF5-VF6| [dB] Vicm RL V VF 5. Common-mode Rejection Ratio (CMRR) CMRR = 20×Log ΔVicm×(1+Rf /Rs) |VF8-VF7| [dB] Fig.94 Test circuit 1 (one channel only) 6. Power Supply Rejection Ratio (PSRR) PSRR = 20×Log ΔVcc×(1+Rf /Rs) |VF10-VF9| [dB] www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 14/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Test circuit2 switch condition Technical Note SW No. Supply Current High Level Output Voltage Low Level Output Voltage Output Source Current Output Sink Current Slew Rate Gain Bandwidth Product Equivalent Input Noise Voltage SW 1 SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 SW 8 SW 9 SW 10 SW 11 SW 12 SW 13 SW 14 OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON ON OFF OFF OFF ON ON ON OFF OFF OFF OFF ON OFF OFF OFF OFF ON OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF SW4 電圧 VH Voltage SW5 R2 VCC A VL Input Voltage Waveform time - SW1 SW2 SW3 SW6 SW7 SW8 VEE 入力電圧波形 電圧 SW9 SW10 SW11 SW12 SW13 SW14 時間 + Voltage RS R1 VH A ΔV ~ VIN- VIN+ ~ RL CL V ~ V VOUT VL Δt Output Voltage Waveform time 出力電圧波形 時間 Fig.95 Test circuit 2 (one channel only) Fig.96 Slew rate input output wave ●Test circuit 3 Channel separation VCC VCC R1//R2 R1//R2 OTHER CH VEE R1 VIN R2 V VOUT1 =0.5[Vrms] R1 R2 VEE VOUT2 V CS=20 × log 100 × VOUT1 VOUT2 Fig.97 Test circuit 3 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 15/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Notes for use Technical Note 1) Unused circuits When there are unused circuits it is recommended that they are connected as in Fig.98, setting the non-inverting input terminal to a potential within input common-mode voltage range (Vicm). 2) Input terminal voltage Applying GND + 36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. 3) Power supply (single / dual) The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply op-amp can be used as dual supply op-amp as well. Please keep this potential in Vicm VCC + VEE Fig.98 Unused circuit example 4) Power dissipation Pd Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects. 9) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 10) Output capacitor Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1µF. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 16/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.99 (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: ・・・・・ (Ⅰ) θja = (Tj-Ta) / Pd [℃/W] Derating curve in Fig.99 (b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.100(c) ~ (f) shows a derating curve for an example of BA3472, BA3474, BA3472R, BA3474R. LSI の 消 費 電 力 [ W] Power dissipation of LSI Pd (max) P2 θja2 < θja1 θja = ( Tj ー Ta ) / Pd [℃/W] Ambient temperature Ta [℃] 周囲温度 P1 θ' ja2 θ ja2 Tj ' (max) Tj (max) θ' ja1 θ ja1 75 100 125 150 Chip surfaceチップ 表面温度 Tj [℃] temperature 消費電力 P [W] Power dissipation Pd[W] 0 25 50 周囲温度 Ambient temperature Ta [ ℃ ] (a) Thermal resistance 1000 780mW(*10) 690mW(*11) (b) Derating curve Fig. 99 Thermal resistance and derating curve 1000 870mW(*13) BA3472F BA3472FV 許容損失 Pd [mW] POWER DISSIPATION Pd [mW] POWER DISSIPATION Pd [mW] 800 800 610mW(*14) BA3474FV 600 590mW(*12) 許容損失 Pd [mW] 600 400 BA3472FVM 400 BA3474F 200 200 0 0 25 50 75 85 100 125 0 0 25 50 75 85 100 125 Ambient周囲温度 Ta [℃:] Ta[℃] Temperature Ambient Temperature ]: Ta[℃] 周囲温度 Ta [℃ (c)BA3472 family 1000 1000 (d)BA3474 family 870mW(*13) Pd [mW] POWER DISSIPATION Pd [mW] POWER DISSIPATION Pd [mW] 800 BA3472RFVM 590mW(*12) 800 BA3474RFV 600 許容損失 Pd [mW] 100 105 600 許容損失 400 400 200 200 0 0 25 50 75 125 0 0 25 50 75 100 105 周囲温度 [℃] Ambient Temperature : Ta[℃] 125 周囲温度 Ta [℃] Ambient Temperature : Ta[℃] (e)BA3472R family (f)BA3474R family (*10) 6.2 (*11) 5.5 (*12) 4.7 (*13) 7.0 (*14) 4.9 Unit [mW/℃] When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted. Fig. 100 Derating curve www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 17/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note ●Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents. 1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC-VEE) Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0 V. 2.2 Input offset current (Iio) Indicates the difference of input bias current between the non-inverting and inverting terminals. 2.3 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.4 Circuit current (ICC) Indicates the current of the IC itself that flows under specified conditions and during no-load steady state. 2.5 maximum output voltage (VOM) Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into high-level output voltage and low-level output voltage. 2.6 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AV = (output voltage fluctuation) / (input offset fluctuation) 2.7 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally. 2.8 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.9 Power supply rejection ratio (PSRR) Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation). SVR = (change in power supply voltage) / (input offset fluctuation) 2.10 Channel separation (CS) Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.11 Slew rate (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.12 Maximum frequency (ft) Indicates a frequency where the voltage gain of Op-Amp is 1. 2.13 Total harmonic distortion + Noise (THD+N) Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of driven channel. 2.14 Input referred noise voltage (Vn) Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series with input terminal. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 18/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV ●Ordering part number Technical Note B A 3 4 7 2 F V - E 2 Part No. Part No. ・3472 ・3472R ・3474 ・3474R Package F : SOP8 SOP14 FV : SSOP-B8 SSOP-B14 FVM : MSOP8 Packaging and forming specification E2: Embossed tape and reel (SOP8/SOP14/SSOP-B8/SSOP-B14) TR: Embossed tape and reel (MSOP8) SOP8 5.0±0.2 (MAX 5.35 include BURR) 8 7 6 5 +6° 4° −4° 0.9±0.15 0.3MIN Tape Quantity Direction of feed Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.2±0.3 4.4±0.2 ( reel on the left hand and you pull out the tape on the right hand ) 12 3 4 0.595 1.5±0.1 +0.1 0.17 -0.05 S 0.1 0.11 S 1.27 0.42±0.1 1pin Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. SOP14 8.7 ± 0.2 (MAX 9.05 include BURR) 14 8 Tape Quantity Direction of feed 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.2 ± 0.3 4.4 ± 0.2 ( reel on the left hand and you pull out the tape on the right hand ) 1 7 0.15 ± 0.1 1.5 ± 0.1 0.11 1.27 0.4 ± 0.1 0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. SSOP-B8 3.0 ± 0.2 (MAX 3.35 include BURR) 876 5 Tape Quantity 0.3MIN Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.4 ± 0.3 4.4 ± 0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 1234 1.15 ± 0.1 0.15 ± 0.1 S 0.1 0.22± 0.10 0.08 M 0.1 (0.52) 0.65 1pin Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 19/20 2011.08 - Rev.B BA3472F,BA3472FV,BA3472FVM,BA3472RFVM, BA3474F,BA3474FV,BA3474RFV Technical Note SSOP-B14 5.0 ± 0.2 14 8 Tape Quantity 0.3Min. Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 6.4 ± 0.3 4.4 ± 0.2 Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 1 7 0.15 ± 0.1 1.15 ± 0.1 0.10 0.65 0.1 0.22 ± 0.1 1pin (Unit : mm) Direction of feed Reel ∗ Order quantity needs to be multiple of the minimum quantity. MSOP8 2.9±0.1 (MAX 3.25 include BURR) 8765 Tape 0.29±0.15 0.6±0.2 Embossed carrier tape 3000pcs TR The direction is the 1pin of product is at the upper right when you hold +6° 4° −4° Quantity Direction of feed 4.0±0.2 2.8±0.1 ( reel on the left hand and you pull out the tape on the right hand 1pin ) 1 234 1PIN MARK 0.475 0.9MAX +0.05 0.145 −0.03 S 0.75±0.05 0.08±0.05 +0.05 0.22 −0.04 0.08 S 0.65 Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 20/20 2011.08 - Rev.B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. R1120A
BA3472RFVM 价格&库存

很抱歉,暂时无法提供与“BA3472RFVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货