0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BA7824CP-E2

BA7824CP-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    TO-220-3

  • 描述:

    IC REG LINEAR 24V 1A TO220CP-3

  • 详情介绍
  • 数据手册
  • 价格&库存
BA7824CP-E2 数据手册
78 Series Regulators 1A Output 78 series Regulators 500mA Output 78 series Regulators BA78□□Series,BA78M□□Series No.12019ECT01 ●Description BA78□□, BA78M□□ series are three-terminal regulators available with several fixed output voltages. It supplies the stable fixes voltage from unstable direct input voltage. The useful output voltage lineup is 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V with 0.5A / 1A current ability. They have nearly same electric characteristics as competitor products and cover a wide range of application. ●Features 1) Built-in over-current protection circuit and thermal shutdown circuit 2) High ripple rejection 3) Available TO220CP-3, TO252-3 package to a wide range application 4) Compatible replacement to competitor products 5) Various voltage lineup (5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V) ●Applications Fixed voltage power supply for TV, Audio components, etc ●Line up ■1A BA78□□Series Part Number 5V BA78□□CP ○ BA78□□FP ○ 6V ○ ○ 7V ○ ○ 8V ○ ○ 9V ○ ○ 10V ○ ○ 12V ○ ○ 15V ○ ○ 18V ○ ○ 20V ○ ○ 24V ○ ○ Package TO220CP-3 TO252-3 ■0.5A BA78M□□Series Part Number 5V 6V BA78M□□CP ○ ○ BA78M□□FP ○ ○ 7V ○ ○ 8V ○ ○ 9V ○ ○ 10V ○ ○ 12V ○ ○ 15V ○ ○ 18V ○ ○ 20V ○ ○ 24V ○ ○ Package TO220CP-3 TO252-3 ●Output Voltage and Marking Part Number:BA78□□□□ a b Symbol a (1A) Part Number:BA78M□□□□ a b assignment of output voltage □□ 05 06 07 08 09 10 b Symbol Output voltage(V) □□ Output voltage(V) 5.0V typ. 12 12V typ. 6.0V typ. 15 15V typ. 7.0V typ. 18 18V typ. 8.0V typ. 20 20V typ. 9.0V typ. 24 24V typ. 10.0V typ. Package CP:TO220CP-3 FP:TO252-3 www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. 1/12 a b (0.5A) assignment of output voltage □□ Output voltage(V) □□ 05 5.0V typ. 12 06 6.0V typ. 15 07 7.0V typ. 18 08 8.0V typ. 20 09 9.0V typ. 24 10 10.0V typ. Package CP:TO220CP-3 FP:TO252-3 Output voltage(V) 12V typ. 15V typ. 18V typ. 20V typ. 24V typ. 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Absolute Maximum Rating (Ta=25℃) BA78□□CP/FP, BA78M□□CP/FP Parameter Power supply voltage TO220CP-3 Power Dissipation 1 TO252-3 TO220CP-3 Power Dissipation 2 TO252-3 BA78□□ Output Current BA78□□M Operating Temperature Range Storage Temperature Range Operating Junction Temperature Range Symbol Vin Limits 35 2 *1 1 *1 *2 22 10 *2 1 *3 0.5 *3 -40~+85 -55~+150 -40~+150 Pd1 Pd2 Io Topr Tstg Tj Unit V W W A ℃ ℃ ℃ *1 Derating in done 16mW/℃(TO220CP-3), 8mW/℃(TO252-3) for temperatures above Ta=25℃ *2 Derating in done 176mW/℃(TO220CP-3), 80mW/℃(TO252-3) for temperatures above Ta=25℃, Mounted on infinity Alminium heat sink. *3 Pd,ASO and Tjmax(150℃) should not be exceeded. ●Operating Conditions(Ta=25℃, Pd should not be exceeded) BA78□□CP/FP Parameter Symbol Min. Max. Unit. BA7805 7.5 25 BA7806 8.5 21 BA7807 9.5 22 BA7808 10.5 23 BA7809 11.5 26 Input BA7810 12.5 25 Vin V Voltage BA7812 14.5 27 BA7815 17.5 30 BA7818 21 33 BA7820 23 33 BA7824 27 33 Output Current Io 1 A www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. 2/12 BA78M□□CP/FP Parameter BA78M05 BA78M06 BA78M07 BA78M08 BA78M09 Input BA78M10 Voltage BA78M12 BA78M15 BA78M18 BA78M20 BA78M24 Output Current Symbol Vin Io Min. 7.5 8.5 9.5 10.5 11.5 12.5 14.5 17.5 21 23 27 - Max. 25 21 22 23 26 25 27 30 33 33 33 0.5 Unit. V A 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Electrical Characteristics BA78M□□CP/FP (Ta=25℃,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24), Io=350mA unless otherwise specified) Parameter Output Voltage 1 Symbol Vo1 Output Voltage 2 Vo2 Line Regulation 1 Reg.I1 Line Regulation 2 Reg.I2 Ripple Rejection R.R. Temperature Coefficient of Output Voltage Tcvo Peak Output Current Dropout Voltage Io-p Vd Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06/07/08/09/10/12 15/18 20/24 common common www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. Min 4.8 5.75 6.7 7.7 8.6 9.6 11.5 14.4 17.3 19.2 23.0 4.75 5.7 6.65 7.6 8.55 9.5 11.4 14.25 17.1 19.0 22.8 62 60 57 56 56 56 55 54 53 53 50 - 3/12 Limit Typ 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 18.0 20.0 24.0 3 3 4 4 4 5 5 6 7 8 10 1 1 1 1 2 2 3 3 3 4 5 78 74 71 69 67 66 63 60 58 58 55 -1.0 -0.5 -0.6 -0.7 875 2.0 Max 5.2 6.25 7.3 8.3 9.4 10.4 12.5 15.6 18.7 20.8 25.0 5.25 6.3 7.35 8.4 9.45 10.5 12.6 15.75 18.9 21.0 25.2 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 - Unit V V mV mV dB mV/℃ mA V Condition Io=350mA Vin=7.5~20V, Io=5mA~350mA Vin=8.5~21V, Io=5mA~350mA Vin=9.5~22V, Io=5mA~350mA Vin=10.5~23V, Io=5mA~350mA Vin=11.5~24V, Io=5mA~350mA Vin=12.5~25V, Io=5mA~350mA Vin=15~27V, Io=5mA~350mA Vin=17.5~30V, Io=5mA~350mA Vin=21~33V, Io=5mA~350mA Vin=23~33V, Io=5mA~350mA Vin=27~33V, Io=5mA~350mA Vin=7~25V, Io=200mA Vin=8~25V, Io=200mA Vin=9~25V, Io=200mA Vin=10.5~25V, Io=200mA Vin=11.5~26V, Io=200mA Vin=12.5~28V, Io=200mA Vin=14.5~30V, Io=200mA Vin=17.5~30V, Io=200mA Vin=21~33V, Io=200mA Vin=23~33V, Io=200mA Vin=27~33V, Io=200mA Vin=8~12V, Io=200mA Vin=9~25V, Io=200mA Vin=10~25V, Io=200mA Vin=11~25V, Io=200mA Vin=12~25V, Io=200mA Vin=14~26V, Io=200mA Vin=16~30V, Io=200mA Vin=20~30V, Io=200mA Vin=24~33V, Io=200mA Vin=24~33V, Io=200mA Vin=28~33V, Io=200mA ein=1Vrms, f=120Hz, Io=100mA Io=5mA, Tj=0~125℃ Tj=25℃ Io=500mA 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Electrical Characteristics BA78M□□CP/FP (Ta=25℃,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24),Io=350mA unless otherwise specified) Parameter Symbol Load Regulation 1 Reg.L1 Load Regulation 2 Reg.L2 Output Noise Voltage Vn Bias Current Bias Current Change1 Ib Ib1 Bias Current Change 2 Ib2 Short-Circuit Output Current Ios Output Resistance Ro www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 common common 05 06 07 08 09 10 12 15 18 20 24 05/06/07/08 09/10/12/15/18/20/24 05 06 07 08 09 10 12 15 18 20 24 Min - 4/12 Limit Typ 20 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 40 60 70 80 90 100 110 130 140 150 170 4.5 0.4 0.17 9 10 11 12 13 14 16 19 22 25 37 Max 100 120 140 160 180 200 240 300 360 400 480 50 60 70 80 90 100 120 150 180 200 240 6.0 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 - Unit Condition mV Io=5mA~500mA mV Io=5mA~200mA µV f=10Hz~100kHz mA mA Io=0mA Io=5mA~350mA Vin:8~25V, Io=200mA Vin:9~25V, Io=200mA Vin:10~25V, Io=200mA Vin:10.5~25V, Io=200mA Vin:12~25V, Io=200mA Vin:13~25V, Io=200mA Vin:14.5~30V, Io=200mA Vin:17.5~30V, Io=200mA Vin:21~33V, Io=200mA Vin:23~33V, Io=200mA Vin:27~33V, Io=200mA Vin=25V Vin=30V mA A mΩ f=1kHz 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Electrical Characteristics BA78□□CP/FP (Ta=25℃,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24),Io=500mA unless otherwise specified) Parameter Output Voltage 1 Symbol Vo1 Output Voltage 2 Vo2 Line Regulation 1 Reg.I1 Line Regulation 2 Reg.I2 Ripple Rejection R.R. Temperature Coefficient of Output Voltage Tcvo Peak Output Current Dropout Voltage Io-p Vd www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06/07/08/09/10/12 15/18 20/24 common common Min 4.8 5.75 6.7 7.7 8.6 9.6 11.5 14.4 17.3 19.2 23.0 4.75 5.7 6.65 7.6 8.55 9.5 11.4 14.25 17.1 19.0 22.8 62 59 57 56 56 55 55 54 53 53 50 - 5/12 Limit Typ 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 18.0 20.0 24.0 3 4 5 5 6 7 8 9 10 12 15 1 2 2 3 4 4 5 5 5 7 10 78 73 69 65 64 64 63 62 61 60 58 -1.0 -0.5 -0.6 -0.7 1.7 2.0 Max 5.2 6.25 7.3 8.3 9.4 10.4 12.5 15.6 18.7 20.8 25.0 5.25 6.3 7.35 8.4 9.45 10.5 12.6 15.75 18.9 21.0 25.2 100 120 140 160 180 200 240 300 360 400 480 50 60 70 80 90 100 120 150 180 200 240 - Unit V V mV mV Condition Io=500mA Vin=7.5~20V, Io=5mA~1A Vin=8.5~21V, Io=5mA~1A Vin=9.5~22V, Io=5mA~1A Vin=10.5~23V, Io=5mA~1A Vin=11.5~26V, Io=5mA~1A Vin=12.5~25V, Io=5mA~1A Vin=15~27V, Io=5mA~1A Vin=17.5~30V, Io=5mA~1A Vin=21~33V, Io=5mA~1A Vin=23~33V, Io=5mA~1A Vin=27~33V, Io=5mA~1A Vin=7~25V, Io=500mA Vin=8~25V, Io=500mA Vin=9~25V, Io=500mA Vin=10.5~25V, Io=500mA Vin=11.5~26V, Io=500mA Vin=12.5~27V, Io=500mA Vin=14.5~30V, Io=500mA Vin=17.5~30V, Io=500mA Vin=21~33V, Io=500mA Vin=23~33V, Io=500mA Vin=27~33V, Io=500mA Vin=8~12V, Io=500mA Vin=9~13V, Io=500mA Vin=10~15V, Io=500mA Vin=11~17V, Io=500mA Vin=13~19V, Io=500mA Vin=14~20V, Io=500mA Vin=16~22V, Io=500mA Vin=20~26V, Io=500mA Vin=24~30V, Io=500mA Vin=26~32V, Io=500mA Vin=30~33V, Io=500mA dB ein=1Vrms, f=120Hz, Io=100mA mV/℃ Io=5mA, Tj=0~125℃ A V Tj=25℃ Io=1A 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Electrical Characteristics BA78□□CP/FP (Ta=25℃,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24),Io=500mA unless otherwise specified) Parameter Symbol Load Regulation 1 Reg.L1 Load Regulation 2 Reg.L2 Output Noise Voltage Vn Bias Current Bias Current Change 1 Ib Ib1 Bias Current Change 2 Ib2 Short-Circuit Output Current Ios Output Resistance Ro www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 common common 05 06 07 08 09 10 12 15 18 20 24 05/06/07/08 09/10/12/15/18/20/24 05 06 07 08 09 10 12 15 18 20 24 Min - - 6/12 Limit Typ 15 16 17 19 20 21 23 27 30 32 37 5 6 6 7 8 8 10 10 12 14 15 40 60 70 80 90 100 110 125 140 150 180 4.5 0.6 0.3 9 10 10 10 10 11 12 14 17 19 27 Max 100 120 140 160 180 200 200 300 360 400 480 50 60 70 80 90 90 100 150 180 200 240 8.0 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 - Unit Condition mV Io=5mA~1A mV Io=250mA~750mA µV f=10Hz~100kHz mA mA Io=0mA Io=5mA~1A Vin:8~25V, Io=500mA Vin:8.5~25V, Io=500mA Vin:9.5~25V, Io=500mA Vin:10.5~25V, Io=500mA Vin:11.5~26V, Io=500mA Vin:12.5~27V, Io=500mA Vin:14.5~30V, Io=500mA Vin:17.5~30V, Io=500mA Vin:21~33V, Io=500mA Vin:23~33V, Io=500mA Vin:27~33V, Io=500mA Vin=25V Vin=30V mA A mΩ f=1kHz 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●BA78M□□ Characteristics data(Ta=25℃, Vin=10V(05), 14V(08), 23V(15) unless otherwise specified) 20 20 20 Ta=25℃ Ta=25℃ Io=0mA 15 Io=350mA 15 Vo [V] Vo [V] Vo [V] 10 BA78M08 5 BA78M05 BA78M05 0 15 20 25 0 30 0 5 10 Vin [V] Fig.1 Line Regulation (Io=0mA) 15 20 25 30 0 Ta=25℃ 5 10 15 20 25 30 Vin [V] Vin [V] Fig.2 Line Regulation (Io=350mA) Fig.3 Line Regulation(Io=500mA) 2.0 20 6 Ta=25℃ Io=0mA Ta=25℃ BA78M05 5 15 4 BA78M15 1.5 BA78M08 BA78M05 3 BA78M15 Io-p [A] BA78M08 Vo [V] Ib [mA] BA78M05 0 10 10 BA78M08 5 5 BA78M15 BA78M08 5 0 Io=500mA Io=500mA 15 BA78M15 BA78M15 10 Ta=25℃ Ta=25℃ 10 BA78M08 2 5 BA78M05 BA78M15 1.0 0.5 1 0 0 0 5 10 15 20 25 30 0.0 0.0 0.5 1.0 Vin [V] 1.5 10 15 25 30 Fig.6 Peak Output Current 100 1.0 Ta=25℃ Ta=25℃ 0.8 BA78M05 80 BA78M05 BA78M08 BA78M15 1.5 BA78M05 BA78M08 BA78M15 20 Vin [V] Fig.5 Load Regulation 2.0 R.R. [dB] 0.6 Ios [A] 1.0 5 Io [A] Fig.4 V IN - Ib Io Vin Vd [V] 0 2.0 0.4 60 BA78M08 BA78M15 40 0.5 0.2 0.0 0 0.0 0 0.1 0.2 0.3 0.4 0.5 0 0 5 10 Io [A] 20 25 10 10 30 Ta=25℃ BA78M15 5 BA78M15 Ib[mA] 4 0.0 BA78M15 4 BA78M08 BA78M08 BA78M08 3 BA78M05 2 -0.5 BA78M08 1 0 0 20 40 Ta [℃] 60 80 BA78M05 BA78M05 -1.5 0 3 2 1 -1.0 -20 BA78M15 5 Ib [mA] BA78M05 1M 1000000 6 Io=0mA 1.0 1K 10K 100K 1000 10000 100000 Frequency[Hz] Frequency [Hz] 6 Io=5mA 0.5 100 100 Fig.9 Ripple Rejection Ratio Fig.8 Short – Circuit Output Current 1.5 ⊿Vo/Vo [%] 15 Vin [V] Fig.7 Dropout Voltage -40 Ta=25℃ Io=100mA 20 100 Fig.10 Ta - Vo www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. -40 -20 0 20 40 Ta[℃] Fig.11 Ta - Ib 7/12 60 80 100 0 0.1 0.2 0.3 0.4 0.5 Io [A] Fig.12 Io - Ib 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●BA78□□ Characteristics data (Ta=25℃, Vin=10V(05), 14V(08), 23V(15) 20 20 20 Ta=25℃ Ta=25℃ Io=0mA 15 Io=500mA 15 BA7815 10 10 BA7808 BA7808 5 5 0 BA7808 5 BA7805 BA7805 5 10 15 20 25 30 BA7805 0 0 0 0 5 10 Vin [V] 15 20 25 0 30 5 10 Fig.14 Line Regulation (Io=500mA) 6 20 25 30 Fig15. Line Regulation (Io=1A) 20 Ta=25℃ 15 Vin [V] Vin [V] Fig.13 Line Regulation (Io=0mA) 2.0 Io=0mA Ta=25℃ Ta=25℃ 5 BA7815 BA7805 15 1.5 4 3 BA7815 Io-p [A] BA7805 BA7808 Vo [V] Ib [mA] Io=1A 15 Vo [V] Vo [V] 10 Ta=25℃ BA7815 BA7815 Vo [V] unless otherwise specified) 10 BA7808 2 BA7808 1.0 BA7815 BA7805 5 0.5 1 0 0 0 5 10 15 20 25 30 0.0 0.0 0.5 1.0 Vin [V] 1.5 0 5 15 R.R. [dB] Ios [A] BA7805 80 BA7805 BA7808 BA7815 1.5 0.5 30 100 Ta=25℃ BA7805 BA7808 BA7815 25 Fig.18 Peak Output Current 2 Ta=25℃ 1.5 20 Vin [V] Fig.17 Load Regulation 2.0 1.0 10 Io [A] Fig.16 Vin - Ib Vd [V] 2.0 1 0.5 60 BA7808 BA7815 40 20 Ta=25℃ Io=100mA 0.0 00 0 0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 10 10 30 100 100 1K 10K 1000 10000 Frequency [Hz] Vin [V] Io [A] Fig.19 Dropout Voltage Fig.21 Ripple Rejection Ratio Fig.20 Short – Circuit Output Current 6 6 1.5 Io=0mA Io=0mA Io=5mA 1.0 5 0.5 4 100K 1000000 1M 100000 Ta=25℃ BA7815 BA7815 5 0.0 4 BA7808 BA7808 3 BA7805 2 -0.5 BA7805 Ib [mA] BA7815 Ib [mA] ΔVo/Vo [%] BA7815 BA7808 BA7805 -1.5 1 0 -20 0 20 BA7805 2 1 -1.0 -40 BA7808 3 40 60 80 100 0 -40 -20 0 20 40 60 80 100 0 0.2 0.4 0.6 Ta [℃] Ta [℃] Io [A] Fig.22 Ta - Vo Fig.23 Ta - Ib Fig.24 Io - Ib www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. 8/12 0.8 1 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Internal Circuit Structural Diagram INPUT R4 R9 R8 R10 R13 D2 Q9 Q8 Q16 Q12 Q17 Q15 R5 R21 R12 R17 R11 Q10 Q13 Q5 R6 R16 C1 Q11 Q7 Q18 Q1 Q14 R7 R20 R15 R2 R1 D1 OUTPUT Q6 R22 Q2 R18 R19 Q4 Q3 R14 R3 D3 COMMON FIN 1 2 3 TO220CP-3 PIN No. 1 2 3 Symbol INPUT COMMON OUTPUT TO252-3 Function Input terminal Ground terminal Output terminal PIN No. 1 2 3 FIN Symbol INPUT N.C. OUTPUT COMMON Function Input terminal Non connection terminal Output terminal Ground terminal ●Protection Circuit Vin=10V BA7805CP 6 5 Output voltage : Vo [V] (1)Over-current protection circuit When the maximum rating current or more is rushed, it controls the current ability and protects the IC from destruction. 4 3 2 1 0 1 2 Output Current : IO[A] 6 5 Output Voltage : Vo [V] (2) Thermal shutdown circuit When the chip temperature of IC exceeds the setting temperature, the IC goes OFF, and it controls the IC not to be destroyed by the heat generation. It can be restored by being lowered the chip temperature of IC below the setting temperature. 4 Vin=10V BA7805CP 3 2 1 0 25 50 75 100 125 150 175 200 Chip Junction temperature : Tj [℃] 2 Maximum output current : IO-P[A] (3) Safety operation area control circuit It controls the output current in inverse proportion ratio to voltage difference (input-output). When voltage difference becomes bigger, the IC will be destroyed in rush current. It protects the IC by controlling the current ability according to the voltage level. Tj=25℃ BA7805CP 1.5 1 0.5 0 10 20 30 40 Input-Output voltage difference: Vin-Vo [V] www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. 9/12 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Thermal design Refer to the following thermal derating curves (Fig. 25, 26), when using in the status of Ta=25℃ or more. The characteristic of IC is greatly related to the operating temperature. When it is used in over maximum junction temperature, the elements inside IC might become weaker and be destroyed. It is recommended to take into consideration thermal of IC. Note that the temperatures are in the allowed temperature limits and operated within Pd. It is necessary to operate it at junction temperature Tjmax or less to prevent IC from the thermal destruction. Please operate IC within permissible loss Pd because the junction temperature Tj might become considerably a high temperature even if ambient temperature Ta is normal temperature (25℃). Power consumption Pc(W) may be expressed by the equation shown below: Pc=(Vin-Vo)×Io+ Vin×Ib permissible loss Pd≧Pc Io ≦ Vin Vo Io Ib Pd  Vin  Ib Vin  Vo : Input Voltage : Output Voltage : Output Current : Bias current Maximum Output current IoMAX can be calculated in thermal design. ・Calculation example Ex.1) Ta=85℃, Vin =7.5V, Vo=5.0V Using TO220CP-3 alone θja=62.5℃/W→16mW/℃ Pd=1.04W at 85℃ 1.04  7.5  4.5m Io ≦ 7.5  5.0 Io≦400mA Be sure to use this IC within a power dissipation at the range of operating temperature. 25 12.5 (1) Mounted on infinity Alminium heat sinkθj-c=5.7(℃/W) (2) Using an IC aloneθj-a=62.5℃/W POWER DISSIPATION: Pd[W] POWER DISSIPATION: Pd[W] (1) 22.0 20 15 10 5 (2) 2.0 0 (1) 10.0 (1) Mounted on infinity Alminium heat sinkθj-c=12.5 (℃/W) (2) Using an IC aloneθj-a=125.0℃/W 10 7.5 5 2.5 (2) 1.0 0 0 25 50 75 100 125 150 0 AMBIENT TEMPERATURE : Ta[℃] Fig.25 Thermal derating curve (TO220CP-3) 25 50 75 100 125 150 AMBIENT TEMPERATURE : Ta[℃] Fig.26 Thermal derating curve (TO252-3) ●Terminal Setting and Cautions ・INPUT It is recommended that a capacitor (about 0.33uF) be inserted between INPUT and COMMON. The value of capacitor is designed suitable for the actual application. ・OUTPUT It is recommended that a capacitor (about 0.1uF) be inserted between OUTPUT and COMMON. A tantalum capacitor can also be used for this pin because insufficient capacitors may cause oscillation by a temperature change. ・COMMON Keep the no voltage drop between Ground level of set board and IC. When there is the voltage difference, setting voltage becomes inaccuracy and unstable. It is recommended to connect by wide, short pattern, and lower the inpedance. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. 10/12 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Notes for use (1) Absolute Maximum Ratings While utmost care is taken to quality control of this product, any application that may exceed some of the absolute maximum ratings including the voltage applied and the operating temperature range may result in breakage. If broken, short-mode or open-mode may not be identified. So if it is expected to encounter with special mode that may exceed the absolute maximum ratings, it is requested to take necessary safety measures physically including insertion of fuses. (2) Ground voltage Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient. (3) Thermal design When you do the kind of use which exceeds Pd, It may be happened to deteriorating IC original quality such as decrease of electric current ability with chip temperature rise. Do not exceed the power dissipation (Pd) of the package specification rating under actual operation, and please design enough temperature margins. (4) Short-circuiting between terminals, and mismounting When mounting to pc board, care must be taken to avoid mistake in its orientation and alignment. Failure to do so may result in IC breakdown. Short-circuiting due to foreign matters entered between output terminals, or between output and power supply or GND may also cause breakdown. (5) Operation in Strong electromagnetic field Be noted that using the IC in the strong electromagnetic radiation can cause operation failures. (6) Inspection with the IC set to a pc board If a capacitor must be connected to the pin of lower impedance during inspection with the IC set to a pc board, the capacitor must be discharged after each process to avoid stress to the IC. For electrostatic protection, provide proper grounding to assembling processes with special care taken in handling and storage. When connecting to jigs in the inspection process, be sure to turn OFF the power supply before it is connected and removed. (7) Input to IC terminals + This is a monolithic IC with P isolation between P-substrate and each element as illustrated below. This P-layer and the N-layer of each element form a P-N junction, and various parasitic element are formed. If a resistor is joined to a transistor terminal as shown in Fig 28. ○P-N junction works as a parasitic diode if the following relationship is satisfied; GND>Terminal A (at resistor side), or GND>Terminal B (at transistor side); and ○if GND>Terminal B (at NPN transistor side), a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode. The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among circuits, and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in such manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in activation of parasitic elements. (8) Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well. (9) Thermal shutdown circuit A temperature control circuit is built in the IC to prevent the damage due to overheat.Therefore, the output is turned off when the thermal circuit works and is turned on when the temperature goes down to the specified level. But, built-in the IC a temperature control circuit to protect itself, and avoid the design used the thermal protection. (10) Over current protection circuit The over-current protection circuits are built in at output, according to their respective current outputs and prevent the IC from being damaged when the load is short-circuited or over-current. But, these protection circuits are effective for preventing destruction by unexpected accident. When it’s in continuous protection circuit moving period don’t use please. And for ability, because this chip has minus characteristic, be careful for heat plan. (11) There is a possibility to damage an internal circuit or the element when Vin and the voltage of each terminal reverse in the application. For instance, Vin is short-circuited to GND etc. with the charge charged to an external capacitor. Please use the capacitor of the output terminal with 1000μF or less. Moreover, the Vin series is recommended to insert the diode of the by-pass the diode of the backflow prevention or between each terminal and Vin. Pin B Bypass diode Backflow prevention diode Resistor Transistor (NPN) Pin A Pin B B C C B E E Parasitic element VCC N Output terminal N P+ P P+ N P+ N P substrate Parasitic element Fig.27 Bypass Diode www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. GND N P P+ N P substrate Parasitic element Fig.28 11/12 GND GND Other adjacent elements Pin A GND Parasitic element Simplified structure of monorisic IC 2012.03 - Rev.C Technical Note BA78□□Series,BA78M□□Series ●Ordering part number A 7 Part No 8 M Part No 0 Output Current None:1A M :0.5A 5 Output Voltage 05 : 5V F P - Package CP :TO220CP-3 FP :TO252-3 ~ B E 2 Packaging and forming specification E2: Embossed tape and reel (TO220CP-3, TO252-3) 24 : 24V TO220CP-3 +0.2 2.8-0.1 8.0±0.2 +0.4 15.2-0.2 12.0±0.2 4.5±0.1 Tape Embossed carrier tape Quantity 500pcs Direction of feed 1.0±0.2 5.61±0.2 +0.3 10.0-0.1 φ3.2±0.1 1 2 3 E2 The direction is the 1pin of product is at the lower left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 0.42±0.1 (0.585) 2.85 0.82±0.1 1.3 2.54 2.46 1 2 3 Reel (Unit : mm) 1pin Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. TO252-3 6.5±0.2 C0.5 1.5±0.2 +0.2 5.1 -0.1 1.5 3 0.8 2 2000pcs Direction of feed E2 The direction is the 1pin of product is at the lower left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 2.5 9.5±0.5 5.5±0.2 FIN 1 Embossed carrier tape Quantity 2.3±0.2 0.5±0.1 0.65 Tape 0.65 0.5±0.1 0.75 2.3±0.2 2.3±0.2 1.0±0.2 1pin (Unit : mm) www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. Reel 12/12 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2012.03 - Rev.C Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001
BA7824CP-E2
物料型号: - BA78□□系列和BA78M□□系列是三端稳压器,提供多种固定输出电压。

器件简介: - 这些稳压器能够从不稳定的输入电压中提供稳定的固定输出电压。 - 它们具有内置的过流保护电路和热关断电路,高纹波抑制,并提供TO220CP-3和TO252-3封装,适用于广泛的应用。

引脚分配: - 输入端(INPUT)、公共端(COMMON,地端)、输出端(OUTPUT)。 - TO220CP-3封装的第2脚是公共端,第3脚是输出端。 - TO252-3封装的第2脚是非连接端(N.C.),第3脚是输出端,公共端标记为FIN。

参数特性: - 提供了详细的电气特性表,包括输出电压、负载调整率、线路调整率、纹波抑制、温度系数等。 - 例如,输出电压在不同的输入电压和输出电流条件下的最小值、典型值和最大值。

功能详解: - 内置保护电路,包括过流保护、热关断和安全操作区域控制电路,以防止IC因过热或过流而损坏。

应用信息: - 适用于电视、音响设备等固定电压电源。

封装信息: - 提供了TO220CP-3和TO252-3两种封装的尺寸信息。
BA7824CP-E2 价格&库存

很抱歉,暂时无法提供与“BA7824CP-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BA7824CP-E2
    •  国内价格 香港价格
    • 1+2.187011+0.26264
    • 10+2.1217210+0.25480
    • 50+2.0890850+0.25088
    • 100+2.04828100+0.24598
    • 500+2.03196500+0.24402
    • 1000+2.031961000+0.24402
    • 2000+2.031962000+0.24402
    • 4000+2.023804000+0.24304

    库存:50

    BA7824CP-E2
      •  国内价格
      • 50+7.52897
      • 100+7.17550
      • 250+6.85737

      库存:500